Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it would be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write the Free Software Foundation,
  17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  18 */
  19#include "xfs.h"
  20#include "xfs_fs.h"
  21#include "xfs_types.h"
  22#include "xfs_bit.h"
  23#include "xfs_log.h"
  24#include "xfs_inum.h"
  25#include "xfs_trans.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_mount.h"
  29#include "xfs_error.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_bmap_btree.h"
  32#include "xfs_alloc_btree.h"
  33#include "xfs_ialloc_btree.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
  36#include "xfs_btree.h"
  37#include "xfs_ialloc.h"
  38#include "xfs_alloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_quota.h"
 
  41#include "xfs_trans_priv.h"
  42#include "xfs_trans_space.h"
  43#include "xfs_inode_item.h"
  44#include "xfs_trace.h"
 
 
 
 
 
 
 
 
 
  45
  46kmem_zone_t	*xfs_trans_zone;
  47kmem_zone_t	*xfs_log_item_desc_zone;
  48
  49
  50/*
  51 * Various log reservation values.
  52 *
  53 * These are based on the size of the file system block because that is what
  54 * most transactions manipulate.  Each adds in an additional 128 bytes per
  55 * item logged to try to account for the overhead of the transaction mechanism.
  56 *
  57 * Note:  Most of the reservations underestimate the number of allocation
  58 * groups into which they could free extents in the xfs_bmap_finish() call.
  59 * This is because the number in the worst case is quite high and quite
  60 * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
  61 * extents in only a single AG at a time.  This will require changes to the
  62 * EFI code as well, however, so that the EFI for the extents not freed is
  63 * logged again in each transaction.  See SGI PV #261917.
  64 *
  65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
  66 * register overflow from temporaries in the calculations.
  67 */
  68
  69
  70/*
  71 * In a write transaction we can allocate a maximum of 2
  72 * extents.  This gives:
  73 *    the inode getting the new extents: inode size
  74 *    the inode's bmap btree: max depth * block size
  75 *    the agfs of the ags from which the extents are allocated: 2 * sector
  76 *    the superblock free block counter: sector size
  77 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
  78 * And the bmap_finish transaction can free bmap blocks in a join:
  79 *    the agfs of the ags containing the blocks: 2 * sector size
  80 *    the agfls of the ags containing the blocks: 2 * sector size
  81 *    the super block free block counter: sector size
  82 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
  83 */
  84STATIC uint
  85xfs_calc_write_reservation(
  86	struct xfs_mount	*mp)
  87{
  88	return XFS_DQUOT_LOGRES(mp) +
  89		MAX((mp->m_sb.sb_inodesize +
  90		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
  91		     2 * mp->m_sb.sb_sectsize +
  92		     mp->m_sb.sb_sectsize +
  93		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
  94		     128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
  95			    XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
  96		    (2 * mp->m_sb.sb_sectsize +
  97		     2 * mp->m_sb.sb_sectsize +
  98		     mp->m_sb.sb_sectsize +
  99		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 100		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 101}
 102
 103/*
 104 * In truncating a file we free up to two extents at once.  We can modify:
 105 *    the inode being truncated: inode size
 106 *    the inode's bmap btree: (max depth + 1) * block size
 107 * And the bmap_finish transaction can free the blocks and bmap blocks:
 108 *    the agf for each of the ags: 4 * sector size
 109 *    the agfl for each of the ags: 4 * sector size
 110 *    the super block to reflect the freed blocks: sector size
 111 *    worst case split in allocation btrees per extent assuming 4 extents:
 112 *		4 exts * 2 trees * (2 * max depth - 1) * block size
 113 *    the inode btree: max depth * blocksize
 114 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 115 */
 116STATIC uint
 117xfs_calc_itruncate_reservation(
 118	struct xfs_mount	*mp)
 119{
 120	return XFS_DQUOT_LOGRES(mp) +
 121		MAX((mp->m_sb.sb_inodesize +
 122		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
 123		     128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
 124		    (4 * mp->m_sb.sb_sectsize +
 125		     4 * mp->m_sb.sb_sectsize +
 126		     mp->m_sb.sb_sectsize +
 127		     XFS_ALLOCFREE_LOG_RES(mp, 4) +
 128		     128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
 129		     128 * 5 +
 130		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 131		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 132			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 133}
 134
 135/*
 136 * In renaming a files we can modify:
 137 *    the four inodes involved: 4 * inode size
 138 *    the two directory btrees: 2 * (max depth + v2) * dir block size
 139 *    the two directory bmap btrees: 2 * max depth * block size
 140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
 141 *	of bmap blocks) giving:
 142 *    the agf for the ags in which the blocks live: 3 * sector size
 143 *    the agfl for the ags in which the blocks live: 3 * sector size
 144 *    the superblock for the free block count: sector size
 145 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
 146 */
 147STATIC uint
 148xfs_calc_rename_reservation(
 149	struct xfs_mount	*mp)
 150{
 151	return XFS_DQUOT_LOGRES(mp) +
 152		MAX((4 * mp->m_sb.sb_inodesize +
 153		     2 * XFS_DIROP_LOG_RES(mp) +
 154		     128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
 155		    (3 * mp->m_sb.sb_sectsize +
 156		     3 * mp->m_sb.sb_sectsize +
 157		     mp->m_sb.sb_sectsize +
 158		     XFS_ALLOCFREE_LOG_RES(mp, 3) +
 159		     128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
 160}
 161
 162/*
 163 * For creating a link to an inode:
 164 *    the parent directory inode: inode size
 165 *    the linked inode: inode size
 166 *    the directory btree could split: (max depth + v2) * dir block size
 167 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 168 * And the bmap_finish transaction can free some bmap blocks giving:
 169 *    the agf for the ag in which the blocks live: sector size
 170 *    the agfl for the ag in which the blocks live: sector size
 171 *    the superblock for the free block count: sector size
 172 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 173 */
 174STATIC uint
 175xfs_calc_link_reservation(
 176	struct xfs_mount	*mp)
 177{
 178	return XFS_DQUOT_LOGRES(mp) +
 179		MAX((mp->m_sb.sb_inodesize +
 180		     mp->m_sb.sb_inodesize +
 181		     XFS_DIROP_LOG_RES(mp) +
 182		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
 183		    (mp->m_sb.sb_sectsize +
 184		     mp->m_sb.sb_sectsize +
 185		     mp->m_sb.sb_sectsize +
 186		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 187		     128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 188}
 189
 190/*
 191 * For removing a directory entry we can modify:
 192 *    the parent directory inode: inode size
 193 *    the removed inode: inode size
 194 *    the directory btree could join: (max depth + v2) * dir block size
 195 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
 197 *    the agf for the ag in which the blocks live: 2 * sector size
 198 *    the agfl for the ag in which the blocks live: 2 * sector size
 199 *    the superblock for the free block count: sector size
 200 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 201 */
 202STATIC uint
 203xfs_calc_remove_reservation(
 204	struct xfs_mount	*mp)
 205{
 206	return XFS_DQUOT_LOGRES(mp) +
 207		MAX((mp->m_sb.sb_inodesize +
 208		     mp->m_sb.sb_inodesize +
 209		     XFS_DIROP_LOG_RES(mp) +
 210		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
 211		    (2 * mp->m_sb.sb_sectsize +
 212		     2 * mp->m_sb.sb_sectsize +
 213		     mp->m_sb.sb_sectsize +
 214		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 215		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 216}
 217
 218/*
 219 * For symlink we can modify:
 220 *    the parent directory inode: inode size
 221 *    the new inode: inode size
 222 *    the inode btree entry: 1 block
 223 *    the directory btree: (max depth + v2) * dir block size
 224 *    the directory inode's bmap btree: (max depth + v2) * block size
 225 *    the blocks for the symlink: 1 kB
 226 * Or in the first xact we allocate some inodes giving:
 227 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 228 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 229 *    the inode btree: max depth * blocksize
 230 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 231 */
 232STATIC uint
 233xfs_calc_symlink_reservation(
 234	struct xfs_mount	*mp)
 235{
 236	return XFS_DQUOT_LOGRES(mp) +
 237		MAX((mp->m_sb.sb_inodesize +
 238		     mp->m_sb.sb_inodesize +
 239		     XFS_FSB_TO_B(mp, 1) +
 240		     XFS_DIROP_LOG_RES(mp) +
 241		     1024 +
 242		     128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
 243		    (2 * mp->m_sb.sb_sectsize +
 244		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
 245		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
 246		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 247		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 248			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 249}
 250
 251/*
 252 * For create we can modify:
 253 *    the parent directory inode: inode size
 254 *    the new inode: inode size
 255 *    the inode btree entry: block size
 256 *    the superblock for the nlink flag: sector size
 257 *    the directory btree: (max depth + v2) * dir block size
 258 *    the directory inode's bmap btree: (max depth + v2) * block size
 259 * Or in the first xact we allocate some inodes giving:
 260 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 261 *    the superblock for the nlink flag: sector size
 262 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 263 *    the inode btree: max depth * blocksize
 264 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 265 */
 266STATIC uint
 267xfs_calc_create_reservation(
 268	struct xfs_mount	*mp)
 269{
 270	return XFS_DQUOT_LOGRES(mp) +
 271		MAX((mp->m_sb.sb_inodesize +
 272		     mp->m_sb.sb_inodesize +
 273		     mp->m_sb.sb_sectsize +
 274		     XFS_FSB_TO_B(mp, 1) +
 275		     XFS_DIROP_LOG_RES(mp) +
 276		     128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
 277		    (3 * mp->m_sb.sb_sectsize +
 278		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
 279		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
 280		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 281		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 282			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 283}
 284
 285/*
 286 * Making a new directory is the same as creating a new file.
 287 */
 288STATIC uint
 289xfs_calc_mkdir_reservation(
 290	struct xfs_mount	*mp)
 291{
 292	return xfs_calc_create_reservation(mp);
 293}
 294
 295/*
 296 * In freeing an inode we can modify:
 297 *    the inode being freed: inode size
 298 *    the super block free inode counter: sector size
 299 *    the agi hash list and counters: sector size
 300 *    the inode btree entry: block size
 301 *    the on disk inode before ours in the agi hash list: inode cluster size
 302 *    the inode btree: max depth * blocksize
 303 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 304 */
 305STATIC uint
 306xfs_calc_ifree_reservation(
 307	struct xfs_mount	*mp)
 308{
 309	return XFS_DQUOT_LOGRES(mp) +
 310		mp->m_sb.sb_inodesize +
 311		mp->m_sb.sb_sectsize +
 312		mp->m_sb.sb_sectsize +
 313		XFS_FSB_TO_B(mp, 1) +
 314		MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
 315		    XFS_INODE_CLUSTER_SIZE(mp)) +
 316		128 * 5 +
 317		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 318		128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 319		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 320}
 321
 322/*
 323 * When only changing the inode we log the inode and possibly the superblock
 324 * We also add a bit of slop for the transaction stuff.
 325 */
 326STATIC uint
 327xfs_calc_ichange_reservation(
 328	struct xfs_mount	*mp)
 329{
 330	return XFS_DQUOT_LOGRES(mp) +
 331		mp->m_sb.sb_inodesize +
 332		mp->m_sb.sb_sectsize +
 333		512;
 334
 335}
 336
 337/*
 338 * Growing the data section of the filesystem.
 339 *	superblock
 340 *	agi and agf
 341 *	allocation btrees
 342 */
 343STATIC uint
 344xfs_calc_growdata_reservation(
 345	struct xfs_mount	*mp)
 346{
 347	return mp->m_sb.sb_sectsize * 3 +
 348		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 349		128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 350}
 351
 352/*
 353 * Growing the rt section of the filesystem.
 354 * In the first set of transactions (ALLOC) we allocate space to the
 355 * bitmap or summary files.
 356 *	superblock: sector size
 357 *	agf of the ag from which the extent is allocated: sector size
 358 *	bmap btree for bitmap/summary inode: max depth * blocksize
 359 *	bitmap/summary inode: inode size
 360 *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
 361 */
 362STATIC uint
 363xfs_calc_growrtalloc_reservation(
 364	struct xfs_mount	*mp)
 365{
 366	return 2 * mp->m_sb.sb_sectsize +
 367		XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
 368		mp->m_sb.sb_inodesize +
 369		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 370		128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
 371		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 372}
 373
 374/*
 375 * Growing the rt section of the filesystem.
 376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
 377 *	one bitmap/summary block: blocksize
 378 */
 379STATIC uint
 380xfs_calc_growrtzero_reservation(
 381	struct xfs_mount	*mp)
 382{
 383	return mp->m_sb.sb_blocksize + 128;
 384}
 385
 386/*
 387 * Growing the rt section of the filesystem.
 388 * In the third set of transactions (FREE) we update metadata without
 389 * allocating any new blocks.
 390 *	superblock: sector size
 391 *	bitmap inode: inode size
 392 *	summary inode: inode size
 393 *	one bitmap block: blocksize
 394 *	summary blocks: new summary size
 395 */
 396STATIC uint
 397xfs_calc_growrtfree_reservation(
 398	struct xfs_mount	*mp)
 399{
 400	return mp->m_sb.sb_sectsize +
 401		2 * mp->m_sb.sb_inodesize +
 402		mp->m_sb.sb_blocksize +
 403		mp->m_rsumsize +
 404		128 * 5;
 405}
 406
 407/*
 408 * Logging the inode modification timestamp on a synchronous write.
 409 *	inode
 410 */
 411STATIC uint
 412xfs_calc_swrite_reservation(
 413	struct xfs_mount	*mp)
 414{
 415	return mp->m_sb.sb_inodesize + 128;
 416}
 417
 418/*
 419 * Logging the inode mode bits when writing a setuid/setgid file
 420 *	inode
 421 */
 422STATIC uint
 423xfs_calc_writeid_reservation(xfs_mount_t *mp)
 424{
 425	return mp->m_sb.sb_inodesize + 128;
 426}
 427
 428/*
 429 * Converting the inode from non-attributed to attributed.
 430 *	the inode being converted: inode size
 431 *	agf block and superblock (for block allocation)
 432 *	the new block (directory sized)
 433 *	bmap blocks for the new directory block
 434 *	allocation btrees
 435 */
 436STATIC uint
 437xfs_calc_addafork_reservation(
 438	struct xfs_mount	*mp)
 439{
 440	return XFS_DQUOT_LOGRES(mp) +
 441		mp->m_sb.sb_inodesize +
 442		mp->m_sb.sb_sectsize * 2 +
 443		mp->m_dirblksize +
 444		XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
 445		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 446		128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
 447		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 448}
 449
 450/*
 451 * Removing the attribute fork of a file
 452 *    the inode being truncated: inode size
 453 *    the inode's bmap btree: max depth * block size
 454 * And the bmap_finish transaction can free the blocks and bmap blocks:
 455 *    the agf for each of the ags: 4 * sector size
 456 *    the agfl for each of the ags: 4 * sector size
 457 *    the super block to reflect the freed blocks: sector size
 458 *    worst case split in allocation btrees per extent assuming 4 extents:
 459 *		4 exts * 2 trees * (2 * max depth - 1) * block size
 460 */
 461STATIC uint
 462xfs_calc_attrinval_reservation(
 463	struct xfs_mount	*mp)
 464{
 465	return MAX((mp->m_sb.sb_inodesize +
 466		    XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 467		    128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
 468		   (4 * mp->m_sb.sb_sectsize +
 469		    4 * mp->m_sb.sb_sectsize +
 470		    mp->m_sb.sb_sectsize +
 471		    XFS_ALLOCFREE_LOG_RES(mp, 4) +
 472		    128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
 473}
 474
 475/*
 476 * Setting an attribute.
 477 *	the inode getting the attribute
 478 *	the superblock for allocations
 479 *	the agfs extents are allocated from
 480 *	the attribute btree * max depth
 481 *	the inode allocation btree
 482 * Since attribute transaction space is dependent on the size of the attribute,
 483 * the calculation is done partially at mount time and partially at runtime.
 484 */
 485STATIC uint
 486xfs_calc_attrset_reservation(
 487	struct xfs_mount	*mp)
 488{
 489	return XFS_DQUOT_LOGRES(mp) +
 490		mp->m_sb.sb_inodesize +
 491		mp->m_sb.sb_sectsize +
 492		XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
 493		128 * (2 + XFS_DA_NODE_MAXDEPTH);
 494}
 495
 496/*
 497 * Removing an attribute.
 498 *    the inode: inode size
 499 *    the attribute btree could join: max depth * block size
 500 *    the inode bmap btree could join or split: max depth * block size
 501 * And the bmap_finish transaction can free the attr blocks freed giving:
 502 *    the agf for the ag in which the blocks live: 2 * sector size
 503 *    the agfl for the ag in which the blocks live: 2 * sector size
 504 *    the superblock for the free block count: sector size
 505 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 506 */
 507STATIC uint
 508xfs_calc_attrrm_reservation(
 509	struct xfs_mount	*mp)
 510{
 511	return XFS_DQUOT_LOGRES(mp) +
 512		MAX((mp->m_sb.sb_inodesize +
 513		     XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
 514		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 515		     128 * (1 + XFS_DA_NODE_MAXDEPTH +
 516			    XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
 517		    (2 * mp->m_sb.sb_sectsize +
 518		     2 * mp->m_sb.sb_sectsize +
 519		     mp->m_sb.sb_sectsize +
 520		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 521		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 522}
 523
 524/*
 525 * Clearing a bad agino number in an agi hash bucket.
 526 */
 527STATIC uint
 528xfs_calc_clear_agi_bucket_reservation(
 529	struct xfs_mount	*mp)
 530{
 531	return mp->m_sb.sb_sectsize + 128;
 532}
 
