Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  25 * the UBIFS B-tree.
  26 *
  27 * At the moment the locking rules of the TNC tree are quite simple and
  28 * straightforward. We just have a mutex and lock it when we traverse the
  29 * tree. If a znode is not in memory, we read it from flash while still having
  30 * the mutex locked.
  31 */
  32
  33#include <linux/crc32.h>
  34#include <linux/slab.h>
  35#include "ubifs.h"
  36
 
 
 
 
 
  37/*
  38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  39 * @NAME_LESS: name corresponding to the first argument is less than second
  40 * @NAME_MATCHES: names match
  41 * @NAME_GREATER: name corresponding to the second argument is greater than
  42 *                first
  43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  44 *
  45 * These constants were introduce to improve readability.
  46 */
  47enum {
  48	NAME_LESS    = 0,
  49	NAME_MATCHES = 1,
  50	NAME_GREATER = 2,
  51	NOT_ON_MEDIA = 3,
  52};
  53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54/**
  55 * insert_old_idx - record an index node obsoleted since the last commit start.
  56 * @c: UBIFS file-system description object
  57 * @lnum: LEB number of obsoleted index node
  58 * @offs: offset of obsoleted index node
  59 *
  60 * Returns %0 on success, and a negative error code on failure.
  61 *
  62 * For recovery, there must always be a complete intact version of the index on
  63 * flash at all times. That is called the "old index". It is the index as at the
  64 * time of the last successful commit. Many of the index nodes in the old index
  65 * may be dirty, but they must not be erased until the next successful commit
  66 * (at which point that index becomes the old index).
  67 *
  68 * That means that the garbage collection and the in-the-gaps method of
  69 * committing must be able to determine if an index node is in the old index.
  70 * Most of the old index nodes can be found by looking up the TNC using the
  71 * 'lookup_znode()' function. However, some of the old index nodes may have
  72 * been deleted from the current index or may have been changed so much that
  73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  74 * That is what this function does. The RB-tree is ordered by LEB number and
  75 * offset because they uniquely identify the old index node.
  76 */
  77static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  78{
  79	struct ubifs_old_idx *old_idx, *o;
  80	struct rb_node **p, *parent = NULL;
  81
  82	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  83	if (unlikely(!old_idx))
  84		return -ENOMEM;
  85	old_idx->lnum = lnum;
  86	old_idx->offs = offs;
 
  87
  88	p = &c->old_idx.rb_node;
  89	while (*p) {
  90		parent = *p;
  91		o = rb_entry(parent, struct ubifs_old_idx, rb);
  92		if (lnum < o->lnum)
  93			p = &(*p)->rb_left;
  94		else if (lnum > o->lnum)
  95			p = &(*p)->rb_right;
  96		else if (offs < o->offs)
  97			p = &(*p)->rb_left;
  98		else if (offs > o->offs)
  99			p = &(*p)->rb_right;
 100		else {
 101			ubifs_err("old idx added twice!");
 102			kfree(old_idx);
 103			return 0;
 104		}
 105	}
 106	rb_link_node(&old_idx->rb, parent, p);
 107	rb_insert_color(&old_idx->rb, &c->old_idx);
 108	return 0;
 109}
 110
 111/**
 112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 113 * @c: UBIFS file-system description object
 114 * @znode: znode of obsoleted index node
 115 *
 116 * Returns %0 on success, and a negative error code on failure.
 117 */
 118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 119{
 120	if (znode->parent) {
 121		struct ubifs_zbranch *zbr;
 122
 123		zbr = &znode->parent->zbranch[znode->iip];
 124		if (zbr->len)
 125			return insert_old_idx(c, zbr->lnum, zbr->offs);
 126	} else
 127		if (c->zroot.len)
 128			return insert_old_idx(c, c->zroot.lnum,
 129					      c->zroot.offs);
 130	return 0;
 131}
 132
 133/**
 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 135 * @c: UBIFS file-system description object
 136 * @znode: znode of obsoleted index node
 137 *
 138 * Returns %0 on success, and a negative error code on failure.
 139 */
 140static int ins_clr_old_idx_znode(struct ubifs_info *c,
 141				 struct ubifs_znode *znode)
 142{
 143	int err;
 144
 145	if (znode->parent) {
 146		struct ubifs_zbranch *zbr;
 147
 148		zbr = &znode->parent->zbranch[znode->iip];
 149		if (zbr->len) {
 150			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 151			if (err)
 152				return err;
 153			zbr->lnum = 0;
 154			zbr->offs = 0;
 155			zbr->len = 0;
 156		}
 157	} else
 158		if (c->zroot.len) {
 159			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 160			if (err)
 161				return err;
 162			c->zroot.lnum = 0;
 163			c->zroot.offs = 0;
 164			c->zroot.len = 0;
 165		}
 166	return 0;
 167}
 168
 169/**
 170 * destroy_old_idx - destroy the old_idx RB-tree.
 171 * @c: UBIFS file-system description object
 172 *
 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 174 * nodes that were in the index last commit but have since been deleted.  This
 175 * is necessary for recovery i.e. the old index must be kept intact until the
 176 * new index is successfully written.  The old-idx RB-tree is used for the
 177 * in-the-gaps method of writing index nodes and is destroyed every commit.
 178 */
 179void destroy_old_idx(struct ubifs_info *c)
 180{
 181	struct rb_node *this = c->old_idx.rb_node;
 182	struct ubifs_old_idx *old_idx;
 183
 184	while (this) {
 185		if (this->rb_left) {
 186			this = this->rb_left;
 187			continue;
 188		} else if (this->rb_right) {
 189			this = this->rb_right;
 190			continue;
 191		}
 192		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
 193		this = rb_parent(this);
 194		if (this) {
 195			if (this->rb_left == &old_idx->rb)
 196				this->rb_left = NULL;
 197			else
 198				this->rb_right = NULL;
 199		}
 200		kfree(old_idx);
 201	}
 202	c->old_idx = RB_ROOT;
 203}
 204
 205/**
 206 * copy_znode - copy a dirty znode.
 207 * @c: UBIFS file-system description object
 208 * @znode: znode to copy
 209 *
 210 * A dirty znode being committed may not be changed, so it is copied.
 211 */
 212static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 213				      struct ubifs_znode *znode)
 214{
 215	struct ubifs_znode *zn;
 216
 217	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 218	if (unlikely(!zn))
 219		return ERR_PTR(-ENOMEM);
 220
 221	memcpy(zn, znode, c->max_znode_sz);
 222	zn->cnext = NULL;
 223	__set_bit(DIRTY_ZNODE, &zn->flags);
 224	__clear_bit(COW_ZNODE, &zn->flags);
 225
 226	ubifs_assert(!ubifs_zn_obsolete(znode));
 227	__set_bit(OBSOLETE_ZNODE, &znode->flags);
 228
 229	if (znode->level != 0) {
 230		int i;
 231		const int n = zn->child_cnt;
 232
 233		/* The children now have new parent */
 234		for (i = 0; i < n; i++) {
 235			struct ubifs_zbranch *zbr = &zn->zbranch[i];
 236
 237			if (zbr->znode)
 238				zbr->znode->parent = zn;
 239		}
 240	}
 241
 242	atomic_long_inc(&c->dirty_zn_cnt);
 243	return zn;
 244}
 245
 246/**
 247 * add_idx_dirt - add dirt due to a dirty znode.
 248 * @c: UBIFS file-system description object
 249 * @lnum: LEB number of index node
 250 * @dirt: size of index node
 251 *
 252 * This function updates lprops dirty space and the new size of the index.
 253 */
 254static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 255{
 256	c->calc_idx_sz -= ALIGN(dirt, 8);
 257	return ubifs_add_dirt(c, lnum, dirt);
 258}
 259
 260/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261 * dirty_cow_znode - ensure a znode is not being committed.
 262 * @c: UBIFS file-system description object
 263 * @zbr: branch of znode to check
 264 *
 265 * Returns dirtied znode on success or negative error code on failure.
 266 */
 267static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 268					   struct ubifs_zbranch *zbr)
 269{
 270	struct ubifs_znode *znode = zbr->znode;
 271	struct ubifs_znode *zn;
 272	int err;
 273
 274	if (!ubifs_zn_cow(znode)) {
 275		/* znode is not being committed */
 276		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 277			atomic_long_inc(&c->dirty_zn_cnt);
 278			atomic_long_dec(&c->clean_zn_cnt);
 279			atomic_long_dec(&ubifs_clean_zn_cnt);
 280			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 281			if (unlikely(err))
 282				return ERR_PTR(err);
 283		}
 284		return znode;
 285	}
 286
 287	zn = copy_znode(c, znode);
 288	if (IS_ERR(zn))
 289		return zn;
 290
 291	if (zbr->len) {
 292		err = insert_old_idx(c, zbr->lnum, zbr->offs);
 293		if (unlikely(err))
 294			return ERR_PTR(err);
 
 
 
 
 
 
 
 295		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 296	} else
 297		err = 0;
 
 
 298
 299	zbr->znode = zn;
 300	zbr->lnum = 0;
 301	zbr->offs = 0;
 302	zbr->len = 0;
 303
 304	if (unlikely(err))
 305		return ERR_PTR(err);
 306	return zn;
 
 
 
 
 307}
 308
 309/**
 310 * lnc_add - add a leaf node to the leaf node cache.
 311 * @c: UBIFS file-system description object
 312 * @zbr: zbranch of leaf node
 313 * @node: leaf node
 314 *
 315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 316 * purpose of the leaf node cache is to save re-reading the same leaf node over
 317 * and over again. Most things are cached by VFS, however the file system must
 318 * cache directory entries for readdir and for resolving hash collisions. The
 319 * present implementation of the leaf node cache is extremely simple, and
 320 * allows for error returns that are not used but that may be needed if a more
 321 * complex implementation is created.
 322 *
 323 * Note, this function does not add the @node object to LNC directly, but
 324 * allocates a copy of the object and adds the copy to LNC. The reason for this
 325 * is that @node has been allocated outside of the TNC subsystem and will be
 326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 327 * may be changed at any time, e.g. freed by the shrinker.
 328 */
 329static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 330		   const void *node)
 331{
 332	int err;
 333	void *lnc_node;
 334	const struct ubifs_dent_node *dent = node;
 335
 336	ubifs_assert(!zbr->leaf);
 337	ubifs_assert(zbr->len != 0);
 338	ubifs_assert(is_hash_key(c, &zbr->key));
 339
 340	err = ubifs_validate_entry(c, dent);
 341	if (err) {
 342		dbg_dump_stack();
 343		dbg_dump_node(c, dent);
 344		return err;
 345	}
 346
 347	lnc_node = kmalloc(zbr->len, GFP_NOFS);
 348	if (!lnc_node)
 349		/* We don't have to have the cache, so no error */
 350		return 0;
 351
 352	memcpy(lnc_node, node, zbr->len);
 353	zbr->leaf = lnc_node;
 354	return 0;
 355}
 356
 357 /**
 358 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 359 * @c: UBIFS file-system description object
 360 * @zbr: zbranch of leaf node
 361 * @node: leaf node
 362 *
 363 * This function is similar to 'lnc_add()', but it does not create a copy of
 364 * @node but inserts @node to TNC directly.
 365 */
 366static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 367			    void *node)
 368{
 369	int err;
 370
 371	ubifs_assert(!zbr->leaf);
 372	ubifs_assert(zbr->len != 0);
 373
 374	err = ubifs_validate_entry(c, node);
 375	if (err) {
 376		dbg_dump_stack();
 377		dbg_dump_node(c, node);
 378		return err;
 379	}
 380
 381	zbr->leaf = node;
 382	return 0;
 383}
 384
 385/**
 386 * lnc_free - remove a leaf node from the leaf node cache.
 387 * @zbr: zbranch of leaf node
 388 * @node: leaf node
 389 */
 390static void lnc_free(struct ubifs_zbranch *zbr)
 391{
 392	if (!zbr->leaf)
 393		return;
 394	kfree(zbr->leaf);
 395	zbr->leaf = NULL;
 396}
 397
 398/**
 399 * tnc_read_node_nm - read a "hashed" leaf node.
 400 * @c: UBIFS file-system description object
 401 * @zbr: key and position of the node
 402 * @node: node is returned here
 403 *
 404 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 405 * (in it is there) or from the hash media, in which case the node is also
 406 * added to LNC. Returns zero in case of success or a negative negative error
 407 * code in case of failure.
 408 */
 409static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 410			    void *node)
 411{
 412	int err;
 413
 414	ubifs_assert(is_hash_key(c, &zbr->key));
 415
 416	if (zbr->leaf) {
 417		/* Read from the leaf node cache */
 418		ubifs_assert(zbr->len != 0);
 419		memcpy(node, zbr->leaf, zbr->len);
 420		return 0;
 421	}
 422
 423	err = ubifs_tnc_read_node(c, zbr, node);
 
 
 
 
 
 
 
 
 
 
 
 
 424	if (err)
 425		return err;
 426
 427	/* Add the node to the leaf node cache */
 428	err = lnc_add(c, zbr, node);
 429	return err;
 430}
 431
 432/**
 433 * try_read_node - read a node if it is a node.
 434 * @c: UBIFS file-system description object
 435 * @buf: buffer to read to
 436 * @type: node type
 437 * @len: node length (not aligned)
 438 * @lnum: LEB number of node to read
 439 * @offs: offset of node to read
 440 *
 441 * This function tries to read a node of known type and length, checks it and
 442 * stores it in @buf. This function returns %1 if a node is present and %0 if
 443 * a node is not present. A negative error code is returned for I/O errors.
 444 * This function performs that same function as ubifs_read_node except that
 445 * it does not require that there is actually a node present and instead
 446 * the return code indicates if a node was read.
 447 *
 448 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 449 * is true (it is controlled by corresponding mount option). However, if
 450 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 451 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 452 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 453 * journal nodes (when replying the journal or doing the recovery) and the
 454 * journal nodes may potentially be corrupted, so checking is required.
 455 */
 456static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 457			 int len, int lnum, int offs)
 458{
 
 
 
 459	int err, node_len;
 460	struct ubifs_ch *ch = buf;
 461	uint32_t crc, node_crc;
 462
 463	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 464
 465	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 466	if (err) {
 467		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 468			  type, lnum, offs, err);
 469		return err;
 470	}
 471
 472	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 473		return 0;
 474
 475	if (ch->node_type != type)
 476		return 0;
 477
 478	node_len = le32_to_cpu(ch->len);
 479	if (node_len != len)
 480		return 0;
 481
 482	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 483	    !c->remounting_rw)
 484		return 1;
 
 
 
 
 485
 486	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 487	node_crc = le32_to_cpu(ch->crc);
 488	if (crc != node_crc)
 489		return 0;
 
