Loading...
1/*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_types.h"
22#include "xfs_bit.h"
23#include "xfs_log.h"
24#include "xfs_inum.h"
25#include "xfs_trans.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_error.h"
30#include "xfs_da_btree.h"
31#include "xfs_bmap_btree.h"
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
34#include "xfs_dinode.h"
35#include "xfs_inode.h"
36#include "xfs_btree.h"
37#include "xfs_ialloc.h"
38#include "xfs_alloc.h"
39#include "xfs_bmap.h"
40#include "xfs_quota.h"
41#include "xfs_trans_priv.h"
42#include "xfs_trans_space.h"
43#include "xfs_inode_item.h"
44#include "xfs_trace.h"
45
46kmem_zone_t *xfs_trans_zone;
47kmem_zone_t *xfs_log_item_desc_zone;
48
49
50/*
51 * Various log reservation values.
52 *
53 * These are based on the size of the file system block because that is what
54 * most transactions manipulate. Each adds in an additional 128 bytes per
55 * item logged to try to account for the overhead of the transaction mechanism.
56 *
57 * Note: Most of the reservations underestimate the number of allocation
58 * groups into which they could free extents in the xfs_bmap_finish() call.
59 * This is because the number in the worst case is quite high and quite
60 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
61 * extents in only a single AG at a time. This will require changes to the
62 * EFI code as well, however, so that the EFI for the extents not freed is
63 * logged again in each transaction. See SGI PV #261917.
64 *
65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
66 * register overflow from temporaries in the calculations.
67 */
68
69
70/*
71 * In a write transaction we can allocate a maximum of 2
72 * extents. This gives:
73 * the inode getting the new extents: inode size
74 * the inode's bmap btree: max depth * block size
75 * the agfs of the ags from which the extents are allocated: 2 * sector
76 * the superblock free block counter: sector size
77 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
78 * And the bmap_finish transaction can free bmap blocks in a join:
79 * the agfs of the ags containing the blocks: 2 * sector size
80 * the agfls of the ags containing the blocks: 2 * sector size
81 * the super block free block counter: sector size
82 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
83 */
84STATIC uint
85xfs_calc_write_reservation(
86 struct xfs_mount *mp)
87{
88 return XFS_DQUOT_LOGRES(mp) +
89 MAX((mp->m_sb.sb_inodesize +
90 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
91 2 * mp->m_sb.sb_sectsize +
92 mp->m_sb.sb_sectsize +
93 XFS_ALLOCFREE_LOG_RES(mp, 2) +
94 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
95 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
96 (2 * mp->m_sb.sb_sectsize +
97 2 * mp->m_sb.sb_sectsize +
98 mp->m_sb.sb_sectsize +
99 XFS_ALLOCFREE_LOG_RES(mp, 2) +
100 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
101}
102
103/*
104 * In truncating a file we free up to two extents at once. We can modify:
105 * the inode being truncated: inode size
106 * the inode's bmap btree: (max depth + 1) * block size
107 * And the bmap_finish transaction can free the blocks and bmap blocks:
108 * the agf for each of the ags: 4 * sector size
109 * the agfl for each of the ags: 4 * sector size
110 * the super block to reflect the freed blocks: sector size
111 * worst case split in allocation btrees per extent assuming 4 extents:
112 * 4 exts * 2 trees * (2 * max depth - 1) * block size
113 * the inode btree: max depth * blocksize
114 * the allocation btrees: 2 trees * (max depth - 1) * block size
115 */
116STATIC uint
117xfs_calc_itruncate_reservation(
118 struct xfs_mount *mp)
119{
120 return XFS_DQUOT_LOGRES(mp) +
121 MAX((mp->m_sb.sb_inodesize +
122 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
123 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
124 (4 * mp->m_sb.sb_sectsize +
125 4 * mp->m_sb.sb_sectsize +
126 mp->m_sb.sb_sectsize +
127 XFS_ALLOCFREE_LOG_RES(mp, 4) +
128 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
129 128 * 5 +
130 XFS_ALLOCFREE_LOG_RES(mp, 1) +
131 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
132 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
133}
134
135/*
136 * In renaming a files we can modify:
137 * the four inodes involved: 4 * inode size
138 * the two directory btrees: 2 * (max depth + v2) * dir block size
139 * the two directory bmap btrees: 2 * max depth * block size
140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
141 * of bmap blocks) giving:
142 * the agf for the ags in which the blocks live: 3 * sector size
143 * the agfl for the ags in which the blocks live: 3 * sector size
144 * the superblock for the free block count: sector size
145 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
146 */
147STATIC uint
148xfs_calc_rename_reservation(
149 struct xfs_mount *mp)
150{
151 return XFS_DQUOT_LOGRES(mp) +
152 MAX((4 * mp->m_sb.sb_inodesize +
153 2 * XFS_DIROP_LOG_RES(mp) +
154 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
155 (3 * mp->m_sb.sb_sectsize +
156 3 * mp->m_sb.sb_sectsize +
157 mp->m_sb.sb_sectsize +
158 XFS_ALLOCFREE_LOG_RES(mp, 3) +
159 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
160}
161
162/*
163 * For creating a link to an inode:
164 * the parent directory inode: inode size
165 * the linked inode: inode size
166 * the directory btree could split: (max depth + v2) * dir block size
167 * the directory bmap btree could join or split: (max depth + v2) * blocksize
168 * And the bmap_finish transaction can free some bmap blocks giving:
169 * the agf for the ag in which the blocks live: sector size
170 * the agfl for the ag in which the blocks live: sector size
171 * the superblock for the free block count: sector size
172 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
173 */
174STATIC uint
175xfs_calc_link_reservation(
176 struct xfs_mount *mp)
177{
178 return XFS_DQUOT_LOGRES(mp) +
179 MAX((mp->m_sb.sb_inodesize +
180 mp->m_sb.sb_inodesize +
181 XFS_DIROP_LOG_RES(mp) +
182 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
183 (mp->m_sb.sb_sectsize +
184 mp->m_sb.sb_sectsize +
185 mp->m_sb.sb_sectsize +
186 XFS_ALLOCFREE_LOG_RES(mp, 1) +
187 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
188}
189
190/*
191 * For removing a directory entry we can modify:
192 * the parent directory inode: inode size
193 * the removed inode: inode size
194 * the directory btree could join: (max depth + v2) * dir block size
195 * the directory bmap btree could join or split: (max depth + v2) * blocksize
196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
197 * the agf for the ag in which the blocks live: 2 * sector size
198 * the agfl for the ag in which the blocks live: 2 * sector size
199 * the superblock for the free block count: sector size
200 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
201 */
202STATIC uint
203xfs_calc_remove_reservation(
204 struct xfs_mount *mp)
205{
206 return XFS_DQUOT_LOGRES(mp) +
207 MAX((mp->m_sb.sb_inodesize +
208 mp->m_sb.sb_inodesize +
209 XFS_DIROP_LOG_RES(mp) +
210 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
211 (2 * mp->m_sb.sb_sectsize +
212 2 * mp->m_sb.sb_sectsize +
213 mp->m_sb.sb_sectsize +
214 XFS_ALLOCFREE_LOG_RES(mp, 2) +
215 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
216}
217
218/*
219 * For symlink we can modify:
220 * the parent directory inode: inode size
221 * the new inode: inode size
222 * the inode btree entry: 1 block
223 * the directory btree: (max depth + v2) * dir block size
224 * the directory inode's bmap btree: (max depth + v2) * block size
225 * the blocks for the symlink: 1 kB
226 * Or in the first xact we allocate some inodes giving:
227 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
228 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
229 * the inode btree: max depth * blocksize
230 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
231 */
232STATIC uint
233xfs_calc_symlink_reservation(
234 struct xfs_mount *mp)
235{
236 return XFS_DQUOT_LOGRES(mp) +
237 MAX((mp->m_sb.sb_inodesize +
238 mp->m_sb.sb_inodesize +
239 XFS_FSB_TO_B(mp, 1) +
240 XFS_DIROP_LOG_RES(mp) +
241 1024 +
242 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
243 (2 * mp->m_sb.sb_sectsize +
244 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
245 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
246 XFS_ALLOCFREE_LOG_RES(mp, 1) +
247 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
248 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
249}
250
251/*
252 * For create we can modify:
253 * the parent directory inode: inode size
254 * the new inode: inode size
255 * the inode btree entry: block size
256 * the superblock for the nlink flag: sector size
257 * the directory btree: (max depth + v2) * dir block size
258 * the directory inode's bmap btree: (max depth + v2) * block size
259 * Or in the first xact we allocate some inodes giving:
260 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
261 * the superblock for the nlink flag: sector size
262 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
263 * the inode btree: max depth * blocksize
264 * the allocation btrees: 2 trees * (max depth - 1) * block size
265 */
266STATIC uint
267xfs_calc_create_reservation(
268 struct xfs_mount *mp)
269{
270 return XFS_DQUOT_LOGRES(mp) +
271 MAX((mp->m_sb.sb_inodesize +
272 mp->m_sb.sb_inodesize +
273 mp->m_sb.sb_sectsize +
274 XFS_FSB_TO_B(mp, 1) +
275 XFS_DIROP_LOG_RES(mp) +
276 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
277 (3 * mp->m_sb.sb_sectsize +
278 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
279 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
280 XFS_ALLOCFREE_LOG_RES(mp, 1) +
281 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
282 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
283}
284
285/*
286 * Making a new directory is the same as creating a new file.
287 */
288STATIC uint
289xfs_calc_mkdir_reservation(
290 struct xfs_mount *mp)
291{
292 return xfs_calc_create_reservation(mp);
293}
294
295/*
296 * In freeing an inode we can modify:
297 * the inode being freed: inode size
298 * the super block free inode counter: sector size
299 * the agi hash list and counters: sector size
300 * the inode btree entry: block size
301 * the on disk inode before ours in the agi hash list: inode cluster size
302 * the inode btree: max depth * blocksize
303 * the allocation btrees: 2 trees * (max depth - 1) * block size
304 */
305STATIC uint
306xfs_calc_ifree_reservation(
307 struct xfs_mount *mp)
308{
309 return XFS_DQUOT_LOGRES(mp) +
310 mp->m_sb.sb_inodesize +
311 mp->m_sb.sb_sectsize +
312 mp->m_sb.sb_sectsize +
313 XFS_FSB_TO_B(mp, 1) +
314 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
315 XFS_INODE_CLUSTER_SIZE(mp)) +
316 128 * 5 +
317 XFS_ALLOCFREE_LOG_RES(mp, 1) +
318 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
319 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
320}
321
322/*
323 * When only changing the inode we log the inode and possibly the superblock
324 * We also add a bit of slop for the transaction stuff.
325 */
326STATIC uint
327xfs_calc_ichange_reservation(
328 struct xfs_mount *mp)
329{
330 return XFS_DQUOT_LOGRES(mp) +
331 mp->m_sb.sb_inodesize +
332 mp->m_sb.sb_sectsize +
333 512;
334
335}
336
337/*
338 * Growing the data section of the filesystem.
339 * superblock
340 * agi and agf
341 * allocation btrees
342 */
343STATIC uint
344xfs_calc_growdata_reservation(
345 struct xfs_mount *mp)
346{
347 return mp->m_sb.sb_sectsize * 3 +
348 XFS_ALLOCFREE_LOG_RES(mp, 1) +
349 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
350}
351
352/*
353 * Growing the rt section of the filesystem.
354 * In the first set of transactions (ALLOC) we allocate space to the
355 * bitmap or summary files.
356 * superblock: sector size
357 * agf of the ag from which the extent is allocated: sector size
358 * bmap btree for bitmap/summary inode: max depth * blocksize
359 * bitmap/summary inode: inode size
360 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
361 */
362STATIC uint
363xfs_calc_growrtalloc_reservation(
364 struct xfs_mount *mp)
365{
366 return 2 * mp->m_sb.sb_sectsize +
367 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
368 mp->m_sb.sb_inodesize +
369 XFS_ALLOCFREE_LOG_RES(mp, 1) +
370 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
371 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
372}
373
374/*
375 * Growing the rt section of the filesystem.
376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
377 * one bitmap/summary block: blocksize
378 */
379STATIC uint
380xfs_calc_growrtzero_reservation(
381 struct xfs_mount *mp)
382{
383 return mp->m_sb.sb_blocksize + 128;
384}
385
386/*
387 * Growing the rt section of the filesystem.
388 * In the third set of transactions (FREE) we update metadata without
389 * allocating any new blocks.
390 * superblock: sector size
391 * bitmap inode: inode size
392 * summary inode: inode size
393 * one bitmap block: blocksize
394 * summary blocks: new summary size
395 */
396STATIC uint
397xfs_calc_growrtfree_reservation(
398 struct xfs_mount *mp)
399{
400 return mp->m_sb.sb_sectsize +
401 2 * mp->m_sb.sb_inodesize +
402 mp->m_sb.sb_blocksize +
403 mp->m_rsumsize +
404 128 * 5;
405}
406
407/*
408 * Logging the inode modification timestamp on a synchronous write.