 
 
 533
 534/*
 535 * Initialize the precomputed transaction reservation values
 536 * in the mount structure.
 537 */
 538void
 539xfs_trans_init(
 540	struct xfs_mount	*mp)
 541{
 542	struct xfs_trans_reservations *resp = &mp->m_reservations;
 543
 544	resp->tr_write = xfs_calc_write_reservation(mp);
 545	resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
 546	resp->tr_rename = xfs_calc_rename_reservation(mp);
 547	resp->tr_link = xfs_calc_link_reservation(mp);
 548	resp->tr_remove = xfs_calc_remove_reservation(mp);
 549	resp->tr_symlink = xfs_calc_symlink_reservation(mp);
 550	resp->tr_create = xfs_calc_create_reservation(mp);
 551	resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
 552	resp->tr_ifree = xfs_calc_ifree_reservation(mp);
 553	resp->tr_ichange = xfs_calc_ichange_reservation(mp);
 554	resp->tr_growdata = xfs_calc_growdata_reservation(mp);
 555	resp->tr_swrite = xfs_calc_swrite_reservation(mp);
 556	resp->tr_writeid = xfs_calc_writeid_reservation(mp);
 557	resp->tr_addafork = xfs_calc_addafork_reservation(mp);
 558	resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
 559	resp->tr_attrset = xfs_calc_attrset_reservation(mp);
 560	resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
 561	resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
 562	resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
 563	resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
 564	resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
 565}
 566
 567/*
 568 * This routine is called to allocate a transaction structure.
 569 * The type parameter indicates the type of the transaction.  These
 570 * are enumerated in xfs_trans.h.
 571 *
 572 * Dynamically allocate the transaction structure from the transaction
 573 * zone, initialize it, and return it to the caller.
 574 */
 575xfs_trans_t *
 576xfs_trans_alloc(
 577	xfs_mount_t	*mp,
 578	uint		type)
 579{
 580	xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
 581	return _xfs_trans_alloc(mp, type, KM_SLEEP);
 582}
 583
 584xfs_trans_t *
 585_xfs_trans_alloc(
 586	xfs_mount_t	*mp,
 587	uint		type,
 588	uint		memflags)
 589{
 590	xfs_trans_t	*tp;
 591
 592	atomic_inc(&mp->m_active_trans);
 593
 594	tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
 595	tp->t_magic = XFS_TRANS_MAGIC;
 596	tp->t_type = type;
 597	tp->t_mountp = mp;
 598	INIT_LIST_HEAD(&tp->t_items);
 599	INIT_LIST_HEAD(&tp->t_busy);
 600	return tp;
 601}
 602
 603/*
 604 * Free the transaction structure.  If there is more clean up
 605 * to do when the structure is freed, add it here.
 606 */
 607STATIC void
 608xfs_trans_free(
 609	struct xfs_trans	*tp)
 610{
 611	xfs_alloc_busy_sort(&tp->t_busy);
 612	xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false);
 613
 614	atomic_dec(&tp->t_mountp->m_active_trans);
 
 
 
 615	xfs_trans_free_dqinfo(tp);
 616	kmem_zone_free(xfs_trans_zone, tp);
 617}
 618
 619/*
 620 * This is called to create a new transaction which will share the
 621 * permanent log reservation of the given transaction.  The remaining
 622 * unused block and rt extent reservations are also inherited.  This
 623 * implies that the original transaction is no longer allowed to allocate
 624 * blocks.  Locks and log items, however, are no inherited.  They must
 625 * be added to the new transaction explicitly.
 626 */
 627xfs_trans_t *
 628xfs_trans_dup(
 629	xfs_trans_t	*tp)
 630{
 631	xfs_trans_t	*ntp;
 632
 633	ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
 
 
 634
 635	/*
 636	 * Initialize the new transaction structure.
 637	 */
 638	ntp->t_magic = XFS_TRANS_MAGIC;
 639	ntp->t_type = tp->t_type;
 640	ntp->t_mountp = tp->t_mountp;
 641	INIT_LIST_HEAD(&ntp->t_items);
 642	INIT_LIST_HEAD(&ntp->t_busy);
 
 
 643
 644	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 645	ASSERT(tp->t_ticket != NULL);
 646
 647	ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
 
 
 
 
 
 648	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 
 
 649	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 650	tp->t_blk_res = tp->t_blk_res_used;
 
 651	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 652	tp->t_rtx_res = tp->t_rtx_res_used;
 653	ntp->t_pflags = tp->t_pflags;
 654
 655	xfs_trans_dup_dqinfo(tp, ntp);
 
 
 
 656
 657	atomic_inc(&tp->t_mountp->m_active_trans);
 658	return ntp;
 659}
 660
 661/*
 662 * This is called to reserve free disk blocks and log space for the
 663 * given transaction.  This must be done before allocating any resources
 664 * within the transaction.
 665 *
 666 * This will return ENOSPC if there are not enough blocks available.
 667 * It will sleep waiting for available log space.
 668 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 669 * is used by long running transactions.  If any one of the reservations
 670 * fails then they will all be backed out.
 671 *
 672 * This does not do quota reservations. That typically is done by the
 673 * caller afterwards.
 674 */
 675int
 676xfs_trans_reserve(
 677	xfs_trans_t	*tp,
 678	uint		blocks,
 679	uint		logspace,
 680	uint		rtextents,
 681	uint		flags,
 682	uint		logcount)
 683{
 684	int		log_flags;
 685	int		error = 0;
 686	int		rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 687
 688	/* Mark this thread as being in a transaction */
 689	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 690
 691	/*
 692	 * Attempt to reserve the needed disk blocks by decrementing
 693	 * the number needed from the number available.  This will
 694	 * fail if the count would go below zero.
 695	 */
 696	if (blocks > 0) {
 697		error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 698					  -((int64_t)blocks), rsvd);
 699		if (error != 0) {
 700			current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 701			return (XFS_ERROR(ENOSPC));
 702		}
 703		tp->t_blk_res += blocks;
 704	}
 705
 706	/*
 707	 * Reserve the log space needed for this transaction.
 708	 */
 709	if (logspace > 0) {
 710		ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
 711		ASSERT((tp->t_log_count == 0) ||
 712			(tp->t_log_count == logcount));
 713		if (flags & XFS_TRANS_PERM_LOG_RES) {
 714			log_flags = XFS_LOG_PERM_RESERV;
 
 
 
 715			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 
 716		} else {
 717			ASSERT(tp->t_ticket == NULL);
 718			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 719			log_flags = 0;
 720		}
 721
 722		error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
 723					&tp->t_ticket,
 724					XFS_TRANSACTION, log_flags, tp->t_type);
 725		if (error) {
 726			goto undo_blocks;
 
 
 727		}
 728		tp->t_log_res = logspace;
 729		tp->t_log_count = logcount;
 
 
 
 
 730	}
 731
 732	/*
 733	 * Attempt to reserve the needed realtime extents by decrementing
 734	 * the number needed from the number available.  This will
 735	 * fail if the count would go below zero.
 736	 */
 737	if (rtextents > 0) {
 738		error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
 739					  -((int64_t)rtextents), rsvd);
 740		if (error) {
 741			error = XFS_ERROR(ENOSPC);
 742			goto undo_log;
 743		}
 744		tp->t_rtx_res += rtextents;
 745	}
 746
 747	return 0;
 748
 749	/*
 750	 * Error cases jump to one of these labels to undo any
 751	 * reservations which have already been performed.
 752	 */
 753undo_log:
 754	if (logspace > 0) {
 755		if (flags & XFS_TRANS_PERM_LOG_RES) {
 756			log_flags = XFS_LOG_REL_PERM_RESERV;
 757		} else {
 758			log_flags = 0;
 759		}
 760		xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
 761		tp->t_ticket = NULL;
 762		tp->t_log_res = 0;
 763		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 764	}
 765
 766undo_blocks:
 767	if (blocks > 0) {
 768		xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 769					 (int64_t)blocks, rsvd);
 770		tp->t_blk_res = 0;
 771	}
 
 
 772
 773	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 
 
 
 
 
 
 
 
 
 
 
 774
 775	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776}
 777
 778/*
 779 * Record the indicated change to the given field for application
 780 * to the file system's superblock when the transaction commits.
 781 * For now, just store the change in the transaction structure.
 782 *
 783 * Mark the transaction structure to indicate that the superblock
 784 * needs to be updated before committing.
 785 *
 786 * Because we may not be keeping track of allocated/free inodes and
 787 * used filesystem blocks in the superblock, we do not mark the
 788 * superblock dirty in this transaction if we modify these fields.
 789 * We still need to update the transaction deltas so that they get
 790 * applied to the incore superblock, but we don't want them to
 791 * cause the superblock to get locked and logged if these are the
 792 * only fields in the superblock that the transaction modifies.
 793 */
 794void
 795xfs_trans_mod_sb(
 796	xfs_trans_t	*tp,
 797	uint		field,
 798	int64_t		delta)
 799{
 800	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 801	xfs_mount_t	*mp = tp->t_mountp;
 802
 803	switch (field) {
 804	case XFS_TRANS_SB_ICOUNT:
 805		tp->t_icount_delta += delta;
 806		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 807			flags &= ~XFS_TRANS_SB_DIRTY;
 808		break;
 809	case XFS_TRANS_SB_IFREE:
 810		tp->t_ifree_delta += delta;
 811		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 812			flags &= ~XFS_TRANS_SB_DIRTY;
 813		break;
 814	case XFS_TRANS_SB_FDBLOCKS:
 815		/*
 816		 * Track the number of blocks allocated in the
 817		 * transaction.  Make sure it does not exceed the
 818		 * number reserved.
 819		 */
 820		if (delta < 0) {
 821			tp->t_blk_res_used += (uint)-delta;
 822			ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823		}
 824		tp->t_fdblocks_delta += delta;
 825		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 826			flags &= ~XFS_TRANS_SB_DIRTY;
 827		break;
 828	case XFS_TRANS_SB_RES_FDBLOCKS:
 829		/*
 830		 * The allocation has already been applied to the
 831		 * in-core superblock's counter.  This should only
 832		 * be applied to the on-disk superblock.
 833		 */
 834		ASSERT(delta < 0);
 835		tp->t_res_fdblocks_delta += delta;
 836		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 837			flags &= ~XFS_TRANS_SB_DIRTY;
 838		break;
 839	case XFS_TRANS_SB_FREXTENTS:
 840		/*
 841		 * Track the number of blocks allocated in the
 842		 * transaction.  Make sure it does not exceed the
 843		 * number reserved.
 844		 */
 845		if (delta < 0) {
 846			tp->t_rtx_res_used += (uint)-delta;
 847			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 848		}
 849		tp->t_frextents_delta += delta;
 