 490
 491	return 1;
 492}
 493
 494/**
 495 * fallible_read_node - try to read a leaf node.
 496 * @c: UBIFS file-system description object
 497 * @key:  key of node to read
 498 * @zbr:  position of node
 499 * @node: node returned
 500 *
 501 * This function tries to read a node and returns %1 if the node is read, %0
 502 * if the node is not present, and a negative error code in the case of error.
 503 */
 504static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 505			      struct ubifs_zbranch *zbr, void *node)
 506{
 507	int ret;
 508
 509	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
 510
 511	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 512			    zbr->offs);
 513	if (ret == 1) {
 514		union ubifs_key node_key;
 515		struct ubifs_dent_node *dent = node;
 516
 517		/* All nodes have key in the same place */
 518		key_read(c, &dent->key, &node_key);
 519		if (keys_cmp(c, key, &node_key) != 0)
 520			ret = 0;
 521	}
 522	if (ret == 0 && c->replaying)
 523		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
 524			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
 525	return ret;
 526}
 527
 528/**
 529 * matches_name - determine if a direntry or xattr entry matches a given name.
 530 * @c: UBIFS file-system description object
 531 * @zbr: zbranch of dent
 532 * @nm: name to match
 533 *
 534 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 535 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 536 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 537 * of failure, a negative error code is returned.
 538 */
 539static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 540			const struct qstr *nm)
 541{
 542	struct ubifs_dent_node *dent;
 543	int nlen, err;
 544
 545	/* If possible, match against the dent in the leaf node cache */
 546	if (!zbr->leaf) {
 547		dent = kmalloc(zbr->len, GFP_NOFS);
 548		if (!dent)
 549			return -ENOMEM;
 550
 551		err = ubifs_tnc_read_node(c, zbr, dent);
 552		if (err)
 553			goto out_free;
 554
 555		/* Add the node to the leaf node cache */
 556		err = lnc_add_directly(c, zbr, dent);
 557		if (err)
 558			goto out_free;
 559	} else
 560		dent = zbr->leaf;
 561
 562	nlen = le16_to_cpu(dent->nlen);
 563	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 564	if (err == 0) {
 565		if (nlen == nm->len)
 566			return NAME_MATCHES;
 567		else if (nlen < nm->len)
 568			return NAME_LESS;
 569		else
 570			return NAME_GREATER;
 571	} else if (err < 0)
 572		return NAME_LESS;
 573	else
 574		return NAME_GREATER;
 575
 576out_free:
 577	kfree(dent);
 578	return err;
 579}
 580
 581/**
 582 * get_znode - get a TNC znode that may not be loaded yet.
 583 * @c: UBIFS file-system description object
 584 * @znode: parent znode
 585 * @n: znode branch slot number
 586 *
 587 * This function returns the znode or a negative error code.
 588 */
 589static struct ubifs_znode *get_znode(struct ubifs_info *c,
 590				     struct ubifs_znode *znode, int n)
 591{
 592	struct ubifs_zbranch *zbr;
 593
 594	zbr = &znode->zbranch[n];
 595	if (zbr->znode)
 596		znode = zbr->znode;
 597	else
 598		znode = ubifs_load_znode(c, zbr, znode, n);
 599	return znode;
 600}
 601
 602/**
 603 * tnc_next - find next TNC entry.
 604 * @c: UBIFS file-system description object
 605 * @zn: znode is passed and returned here
 606 * @n: znode branch slot number is passed and returned here
 607 *
 608 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 609 * no next entry, or a negative error code otherwise.
 610 */
 611static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 612{
 613	struct ubifs_znode *znode = *zn;
 614	int nn = *n;
 615
 616	nn += 1;
 617	if (nn < znode->child_cnt) {
 618		*n = nn;
 619		return 0;
 620	}
 621	while (1) {
 622		struct ubifs_znode *zp;
 623
 624		zp = znode->parent;
 625		if (!zp)
 626			return -ENOENT;
 627		nn = znode->iip + 1;
 628		znode = zp;
 629		if (nn < znode->child_cnt) {
 630			znode = get_znode(c, znode, nn);
 631			if (IS_ERR(znode))
 632				return PTR_ERR(znode);
 633			while (znode->level != 0) {
 634				znode = get_znode(c, znode, 0);
 635				if (IS_ERR(znode))
 636					return PTR_ERR(znode);
 637			}
 638			nn = 0;
 639			break;
 640		}
 641	}
 642	*zn = znode;
 643	*n = nn;
 644	return 0;
 645}
 646
 647/**
 648 * tnc_prev - find previous TNC entry.
 649 * @c: UBIFS file-system description object
 650 * @zn: znode is returned here
 651 * @n: znode branch slot number is passed and returned here
 652 *
 653 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 654 * there is no next entry, or a negative error code otherwise.
 655 */
 656static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 657{
 658	struct ubifs_znode *znode = *zn;
 659	int nn = *n;
 660
 661	if (nn > 0) {
 662		*n = nn - 1;
 663		return 0;
 664	}
 665	while (1) {
 666		struct ubifs_znode *zp;
 667
 668		zp = znode->parent;
 669		if (!zp)
 670			return -ENOENT;
 671		nn = znode->iip - 1;
 672		znode = zp;
 673		if (nn >= 0) {
 674			znode = get_znode(c, znode, nn);
 675			if (IS_ERR(znode))
 676				return PTR_ERR(znode);
 677			while (znode->level != 0) {
 678				nn = znode->child_cnt - 1;
 679				znode = get_znode(c, znode, nn);
 680				if (IS_ERR(znode))
 681					return PTR_ERR(znode);
 682			}
 683			nn = znode->child_cnt - 1;
 684			break;
 685		}
 686	}
 687	*zn = znode;
 688	*n = nn;
 689	return 0;
 690}
 691
 692/**
 693 * resolve_collision - resolve a collision.
 694 * @c: UBIFS file-system description object
 695 * @key: key of a directory or extended attribute entry
 696 * @zn: znode is returned here
 697 * @n: zbranch number is passed and returned here
 698 * @nm: name of the entry
 699 *
 700 * This function is called for "hashed" keys to make sure that the found key
 701 * really corresponds to the looked up node (directory or extended attribute
 702 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 703 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 704 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 705 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 706 * previous one. A negative error code is returned on failures.
 707 */
 708static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 709			     struct ubifs_znode **zn, int *n,
 710			     const struct qstr *nm)
 711{
 712	int err;
 713
 714	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 715	if (unlikely(err < 0))
 716		return err;
 717	if (err == NAME_MATCHES)
 718		return 1;
 719
 720	if (err == NAME_GREATER) {
 721		/* Look left */
 722		while (1) {
 723			err = tnc_prev(c, zn, n);
 724			if (err == -ENOENT) {
 725				ubifs_assert(*n == 0);
 726				*n = -1;
 727				return 0;
 728			}
 729			if (err < 0)
 730				return err;
 731			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 732				/*
 733				 * We have found the branch after which we would
 734				 * like to insert, but inserting in this znode
 735				 * may still be wrong. Consider the following 3
 736				 * znodes, in the case where we are resolving a
 737				 * collision with Key2.
 738				 *
 739				 *                  znode zp
 740				 *            ----------------------
 741				 * level 1     |  Key0  |  Key1  |
 742				 *            -----------------------
 743				 *                 |            |
 744				 *       znode za  |            |  znode zb
 745				 *          ------------      ------------
 746				 * level 0  |  Key0  |        |  Key2  |
 747				 *          ------------      ------------
 748				 *
 749				 * The lookup finds Key2 in znode zb. Lets say
 750				 * there is no match and the name is greater so
 751				 * we look left. When we find Key0, we end up
 752				 * here. If we return now, we will insert into
 753				 * znode za at slot n = 1.  But that is invalid
 754				 * according to the parent's keys.  Key2 must
 755				 * be inserted into znode zb.
 756				 *
 757				 * Note, this problem is not relevant for the
 758				 * case when we go right, because
 759				 * 'tnc_insert()' would correct the parent key.
 760				 */
 761				if (*n == (*zn)->child_cnt - 1) {
 762					err = tnc_next(c, zn, n);
 763					if (err) {
 764						/* Should be impossible */
 765						ubifs_assert(0);
 766						if (err == -ENOENT)
 767							err = -EINVAL;
 768						return err;
 769					}
 770					ubifs_assert(*n == 0);
 771					*n = -1;
 772				}
 773				return 0;
 774			}
 775			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 776			if (err < 0)
 777				return err;
 778			if (err == NAME_LESS)
 779				return 0;
 780			if (err == NAME_MATCHES)
 781				return 1;
 782			ubifs_assert(err == NAME_GREATER);
 783		}
 784	} else {
 785		int nn = *n;
 786		struct ubifs_znode *znode = *zn;
 787
 788		/* Look right */
 789		while (1) {
 790			err = tnc_next(c, &znode, &nn);
 791			if (err == -ENOENT)
 792				return 0;
 793			if (err < 0)
 794				return err;
 795			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 796				return 0;
 797			err = matches_name(c, &znode->zbranch[nn], nm);
 798			if (err < 0)
 799				return err;
 800			if (err == NAME_GREATER)
 801				return 0;
 802			*zn = znode;
 803			*n = nn;
 804			if (err == NAME_MATCHES)
 805				return 1;
 806			ubifs_assert(err == NAME_LESS);
 807		}
 808	}
 809}
 810
 811/**
 812 * fallible_matches_name - determine if a dent matches a given name.
 813 * @c: UBIFS file-system description object
 814 * @zbr: zbranch of dent
 815 * @nm: name to match
 816 *
 817 * This is a "fallible" version of 'matches_name()' function which does not
 818 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 819 *
 820 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 821 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 822 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 823 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 824 * error code is returned in case of failure.
 825 */
 826static int fallible_matches_name(struct ubifs_info *c,
 827				 struct ubifs_zbranch *zbr,
 828				 const struct qstr *nm)
 829{
 830	struct ubifs_dent_node *dent;
 831	int nlen, err;
 832
 833	/* If possible, match against the dent in the leaf node cache */
 834	if (!zbr->leaf) {
 835		dent = kmalloc(zbr->len, GFP_NOFS);
 836		if (!dent)
 837			return -ENOMEM;
 838
 839		err = fallible_read_node(c, &zbr->key, zbr, dent);
 840		if (err < 0)
 841			goto out_free;
 842		if (err == 0) {
 843			/* The node was not present */
 844			err = NOT_ON_MEDIA;
 845			goto out_free;
 846		}
 847		ubifs_assert(err == 1);
 848
 849		err = lnc_add_directly(c, zbr, dent);
 850		if (err)
 851			goto out_free;
 852	} else
 853		dent = zbr->leaf;
 854
 855	nlen = le16_to_cpu(dent->nlen);
 856	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 857	if (err == 0) {
 858		if (nlen == nm->len)
 859			return NAME_MATCHES;
 860		else if (nlen < nm->len)
 861			return NAME_LESS;
 862		else
 863			return NAME_GREATER;
 864	} else if (err < 0)
 865		return NAME_LESS;
 866	else
 867		return NAME_GREATER;
 868
 869out_free:
 870	kfree(dent);
 871	return err;
 872}
 873
 874/**
 875 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 876 * @c: UBIFS file-system description object
 877 * @key: key
 878 * @zn: znode is returned here
 879 * @n: branch number is passed and returned here
 880 * @nm: name of directory entry
 881 * @adding: indicates caller is adding a key to the TNC
 882 *
 883 * This is a "fallible" version of the 'resolve_collision()' function which
 884 * does not panic if one of the nodes referred to by TNC does not exist on the
 885 * media. This may happen when replaying the journal if a deleted node was
 886 * Garbage-collected and the commit was not done. A branch that refers to a node
 887 * that is not present is called a dangling branch. The following are the return
 888 * codes for this function:
 889 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 890 *    branch;
 891 *  o if we are @adding and @nm was not found, %0 is returned;
 892 *  o if we are not @adding and @nm was not found, but a dangling branch was
 893 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 894 *  o a negative error code is returned in case of failure.
 895 */
 896static int fallible_resolve_collision(struct ubifs_info *c,
 897				      const union ubifs_key *key,
 898				      struct ubifs_znode **zn, int *n,
 899				      const struct qstr *nm, int adding)
 
 900{
 901	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 902	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 903
 904	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 905	if (unlikely(cmp < 0))
 906		return cmp;
 907	if (cmp == NAME_MATCHES)
 908		return 1;
 909	if (cmp == NOT_ON_MEDIA) {
 910		o_znode = znode;
 911		o_n = nn;
 912		/*
 913		 * We are unlucky and hit a dangling branch straight away.
 914		 * Now we do not really know where to go to find the needed
 915		 * branch - to the left or to the right. Well, let's try left.
 916		 */
 917		unsure = 1;
 918	} else if (!adding)
 919		unsure = 1; /* Remove a dangling branch wherever it is */
 920
 921	if (cmp == NAME_GREATER || unsure) {
 922		/* Look left */
 923		while (1) {
 924			err = tnc_prev(c, zn, n);
 925			if (err == -ENOENT) {
 926				ubifs_assert(*n == 0);
 927				*n = -1;
 928				break;
 929			}
 930			if (err < 0)
 931				return err;
 932			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 933				/* See comments in 'resolve_collision()' */
 934				if (*n == (*zn)->child_cnt - 1) {
 935					err = tnc_next(c, zn, n);
 936					if (err) {
 937						/* Should be impossible */
 938						ubifs_assert(0);
 939						if (err == -ENOENT)
 940							err = -EINVAL;
 941						return err;
 942					}
 943					ubifs_assert(*n == 0);
 944					*n = -1;
 945				}
 946				break;
 947			}
 948			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 949			if (err < 0)
 950				return err;
 951			if (err == NAME_MATCHES)
 952				return 1;
 953			if (err == NOT_ON_MEDIA) {
 954				o_znode = *zn;
 955				o_n = *n;
 956				continue;
 957			}
 958			if (!adding)
 959				continue;
 960			if (err == NAME_LESS)
 961				break;
 962			else
 963				unsure = 0;
 964		}
 965	}
 966
 967	if (cmp == NAME_LESS || unsure) {
 968		/* Look right */
 969		*zn = znode;
 970		*n = nn;
 971		while (1) {
 972			err = tnc_next(c, &znode, &nn);
 973			if (err == -ENOENT)
 974				break;
 975			if (err < 0)
 976				return err;
 977			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 978				break;
 979			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 980			if (err < 0)
 981				return err;
 982			if (err == NAME_GREATER)
 983				break;
 984			*zn = znode;
 985			*n = nn;
 986			if (err == NAME_MATCHES)
 987				return 1;
 988			if (err == NOT_ON_MEDIA) {
 989				o_znode = znode;
 990				o_n = nn;
 991			}
 992		}
 993	}
 994
 995	/* Never match a dangling branch when adding */
 996	if (adding || !o_znode)
 997		return 0;
 998
 999	dbg_mnt("dangling match LEB %d:%d len %d %s",
1000		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001		o_znode->zbranch[o_n].len, DBGKEY(key));
1002	*zn = o_znode;
1003	*n = o_n;
1004	return 1;
1005}
1006
1007/**
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1012 *
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 */
1015static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016{
1017	if (zbr->lnum == lnum && zbr->offs == offs)
1018		return 1;
1019	else
1020		return 0;
1021}
1022
1023/**
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1031 *
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1039 */
1040static int resolve_collision_directly(struct ubifs_info *c,
1041				      const union ubifs_key *key,
1042				      struct ubifs_znode **zn, int *n,
1043				      int lnum, int offs)
1044{
1045	struct ubifs_znode *znode;
1046	int nn, err;
1047
1048	znode = *zn;
1049	nn = *n;
1050	if (matches_position(&znode->zbranch[nn], lnum, offs))
1051		return 1;
1052
1053	/* Look left */
1054	while (1) {
1055		err = tnc_prev(c, &znode, &nn);
1056		if (err == -ENOENT)
1057			break;
1058		if (err < 0)
1059			return err;
1060		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061			break;
1062		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063			*zn = znode;
1064			*n = nn;
1065			return 1;
1066		}
1067	}
1068
1069	/* Look right */
1070	znode = *zn;
1071	nn = *n;
1072	while (1) {
1073		err = tnc_next(c, &znode, &nn);
1074		if (err == -ENOENT)
1075			return 0;
1076		if (err < 0)
1077			return err;
1078		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079			return 0;
1080		*zn = znode;
1081		*n = nn;
1082		if (matches_position(&znode->zbranch[nn], lnum, offs))
1083			return 1;
1084	}
1085}
1086
1087/**
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1091 *
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1096 */
1097static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098					       struct ubifs_znode *znode)
1099{
1100	struct ubifs_znode *zp;
1101	int *path = c->bottom_up_buf, p = 0;
1102
1103	ubifs_assert(c->zroot.znode);
1104	ubifs_assert(znode);
1105	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106		kfree(c->bottom_up_buf);
1107		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108					   GFP_NOFS);
 