409 * inode
410 */
411STATIC uint
412xfs_calc_swrite_reservation(
413 struct xfs_mount *mp)
414{
415 return mp->m_sb.sb_inodesize + 128;
416}
417
418/*
419 * Logging the inode mode bits when writing a setuid/setgid file
420 * inode
421 */
422STATIC uint
423xfs_calc_writeid_reservation(xfs_mount_t *mp)
424{
425 return mp->m_sb.sb_inodesize + 128;
426}
427
428/*
429 * Converting the inode from non-attributed to attributed.
430 * the inode being converted: inode size
431 * agf block and superblock (for block allocation)
432 * the new block (directory sized)
433 * bmap blocks for the new directory block
434 * allocation btrees
435 */
436STATIC uint
437xfs_calc_addafork_reservation(
438 struct xfs_mount *mp)
439{
440 return XFS_DQUOT_LOGRES(mp) +
441 mp->m_sb.sb_inodesize +
442 mp->m_sb.sb_sectsize * 2 +
443 mp->m_dirblksize +
444 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
445 XFS_ALLOCFREE_LOG_RES(mp, 1) +
446 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
447 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
448}
449
450/*
451 * Removing the attribute fork of a file
452 * the inode being truncated: inode size
453 * the inode's bmap btree: max depth * block size
454 * And the bmap_finish transaction can free the blocks and bmap blocks:
455 * the agf for each of the ags: 4 * sector size
456 * the agfl for each of the ags: 4 * sector size
457 * the super block to reflect the freed blocks: sector size
458 * worst case split in allocation btrees per extent assuming 4 extents:
459 * 4 exts * 2 trees * (2 * max depth - 1) * block size
460 */
461STATIC uint
462xfs_calc_attrinval_reservation(
463 struct xfs_mount *mp)
464{
465 return MAX((mp->m_sb.sb_inodesize +
466 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
467 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
468 (4 * mp->m_sb.sb_sectsize +
469 4 * mp->m_sb.sb_sectsize +
470 mp->m_sb.sb_sectsize +
471 XFS_ALLOCFREE_LOG_RES(mp, 4) +
472 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
473}
474
475/*
476 * Setting an attribute.
477 * the inode getting the attribute
478 * the superblock for allocations
479 * the agfs extents are allocated from
480 * the attribute btree * max depth
481 * the inode allocation btree
482 * Since attribute transaction space is dependent on the size of the attribute,
483 * the calculation is done partially at mount time and partially at runtime.
484 */
485STATIC uint
486xfs_calc_attrset_reservation(
487 struct xfs_mount *mp)
488{
489 return XFS_DQUOT_LOGRES(mp) +
490 mp->m_sb.sb_inodesize +
491 mp->m_sb.sb_sectsize +
492 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
493 128 * (2 + XFS_DA_NODE_MAXDEPTH);
494}
495
496/*
497 * Removing an attribute.
498 * the inode: inode size
499 * the attribute btree could join: max depth * block size
500 * the inode bmap btree could join or split: max depth * block size
501 * And the bmap_finish transaction can free the attr blocks freed giving:
502 * the agf for the ag in which the blocks live: 2 * sector size
503 * the agfl for the ag in which the blocks live: 2 * sector size
504 * the superblock for the free block count: sector size
505 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
506 */
507STATIC uint
508xfs_calc_attrrm_reservation(
509 struct xfs_mount *mp)
510{
511 return XFS_DQUOT_LOGRES(mp) +
512 MAX((mp->m_sb.sb_inodesize +
513 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
514 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
515 128 * (1 + XFS_DA_NODE_MAXDEPTH +
516 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
517 (2 * mp->m_sb.sb_sectsize +
518 2 * mp->m_sb.sb_sectsize +
519 mp->m_sb.sb_sectsize +
520 XFS_ALLOCFREE_LOG_RES(mp, 2) +
521 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
522}
523
524/*
525 * Clearing a bad agino number in an agi hash bucket.
526 */
527STATIC uint
528xfs_calc_clear_agi_bucket_reservation(
529 struct xfs_mount *mp)
530{
531 return mp->m_sb.sb_sectsize + 128;
532}
533
534/*
535 * Initialize the precomputed transaction reservation values
536 * in the mount structure.
537 */
538void
539xfs_trans_init(
540 struct xfs_mount *mp)
541{
542 struct xfs_trans_reservations *resp = &mp->m_reservations;
543
544 resp->tr_write = xfs_calc_write_reservation(mp);
545 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
546 resp->tr_rename = xfs_calc_rename_reservation(mp);
547 resp->tr_link = xfs_calc_link_reservation(mp);
548 resp->tr_remove = xfs_calc_remove_reservation(mp);
549 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
550 resp->tr_create = xfs_calc_create_reservation(mp);
551 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
552 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
553 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
554 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
555 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
556 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
557 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
558 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
559 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
560 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
561 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
562 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
563 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
564 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
565}
566
567/*
568 * This routine is called to allocate a transaction structure.
569 * The type parameter indicates the type of the transaction. These
570 * are enumerated in xfs_trans.h.
571 *
572 * Dynamically allocate the transaction structure from the transaction
573 * zone, initialize it, and return it to the caller.
574 */
575xfs_trans_t *
576xfs_trans_alloc(
577 xfs_mount_t *mp,
578 uint type)
579{
580 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
581 return _xfs_trans_alloc(mp, type, KM_SLEEP);
582}
583
584xfs_trans_t *
585_xfs_trans_alloc(
586 xfs_mount_t *mp,
587 uint type,
588 uint memflags)
589{
590 xfs_trans_t *tp;
591
592 atomic_inc(&mp->m_active_trans);
593
594 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
595 tp->t_magic = XFS_TRANS_MAGIC;
596 tp->t_type = type;
597 tp->t_mountp = mp;
598 INIT_LIST_HEAD(&tp->t_items);
599 INIT_LIST_HEAD(&tp->t_busy);
600 return tp;
601}
602
603/*
604 * Free the transaction structure. If there is more clean up
605 * to do when the structure is freed, add it here.
606 */
607STATIC void
608xfs_trans_free(
609 struct xfs_trans *tp)
610{
611 xfs_alloc_busy_sort(&tp->t_busy);
612 xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false);
613
614 atomic_dec(&tp->t_mountp->m_active_trans);
615 xfs_trans_free_dqinfo(tp);
616 kmem_zone_free(xfs_trans_zone, tp);
617}
618
619/*
620 * This is called to create a new transaction which will share the
621 * permanent log reservation of the given transaction. The remaining
622 * unused block and rt extent reservations are also inherited. This
623 * implies that the original transaction is no longer allowed to allocate
624 * blocks. Locks and log items, however, are no inherited. They must
625 * be added to the new transaction explicitly.
626 */
627xfs_trans_t *
628xfs_trans_dup(
629 xfs_trans_t *tp)
630{
631 xfs_trans_t *ntp;
632
633 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
634
635 /*
636 * Initialize the new transaction structure.
637 */
638 ntp->t_magic = XFS_TRANS_MAGIC;
639 ntp->t_type = tp->t_type;
640 ntp->t_mountp = tp->t_mountp;
641 INIT_LIST_HEAD(&ntp->t_items);
642 INIT_LIST_HEAD(&ntp->t_busy);
643
644 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
645 ASSERT(tp->t_ticket != NULL);
646
647 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
648 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
649 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
650 tp->t_blk_res = tp->t_blk_res_used;
651 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
652 tp->t_rtx_res = tp->t_rtx_res_used;
653 ntp->t_pflags = tp->t_pflags;
654
655 xfs_trans_dup_dqinfo(tp, ntp);
656
657 atomic_inc(&tp->t_mountp->m_active_trans);
658 return ntp;
659}
660
661/*
662 * This is called to reserve free disk blocks and log space for the
663 * given transaction. This must be done before allocating any resources
664 * within the transaction.
665 *
666 * This will return ENOSPC if there are not enough blocks available.
667 * It will sleep waiting for available log space.
668 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
669 * is used by long running transactions. If any one of the reservations
670 * fails then they will all be backed out.
671 *
672 * This does not do quota reservations. That typically is done by the
673 * caller afterwards.
674 */
675int
676xfs_trans_reserve(
677 xfs_trans_t *tp,
678 uint blocks,
679 uint logspace,
680 uint rtextents,
681 uint flags,
682 uint logcount)
683{
684 int log_flags;
685 int error = 0;
686 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
687
688 /* Mark this thread as being in a transaction */
689 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
690
691 /*
692 * Attempt to reserve the needed disk blocks by decrementing
693 * the number needed from the number available. This will
694 * fail if the count would go below zero.
695 */
696 if (blocks > 0) {
697 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
698 -((int64_t)blocks), rsvd);
699 if (error != 0) {
700 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
701 return (XFS_ERROR(ENOSPC));
702 }
703 tp->t_blk_res += blocks;
704 }
705
706 /*
707 * Reserve the log space needed for this transaction.
708 */
709 if (logspace > 0) {
710 ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
711 ASSERT((tp->t_log_count == 0) ||
712 (tp->t_log_count == logcount));
713 if (flags & XFS_TRANS_PERM_LOG_RES) {
714 log_flags = XFS_LOG_PERM_RESERV;
715 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
716 } else {
717 ASSERT(tp->t_ticket == NULL);
718 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
719 log_flags = 0;
720 }
721
722 error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
723 &tp->t_ticket,
724 XFS_TRANSACTION, log_flags, tp->t_type);
725 if (error) {
726 goto undo_blocks;
727 }
728 tp->t_log_res = logspace;
729 tp->t_log_count = logcount;
730 }
731
732 /*
733 * Attempt to reserve the needed realtime extents by decrementing
734 * the number needed from the number available. This will
735 * fail if the count would go below zero.
736 */
737 if (rtextents > 0) {
738 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
739 -((int64_t)rtextents), rsvd);
740 if (error) {
741 error = XFS_ERROR(ENOSPC);
742 goto undo_log;
743 }
744 tp->t_rtx_res += rtextents;
745 }
746
747 return 0;
748
749 /*
750 * Error cases jump to one of these labels to undo any
751 * reservations which have already been performed.
752 */
753undo_log:
754 if (logspace > 0) {
755 if (flags & XFS_TRANS_PERM_LOG_RES) {
756 log_flags = XFS_LOG_REL_PERM_RESERV;
757 } else {
758 log_flags = 0;
759 }
760 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
761 tp->t_ticket = NULL;
762 tp->t_log_res = 0;
763 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
764 }
765
766undo_blocks:
767 if (blocks > 0) {
768 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
769 (int64_t)blocks, rsvd);
770 tp->t_blk_res = 0;
771 }
772
773 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
774
775 return error;
776}
777
778/*
779 * Record the indicated change to the given field for application
780 * to the file system's superblock when the transaction commits.
781 * For now, just store the change in the transaction structure.
782 *
783 * Mark the transaction structure to indicate that the superblock
784 * needs to be updated before committing.
785 *
786 * Because we may not be keeping track of allocated/free inodes and
787 * used filesystem blocks in the superblock, we do not mark the
788 * superblock dirty in this transaction if we modify these fields.
789 * We still need to update the transaction deltas so that they get
790 * applied to the incore superblock, but we don't want them to
791 * cause the superblock to get locked and logged if these are the
792 * only fields in the superblock that the transaction modifies.
793 */
794void
795xfs_trans_mod_sb(
796 xfs_trans_t *tp,
797 uint field,
798 int64_t delta)
799{
800 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
801 xfs_mount_t *mp = tp->t_mountp;
802
803 switch (field) {
804 case XFS_TRANS_SB_ICOUNT:
805 tp->t_icount_delta += delta;
806 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
807 flags &= ~XFS_TRANS_SB_DIRTY;
808 break;
809 case XFS_TRANS_SB_IFREE:
810 tp->t_ifree_delta += delta;
811 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
812 flags &= ~XFS_TRANS_SB_DIRTY;
813 break;
814 case XFS_TRANS_SB_FDBLOCKS:
815 /*
816 * Track the number of blocks allocated in the
817 * transaction. Make sure it does not exceed the
818 * number reserved.
819 */
820 if (delta < 0) {
821 tp->t_blk_res_used += (uint)-delta;
822 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
823 }
824 tp->t_fdblocks_delta += delta;
825 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
826 flags &= ~XFS_TRANS_SB_DIRTY;
827 break;
828 case XFS_TRANS_SB_RES_FDBLOCKS:
829 /*
830 * The allocation has already been applied to the
831 * in-core superblock's counter. This should only
832 * be applied to the on-disk superblock.
833 */
834 ASSERT(delta < 0);
835 tp->t_res_fdblocks_delta += delta;
836 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
837 flags &= ~XFS_TRANS_SB_DIRTY;
838 break;
839 case XFS_TRANS_SB_FREXTENTS:
840 /*
841 * Track the number of blocks allocated in the
842 * transaction. Make sure it does not exceed the
843 * number reserved.