 
 850		break;
 851	case XFS_TRANS_SB_RES_FREXTENTS:
 852		/*
 853		 * The allocation has already been applied to the
 854		 * in-core superblock's counter.  This should only
 855		 * be applied to the on-disk superblock.
 856		 */
 857		ASSERT(delta < 0);
 858		tp->t_res_frextents_delta += delta;
 
 
 859		break;
 860	case XFS_TRANS_SB_DBLOCKS:
 861		ASSERT(delta > 0);
 862		tp->t_dblocks_delta += delta;
 863		break;
 864	case XFS_TRANS_SB_AGCOUNT:
 865		ASSERT(delta > 0);
 866		tp->t_agcount_delta += delta;
 867		break;
 868	case XFS_TRANS_SB_IMAXPCT:
 869		tp->t_imaxpct_delta += delta;
 870		break;
 871	case XFS_TRANS_SB_REXTSIZE:
 872		tp->t_rextsize_delta += delta;
 873		break;
 874	case XFS_TRANS_SB_RBMBLOCKS:
 875		tp->t_rbmblocks_delta += delta;
 876		break;
 877	case XFS_TRANS_SB_RBLOCKS:
 878		tp->t_rblocks_delta += delta;
 879		break;
 880	case XFS_TRANS_SB_REXTENTS:
 881		tp->t_rextents_delta += delta;
 882		break;
 883	case XFS_TRANS_SB_REXTSLOG:
 884		tp->t_rextslog_delta += delta;
 885		break;
 
 
 
 
 886	default:
 887		ASSERT(0);
 888		return;
 889	}
 890
 891	tp->t_flags |= flags;
 892}
 893
 894/*
 895 * xfs_trans_apply_sb_deltas() is called from the commit code
 896 * to bring the superblock buffer into the current transaction
 897 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 898 *
 899 * For now we just look at each field allowed to change and change
 900 * it if necessary.
 901 */
 902STATIC void
 903xfs_trans_apply_sb_deltas(
 904	xfs_trans_t	*tp)
 905{
 906	xfs_dsb_t	*sbp;
 907	xfs_buf_t	*bp;
 908	int		whole = 0;
 909
 910	bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
 911	sbp = XFS_BUF_TO_SBP(bp);
 912
 913	/*
 914	 * Check that superblock mods match the mods made to AGF counters.
 915	 */
 916	ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
 917	       (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
 918		tp->t_ag_btree_delta));
 919
 920	/*
 921	 * Only update the superblock counters if we are logging them
 922	 */
 923	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
 924		if (tp->t_icount_delta)
 925			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 926		if (tp->t_ifree_delta)
 927			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 928		if (tp->t_fdblocks_delta)
 929			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 930		if (tp->t_res_fdblocks_delta)
 931			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 932	}
 933
 934	if (tp->t_frextents_delta)
 935		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
 936	if (tp->t_res_frextents_delta)
 937		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938
 939	if (tp->t_dblocks_delta) {
 940		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 941		whole = 1;
 942	}
 943	if (tp->t_agcount_delta) {
 944		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 945		whole = 1;
 946	}
 947	if (tp->t_imaxpct_delta) {
 948		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 949		whole = 1;
 950	}
 951	if (tp->t_rextsize_delta) {
 952		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 953		whole = 1;
 954	}
 955	if (tp->t_rbmblocks_delta) {
 956		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 957		whole = 1;
 958	}
 959	if (tp->t_rblocks_delta) {
 960		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 961		whole = 1;
 962	}
 963	if (tp->t_rextents_delta) {
 964		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 965		whole = 1;
 966	}
 967	if (tp->t_rextslog_delta) {
 968		sbp->sb_rextslog += tp->t_rextslog_delta;
 969		whole = 1;
 970	}
 
 
 
 
 971
 
 972	if (whole)
 973		/*
 974		 * Log the whole thing, the fields are noncontiguous.
 975		 */
 976		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
 977	else
 978		/*
 979		 * Since all the modifiable fields are contiguous, we
 980		 * can get away with this.
 981		 */
 982		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
 983				  offsetof(xfs_dsb_t, sb_frextents) +
 984				  sizeof(sbp->sb_frextents) - 1);
 985}
 986
 987/*
 988 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
 989 * and apply superblock counter changes to the in-core superblock.  The
 990 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 991 * applied to the in-core superblock.  The idea is that that has already been
 992 * done.
 993 *
 994 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
 995 * However, we have to ensure that we only modify each superblock field only
 996 * once because the application of the delta values may not be atomic. That can
 997 * lead to ENOSPC races occurring if we have two separate modifcations of the
 998 * free space counter to put back the entire reservation and then take away
 999 * what we used.
1000 *
1001 * If we are not logging superblock counters, then the inode allocated/free and
1002 * used block counts are not updated in the on disk superblock. In this case,
1003 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1004 * still need to update the incore superblock with the changes.
 
 
 
1005 */
 
 
1006void
1007xfs_trans_unreserve_and_mod_sb(
1008	xfs_trans_t	*tp)
1009{
1010	xfs_mod_sb_t	msb[9];	/* If you add cases, add entries */
1011	xfs_mod_sb_t	*msbp;
1012	xfs_mount_t	*mp = tp->t_mountp;
1013	/* REFERENCED */
1014	int		error;
1015	int		rsvd;
1016	int64_t		blkdelta = 0;
1017	int64_t		rtxdelta = 0;
1018	int64_t		idelta = 0;
1019	int64_t		ifreedelta = 0;
1020
1021	msbp = msb;
1022	rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1023
1024	/* calculate deltas */
1025	if (tp->t_blk_res > 0)
1026		blkdelta = tp->t_blk_res;
1027	if ((tp->t_fdblocks_delta != 0) &&
1028	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1029	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
 
1030	        blkdelta += tp->t_fdblocks_delta;
 
 
1031
1032	if (tp->t_rtx_res > 0)
1033		rtxdelta = tp->t_rtx_res;
1034	if ((tp->t_frextents_delta != 0) &&
1035	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
1036		rtxdelta += tp->t_frextents_delta;
 
 
1037
1038	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1039	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1040		idelta = tp->t_icount_delta;
1041		ifreedelta = tp->t_ifree_delta;
1042	}
1043
1044	/* apply the per-cpu counters */
1045	if (blkdelta) {
1046		error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1047						 blkdelta, rsvd);
1048		if (error)
1049			goto out;
1050	}
1051
1052	if (idelta) {
1053		error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1054						 idelta, rsvd);
1055		if (error)
1056			goto out_undo_fdblocks;
1057	}
1058
1059	if (ifreedelta) {
1060		error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1061						 ifreedelta, rsvd);
1062		if (error)
1063			goto out_undo_icount;
1064	}
1065
1066	/* apply remaining deltas */
1067	if (rtxdelta != 0) {
1068		msbp->msb_field = XFS_SBS_FREXTENTS;
1069		msbp->msb_delta = rtxdelta;
1070		msbp++;
1071	}
1072
1073	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1074		if (tp->t_dblocks_delta != 0) {
1075			msbp->msb_field = XFS_SBS_DBLOCKS;
1076			msbp->msb_delta = tp->t_dblocks_delta;
1077			msbp++;
1078		}
1079		if (tp->t_agcount_delta != 0) {
1080			msbp->msb_field = XFS_SBS_AGCOUNT;
1081			msbp->msb_delta = tp->t_agcount_delta;
1082			msbp++;
1083		}
1084		if (tp->t_imaxpct_delta != 0) {
1085			msbp->msb_field = XFS_SBS_IMAX_PCT;
1086			msbp->msb_delta = tp->t_imaxpct_delta;
1087			msbp++;
1088		}
1089		if (tp->t_rextsize_delta != 0) {
1090			msbp->msb_field = XFS_SBS_REXTSIZE;
1091			msbp->msb_delta = tp->t_rextsize_delta;
1092			msbp++;
1093		}
1094		if (tp->t_rbmblocks_delta != 0) {
1095			msbp->msb_field = XFS_SBS_RBMBLOCKS;
1096			msbp->msb_delta = tp->t_rbmblocks_delta;
1097			msbp++;
1098		}
1099		if (tp->t_rblocks_delta != 0) {
1100			msbp->msb_field = XFS_SBS_RBLOCKS;
1101			msbp->msb_delta = tp->t_rblocks_delta;
1102			msbp++;
1103		}
1104		if (tp->t_rextents_delta != 0) {
1105			msbp->msb_field = XFS_SBS_REXTENTS;
1106			msbp->msb_delta = tp->t_rextents_delta;
1107			msbp++;
1108		}
1109		if (tp->t_rextslog_delta != 0) {
1110			msbp->msb_field = XFS_SBS_REXTSLOG;
1111			msbp->msb_delta = tp->t_rextslog_delta;
1112			msbp++;
1113		}
1114	}
1115
1116	/*
1117	 * If we need to change anything, do it.
 
1118	 */
1119	if (msbp > msb) {
1120		error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1121			(uint)(msbp - msb), rsvd);
1122		if (error)
1123			goto out_undo_ifreecount;
1124	}
1125
1126	return;
1127
1128out_undo_ifreecount:
1129	if (ifreedelta)
1130		xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1131out_undo_icount:
1132	if (idelta)
1133		xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1134out_undo_fdblocks:
1135	if (blkdelta)
1136		xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1137out:
1138	ASSERT(error == 0);
1139	return;
1140}
1141
1142/*
1143 * Add the given log item to the transaction's list of log items.
1144 *
1145 * The log item will now point to its new descriptor with its li_desc field.
1146 */
1147void
1148xfs_trans_add_item(
1149	struct xfs_trans	*tp,
1150	struct xfs_log_item	*lip)
1151{
1152	struct xfs_log_item_desc *lidp;
1153
1154	ASSERT(lip->li_mountp = tp->t_mountp);
1155	ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1156
1157	lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1158
1159	lidp->lid_item = lip;
1160	lidp->lid_flags = 0;
1161	lidp->lid_size = 0;
1162	list_add_tail(&lidp->lid_trans, &tp->t_items);
1163
1164	lip->li_desc = lidp;
1165}
1166
1167STATIC void
1168xfs_trans_free_item_desc(
1169	struct xfs_log_item_desc *lidp)
1170{
1171	list_del_init(&lidp->lid_trans);
1172	kmem_zone_free(xfs_log_item_desc_zone, lidp);
1173}
1174
1175/*
1176 * Unlink and free the given descriptor.
 