1109		if (!c->bottom_up_buf)
1110			return ERR_PTR(-ENOMEM);
1111		path = c->bottom_up_buf;
1112	}
1113	if (c->zroot.znode->level) {
1114		/* Go up until parent is dirty */
1115		while (1) {
1116			int n;
1117
1118			zp = znode->parent;
1119			if (!zp)
1120				break;
1121			n = znode->iip;
1122			ubifs_assert(p < c->zroot.znode->level);
1123			path[p++] = n;
1124			if (!zp->cnext && ubifs_zn_dirty(znode))
1125				break;
1126			znode = zp;
1127		}
1128	}
1129
1130	/* Come back down, dirtying as we go */
1131	while (1) {
1132		struct ubifs_zbranch *zbr;
1133
1134		zp = znode->parent;
1135		if (zp) {
1136			ubifs_assert(path[p - 1] >= 0);
1137			ubifs_assert(path[p - 1] < zp->child_cnt);
1138			zbr = &zp->zbranch[path[--p]];
1139			znode = dirty_cow_znode(c, zbr);
1140		} else {
1141			ubifs_assert(znode == c->zroot.znode);
1142			znode = dirty_cow_znode(c, &c->zroot);
1143		}
1144		if (IS_ERR(znode) || !p)
1145			break;
1146		ubifs_assert(path[p - 1] >= 0);
1147		ubifs_assert(path[p - 1] < znode->child_cnt);
1148		znode = znode->zbranch[path[p - 1]].znode;
1149	}
1150
1151	return znode;
1152}
1153
1154/**
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key:  key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1160 *
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163 * cases:
1164 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 *     is returned and slot number of the matched branch is stored in @n;
1166 *   o not exact match, which means that zero-level znode does not contain
1167 *     @key, then %0 is returned and slot number of the closest branch is stored
1168 *     in @n;
1169 *   o @key is so small that it is even less than the lowest key of the
1170 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171 *
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1175 */
1176int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177			struct ubifs_znode **zn, int *n)
1178{
1179	int err, exact;
1180	struct ubifs_znode *znode;
1181	unsigned long time = get_seconds();
1182
1183	dbg_tnc("search key %s", DBGKEY(key));
1184	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1185
1186	znode = c->zroot.znode;
1187	if (unlikely(!znode)) {
1188		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189		if (IS_ERR(znode))
1190			return PTR_ERR(znode);
1191	}
1192
1193	znode->time = time;
1194
1195	while (1) {
1196		struct ubifs_zbranch *zbr;
1197
1198		exact = ubifs_search_zbranch(c, znode, key, n);
1199
1200		if (znode->level == 0)
1201			break;
1202
1203		if (*n < 0)
1204			*n = 0;
1205		zbr = &znode->zbranch[*n];
1206
1207		if (zbr->znode) {
1208			znode->time = time;
1209			znode = zbr->znode;
1210			continue;
1211		}
1212
1213		/* znode is not in TNC cache, load it from the media */
1214		znode = ubifs_load_znode(c, zbr, znode, *n);
1215		if (IS_ERR(znode))
1216			return PTR_ERR(znode);
1217	}
1218
1219	*zn = znode;
1220	if (exact || !is_hash_key(c, key) || *n != -1) {
1221		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222		return exact;
1223	}
1224
1225	/*
1226	 * Here is a tricky place. We have not found the key and this is a
1227	 * "hashed" key, which may collide. The rest of the code deals with
1228	 * situations like this:
1229	 *
1230	 *                  | 3 | 5 |
1231	 *                  /       \
1232	 *          | 3 | 5 |      | 6 | 7 | (x)
1233	 *
1234	 * Or more a complex example:
1235	 *
1236	 *                | 1 | 5 |
1237	 *                /       \
1238	 *       | 1 | 3 |         | 5 | 8 |
1239	 *              \           /
1240	 *          | 5 | 5 |   | 6 | 7 | (x)
1241	 *
1242	 * In the examples, if we are looking for key "5", we may reach nodes
1243	 * marked with "(x)". In this case what we have do is to look at the
1244	 * left and see if there is "5" key there. If there is, we have to
1245	 * return it.
1246	 *
1247	 * Note, this whole situation is possible because we allow to have
1248	 * elements which are equivalent to the next key in the parent in the
1249	 * children of current znode. For example, this happens if we split a
1250	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251	 * like this:
1252	 *                      | 3 | 5 |
1253	 *                       /     \
1254	 *                | 3 | 5 |   | 5 | 6 | 7 |
1255	 *                              ^
1256	 * And this becomes what is at the first "picture" after key "5" marked
1257	 * with "^" is removed. What could be done is we could prohibit
1258	 * splitting in the middle of the colliding sequence. Also, when
1259	 * removing the leftmost key, we would have to correct the key of the
1260	 * parent node, which would introduce additional complications. Namely,
1261	 * if we changed the leftmost key of the parent znode, the garbage
1262	 * collector would be unable to find it (GC is doing this when GC'ing
1263	 * indexing LEBs). Although we already have an additional RB-tree where
1264	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265	 * after the commit. But anyway, this does not look easy to implement
1266	 * so we did not try this.
1267	 */
1268	err = tnc_prev(c, &znode, n);
1269	if (err == -ENOENT) {
1270		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271		*n = -1;
1272		return 0;
1273	}
1274	if (unlikely(err < 0))
1275		return err;
1276	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278		*n = -1;
1279		return 0;
1280	}
1281
1282	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283	*zn = znode;
1284	return 1;
1285}
1286
1287/**
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key:  key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1293 *
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296 * cases:
1297 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 *     is returned and slot number of the matched branch is stored in @n;
1299 *   o not exact match, which means that zero-level znode does not contain @key
1300 *     then %0 is returned and slot number of the closed branch is stored in
1301 *     @n;
1302 *   o @key is so small that it is even less than the lowest key of the
1303 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304 *
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1307 *
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1311 */
1312static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313			       struct ubifs_znode **zn, int *n)
1314{
1315	int err, exact;
1316	struct ubifs_znode *znode;
1317	unsigned long time = get_seconds();
1318
1319	dbg_tnc("search and dirty key %s", DBGKEY(key));
1320
1321	znode = c->zroot.znode;
1322	if (unlikely(!znode)) {
1323		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324		if (IS_ERR(znode))
1325			return PTR_ERR(znode);
1326	}
1327
1328	znode = dirty_cow_znode(c, &c->zroot);
1329	if (IS_ERR(znode))
1330		return PTR_ERR(znode);
1331
1332	znode->time = time;
1333
1334	while (1) {
1335		struct ubifs_zbranch *zbr;
1336
1337		exact = ubifs_search_zbranch(c, znode, key, n);
1338
1339		if (znode->level == 0)
1340			break;
1341
1342		if (*n < 0)
1343			*n = 0;
1344		zbr = &znode->zbranch[*n];
1345
1346		if (zbr->znode) {
1347			znode->time = time;
1348			znode = dirty_cow_znode(c, zbr);
1349			if (IS_ERR(znode))
1350				return PTR_ERR(znode);
1351			continue;
1352		}
1353
1354		/* znode is not in TNC cache, load it from the media */
1355		znode = ubifs_load_znode(c, zbr, znode, *n);
1356		if (IS_ERR(znode))
1357			return PTR_ERR(znode);
1358		znode = dirty_cow_znode(c, zbr);
1359		if (IS_ERR(znode))
1360			return PTR_ERR(znode);
1361	}
1362
1363	*zn = znode;
1364	if (exact || !is_hash_key(c, key) || *n != -1) {
1365		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366		return exact;
1367	}
1368
1369	/*
1370	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371	 * code.
1372	 */
1373	err = tnc_prev(c, &znode, n);
1374	if (err == -ENOENT) {
1375		*n = -1;
1376		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377		return 0;
1378	}
1379	if (unlikely(err < 0))
1380		return err;
1381	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382		*n = -1;
1383		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384		return 0;
1385	}
1386
1387	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388		znode = dirty_cow_bottom_up(c, znode);
1389		if (IS_ERR(znode))
1390			return PTR_ERR(znode);
1391	}
1392
1393	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394	*zn = znode;
1395	return 1;
1396}
1397
1398/**
1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400 * @c: UBIFS file-system description object
1401 * @lnum: LEB number
1402 * @gc_seq1: garbage collection sequence number
1403 *
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406 * %0 is returned.
1407 */
1408static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409{
1410	int gc_seq2, gced_lnum;
1411
1412	gced_lnum = c->gced_lnum;
1413	smp_rmb();
1414	gc_seq2 = c->gc_seq;
1415	/* Same seq means no GC */
1416	if (gc_seq1 == gc_seq2)
1417		return 0;
1418	/* Different by more than 1 means we don't know */
1419	if (gc_seq1 + 1 != gc_seq2)
1420		return 1;
1421	/*
1422	 * We have seen the sequence number has increased by 1. Now we need to
1423	 * be sure we read the right LEB number, so read it again.
1424	 */
1425	smp_rmb();
1426	if (gced_lnum != c->gced_lnum)
1427		return 1;
1428	/* Finally we can check lnum */
1429	if (gced_lnum == lnum)
1430		return 1;
1431	return 0;
1432}
1433
1434/**
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1441 *
1442 * This function looks up and reads node with key @key. The caller has to make
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1446 */
1447int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448		     void *node, int *lnum, int *offs)
1449{
1450	int found, n, err, safely = 0, gc_seq1;
1451	struct ubifs_znode *znode;
1452	struct ubifs_zbranch zbr, *zt;
1453
1454again:
1455	mutex_lock(&c->tnc_mutex);
1456	found = ubifs_lookup_level0(c, key, &znode, &n);
1457	if (!found) {
1458		err = -ENOENT;
1459		goto out;
1460	} else if (found < 0) {
1461		err = found;
1462		goto out;
1463	}
1464	zt = &znode->zbranch[n];
1465	if (lnum) {
1466		*lnum = zt->lnum;
1467		*offs = zt->offs;
1468	}
1469	if (is_hash_key(c, key)) {
1470		/*
1471		 * In this case the leaf node cache gets used, so we pass the
1472		 * address of the zbranch and keep the mutex locked
1473		 */
1474		err = tnc_read_node_nm(c, zt, node);
1475		goto out;
1476	}
1477	if (safely) {
1478		err = ubifs_tnc_read_node(c, zt, node);
1479		goto out;
1480	}
1481	/* Drop the TNC mutex prematurely and race with garbage collection */
1482	zbr = znode->zbranch[n];
1483	gc_seq1 = c->gc_seq;
1484	mutex_unlock(&c->tnc_mutex);
1485
1486	if (ubifs_get_wbuf(c, zbr.lnum)) {
1487		/* We do not GC journal heads */
1488		err = ubifs_tnc_read_node(c, &zbr, node);
1489		return err;
1490	}
1491
1492	err = fallible_read_node(c, key, &zbr, node);
1493	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494		/*
1495		 * The node may have been GC'ed out from under us so try again
1496		 * while keeping the TNC mutex locked.
1497		 */
1498		safely = 1;
1499		goto again;
1500	}
1501	return 0;
1502
1503out:
1504	mutex_unlock(&c->tnc_mutex);
1505	return err;
1506}
1507
1508/**
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1512 *
1513 * Lookup consecutive data node keys for the same inode that reside
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1516 *
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519 * maximum possible amount of nodes for bulk-read.
1520 */
1521int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522{
1523	int n, err = 0, lnum = -1, uninitialized_var(offs);
1524	int uninitialized_var(len);
1525	unsigned int block = key_block(c, &bu->key);
1526	struct ubifs_znode *znode;
1527
1528	bu->cnt = 0;
1529	bu->blk_cnt = 0;
1530	bu->eof = 0;
1531
1532	mutex_lock(&c->tnc_mutex);
1533	/* Find first key */
1534	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535	if (err < 0)
1536		goto out;
1537	if (err) {
1538		/* Key found */
1539		len = znode->zbranch[n].len;
1540		/* The buffer must be big enough for at least 1 node */
1541		if (len > bu->buf_len) {
1542			err = -EINVAL;
1543			goto out;
1544		}
1545		/* Add this key */
1546		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547		bu->blk_cnt += 1;
1548		lnum = znode->zbranch[n].lnum;
1549		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550	}
1551	while (1) {
1552		struct ubifs_zbranch *zbr;
1553		union ubifs_key *key;
1554		unsigned int next_block;
1555
1556		/* Find next key */
1557		err = tnc_next(c, &znode, &n);
1558		if (err)
1559			goto out;
1560		zbr = &znode->zbranch[n];
1561		key = &zbr->key;
1562		/* See if there is another data key for this file */
1563		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564		    key_type(c, key) != UBIFS_DATA_KEY) {
1565			err = -ENOENT;
1566			goto out;
1567		}
1568		if (lnum < 0) {
1569			/* First key found */
1570			lnum = zbr->lnum;
1571			offs = ALIGN(zbr->offs + zbr->len, 8);
1572			len = zbr->len;
1573			if (len > bu->buf_len) {
1574				err = -EINVAL;
1575				goto out;
1576			}
1577		} else {
1578			/*
1579			 * The data nodes must be in consecutive positions in
1580			 * the same LEB.
1581			 */
1582			if (zbr->lnum != lnum || zbr->offs != offs)
1583				goto out;
1584			offs += ALIGN(zbr->len, 8);
1585			len = ALIGN(len, 8) + zbr->len;
1586			/* Must not exceed buffer length */
1587			if (len > bu->buf_len)
1588				goto out;
1589		}
1590		/* Allow for holes */
1591		next_block = key_block(c, key);
1592		bu->blk_cnt += (next_block - block - 1);
1593		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594			goto out;
1595		block = next_block;
1596		/* Add this key */
1597		bu->zbranch[bu->cnt++] = *zbr;
1598		bu->blk_cnt += 1;
1599		/* See if we have room for more */
1600		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601			goto out;
1602		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603			goto out;
1604	}
1605out:
1606	if (err == -ENOENT) {
1607		bu->eof = 1;
1608		err = 0;
1609	}
1610	bu->gc_seq = c->gc_seq;
1611	mutex_unlock(&c->tnc_mutex);
1612	if (err)
1613		return err;
1614	/*
1615	 * An enormous hole could cause bulk-read to encompass too many
1616	 * page cache pages, so limit the number here.
1617	 */
1618	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620	/*
1621	 * Ensure that bulk-read covers a whole number of page cache
1622	 * pages.
1623	 */
1624	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626		return 0;
1627	if (bu->eof) {
1628		/* At the end of file we can round up */
1629		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630		return 0;
1631	}
1632	/* Exclude data nodes that do not make up a whole page cache page */
1633	block = key_block(c, &bu->key) + bu->blk_cnt;
1634	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635	while (bu->cnt) {
1636		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637			break;
1638		bu->cnt -= 1;
1639	}
1640	return 0;
1641}
1642
1643/**
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1647 * @len: read length
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1650 *
1651 * This functions returns %0 on success or a negative error code on failure.
1652 */
1653static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654		     int offs)
1655{
1656	const struct ubifs_info *c = wbuf->c;
1657	int rlen, overlap;
1658
1659	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662	ubifs_assert(offs + len <= c->leb_size);
1663
1664	spin_lock(&wbuf->lock);
1665	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666	if (!overlap) {
1667		/* We may safely unlock the write-buffer and read the data */
1668		spin_unlock(&wbuf->lock);
1669		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1670	}
1671
1672	/* Don't read under wbuf */
1673	rlen = wbuf->offs - offs;
1674	if (rlen < 0)
1675		rlen = 0;
1676
1677	/* Copy the rest from the write-buffer */
1678	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679	spin_unlock(&wbuf->lock);
1680
1681	if (rlen > 0)
1682		/* Read everything that goes before write-buffer */
1683		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1684
1685	return 0;
1686}
1687
1688/**
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1693 *
1694 * This functions returns %0 on success or a negative error code on failure.
1695 */
1696static int validate_data_node(struct ubifs_info *c, void *buf,
1697			      struct ubifs_zbranch *zbr)
1698{
1699	union ubifs_key key1;
1700	struct ubifs_ch *ch = buf;
1701	int err, len;
1702
1703	if (ch->node_type != UBIFS_DATA_NODE) {
1704		ubifs_err("bad node type (%d but expected %d)",
1705			  ch->node_type, UBIFS_DATA_NODE);
1706		goto out_err;
1707	}
1708
1709	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710	if (err) {
1711		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1712		goto out;
1713	}
1714
 
 
 
 
 
 
1715	len = le32_to_cpu(ch->len);
1716	if (len != zbr->len) {
1717		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1718		goto out_err;
1719	}
1720
1721	/* Make sure the key of the read node is correct */
1722	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723	if (!keys_eq(c, &zbr->key, &key1)) {
1724		ubifs_err("bad key in node at LEB %d:%d",
1725			  zbr->lnum, zbr->offs);
1726		dbg_tnc("looked for key %s found node's key %s",
1727			DBGKEY(&zbr->key), DBGKEY1(&key1));
1728		goto out_err;
1729	}
1730
1731	return 0;
1732
1733out_err:
1734	err = -EINVAL;
1735out:
1736	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737	dbg_dump_node(c, buf);
1738	dbg_dump_stack();
1739	return err;
1740}
1741
1742/**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753{
1754	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755	struct ubifs_wbuf *wbuf;
1756	void *buf;
1757
1758	len = bu->zbranch[bu->cnt - 1].offs;
1759	len += bu->zbranch[bu->cnt - 1].len - offs;
1760	if (len > bu->buf_len) {
1761		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1762		return -EINVAL;
1763	}
1764
1765	/* Do the read */
1766	wbuf = ubifs_get_wbuf(c, lnum);
1767	if (wbuf)
1768		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769	else
1770		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771
1772	/* Check for a race with GC */
1773	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774		return -EAGAIN;
1775
1776	if (err && err != -EBADMSG) {
1777		ubifs_err("failed to read from LEB %d:%d, error %d",
1778			  lnum, offs, err);
1779		dbg_dump_stack();
1780		dbg_tnc("key %s", DBGKEY(&bu->key));
1781		return err;
1782	}
1783
1784	/* Validate the nodes read */
1785	buf = bu->buf;
1786	for (i = 0; i < bu->cnt; i++) {
1787		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788		if (err)
1789			return err;
1790		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791	}
1792
1793	return 0;
1794}
1795
1796/**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
1803 * This function look up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810			void *node, const struct qstr *nm)
1811{
1812	int found, n, err;
1813	struct ubifs_znode *znode;
1814
1815	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1816	mutex_lock(&c->tnc_mutex);
1817	found = ubifs_lookup_level0(c, key, &znode, &n);
1818	if (!found) {
1819		err = -ENOENT;
1820		goto out_unlock;
1821	} else if (found < 0) {
1822		err = found;
1823		goto out_unlock;
1824	}
1825
1826	ubifs_assert(n >= 0);
1827
1828	err = resolve_collision(c, key, &znode, &n, nm);
1829	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830	if (unlikely(err < 0))
1831		goto out_unlock;
1832	if (err == 0) {
1833		err = -ENOENT;
1834		goto out_unlock;
1835	}
1836
1837	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1838
1839out_unlock:
1840	mutex_unlock(&c->tnc_mutex);
1841	return err;
1842}
1843
1844/**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
1851 * This function look up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858			void *node, const struct qstr *nm)
1859{
1860	int err, len;
1861	const struct ubifs_dent_node *dent = node;
1862
1863	/*
1864	 * We assume that in most of the cases there are no name collisions and
1865	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866	 */
1867	err = ubifs_tnc_lookup(c, key, node);
1868	if (err)
1869		return err;
1870
1871	len = le16_to_cpu(dent->nlen);
1872	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1873		return 0;
1874
1875	/*
1876	 * Unluckily, there are hash collisions and we have to iterate over
1877	 * them look at each direntry with colliding name hash sequentially.
1878	 */
 
1879	return do_lookup_nm(c, key, node, nm);
1880}
1881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882/**
1883 * correct_parent_keys - correct parent znodes' keys.
1884 * @c: UBIFS file-system description object
1885 * @znode: znode to correct parent znodes for
1886 *
1887 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1888 * zbranch changes, keys of parent znodes have to be corrected. This helper
1889 * function is called in such situations and corrects the keys if needed.
1890 */
1891static void correct_parent_keys(const struct ubifs_info *c,
1892				struct ubifs_znode *znode)
1893{
1894	union ubifs_key *key, *key1;
1895
1896	ubifs_assert(znode->parent);
1897	ubifs_assert(znode->iip == 0);
1898
1899	key = &znode->zbranch[0].key;
1900	key1 = &znode->parent->zbranch[0].key;
1901
1902	while (keys_cmp(c, key, key1) < 0) {
1903		key_copy(c, key, key1);
1904		znode = znode->parent;
1905		znode->alt = 1;
1906		if (!znode->parent || znode->iip)
1907			break;
1908		key1 = &znode->parent->zbranch[0].key;
1909	}
1910}
1911
1912/**
1913 * insert_zbranch - insert a zbranch into a znode.
 