844 */
845 if (delta < 0) {
846 tp->t_rtx_res_used += (uint)-delta;
847 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
848 }
849 tp->t_frextents_delta += delta;
850 break;
851 case XFS_TRANS_SB_RES_FREXTENTS:
852 /*
853 * The allocation has already been applied to the
854 * in-core superblock's counter. This should only
855 * be applied to the on-disk superblock.
856 */
857 ASSERT(delta < 0);
858 tp->t_res_frextents_delta += delta;
859 break;
860 case XFS_TRANS_SB_DBLOCKS:
861 ASSERT(delta > 0);
862 tp->t_dblocks_delta += delta;
863 break;
864 case XFS_TRANS_SB_AGCOUNT:
865 ASSERT(delta > 0);
866 tp->t_agcount_delta += delta;
867 break;
868 case XFS_TRANS_SB_IMAXPCT:
869 tp->t_imaxpct_delta += delta;
870 break;
871 case XFS_TRANS_SB_REXTSIZE:
872 tp->t_rextsize_delta += delta;
873 break;
874 case XFS_TRANS_SB_RBMBLOCKS:
875 tp->t_rbmblocks_delta += delta;
876 break;
877 case XFS_TRANS_SB_RBLOCKS:
878 tp->t_rblocks_delta += delta;
879 break;
880 case XFS_TRANS_SB_REXTENTS:
881 tp->t_rextents_delta += delta;
882 break;
883 case XFS_TRANS_SB_REXTSLOG:
884 tp->t_rextslog_delta += delta;
885 break;
886 default:
887 ASSERT(0);
888 return;
889 }
890
891 tp->t_flags |= flags;
892}
893
894/*
895 * xfs_trans_apply_sb_deltas() is called from the commit code
896 * to bring the superblock buffer into the current transaction
897 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
898 *
899 * For now we just look at each field allowed to change and change
900 * it if necessary.
901 */
902STATIC void
903xfs_trans_apply_sb_deltas(
904 xfs_trans_t *tp)
905{
906 xfs_dsb_t *sbp;
907 xfs_buf_t *bp;
908 int whole = 0;
909
910 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
911 sbp = XFS_BUF_TO_SBP(bp);
912
913 /*
914 * Check that superblock mods match the mods made to AGF counters.
915 */
916 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
917 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
918 tp->t_ag_btree_delta));
919
920 /*
921 * Only update the superblock counters if we are logging them
922 */
923 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
924 if (tp->t_icount_delta)
925 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
926 if (tp->t_ifree_delta)
927 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
928 if (tp->t_fdblocks_delta)
929 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
930 if (tp->t_res_fdblocks_delta)
931 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
932 }
933
934 if (tp->t_frextents_delta)
935 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
936 if (tp->t_res_frextents_delta)
937 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
938
939 if (tp->t_dblocks_delta) {
940 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
941 whole = 1;
942 }
943 if (tp->t_agcount_delta) {
944 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
945 whole = 1;
946 }
947 if (tp->t_imaxpct_delta) {
948 sbp->sb_imax_pct += tp->t_imaxpct_delta;
949 whole = 1;
950 }
951 if (tp->t_rextsize_delta) {
952 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
953 whole = 1;
954 }
955 if (tp->t_rbmblocks_delta) {
956 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
957 whole = 1;
958 }
959 if (tp->t_rblocks_delta) {
960 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
961 whole = 1;
962 }
963 if (tp->t_rextents_delta) {
964 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
965 whole = 1;
966 }
967 if (tp->t_rextslog_delta) {
968 sbp->sb_rextslog += tp->t_rextslog_delta;
969 whole = 1;
970 }
971
972 if (whole)
973 /*
974 * Log the whole thing, the fields are noncontiguous.
975 */
976 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
977 else
978 /*
979 * Since all the modifiable fields are contiguous, we
980 * can get away with this.
981 */
982 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
983 offsetof(xfs_dsb_t, sb_frextents) +
984 sizeof(sbp->sb_frextents) - 1);
985}
986
987/*
988 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
989 * and apply superblock counter changes to the in-core superblock. The
990 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
991 * applied to the in-core superblock. The idea is that that has already been
992 * done.
993 *
994 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
995 * However, we have to ensure that we only modify each superblock field only
996 * once because the application of the delta values may not be atomic. That can
997 * lead to ENOSPC races occurring if we have two separate modifcations of the
998 * free space counter to put back the entire reservation and then take away
999 * what we used.
1000 *
1001 * If we are not logging superblock counters, then the inode allocated/free and
1002 * used block counts are not updated in the on disk superblock. In this case,
1003 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1004 * still need to update the incore superblock with the changes.
1005 */
1006void
1007xfs_trans_unreserve_and_mod_sb(
1008 xfs_trans_t *tp)
1009{
1010 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1011 xfs_mod_sb_t *msbp;
1012 xfs_mount_t *mp = tp->t_mountp;
1013 /* REFERENCED */
1014 int error;
1015 int rsvd;
1016 int64_t blkdelta = 0;
1017 int64_t rtxdelta = 0;
1018 int64_t idelta = 0;
1019 int64_t ifreedelta = 0;
1020
1021 msbp = msb;
1022 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1023
1024 /* calculate deltas */
1025 if (tp->t_blk_res > 0)
1026 blkdelta = tp->t_blk_res;
1027 if ((tp->t_fdblocks_delta != 0) &&
1028 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1029 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1030 blkdelta += tp->t_fdblocks_delta;
1031
1032 if (tp->t_rtx_res > 0)
1033 rtxdelta = tp->t_rtx_res;
1034 if ((tp->t_frextents_delta != 0) &&
1035 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1036 rtxdelta += tp->t_frextents_delta;
1037
1038 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1039 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1040 idelta = tp->t_icount_delta;
1041 ifreedelta = tp->t_ifree_delta;
1042 }
1043
1044 /* apply the per-cpu counters */
1045 if (blkdelta) {
1046 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1047 blkdelta, rsvd);
1048 if (error)
1049 goto out;
1050 }
1051
1052 if (idelta) {
1053 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1054 idelta, rsvd);
1055 if (error)
1056 goto out_undo_fdblocks;
1057 }
1058
1059 if (ifreedelta) {
1060 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1061 ifreedelta, rsvd);
1062 if (error)
1063 goto out_undo_icount;
1064 }
1065
1066 /* apply remaining deltas */
1067 if (rtxdelta != 0) {
1068 msbp->msb_field = XFS_SBS_FREXTENTS;
1069 msbp->msb_delta = rtxdelta;
1070 msbp++;
1071 }
1072
1073 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1074 if (tp->t_dblocks_delta != 0) {
1075 msbp->msb_field = XFS_SBS_DBLOCKS;
1076 msbp->msb_delta = tp->t_dblocks_delta;
1077 msbp++;
1078 }
1079 if (tp->t_agcount_delta != 0) {
1080 msbp->msb_field = XFS_SBS_AGCOUNT;
1081 msbp->msb_delta = tp->t_agcount_delta;
1082 msbp++;
1083 }
1084 if (tp->t_imaxpct_delta != 0) {
1085 msbp->msb_field = XFS_SBS_IMAX_PCT;
1086 msbp->msb_delta = tp->t_imaxpct_delta;
1087 msbp++;
1088 }
1089 if (tp->t_rextsize_delta != 0) {
1090 msbp->msb_field = XFS_SBS_REXTSIZE;
1091 msbp->msb_delta = tp->t_rextsize_delta;
1092 msbp++;
1093 }
1094 if (tp->t_rbmblocks_delta != 0) {
1095 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1096 msbp->msb_delta = tp->t_rbmblocks_delta;
1097 msbp++;
1098 }
1099 if (tp->t_rblocks_delta != 0) {
1100 msbp->msb_field = XFS_SBS_RBLOCKS;
1101 msbp->msb_delta = tp->t_rblocks_delta;
1102 msbp++;
1103 }
1104 if (tp->t_rextents_delta != 0) {
1105 msbp->msb_field = XFS_SBS_REXTENTS;
1106 msbp->msb_delta = tp->t_rextents_delta;
1107 msbp++;
1108 }
1109 if (tp->t_rextslog_delta != 0) {
1110 msbp->msb_field = XFS_SBS_REXTSLOG;
1111 msbp->msb_delta = tp->t_rextslog_delta;
1112 msbp++;
1113 }
1114 }
1115
1116 /*
1117 * If we need to change anything, do it.
1118 */
1119 if (msbp > msb) {
1120 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1121 (uint)(msbp - msb), rsvd);
1122 if (error)
1123 goto out_undo_ifreecount;
1124 }
1125
1126 return;
1127
1128out_undo_ifreecount:
1129 if (ifreedelta)
1130 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1131out_undo_icount:
1132 if (idelta)
1133 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1134out_undo_fdblocks:
1135 if (blkdelta)
1136 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1137out:
1138 ASSERT(error == 0);
1139 return;
1140}
1141
1142/*
1143 * Add the given log item to the transaction's list of log items.
1144 *
1145 * The log item will now point to its new descriptor with its li_desc field.
1146 */
1147void
1148xfs_trans_add_item(
1149 struct xfs_trans *tp,
1150 struct xfs_log_item *lip)
1151{
1152 struct xfs_log_item_desc *lidp;
1153
1154 ASSERT(lip->li_mountp = tp->t_mountp);
1155 ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1156
1157 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1158
1159 lidp->lid_item = lip;
1160 lidp->lid_flags = 0;
1161 lidp->lid_size = 0;
1162 list_add_tail(&lidp->lid_trans, &tp->t_items);
1163
1164 lip->li_desc = lidp;
1165}
1166
1167STATIC void
1168xfs_trans_free_item_desc(
1169 struct xfs_log_item_desc *lidp)
1170{
1171 list_del_init(&lidp->lid_trans);
1172 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1173}
1174
1175/*
1176 * Unlink and free the given descriptor.
1177 */
1178void
1179xfs_trans_del_item(
1180 struct xfs_log_item *lip)
1181{
1182 xfs_trans_free_item_desc(lip->li_desc);
1183 lip->li_desc = NULL;
1184}
1185
1186/*
1187 * Unlock all of the items of a transaction and free all the descriptors
1188 * of that transaction.
1189 */
1190void
1191xfs_trans_free_items(
1192 struct xfs_trans *tp,
1193 xfs_lsn_t commit_lsn,
1194 int flags)
1195{
1196 struct xfs_log_item_desc *lidp, *next;
1197
1198 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1199 struct xfs_log_item *lip = lidp->lid_item;
1200
1201 lip->li_desc = NULL;
1202
1203 if (commit_lsn != NULLCOMMITLSN)
1204 IOP_COMMITTING(lip, commit_lsn);
1205 if (flags & XFS_TRANS_ABORT)
1206 lip->li_flags |= XFS_LI_ABORTED;
1207 IOP_UNLOCK(lip);
1208
1209 xfs_trans_free_item_desc(lidp);
1210 }
1211}
1212
1213/*
1214 * Unlock the items associated with a transaction.
1215 *
1216 * Items which were not logged should be freed. Those which were logged must
1217 * still be tracked so they can be unpinned when the transaction commits.
1218 */
1219STATIC void
1220xfs_trans_unlock_items(
1221 struct xfs_trans *tp,
1222 xfs_lsn_t commit_lsn)
1223{
1224 struct xfs_log_item_desc *lidp, *next;
1225
1226 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1227 struct xfs_log_item *lip = lidp->lid_item;
1228
1229 lip->li_desc = NULL;
1230
1231 if (commit_lsn != NULLCOMMITLSN)
1232 IOP_COMMITTING(lip, commit_lsn);
1233 IOP_UNLOCK(lip);
1234
1235 /*
1236 * Free the descriptor if the item is not dirty
1237 * within this transaction.
1238 */
1239 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1240 xfs_trans_free_item_desc(lidp);
1241 }
1242}
1243
1244/*
1245 * Total up the number of log iovecs needed to commit this
1246 * transaction. The transaction itself needs one for the
1247 * transaction header. Ask each dirty item in turn how many
1248 * it needs to get the total.
1249 */
1250static uint
1251xfs_trans_count_vecs(
1252 struct xfs_trans *tp)
1253{
1254 int nvecs;
1255 struct xfs_log_item_desc *lidp;
1256
1257 nvecs = 1;
1258
1259 /* In the non-debug case we need to start bailing out if we
1260 * didn't find a log_item here, return zero and let trans_commit
1261 * deal with it.
1262 */
1263 if (list_empty(&tp->t_items)) {
1264 ASSERT(0);
1265 return 0;
1266 }
1267
1268 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1269 /*
1270 * Skip items which aren't dirty in this transaction.
1271 */
1272 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1273 continue;
1274 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1275 nvecs += lidp->lid_size;
1276 }
1277
1278 return nvecs;
1279}
1280
1281/*
1282 * Fill in the vector with pointers to data to be logged
1283 * by this transaction. The transaction header takes
1284 * the first vector, and then each dirty item takes the
1285 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1286 *
1287 * As each item fills in the entries it needs, also pin the item
1288 * so that it cannot be flushed out until the log write completes.