 
1177 */
1178void
1179xfs_trans_del_item(
1180	struct xfs_log_item	*lip)
1181{
1182	xfs_trans_free_item_desc(lip->li_desc);
1183	lip->li_desc = NULL;
1184}
1185
1186/*
1187 * Unlock all of the items of a transaction and free all the descriptors
1188 * of that transaction.
1189 */
1190void
1191xfs_trans_free_items(
1192	struct xfs_trans	*tp,
1193	xfs_lsn_t		commit_lsn,
1194	int			flags)
1195{
1196	struct xfs_log_item_desc *lidp, *next;
1197
1198	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1199		struct xfs_log_item	*lip = lidp->lid_item;
1200
1201		lip->li_desc = NULL;
1202
1203		if (commit_lsn != NULLCOMMITLSN)
1204			IOP_COMMITTING(lip, commit_lsn);
1205		if (flags & XFS_TRANS_ABORT)
1206			lip->li_flags |= XFS_LI_ABORTED;
1207		IOP_UNLOCK(lip);
1208
1209		xfs_trans_free_item_desc(lidp);
1210	}
1211}
1212
1213/*
1214 * Unlock the items associated with a transaction.
1215 *
1216 * Items which were not logged should be freed.  Those which were logged must
1217 * still be tracked so they can be unpinned when the transaction commits.
1218 */
1219STATIC void
1220xfs_trans_unlock_items(
1221	struct xfs_trans	*tp,
1222	xfs_lsn_t		commit_lsn)
1223{
1224	struct xfs_log_item_desc *lidp, *next;
1225
1226	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1227		struct xfs_log_item	*lip = lidp->lid_item;
1228
1229		lip->li_desc = NULL;
1230
1231		if (commit_lsn != NULLCOMMITLSN)
1232			IOP_COMMITTING(lip, commit_lsn);
1233		IOP_UNLOCK(lip);
1234
1235		/*
1236		 * Free the descriptor if the item is not dirty
1237		 * within this transaction.
1238		 */
1239		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1240			xfs_trans_free_item_desc(lidp);
1241	}
1242}
1243
1244/*
1245 * Total up the number of log iovecs needed to commit this
1246 * transaction.  The transaction itself needs one for the
1247 * transaction header.  Ask each dirty item in turn how many
1248 * it needs to get the total.
1249 */
1250static uint
1251xfs_trans_count_vecs(
1252	struct xfs_trans	*tp)
1253{
1254	int			nvecs;
1255	struct xfs_log_item_desc *lidp;
1256
1257	nvecs = 1;
1258
1259	/* In the non-debug case we need to start bailing out if we
1260	 * didn't find a log_item here, return zero and let trans_commit
1261	 * deal with it.
1262	 */
1263	if (list_empty(&tp->t_items)) {
1264		ASSERT(0);
1265		return 0;
1266	}
1267
1268	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1269		/*
1270		 * Skip items which aren't dirty in this transaction.
1271		 */
1272		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1273			continue;
1274		lidp->lid_size = IOP_SIZE(lidp->lid_item);
1275		nvecs += lidp->lid_size;
1276	}
1277
1278	return nvecs;
1279}
1280
1281/*
1282 * Fill in the vector with pointers to data to be logged
1283 * by this transaction.  The transaction header takes
1284 * the first vector, and then each dirty item takes the
1285 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1286 *
1287 * As each item fills in the entries it needs, also pin the item
1288 * so that it cannot be flushed out until the log write completes.
1289 */
1290static void
1291xfs_trans_fill_vecs(
1292	struct xfs_trans	*tp,
1293	struct xfs_log_iovec	*log_vector)
1294{
1295	struct xfs_log_item_desc *lidp;
1296	struct xfs_log_iovec	*vecp;
1297	uint			nitems;
1298
1299	/*
1300	 * Skip over the entry for the transaction header, we'll
1301	 * fill that in at the end.
1302	 */
1303	vecp = log_vector + 1;
1304
1305	nitems = 0;
1306	ASSERT(!list_empty(&tp->t_items));
1307	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1308		/* Skip items which aren't dirty in this transaction. */
1309		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1310			continue;
1311
1312		/*
1313		 * The item may be marked dirty but not log anything.  This can
1314		 * be used to get called when a transaction is committed.
1315		 */
1316		if (lidp->lid_size)
1317			nitems++;
1318		IOP_FORMAT(lidp->lid_item, vecp);
1319		vecp += lidp->lid_size;
1320		IOP_PIN(lidp->lid_item);
1321	}
1322
1323	/*
1324	 * Now that we've counted the number of items in this transaction, fill
1325	 * in the transaction header. Note that the transaction header does not
1326	 * have a log item.
1327	 */
1328	tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1329	tp->t_header.th_type = tp->t_type;
1330	tp->t_header.th_num_items = nitems;
1331	log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1332	log_vector->i_len = sizeof(xfs_trans_header_t);
1333	log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1334}
1335
1336/*
1337 * The committed item processing consists of calling the committed routine of
1338 * each logged item, updating the item's position in the AIL if necessary, and
1339 * unpinning each item.  If the committed routine returns -1, then do nothing
1340 * further with the item because it may have been freed.
1341 *
1342 * Since items are unlocked when they are copied to the incore log, it is
1343 * possible for two transactions to be completing and manipulating the same
1344 * item simultaneously.  The AIL lock will protect the lsn field of each item.
1345 * The value of this field can never go backwards.
1346 *
1347 * We unpin the items after repositioning them in the AIL, because otherwise
1348 * they could be immediately flushed and we'd have to race with the flusher
1349 * trying to pull the item from the AIL as we add it.
1350 */
1351static void
1352xfs_trans_item_committed(
1353	struct xfs_log_item	*lip,
1354	xfs_lsn_t		commit_lsn,
1355	int			aborted)
1356{
1357	xfs_lsn_t		item_lsn;
1358	struct xfs_ail		*ailp;
1359
1360	if (aborted)
1361		lip->li_flags |= XFS_LI_ABORTED;
1362	item_lsn = IOP_COMMITTED(lip, commit_lsn);
1363
1364	/* item_lsn of -1 means the item needs no further processing */
1365	if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1366		return;
1367
1368	/*
1369	 * If the returned lsn is greater than what it contained before, update
1370	 * the location of the item in the AIL.  If it is not, then do nothing.
1371	 * Items can never move backwards in the AIL.
1372	 *
1373	 * While the new lsn should usually be greater, it is possible that a
1374	 * later transaction completing simultaneously with an earlier one
1375	 * using the same item could complete first with a higher lsn.  This
1376	 * would cause the earlier transaction to fail the test below.
1377	 */
1378	ailp = lip->li_ailp;
1379	spin_lock(&ailp->xa_lock);
1380	if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1381		/*
1382		 * This will set the item's lsn to item_lsn and update the
1383		 * position of the item in the AIL.
1384		 *
1385		 * xfs_trans_ail_update() drops the AIL lock.
1386		 */
1387		xfs_trans_ail_update(ailp, lip, item_lsn);
1388	} else {
1389		spin_unlock(&ailp->xa_lock);
1390	}
1391
1392	/*
1393	 * Now that we've repositioned the item in the AIL, unpin it so it can
1394	 * be flushed. Pass information about buffer stale state down from the
1395	 * log item flags, if anyone else stales the buffer we do not want to
1396	 * pay any attention to it.
1397	 */
1398	IOP_UNPIN(lip, 0);
1399}
1400
1401/*
1402 * This is typically called by the LM when a transaction has been fully
1403 * committed to disk.  It needs to unpin the items which have
1404 * been logged by the transaction and update their positions
1405 * in the AIL if necessary.
1406 *
1407 * This also gets called when the transactions didn't get written out
1408 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1409 */
1410STATIC void
1411xfs_trans_committed(
1412	void			*arg,
1413	int			abortflag)
1414{
1415	struct xfs_trans	*tp = arg;
1416	struct xfs_log_item_desc *lidp, *next;
1417
1418	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1419		xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1420		xfs_trans_free_item_desc(lidp);
1421	}
1422
1423	xfs_trans_free(tp);
1424}
1425
1426static inline void
1427xfs_log_item_batch_insert(
1428	struct xfs_ail		*ailp,
1429	struct xfs_ail_cursor	*cur,
1430	struct xfs_log_item	**log_items,
1431	int			nr_items,
1432	xfs_lsn_t		commit_lsn)
1433{
1434	int	i;
1435
1436	spin_lock(&ailp->xa_lock);
1437	/* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1438	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1439
1440	for (i = 0; i < nr_items; i++)
1441		IOP_UNPIN(log_items[i], 0);
1442}
1443
1444/*
1445 * Bulk operation version of xfs_trans_committed that takes a log vector of
1446 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1447 * minimise lock traffic.
1448 *
1449 * If we are called with the aborted flag set, it is because a log write during
1450 * a CIL checkpoint commit has failed. In this case, all the items in the
1451 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1452 * means that checkpoint commit abort handling is treated exactly the same
1453 * as an iclog write error even though we haven't started any IO yet. Hence in
1454 * this case all we need to do is IOP_COMMITTED processing, followed by an
1455 * IOP_UNPIN(aborted) call.
1456 *
1457 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1458 * at the end of the AIL, the insert cursor avoids the need to walk
1459 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1460 * call. This saves a lot of needless list walking and is a net win, even
1461 * though it slightly increases that amount of AIL lock traffic to set it up
1462 * and tear it down.
1463 */
1464void
1465xfs_trans_committed_bulk(
1466	struct xfs_ail		*ailp,
1467	struct xfs_log_vec	*log_vector,
1468	xfs_lsn_t		commit_lsn,
1469	int			aborted)
1470{
1471#define LOG_ITEM_BATCH_SIZE	32
1472	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
1473	struct xfs_log_vec	*lv;
1474	struct xfs_ail_cursor	cur;
1475	int			i = 0;
1476
1477	spin_lock(&ailp->xa_lock);
1478	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1479	spin_unlock(&ailp->xa_lock);
1480
1481	/* unpin all the log items */
1482	for (lv = log_vector; lv; lv = lv->lv_next ) {
1483		struct xfs_log_item	*lip = lv->lv_item;
1484		xfs_lsn_t		item_lsn;
1485
1486		if (aborted)
1487			lip->li_flags |= XFS_LI_ABORTED;
1488		item_lsn = IOP_COMMITTED(lip, commit_lsn);
1489
1490		/* item_lsn of -1 means the item needs no further processing */
1491		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1492			continue;
1493
1494		/*
1495		 * if we are aborting the operation, no point in inserting the
1496		 * object into the AIL as we are in a shutdown situation.
1497		 */
1498		if (aborted) {
1499			ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1500			IOP_UNPIN(lip, 1);
1501			continue;
1502		}
1503
1504		if (item_lsn != commit_lsn) {
1505
1506			/*
1507			 * Not a bulk update option due to unusual item_lsn.
1508			 * Push into AIL immediately, rechecking the lsn once
1509			 * we have the ail lock. Then unpin the item. This does
1510			 * not affect the AIL cursor the bulk insert path is
1511			 * using.
1512			 */
1513			spin_lock(&ailp->xa_lock);
1514			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1515				xfs_trans_ail_update(ailp, lip, item_lsn);
1516			else
1517				spin_unlock(&ailp->xa_lock);
1518			IOP_UNPIN(lip, 0);
1519			continue;
1520		}
1521
1522		/* Item is a candidate for bulk AIL insert.  */
1523		log_items[i++] = lv->lv_item;
1524		if (i >= LOG_ITEM_BATCH_SIZE) {
1525			xfs_log_item_batch_insert(ailp, &cur, log_items,
1526					LOG_ITEM_BATCH_SIZE, commit_lsn);
1527			i = 0;
1528		}
1529	}
1530
1531	/* make sure we insert the remainder! */
1532	if (i)
1533		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1534
1535	spin_lock(&ailp->xa_lock);
1536	xfs_trans_ail_cursor_done(ailp, &cur);
1537	spin_unlock(&ailp->xa_lock);
1538}
1539
1540/*
1541 * Called from the trans_commit code when we notice that the filesystem is in
1542 * the middle of a forced shutdown.
1543 *
1544 * When we are called here, we have already pinned all the items in the
1545 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1546 * so we can simply walk the items in the transaction, unpin them with an abort
1547 * flag and then free the items. Note that unpinning the items can result in
1548 * them being freed immediately, so we need to use a safe list traversal method
1549 * here.
1550 */
1551STATIC void
1552xfs_trans_uncommit(
1553	struct xfs_trans	*tp,
1554	uint			flags)
1555{
1556	struct xfs_log_item_desc *lidp, *n;
1557
1558	list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
1559		if (lidp->lid_flags & XFS_LID_DIRTY)
1560			IOP_UNPIN(lidp->lid_item, 1);
1561	}
1562
1563	xfs_trans_unreserve_and_mod_sb(tp);
1564	xfs_trans_unreserve_and_mod_dquots(tp);
1565
1566	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1567	xfs_trans_free(tp);
1568}
1569
1570/*
1571 * Format the transaction direct to the iclog. This isolates the physical
1572 * transaction commit operation from the logical operation and hence allows
1573 * other methods to be introduced without affecting the existing commit path.
1574 */
1575static int
1576xfs_trans_commit_iclog(
1577	struct xfs_mount	*mp,
1578	struct xfs_trans	*tp,
1579	xfs_lsn_t		*commit_lsn,
1580	int			flags)
1581{
1582	int			shutdown;
1583	int			error;
1584	int			log_flags = 0;
1585	struct xlog_in_core	*commit_iclog;
1586#define XFS_TRANS_LOGVEC_COUNT  16
1587	struct xfs_log_iovec	log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1588	struct xfs_log_iovec	*log_vector;
1589	uint			nvec;
1590
1591
1592	/*
1593	 * Ask each log item how many log_vector entries it will
1594	 * need so we can figure out how many to allocate.
1595	 * Try to avoid the kmem_alloc() call in the common case
1596	 * by using a vector from the stack when it fits.
1597	 */
1598	nvec = xfs_trans_count_vecs(tp);
1599	if (nvec == 0) {
1600		return ENOMEM;	/* triggers a shutdown! */
1601	} else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1602		log_vector = log_vector_fast;
1603	} else {
1604		log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1605						   sizeof(xfs_log_iovec_t),
1606						   KM_SLEEP);
1607	}
1608
1609	/*
1610	 * Fill in the log_vector and pin the logged items, and
1611	 * then write the transaction to the log.
1612	 */
1613	xfs_trans_fill_vecs(tp, log_vector);
1614
1615	if (flags & XFS_TRANS_RELEASE_LOG_RES)
1616		log_flags = XFS_LOG_REL_PERM_RESERV;
1617
1618	error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1619
1620	/*
1621	 * The transaction is committed incore here, and can go out to disk
1622	 * at any time after this call.  However, all the items associated
1623	 * with the transaction are still locked and pinned in memory.
1624	 */
1625	*commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1626
1627	tp->t_commit_lsn = *commit_lsn;
1628	trace_xfs_trans_commit_lsn(tp);
1629
1630	if (nvec > XFS_TRANS_LOGVEC_COUNT)
1631		kmem_free(log_vector);
1632
1633	/*
1634	 * If we got a log write error. Unpin the logitems that we
1635	 * had pinned, clean up, free trans structure, and return error.
1636	 */
1637	if (error || *commit_lsn == -1) {
1638		current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1639		xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1640		return XFS_ERROR(EIO);
1641	}
1642
1643	/*
1644	 * Once the transaction has committed, unused
1645	 * reservations need to be released and changes to
1646	 * the superblock need to be reflected in the in-core
1647	 * version.  Do that now.
1648	 */
1649	xfs_trans_unreserve_and_mod_sb(tp);
1650
1651	/*
1652	 * Tell the LM to call the transaction completion routine
1653	 * when the log write with LSN commit_lsn completes (e.g.
1654	 * when the transaction commit really hits the on-disk log).
1655	 * After this call we cannot reference tp, because the call
1656	 * can happen at any time and the call will free the transaction
1657	 * structure pointed to by tp.  The only case where we call
1658	 * the completion routine (xfs_trans_committed) directly is
1659	 * if the log is turned off on a debug kernel or we're
1660	 * running in simulation mode (the log is explicitly turned
1661	 * off).
1662	 */
1663	tp->t_logcb.cb_func = xfs_trans_committed;
1664	tp->t_logcb.cb_arg = tp;
1665
1666	/*
1667	 * We need to pass the iclog buffer which was used for the
1668	 * transaction commit record into this function, and attach
1669	 * the callback to it. The callback must be attached before
1670	 * the items are unlocked to avoid racing with other threads
1671	 * waiting for an item to unlock.
1672	 */
1673	shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1674
1675	/*
1676	 * Mark this thread as no longer being in a transaction
1677	 */
1678	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1679
1680	/*
1681	 * Once all the items of the transaction have been copied
1682	 * to the in core log and the callback is attached, the
1683	 * items can be unlocked.
1684	 *
1685	 * This will free descriptors pointing to items which were
1686	 * not logged since there is nothing more to do with them.
1687	 * For items which were logged, we will keep pointers to them
1688	 * so they can be unpinned after the transaction commits to disk.
1689	 * This will also stamp each modified meta-data item with
1690	 * the commit lsn of this transaction for dependency tracking
1691	 * purposes.
1692	 */
1693	xfs_trans_unlock_items(tp, *commit_lsn);
1694
1695	/*
1696	 * If we detected a log error earlier, finish committing
1697	 * the transaction now (unpin log items, etc).
1698	 *
1699	 * Order is critical here, to avoid using the transaction
1700	 * pointer after its been freed (by xfs_trans_committed
1701	 * either here now, or as a callback).  We cannot do this
1702	 * step inside xfs_log_notify as was done earlier because
1703	 * of this issue.
1704	 */
1705	if (shutdown)
1706		xfs_trans_committed(tp, XFS_LI_ABORTED);
1707
1708	/*
1709	 * Now that the xfs_trans_committed callback has been attached,
1710	 * and the items are released we can finally allow the iclog to
1711	 * go to disk.
 