1914 * @znode: znode into which to insert
1915 * @zbr: zbranch to insert
1916 * @n: slot number to insert to
1917 *
1918 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1919 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1920 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1921 * slot, zbranches starting from @n have to be moved right.
1922 */
1923static void insert_zbranch(struct ubifs_znode *znode,
1924			   const struct ubifs_zbranch *zbr, int n)
1925{
1926	int i;
1927
1928	ubifs_assert(ubifs_zn_dirty(znode));
1929
1930	if (znode->level) {
1931		for (i = znode->child_cnt; i > n; i--) {
1932			znode->zbranch[i] = znode->zbranch[i - 1];
1933			if (znode->zbranch[i].znode)
1934				znode->zbranch[i].znode->iip = i;
1935		}
1936		if (zbr->znode)
1937			zbr->znode->iip = n;
1938	} else
1939		for (i = znode->child_cnt; i > n; i--)
1940			znode->zbranch[i] = znode->zbranch[i - 1];
1941
1942	znode->zbranch[n] = *zbr;
1943	znode->child_cnt += 1;
1944
1945	/*
1946	 * After inserting at slot zero, the lower bound of the key range of
1947	 * this znode may have changed. If this znode is subsequently split
1948	 * then the upper bound of the key range may change, and furthermore
1949	 * it could change to be lower than the original lower bound. If that
1950	 * happens, then it will no longer be possible to find this znode in the
1951	 * TNC using the key from the index node on flash. That is bad because
1952	 * if it is not found, we will assume it is obsolete and may overwrite
1953	 * it. Then if there is an unclean unmount, we will start using the
1954	 * old index which will be broken.
1955	 *
1956	 * So we first mark znodes that have insertions at slot zero, and then
1957	 * if they are split we add their lnum/offs to the old_idx tree.
1958	 */
1959	if (n == 0)
1960		znode->alt = 1;
1961}
1962
1963/**
1964 * tnc_insert - insert a node into TNC.
1965 * @c: UBIFS file-system description object
1966 * @znode: znode to insert into
1967 * @zbr: branch to insert
1968 * @n: slot number to insert new zbranch to
1969 *
1970 * This function inserts a new node described by @zbr into znode @znode. If
1971 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1972 * are splat as well if needed. Returns zero in case of success or a negative
1973 * error code in case of failure.
1974 */
1975static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1976		      struct ubifs_zbranch *zbr, int n)
1977{
1978	struct ubifs_znode *zn, *zi, *zp;
1979	int i, keep, move, appending = 0;
1980	union ubifs_key *key = &zbr->key, *key1;
1981
1982	ubifs_assert(n >= 0 && n <= c->fanout);
1983
1984	/* Implement naive insert for now */
1985again:
1986	zp = znode->parent;
1987	if (znode->child_cnt < c->fanout) {
1988		ubifs_assert(n != c->fanout);
1989		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1990			DBGKEY(key));
1991
1992		insert_zbranch(znode, zbr, n);
1993
1994		/* Ensure parent's key is correct */
1995		if (n == 0 && zp && znode->iip == 0)
1996			correct_parent_keys(c, znode);
1997
1998		return 0;
1999	}
2000
2001	/*
2002	 * Unfortunately, @znode does not have more empty slots and we have to
2003	 * split it.
2004	 */
2005	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2006
2007	if (znode->alt)
2008		/*
2009		 * We can no longer be sure of finding this znode by key, so we
2010		 * record it in the old_idx tree.
2011		 */
2012		ins_clr_old_idx_znode(c, znode);
2013
2014	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2015	if (!zn)
2016		return -ENOMEM;
2017	zn->parent = zp;
2018	zn->level = znode->level;
2019
2020	/* Decide where to split */
2021	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2022		/* Try not to split consecutive data keys */
2023		if (n == c->fanout) {
2024			key1 = &znode->zbranch[n - 1].key;
2025			if (key_inum(c, key1) == key_inum(c, key) &&
2026			    key_type(c, key1) == UBIFS_DATA_KEY)
2027				appending = 1;
2028		} else
2029			goto check_split;
2030	} else if (appending && n != c->fanout) {
2031		/* Try not to split consecutive data keys */
2032		appending = 0;
2033check_split:
2034		if (n >= (c->fanout + 1) / 2) {
2035			key1 = &znode->zbranch[0].key;
2036			if (key_inum(c, key1) == key_inum(c, key) &&
2037			    key_type(c, key1) == UBIFS_DATA_KEY) {
2038				key1 = &znode->zbranch[n].key;
2039				if (key_inum(c, key1) != key_inum(c, key) ||
2040				    key_type(c, key1) != UBIFS_DATA_KEY) {
2041					keep = n;
2042					move = c->fanout - keep;
2043					zi = znode;
2044					goto do_split;
2045				}
2046			}
2047		}
2048	}
2049
2050	if (appending) {
2051		keep = c->fanout;
2052		move = 0;
2053	} else {
2054		keep = (c->fanout + 1) / 2;
2055		move = c->fanout - keep;
2056	}
2057
2058	/*
2059	 * Although we don't at present, we could look at the neighbors and see
2060	 * if we can move some zbranches there.
2061	 */
2062
2063	if (n < keep) {
2064		/* Insert into existing znode */
2065		zi = znode;
2066		move += 1;
2067		keep -= 1;
2068	} else {
2069		/* Insert into new znode */
2070		zi = zn;
2071		n -= keep;
2072		/* Re-parent */
2073		if (zn->level != 0)
2074			zbr->znode->parent = zn;
2075	}
2076
2077do_split:
2078
2079	__set_bit(DIRTY_ZNODE, &zn->flags);
2080	atomic_long_inc(&c->dirty_zn_cnt);
2081
2082	zn->child_cnt = move;
2083	znode->child_cnt = keep;
2084
2085	dbg_tnc("moving %d, keeping %d", move, keep);
2086
2087	/* Move zbranch */
2088	for (i = 0; i < move; i++) {
2089		zn->zbranch[i] = znode->zbranch[keep + i];
2090		/* Re-parent */
2091		if (zn->level != 0)
2092			if (zn->zbranch[i].znode) {
2093				zn->zbranch[i].znode->parent = zn;
2094				zn->zbranch[i].znode->iip = i;
2095			}
2096	}
2097
2098	/* Insert new key and branch */
2099	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2100
2101	insert_zbranch(zi, zbr, n);
2102
2103	/* Insert new znode (produced by spitting) into the parent */
2104	if (zp) {
2105		if (n == 0 && zi == znode && znode->iip == 0)
2106			correct_parent_keys(c, znode);
2107
2108		/* Locate insertion point */
2109		n = znode->iip + 1;
2110
2111		/* Tail recursion */
2112		zbr->key = zn->zbranch[0].key;
2113		zbr->znode = zn;
2114		zbr->lnum = 0;
2115		zbr->offs = 0;
2116		zbr->len = 0;
2117		znode = zp;
2118
2119		goto again;
2120	}
2121
2122	/* We have to split root znode */
2123	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2124
2125	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2126	if (!zi)
2127		return -ENOMEM;
2128
2129	zi->child_cnt = 2;
2130	zi->level = znode->level + 1;
2131
2132	__set_bit(DIRTY_ZNODE, &zi->flags);
2133	atomic_long_inc(&c->dirty_zn_cnt);
2134
2135	zi->zbranch[0].key = znode->zbranch[0].key;
2136	zi->zbranch[0].znode = znode;
2137	zi->zbranch[0].lnum = c->zroot.lnum;
2138	zi->zbranch[0].offs = c->zroot.offs;
2139	zi->zbranch[0].len = c->zroot.len;
2140	zi->zbranch[1].key = zn->zbranch[0].key;
2141	zi->zbranch[1].znode = zn;
2142
2143	c->zroot.lnum = 0;
2144	c->zroot.offs = 0;
2145	c->zroot.len = 0;
2146	c->zroot.znode = zi;
2147
2148	zn->parent = zi;
2149	zn->iip = 1;
2150	znode->parent = zi;
2151	znode->iip = 0;
2152
2153	return 0;
2154}
2155
2156/**
2157 * ubifs_tnc_add - add a node to TNC.
2158 * @c: UBIFS file-system description object
2159 * @key: key to add
2160 * @lnum: LEB number of node
2161 * @offs: node offset
2162 * @len: node length
 
2163 *
2164 * This function adds a node with key @key to TNC. The node may be new or it may
2165 * obsolete some existing one. Returns %0 on success or negative error code on
2166 * failure.
2167 */
2168int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2169		  int offs, int len)
2170{
2171	int found, n, err = 0;
2172	struct ubifs_znode *znode;
2173
2174	mutex_lock(&c->tnc_mutex);
2175	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2176	found = lookup_level0_dirty(c, key, &znode, &n);
2177	if (!found) {
2178		struct ubifs_zbranch zbr;
2179
2180		zbr.znode = NULL;
2181		zbr.lnum = lnum;
2182		zbr.offs = offs;
2183		zbr.len = len;
 
2184		key_copy(c, key, &zbr.key);
2185		err = tnc_insert(c, znode, &zbr, n + 1);
2186	} else if (found == 1) {
2187		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2188
2189		lnc_free(zbr);
2190		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2191		zbr->lnum = lnum;
2192		zbr->offs = offs;
2193		zbr->len = len;
 
2194	} else
2195		err = found;
2196	if (!err)
2197		err = dbg_check_tnc(c, 0);
2198	mutex_unlock(&c->tnc_mutex);
2199
2200	return err;
2201}
2202
2203/**
2204 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2205 * @c: UBIFS file-system description object
2206 * @key: key to add
2207 * @old_lnum: LEB number of old node
2208 * @old_offs: old node offset
2209 * @lnum: LEB number of node
2210 * @offs: node offset
2211 * @len: node length
2212 *
2213 * This function replaces a node with key @key in the TNC only if the old node
2214 * is found.  This function is called by garbage collection when node are moved.
2215 * Returns %0 on success or negative error code on failure.
2216 */
2217int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2218		      int old_lnum, int old_offs, int lnum, int offs, int len)
2219{
2220	int found, n, err = 0;
2221	struct ubifs_znode *znode;
2222
2223	mutex_lock(&c->tnc_mutex);
2224	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2225		old_offs, lnum, offs, len, DBGKEY(key));
2226	found = lookup_level0_dirty(c, key, &znode, &n);
2227	if (found < 0) {
2228		err = found;
2229		goto out_unlock;
2230	}
2231
2232	if (found == 1) {
2233		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2234
2235		found = 0;
2236		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2237			lnc_free(zbr);
2238			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2239			if (err)
2240				goto out_unlock;
2241			zbr->lnum = lnum;
2242			zbr->offs = offs;
2243			zbr->len = len;
2244			found = 1;
2245		} else if (is_hash_key(c, key)) {
2246			found = resolve_collision_directly(c, key, &znode, &n,
2247							   old_lnum, old_offs);
2248			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2249				found, znode, n, old_lnum, old_offs);
2250			if (found < 0) {
2251				err = found;
2252				goto out_unlock;
2253			}
2254
2255			if (found) {
2256				/* Ensure the znode is dirtied */
2257				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2258					znode = dirty_cow_bottom_up(c, znode);
2259					if (IS_ERR(znode)) {
2260						err = PTR_ERR(znode);
2261						goto out_unlock;
2262					}
2263				}
2264				zbr = &znode->zbranch[n];
2265				lnc_free(zbr);
2266				err = ubifs_add_dirt(c, zbr->lnum,
2267						     zbr->len);
2268				if (err)
2269					goto out_unlock;
2270				zbr->lnum = lnum;
2271				zbr->offs = offs;
2272				zbr->len = len;
2273			}
2274		}
2275	}
2276
2277	if (!found)
2278		err = ubifs_add_dirt(c, lnum, len);
2279
2280	if (!err)
2281		err = dbg_check_tnc(c, 0);
2282
2283out_unlock:
2284	mutex_unlock(&c->tnc_mutex);
2285	return err;
2286}
2287
2288/**
2289 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2290 * @c: UBIFS file-system description object
2291 * @key: key to add
2292 * @lnum: LEB number of node
2293 * @offs: node offset
2294 * @len: node length
 
2295 * @nm: node name
2296 *
2297 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2298 * may have collisions, like directory entry keys.
2299 */
2300int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2301		     int lnum, int offs, int len, const struct qstr *nm)
 
2302{
2303	int found, n, err = 0;
2304	struct ubifs_znode *znode;
2305
2306	mutex_lock(&c->tnc_mutex);
2307	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2308		DBGKEY(key));
2309	found = lookup_level0_dirty(c, key, &znode, &n);
2310	if (found < 0) {
2311		err = found;
2312		goto out_unlock;
2313	}
2314
2315	if (found == 1) {
2316		if (c->replaying)
2317			found = fallible_resolve_collision(c, key, &znode, &n,
2318							   nm, 1);
2319		else
2320			found = resolve_collision(c, key, &znode, &n, nm);
2321		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2322		if (found < 0) {
2323			err = found;
2324			goto out_unlock;
2325		}
2326
2327		/* Ensure the znode is dirtied */
2328		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2329			znode = dirty_cow_bottom_up(c, znode);
2330			if (IS_ERR(znode)) {
2331				err = PTR_ERR(znode);
2332				goto out_unlock;
2333			}
2334		}
2335
2336		if (found == 1) {
2337			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2338
2339			lnc_free(zbr);
2340			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2341			zbr->lnum = lnum;
2342			zbr->offs = offs;
2343			zbr->len = len;
 
2344			goto out_unlock;
2345		}
2346	}
2347
2348	if (!found) {
2349		struct ubifs_zbranch zbr;
2350
2351		zbr.znode = NULL;
2352		zbr.lnum = lnum;
2353		zbr.offs = offs;
2354		zbr.len = len;
 
2355		key_copy(c, key, &zbr.key);
2356		err = tnc_insert(c, znode, &zbr, n + 1);
2357		if (err)
2358			goto out_unlock;
2359		if (c->replaying) {
2360			/*
2361			 * We did not find it in the index so there may be a
2362			 * dangling branch still in the index. So we remove it
2363			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2364			 * an unmatchable name.
2365			 */
2366			struct qstr noname = { .len = 0, .name = "" };
2367
2368			err = dbg_check_tnc(c, 0);
2369			mutex_unlock(&c->tnc_mutex);
2370			if (err)
2371				return err;
2372			return ubifs_tnc_remove_nm(c, key, &noname);
2373		}
2374	}
2375
2376out_unlock:
2377	if (!err)
2378		err = dbg_check_tnc(c, 0);
2379	mutex_unlock(&c->tnc_mutex);
2380	return err;
2381}
2382
2383/**
2384 * tnc_delete - delete a znode form TNC.
2385 * @c: UBIFS file-system description object
2386 * @znode: znode to delete from
2387 * @n: zbranch slot number to delete
2388 *
2389 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2390 * case of success and a negative error code in case of failure.
2391 */
2392static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2393{
2394	struct ubifs_zbranch *zbr;
2395	struct ubifs_znode *zp;
2396	int i, err;
2397
2398	/* Delete without merge for now */
2399	ubifs_assert(znode->level == 0);
2400	ubifs_assert(n >= 0 && n < c->fanout);
2401	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2402
2403	zbr = &znode->zbranch[n];
2404	lnc_free(zbr);
2405
2406	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2407	if (err) {
2408		dbg_dump_znode(c, znode);
2409		return err;
2410	}
2411
2412	/* We do not "gap" zbranch slots */
2413	for (i = n; i < znode->child_cnt - 1; i++)
2414		znode->zbranch[i] = znode->zbranch[i + 1];
2415	znode->child_cnt -= 1;
2416
2417	if (znode->child_cnt > 0)
2418		return 0;
2419
2420	/*
2421	 * This was the last zbranch, we have to delete this znode from the
2422	 * parent.
2423	 */
2424
2425	do {
2426		ubifs_assert(!ubifs_zn_obsolete(znode));
2427		ubifs_assert(ubifs_zn_dirty(znode));
2428
2429		zp = znode->parent;
2430		n = znode->iip;
2431
2432		atomic_long_dec(&c->dirty_zn_cnt);
2433
2434		err = insert_old_idx_znode(c, znode);
2435		if (err)
2436			return err;
2437
2438		if (znode->cnext) {
2439			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2440			atomic_long_inc(&c->clean_zn_cnt);
2441			atomic_long_inc(&ubifs_clean_zn_cnt);
2442		} else
2443			kfree(znode);
2444		znode = zp;
2445	} while (znode->child_cnt == 1); /* while removing last child */
2446
2447	/* Remove from znode, entry n - 1 */
2448	znode->child_cnt -= 1;
2449	ubifs_assert(znode->level != 0);
2450	for (i = n; i < znode->child_cnt; i++) {
2451		znode->zbranch[i] = znode->zbranch[i + 1];
2452		if (znode->zbranch[i].znode)
2453			znode->zbranch[i].znode->iip = i;
2454	}
2455
2456	/*
2457	 * If this is the root and it has only 1 child then
2458	 * collapse the tree.
2459	 */
2460	if (!znode->parent) {
2461		while (znode->child_cnt == 1 && znode->level != 0) {
2462			zp = znode;
2463			zbr = &znode->zbranch[0];
2464			znode = get_znode(c, znode, 0);
2465			if (IS_ERR(znode))
2466				return PTR_ERR(znode);
2467			znode = dirty_cow_znode(c, zbr);
2468			if (IS_ERR(znode))
2469				return PTR_ERR(znode);
2470			znode->parent = NULL;
2471			znode->iip = 0;
2472			if (c->zroot.len) {
2473				err = insert_old_idx(c, c->zroot.lnum,
2474						     c->zroot.offs);
2475				if (err)
2476					return err;
2477			}
2478			c->zroot.lnum = zbr->lnum;
2479			c->zroot.offs = zbr->offs;
2480			c->zroot.len = zbr->len;
2481			c->zroot.znode = znode;
2482			ubifs_assert(!ubifs_zn_obsolete(zp));
2483			ubifs_assert(ubifs_zn_dirty(zp));
2484			atomic_long_dec(&c->dirty_zn_cnt);
2485
2486			if (zp->cnext) {
2487				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2488				atomic_long_inc(&c->clean_zn_cnt);
2489				atomic_long_inc(&ubifs_clean_zn_cnt);
2490			} else
2491				kfree(zp);
2492		}
2493	}
2494
2495	return 0;
2496}
2497
2498/**
2499 * ubifs_tnc_remove - remove an index entry of a node.
2500 * @c: UBIFS file-system description object
2501 * @key: key of node
2502 *
2503 * Returns %0 on success or negative error code on failure.
2504 */
2505int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2506{
2507	int found, n, err = 0;
2508	struct ubifs_znode *znode;
2509
2510	mutex_lock(&c->tnc_mutex);
2511	dbg_tnc("key %s", DBGKEY(key));
2512	found = lookup_level0_dirty(c, key, &znode, &n);
2513	if (found < 0) {
2514		err = found;
2515		goto out_unlock;
2516	}
2517	if (found == 1)
2518		err = tnc_delete(c, znode, n);
2519	if (!err)
2520		err = dbg_check_tnc(c, 0);
2521
2522out_unlock:
2523	mutex_unlock(&c->tnc_mutex);
2524	return err;
2525}
2526
2527/**
2528 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2529 * @c: UBIFS file-system description object
2530 * @key: key of node
2531 * @nm: directory entry name
2532 *
2533 * Returns %0 on success or negative error code on failure.
2534 */
2535int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2536			const struct qstr *nm)
2537{
2538	int n, err;
2539	struct ubifs_znode *znode;
2540
2541	mutex_lock(&c->tnc_mutex);
2542	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2543	err = lookup_level0_dirty(c, key, &znode, &n);
2544	if (err < 0)
2545		goto out_unlock;
2546
2547	if (err) {
2548		if (c->replaying)
2549			err = fallible_resolve_collision(c, key, &znode, &n,
2550							 nm, 0);
2551		else
2552			err = resolve_collision(c, key, &znode, &n, nm);
2553		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2554		if (err < 0)
2555			goto out_unlock;
2556		if (err) {
2557			/* Ensure the znode is dirtied */
2558			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2559				znode = dirty_cow_bottom_up(c, znode);
2560				if (IS_ERR(znode)) {
2561					err = PTR_ERR(znode);
2562					goto out_unlock;
2563				}
2564			}
2565			err = tnc_delete(c, znode, n);
2566		}
2567	}
2568
2569out_unlock:
2570	if (!err)
2571		err = dbg_check_tnc(c, 0);
2572	mutex_unlock(&c->tnc_mutex);
2573	return err;
2574}
2575
2576/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2577 * key_in_range - determine if a key falls within a range of keys.
2578 * @c: UBIFS file-system description object
2579 * @key: key to check
2580 * @from_key: lowest key in range
2581 * @to_key: highest key in range
2582 *
2583 * This function returns %1 if the key is in range and %0 otherwise.
2584 */
2585static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2586			union ubifs_key *from_key, union ubifs_key *to_key)
2587{
2588	if (keys_cmp(c, key, from_key) < 0)
2589		return 0;
2590	if (keys_cmp(c, key, to_key) > 0)
2591		return 0;
2592	return 1;
2593}
2594
2595/**
2596 * ubifs_tnc_remove_range - remove index entries in range.
2597 * @c: UBIFS file-system description object
2598 * @from_key: lowest key to remove
2599 * @to_key: highest key to remove
2600 *
2601 * This function removes index entries starting at @from_key and ending at
2602 * @to_key.  This function returns zero in case of success and a negative error
2603 * code in case of failure.
2604 */
2605int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2606			   union ubifs_key *to_key)
2607{
2608	int i, n, k, err = 0;
2609	struct ubifs_znode *znode;
2610	union ubifs_key *key;
2611
2612	mutex_lock(&c->tnc_mutex);
2613	while (1) {
2614		/* Find first level 0 znode that contains keys to remove */
2615		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2616		if (err < 0)
2617			goto out_unlock;
2618
2619		if (err)
2620			key = from_key;
2621		else {
2622			err = tnc_next(c, &znode, &n);
2623			if (err == -ENOENT) {
2624				err = 0;
2625				goto out_unlock;
2626			}
2627			if (err < 0)
2628				goto out_unlock;
2629			key = &znode->zbranch[n].key;
2630			if (!key_in_range(c, key, from_key, to_key)) {
2631				err = 0;
2632				goto out_unlock;
2633			}
2634		}
2635
2636		/* Ensure the znode is dirtied */
2637		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2638			znode = dirty_cow_bottom_up(c, znode);
2639			if (IS_ERR(znode)) {
2640				err = PTR_ERR(znode);
2641				goto out_unlock;
2642			}
2643		}
2644
2645		/* Remove all keys in range except the first */
2646		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2647			key = &znode->zbranch[i].key;
2648			if (!key_in_range(c, key, from_key, to_key))
2649				break;
2650			lnc_free(&znode->zbranch[i]);
2651			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2652					     znode->zbranch[i].len);
2653			if (err) {
2654				dbg_dump_znode(c, znode);
2655				goto out_unlock;
2656			}
2657			dbg_tnc("removing %s", DBGKEY(key));
2658		}
2659		if (k) {
2660			for (i = n + 1 + k; i < znode->child_cnt; i++)
2661				znode->zbranch[i - k] = znode->zbranch[i];
2662			znode->child_cnt -= k;
2663		}
2664
2665		/* Now delete the first */
2666		err = tnc_delete(c, znode, n);
2667		if (err)
2668			goto out_unlock;
2669	}
2670
2671out_unlock:
2672	if (!err)
2673		err = dbg_check_tnc(c, 0);
2674	mutex_unlock(&c->tnc_mutex);
2675	return err;
2676}
2677
2678/**
2679 * ubifs_tnc_remove_ino - remove an inode from TNC.
2680 * @c: UBIFS file-system description object
2681 * @inum: inode number to remove
2682 *
2683 * This function remove inode @inum and all the extended attributes associated
2684 * with the anode from TNC and returns zero in case of success or a negative
2685 * error code in case of failure.
2686 */
2687int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2688{
2689	union ubifs_key key1, key2;
2690	struct ubifs_dent_node *xent, *pxent = NULL;
2691	struct qstr nm = { .name = NULL };
2692
2693	dbg_tnc("ino %lu", (unsigned long)inum);
2694
2695	/*
2696	 * Walk all extended attribute entries and remove them together with
2697	 * corresponding extended attribute inodes.
2698	 */
2699	lowest_xent_key(c, &key1, inum);
2700	while (1) {
2701		ino_t xattr_inum;
2702		int err;
2703
2704		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2705		if (IS_ERR(xent)) {
2706			err = PTR_ERR(xent);
2707			if (err == -ENOENT)
2708				break;
 