1289 */
1290static void
1291xfs_trans_fill_vecs(
1292 struct xfs_trans *tp,
1293 struct xfs_log_iovec *log_vector)
1294{
1295 struct xfs_log_item_desc *lidp;
1296 struct xfs_log_iovec *vecp;
1297 uint nitems;
1298
1299 /*
1300 * Skip over the entry for the transaction header, we'll
1301 * fill that in at the end.
1302 */
1303 vecp = log_vector + 1;
1304
1305 nitems = 0;
1306 ASSERT(!list_empty(&tp->t_items));
1307 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1308 /* Skip items which aren't dirty in this transaction. */
1309 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1310 continue;
1311
1312 /*
1313 * The item may be marked dirty but not log anything. This can
1314 * be used to get called when a transaction is committed.
1315 */
1316 if (lidp->lid_size)
1317 nitems++;
1318 IOP_FORMAT(lidp->lid_item, vecp);
1319 vecp += lidp->lid_size;
1320 IOP_PIN(lidp->lid_item);
1321 }
1322
1323 /*
1324 * Now that we've counted the number of items in this transaction, fill
1325 * in the transaction header. Note that the transaction header does not
1326 * have a log item.
1327 */
1328 tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1329 tp->t_header.th_type = tp->t_type;
1330 tp->t_header.th_num_items = nitems;
1331 log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1332 log_vector->i_len = sizeof(xfs_trans_header_t);
1333 log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1334}
1335
1336/*
1337 * The committed item processing consists of calling the committed routine of
1338 * each logged item, updating the item's position in the AIL if necessary, and
1339 * unpinning each item. If the committed routine returns -1, then do nothing
1340 * further with the item because it may have been freed.
1341 *
1342 * Since items are unlocked when they are copied to the incore log, it is
1343 * possible for two transactions to be completing and manipulating the same
1344 * item simultaneously. The AIL lock will protect the lsn field of each item.
1345 * The value of this field can never go backwards.
1346 *
1347 * We unpin the items after repositioning them in the AIL, because otherwise
1348 * they could be immediately flushed and we'd have to race with the flusher
1349 * trying to pull the item from the AIL as we add it.
1350 */
1351static void
1352xfs_trans_item_committed(
1353 struct xfs_log_item *lip,
1354 xfs_lsn_t commit_lsn,
1355 int aborted)
1356{
1357 xfs_lsn_t item_lsn;
1358 struct xfs_ail *ailp;
1359
1360 if (aborted)
1361 lip->li_flags |= XFS_LI_ABORTED;
1362 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1363
1364 /* item_lsn of -1 means the item needs no further processing */
1365 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1366 return;
1367
1368 /*
1369 * If the returned lsn is greater than what it contained before, update
1370 * the location of the item in the AIL. If it is not, then do nothing.
1371 * Items can never move backwards in the AIL.
1372 *
1373 * While the new lsn should usually be greater, it is possible that a
1374 * later transaction completing simultaneously with an earlier one
1375 * using the same item could complete first with a higher lsn. This
1376 * would cause the earlier transaction to fail the test below.
1377 */
1378 ailp = lip->li_ailp;
1379 spin_lock(&ailp->xa_lock);
1380 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1381 /*
1382 * This will set the item's lsn to item_lsn and update the
1383 * position of the item in the AIL.
1384 *
1385 * xfs_trans_ail_update() drops the AIL lock.
1386 */
1387 xfs_trans_ail_update(ailp, lip, item_lsn);
1388 } else {
1389 spin_unlock(&ailp->xa_lock);
1390 }
1391
1392 /*
1393 * Now that we've repositioned the item in the AIL, unpin it so it can
1394 * be flushed. Pass information about buffer stale state down from the
1395 * log item flags, if anyone else stales the buffer we do not want to
1396 * pay any attention to it.
1397 */
1398 IOP_UNPIN(lip, 0);
1399}
1400
1401/*
1402 * This is typically called by the LM when a transaction has been fully
1403 * committed to disk. It needs to unpin the items which have
1404 * been logged by the transaction and update their positions
1405 * in the AIL if necessary.
1406 *
1407 * This also gets called when the transactions didn't get written out
1408 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1409 */
1410STATIC void
1411xfs_trans_committed(
1412 void *arg,
1413 int abortflag)
1414{
1415 struct xfs_trans *tp = arg;
1416 struct xfs_log_item_desc *lidp, *next;
1417
1418 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1419 xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1420 xfs_trans_free_item_desc(lidp);
1421 }
1422
1423 xfs_trans_free(tp);
1424}
1425
1426static inline void
1427xfs_log_item_batch_insert(
1428 struct xfs_ail *ailp,
1429 struct xfs_ail_cursor *cur,
1430 struct xfs_log_item **log_items,
1431 int nr_items,
1432 xfs_lsn_t commit_lsn)
1433{
1434 int i;
1435
1436 spin_lock(&ailp->xa_lock);
1437 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1438 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1439
1440 for (i = 0; i < nr_items; i++)
1441 IOP_UNPIN(log_items[i], 0);
1442}
1443
1444/*
1445 * Bulk operation version of xfs_trans_committed that takes a log vector of
1446 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1447 * minimise lock traffic.
1448 *
1449 * If we are called with the aborted flag set, it is because a log write during
1450 * a CIL checkpoint commit has failed. In this case, all the items in the
1451 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1452 * means that checkpoint commit abort handling is treated exactly the same
1453 * as an iclog write error even though we haven't started any IO yet. Hence in
1454 * this case all we need to do is IOP_COMMITTED processing, followed by an
1455 * IOP_UNPIN(aborted) call.
1456 *
1457 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1458 * at the end of the AIL, the insert cursor avoids the need to walk
1459 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1460 * call. This saves a lot of needless list walking and is a net win, even
1461 * though it slightly increases that amount of AIL lock traffic to set it up
1462 * and tear it down.
1463 */
1464void
1465xfs_trans_committed_bulk(
1466 struct xfs_ail *ailp,
1467 struct xfs_log_vec *log_vector,
1468 xfs_lsn_t commit_lsn,
1469 int aborted)
1470{
1471#define LOG_ITEM_BATCH_SIZE 32
1472 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1473 struct xfs_log_vec *lv;
1474 struct xfs_ail_cursor cur;
1475 int i = 0;
1476
1477 spin_lock(&ailp->xa_lock);
1478 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1479 spin_unlock(&ailp->xa_lock);
1480
1481 /* unpin all the log items */
1482 for (lv = log_vector; lv; lv = lv->lv_next ) {
1483 struct xfs_log_item *lip = lv->lv_item;
1484 xfs_lsn_t item_lsn;
1485
1486 if (aborted)
1487 lip->li_flags |= XFS_LI_ABORTED;
1488 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1489
1490 /* item_lsn of -1 means the item needs no further processing */
1491 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1492 continue;
1493
1494 /*
1495 * if we are aborting the operation, no point in inserting the
1496 * object into the AIL as we are in a shutdown situation.
1497 */
1498 if (aborted) {
1499 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1500 IOP_UNPIN(lip, 1);
1501 continue;
1502 }
1503
1504 if (item_lsn != commit_lsn) {
1505
1506 /*
1507 * Not a bulk update option due to unusual item_lsn.
1508 * Push into AIL immediately, rechecking the lsn once
1509 * we have the ail lock. Then unpin the item. This does
1510 * not affect the AIL cursor the bulk insert path is
1511 * using.
1512 */
1513 spin_lock(&ailp->xa_lock);
1514 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1515 xfs_trans_ail_update(ailp, lip, item_lsn);
1516 else
1517 spin_unlock(&ailp->xa_lock);
1518 IOP_UNPIN(lip, 0);
1519 continue;
1520 }
1521
1522 /* Item is a candidate for bulk AIL insert. */
1523 log_items[i++] = lv->lv_item;
1524 if (i >= LOG_ITEM_BATCH_SIZE) {
1525 xfs_log_item_batch_insert(ailp, &cur, log_items,
1526 LOG_ITEM_BATCH_SIZE, commit_lsn);
1527 i = 0;
1528 }
1529 }
1530
1531 /* make sure we insert the remainder! */
1532 if (i)
1533 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1534
1535 spin_lock(&ailp->xa_lock);
1536 xfs_trans_ail_cursor_done(ailp, &cur);
1537 spin_unlock(&ailp->xa_lock);
1538}
1539
1540/*
1541 * Called from the trans_commit code when we notice that the filesystem is in
1542 * the middle of a forced shutdown.
1543 *
1544 * When we are called here, we have already pinned all the items in the
1545 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1546 * so we can simply walk the items in the transaction, unpin them with an abort
1547 * flag and then free the items. Note that unpinning the items can result in
1548 * them being freed immediately, so we need to use a safe list traversal method
1549 * here.
1550 */
1551STATIC void
1552xfs_trans_uncommit(
1553 struct xfs_trans *tp,
1554 uint flags)
1555{
1556 struct xfs_log_item_desc *lidp, *n;
1557
1558 list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
1559 if (lidp->lid_flags & XFS_LID_DIRTY)
1560 IOP_UNPIN(lidp->lid_item, 1);
1561 }
1562
1563 xfs_trans_unreserve_and_mod_sb(tp);
1564 xfs_trans_unreserve_and_mod_dquots(tp);
1565
1566 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1567 xfs_trans_free(tp);
1568}
1569
1570/*
1571 * Format the transaction direct to the iclog. This isolates the physical
1572 * transaction commit operation from the logical operation and hence allows
1573 * other methods to be introduced without affecting the existing commit path.
1574 */
1575static int
1576xfs_trans_commit_iclog(
1577 struct xfs_mount *mp,
1578 struct xfs_trans *tp,
1579 xfs_lsn_t *commit_lsn,
1580 int flags)
1581{
1582 int shutdown;
1583 int error;
1584 int log_flags = 0;
1585 struct xlog_in_core *commit_iclog;
1586#define XFS_TRANS_LOGVEC_COUNT 16
1587 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1588 struct xfs_log_iovec *log_vector;
1589 uint nvec;
1590
1591
1592 /*
1593 * Ask each log item how many log_vector entries it will
1594 * need so we can figure out how many to allocate.
1595 * Try to avoid the kmem_alloc() call in the common case
1596 * by using a vector from the stack when it fits.
1597 */
1598 nvec = xfs_trans_count_vecs(tp);
1599 if (nvec == 0) {
1600 return ENOMEM; /* triggers a shutdown! */
1601 } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1602 log_vector = log_vector_fast;
1603 } else {
1604 log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1605 sizeof(xfs_log_iovec_t),
1606 KM_SLEEP);
1607 }
1608
1609 /*
1610 * Fill in the log_vector and pin the logged items, and
1611 * then write the transaction to the log.
1612 */
1613 xfs_trans_fill_vecs(tp, log_vector);
1614
1615 if (flags & XFS_TRANS_RELEASE_LOG_RES)
1616 log_flags = XFS_LOG_REL_PERM_RESERV;
1617
1618 error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1619
1620 /*
1621 * The transaction is committed incore here, and can go out to disk
1622 * at any time after this call. However, all the items associated
1623 * with the transaction are still locked and pinned in memory.
1624 */
1625 *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1626
1627 tp->t_commit_lsn = *commit_lsn;
1628 trace_xfs_trans_commit_lsn(tp);
1629
1630 if (nvec > XFS_TRANS_LOGVEC_COUNT)
1631 kmem_free(log_vector);
1632
1633 /*
1634 * If we got a log write error. Unpin the logitems that we
1635 * had pinned, clean up, free trans structure, and return error.
1636 */
1637 if (error || *commit_lsn == -1) {
1638 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1639 xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1640 return XFS_ERROR(EIO);
1641 }
1642
1643 /*
1644 * Once the transaction has committed, unused
1645 * reservations need to be released and changes to
1646 * the superblock need to be reflected in the in-core
1647 * version. Do that now.
1648 */
1649 xfs_trans_unreserve_and_mod_sb(tp);
1650
1651 /*
1652 * Tell the LM to call the transaction completion routine
1653 * when the log write with LSN commit_lsn completes (e.g.
1654 * when the transaction commit really hits the on-disk log).
1655 * After this call we cannot reference tp, because the call
1656 * can happen at any time and the call will free the transaction
1657 * structure pointed to by tp. The only case where we call
1658 * the completion routine (xfs_trans_committed) directly is
1659 * if the log is turned off on a debug kernel or we're
1660 * running in simulation mode (the log is explicitly turned
1661 * off).
1662 */
1663 tp->t_logcb.cb_func = xfs_trans_committed;
1664 tp->t_logcb.cb_arg = tp;
1665
1666 /*
1667 * We need to pass the iclog buffer which was used for the
1668 * transaction commit record into this function, and attach
1669 * the callback to it. The callback must be attached before
1670 * the items are unlocked to avoid racing with other threads
1671 * waiting for an item to unlock.
1672 */
1673 shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1674
1675 /*
1676 * Mark this thread as no longer being in a transaction
1677 */
1678 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1679
1680 /*
1681 * Once all the items of the transaction have been copied
1682 * to the in core log and the callback is attached, the
1683 * items can be unlocked.