1712	 */
1713	return xfs_log_release_iclog(mp, commit_iclog);
1714}
1715
1716/*
1717 * Walk the log items and allocate log vector structures for
1718 * each item large enough to fit all the vectors they require.
1719 * Note that this format differs from the old log vector format in
1720 * that there is no transaction header in these log vectors.
1721 */
1722STATIC struct xfs_log_vec *
1723xfs_trans_alloc_log_vecs(
1724	xfs_trans_t	*tp)
1725{
1726	struct xfs_log_item_desc *lidp;
1727	struct xfs_log_vec	*lv = NULL;
1728	struct xfs_log_vec	*ret_lv = NULL;
1729
1730
1731	/* Bail out if we didn't find a log item.  */
1732	if (list_empty(&tp->t_items)) {
1733		ASSERT(0);
1734		return NULL;
1735	}
1736
1737	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1738		struct xfs_log_vec *new_lv;
1739
1740		/* Skip items which aren't dirty in this transaction. */
1741		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1742			continue;
1743
1744		/* Skip items that do not have any vectors for writing */
1745		lidp->lid_size = IOP_SIZE(lidp->lid_item);
1746		if (!lidp->lid_size)
1747			continue;
1748
1749		new_lv = kmem_zalloc(sizeof(*new_lv) +
1750				lidp->lid_size * sizeof(struct xfs_log_iovec),
1751				KM_SLEEP);
1752
1753		/* The allocated iovec region lies beyond the log vector. */
1754		new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1755		new_lv->lv_niovecs = lidp->lid_size;
1756		new_lv->lv_item = lidp->lid_item;
1757		if (!ret_lv)
1758			ret_lv = new_lv;
1759		else
1760			lv->lv_next = new_lv;
1761		lv = new_lv;
1762	}
1763
1764	return ret_lv;
1765}
1766
1767static int
1768xfs_trans_commit_cil(
1769	struct xfs_mount	*mp,
1770	struct xfs_trans	*tp,
1771	xfs_lsn_t		*commit_lsn,
1772	int			flags)
1773{
1774	struct xfs_log_vec	*log_vector;
1775
1776	/*
1777	 * Get each log item to allocate a vector structure for
1778	 * the log item to to pass to the log write code. The
1779	 * CIL commit code will format the vector and save it away.
1780	 */
1781	log_vector = xfs_trans_alloc_log_vecs(tp);
1782	if (!log_vector)
1783		return ENOMEM;
1784
1785	xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1786
1787	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1788	xfs_trans_free(tp);
1789	return 0;
1790}
1791
1792/*
1793 * xfs_trans_commit
1794 *
1795 * Commit the given transaction to the log a/synchronously.
1796 *
1797 * XFS disk error handling mechanism is not based on a typical
1798 * transaction abort mechanism. Logically after the filesystem
1799 * gets marked 'SHUTDOWN', we can't let any new transactions
1800 * be durable - ie. committed to disk - because some metadata might
1801 * be inconsistent. In such cases, this returns an error, and the
1802 * caller may assume that all locked objects joined to the transaction
1803 * have already been unlocked as if the commit had succeeded.
1804 * Do not reference the transaction structure after this call.
1805 */
1806int
1807_xfs_trans_commit(
1808	struct xfs_trans	*tp,
1809	uint			flags,
1810	int			*log_flushed)
1811{
1812	struct xfs_mount	*mp = tp->t_mountp;
1813	xfs_lsn_t		commit_lsn = -1;
 
1814	int			error = 0;
1815	int			log_flags = 0;
1816	int			sync = tp->t_flags & XFS_TRANS_SYNC;
1817
 
 
1818	/*
1819	 * Determine whether this commit is releasing a permanent
1820	 * log reservation or not.
1821	 */
1822	if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1823		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1824		log_flags = XFS_LOG_REL_PERM_RESERV;
1825	}
 
 
 
1826
1827	/*
1828	 * If there is nothing to be logged by the transaction,
1829	 * then unlock all of the items associated with the
1830	 * transaction and free the transaction structure.
1831	 * Also make sure to return any reserved blocks to
1832	 * the free pool.
1833	 */
1834	if (!(tp->t_flags & XFS_TRANS_DIRTY))
1835		goto out_unreserve;
1836
1837	if (XFS_FORCED_SHUTDOWN(mp)) {
1838		error = XFS_ERROR(EIO);
 
 
 
 
 
 
1839		goto out_unreserve;
1840	}
1841
1842	ASSERT(tp->t_ticket != NULL);
1843
1844	/*
1845	 * If we need to update the superblock, then do it now.
1846	 */
1847	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1848		xfs_trans_apply_sb_deltas(tp);
1849	xfs_trans_apply_dquot_deltas(tp);
1850
1851	if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1852		error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1853	else
1854		error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1855
1856	if (error == ENOMEM) {
1857		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1858		error = XFS_ERROR(EIO);
1859		goto out_unreserve;
1860	}
1861
1862	/*
1863	 * If the transaction needs to be synchronous, then force the
1864	 * log out now and wait for it.
1865	 */
1866	if (sync) {
1867		if (!error) {
1868			error = _xfs_log_force_lsn(mp, commit_lsn,
1869				      XFS_LOG_SYNC, log_flushed);
1870		}
1871		XFS_STATS_INC(xs_trans_sync);
1872	} else {
1873		XFS_STATS_INC(xs_trans_async);
1874	}
1875
1876	return error;
1877
1878out_unreserve:
1879	xfs_trans_unreserve_and_mod_sb(tp);
1880
1881	/*
1882	 * It is indeed possible for the transaction to be not dirty but
1883	 * the dqinfo portion to be.  All that means is that we have some
1884	 * (non-persistent) quota reservations that need to be unreserved.
1885	 */
1886	xfs_trans_unreserve_and_mod_dquots(tp);
1887	if (tp->t_ticket) {
1888		commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1889		if (commit_lsn == -1 && !error)
1890			error = XFS_ERROR(EIO);
 
 
1891	}
1892	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1893	xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1894	xfs_trans_free(tp);
1895
1896	XFS_STATS_INC(xs_trans_empty);
1897	return error;
1898}
1899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900/*
1901 * Unlock all of the transaction's items and free the transaction.
1902 * The transaction must not have modified any of its items, because
1903 * there is no way to restore them to their previous state.
 
 
 
1904 *
1905 * If the transaction has made a log reservation, make sure to release
1906 * it as well.
 
 
 
 
 
1907 */
1908void
1909xfs_trans_cancel(
1910	xfs_trans_t		*tp,
1911	int			flags)
1912{
1913	int			log_flags;
1914	xfs_mount_t		*mp = tp->t_mountp;
 
 
 
1915
1916	/*
1917	 * See if the caller is being too lazy to figure out if
1918	 * the transaction really needs an abort.
 
 
1919	 */
1920	if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1921		flags &= ~XFS_TRANS_ABORT;
 
 
 
 
1922	/*
1923	 * See if the caller is relying on us to shut down the
1924	 * filesystem.  This happens in paths where we detect
1925	 * corruption and decide to give up.
 
1926	 */
1927	if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1928		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1929		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1930	}
1931#ifdef DEBUG
1932	if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1933		struct xfs_log_item_desc *lidp;
 
1934
1935		list_for_each_entry(lidp, &tp->t_items, lid_trans)
1936			ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1937	}
1938#endif
1939	xfs_trans_unreserve_and_mod_sb(tp);
1940	xfs_trans_unreserve_and_mod_dquots(tp);
1941
1942	if (tp->t_ticket) {
1943		if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1944			ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1945			log_flags = XFS_LOG_REL_PERM_RESERV;
1946		} else {
1947			log_flags = 0;
1948		}
1949		xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1950	}
1951
1952	/* mark this thread as no longer being in a transaction */
1953	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1954
1955	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1956	xfs_trans_free(tp);
1957}
1958
1959/*
1960 * Roll from one trans in the sequence of PERMANENT transactions to
1961 * the next: permanent transactions are only flushed out when
1962 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1963 * as possible to let chunks of it go to the log. So we commit the
1964 * chunk we've been working on and get a new transaction to continue.
1965 */
1966int
1967xfs_trans_roll(
1968	struct xfs_trans	**tpp,
1969	struct xfs_inode	*dp)
1970{
1971	struct xfs_trans	*trans;
1972	unsigned int		logres, count;
1973	int			error;
1974
1975	/*
1976	 * Ensure that the inode is always logged.
1977	 */
1978	trans = *tpp;
1979	xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1980
1981	/*
1982	 * Copy the critical parameters from one trans to the next.
1983	 */
1984	logres = trans->t_log_res;
1985	count = trans->t_log_count;
 
1986	*tpp = xfs_trans_dup(trans);
1987
1988	/*
1989	 * Commit the current transaction.
1990	 * If this commit failed, then it'd just unlock those items that
1991	 * are not marked ihold. That also means that a filesystem shutdown
1992	 * is in progress. The caller takes the responsibility to cancel
1993	 * the duplicate transaction that gets returned.
1994	 */
1995	error = xfs_trans_commit(trans, 0);
1996	if (error)
1997		return (error);
1998
1999	trans = *tpp;
2000
2001	/*
2002	 * transaction commit worked ok so we can drop the extra ticket
2003	 * reference that we gained in xfs_trans_dup()
2004	 */
2005	xfs_log_ticket_put(trans->t_ticket);
2006
2007
2008	/*
2009	 * Reserve space in the log for th next transaction.
2010	 * This also pushes items in the "AIL", the list of logged items,
2011	 * out to disk if they are taking up space at the tail of the log
2012	 * that we want to use.  This requires that either nothing be locked
2013	 * across this call, or that anything that is locked be logged in
2014	 * the prior and the next transactions.
2015	 */
2016	error = xfs_trans_reserve(trans, 0, logres, 0,
2017				  XFS_TRANS_PERM_LOG_RES, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018	/*
2019	 *  Ensure that the inode is in the new transaction and locked.
2020	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021	if (error)
2022		return error;
2023
2024	xfs_trans_ijoin(trans, dp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025	return 0;
 
 
 
 
 
 
 
2026}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   4 * Copyright (C) 2010 Red Hat, Inc.
   5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
 
 
 
  13#include "xfs_mount.h"
  14#include "xfs_extent_busy.h"
 
 
 
 
 
 
 
 
 
 
  15#include "xfs_quota.h"
  16#include "xfs_trans.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_trace.h"
  21#include "xfs_error.h"
  22#include "xfs_defer.h"
  23#include "xfs_inode.h"
  24#include "xfs_dquot_item.h"
  25#include "xfs_dquot.h"
  26#include "xfs_icache.h"
  27#include "xfs_rtbitmap.h"
  28#include "xfs_rtgroup.h"
  29#include "xfs_sb.h"
  30
  31struct kmem_cache	*xfs_trans_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33#if defined(CONFIG_TRACEPOINTS)
  34static void
  35xfs_trans_trace_reservations(
 
 
 
 
 
 
 
 
 
 
  36	struct xfs_mount	*mp)
  37{
  38	struct xfs_trans_res	*res;
  39	struct xfs_trans_res	*end_res;
  40	int			i;
 
 
 
 
 
 
 
 
 
  41
  42	res = (struct xfs_trans_res *)M_RES(mp);
  43	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
  44	for (i = 0; res < end_res; i++, res++)
  45		trace_xfs_trans_resv_calc(mp, i, res);
 
 
 
 
  46}
  47#else
  48# define xfs_trans_trace_reservations(mp)
  49#endif
  50
  51/*
  52 * Initialize the precomputed transaction reservation values
  53 * in the mount structure.
  54 */
  55void
  56xfs_trans_init(
  57	struct xfs_mount	*mp)
  58{
  59	xfs_trans_resv_calc(mp, M_RES(mp));
  60	xfs_trans_trace_reservations(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61}
  62
  63/*
  64 * Free the transaction structure.  If there is more clean up
  65 * to do when the structure is freed, add it here.
  66 */
  67STATIC void
  68xfs_trans_free(
  69	struct xfs_trans	*tp)
  70{
  71	xfs_extent_busy_sort(&tp->t_busy);
  72	xfs_extent_busy_clear(&tp->t_busy, false);
  73
  74	trace_xfs_trans_free(tp, _RET_IP_);
  75	xfs_trans_clear_context(tp);
  76	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
  77		sb_end_intwrite(tp->t_mountp->m_super);
  78	xfs_trans_free_dqinfo(tp);
  79	kmem_cache_free(xfs_trans_cache, tp);
  80}
  81
  82/*
  83 * This is called to create a new transaction which will share the
  84 * permanent log reservation of the given transaction.  The remaining
  85 * unused block and rt extent reservations are also inherited.  This
  86 * implies that the original transaction is no longer allowed to allocate
  87 * blocks.  Locks and log items, however, are no inherited.  They must
  88 * be added to the new transaction explicitly.
  89 */
  90STATIC struct xfs_trans *
  91xfs_trans_dup(
  92	struct xfs_trans	*tp)
  93{
  94	struct xfs_trans	*ntp;
  95
  96	trace_xfs_trans_dup(tp, _RET_IP_);
  97
  98	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
  99
 100	/*
 101	 * Initialize the new transaction structure.
 102	 */
 103	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
 
 104	ntp->t_mountp = tp->t_mountp;
 105	INIT_LIST_HEAD(&ntp->t_items);
 106	INIT_LIST_HEAD(&ntp->t_busy);
 107	INIT_LIST_HEAD(&ntp->t_dfops);
 108	ntp->t_highest_agno = NULLAGNUMBER;
 109
 110	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 111	ASSERT(tp->t_ticket != NULL);
 112
 113	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
 114		       (tp->t_flags & XFS_TRANS_RESERVE) |
 115		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
 116		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
 117	/* We gave our writer reference to the new transaction */
 118	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
 119	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 120
 121	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
 122	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 123	tp->t_blk_res = tp->t_blk_res_used;
 124
 125	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 126	tp->t_rtx_res = tp->t_rtx_res_used;
 