2709			return err;
2710		}
2711
2712		xattr_inum = le64_to_cpu(xent->inum);
2713		dbg_tnc("xent '%s', ino %lu", xent->name,
2714			(unsigned long)xattr_inum);
2715
2716		nm.name = xent->name;
2717		nm.len = le16_to_cpu(xent->nlen);
2718		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2719		if (err) {
 
2720			kfree(xent);
2721			return err;
2722		}
2723
2724		lowest_ino_key(c, &key1, xattr_inum);
2725		highest_ino_key(c, &key2, xattr_inum);
2726		err = ubifs_tnc_remove_range(c, &key1, &key2);
2727		if (err) {
 
2728			kfree(xent);
2729			return err;
2730		}
2731
2732		kfree(pxent);
2733		pxent = xent;
2734		key_read(c, &xent->key, &key1);
2735	}
2736
2737	kfree(pxent);
2738	lowest_ino_key(c, &key1, inum);
2739	highest_ino_key(c, &key2, inum);
2740
2741	return ubifs_tnc_remove_range(c, &key1, &key2);
2742}
2743
2744/**
2745 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2746 * @c: UBIFS file-system description object
2747 * @key: key of last entry
2748 * @nm: name of last entry found or %NULL
2749 *
2750 * This function finds and reads the next directory or extended attribute entry
2751 * after the given key (@key) if there is one. @nm is used to resolve
2752 * collisions.
2753 *
2754 * If the name of the current entry is not known and only the key is known,
2755 * @nm->name has to be %NULL. In this case the semantics of this function is a
2756 * little bit different and it returns the entry corresponding to this key, not
2757 * the next one. If the key was not found, the closest "right" entry is
2758 * returned.
2759 *
2760 * If the fist entry has to be found, @key has to contain the lowest possible
2761 * key value for this inode and @name has to be %NULL.
2762 *
2763 * This function returns the found directory or extended attribute entry node
2764 * in case of success, %-ENOENT is returned if no entry was found, and a
2765 * negative error code is returned in case of failure.
2766 */
2767struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2768					   union ubifs_key *key,
2769					   const struct qstr *nm)
2770{
2771	int n, err, type = key_type(c, key);
2772	struct ubifs_znode *znode;
2773	struct ubifs_dent_node *dent;
2774	struct ubifs_zbranch *zbr;
2775	union ubifs_key *dkey;
2776
2777	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2778	ubifs_assert(is_hash_key(c, key));
2779
2780	mutex_lock(&c->tnc_mutex);
2781	err = ubifs_lookup_level0(c, key, &znode, &n);
2782	if (unlikely(err < 0))
2783		goto out_unlock;
2784
2785	if (nm->name) {
2786		if (err) {
2787			/* Handle collisions */
2788			err = resolve_collision(c, key, &znode, &n, nm);
 
 
 
 
2789			dbg_tnc("rc returned %d, znode %p, n %d",
2790				err, znode, n);
2791			if (unlikely(err < 0))
2792				goto out_unlock;
2793		}
2794
2795		/* Now find next entry */
2796		err = tnc_next(c, &znode, &n);
2797		if (unlikely(err))
2798			goto out_unlock;
2799	} else {
2800		/*
2801		 * The full name of the entry was not given, in which case the
2802		 * behavior of this function is a little different and it
2803		 * returns current entry, not the next one.
2804		 */
2805		if (!err) {
2806			/*
2807			 * However, the given key does not exist in the TNC
2808			 * tree and @znode/@n variables contain the closest
2809			 * "preceding" element. Switch to the next one.
2810			 */
2811			err = tnc_next(c, &znode, &n);
2812			if (err)
2813				goto out_unlock;
2814		}
2815	}
2816
2817	zbr = &znode->zbranch[n];
2818	dent = kmalloc(zbr->len, GFP_NOFS);
2819	if (unlikely(!dent)) {
2820		err = -ENOMEM;
2821		goto out_unlock;
2822	}
2823
2824	/*
2825	 * The above 'tnc_next()' call could lead us to the next inode, check
2826	 * this.
2827	 */
2828	dkey = &zbr->key;
2829	if (key_inum(c, dkey) != key_inum(c, key) ||
2830	    key_type(c, dkey) != type) {
2831		err = -ENOENT;
2832		goto out_free;
2833	}
2834
2835	err = tnc_read_node_nm(c, zbr, dent);
2836	if (unlikely(err))
2837		goto out_free;
2838
2839	mutex_unlock(&c->tnc_mutex);
2840	return dent;
2841
2842out_free:
2843	kfree(dent);
2844out_unlock:
2845	mutex_unlock(&c->tnc_mutex);
2846	return ERR_PTR(err);
2847}
2848
2849/**
2850 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2851 * @c: UBIFS file-system description object
2852 *
2853 * Destroy left-over obsolete znodes from a failed commit.
2854 */
2855static void tnc_destroy_cnext(struct ubifs_info *c)
2856{
2857	struct ubifs_znode *cnext;
2858
2859	if (!c->cnext)
2860		return;
2861	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2862	cnext = c->cnext;
2863	do {
2864		struct ubifs_znode *znode = cnext;
2865
2866		cnext = cnext->cnext;
2867		if (ubifs_zn_obsolete(znode))
2868			kfree(znode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869	} while (cnext && cnext != c->cnext);
2870}
2871
2872/**
2873 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2874 * @c: UBIFS file-system description object
2875 */
2876void ubifs_tnc_close(struct ubifs_info *c)
2877{
2878	tnc_destroy_cnext(c);
2879	if (c->zroot.znode) {
2880		long n;
2881
2882		ubifs_destroy_tnc_subtree(c->zroot.znode);
2883		n = atomic_long_read(&c->clean_zn_cnt);
2884		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2885	}
2886	kfree(c->gap_lebs);
2887	kfree(c->ilebs);
2888	destroy_old_idx(c);
2889}
2890
2891/**
2892 * left_znode - get the znode to the left.
2893 * @c: UBIFS file-system description object
2894 * @znode: znode
2895 *
2896 * This function returns a pointer to the znode to the left of @znode or NULL if
2897 * there is not one. A negative error code is returned on failure.
2898 */
2899static struct ubifs_znode *left_znode(struct ubifs_info *c,
2900				      struct ubifs_znode *znode)
2901{
2902	int level = znode->level;
2903
2904	while (1) {
2905		int n = znode->iip - 1;
2906
2907		/* Go up until we can go left */
2908		znode = znode->parent;
2909		if (!znode)
2910			return NULL;
2911		if (n >= 0) {
2912			/* Now go down the rightmost branch to 'level' */
2913			znode = get_znode(c, znode, n);
2914			if (IS_ERR(znode))
2915				return znode;
2916			while (znode->level != level) {
2917				n = znode->child_cnt - 1;
2918				znode = get_znode(c, znode, n);
2919				if (IS_ERR(znode))
2920					return znode;
2921			}
2922			break;
2923		}
2924	}
2925	return znode;
2926}
2927
2928/**
2929 * right_znode - get the znode to the right.
2930 * @c: UBIFS file-system description object
2931 * @znode: znode
2932 *
2933 * This function returns a pointer to the znode to the right of @znode or NULL
2934 * if there is not one. A negative error code is returned on failure.
2935 */
2936static struct ubifs_znode *right_znode(struct ubifs_info *c,
2937				       struct ubifs_znode *znode)
2938{
2939	int level = znode->level;
2940
2941	while (1) {
2942		int n = znode->iip + 1;
2943
2944		/* Go up until we can go right */
2945		znode = znode->parent;
2946		if (!znode)
2947			return NULL;
2948		if (n < znode->child_cnt) {
2949			/* Now go down the leftmost branch to 'level' */
2950			znode = get_znode(c, znode, n);
2951			if (IS_ERR(znode))
2952				return znode;
2953			while (znode->level != level) {
2954				znode = get_znode(c, znode, 0);
2955				if (IS_ERR(znode))
2956					return znode;
2957			}
2958			break;
2959		}
2960	}
2961	return znode;
2962}
2963
2964/**
2965 * lookup_znode - find a particular indexing node from TNC.
2966 * @c: UBIFS file-system description object
2967 * @key: index node key to lookup
2968 * @level: index node level
2969 * @lnum: index node LEB number
2970 * @offs: index node offset
2971 *
2972 * This function searches an indexing node by its first key @key and its
2973 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2974 * nodes it traverses to TNC. This function is called for indexing nodes which
2975 * were found on the media by scanning, for example when garbage-collecting or
2976 * when doing in-the-gaps commit. This means that the indexing node which is
2977 * looked for does not have to have exactly the same leftmost key @key, because
2978 * the leftmost key may have been changed, in which case TNC will contain a
2979 * dirty znode which still refers the same @lnum:@offs. This function is clever
2980 * enough to recognize such indexing nodes.
2981 *
2982 * Note, if a znode was deleted or changed too much, then this function will
2983 * not find it. For situations like this UBIFS has the old index RB-tree
2984 * (indexed by @lnum:@offs).
2985 *
2986 * This function returns a pointer to the znode found or %NULL if it is not
2987 * found. A negative error code is returned on failure.
2988 */
2989static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2990					union ubifs_key *key, int level,
2991					int lnum, int offs)
2992{
2993	struct ubifs_znode *znode, *zn;
2994	int n, nn;
2995
2996	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2997
2998	/*
2999	 * The arguments have probably been read off flash, so don't assume
3000	 * they are valid.
3001	 */
3002	if (level < 0)
3003		return ERR_PTR(-EINVAL);
3004
3005	/* Get the root znode */
3006	znode = c->zroot.znode;
3007	if (!znode) {
3008		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3009		if (IS_ERR(znode))
3010			return znode;
3011	}
3012	/* Check if it is the one we are looking for */
3013	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3014		return znode;
3015	/* Descend to the parent level i.e. (level + 1) */
3016	if (level >= znode->level)
3017		return NULL;
3018	while (1) {
3019		ubifs_search_zbranch(c, znode, key, &n);
3020		if (n < 0) {
3021			/*
3022			 * We reached a znode where the leftmost key is greater
3023			 * than the key we are searching for. This is the same
3024			 * situation as the one described in a huge comment at
3025			 * the end of the 'ubifs_lookup_level0()' function. And
3026			 * for exactly the same reasons we have to try to look
3027			 * left before giving up.
3028			 */
3029			znode = left_znode(c, znode);
3030			if (!znode)
3031				return NULL;
3032			if (IS_ERR(znode))
3033				return znode;
3034			ubifs_search_zbranch(c, znode, key, &n);
3035			ubifs_assert(n >= 0);
3036		}
3037		if (znode->level == level + 1)
3038			break;
3039		znode = get_znode(c, znode, n);
3040		if (IS_ERR(znode))
3041			return znode;
3042	}
3043	/* Check if the child is the one we are looking for */
3044	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3045		return get_znode(c, znode, n);
3046	/* If the key is unique, there is nowhere else to look */
3047	if (!is_hash_key(c, key))
3048		return NULL;
3049	/*
3050	 * The key is not unique and so may be also in the znodes to either
3051	 * side.
3052	 */
3053	zn = znode;
3054	nn = n;
3055	/* Look left */
3056	while (1) {
3057		/* Move one branch to the left */
3058		if (n)
3059			n -= 1;
3060		else {
3061			znode = left_znode(c, znode);
3062			if (!znode)
3063				break;
3064			if (IS_ERR(znode))
3065				return znode;
3066			n = znode->child_cnt - 1;
3067		}
3068		/* Check it */
3069		if (znode->zbranch[n].lnum == lnum &&
3070		    znode->zbranch[n].offs == offs)
3071			return get_znode(c, znode, n);
3072		/* Stop if the key is less than the one we are looking for */
3073		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3074			break;
3075	}
3076	/* Back to the middle */
3077	znode = zn;
3078	n = nn;
3079	/* Look right */
3080	while (1) {
3081		/* Move one branch to the right */
3082		if (++n >= znode->child_cnt) {
3083			znode = right_znode(c, znode);
3084			if (!znode)
3085				break;
3086			if (IS_ERR(znode))
3087				return znode;
3088			n = 0;
3089		}
3090		/* Check it */
3091		if (znode->zbranch[n].lnum == lnum &&
3092		    znode->zbranch[n].offs == offs)
3093			return get_znode(c, znode, n);
3094		/* Stop if the key is greater than the one we are looking for */
3095		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3096			break;
3097	}
3098	return NULL;
3099}
3100
3101/**
3102 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3103 * @c: UBIFS file-system description object
3104 * @key: key of index node
3105 * @level: index node level
3106 * @lnum: LEB number of index node
3107 * @offs: offset of index node
3108 *
3109 * This function returns %0 if the index node is not referred to in the TNC, %1
3110 * if the index node is referred to in the TNC and the corresponding znode is
3111 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3112 * znode is clean, and a negative error code in case of failure.
3113 *
3114 * Note, the @key argument has to be the key of the first child. Also note,
3115 * this function relies on the fact that 0:0 is never a valid LEB number and
3116 * offset for a main-area node.
3117 */
3118int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3119		       int lnum, int offs)
3120{
3121	struct ubifs_znode *znode;
3122
3123	znode = lookup_znode(c, key, level, lnum, offs);
3124	if (!znode)
3125		return 0;
3126	if (IS_ERR(znode))
3127		return PTR_ERR(znode);
3128
3129	return ubifs_zn_dirty(znode) ? 1 : 2;
3130}
3131
3132/**
3133 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3134 * @c: UBIFS file-system description object
3135 * @key: node key
3136 * @lnum: node LEB number
3137 * @offs: node offset
3138 *
3139 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3140 * not, and a negative error code in case of failure.
3141 *
3142 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3143 * and offset for a main-area node.
3144 */
3145static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3146			       int lnum, int offs)
3147{
3148	struct ubifs_zbranch *zbr;
3149	struct ubifs_znode *znode, *zn;
3150	int n, found, err, nn;
3151	const int unique = !is_hash_key(c, key);
3152
3153	found = ubifs_lookup_level0(c, key, &znode, &n);
3154	if (found < 0)
3155		return found; /* Error code */
3156	if (!found)
3157		return 0;
3158	zbr = &znode->zbranch[n];
3159	if (lnum == zbr->lnum && offs == zbr->offs)
3160		return 1; /* Found it */
3161	if (unique)
3162		return 0;
3163	/*
3164	 * Because the key is not unique, we have to look left
3165	 * and right as well
3166	 */
3167	zn = znode;
3168	nn = n;
3169	/* Look left */
3170	while (1) {
3171		err = tnc_prev(c, &znode, &n);
3172		if (err == -ENOENT)
3173			break;
3174		if (err)
3175			return err;
3176		if (keys_cmp(c, key, &znode->zbranch[n].key))
3177			break;
3178		zbr = &znode->zbranch[n];
3179		if (lnum == zbr->lnum && offs == zbr->offs)
3180			return 1; /* Found it */
3181	}
3182	/* Look right */
3183	znode = zn;
3184	n = nn;
3185	while (1) {
3186		err = tnc_next(c, &znode, &n);
3187		if (err) {
3188			if (err == -ENOENT)
3189				return 0;
3190			return err;
3191		}
3192		if (keys_cmp(c, key, &znode->zbranch[n].key))
3193			break;
3194		zbr = &znode->zbranch[n];
3195		if (lnum == zbr->lnum && offs == zbr->offs)
3196			return 1; /* Found it */
3197	}
3198	return 0;
3199}
3200
3201/**
3202 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3203 * @c: UBIFS file-system description object
3204 * @key: node key
3205 * @level: index node level (if it is an index node)
3206 * @lnum: node LEB number
3207 * @offs: node offset
3208 * @is_idx: non-zero if the node is an index node
3209 *
3210 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3211 * negative error code in case of failure. For index nodes, @key has to be the
3212 * key of the first child. An index node is considered to be in the TNC only if
3213 * the corresponding znode is clean or has not been loaded.
3214 */
3215int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3216		       int lnum, int offs, int is_idx)
3217{
3218	int err;
3219
3220	mutex_lock(&c->tnc_mutex);
3221	if (is_idx) {
3222		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3223		if (err < 0)
3224			goto out_unlock;
3225		if (err == 1)
3226			/* The index node was found but it was dirty */
3227			err = 0;
3228		else if (err == 2)
3229			/* The index node was found and it was clean */
3230			err = 1;
3231		else
3232			BUG_ON(err != 0);
3233	} else
3234		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3235
3236out_unlock:
3237	mutex_unlock(&c->tnc_mutex);
3238	return err;
3239}
3240
3241/**
3242 * ubifs_dirty_idx_node - dirty an index node.
3243 * @c: UBIFS file-system description object
3244 * @key: index node key
3245 * @level: index node level
3246 * @lnum: index node LEB number
3247 * @offs: index node offset
3248 *
3249 * This function loads and dirties an index node so that it can be garbage
3250 * collected. The @key argument has to be the key of the first child. This
3251 * function relies on the fact that 0:0 is never a valid LEB number and offset
3252 * for a main-area node. Returns %0 on success and a negative error code on
3253 * failure.
3254 */
3255int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3256			 int lnum, int offs)
3257{
3258	struct ubifs_znode *znode;
3259	int err = 0;
3260
3261	mutex_lock(&c->tnc_mutex);
3262	znode = lookup_znode(c, key, level, lnum, offs);
3263	if (!znode)
3264		goto out_unlock;
3265	if (IS_ERR(znode)) {
3266		err = PTR_ERR(znode);
3267		goto out_unlock;
3268	}
3269	znode = dirty_cow_bottom_up(c, znode);
3270	if (IS_ERR(znode)) {
3271		err = PTR_ERR(znode);
3272		goto out_unlock;
3273	}
3274
3275out_unlock:
3276	mutex_unlock(&c->tnc_mutex);
3277	return err;
3278}
3279
3280#ifdef CONFIG_UBIFS_FS_DEBUG
3281
3282/**
3283 * dbg_check_inode_size - check if inode size is correct.
3284 * @c: UBIFS file-system description object
3285 * @inum: inode number
3286 * @size: inode size
3287 *
3288 * This function makes sure that the inode size (@size) is correct and it does
3289 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3290 * if it has a data page beyond @size, and other negative error code in case of
3291 * other errors.
3292 */
3293int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3294			 loff_t size)
3295{
3296	int err, n;
3297	union ubifs_key from_key, to_key, *key;
3298	struct ubifs_znode *znode;
3299	unsigned int block;
3300
3301	if (!S_ISREG(inode->i_mode))
3302		return 0;
3303	if (!dbg_is_chk_gen(c))
3304		return 0;
3305
3306	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3307	data_key_init(c, &from_key, inode->i_ino, block);
3308	highest_data_key(c, &to_key, inode->i_ino);
3309
3310	mutex_lock(&c->tnc_mutex);
3311	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3312	if (err < 0)
3313		goto out_unlock;
3314
3315	if (err) {
3316		err = -EINVAL;
3317		key = &from_key;
3318		goto out_dump;
3319	}
3320
3321	err = tnc_next(c, &znode, &n);
3322	if (err == -ENOENT) {
3323		err = 0;
3324		goto out_unlock;
3325	}
3326	if (err < 0)
3327		goto out_unlock;
3328
3329	ubifs_assert(err == 0);
3330	key = &znode->zbranch[n].key;
3331	if (!key_in_range(c, key, &from_key, &to_key))
3332		goto out_unlock;
3333
3334out_dump:
3335	block = key_block(c, key);
3336	ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3337		  "(data key %s)", (unsigned long)inode->i_ino, size,
3338		  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3339	mutex_unlock(&c->tnc_mutex);
3340	dbg_dump_inode(c, inode);
3341	dbg_dump_stack();
3342	return -EINVAL;
3343
3344out_unlock:
3345	mutex_unlock(&c->tnc_mutex);
3346	return err;
3347}
3348
3349#endif /* CONFIG_UBIFS_FS_DEBUG */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#include <linux/crc32.h>
  22#include <linux/slab.h>
  23#include "ubifs.h"
  24
  25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
  26			 struct ubifs_zbranch *zbr);
  27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
  28			      struct ubifs_zbranch *zbr, void *node);
  29
  30/*
  31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  32 * @NAME_LESS: name corresponding to the first argument is less than second
  33 * @NAME_MATCHES: names match
  34 * @NAME_GREATER: name corresponding to the second argument is greater than
  35 *                first
  36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  37 *
  38 * These constants were introduce to improve readability.
  39 */
  40enum {
  41	NAME_LESS    = 0,
  42	NAME_MATCHES = 1,
  43	NAME_GREATER = 2,
  44	NOT_ON_MEDIA = 3,
  45};
  46
  47static void do_insert_old_idx(struct ubifs_info *c,
  48			      struct ubifs_old_idx *old_idx)
  49{
  50	struct ubifs_old_idx *o;
  51	struct rb_node **p, *parent = NULL;
  52
  53	p = &c->old_idx.rb_node;
  54	while (*p) {
  55		parent = *p;
  56		o = rb_entry(parent, struct ubifs_old_idx, rb);
  57		if (old_idx->lnum < o->lnum)
  58			p = &(*p)->rb_left;
  59		else if (old_idx->lnum > o->lnum)
  60			p = &(*p)->rb_right;
  61		else if (old_idx->offs < o->offs)
  62			p = &(*p)->rb_left;
  63		else if (old_idx->offs > o->offs)
  64			p = &(*p)->rb_right;
  65		else {
  66			ubifs_err(c, "old idx added twice!");
  67			kfree(old_idx);
  68			return;
  69		}
  70	}
  71	rb_link_node(&old_idx->rb, parent, p);
  72	rb_insert_color(&old_idx->rb, &c->old_idx);
  73}
  74
  75/**
  76 * insert_old_idx - record an index node obsoleted since the last commit start.
  77 * @c: UBIFS file-system description object
  78 * @lnum: LEB number of obsoleted index node
  79 * @offs: offset of obsoleted index node
  80 *
  81 * Returns %0 on success, and a negative error code on failure.
  82 *
  83 * For recovery, there must always be a complete intact version of the index on
  84 * flash at all times. That is called the "old index". It is the index as at the
  85 * time of the last successful commit. Many of the index nodes in the old index
  86 * may be dirty, but they must not be erased until the next successful commit
  87 * (at which point that index becomes the old index).
  88 *
  89 * That means that the garbage collection and the in-the-gaps method of
  90 * committing must be able to determine if an index node is in the old index.
  91 * Most of the old index nodes can be found by looking up the TNC using the
  92 * 'lookup_znode()' function. However, some of the old index nodes may have
  93 * been deleted from the current index or may have been changed so much that
  94 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  95 * That is what this function does. The RB-tree is ordered by LEB number and
  96 * offset because they uniquely identify the old index node.
  97 */
  98static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  99{
 100	struct ubifs_old_idx *old_idx;
 