1684 *
1685 * This will free descriptors pointing to items which were
1686 * not logged since there is nothing more to do with them.
1687 * For items which were logged, we will keep pointers to them
1688 * so they can be unpinned after the transaction commits to disk.
1689 * This will also stamp each modified meta-data item with
1690 * the commit lsn of this transaction for dependency tracking
1691 * purposes.
1692 */
1693 xfs_trans_unlock_items(tp, *commit_lsn);
1694
1695 /*
1696 * If we detected a log error earlier, finish committing
1697 * the transaction now (unpin log items, etc).
1698 *
1699 * Order is critical here, to avoid using the transaction
1700 * pointer after its been freed (by xfs_trans_committed
1701 * either here now, or as a callback). We cannot do this
1702 * step inside xfs_log_notify as was done earlier because
1703 * of this issue.
1704 */
1705 if (shutdown)
1706 xfs_trans_committed(tp, XFS_LI_ABORTED);
1707
1708 /*
1709 * Now that the xfs_trans_committed callback has been attached,
1710 * and the items are released we can finally allow the iclog to
1711 * go to disk.
1712 */
1713 return xfs_log_release_iclog(mp, commit_iclog);
1714}
1715
1716/*
1717 * Walk the log items and allocate log vector structures for
1718 * each item large enough to fit all the vectors they require.
1719 * Note that this format differs from the old log vector format in
1720 * that there is no transaction header in these log vectors.
1721 */
1722STATIC struct xfs_log_vec *
1723xfs_trans_alloc_log_vecs(
1724 xfs_trans_t *tp)
1725{
1726 struct xfs_log_item_desc *lidp;
1727 struct xfs_log_vec *lv = NULL;
1728 struct xfs_log_vec *ret_lv = NULL;
1729
1730
1731 /* Bail out if we didn't find a log item. */
1732 if (list_empty(&tp->t_items)) {
1733 ASSERT(0);
1734 return NULL;
1735 }
1736
1737 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1738 struct xfs_log_vec *new_lv;
1739
1740 /* Skip items which aren't dirty in this transaction. */
1741 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1742 continue;
1743
1744 /* Skip items that do not have any vectors for writing */
1745 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1746 if (!lidp->lid_size)
1747 continue;
1748
1749 new_lv = kmem_zalloc(sizeof(*new_lv) +
1750 lidp->lid_size * sizeof(struct xfs_log_iovec),
1751 KM_SLEEP);
1752
1753 /* The allocated iovec region lies beyond the log vector. */
1754 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1755 new_lv->lv_niovecs = lidp->lid_size;
1756 new_lv->lv_item = lidp->lid_item;
1757 if (!ret_lv)
1758 ret_lv = new_lv;
1759 else
1760 lv->lv_next = new_lv;
1761 lv = new_lv;
1762 }
1763
1764 return ret_lv;
1765}
1766
1767static int
1768xfs_trans_commit_cil(
1769 struct xfs_mount *mp,
1770 struct xfs_trans *tp,
1771 xfs_lsn_t *commit_lsn,
1772 int flags)
1773{
1774 struct xfs_log_vec *log_vector;
1775
1776 /*
1777 * Get each log item to allocate a vector structure for
1778 * the log item to to pass to the log write code. The
1779 * CIL commit code will format the vector and save it away.
1780 */
1781 log_vector = xfs_trans_alloc_log_vecs(tp);
1782 if (!log_vector)
1783 return ENOMEM;
1784
1785 xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1786
1787 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1788 xfs_trans_free(tp);
1789 return 0;
1790}
1791
1792/*
1793 * xfs_trans_commit
1794 *
1795 * Commit the given transaction to the log a/synchronously.
1796 *
1797 * XFS disk error handling mechanism is not based on a typical
1798 * transaction abort mechanism. Logically after the filesystem
1799 * gets marked 'SHUTDOWN', we can't let any new transactions
1800 * be durable - ie. committed to disk - because some metadata might
1801 * be inconsistent. In such cases, this returns an error, and the
1802 * caller may assume that all locked objects joined to the transaction
1803 * have already been unlocked as if the commit had succeeded.
1804 * Do not reference the transaction structure after this call.
1805 */
1806int
1807_xfs_trans_commit(
1808 struct xfs_trans *tp,
1809 uint flags,
1810 int *log_flushed)
1811{
1812 struct xfs_mount *mp = tp->t_mountp;
1813 xfs_lsn_t commit_lsn = -1;
1814 int error = 0;
1815 int log_flags = 0;
1816 int sync = tp->t_flags & XFS_TRANS_SYNC;
1817
1818 /*
1819 * Determine whether this commit is releasing a permanent
1820 * log reservation or not.
1821 */
1822 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1823 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1824 log_flags = XFS_LOG_REL_PERM_RESERV;
1825 }
1826
1827 /*
1828 * If there is nothing to be logged by the transaction,
1829 * then unlock all of the items associated with the
1830 * transaction and free the transaction structure.
1831 * Also make sure to return any reserved blocks to
1832 * the free pool.
1833 */
1834 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1835 goto out_unreserve;
1836
1837 if (XFS_FORCED_SHUTDOWN(mp)) {
1838 error = XFS_ERROR(EIO);
1839 goto out_unreserve;
1840 }
1841
1842 ASSERT(tp->t_ticket != NULL);
1843
1844 /*
1845 * If we need to update the superblock, then do it now.
1846 */
1847 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1848 xfs_trans_apply_sb_deltas(tp);
1849 xfs_trans_apply_dquot_deltas(tp);
1850
1851 if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1852 error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1853 else
1854 error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1855
1856 if (error == ENOMEM) {
1857 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1858 error = XFS_ERROR(EIO);
1859 goto out_unreserve;
1860 }
1861
1862 /*
1863 * If the transaction needs to be synchronous, then force the
1864 * log out now and wait for it.
1865 */
1866 if (sync) {
1867 if (!error) {
1868 error = _xfs_log_force_lsn(mp, commit_lsn,
1869 XFS_LOG_SYNC, log_flushed);
1870 }
1871 XFS_STATS_INC(xs_trans_sync);
1872 } else {
1873 XFS_STATS_INC(xs_trans_async);
1874 }
1875
1876 return error;
1877
1878out_unreserve:
1879 xfs_trans_unreserve_and_mod_sb(tp);
1880
1881 /*
1882 * It is indeed possible for the transaction to be not dirty but
1883 * the dqinfo portion to be. All that means is that we have some
1884 * (non-persistent) quota reservations that need to be unreserved.
1885 */
1886 xfs_trans_unreserve_and_mod_dquots(tp);
1887 if (tp->t_ticket) {
1888 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1889 if (commit_lsn == -1 && !error)
1890 error = XFS_ERROR(EIO);
1891 }
1892 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1893 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1894 xfs_trans_free(tp);
1895
1896 XFS_STATS_INC(xs_trans_empty);
1897 return error;
1898}
1899
1900/*
1901 * Unlock all of the transaction's items and free the transaction.
1902 * The transaction must not have modified any of its items, because
1903 * there is no way to restore them to their previous state.
1904 *
1905 * If the transaction has made a log reservation, make sure to release
1906 * it as well.
1907 */
1908void
1909xfs_trans_cancel(
1910 xfs_trans_t *tp,
1911 int flags)
1912{
1913 int log_flags;
1914 xfs_mount_t *mp = tp->t_mountp;
1915
1916 /*
1917 * See if the caller is being too lazy to figure out if
1918 * the transaction really needs an abort.
1919 */
1920 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1921 flags &= ~XFS_TRANS_ABORT;
1922 /*
1923 * See if the caller is relying on us to shut down the
1924 * filesystem. This happens in paths where we detect
1925 * corruption and decide to give up.
1926 */
1927 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1928 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1929 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1930 }
1931#ifdef DEBUG
1932 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1933 struct xfs_log_item_desc *lidp;
1934
1935 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1936 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1937 }
1938#endif
1939 xfs_trans_unreserve_and_mod_sb(tp);
1940 xfs_trans_unreserve_and_mod_dquots(tp);
1941
1942 if (tp->t_ticket) {
1943 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1944 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1945 log_flags = XFS_LOG_REL_PERM_RESERV;
1946 } else {
1947 log_flags = 0;
1948 }
1949 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1950 }
1951
1952 /* mark this thread as no longer being in a transaction */
1953 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1954
1955 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1956 xfs_trans_free(tp);
1957}
1958
1959/*
1960 * Roll from one trans in the sequence of PERMANENT transactions to
1961 * the next: permanent transactions are only flushed out when
1962 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1963 * as possible to let chunks of it go to the log. So we commit the
1964 * chunk we've been working on and get a new transaction to continue.
1965 */
1966int
1967xfs_trans_roll(
1968 struct xfs_trans **tpp,
1969 struct xfs_inode *dp)
1970{
1971 struct xfs_trans *trans;
1972 unsigned int logres, count;
1973 int error;
1974
1975 /*
1976 * Ensure that the inode is always logged.
1977 */
1978 trans = *tpp;
1979 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1980
1981 /*
1982 * Copy the critical parameters from one trans to the next.
1983 */
1984 logres = trans->t_log_res;
1985 count = trans->t_log_count;
1986 *tpp = xfs_trans_dup(trans);
1987
1988 /*
1989 * Commit the current transaction.
1990 * If this commit failed, then it'd just unlock those items that
1991 * are not marked ihold. That also means that a filesystem shutdown
1992 * is in progress. The caller takes the responsibility to cancel
1993 * the duplicate transaction that gets returned.
1994 */
1995 error = xfs_trans_commit(trans, 0);
1996 if (error)
1997 return (error);
1998
1999 trans = *tpp;
2000
2001 /*
2002 * transaction commit worked ok so we can drop the extra ticket
2003 * reference that we gained in xfs_trans_dup()
2004 */
2005 xfs_log_ticket_put(trans->t_ticket);
2006
2007
2008 /*
2009 * Reserve space in the log for th next transaction.
2010 * This also pushes items in the "AIL", the list of logged items,
2011 * out to disk if they are taking up space at the tail of the log
2012 * that we want to use. This requires that either nothing be locked
2013 * across this call, or that anything that is locked be logged in
2014 * the prior and the next transactions.
2015 */
2016 error = xfs_trans_reserve(trans, 0, logres, 0,
2017 XFS_TRANS_PERM_LOG_RES, count);
2018 /*
2019 * Ensure that the inode is in the new transaction and locked.
2020 */
2021 if (error)
2022 return error;
2023
2024 xfs_trans_ijoin(trans, dp);
2025 return 0;
2026}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_extent_busy.h"
15#include "xfs_quota.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23#include "xfs_inode.h"
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
26#include "xfs_icache.h"
27
28struct kmem_cache *xfs_trans_cache;
29
30#if defined(CONFIG_TRACEPOINTS)
31static void
32xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34{
35 struct xfs_trans_res *res;
36 struct xfs_trans_res *end_res;
37 int i;
38
39 res = (struct xfs_trans_res *)M_RES(mp);
40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 for (i = 0; res < end_res; i++, res++)
42 trace_xfs_trans_resv_calc(mp, i, res);
43}
44#else
45# define xfs_trans_trace_reservations(mp)
46#endif
47
48/*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52void
53xfs_trans_init(
54 struct xfs_mount *mp)
55{
56 xfs_trans_resv_calc(mp, M_RES(mp));
57 xfs_trans_trace_reservations(mp);
58}
59
60/*
61 * Free the transaction structure. If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64STATIC void
65xfs_trans_free(
66 struct xfs_trans *tp)
67{
68 xfs_extent_busy_sort(&tp->t_busy);
69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70
71 trace_xfs_trans_free(tp, _RET_IP_);
72 xfs_trans_clear_context(tp);
73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74 sb_end_intwrite(tp->t_mountp->m_super);
75 xfs_trans_free_dqinfo(tp);
76 kmem_cache_free(xfs_trans_cache, tp);
77}
78
79/*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction. The remaining
82 * unused block and rt extent reservations are also inherited. This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks. Locks and log items, however, are no inherited. They must
85 * be added to the new transaction explicitly.
86 */
87STATIC struct xfs_trans *
88xfs_trans_dup(
89 struct xfs_trans *tp)
90{
91 struct xfs_trans *ntp;
92
93 trace_xfs_trans_dup(tp, _RET_IP_);
94
95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96
97 /*
98 * Initialize the new transaction structure.