 127
 128	xfs_trans_switch_context(tp, ntp);
 129
 130	/* move deferred ops over to the new tp */
 131	xfs_defer_move(ntp, tp);
 132
 133	xfs_trans_dup_dqinfo(tp, ntp);
 134	return ntp;
 135}
 136
 137/*
 138 * This is called to reserve free disk blocks and log space for the
 139 * given transaction.  This must be done before allocating any resources
 140 * within the transaction.
 141 *
 142 * This will return ENOSPC if there are not enough blocks available.
 143 * It will sleep waiting for available log space.
 144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 145 * is used by long running transactions.  If any one of the reservations
 146 * fails then they will all be backed out.
 147 *
 148 * This does not do quota reservations. That typically is done by the
 149 * caller afterwards.
 150 */
 151static int
 152xfs_trans_reserve(
 153	struct xfs_trans	*tp,
 154	struct xfs_trans_res	*resp,
 155	uint			blocks,
 156	uint			rtextents)
 157{
 158	struct xfs_mount	*mp = tp->t_mountp;
 159	int			error = 0;
 160	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 
 
 
 
 
 161
 162	/*
 163	 * Attempt to reserve the needed disk blocks by decrementing
 164	 * the number needed from the number available.  This will
 165	 * fail if the count would go below zero.
 166	 */
 167	if (blocks > 0) {
 168		error = xfs_dec_fdblocks(mp, blocks, rsvd);
 169		if (error != 0)
 170			return -ENOSPC;
 
 
 
 171		tp->t_blk_res += blocks;
 172	}
 173
 174	/*
 175	 * Reserve the log space needed for this transaction.
 176	 */
 177	if (resp->tr_logres > 0) {
 178		bool	permanent = false;
 179
 180		ASSERT(tp->t_log_res == 0 ||
 181		       tp->t_log_res == resp->tr_logres);
 182		ASSERT(tp->t_log_count == 0 ||
 183		       tp->t_log_count == resp->tr_logcount);
 184
 185		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
 186			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 187			permanent = true;
 188		} else {
 189			ASSERT(tp->t_ticket == NULL);
 190			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 
 191		}
 192
 193		if (tp->t_ticket != NULL) {
 194			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
 195			error = xfs_log_regrant(mp, tp->t_ticket);
 196		} else {
 197			error = xfs_log_reserve(mp, resp->tr_logres,
 198						resp->tr_logcount,
 199						&tp->t_ticket, permanent);
 200		}
 201
 202		if (error)
 203			goto undo_blocks;
 204
 205		tp->t_log_res = resp->tr_logres;
 206		tp->t_log_count = resp->tr_logcount;
 207	}
 208
 209	/*
 210	 * Attempt to reserve the needed realtime extents by decrementing
 211	 * the number needed from the number available.  This will
 212	 * fail if the count would go below zero.
 213	 */
 214	if (rtextents > 0) {
 215		error = xfs_dec_frextents(mp, rtextents);
 
 216		if (error) {
 217			error = -ENOSPC;
 218			goto undo_log;
 219		}
 220		tp->t_rtx_res += rtextents;
 221	}
 222
 223	return 0;
 224
 225	/*
 226	 * Error cases jump to one of these labels to undo any
 227	 * reservations which have already been performed.
 228	 */
 229undo_log:
 230	if (resp->tr_logres > 0) {
 231		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 
 
 
 
 
 232		tp->t_ticket = NULL;
 233		tp->t_log_res = 0;
 234		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 235	}
 236
 237undo_blocks:
 238	if (blocks > 0) {
 239		xfs_add_fdblocks(mp, blocks);
 
 240		tp->t_blk_res = 0;
 241	}
 242	return error;
 243}
 244
 245int
 246xfs_trans_alloc(
 247	struct xfs_mount	*mp,
 248	struct xfs_trans_res	*resp,
 249	uint			blocks,
 250	uint			rtextents,
 251	uint			flags,
 252	struct xfs_trans	**tpp)
 253{
 254	struct xfs_trans	*tp;
 255	bool			want_retry = true;
 256	int			error;
 257
 258	/*
 259	 * Allocate the handle before we do our freeze accounting and setting up
 260	 * GFP_NOFS allocation context so that we avoid lockdep false positives
 261	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
 262	 */
 263retry:
 264	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
 265	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
 266		sb_start_intwrite(mp->m_super);
 267	xfs_trans_set_context(tp);
 268
 269	/*
 270	 * Zero-reservation ("empty") transactions can't modify anything, so
 271	 * they're allowed to run while we're frozen.
 272	 */
 273	WARN_ON(resp->tr_logres > 0 &&
 274		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
 275	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
 276	       xfs_has_lazysbcount(mp));
 277
 278	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
 279	tp->t_flags = flags;
 280	tp->t_mountp = mp;
 281	INIT_LIST_HEAD(&tp->t_items);
 282	INIT_LIST_HEAD(&tp->t_busy);
 283	INIT_LIST_HEAD(&tp->t_dfops);
 284	tp->t_highest_agno = NULLAGNUMBER;
 285
 286	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
 287	if (error == -ENOSPC && want_retry) {
 288		xfs_trans_cancel(tp);
 289
 290		/*
 291		 * We weren't able to reserve enough space for the transaction.
 292		 * Flush the other speculative space allocations to free space.
 293		 * Do not perform a synchronous scan because callers can hold
 294		 * other locks.
 295		 */
 296		error = xfs_blockgc_flush_all(mp);
 297		if (error)
 298			return error;
 299		want_retry = false;
 300		goto retry;
 301	}
 302	if (error) {
 303		xfs_trans_cancel(tp);
 304		return error;
 305	}
 306
 307	trace_xfs_trans_alloc(tp, _RET_IP_);
 308
 309	*tpp = tp;
 310	return 0;
 311}
 312
 313/*
 314 * Create an empty transaction with no reservation.  This is a defensive
 315 * mechanism for routines that query metadata without actually modifying them --
 316 * if the metadata being queried is somehow cross-linked (think a btree block
 317 * pointer that points higher in the tree), we risk deadlock.  However, blocks
 318 * grabbed as part of a transaction can be re-grabbed.  The verifiers will
 319 * notice the corrupt block and the operation will fail back to userspace
 320 * without deadlocking.
 321 *
 322 * Note the zero-length reservation; this transaction MUST be cancelled without
 323 * any dirty data.
 324 *
 325 * Callers should obtain freeze protection to avoid a conflict with fs freezing
 326 * where we can be grabbing buffers at the same time that freeze is trying to
 327 * drain the buffer LRU list.
 328 */
 329int
 330xfs_trans_alloc_empty(
 331	struct xfs_mount		*mp,
 332	struct xfs_trans		**tpp)
 333{
 334	struct xfs_trans_res		resv = {0};
 335
 336	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
 337}
 338
 339/*
 340 * Record the indicated change to the given field for application
 341 * to the file system's superblock when the transaction commits.
 342 * For now, just store the change in the transaction structure.
 343 *
 344 * Mark the transaction structure to indicate that the superblock
 345 * needs to be updated before committing.
 346 *
 347 * Because we may not be keeping track of allocated/free inodes and
 348 * used filesystem blocks in the superblock, we do not mark the
 349 * superblock dirty in this transaction if we modify these fields.
 350 * We still need to update the transaction deltas so that they get
 351 * applied to the incore superblock, but we don't want them to
 352 * cause the superblock to get locked and logged if these are the
 353 * only fields in the superblock that the transaction modifies.
 354 */
 355void
 356xfs_trans_mod_sb(
 357	xfs_trans_t	*tp,
 358	uint		field,
 359	int64_t		delta)
 360{
 361	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 362	xfs_mount_t	*mp = tp->t_mountp;
 363
 364	switch (field) {
 365	case XFS_TRANS_SB_ICOUNT:
 366		tp->t_icount_delta += delta;
 367		if (xfs_has_lazysbcount(mp))
 368			flags &= ~XFS_TRANS_SB_DIRTY;
 369		break;
 370	case XFS_TRANS_SB_IFREE:
 371		tp->t_ifree_delta += delta;
 372		if (xfs_has_lazysbcount(mp))
 373			flags &= ~XFS_TRANS_SB_DIRTY;
 374		break;
 375	case XFS_TRANS_SB_FDBLOCKS:
 376		/*
 377		 * Track the number of blocks allocated in the transaction.
 378		 * Make sure it does not exceed the number reserved. If so,
 379		 * shutdown as this can lead to accounting inconsistency.
 380		 */
 381		if (delta < 0) {
 382			tp->t_blk_res_used += (uint)-delta;
 383			if (tp->t_blk_res_used > tp->t_blk_res)
 384				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 385		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
 386			int64_t	blkres_delta;
 387
 388			/*
 389			 * Return freed blocks directly to the reservation
 390			 * instead of the global pool, being careful not to
 391			 * overflow the trans counter. This is used to preserve
 392			 * reservation across chains of transaction rolls that
 393			 * repeatedly free and allocate blocks.
 394			 */
 395			blkres_delta = min_t(int64_t, delta,
 396					     UINT_MAX - tp->t_blk_res);
 397			tp->t_blk_res += blkres_delta;
 398			delta -= blkres_delta;
 399		}
 400		tp->t_fdblocks_delta += delta;
 401		if (xfs_has_lazysbcount(mp))
 402			flags &= ~XFS_TRANS_SB_DIRTY;
 403		break;
 404	case XFS_TRANS_SB_RES_FDBLOCKS:
 405		/*
 406		 * The allocation has already been applied to the
 407		 * in-core superblock's counter.  This should only
 408		 * be applied to the on-disk superblock.
 409		 */
 
 410		tp->t_res_fdblocks_delta += delta;
 411		if (xfs_has_lazysbcount(mp))
 412			flags &= ~XFS_TRANS_SB_DIRTY;
 413		break;
 414	case XFS_TRANS_SB_FREXTENTS:
 415		/*
 416		 * Track the number of blocks allocated in the
 417		 * transaction.  Make sure it does not exceed the
 418		 * number reserved.
 419		 */
 420		if (delta < 0) {
 421			tp->t_rtx_res_used += (uint)-delta;
 422			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 423		}
 424		tp->t_frextents_delta += delta;
 425		if (xfs_has_rtgroups(mp))
 426			flags &= ~XFS_TRANS_SB_DIRTY;
 427		break;
 428	case XFS_TRANS_SB_RES_FREXTENTS:
 429		/*
 430		 * The allocation has already been applied to the
 431		 * in-core superblock's counter.  This should only
 432		 * be applied to the on-disk superblock.
 433		 */
 434		ASSERT(delta < 0);
 435		tp->t_res_frextents_delta += delta;
 436		if (xfs_has_rtgroups(mp))
 437			flags &= ~XFS_TRANS_SB_DIRTY;
 438		break;
 439	case XFS_TRANS_SB_DBLOCKS:
 
 440		tp->t_dblocks_delta += delta;
 441		break;
 442	case XFS_TRANS_SB_AGCOUNT:
 443		ASSERT(delta > 0);
 444		tp->t_agcount_delta += delta;
 445		break;
 446	case XFS_TRANS_SB_IMAXPCT:
 447		tp->t_imaxpct_delta += delta;
 448		break;
 449	case XFS_TRANS_SB_REXTSIZE:
 450		tp->t_rextsize_delta += delta;
 451		break;
 452	case XFS_TRANS_SB_RBMBLOCKS:
 453		tp->t_rbmblocks_delta += delta;
 454		break;
 455	case XFS_TRANS_SB_RBLOCKS:
 456		tp->t_rblocks_delta += delta;
 457		break;
 458	case XFS_TRANS_SB_REXTENTS:
 459		tp->t_rextents_delta += delta;
 460		break;
 461	case XFS_TRANS_SB_REXTSLOG:
 462		tp->t_rextslog_delta += delta;
 463		break;
 464	case XFS_TRANS_SB_RGCOUNT:
 465		ASSERT(delta > 0);
 466		tp->t_rgcount_delta += delta;
 467		break;
 468	default:
 469		ASSERT(0);
 470		return;
 471	}
 472
 473	tp->t_flags |= flags;
 474}
 475
 476/*
 477 * xfs_trans_apply_sb_deltas() is called from the commit code
 478 * to bring the superblock buffer into the current transaction
 479 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 480 *
 481 * For now we just look at each field allowed to change and change
 482 * it if necessary.
 483 */
 484STATIC void
 485xfs_trans_apply_sb_deltas(
 486	xfs_trans_t	*tp)
 487{
 488	struct xfs_dsb	*sbp;
 489	struct xfs_buf	*bp;
 490	int		whole = 0;
 491
 492	bp = xfs_trans_getsb(tp);
 493	sbp = bp->b_addr;
 
 
 
 
 
 
 
 494
 495	/*
 496	 * Only update the superblock counters if we are logging them
 497	 */
 498	if (!xfs_has_lazysbcount((tp->t_mountp))) {
 499		if (tp->t_icount_delta)
 500			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 501		if (tp->t_ifree_delta)
 502			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 503		if (tp->t_fdblocks_delta)
 504			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 505		if (tp->t_res_fdblocks_delta)
 506			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 507	}
 508
 509	/*
 510	 * sb_frextents was added to the lazy sb counters when the rt groups
 511	 * feature was introduced.  This is possible because we know that all
 512	 * kernels supporting rtgroups will also recompute frextents from the
 513	 * realtime bitmap.
 514	 *
 515	 * For older file systems, updating frextents requires careful handling
 516	 * because we cannot rely on log recovery in older kernels to recompute
 517	 * the value from the rtbitmap.  This means that the ondisk frextents
 518	 * must be consistent with the rtbitmap.
 519	 *
 520	 * Therefore, log the frextents change to the ondisk superblock and
 521	 * update the incore superblock so that future calls to xfs_log_sb
 522	 * write the correct value ondisk.
 523	 */
 524	if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
 525	    !xfs_has_rtgroups(tp->t_mountp)) {
 526		struct xfs_mount	*mp = tp->t_mountp;
 527		int64_t			rtxdelta;
 528
 529		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
 530
 531		spin_lock(&mp->m_sb_lock);
 532		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
 533		mp->m_sb.sb_frextents += rtxdelta;
 534		spin_unlock(&mp->m_sb_lock);
 535	}
 536
 537	if (tp->t_dblocks_delta) {
 538		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 539		whole = 1;
 540	}
 541	if (tp->t_agcount_delta) {
 542		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 543		whole = 1;
 544	}
 545	if (tp->t_imaxpct_delta) {
 546		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 547		whole = 1;
 548	}
 549	if (tp->t_rextsize_delta) {
 550		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 551
 552		/*
 553		 * Because the ondisk sb records rtgroup size in units of rt
 554		 * extents, any time we update the rt extent size we have to
 555		 * recompute the ondisk rtgroup block log.  The incore values
 556		 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
 557		 */
 558		if (xfs_has_rtgroups(tp->t_mountp)) {
 559			sbp->sb_rgblklog = xfs_compute_rgblklog(
 560						be32_to_cpu(sbp->sb_rgextents),
 561						be32_to_cpu(sbp->sb_rextsize));
 562		}
 563		whole = 1;
 564	}
 565	if (tp->t_rbmblocks_delta) {
 566		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 567		whole = 1;
 568	}
 569	if (tp->t_rblocks_delta) {
 570		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 571		whole = 1;
 572	}
 573	if (tp->t_rextents_delta) {
 574		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 575		whole = 1;
 576	}
 577	if (tp->t_rextslog_delta) {
 578		sbp->sb_rextslog += tp->t_rextslog_delta;
 579		whole = 1;
 580	}
 581	if (tp->t_rgcount_delta) {
 582		be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
 583		whole = 1;
 584	}
 585
 586	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
 587	if (whole)
 588		/*
 589		 * Log the whole thing, the fields are noncontiguous.
 590		 */
 591		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
 592	else
 593		/*
 594		 * Since all the modifiable fields are contiguous, we
 595		 * can get away with this.
 596		 */
 597		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
 598				  offsetof(struct xfs_dsb, sb_frextents) +
 599				  sizeof(sbp->sb_frextents) - 1);
 600}
 601
 602/*
 603 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
 604 * apply superblock counter changes to the in-core superblock.  The
 605 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 606 * applied to the in-core superblock.  The idea is that that has already been
 607 * done.
 608 *
 