 101
 102	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
 103	if (unlikely(!old_idx))
 104		return -ENOMEM;
 105	old_idx->lnum = lnum;
 106	old_idx->offs = offs;
 107	do_insert_old_idx(c, old_idx);
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109	return 0;
 110}
 111
 112/**
 113 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 114 * @c: UBIFS file-system description object
 115 * @znode: znode of obsoleted index node
 116 *
 117 * Returns %0 on success, and a negative error code on failure.
 118 */
 119int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 120{
 121	if (znode->parent) {
 122		struct ubifs_zbranch *zbr;
 123
 124		zbr = &znode->parent->zbranch[znode->iip];
 125		if (zbr->len)
 126			return insert_old_idx(c, zbr->lnum, zbr->offs);
 127	} else
 128		if (c->zroot.len)
 129			return insert_old_idx(c, c->zroot.lnum,
 130					      c->zroot.offs);
 131	return 0;
 132}
 133
 134/**
 135 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 136 * @c: UBIFS file-system description object
 137 * @znode: znode of obsoleted index node
 138 *
 139 * Returns %0 on success, and a negative error code on failure.
 140 */
 141static int ins_clr_old_idx_znode(struct ubifs_info *c,
 142				 struct ubifs_znode *znode)
 143{
 144	int err;
 145
 146	if (znode->parent) {
 147		struct ubifs_zbranch *zbr;
 148
 149		zbr = &znode->parent->zbranch[znode->iip];
 150		if (zbr->len) {
 151			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 152			if (err)
 153				return err;
 154			zbr->lnum = 0;
 155			zbr->offs = 0;
 156			zbr->len = 0;
 157		}
 158	} else
 159		if (c->zroot.len) {
 160			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 161			if (err)
 162				return err;
 163			c->zroot.lnum = 0;
 164			c->zroot.offs = 0;
 165			c->zroot.len = 0;
 166		}
 167	return 0;
 168}
 169
 170/**
 171 * destroy_old_idx - destroy the old_idx RB-tree.
 172 * @c: UBIFS file-system description object
 173 *
 174 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 175 * nodes that were in the index last commit but have since been deleted.  This
 176 * is necessary for recovery i.e. the old index must be kept intact until the
 177 * new index is successfully written.  The old-idx RB-tree is used for the
 178 * in-the-gaps method of writing index nodes and is destroyed every commit.
 179 */
 180void destroy_old_idx(struct ubifs_info *c)
 181{
 182	struct ubifs_old_idx *old_idx, *n;
 
 183
 184	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185		kfree(old_idx);
 186
 187	c->old_idx = RB_ROOT;
 188}
 189
 190/**
 191 * copy_znode - copy a dirty znode.
 192 * @c: UBIFS file-system description object
 193 * @znode: znode to copy
 194 *
 195 * A dirty znode being committed may not be changed, so it is copied.
 196 */
 197static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 198				      struct ubifs_znode *znode)
 199{
 200	struct ubifs_znode *zn;
 201
 202	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
 203	if (unlikely(!zn))
 204		return ERR_PTR(-ENOMEM);
 205
 
 206	zn->cnext = NULL;
 207	__set_bit(DIRTY_ZNODE, &zn->flags);
 208	__clear_bit(COW_ZNODE, &zn->flags);
 209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210	return zn;
 211}
 212
 213/**
 214 * add_idx_dirt - add dirt due to a dirty znode.
 215 * @c: UBIFS file-system description object
 216 * @lnum: LEB number of index node
 217 * @dirt: size of index node
 218 *
 219 * This function updates lprops dirty space and the new size of the index.
 220 */
 221static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 222{
 223	c->calc_idx_sz -= ALIGN(dirt, 8);
 224	return ubifs_add_dirt(c, lnum, dirt);
 225}
 226
 227/**
 228 * replace_znode - replace old znode with new znode.
 229 * @c: UBIFS file-system description object
 230 * @new_zn: new znode
 231 * @old_zn: old znode
 232 * @zbr: the branch of parent znode
 233 *
 234 * Replace old znode with new znode in TNC.
 235 */
 236static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn,
 237			  struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr)
 238{
 239	ubifs_assert(c, !ubifs_zn_obsolete(old_zn));
 240	__set_bit(OBSOLETE_ZNODE, &old_zn->flags);
 241
 242	if (old_zn->level != 0) {
 243		int i;
 244		const int n = new_zn->child_cnt;
 245
 246		/* The children now have new parent */
 247		for (i = 0; i < n; i++) {
 248			struct ubifs_zbranch *child = &new_zn->zbranch[i];
 249
 250			if (child->znode)
 251				child->znode->parent = new_zn;
 252		}
 253	}
 254
 255	zbr->znode = new_zn;
 256	zbr->lnum = 0;
 257	zbr->offs = 0;
 258	zbr->len = 0;
 259
 260	atomic_long_inc(&c->dirty_zn_cnt);
 261}
 262
 263/**
 264 * dirty_cow_znode - ensure a znode is not being committed.
 265 * @c: UBIFS file-system description object
 266 * @zbr: branch of znode to check
 267 *
 268 * Returns dirtied znode on success or negative error code on failure.
 269 */
 270static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 271					   struct ubifs_zbranch *zbr)
 272{
 273	struct ubifs_znode *znode = zbr->znode;
 274	struct ubifs_znode *zn;
 275	int err;
 276
 277	if (!ubifs_zn_cow(znode)) {
 278		/* znode is not being committed */
 279		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 280			atomic_long_inc(&c->dirty_zn_cnt);
 281			atomic_long_dec(&c->clean_zn_cnt);
 282			atomic_long_dec(&ubifs_clean_zn_cnt);
 283			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 284			if (unlikely(err))
 285				return ERR_PTR(err);
 286		}
 287		return znode;
 288	}
 289
 290	zn = copy_znode(c, znode);
 291	if (IS_ERR(zn))
 292		return zn;
 293
 294	if (zbr->len) {
 295		struct ubifs_old_idx *old_idx;
 296
 297		old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
 298		if (unlikely(!old_idx)) {
 299			err = -ENOMEM;
 300			goto out;
 301		}
 302		old_idx->lnum = zbr->lnum;
 303		old_idx->offs = zbr->offs;
 304
 305		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 306		if (err) {
 307			kfree(old_idx);
 308			goto out;
 309		}
 310
 311		do_insert_old_idx(c, old_idx);
 312	}
 313
 314	replace_znode(c, zn, znode, zbr);
 315
 
 
 316	return zn;
 317
 318out:
 319	kfree(zn);
 320	return ERR_PTR(err);
 321}
 322
 323/**
 324 * lnc_add - add a leaf node to the leaf node cache.
 325 * @c: UBIFS file-system description object
 326 * @zbr: zbranch of leaf node
 327 * @node: leaf node
 328 *
 329 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 330 * purpose of the leaf node cache is to save re-reading the same leaf node over
 331 * and over again. Most things are cached by VFS, however the file system must
 332 * cache directory entries for readdir and for resolving hash collisions. The
 333 * present implementation of the leaf node cache is extremely simple, and
 334 * allows for error returns that are not used but that may be needed if a more
 335 * complex implementation is created.
 336 *
 337 * Note, this function does not add the @node object to LNC directly, but
 338 * allocates a copy of the object and adds the copy to LNC. The reason for this
 339 * is that @node has been allocated outside of the TNC subsystem and will be
 340 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 341 * may be changed at any time, e.g. freed by the shrinker.
 342 */
 343static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 344		   const void *node)
 345{
 346	int err;
 347	void *lnc_node;
 348	const struct ubifs_dent_node *dent = node;
 349
 350	ubifs_assert(c, !zbr->leaf);
 351	ubifs_assert(c, zbr->len != 0);
 352	ubifs_assert(c, is_hash_key(c, &zbr->key));
 353
 354	err = ubifs_validate_entry(c, dent);
 355	if (err) {
 356		dump_stack();
 357		ubifs_dump_node(c, dent, zbr->len);
 358		return err;
 359	}
 360
 361	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 362	if (!lnc_node)
 363		/* We don't have to have the cache, so no error */
 364		return 0;
 365
 
 366	zbr->leaf = lnc_node;
 367	return 0;
 368}
 369
 370 /**
 371 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 372 * @c: UBIFS file-system description object
 373 * @zbr: zbranch of leaf node
 374 * @node: leaf node
 375 *
 376 * This function is similar to 'lnc_add()', but it does not create a copy of
 377 * @node but inserts @node to TNC directly.
 378 */
 379static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 380			    void *node)
 381{
 382	int err;
 383
 384	ubifs_assert(c, !zbr->leaf);
 385	ubifs_assert(c, zbr->len != 0);
 386
 387	err = ubifs_validate_entry(c, node);
 388	if (err) {
 389		dump_stack();
 390		ubifs_dump_node(c, node, zbr->len);
 391		return err;
 392	}
 393
 394	zbr->leaf = node;
 395	return 0;
 396}
 397
 398/**
 399 * lnc_free - remove a leaf node from the leaf node cache.
 400 * @zbr: zbranch of leaf node
 
 401 */
 402static void lnc_free(struct ubifs_zbranch *zbr)
 403{
 404	if (!zbr->leaf)
 405		return;
 406	kfree(zbr->leaf);
 407	zbr->leaf = NULL;
 408}
 409
 410/**
 411 * tnc_read_hashed_node - read a "hashed" leaf node.
 412 * @c: UBIFS file-system description object
 413 * @zbr: key and position of the node
 414 * @node: node is returned here
 415 *
 416 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 417 * (in it is there) or from the hash media, in which case the node is also
 418 * added to LNC. Returns zero in case of success or a negative error
 419 * code in case of failure.
 420 */
 421static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 422				void *node)
 423{
 424	int err;
 425
 426	ubifs_assert(c, is_hash_key(c, &zbr->key));
 427
 428	if (zbr->leaf) {
 429		/* Read from the leaf node cache */
 430		ubifs_assert(c, zbr->len != 0);
 431		memcpy(node, zbr->leaf, zbr->len);
 432		return 0;
 433	}
 434
 435	if (c->replaying) {
 436		err = fallible_read_node(c, &zbr->key, zbr, node);
 437		/*
 438		 * When the node was not found, return -ENOENT, 0 otherwise.
 439		 * Negative return codes stay as-is.
 440		 */
 441		if (err == 0)
 442			err = -ENOENT;
 443		else if (err == 1)
 444			err = 0;
 445	} else {
 446		err = ubifs_tnc_read_node(c, zbr, node);
 447	}
 448	if (err)
 449		return err;
 450
 451	/* Add the node to the leaf node cache */
 452	err = lnc_add(c, zbr, node);
 453	return err;
 454}
 455
 456/**
 457 * try_read_node - read a node if it is a node.
 458 * @c: UBIFS file-system description object
 459 * @buf: buffer to read to
 460 * @type: node type
 461 * @zbr: the zbranch describing the node to read
 