99 */
100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101 ntp->t_mountp = tp->t_mountp;
102 INIT_LIST_HEAD(&ntp->t_items);
103 INIT_LIST_HEAD(&ntp->t_busy);
104 INIT_LIST_HEAD(&ntp->t_dfops);
105 ntp->t_firstblock = NULLFSBLOCK;
106
107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108 ASSERT(tp->t_ticket != NULL);
109
110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 (tp->t_flags & XFS_TRANS_RESERVE) |
112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114 /* We gave our writer reference to the new transaction */
115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117
118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 tp->t_blk_res = tp->t_blk_res_used;
121
122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 tp->t_rtx_res = tp->t_rtx_res_used;
124
125 xfs_trans_switch_context(tp, ntp);
126
127 /* move deferred ops over to the new tp */
128 xfs_defer_move(ntp, tp);
129
130 xfs_trans_dup_dqinfo(tp, ntp);
131 return ntp;
132}
133
134/*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction. This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions. If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
148static int
149xfs_trans_reserve(
150 struct xfs_trans *tp,
151 struct xfs_trans_res *resp,
152 uint blocks,
153 uint rtextents)
154{
155 struct xfs_mount *mp = tp->t_mountp;
156 int error = 0;
157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 if (error != 0)
167 return -ENOSPC;
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
174 if (resp->tr_logres > 0) {
175 bool permanent = false;
176
177 ASSERT(tp->t_log_res == 0 ||
178 tp->t_log_res == resp->tr_logres);
179 ASSERT(tp->t_log_count == 0 ||
180 tp->t_log_count == resp->tr_logcount);
181
182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184 permanent = true;
185 } else {
186 ASSERT(tp->t_ticket == NULL);
187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188 }
189
190 if (tp->t_ticket != NULL) {
191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192 error = xfs_log_regrant(mp, tp->t_ticket);
193 } else {
194 error = xfs_log_reserve(mp, resp->tr_logres,
195 resp->tr_logcount,
196 &tp->t_ticket, permanent);
197 }
198
199 if (error)
200 goto undo_blocks;
201
202 tp->t_log_res = resp->tr_logres;
203 tp->t_log_count = resp->tr_logcount;
204 }
205
206 /*
207 * Attempt to reserve the needed realtime extents by decrementing
208 * the number needed from the number available. This will
209 * fail if the count would go below zero.
210 */
211 if (rtextents > 0) {
212 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213 if (error) {
214 error = -ENOSPC;
215 goto undo_log;
216 }
217 tp->t_rtx_res += rtextents;
218 }
219
220 return 0;
221
222 /*
223 * Error cases jump to one of these labels to undo any
224 * reservations which have already been performed.
225 */
226undo_log:
227 if (resp->tr_logres > 0) {
228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229 tp->t_ticket = NULL;
230 tp->t_log_res = 0;
231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 }
233
234undo_blocks:
235 if (blocks > 0) {
236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237 tp->t_blk_res = 0;
238 }
239 return error;
240}
241
242int
243xfs_trans_alloc(
244 struct xfs_mount *mp,
245 struct xfs_trans_res *resp,
246 uint blocks,
247 uint rtextents,
248 uint flags,
249 struct xfs_trans **tpp)
250{
251 struct xfs_trans *tp;
252 bool want_retry = true;
253 int error;
254
255 /*
256 * Allocate the handle before we do our freeze accounting and setting up
257 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 */
260retry:
261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 sb_start_intwrite(mp->m_super);
264 xfs_trans_set_context(tp);
265
266 /*
267 * Zero-reservation ("empty") transactions can't modify anything, so
268 * they're allowed to run while we're frozen.
269 */
270 WARN_ON(resp->tr_logres > 0 &&
271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273 xfs_has_lazysbcount(mp));
274
275 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 tp->t_flags = flags;
277 tp->t_mountp = mp;
278 INIT_LIST_HEAD(&tp->t_items);
279 INIT_LIST_HEAD(&tp->t_busy);
280 INIT_LIST_HEAD(&tp->t_dfops);
281 tp->t_firstblock = NULLFSBLOCK;
282
283 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284 if (error == -ENOSPC && want_retry) {
285 xfs_trans_cancel(tp);
286
287 /*
288 * We weren't able to reserve enough space for the transaction.
289 * Flush the other speculative space allocations to free space.
290 * Do not perform a synchronous scan because callers can hold
291 * other locks.
292 */
293 xfs_blockgc_flush_all(mp);
294 want_retry = false;
295 goto retry;
296 }
297 if (error) {
298 xfs_trans_cancel(tp);
299 return error;
300 }
301
302 trace_xfs_trans_alloc(tp, _RET_IP_);
303
304 *tpp = tp;
305 return 0;
306}
307
308/*
309 * Create an empty transaction with no reservation. This is a defensive
310 * mechanism for routines that query metadata without actually modifying them --
311 * if the metadata being queried is somehow cross-linked (think a btree block
312 * pointer that points higher in the tree), we risk deadlock. However, blocks
313 * grabbed as part of a transaction can be re-grabbed. The verifiers will
314 * notice the corrupt block and the operation will fail back to userspace
315 * without deadlocking.
316 *
317 * Note the zero-length reservation; this transaction MUST be cancelled without
318 * any dirty data.
319 *
320 * Callers should obtain freeze protection to avoid a conflict with fs freezing
321 * where we can be grabbing buffers at the same time that freeze is trying to
322 * drain the buffer LRU list.
323 */
324int
325xfs_trans_alloc_empty(
326 struct xfs_mount *mp,
327 struct xfs_trans **tpp)
328{
329 struct xfs_trans_res resv = {0};
330
331 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
332}
333
334/*
335 * Record the indicated change to the given field for application
336 * to the file system's superblock when the transaction commits.
337 * For now, just store the change in the transaction structure.
338 *
339 * Mark the transaction structure to indicate that the superblock
340 * needs to be updated before committing.
341 *
342 * Because we may not be keeping track of allocated/free inodes and
343 * used filesystem blocks in the superblock, we do not mark the
344 * superblock dirty in this transaction if we modify these fields.
345 * We still need to update the transaction deltas so that they get
346 * applied to the incore superblock, but we don't want them to
347 * cause the superblock to get locked and logged if these are the
348 * only fields in the superblock that the transaction modifies.
349 */
350void
351xfs_trans_mod_sb(
352 xfs_trans_t *tp,
353 uint field,
354 int64_t delta)
355{
356 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
357 xfs_mount_t *mp = tp->t_mountp;
358
359 switch (field) {
360 case XFS_TRANS_SB_ICOUNT:
361 tp->t_icount_delta += delta;
362 if (xfs_has_lazysbcount(mp))
363 flags &= ~XFS_TRANS_SB_DIRTY;
364 break;
365 case XFS_TRANS_SB_IFREE:
366 tp->t_ifree_delta += delta;
367 if (xfs_has_lazysbcount(mp))
368 flags &= ~XFS_TRANS_SB_DIRTY;
369 break;
370 case XFS_TRANS_SB_FDBLOCKS:
371 /*
372 * Track the number of blocks allocated in the transaction.
373 * Make sure it does not exceed the number reserved. If so,
374 * shutdown as this can lead to accounting inconsistency.
375 */
376 if (delta < 0) {
377 tp->t_blk_res_used += (uint)-delta;
378 if (tp->t_blk_res_used > tp->t_blk_res)
379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
380 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
381 int64_t blkres_delta;
382
383 /*
384 * Return freed blocks directly to the reservation
385 * instead of the global pool, being careful not to
386 * overflow the trans counter. This is used to preserve
387 * reservation across chains of transaction rolls that
388 * repeatedly free and allocate blocks.
389 */
390 blkres_delta = min_t(int64_t, delta,
391 UINT_MAX - tp->t_blk_res);
392 tp->t_blk_res += blkres_delta;
393 delta -= blkres_delta;
394 }
395 tp->t_fdblocks_delta += delta;
396 if (xfs_has_lazysbcount(mp))
397 flags &= ~XFS_TRANS_SB_DIRTY;
398 break;
399 case XFS_TRANS_SB_RES_FDBLOCKS:
400 /*
401 * The allocation has already been applied to the
402 * in-core superblock's counter. This should only
403 * be applied to the on-disk superblock.
404 */
405 tp->t_res_fdblocks_delta += delta;
406 if (xfs_has_lazysbcount(mp))
407 flags &= ~XFS_TRANS_SB_DIRTY;
408 break;
409 case XFS_TRANS_SB_FREXTENTS:
410 /*
411 * Track the number of blocks allocated in the
412 * transaction. Make sure it does not exceed the
413 * number reserved.
414 */
415 if (delta < 0) {
416 tp->t_rtx_res_used += (uint)-delta;
417 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
418 }
419 tp->t_frextents_delta += delta;
420 break;
421 case XFS_TRANS_SB_RES_FREXTENTS:
422 /*
423 * The allocation has already been applied to the
424 * in-core superblock's counter. This should only
425 * be applied to the on-disk superblock.
426 */
427 ASSERT(delta < 0);
428 tp->t_res_frextents_delta += delta;
429 break;
430 case XFS_TRANS_SB_DBLOCKS:
431 tp->t_dblocks_delta += delta;
432 break;
433 case XFS_TRANS_SB_AGCOUNT:
434 ASSERT(delta > 0);
435 tp->t_agcount_delta += delta;
436 break;
437 case XFS_TRANS_SB_IMAXPCT:
438 tp->t_imaxpct_delta += delta;
439 break;
440 case XFS_TRANS_SB_REXTSIZE:
441 tp->t_rextsize_delta += delta;
442 break;
443 case XFS_TRANS_SB_RBMBLOCKS:
444 tp->t_rbmblocks_delta += delta;
445 break;
446 case XFS_TRANS_SB_RBLOCKS:
447 tp->t_rblocks_delta += delta;
448 break;
449 case XFS_TRANS_SB_REXTENTS:
450 tp->t_rextents_delta += delta;
451 break;
452 case XFS_TRANS_SB_REXTSLOG:
453 tp->t_rextslog_delta += delta;
454 break;
455 default:
456 ASSERT(0);
457 return;
458 }
459
460 tp->t_flags |= flags;
461}
462
463/*
464 * xfs_trans_apply_sb_deltas() is called from the commit code
465 * to bring the superblock buffer into the current transaction
466 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
467 *
468 * For now we just look at each field allowed to change and change
469 * it if necessary.
470 */
471STATIC void
472xfs_trans_apply_sb_deltas(
473 xfs_trans_t *tp)
474{
475 struct xfs_dsb *sbp;
476 struct xfs_buf *bp;
477 int whole = 0;
478
479 bp = xfs_trans_getsb(tp);
480 sbp = bp->b_addr;
481
482 /*
483 * Only update the superblock counters if we are logging them
484 */
485 if (!xfs_has_lazysbcount((tp->t_mountp))) {
486 if (tp->t_icount_delta)
487 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
488 if (tp->t_ifree_delta)
489 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
490 if (tp->t_fdblocks_delta)
491 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
492 if (tp->t_res_fdblocks_delta)
493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
494 }
495
496 /*
497 * Updating frextents requires careful handling because it does not
498 * behave like the lazysb counters because we cannot rely on log
499 * recovery in older kenels to recompute the value from the rtbitmap.
500 * This means that the ondisk frextents must be consistent with the
501 * rtbitmap.
502 *
503 * Therefore, log the frextents change to the ondisk superblock and
504 * update the incore superblock so that future calls to xfs_log_sb
505 * write the correct value ondisk.
506 *
507 * Don't touch m_frextents because it includes incore reservations,
508 * and those are handled by the unreserve function.
509 */
510 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
511 struct xfs_mount *mp = tp->t_mountp;
512 int64_t rtxdelta;
513
514 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
515
516 spin_lock(&mp->m_sb_lock);
517 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
518 mp->m_sb.sb_frextents += rtxdelta;
519 spin_unlock(&mp->m_sb_lock);
520 }
521
522 if (tp->t_dblocks_delta) {
523 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
524 whole = 1;
525 }
526 if (tp->t_agcount_delta) {
527 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
528 whole = 1;
529 }
530 if (tp->t_imaxpct_delta) {
531 sbp->sb_imax_pct += tp->t_imaxpct_delta;
532 whole = 1;
533 }
534 if (tp->t_rextsize_delta) {
535 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
536 whole = 1;
537 }
538 if (tp->t_rbmblocks_delta) {
539 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
540 whole = 1;
541 }
542 if (tp->t_rblocks_delta) {
543 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
544 whole = 1;
545 }
546 if (tp->t_rextents_delta) {
547 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
548 whole = 1;
549 }
550 if (tp->t_rextslog_delta) {
551 sbp->sb_rextslog += tp->t_rextslog_delta;
552 whole = 1;
553 }
554
555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
556 if (whole)
557 /*
558 * Log the whole thing, the fields are noncontiguous.
559 */
560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
561 else
562 /*
563 * Since all the modifiable fields are contiguous, we
564 * can get away with this.
565 */
566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
567 offsetof(struct xfs_dsb, sb_frextents) +
568 sizeof(sbp->sb_frextents) - 1);
569}
570
571/*
572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
573 * apply superblock counter changes to the in-core superblock. The
574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
575 * applied to the in-core superblock. The idea is that that has already been
576 * done.
577 *
578 * If we are not logging superblock counters, then the inode allocated/free and
579 * used block counts are not updated in the on disk superblock. In this case,
580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
581 * still need to update the incore superblock with the changes.
582 *
583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
584 * so we don't need to take the counter lock on every update.