 
 
 
 
 
 
 609 * If we are not logging superblock counters, then the inode allocated/free and
 610 * used block counts are not updated in the on disk superblock. In this case,
 611 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
 612 * still need to update the incore superblock with the changes.
 613 *
 614 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
 615 * so we don't need to take the counter lock on every update.
 616 */
 617#define XFS_ICOUNT_BATCH	128
 618
 619void
 620xfs_trans_unreserve_and_mod_sb(
 621	struct xfs_trans	*tp)
 622{
 623	struct xfs_mount	*mp = tp->t_mountp;
 624	int64_t			blkdelta = tp->t_blk_res;
 625	int64_t			rtxdelta = tp->t_rtx_res;
 626	int64_t			idelta = 0;
 627	int64_t			ifreedelta = 0;
 628
 629	/*
 630	 * Calculate the deltas.
 631	 *
 632	 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
 633	 *
 634	 *  - positive values indicate blocks freed in the transaction.
 635	 *  - negative values indicate blocks allocated in the transaction
 636	 *
 637	 * Negative values can only happen if the transaction has a block
 638	 * reservation that covers the allocated block.  The end result is
 639	 * that the calculated delta values must always be positive and we
 640	 * can only put back previous allocated or reserved blocks here.
 641	 */
 642	ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
 643	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 644	        blkdelta += tp->t_fdblocks_delta;
 645		ASSERT(blkdelta >= 0);
 646	}
 647
 648	ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
 649	if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 
 
 650		rtxdelta += tp->t_frextents_delta;
 651		ASSERT(rtxdelta >= 0);
 652	}
 653
 654	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 
 655		idelta = tp->t_icount_delta;
 656		ifreedelta = tp->t_ifree_delta;
 657	}
 658
 659	/* apply the per-cpu counters */
 660	if (blkdelta)
 661		xfs_add_fdblocks(mp, blkdelta);
 
 
 
 
 662
 663	if (idelta)
 664		percpu_counter_add_batch(&mp->m_icount, idelta,
 665					 XFS_ICOUNT_BATCH);
 
 
 
 666
 667	if (ifreedelta)
 668		percpu_counter_add(&mp->m_ifree, ifreedelta);
 
 
 
 
 669
 670	if (rtxdelta)
 671		xfs_add_frextents(mp, rtxdelta);
 
 
 
 
 672
 673	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
 674		return;
 675
 676	/* apply remaining deltas */
 677	spin_lock(&mp->m_sb_lock);
 678	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
 679	mp->m_sb.sb_icount += idelta;
 680	mp->m_sb.sb_ifree += ifreedelta;
 681	/*
 682	 * Do not touch sb_frextents here because it is handled in
 683	 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
 684	 * counter anyway.
 685	 */
 686	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
 687	mp->m_sb.sb_agcount += tp->t_agcount_delta;
 688	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
 689	if (tp->t_rextsize_delta)
 690		xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
 691				mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
 692	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
 693	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
 694	mp->m_sb.sb_rextents += tp->t_rextents_delta;
 695	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
 696	mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
 697	spin_unlock(&mp->m_sb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	/*
 700	 * Debug checks outside of the spinlock so they don't lock up the
 701	 * machine if they fail.
 702	 */
 703	ASSERT(mp->m_sb.sb_imax_pct >= 0);
 704	ASSERT(mp->m_sb.sb_rextslog >= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705}
 706
 707/* Add the given log item to the transaction's list of log items. */
 
 
 
 
 708void
 709xfs_trans_add_item(
 710	struct xfs_trans	*tp,
 711	struct xfs_log_item	*lip)
 712{
 713	ASSERT(lip->li_log == tp->t_mountp->m_log);
 714	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
 715	ASSERT(list_empty(&lip->li_trans));
 716	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
 
 
 717
 718	list_add_tail(&lip->li_trans, &tp->t_items);
 719	trace_xfs_trans_add_item(tp, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 720}
 721
 722/*
 723 * Unlink the log item from the transaction. the log item is no longer
 724 * considered dirty in this transaction, as the linked transaction has
 725 * finished, either by abort or commit completion.
 726 */
 727void
 728xfs_trans_del_item(
 729	struct xfs_log_item	*lip)
 730{
 731	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
 732	list_del_init(&lip->li_trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733}
 734
 735/* Detach and unlock all of the items in a transaction */
 
 
 
 
 
 
 
 
 736static void
 737xfs_trans_free_items(
 738	struct xfs_trans	*tp,
 739	bool			abort)
 740{
 741	struct xfs_log_item	*lip, *next;
 
 
 
 
 
 
 
 
 742
 743	trace_xfs_trans_free_items(tp, _RET_IP_);
 
 
 
 
 
 744
 745	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
 746		xfs_trans_del_item(lip);
 747		if (abort)
 748			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 749		if (lip->li_ops->iop_release)
 750			lip->li_ops->iop_release(lip);
 
 
 
 751	}
 
 
 
 
 
 
 
 
 
 
 
 
 752}
 753
 754/*
 755 * Sort transaction items prior to running precommit operations. This will
 756 * attempt to order the items such that they will always be locked in the same
 757 * order. Items that have no sort function are moved to the end of the list
 758 * and so are locked last.
 759 *
 760 * This may need refinement as different types of objects add sort functions.
 
 
 
 761 *
 762 * Function is more complex than it needs to be because we are comparing 64 bit
 763 * values and the function only returns 32 bit values.
 
 764 */
 765static int
 766xfs_trans_precommit_sort(
 767	void			*unused_arg,
 768	const struct list_head	*a,
 769	const struct list_head	*b)
 770{
 771	struct xfs_log_item	*lia = container_of(a,
 772					struct xfs_log_item, li_trans);
 773	struct xfs_log_item	*lib = container_of(b,
 774					struct xfs_log_item, li_trans);
 775	int64_t			diff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777	/*
 778	 * If both items are non-sortable, leave them alone. If only one is
 779	 * sortable, move the non-sortable item towards the end of the list.
 
 
 780	 */
 781	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
 782		return 0;
 783	if (!lia->li_ops->iop_sort)
 784		return 1;
 785	if (!lib->li_ops->iop_sort)
 786		return -1;
 787
 788	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
 789	if (diff < 0)
 790		return -1;
 791	if (diff > 0)
 792		return 1;
 793	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794}
 795
 796/*
 797 * Run transaction precommit functions.
 
 798 *
 799 * If there is an error in any of the callouts, then stop immediately and
 800 * trigger a shutdown to abort the transaction. There is no recovery possible
 801 * from errors at this point as the transaction is dirty....
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802 */
 803static int
 804xfs_trans_run_precommits(
 805	struct xfs_trans	*tp)
 
 
 
 806{
 807	struct xfs_mount	*mp = tp->t_mountp;
 808	struct xfs_log_item	*lip, *n;
 809	int			error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810
 811	/*
 812	 * Sort the item list to avoid ABBA deadlocks with other transactions
 813	 * running precommit operations that lock multiple shared items such as
 814	 * inode cluster buffers.
 
 
 
 
 
 815	 */
 816	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
 
 817
 818	/*
 819	 * Precommit operations can remove the log item from the transaction
 820	 * if the log item exists purely to delay modifications until they
 821	 * can be ordered against other operations. Hence we have to use
 822	 * list_for_each_entry_safe() here.
 823	 */
 824	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
 825		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826			continue;
 827		if (lip->li_ops->iop_precommit) {
 828			error = lip->li_ops->iop_precommit(tp, lip);
 829			if (error)
 830				break;
 831		}
 
 
 
 
 
 
 
 
 
 832	}
 833	if (error)
 834		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 835	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836}
 837
 838/*
 839 * Commit the given transaction to the log.
 
 
 840 *
 841 * XFS disk error handling mechanism is not based on a typical
 842 * transaction abort mechanism. Logically after the filesystem
 843 * gets marked 'SHUTDOWN', we can't let any new transactions
 844 * be durable - ie. committed to disk - because some metadata might
 845 * be inconsistent. In such cases, this returns an error, and the
 846 * caller may assume that all locked objects joined to the transaction
 847 * have already been unlocked as if the commit had succeeded.
 848 * Do not reference the transaction structure after this call.
 849 */
 850static int
 851__xfs_trans_commit(
 852	struct xfs_trans	*tp,
 853	bool			regrant)
 
 854{
 855	struct xfs_mount	*mp = tp->t_mountp;
 856	struct xlog		*log = mp->m_log;
 857	xfs_csn_t		commit_seq = 0;
 858	int			error = 0;
 
 859	int			sync = tp->t_flags & XFS_TRANS_SYNC;
 860
 861	trace_xfs_trans_commit(tp, _RET_IP_);
 862
 863	/*
 864	 * Commit per-transaction changes that are not already tracked through
 865	 * log items.  This can add dirty log items to the transaction.
 866	 */
 867	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
 868		xfs_trans_apply_sb_deltas(tp);
 869	xfs_trans_apply_dquot_deltas(tp);
 870
 871	error = xfs_trans_run_precommits(tp);
 872	if (error)
 873		goto out_unreserve;
 874
 875	/*
 876	 * If there is nothing to be logged by the transaction,
 877	 * then unlock all of the items associated with the
 878	 * transaction and free the transaction structure.
 879	 * Also make sure to return any reserved blocks to
 880	 * the free pool.
 881	 */
 882	if (!(tp->t_flags & XFS_TRANS_DIRTY))
 883		goto out_unreserve;
 884
 885	/*
 886	 * We must check against log shutdown here because we cannot abort log
 887	 * items and leave them dirty, inconsistent and unpinned in memory while
 888	 * the log is active. This leaves them open to being written back to
 889	 * disk, and that will lead to on-disk corruption.
 890	 */
 891	if (xlog_is_shutdown(log)) {
 892		error = -EIO;
 893		goto out_unreserve;
 894	}
 895
 896	ASSERT(tp->t_ticket != NULL);
 897
 898	xlog_cil_commit(log, tp, &commit_seq, regrant);
 
 
 
 
 
 
 
 
 
 
 899
 900	xfs_trans_free(tp);
 
 
 
 
 901
 902	/*
 903	 * If the transaction needs to be synchronous, then force the
 904	 * log out now and wait for it.
 905	 */
 906	if (sync) {
 907		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
 908		XFS_STATS_INC(mp, xs_trans_sync);
 
 
 
 909	} else {
 910		XFS_STATS_INC(mp, xs_trans_async);
 911	}
 912
 913	return error;
 914
 915out_unreserve:
 916	xfs_trans_unreserve_and_mod_sb(tp);
 917
 918	/*
 919	 * It is indeed possible for the transaction to be not dirty but
 920	 * the dqinfo portion to be.  All that means is that we have some
 921	 * (non-persistent) quota reservations that need to be unreserved.
 922	 */
 923	xfs_trans_unreserve_and_mod_dquots(tp, true);
 924	if (tp->t_ticket) {
 925		if (regrant && !xlog_is_shutdown(log))
 926			xfs_log_ticket_regrant(log, tp->t_ticket);
 927		else
 928			xfs_log_ticket_ungrant(log, tp->t_ticket);
 929		tp->t_ticket = NULL;
 930	}
 931	xfs_trans_free_items(tp, !!error);
 
 932	xfs_trans_free(tp);
 933
 934	XFS_STATS_INC(mp, xs_trans_empty);
 935	return error;
 936}
 937
 938int
 939xfs_trans_commit(
 940	struct xfs_trans	*tp)
 941{
 942	/*
 943	 * Finish deferred items on final commit. Only permanent transactions
 944	 * should ever have deferred ops.
 945	 */
 946	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
 947		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 948	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
 949		int error = xfs_defer_finish_noroll(&tp);
 950		if (error) {
 951			xfs_trans_cancel(tp);
 952			return error;
 953		}
 954	}
 955
 956	return __xfs_trans_commit(tp, false);
 957}
 958
 959/*
 960 * Unlock all of the transaction's items and free the transaction.  If the
 961 * transaction is dirty, we must shut down the filesystem because there is no
 962 * way to restore them to their previous state.
 963 *
 964 * If the transaction has made a log reservation, make sure to release it as
 965 * well.
 966 *
 967 * This is a high level function (equivalent to xfs_trans_commit()) and so can
 968 * be called after the transaction has effectively been aborted due to the mount
 969 * being shut down. However, if the mount has not been shut down and the
 970 * transaction is dirty we will shut the mount down and, in doing so, that
 971 * guarantees that the log is shut down, too. Hence we don't need to be as
 972 * careful with shutdown state and dirty items here as we need to be in
 973 * xfs_trans_commit().
 974 */
 975void
 976xfs_trans_cancel(
 977	struct xfs_trans	*tp)
 