 
 462 *
 463 * This function tries to read a node of known type and length, checks it and
 464 * stores it in @buf. This function returns %1 if a node is present and %0 if
 465 * a node is not present. A negative error code is returned for I/O errors.
 466 * This function performs that same function as ubifs_read_node except that
 467 * it does not require that there is actually a node present and instead
 468 * the return code indicates if a node was read.
 469 *
 470 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 471 * is true (it is controlled by corresponding mount option). However, if
 472 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 473 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 474 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 475 * journal nodes (when replying the journal or doing the recovery) and the
 476 * journal nodes may potentially be corrupted, so checking is required.
 477 */
 478static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 479			 struct ubifs_zbranch *zbr)
 480{
 481	int len = zbr->len;
 482	int lnum = zbr->lnum;
 483	int offs = zbr->offs;
 484	int err, node_len;
 485	struct ubifs_ch *ch = buf;
 486	uint32_t crc, node_crc;
 487
 488	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 489
 490	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 491	if (err) {
 492		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 493			  type, lnum, offs, err);
 494		return err;
 495	}
 496
 497	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 498		return 0;
 499
 500	if (ch->node_type != type)
 501		return 0;
 502
 503	node_len = le32_to_cpu(ch->len);
 504	if (node_len != len)
 505		return 0;
 506
 507	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
 508	    c->remounting_rw) {
 509		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 510		node_crc = le32_to_cpu(ch->crc);
 511		if (crc != node_crc)
 512			return 0;
 513	}
 514
 515	err = ubifs_node_check_hash(c, buf, zbr->hash);
 516	if (err) {
 517		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
 518		return 0;
 519	}
 520
 521	return 1;
 522}
 523
 524/**
 525 * fallible_read_node - try to read a leaf node.
 526 * @c: UBIFS file-system description object
 527 * @key:  key of node to read
 528 * @zbr:  position of node
 529 * @node: node returned
 530 *
 531 * This function tries to read a node and returns %1 if the node is read, %0
 532 * if the node is not present, and a negative error code in the case of error.
 533 */
 534static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 535			      struct ubifs_zbranch *zbr, void *node)
 536{
 537	int ret;
 538
 539	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 540
 541	ret = try_read_node(c, node, key_type(c, key), zbr);
 