585 */
586#define XFS_ICOUNT_BATCH 128
587
588void
589xfs_trans_unreserve_and_mod_sb(
590 struct xfs_trans *tp)
591{
592 struct xfs_mount *mp = tp->t_mountp;
593 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
594 int64_t blkdelta = 0;
595 int64_t rtxdelta = 0;
596 int64_t idelta = 0;
597 int64_t ifreedelta = 0;
598 int error;
599
600 /* calculate deltas */
601 if (tp->t_blk_res > 0)
602 blkdelta = tp->t_blk_res;
603 if ((tp->t_fdblocks_delta != 0) &&
604 (xfs_has_lazysbcount(mp) ||
605 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
606 blkdelta += tp->t_fdblocks_delta;
607
608 if (tp->t_rtx_res > 0)
609 rtxdelta = tp->t_rtx_res;
610 if ((tp->t_frextents_delta != 0) &&
611 (tp->t_flags & XFS_TRANS_SB_DIRTY))
612 rtxdelta += tp->t_frextents_delta;
613
614 if (xfs_has_lazysbcount(mp) ||
615 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 idelta = tp->t_icount_delta;
617 ifreedelta = tp->t_ifree_delta;
618 }
619
620 /* apply the per-cpu counters */
621 if (blkdelta) {
622 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
623 ASSERT(!error);
624 }
625
626 if (idelta)
627 percpu_counter_add_batch(&mp->m_icount, idelta,
628 XFS_ICOUNT_BATCH);
629
630 if (ifreedelta)
631 percpu_counter_add(&mp->m_ifree, ifreedelta);
632
633 if (rtxdelta) {
634 error = xfs_mod_frextents(mp, rtxdelta);
635 ASSERT(!error);
636 }
637
638 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
639 return;
640
641 /* apply remaining deltas */
642 spin_lock(&mp->m_sb_lock);
643 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
644 mp->m_sb.sb_icount += idelta;
645 mp->m_sb.sb_ifree += ifreedelta;
646 /*
647 * Do not touch sb_frextents here because we are dealing with incore
648 * reservation. sb_frextents is not part of the lazy sb counters so it
649 * must be consistent with the ondisk rtbitmap and must never include
650 * incore reservations.
651 */
652 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
653 mp->m_sb.sb_agcount += tp->t_agcount_delta;
654 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
655 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
656 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
657 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
658 mp->m_sb.sb_rextents += tp->t_rextents_delta;
659 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
660 spin_unlock(&mp->m_sb_lock);
661
662 /*
663 * Debug checks outside of the spinlock so they don't lock up the
664 * machine if they fail.
665 */
666 ASSERT(mp->m_sb.sb_imax_pct >= 0);
667 ASSERT(mp->m_sb.sb_rextslog >= 0);
668 return;
669}
670
671/* Add the given log item to the transaction's list of log items. */
672void
673xfs_trans_add_item(
674 struct xfs_trans *tp,
675 struct xfs_log_item *lip)
676{
677 ASSERT(lip->li_log == tp->t_mountp->m_log);
678 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
679 ASSERT(list_empty(&lip->li_trans));
680 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
681
682 list_add_tail(&lip->li_trans, &tp->t_items);
683 trace_xfs_trans_add_item(tp, _RET_IP_);
684}
685
686/*
687 * Unlink the log item from the transaction. the log item is no longer
688 * considered dirty in this transaction, as the linked transaction has
689 * finished, either by abort or commit completion.
690 */
691void
692xfs_trans_del_item(
693 struct xfs_log_item *lip)
694{
695 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
696 list_del_init(&lip->li_trans);
697}
698
699/* Detach and unlock all of the items in a transaction */
700static void
701xfs_trans_free_items(
702 struct xfs_trans *tp,
703 bool abort)
704{
705 struct xfs_log_item *lip, *next;
706
707 trace_xfs_trans_free_items(tp, _RET_IP_);
708
709 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
710 xfs_trans_del_item(lip);
711 if (abort)
712 set_bit(XFS_LI_ABORTED, &lip->li_flags);
713 if (lip->li_ops->iop_release)
714 lip->li_ops->iop_release(lip);
715 }
716}
717
718static inline void
719xfs_log_item_batch_insert(
720 struct xfs_ail *ailp,
721 struct xfs_ail_cursor *cur,
722 struct xfs_log_item **log_items,
723 int nr_items,
724 xfs_lsn_t commit_lsn)
725{
726 int i;
727
728 spin_lock(&ailp->ail_lock);
729 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
730 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
731
732 for (i = 0; i < nr_items; i++) {
733 struct xfs_log_item *lip = log_items[i];
734
735 if (lip->li_ops->iop_unpin)
736 lip->li_ops->iop_unpin(lip, 0);
737 }
738}
739
740/*
741 * Bulk operation version of xfs_trans_committed that takes a log vector of
742 * items to insert into the AIL. This uses bulk AIL insertion techniques to
743 * minimise lock traffic.
744 *
745 * If we are called with the aborted flag set, it is because a log write during
746 * a CIL checkpoint commit has failed. In this case, all the items in the
747 * checkpoint have already gone through iop_committed and iop_committing, which
748 * means that checkpoint commit abort handling is treated exactly the same
749 * as an iclog write error even though we haven't started any IO yet. Hence in
750 * this case all we need to do is iop_committed processing, followed by an
751 * iop_unpin(aborted) call.
752 *
753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
754 * at the end of the AIL, the insert cursor avoids the need to walk
755 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
756 * call. This saves a lot of needless list walking and is a net win, even
757 * though it slightly increases that amount of AIL lock traffic to set it up
758 * and tear it down.
759 */
760void
761xfs_trans_committed_bulk(
762 struct xfs_ail *ailp,
763 struct list_head *lv_chain,
764 xfs_lsn_t commit_lsn,
765 bool aborted)
766{
767#define LOG_ITEM_BATCH_SIZE 32
768 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
769 struct xfs_log_vec *lv;
770 struct xfs_ail_cursor cur;
771 int i = 0;
772
773 spin_lock(&ailp->ail_lock);
774 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
775 spin_unlock(&ailp->ail_lock);
776
777 /* unpin all the log items */
778 list_for_each_entry(lv, lv_chain, lv_list) {
779 struct xfs_log_item *lip = lv->lv_item;
780 xfs_lsn_t item_lsn;
781
782 if (aborted)
783 set_bit(XFS_LI_ABORTED, &lip->li_flags);
784
785 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
786 lip->li_ops->iop_release(lip);
787 continue;
788 }
789
790 if (lip->li_ops->iop_committed)
791 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
792 else
793 item_lsn = commit_lsn;
794
795 /* item_lsn of -1 means the item needs no further processing */
796 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
797 continue;
798
799 /*
800 * if we are aborting the operation, no point in inserting the
801 * object into the AIL as we are in a shutdown situation.
802 */
803 if (aborted) {
804 ASSERT(xlog_is_shutdown(ailp->ail_log));
805 if (lip->li_ops->iop_unpin)
806 lip->li_ops->iop_unpin(lip, 1);
807 continue;
808 }
809
810 if (item_lsn != commit_lsn) {
811
812 /*
813 * Not a bulk update option due to unusual item_lsn.
814 * Push into AIL immediately, rechecking the lsn once
815 * we have the ail lock. Then unpin the item. This does
816 * not affect the AIL cursor the bulk insert path is
817 * using.
818 */
819 spin_lock(&ailp->ail_lock);
820 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
821 xfs_trans_ail_update(ailp, lip, item_lsn);
822 else
823 spin_unlock(&ailp->ail_lock);
824 if (lip->li_ops->iop_unpin)
825 lip->li_ops->iop_unpin(lip, 0);
826 continue;
827 }
828
829 /* Item is a candidate for bulk AIL insert. */
830 log_items[i++] = lv->lv_item;
831 if (i >= LOG_ITEM_BATCH_SIZE) {
832 xfs_log_item_batch_insert(ailp, &cur, log_items,
833 LOG_ITEM_BATCH_SIZE, commit_lsn);
834 i = 0;
835 }
836 }
837
838 /* make sure we insert the remainder! */
839 if (i)
840 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
841
842 spin_lock(&ailp->ail_lock);
843 xfs_trans_ail_cursor_done(&cur);
844 spin_unlock(&ailp->ail_lock);
845}
846
847/*
848 * Sort transaction items prior to running precommit operations. This will
849 * attempt to order the items such that they will always be locked in the same
850 * order. Items that have no sort function are moved to the end of the list
851 * and so are locked last.
852 *
853 * This may need refinement as different types of objects add sort functions.
854 *
855 * Function is more complex than it needs to be because we are comparing 64 bit
856 * values and the function only returns 32 bit values.
857 */
858static int
859xfs_trans_precommit_sort(
860 void *unused_arg,
861 const struct list_head *a,
862 const struct list_head *b)
863{
864 struct xfs_log_item *lia = container_of(a,
865 struct xfs_log_item, li_trans);
866 struct xfs_log_item *lib = container_of(b,
867 struct xfs_log_item, li_trans);
868 int64_t diff;
869
870 /*
871 * If both items are non-sortable, leave them alone. If only one is
872 * sortable, move the non-sortable item towards the end of the list.
873 */
874 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
875 return 0;
876 if (!lia->li_ops->iop_sort)
877 return 1;
878 if (!lib->li_ops->iop_sort)
879 return -1;
880
881 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
882 if (diff < 0)
883 return -1;
884 if (diff > 0)
885 return 1;
886 return 0;
887}
888
889/*
890 * Run transaction precommit functions.
891 *
892 * If there is an error in any of the callouts, then stop immediately and
893 * trigger a shutdown to abort the transaction. There is no recovery possible
894 * from errors at this point as the transaction is dirty....
895 */
896static int
897xfs_trans_run_precommits(
898 struct xfs_trans *tp)
899{
900 struct xfs_mount *mp = tp->t_mountp;
901 struct xfs_log_item *lip, *n;
902 int error = 0;
903
904 /*
905 * Sort the item list to avoid ABBA deadlocks with other transactions
906 * running precommit operations that lock multiple shared items such as
907 * inode cluster buffers.
908 */
909 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
910
911 /*
912 * Precommit operations can remove the log item from the transaction
913 * if the log item exists purely to delay modifications until they
914 * can be ordered against other operations. Hence we have to use
915 * list_for_each_entry_safe() here.
916 */
917 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
918 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
919 continue;
920 if (lip->li_ops->iop_precommit) {
921 error = lip->li_ops->iop_precommit(tp, lip);
922 if (error)
923 break;
924 }
925 }
926 if (error)
927 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
928 return error;
929}
930
931/*
932 * Commit the given transaction to the log.
933 *
934 * XFS disk error handling mechanism is not based on a typical
935 * transaction abort mechanism. Logically after the filesystem
936 * gets marked 'SHUTDOWN', we can't let any new transactions
937 * be durable - ie. committed to disk - because some metadata might
938 * be inconsistent. In such cases, this returns an error, and the
939 * caller may assume that all locked objects joined to the transaction
940 * have already been unlocked as if the commit had succeeded.
941 * Do not reference the transaction structure after this call.
942 */
943static int
944__xfs_trans_commit(
945 struct xfs_trans *tp,
946 bool regrant)
947{
948 struct xfs_mount *mp = tp->t_mountp;
949 struct xlog *log = mp->m_log;
950 xfs_csn_t commit_seq = 0;
951 int error = 0;
952 int sync = tp->t_flags & XFS_TRANS_SYNC;
953
954 trace_xfs_trans_commit(tp, _RET_IP_);
955
956 error = xfs_trans_run_precommits(tp);
957 if (error) {
958 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
959 xfs_defer_cancel(tp);
960 goto out_unreserve;
961 }
962
963 /*
964 * Finish deferred items on final commit. Only permanent transactions
965 * should ever have deferred ops.
966 */
967 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
968 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
969 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
970 error = xfs_defer_finish_noroll(&tp);
971 if (error)
972 goto out_unreserve;
973 }
974
975 /*
976 * If there is nothing to be logged by the transaction,
977 * then unlock all of the items associated with the
978 * transaction and free the transaction structure.
979 * Also make sure to return any reserved blocks to
980 * the free pool.
981 */
982 if (!(tp->t_flags & XFS_TRANS_DIRTY))
983 goto out_unreserve;
984
985 /*
986 * We must check against log shutdown here because we cannot abort log
987 * items and leave them dirty, inconsistent and unpinned in memory while
988 * the log is active. This leaves them open to being written back to
989 * disk, and that will lead to on-disk corruption.
990 */
991 if (xlog_is_shutdown(log)) {
992 error = -EIO;
993 goto out_unreserve;
994 }
995
996 ASSERT(tp->t_ticket != NULL);
997
998 /*
999 * If we need to update the superblock, then do it now.
1000 */
1001 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1002 xfs_trans_apply_sb_deltas(tp);
1003 xfs_trans_apply_dquot_deltas(tp);
1004
1005 xlog_cil_commit(log, tp, &commit_seq, regrant);
1006
1007 xfs_trans_free(tp);
1008
1009 /*
1010 * If the transaction needs to be synchronous, then force the
1011 * log out now and wait for it.