 978{
 979	struct xfs_mount	*mp = tp->t_mountp;
 980	struct xlog		*log = mp->m_log;
 981	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
 982
 983	trace_xfs_trans_cancel(tp, _RET_IP_);
 984
 985	/*
 986	 * It's never valid to cancel a transaction with deferred ops attached,
 987	 * because the transaction is effectively dirty.  Complain about this
 988	 * loudly before freeing the in-memory defer items and shutting down the
 989	 * filesystem.
 990	 */
 991	if (!list_empty(&tp->t_dfops)) {
 992		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 993		dirty = true;
 994		xfs_defer_cancel(tp);
 995	}
 996
 997	/*
 998	 * See if the caller is relying on us to shut down the filesystem. We
 999	 * only want an error report if there isn't already a shutdown in
1000	 * progress, so we only need to check against the mount shutdown state
1001	 * here.
1002	 */
1003	if (dirty && !xfs_is_shutdown(mp)) {
1004		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1005		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1006	}
1007#ifdef DEBUG
1008	/* Log items need to be consistent until the log is shut down. */
1009	if (!dirty && !xlog_is_shutdown(log)) {
1010		struct xfs_log_item *lip;
1011
1012		list_for_each_entry(lip, &tp->t_items, li_trans)
1013			ASSERT(!xlog_item_is_intent_done(lip));
1014	}
1015#endif
1016	xfs_trans_unreserve_and_mod_sb(tp);
1017	xfs_trans_unreserve_and_mod_dquots(tp, false);
1018
1019	if (tp->t_ticket) {
1020		xfs_log_ticket_ungrant(log, tp->t_ticket);
1021		tp->t_ticket = NULL;
 
 
 
 
 
1022	}
1023
1024	xfs_trans_free_items(tp, dirty);
 
 
 
1025	xfs_trans_free(tp);
1026}
1027
1028/*
1029 * Roll from one trans in the sequence of PERMANENT transactions to
1030 * the next: permanent transactions are only flushed out when
1031 * committed with xfs_trans_commit(), but we still want as soon
1032 * as possible to let chunks of it go to the log. So we commit the
1033 * chunk we've been working on and get a new transaction to continue.
1034 */
1035int
1036xfs_trans_roll(
1037	struct xfs_trans	**tpp)
 
1038{
1039	struct xfs_trans	*trans = *tpp;
1040	struct xfs_trans_res	tres;
1041	int			error;
1042
1043	trace_xfs_trans_roll(trans, _RET_IP_);
 
 
 
 
1044
1045	/*
1046	 * Copy the critical parameters from one trans to the next.
1047	 */
1048	tres.tr_logres = trans->t_log_res;
1049	tres.tr_logcount = trans->t_log_count;
1050
1051	*tpp = xfs_trans_dup(trans);
1052
1053	/*
1054	 * Commit the current transaction.
1055	 * If this commit failed, then it'd just unlock those items that
1056	 * are not marked ihold. That also means that a filesystem shutdown
1057	 * is in progress. The caller takes the responsibility to cancel
1058	 * the duplicate transaction that gets returned.
1059	 */
1060	error = __xfs_trans_commit(trans, true);
1061	if (error)
1062		return error;
 
 
 
 
 
 
 
 
 
1063
1064	/*
1065	 * Reserve space in the log for the next transaction.
1066	 * This also pushes items in the "AIL", the list of logged items,
1067	 * out to disk if they are taking up space at the tail of the log
1068	 * that we want to use.  This requires that either nothing be locked
1069	 * across this call, or that anything that is locked be logged in
1070	 * the prior and the next transactions.
1071	 */
1072	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1073	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1074}
1075
1076/*
1077 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1078 *
1079 * The caller must ensure that the on-disk dquots attached to this inode have
1080 * already been allocated and initialized.  The caller is responsible for
1081 * releasing ILOCK_EXCL if a new transaction is returned.
1082 */
1083int
1084xfs_trans_alloc_inode(
1085	struct xfs_inode	*ip,
1086	struct xfs_trans_res	*resv,
1087	unsigned int		dblocks,
1088	unsigned int		rblocks,
1089	bool			force,
1090	struct xfs_trans	**tpp)
1091{
1092	struct xfs_trans	*tp;
1093	struct xfs_mount	*mp = ip->i_mount;
1094	bool			retried = false;
1095	int			error;
1096
1097retry:
1098	error = xfs_trans_alloc(mp, resv, dblocks,
1099			xfs_extlen_to_rtxlen(mp, rblocks),
1100			force ? XFS_TRANS_RESERVE : 0, &tp);
1101	if (error)
1102		return error;
1103
1104	xfs_ilock(ip, XFS_ILOCK_EXCL);
1105	xfs_trans_ijoin(tp, ip, 0);
1106
1107	error = xfs_qm_dqattach_locked(ip, false);
1108	if (error) {
1109		/* Caller should have allocated the dquots! */
1110		ASSERT(error != -ENOENT);
1111		goto out_cancel;
1112	}
1113
1114	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1115	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1116		xfs_trans_cancel(tp);
1117		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118		xfs_blockgc_free_quota(ip, 0);
1119		retried = true;
1120		goto retry;
1121	}
1122	if (error)
1123		goto out_cancel;
1124
1125	*tpp = tp;
1126	return 0;
1127
1128out_cancel:
1129	xfs_trans_cancel(tp);
1130	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1131	return error;
1132}
1133
1134/*
1135 * Try to reserve more blocks for a transaction.
1136 *
1137 * This is for callers that need to attach resources to a transaction, scan
1138 * those resources to determine the space reservation requirements, and then
1139 * modify the attached resources.  In other words, online repair.  This can
1140 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1141 * without shutting down the fs.
1142 */
1143int
1144xfs_trans_reserve_more(
1145	struct xfs_trans	*tp,
1146	unsigned int		blocks,
1147	unsigned int		rtextents)
1148{
1149	struct xfs_trans_res	resv = { };
1150
1151	return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1152}
1153
1154/*
1155 * Try to reserve more blocks and file quota for a transaction.  Same
1156 * conditions of usage as xfs_trans_reserve_more.
1157 */
1158int
1159xfs_trans_reserve_more_inode(
1160	struct xfs_trans	*tp,
1161	struct xfs_inode	*ip,
1162	unsigned int		dblocks,
1163	unsigned int		rblocks,
1164	bool			force_quota)
1165{
1166	struct xfs_trans_res	resv = { };
1167	struct xfs_mount	*mp = ip->i_mount;
1168	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1169	int			error;
1170
1171	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1172
1173	error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1174	if (error)
1175		return error;
1176
1177	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1178		return 0;
1179
1180	if (tp->t_flags & XFS_TRANS_RESERVE)
1181		force_quota = true;
1182
1183	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1184			force_quota);
1185	if (!error)
1186		return 0;
1187
1188	/* Quota failed, give back the new reservation. */
1189	xfs_add_fdblocks(mp, dblocks);
1190	tp->t_blk_res -= dblocks;
1191	xfs_add_frextents(mp, rtx);
1192	tp->t_rtx_res -= rtx;
1193	return error;
1194}
1195
1196/*
1197 * Allocate an transaction in preparation for inode creation by reserving quota
1198 * against the given dquots.  Callers are not required to hold any inode locks.
1199 */
1200int
1201xfs_trans_alloc_icreate(
1202	struct xfs_mount	*mp,
1203	struct xfs_trans_res	*resv,
1204	struct xfs_dquot	*udqp,
1205	struct xfs_dquot	*gdqp,
1206	struct xfs_dquot	*pdqp,
1207	unsigned int		dblocks,
1208	struct xfs_trans	**tpp)
1209{
1210	struct xfs_trans	*tp;
1211	bool			retried = false;
1212	int			error;
1213
1214retry:
1215	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1216	if (error)
1217		return error;
1218
1219	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1220	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1221		xfs_trans_cancel(tp);
1222		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1223		retried = true;
1224		goto retry;
1225	}
1226	if (error) {
1227		xfs_trans_cancel(tp);
1228		return error;
1229	}
1230
1231	*tpp = tp;
1232	return 0;
1233}
1234
1235/*
1236 * Allocate an transaction, lock and join the inode to it, and reserve quota
1237 * in preparation for inode attribute changes that include uid, gid, or prid
1238 * changes.
1239 *
1240 * The caller must ensure that the on-disk dquots attached to this inode have
1241 * already been allocated and initialized.  The ILOCK will be dropped when the
1242 * transaction is committed or cancelled.
1243 */
1244int
1245xfs_trans_alloc_ichange(
1246	struct xfs_inode	*ip,
1247	struct xfs_dquot	*new_udqp,
1248	struct xfs_dquot	*new_gdqp,
1249	struct xfs_dquot	*new_pdqp,
1250	bool			force,
1251	struct xfs_trans	**tpp)
1252{
1253	struct xfs_trans	*tp;
1254	struct xfs_mount	*mp = ip->i_mount;
1255	struct xfs_dquot	*udqp;
1256	struct xfs_dquot	*gdqp;
1257	struct xfs_dquot	*pdqp;
1258	bool			retried = false;
1259	int			error;
1260
1261retry:
1262	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1263	if (error)
1264		return error;
1265
1266	xfs_ilock(ip, XFS_ILOCK_EXCL);
1267	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1268
1269	error = xfs_qm_dqattach_locked(ip, false);
1270	if (error) {
1271		/* Caller should have allocated the dquots! */
1272		ASSERT(error != -ENOENT);
1273		goto out_cancel;
1274	}
1275
1276	/*
1277	 * For each quota type, skip quota reservations if the inode's dquots
1278	 * now match the ones that came from the caller, or the caller didn't
1279	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1280	 * perform a blockgc scan, so we must preserve the caller's arguments.
1281	 */
1282	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1283	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1284	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1285	if (udqp || gdqp || pdqp) {
1286		xfs_filblks_t	dblocks, rblocks;
1287		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1288		bool		isrt = XFS_IS_REALTIME_INODE(ip);
1289
1290		if (force)
1291			qflags |= XFS_QMOPT_FORCE_RES;
1292
1293		if (isrt) {
1294			error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1295			if (error)
1296				goto out_cancel;
1297		}
1298
1299		xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1300
1301		if (isrt)
1302			rblocks += ip->i_delayed_blks;
1303		else
1304			dblocks += ip->i_delayed_blks;
1305
1306		/*
1307		 * Reserve enough quota to handle blocks on disk and reserved
1308		 * for a delayed allocation.  We'll actually transfer the
1309		 * delalloc reservation between dquots at chown time, even
1310		 * though that part is only semi-transactional.
1311		 */
1312		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1313				pdqp, dblocks, 1, qflags);
1314		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1315			xfs_trans_cancel(tp);
1316			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1317			retried = true;
1318			goto retry;
1319		}
1320		if (error)
1321			goto out_cancel;
1322
1323		/* Do the same for realtime. */
1324		qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1325		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1326				pdqp, rblocks, 0, qflags);
1327		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1328			xfs_trans_cancel(tp);
1329			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1330			retried = true;
1331			goto retry;
1332		}
1333		if (error)
1334			goto out_cancel;
1335	}
1336
1337	*tpp = tp;
1338	return 0;
1339
1340out_cancel:
1341	xfs_trans_cancel(tp);
1342	return error;
1343}
1344
1345/*
1346 * Allocate an transaction, lock and join the directory and child inodes to it,
1347 * and reserve quota for a directory update.  If there isn't sufficient space,
1348 * @dblocks will be set to zero for a reservationless directory update and
1349 * @nospace_error will be set to a negative errno describing the space
1350 * constraint we hit.
1351 *
1352 * The caller must ensure that the on-disk dquots attached to this inode have
1353 * already been allocated and initialized.  The ILOCKs will be dropped when the
1354 * transaction is committed or cancelled.
1355 *
1356 * Caller is responsible for unlocking the inodes manually upon return
1357 */
1358int
1359xfs_trans_alloc_dir(
1360	struct xfs_inode	*dp,
1361	struct xfs_trans_res	*resv,
1362	struct xfs_inode	*ip,
1363	unsigned int		*dblocks,
1364	struct xfs_trans	**tpp,
1365	int			*nospace_error)
1366{
1367	struct xfs_trans	*tp;
1368	struct xfs_mount	*mp = ip->i_mount;
1369	unsigned int		resblks;
1370	bool			retried = false;
1371	int			error;
1372
1373retry:
1374	*nospace_error = 0;
1375	resblks = *dblocks;
1376	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1377	if (error == -ENOSPC) {
1378		*nospace_error = error;
1379		resblks = 0;
1380		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1381	}
1382	if (error)
1383		return error;
1384
1385	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1386
1387	xfs_trans_ijoin(tp, dp, 0);
1388	xfs_trans_ijoin(tp, ip, 0);
1389
1390	error = xfs_qm_dqattach_locked(dp, false);
1391	if (error) {
1392		/* Caller should have allocated the dquots! */
1393		ASSERT(error != -ENOENT);
1394		goto out_cancel;
1395	}
1396
1397	error = xfs_qm_dqattach_locked(ip, false);
1398	if (error) {
1399		/* Caller should have allocated the dquots! */
1400		ASSERT(error != -ENOENT);
1401		goto out_cancel;
1402	}
1403
1404	if (resblks == 0)
1405		goto done;
1406
1407	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1408	if (error == -EDQUOT || error == -ENOSPC) {
1409		if (!retried) {
1410			xfs_trans_cancel(tp);
1411			xfs_iunlock(dp, XFS_ILOCK_EXCL);
1412			if (dp != ip)
1413				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1414			xfs_blockgc_free_quota(dp, 0);
1415			retried = true;
1416			goto retry;
1417		}
1418
1419		*nospace_error = error;
1420		resblks = 0;
1421		error = 0;
1422	}
1423	if (error)
1424		goto out_cancel;
1425
1426done:
1427	*tpp = tp;
1428	*dblocks = resblks;
1429	return 0;
1430
1431out_cancel:
1432	xfs_trans_cancel(tp);
1433	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1434	if (dp != ip)
1435		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1436	return error;
1437}