1012 */
1013 if (sync) {
1014 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1015 XFS_STATS_INC(mp, xs_trans_sync);
1016 } else {
1017 XFS_STATS_INC(mp, xs_trans_async);
1018 }
1019
1020 return error;
1021
1022out_unreserve:
1023 xfs_trans_unreserve_and_mod_sb(tp);
1024
1025 /*
1026 * It is indeed possible for the transaction to be not dirty but
1027 * the dqinfo portion to be. All that means is that we have some
1028 * (non-persistent) quota reservations that need to be unreserved.
1029 */
1030 xfs_trans_unreserve_and_mod_dquots(tp);
1031 if (tp->t_ticket) {
1032 if (regrant && !xlog_is_shutdown(log))
1033 xfs_log_ticket_regrant(log, tp->t_ticket);
1034 else
1035 xfs_log_ticket_ungrant(log, tp->t_ticket);
1036 tp->t_ticket = NULL;
1037 }
1038 xfs_trans_free_items(tp, !!error);
1039 xfs_trans_free(tp);
1040
1041 XFS_STATS_INC(mp, xs_trans_empty);
1042 return error;
1043}
1044
1045int
1046xfs_trans_commit(
1047 struct xfs_trans *tp)
1048{
1049 return __xfs_trans_commit(tp, false);
1050}
1051
1052/*
1053 * Unlock all of the transaction's items and free the transaction. If the
1054 * transaction is dirty, we must shut down the filesystem because there is no
1055 * way to restore them to their previous state.
1056 *
1057 * If the transaction has made a log reservation, make sure to release it as
1058 * well.
1059 *
1060 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1061 * be called after the transaction has effectively been aborted due to the mount
1062 * being shut down. However, if the mount has not been shut down and the
1063 * transaction is dirty we will shut the mount down and, in doing so, that
1064 * guarantees that the log is shut down, too. Hence we don't need to be as
1065 * careful with shutdown state and dirty items here as we need to be in
1066 * xfs_trans_commit().
1067 */
1068void
1069xfs_trans_cancel(
1070 struct xfs_trans *tp)
1071{
1072 struct xfs_mount *mp = tp->t_mountp;
1073 struct xlog *log = mp->m_log;
1074 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1075
1076 trace_xfs_trans_cancel(tp, _RET_IP_);
1077
1078 /*
1079 * It's never valid to cancel a transaction with deferred ops attached,
1080 * because the transaction is effectively dirty. Complain about this
1081 * loudly before freeing the in-memory defer items.
1082 */
1083 if (!list_empty(&tp->t_dfops)) {
1084 ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops));
1085 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1086 dirty = true;
1087 xfs_defer_cancel(tp);
1088 }
1089
1090 /*
1091 * See if the caller is relying on us to shut down the filesystem. We
1092 * only want an error report if there isn't already a shutdown in
1093 * progress, so we only need to check against the mount shutdown state
1094 * here.
1095 */
1096 if (dirty && !xfs_is_shutdown(mp)) {
1097 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1098 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1099 }
1100#ifdef DEBUG
1101 /* Log items need to be consistent until the log is shut down. */
1102 if (!dirty && !xlog_is_shutdown(log)) {
1103 struct xfs_log_item *lip;
1104
1105 list_for_each_entry(lip, &tp->t_items, li_trans)
1106 ASSERT(!xlog_item_is_intent_done(lip));
1107 }
1108#endif
1109 xfs_trans_unreserve_and_mod_sb(tp);
1110 xfs_trans_unreserve_and_mod_dquots(tp);
1111
1112 if (tp->t_ticket) {
1113 xfs_log_ticket_ungrant(log, tp->t_ticket);
1114 tp->t_ticket = NULL;
1115 }
1116
1117 xfs_trans_free_items(tp, dirty);
1118 xfs_trans_free(tp);
1119}
1120
1121/*
1122 * Roll from one trans in the sequence of PERMANENT transactions to
1123 * the next: permanent transactions are only flushed out when
1124 * committed with xfs_trans_commit(), but we still want as soon
1125 * as possible to let chunks of it go to the log. So we commit the
1126 * chunk we've been working on and get a new transaction to continue.
1127 */
1128int
1129xfs_trans_roll(
1130 struct xfs_trans **tpp)
1131{
1132 struct xfs_trans *trans = *tpp;
1133 struct xfs_trans_res tres;
1134 int error;
1135
1136 trace_xfs_trans_roll(trans, _RET_IP_);
1137
1138 /*
1139 * Copy the critical parameters from one trans to the next.
1140 */
1141 tres.tr_logres = trans->t_log_res;
1142 tres.tr_logcount = trans->t_log_count;
1143
1144 *tpp = xfs_trans_dup(trans);
1145
1146 /*
1147 * Commit the current transaction.
1148 * If this commit failed, then it'd just unlock those items that
1149 * are not marked ihold. That also means that a filesystem shutdown
1150 * is in progress. The caller takes the responsibility to cancel
1151 * the duplicate transaction that gets returned.
1152 */
1153 error = __xfs_trans_commit(trans, true);
1154 if (error)
1155 return error;
1156
1157 /*
1158 * Reserve space in the log for the next transaction.
1159 * This also pushes items in the "AIL", the list of logged items,
1160 * out to disk if they are taking up space at the tail of the log
1161 * that we want to use. This requires that either nothing be locked
1162 * across this call, or that anything that is locked be logged in
1163 * the prior and the next transactions.
1164 */
1165 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1166 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1167}
1168
1169/*
1170 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1171 *
1172 * The caller must ensure that the on-disk dquots attached to this inode have
1173 * already been allocated and initialized. The caller is responsible for
1174 * releasing ILOCK_EXCL if a new transaction is returned.
1175 */
1176int
1177xfs_trans_alloc_inode(
1178 struct xfs_inode *ip,
1179 struct xfs_trans_res *resv,
1180 unsigned int dblocks,
1181 unsigned int rblocks,
1182 bool force,
1183 struct xfs_trans **tpp)
1184{
1185 struct xfs_trans *tp;
1186 struct xfs_mount *mp = ip->i_mount;
1187 bool retried = false;
1188 int error;
1189
1190retry:
1191 error = xfs_trans_alloc(mp, resv, dblocks,
1192 rblocks / mp->m_sb.sb_rextsize,
1193 force ? XFS_TRANS_RESERVE : 0, &tp);
1194 if (error)
1195 return error;
1196
1197 xfs_ilock(ip, XFS_ILOCK_EXCL);
1198 xfs_trans_ijoin(tp, ip, 0);
1199
1200 error = xfs_qm_dqattach_locked(ip, false);
1201 if (error) {
1202 /* Caller should have allocated the dquots! */
1203 ASSERT(error != -ENOENT);
1204 goto out_cancel;
1205 }
1206
1207 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1208 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1209 xfs_trans_cancel(tp);
1210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1211 xfs_blockgc_free_quota(ip, 0);
1212 retried = true;
1213 goto retry;
1214 }
1215 if (error)
1216 goto out_cancel;
1217
1218 *tpp = tp;
1219 return 0;
1220
1221out_cancel:
1222 xfs_trans_cancel(tp);
1223 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1224 return error;
1225}
1226
1227/*
1228 * Allocate an transaction in preparation for inode creation by reserving quota
1229 * against the given dquots. Callers are not required to hold any inode locks.
1230 */
1231int
1232xfs_trans_alloc_icreate(
1233 struct xfs_mount *mp,
1234 struct xfs_trans_res *resv,
1235 struct xfs_dquot *udqp,
1236 struct xfs_dquot *gdqp,
1237 struct xfs_dquot *pdqp,
1238 unsigned int dblocks,
1239 struct xfs_trans **tpp)
1240{
1241 struct xfs_trans *tp;
1242 bool retried = false;
1243 int error;
1244
1245retry:
1246 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1247 if (error)
1248 return error;
1249
1250 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1251 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1252 xfs_trans_cancel(tp);
1253 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1254 retried = true;
1255 goto retry;
1256 }
1257 if (error) {
1258 xfs_trans_cancel(tp);
1259 return error;
1260 }
1261
1262 *tpp = tp;
1263 return 0;
1264}
1265
1266/*
1267 * Allocate an transaction, lock and join the inode to it, and reserve quota
1268 * in preparation for inode attribute changes that include uid, gid, or prid
1269 * changes.
1270 *
1271 * The caller must ensure that the on-disk dquots attached to this inode have
1272 * already been allocated and initialized. The ILOCK will be dropped when the
1273 * transaction is committed or cancelled.
1274 */
1275int
1276xfs_trans_alloc_ichange(
1277 struct xfs_inode *ip,
1278 struct xfs_dquot *new_udqp,
1279 struct xfs_dquot *new_gdqp,
1280 struct xfs_dquot *new_pdqp,
1281 bool force,
1282 struct xfs_trans **tpp)
1283{
1284 struct xfs_trans *tp;
1285 struct xfs_mount *mp = ip->i_mount;
1286 struct xfs_dquot *udqp;
1287 struct xfs_dquot *gdqp;
1288 struct xfs_dquot *pdqp;
1289 bool retried = false;
1290 int error;
1291
1292retry:
1293 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1294 if (error)
1295 return error;
1296
1297 xfs_ilock(ip, XFS_ILOCK_EXCL);
1298 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1299
1300 error = xfs_qm_dqattach_locked(ip, false);
1301 if (error) {
1302 /* Caller should have allocated the dquots! */
1303 ASSERT(error != -ENOENT);
1304 goto out_cancel;
1305 }
1306
1307 /*
1308 * For each quota type, skip quota reservations if the inode's dquots
1309 * now match the ones that came from the caller, or the caller didn't
1310 * pass one in. The inode's dquots can change if we drop the ILOCK to
1311 * perform a blockgc scan, so we must preserve the caller's arguments.
1312 */
1313 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1314 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1315 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1316 if (udqp || gdqp || pdqp) {
1317 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1318
1319 if (force)
1320 qflags |= XFS_QMOPT_FORCE_RES;
1321
1322 /*
1323 * Reserve enough quota to handle blocks on disk and reserved
1324 * for a delayed allocation. We'll actually transfer the
1325 * delalloc reservation between dquots at chown time, even
1326 * though that part is only semi-transactional.
1327 */
1328 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1329 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1330 1, qflags);
1331 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1332 xfs_trans_cancel(tp);
1333 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1334 retried = true;
1335 goto retry;
1336 }
1337 if (error)
1338 goto out_cancel;
1339 }
1340
1341 *tpp = tp;
1342 return 0;
1343
1344out_cancel:
1345 xfs_trans_cancel(tp);
1346 return error;
1347}
1348
1349/*
1350 * Allocate an transaction, lock and join the directory and child inodes to it,
1351 * and reserve quota for a directory update. If there isn't sufficient space,
1352 * @dblocks will be set to zero for a reservationless directory update and
1353 * @nospace_error will be set to a negative errno describing the space
1354 * constraint we hit.
1355 *
1356 * The caller must ensure that the on-disk dquots attached to this inode have
1357 * already been allocated and initialized. The ILOCKs will be dropped when the
1358 * transaction is committed or cancelled.
1359 */
1360int
1361xfs_trans_alloc_dir(
1362 struct xfs_inode *dp,
1363 struct xfs_trans_res *resv,
1364 struct xfs_inode *ip,
1365 unsigned int *dblocks,
1366 struct xfs_trans **tpp,
1367 int *nospace_error)
1368{
1369 struct xfs_trans *tp;
1370 struct xfs_mount *mp = ip->i_mount;
1371 unsigned int resblks;
1372 bool retried = false;
1373 int error;
1374
1375retry:
1376 *nospace_error = 0;
1377 resblks = *dblocks;
1378 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379 if (error == -ENOSPC) {
1380 *nospace_error = error;
1381 resblks = 0;
1382 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383 }
1384 if (error)
1385 return error;
1386
1387 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388
1389 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1390 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1391
1392 error = xfs_qm_dqattach_locked(dp, false);
1393 if (error) {
1394 /* Caller should have allocated the dquots! */
1395 ASSERT(error != -ENOENT);
1396 goto out_cancel;
1397 }
1398
1399 error = xfs_qm_dqattach_locked(ip, false);
1400 if (error) {
1401 /* Caller should have allocated the dquots! */
1402 ASSERT(error != -ENOENT);
1403 goto out_cancel;
1404 }
1405
1406 if (resblks == 0)
1407 goto done;
1408
1409 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410 if (error == -EDQUOT || error == -ENOSPC) {
1411 if (!retried) {
1412 xfs_trans_cancel(tp);
1413 xfs_blockgc_free_quota(dp, 0);
1414 retried = true;
1415 goto retry;
1416 }
1417
1418 *nospace_error = error;
1419 resblks = 0;
1420 error = 0;
1421 }
1422 if (error)
1423 goto out_cancel;
1424
1425done:
1426 *tpp = tp;
1427 *dblocks = resblks;
1428 return 0;
1429
1430out_cancel:
1431 xfs_trans_cancel(tp);
1432 return error;
1433}