 542	if (ret == 1) {
 543		union ubifs_key node_key;
 544		struct ubifs_dent_node *dent = node;
 545
 546		/* All nodes have key in the same place */
 547		key_read(c, &dent->key, &node_key);
 548		if (keys_cmp(c, key, &node_key) != 0)
 549			ret = 0;
 550	}
 551	if (ret == 0 && c->replaying)
 552		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 553			zbr->lnum, zbr->offs, zbr->len);
 554	return ret;
 555}
 556
 557/**
 558 * matches_name - determine if a direntry or xattr entry matches a given name.
 559 * @c: UBIFS file-system description object
 560 * @zbr: zbranch of dent
 561 * @nm: name to match
 562 *
 563 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 564 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 565 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 566 * of failure, a negative error code is returned.
 567 */
 568static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 569			const struct fscrypt_name *nm)
 570{
 571	struct ubifs_dent_node *dent;
 572	int nlen, err;
 573
 574	/* If possible, match against the dent in the leaf node cache */
 575	if (!zbr->leaf) {
 576		dent = kmalloc(zbr->len, GFP_NOFS);
 577		if (!dent)
 578			return -ENOMEM;
 579
 580		err = ubifs_tnc_read_node(c, zbr, dent);
 581		if (err)
 582			goto out_free;
 583
 584		/* Add the node to the leaf node cache */
 585		err = lnc_add_directly(c, zbr, dent);
 586		if (err)
 587			goto out_free;
 588	} else
 589		dent = zbr->leaf;
 590
 591	nlen = le16_to_cpu(dent->nlen);
 592	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 593	if (err == 0) {
 594		if (nlen == fname_len(nm))
 595			return NAME_MATCHES;
 596		else if (nlen < fname_len(nm))
 597			return NAME_LESS;
 598		else
 599			return NAME_GREATER;
 600	} else if (err < 0)
 601		return NAME_LESS;
 602	else
 603		return NAME_GREATER;
 604
 605out_free:
 606	kfree(dent);
 607	return err;
 608}
 609
 610/**
 611 * get_znode - get a TNC znode that may not be loaded yet.
 612 * @c: UBIFS file-system description object
 613 * @znode: parent znode
 614 * @n: znode branch slot number
 615 *
 616 * This function returns the znode or a negative error code.
 617 */
 618static struct ubifs_znode *get_znode(struct ubifs_info *c,
 619				     struct ubifs_znode *znode, int n)
 620{
 621	struct ubifs_zbranch *zbr;
 622
 623	zbr = &znode->zbranch[n];
 624	if (zbr->znode)
 625		znode = zbr->znode;
 626	else
 627		znode = ubifs_load_znode(c, zbr, znode, n);
 628	return znode;
 629}
 630
 631/**
 632 * tnc_next - find next TNC entry.
 633 * @c: UBIFS file-system description object
 634 * @zn: znode is passed and returned here
 635 * @n: znode branch slot number is passed and returned here
 636 *
 637 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 638 * no next entry, or a negative error code otherwise.
 639 */
 640static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 641{
 642	struct ubifs_znode *znode = *zn;
 643	int nn = *n;
 644
 645	nn += 1;
 646	if (nn < znode->child_cnt) {
 647		*n = nn;
 648		return 0;
 649	}
 650	while (1) {
 651		struct ubifs_znode *zp;
 652
 653		zp = znode->parent;
 654		if (!zp)
 655			return -ENOENT;
 656		nn = znode->iip + 1;
 657		znode = zp;
 658		if (nn < znode->child_cnt) {
 659			znode = get_znode(c, znode, nn);
 660			if (IS_ERR(znode))
 661				return PTR_ERR(znode);
 662			while (znode->level != 0) {
 663				znode = get_znode(c, znode, 0);
 664				if (IS_ERR(znode))
 665					return PTR_ERR(znode);
 666			}
 667			nn = 0;
 668			break;
 669		}
 670	}
 671	*zn = znode;
 672	*n = nn;
 673	return 0;
 674}
 675
 676/**
 677 * tnc_prev - find previous TNC entry.
 678 * @c: UBIFS file-system description object
 679 * @zn: znode is returned here
 680 * @n: znode branch slot number is passed and returned here
 681 *
 682 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 683 * there is no next entry, or a negative error code otherwise.
 684 */
 685static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 686{
 687	struct ubifs_znode *znode = *zn;
 688	int nn = *n;
 689
 690	if (nn > 0) {
 691		*n = nn - 1;
 692		return 0;
 693	}
 694	while (1) {
 695		struct ubifs_znode *zp;
 696
 697		zp = znode->parent;
 698		if (!zp)
 699			return -ENOENT;
 700		nn = znode->iip - 1;
 701		znode = zp;
 702		if (nn >= 0) {
 703			znode = get_znode(c, znode, nn);
 704			if (IS_ERR(znode))
 705				return PTR_ERR(znode);
 706			while (znode->level != 0) {
 707				nn = znode->child_cnt - 1;
 708				znode = get_znode(c, znode, nn);
 709				if (IS_ERR(znode))
 710					return PTR_ERR(znode);
 711			}
 712			nn = znode->child_cnt - 1;
 713			break;
 714		}
 715	}
 716	*zn = znode;
 717	*n = nn;
 718	return 0;
 719}
 720
 721/**
 722 * resolve_collision - resolve a collision.
 723 * @c: UBIFS file-system description object
 724 * @key: key of a directory or extended attribute entry
 725 * @zn: znode is returned here
 726 * @n: zbranch number is passed and returned here
 727 * @nm: name of the entry
 728 *
 729 * This function is called for "hashed" keys to make sure that the found key
 730 * really corresponds to the looked up node (directory or extended attribute
 731 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 732 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 733 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 734 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 735 * previous one. A negative error code is returned on failures.
 736 */
 737static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 738			     struct ubifs_znode **zn, int *n,
 739			     const struct fscrypt_name *nm)
 740{
 741	int err;
 742
 743	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 744	if (unlikely(err < 0))
 745		return err;
 746	if (err == NAME_MATCHES)
 747		return 1;
 748
 749	if (err == NAME_GREATER) {
 750		/* Look left */
 751		while (1) {
 752			err = tnc_prev(c, zn, n);
 753			if (err == -ENOENT) {
 754				ubifs_assert(c, *n == 0);
 755				*n = -1;
 756				return 0;
 757			}
 758			if (err < 0)
 759				return err;
 760			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 761				/*
 762				 * We have found the branch after which we would
 763				 * like to insert, but inserting in this znode
 764				 * may still be wrong. Consider the following 3
 765				 * znodes, in the case where we are resolving a
 766				 * collision with Key2.
 767				 *
 768				 *                  znode zp
 769				 *            ----------------------
 770				 * level 1     |  Key0  |  Key1  |
 771				 *            -----------------------
 772				 *                 |            |
 773				 *       znode za  |            |  znode zb
 774				 *          ------------      ------------
 775				 * level 0  |  Key0  |        |  Key2  |
 776				 *          ------------      ------------
 777				 *
 778				 * The lookup finds Key2 in znode zb. Lets say
 779				 * there is no match and the name is greater so
 780				 * we look left. When we find Key0, we end up
 781				 * here. If we return now, we will insert into
 782				 * znode za at slot n = 1.  But that is invalid
 783				 * according to the parent's keys.  Key2 must
 784				 * be inserted into znode zb.
 785				 *
 786				 * Note, this problem is not relevant for the
 787				 * case when we go right, because
 788				 * 'tnc_insert()' would correct the parent key.
 789				 */
 790				if (*n == (*zn)->child_cnt - 1) {
 791					err = tnc_next(c, zn, n);
 792					if (err) {
 793						/* Should be impossible */
 794						ubifs_assert(c, 0);
 795						if (err == -ENOENT)
 796							err = -EINVAL;
 797						return err;
 798					}
 799					ubifs_assert(c, *n == 0);
 800					*n = -1;
 801				}
 802				return 0;
 803			}
 804			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 805			if (err < 0)
 806				return err;
 807			if (err == NAME_LESS)
 808				return 0;
 809			if (err == NAME_MATCHES)
 810				return 1;
 811			ubifs_assert(c, err == NAME_GREATER);
 812		}
 813	} else {
 814		int nn = *n;
 815		struct ubifs_znode *znode = *zn;
 816
 817		/* Look right */
 818		while (1) {
 819			err = tnc_next(c, &znode, &nn);
 820			if (err == -ENOENT)
 821				return 0;
 822			if (err < 0)
 823				return err;
 824			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 825				return 0;
 826			err = matches_name(c, &znode->zbranch[nn], nm);
 827			if (err < 0)
 828				return err;
 829			if (err == NAME_GREATER)
 830				return 0;
 831			*zn = znode;
 832			*n = nn;
 833			if (err == NAME_MATCHES)
 834				return 1;
 835			ubifs_assert(c, err == NAME_LESS);
 836		}
 837	}
 838}
 839
 840/**
 841 * fallible_matches_name - determine if a dent matches a given name.
 842 * @c: UBIFS file-system description object
 843 * @zbr: zbranch of dent
 844 * @nm: name to match
 845 *
 846 * This is a "fallible" version of 'matches_name()' function which does not
 847 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 848 *
 849 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 850 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 851 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 852 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 853 * error code is returned in case of failure.
 854 */
 855static int fallible_matches_name(struct ubifs_info *c,
 856				 struct ubifs_zbranch *zbr,
 857				 const struct fscrypt_name *nm)
 858{
 859	struct ubifs_dent_node *dent;
 860	int nlen, err;
 861
 862	/* If possible, match against the dent in the leaf node cache */
 863	if (!zbr->leaf) {
 864		dent = kmalloc(zbr->len, GFP_NOFS);
 865		if (!dent)
 866			return -ENOMEM;
 867
 868		err = fallible_read_node(c, &zbr->key, zbr, dent);
 869		if (err < 0)
 870			goto out_free;
 871		if (err == 0) {
 872			/* The node was not present */
 873			err = NOT_ON_MEDIA;
 874			goto out_free;
 875		}
 876		ubifs_assert(c, err == 1);
 877
 878		err = lnc_add_directly(c, zbr, dent);
 879		if (err)
 880			goto out_free;
 881	} else
 882		dent = zbr->leaf;
 883
 884	nlen = le16_to_cpu(dent->nlen);
 885	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 886	if (err == 0) {
 887		if (nlen == fname_len(nm))
 888			return NAME_MATCHES;
 889		else if (nlen < fname_len(nm))
 890			return NAME_LESS;
 891		else
 892			return NAME_GREATER;
 893	} else if (err < 0)
 894		return NAME_LESS;
 895	else
 896		return NAME_GREATER;
 897
 898out_free:
 899	kfree(dent);
 900	return err;
 901}
 902
 903/**
 904 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 905 * @c: UBIFS file-system description object
 906 * @key: key
 907 * @zn: znode is returned here
 908 * @n: branch number is passed and returned here
 909 * @nm: name of directory entry
 910 * @adding: indicates caller is adding a key to the TNC
 911 *
 912 * This is a "fallible" version of the 'resolve_collision()' function which
 913 * does not panic if one of the nodes referred to by TNC does not exist on the
 914 * media. This may happen when replaying the journal if a deleted node was
 915 * Garbage-collected and the commit was not done. A branch that refers to a node
 916 * that is not present is called a dangling branch. The following are the return
 917 * codes for this function:
 918 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 919 *    branch;
 920 *  o if we are @adding and @nm was not found, %0 is returned;
 921 *  o if we are not @adding and @nm was not found, but a dangling branch was
 922 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 923 *  o a negative error code is returned in case of failure.
 924 */
 925static int fallible_resolve_collision(struct ubifs_info *c,
 926				      const union ubifs_key *key,
 927				      struct ubifs_znode **zn, int *n,
 928				      const struct fscrypt_name *nm,
 929				      int adding)
 930{
 931	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 932	int o_n, err, cmp, unsure = 0, nn = *n;
 933
 934	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 935	if (unlikely(cmp < 0))
 936		return cmp;
 937	if (cmp == NAME_MATCHES)
 938		return 1;
 939	if (cmp == NOT_ON_MEDIA) {
 940		o_znode = znode;
 941		o_n = nn;
 942		/*
 943		 * We are unlucky and hit a dangling branch straight away.
 944		 * Now we do not really know where to go to find the needed
 945		 * branch - to the left or to the right. Well, let's try left.
 946		 */
 947		unsure = 1;
 948	} else if (!adding)
 949		unsure = 1; /* Remove a dangling branch wherever it is */
 950
 951	if (cmp == NAME_GREATER || unsure) {
 952		/* Look left */
 953		while (1) {
 954			err = tnc_prev(c, zn, n);
 955			if (err == -ENOENT) {
 956				ubifs_assert(c, *n == 0);
 957				*n = -1;
 958				break;
 959			}
 960			if (err < 0)
 961				return err;
 962			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 963				/* See comments in 'resolve_collision()' */
 964				if (*n == (*zn)->child_cnt - 1) {
 965					err = tnc_next(c, zn, n);
 966					if (err) {
 967						/* Should be impossible */
 968						ubifs_assert(c, 0);
 969						if (err == -ENOENT)
 970							err = -EINVAL;
 971						return err;
 972					}
 973					ubifs_assert(c, *n == 0);
 974					*n = -1;
 975				}
 976				break;
 977			}
 978			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 979			if (err < 0)
 980				return err;
 981			if (err == NAME_MATCHES)
 982				return 1;
 983			if (err == NOT_ON_MEDIA) {
 984				o_znode = *zn;
 985				o_n = *n;
 986				continue;
 987			}
 988			if (!adding)
 989				continue;
 990			if (err == NAME_LESS)
 991				break;
 992			else
 993				unsure = 0;
 994		}
 995	}
 996
 997	if (cmp == NAME_LESS || unsure) {
 998		/* Look right */
 999		*zn = znode;
1000		*n = nn;
1001		while (1) {
1002			err = tnc_next(c, &znode, &nn);
1003			if (err == -ENOENT)
1004				break;
1005			if (err < 0)
1006				return err;
1007			if (keys_cmp(c, &znode->zbranch[nn].key, key))
1008				break;
1009			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
1010			if (err < 0)
1011				return err;
1012			if (err == NAME_GREATER)
1013				break;
1014			*zn = znode;
1015			*n = nn;
1016			if (err == NAME_MATCHES)
1017				return 1;
1018			if (err == NOT_ON_MEDIA) {
1019				o_znode = znode;
1020				o_n = nn;
1021			}
1022		}
1023	}
1024
1025	/* Never match a dangling branch when adding */
1026	if (adding || !o_znode)
1027		return 0;
1028
1029	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1030		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1031		o_znode->zbranch[o_n].len);
1032	*zn = o_znode;
1033	*n = o_n;
1034	return 1;
1035}
1036
1037/**
1038 * matches_position - determine if a zbranch matches a given position.
1039 * @zbr: zbranch of dent
1040 * @lnum: LEB number of dent to match
1041 * @offs: offset of dent to match
1042 *
1043 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1044 */
1045static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1046{
1047	if (zbr->lnum == lnum && zbr->offs == offs)
1048		return 1;
1049	else
1050		return 0;
1051}
1052
1053/**
1054 * resolve_collision_directly - resolve a collision directly.
1055 * @c: UBIFS file-system description object
1056 * @key: key of directory entry
1057 * @zn: znode is passed and returned here
1058 * @n: zbranch number is passed and returned here
1059 * @lnum: LEB number of dent node to match
1060 * @offs: offset of dent node to match
1061 *
1062 * This function is used for "hashed" keys to make sure the found directory or
1063 * extended attribute entry node is what was looked for. It is used when the
1064 * flash address of the right node is known (@lnum:@offs) which makes it much
1065 * easier to resolve collisions (no need to read entries and match full
1066 * names). This function returns %1 and sets @zn and @n if the collision is
1067 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1068 * previous directory entry. Otherwise a negative error code is returned.
1069 */
1070static int resolve_collision_directly(struct ubifs_info *c,
1071				      const union ubifs_key *key,
1072				      struct ubifs_znode **zn, int *n,
1073				      int lnum, int offs)
1074{
1075	struct ubifs_znode *znode;
1076	int nn, err;
1077
1078	znode = *zn;
1079	nn = *n;
1080	if (matches_position(&znode->zbranch[nn], lnum, offs))
1081		return 1;
1082
1083	/* Look left */
1084	while (1) {
1085		err = tnc_prev(c, &znode, &nn);
1086		if (err == -ENOENT)
1087			break;
1088		if (err < 0)
1089			return err;
1090		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1091			break;
1092		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1093			*zn = znode;
1094			*n = nn;
1095			return 1;
1096		}
1097	}
1098
1099	/* Look right */
1100	znode = *zn;
1101	nn = *n;
1102	while (1) {
1103		err = tnc_next(c, &znode, &nn);
1104		if (err == -ENOENT)
1105			return 0;
1106		if (err < 0)
1107			return err;
1108		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1109			return 0;
1110		*zn = znode;
1111		*n = nn;
1112		if (matches_position(&znode->zbranch[nn], lnum, offs))
1113			return 1;
1114	}
1115}
1116
1117/**
1118 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1119 * @c: UBIFS file-system description object
1120 * @znode: znode to dirty
1121 *
1122 * If we do not have a unique key that resides in a znode, then we cannot
1123 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1124 * This function records the path back to the last dirty ancestor, and then
1125 * dirties the znodes on that path.
1126 */
1127static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1128					       struct ubifs_znode *znode)
1129{
1130	struct ubifs_znode *zp;
1131	int *path = c->bottom_up_buf, p = 0;
1132
1133	ubifs_assert(c, c->zroot.znode);
1134	ubifs_assert(c, znode);
1135	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1136		kfree(c->bottom_up_buf);
1137		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1138						 sizeof(int),
1139						 GFP_NOFS);
1140		if (!c->bottom_up_buf)
1141			return ERR_PTR(-ENOMEM);
1142		path = c->bottom_up_buf;
1143	}
1144	if (c->zroot.znode->level) {
1145		/* Go up until parent is dirty */
1146		while (1) {
1147			int n;
1148
1149			zp = znode->parent;
1150			if (!zp)
1151				break;
1152			n = znode->iip;
1153			ubifs_assert(c, p < c->zroot.znode->level);
1154			path[p++] = n;
1155			if (!zp->cnext && ubifs_zn_dirty(znode))
1156				break;
1157			znode = zp;
1158		}
1159	}
1160
1161	/* Come back down, dirtying as we go */
1162	while (1) {
1163		struct ubifs_zbranch *zbr;
1164
1165		zp = znode->parent;
1166		if (zp) {
1167			ubifs_assert(c, path[p - 1] >= 0);
1168			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1169			zbr = &zp->zbranch[path[--p]];
1170			znode = dirty_cow_znode(c, zbr);
1171		} else {
1172			ubifs_assert(c, znode == c->zroot.znode);
1173			znode = dirty_cow_znode(c, &c->zroot);
1174		}
1175		if (IS_ERR(znode) || !p)
1176			break;
1177		ubifs_assert(c, path[p - 1] >= 0);
1178		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1179		znode = znode->zbranch[path[p - 1]].znode;
1180	}
1181
1182	return znode;
1183}
1184
1185/**
1186 * ubifs_lookup_level0 - search for zero-level znode.
1187 * @c: UBIFS file-system description object
1188 * @key:  key to lookup
1189 * @zn: znode is returned here
1190 * @n: znode branch slot number is returned here
1191 *
1192 * This function looks up the TNC tree and search for zero-level znode which
1193 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1194 * cases:
1195 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1196 *     is returned and slot number of the matched branch is stored in @n;
1197 *   o not exact match, which means that zero-level znode does not contain
1198 *     @key, then %0 is returned and slot number of the closest branch or %-1
1199 *     is stored in @n; In this case calling tnc_next() is mandatory.
1200 *   o @key is so small that it is even less than the lowest key of the
1201 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1202 *
1203 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1204 * function reads corresponding indexing nodes and inserts them to TNC. In
1205 * case of failure, a negative error code is returned.
1206 */
1207int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1208			struct ubifs_znode **zn, int *n)
1209{
1210	int err, exact;
1211	struct ubifs_znode *znode;
1212	time64_t time = ktime_get_seconds();
1213
1214	dbg_tnck(key, "search key ");
1215	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1216
1217	znode = c->zroot.znode;
1218	if (unlikely(!znode)) {
1219		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1220		if (IS_ERR(znode))
1221			return PTR_ERR(znode);
1222	}
1223
1224	znode->time = time;
1225
1226	while (1) {
1227		struct ubifs_zbranch *zbr;
1228
1229		exact = ubifs_search_zbranch(c, znode, key, n);
1230
1231		if (znode->level == 0)
1232			break;
1233
1234		if (*n < 0)
1235			*n = 0;
1236		zbr = &znode->zbranch[*n];
1237
1238		if (zbr->znode) {
1239			znode->time = time;
1240			znode = zbr->znode;
1241			continue;
1242		}
1243
1244		/* znode is not in TNC cache, load it from the media */
1245		znode = ubifs_load_znode(c, zbr, znode, *n);
1246		if (IS_ERR(znode))
1247			return PTR_ERR(znode);
1248	}
1249
1250	*zn = znode;
1251	if (exact || !is_hash_key(c, key) || *n != -1) {
1252		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1253		return exact;
1254	}
1255
1256	/*
1257	 * Here is a tricky place. We have not found the key and this is a
1258	 * "hashed" key, which may collide. The rest of the code deals with
1259	 * situations like this:
1260	 *
1261	 *                  | 3 | 5 |
1262	 *                  /       \
1263	 *          | 3 | 5 |      | 6 | 7 | (x)
1264	 *
1265	 * Or more a complex example:
1266	 *
1267	 *                | 1 | 5 |
1268	 *                /       \
1269	 *       | 1 | 3 |         | 5 | 8 |
1270	 *              \           /
1271	 *          | 5 | 5 |   | 6 | 7 | (x)
1272	 *
1273	 * In the examples, if we are looking for key "5", we may reach nodes
1274	 * marked with "(x)". In this case what we have do is to look at the
1275	 * left and see if there is "5" key there. If there is, we have to
1276	 * return it.
1277	 *
1278	 * Note, this whole situation is possible because we allow to have
1279	 * elements which are equivalent to the next key in the parent in the
1280	 * children of current znode. For example, this happens if we split a
1281	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1282	 * like this:
1283	 *                      | 3 | 5 |
1284	 *                       /     \
1285	 *                | 3 | 5 |   | 5 | 6 | 7 |
1286	 *                              ^
1287	 * And this becomes what is at the first "picture" after key "5" marked
1288	 * with "^" is removed. What could be done is we could prohibit
1289	 * splitting in the middle of the colliding sequence. Also, when
1290	 * removing the leftmost key, we would have to correct the key of the
1291	 * parent node, which would introduce additional complications. Namely,
1292	 * if we changed the leftmost key of the parent znode, the garbage
1293	 * collector would be unable to find it (GC is doing this when GC'ing
1294	 * indexing LEBs). Although we already have an additional RB-tree where
1295	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1296	 * after the commit. But anyway, this does not look easy to implement
1297	 * so we did not try this.
1298	 */
1299	err = tnc_prev(c, &znode, n);
1300	if (err == -ENOENT) {
1301		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1302		*n = -1;
1303		return 0;
1304	}
1305	if (unlikely(err < 0))
1306		return err;
1307	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1308		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1309		*n = -1;
1310		return 0;
1311	}
1312
1313	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1314	*zn = znode;
1315	return 1;
1316}
1317
1318/**
1319 * lookup_level0_dirty - search for zero-level znode dirtying.
1320 * @c: UBIFS file-system description object
1321 * @key:  key to lookup
1322 * @zn: znode is returned here
1323 * @n: znode branch slot number is returned here
1324 *
1325 * This function looks up the TNC tree and search for zero-level znode which
1326 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1327 * cases:
1328 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1329 *     is returned and slot number of the matched branch is stored in @n;
1330 *   o not exact match, which means that zero-level znode does not contain @key
1331 *     then %0 is returned and slot number of the closed branch is stored in
1332 *     @n;
1333 *   o @key is so small that it is even less than the lowest key of the
1334 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1335 *
1336 * Additionally all znodes in the path from the root to the located zero-level
1337 * znode are marked as dirty.
1338 *
1339 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1340 * function reads corresponding indexing nodes and inserts them to TNC. In
1341 * case of failure, a negative error code is returned.
1342 */
1343static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1344			       struct ubifs_znode **zn, int *n)
1345{
1346	int err, exact;
1347	struct ubifs_znode *znode;
1348	time64_t time = ktime_get_seconds();
1349
1350	dbg_tnck(key, "search and dirty key ");
1351
1352	znode = c->zroot.znode;
1353	if (unlikely(!znode)) {
1354		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1355		if (IS_ERR(znode))
1356			return PTR_ERR(znode);
1357	}
1358
1359	znode = dirty_cow_znode(c, &c->zroot);
1360	if (IS_ERR(znode))
1361		return PTR_ERR(znode);
1362
1363	znode->time = time;
1364
1365	while (1) {
1366		struct ubifs_zbranch *zbr;
1367
1368		exact = ubifs_search_zbranch(c, znode, key, n);
1369
1370		if (znode->level == 0)
1371			break;
1372
1373		if (*n < 0)
1374			*n = 0;
1375		zbr = &znode->zbranch[*n];
1376
1377		if (zbr->znode) {
1378			znode->time = time;
1379			znode = dirty_cow_znode(c, zbr);
1380			if (IS_ERR(znode))
1381				return PTR_ERR(znode);
1382			continue;
1383		}
1384
1385		/* znode is not in TNC cache, load it from the media */
1386		znode = ubifs_load_znode(c, zbr, znode, *n);
1387		if (IS_ERR(znode))
1388			return PTR_ERR(znode);
1389		znode = dirty_cow_znode(c, zbr);
1390		if (IS_ERR(znode))
1391			return PTR_ERR(znode);
1392	}
1393
1394	*zn = znode;
1395	if (exact || !is_hash_key(c, key) || *n != -1) {
1396		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1397		return exact;
1398	}
1399
1400	/*
1401	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1402	 * code.
1403	 */
1404	err = tnc_prev(c, &znode, n);
1405	if (err == -ENOENT) {
1406		*n = -1;
1407		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1408		return 0;
1409	}
1410	if (unlikely(err < 0))
1411		return err;
1412	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1413		*n = -1;
1414		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1415		return 0;
1416	}
1417
1418	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1419		znode = dirty_cow_bottom_up(c, znode);
1420		if (IS_ERR(znode))
1421			return PTR_ERR(znode);
1422	}
1423
1424	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1425	*zn = znode;
1426	return 1;
1427}
1428
1429/**
1430 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1431 * @c: UBIFS file-system description object
1432 * @lnum: LEB number
1433 * @gc_seq1: garbage collection sequence number
1434 *
1435 * This function determines if @lnum may have been garbage collected since
1436 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1437 * %0 is returned.
1438 */
1439static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1440{
1441	int gc_seq2, gced_lnum;
1442
1443	gced_lnum = c->gced_lnum;
1444	smp_rmb();
1445	gc_seq2 = c->gc_seq;
1446	/* Same seq means no GC */
1447	if (gc_seq1 == gc_seq2)
1448		return 0;
1449	/* Different by more than 1 means we don't know */
1450	if (gc_seq1 + 1 != gc_seq2)
1451		return 1;
1452	/*
1453	 * We have seen the sequence number has increased by 1. Now we need to
1454	 * be sure we read the right LEB number, so read it again.
1455	 */
1456	smp_rmb();
1457	if (gced_lnum != c->gced_lnum)
1458		return 1;
1459	/* Finally we can check lnum */
1460	if (gced_lnum == lnum)
1461		return 1;
1462	return 0;
1463}
1464
1465/**
1466 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1467 * @c: UBIFS file-system description object
1468 * @key: node key to lookup
1469 * @node: the node is returned here
1470 * @lnum: LEB number is returned here
1471 * @offs: offset is returned here
1472 *
1473 * This function looks up and reads node with key @key. The caller has to make
1474 * sure the @node buffer is large enough to fit the node. Returns zero in case
1475 * of success, %-ENOENT if the node was not found, and a negative error code in
1476 * case of failure. The node location can be returned in @lnum and @offs.
1477 */
1478int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1479		     void *node, int *lnum, int *offs)
1480{
1481	int found, n, err, safely = 0, gc_seq1;
1482	struct ubifs_znode *znode;
1483	struct ubifs_zbranch zbr, *zt;
1484
1485again:
1486	mutex_lock(&c->tnc_mutex);
1487	found = ubifs_lookup_level0(c, key, &znode, &n);
1488	if (!found) {
1489		err = -ENOENT;
1490		goto out;
1491	} else if (found < 0) {
1492		err = found;
1493		goto out;
1494	}
1495	zt = &znode->zbranch[n];
1496	if (lnum) {
1497		*lnum = zt->lnum;
1498		*offs = zt->offs;
1499	}
1500	if (is_hash_key(c, key)) {
1501		/*
1502		 * In this case the leaf node cache gets used, so we pass the
1503		 * address of the zbranch and keep the mutex locked
1504		 */
1505		err = tnc_read_hashed_node(c, zt, node);
1506		goto out;
1507	}
1508	if (safely) {
1509		err = ubifs_tnc_read_node(c, zt, node);
1510		goto out;
1511	}
1512	/* Drop the TNC mutex prematurely and race with garbage collection */
1513	zbr = znode->zbranch[n];
1514	gc_seq1 = c->gc_seq;
1515	mutex_unlock(&c->tnc_mutex);
1516
1517	if (ubifs_get_wbuf(c, zbr.lnum)) {
1518		/* We do not GC journal heads */
1519		err = ubifs_tnc_read_node(c, &zbr, node);
1520		return err;
1521	}
1522
1523	err = fallible_read_node(c, key, &zbr, node);
1524	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1525		/*
1526		 * The node may have been GC'ed out from under us so try again
1527		 * while keeping the TNC mutex locked.
1528		 */
1529		safely = 1;
1530		goto again;
1531	}
1532	return 0;
1533
1534out:
1535	mutex_unlock(&c->tnc_mutex);
1536	return err;
1537}
1538
1539/**
1540 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1541 * @c: UBIFS file-system description object
1542 * @bu: bulk-read parameters and results
1543 *
1544 * Lookup consecutive data node keys for the same inode that reside
1545 * consecutively in the same LEB. This function returns zero in case of success
1546 * and a negative error code in case of failure.
1547 *
1548 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1549 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1550 * maximum possible amount of nodes for bulk-read.
1551 */
1552int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1553{
1554	int n, err = 0, lnum = -1, offs;
1555	int len;
1556	unsigned int block = key_block(c, &bu->key);
1557	struct ubifs_znode *znode;
1558
1559	bu->cnt = 0;
1560	bu->blk_cnt = 0;
1561	bu->eof = 0;
1562
1563	mutex_lock(&c->tnc_mutex);
1564	/* Find first key */
1565	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1566	if (err < 0)
1567		goto out;
1568	if (err) {
1569		/* Key found */
1570		len = znode->zbranch[n].len;
1571		/* The buffer must be big enough for at least 1 node */
1572		if (len > bu->buf_len) {
1573			err = -EINVAL;
1574			goto out;
1575		}
1576		/* Add this key */
1577		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1578		bu->blk_cnt += 1;
1579		lnum = znode->zbranch[n].lnum;
1580		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1581	}
1582	while (1) {
1583		struct ubifs_zbranch *zbr;
1584		union ubifs_key *key;
1585		unsigned int next_block;
1586
1587		/* Find next key */
1588		err = tnc_next(c, &znode, &n);
1589		if (err)
1590			goto out;
1591		zbr = &znode->zbranch[n];
1592		key = &zbr->key;
1593		/* See if there is another data key for this file */
1594		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1595		    key_type(c, key) != UBIFS_DATA_KEY) {
1596			err = -ENOENT;
1597			goto out;
1598		}
1599		if (lnum < 0) {
1600			/* First key found */
1601			lnum = zbr->lnum;
1602			offs = ALIGN(zbr->offs + zbr->len, 8);
1603			len = zbr->len;
1604			if (len > bu->buf_len) {
1605				err = -EINVAL;
1606				goto out;
1607			}
1608		} else {
1609			/*
1610			 * The data nodes must be in consecutive positions in
1611			 * the same LEB.
1612			 */
1613			if (zbr->lnum != lnum || zbr->offs != offs)
1614				goto out;
1615			offs += ALIGN(zbr->len, 8);
1616			len = ALIGN(len, 8) + zbr->len;
1617			/* Must not exceed buffer length */
1618			if (len > bu->buf_len)
1619				goto out;
1620		}
1621		/* Allow for holes */
1622		next_block = key_block(c, key);
1623		bu->blk_cnt += (next_block - block - 1);
1624		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1625			goto out;
1626		block = next_block;
1627		/* Add this key */
1628		bu->zbranch[bu->cnt++] = *zbr;
1629		bu->blk_cnt += 1;
1630		/* See if we have room for more */
1631		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1632			goto out;
1633		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1634			goto out;
1635	}
1636out:
1637	if (err == -ENOENT) {
1638		bu->eof = 1;
1639		err = 0;
1640	}
1641	bu->gc_seq = c->gc_seq;
1642	mutex_unlock(&c->tnc_mutex);
1643	if (err)
1644		return err;
1645	/*
1646	 * An enormous hole could cause bulk-read to encompass too many
1647	 * page cache pages, so limit the number here.
1648	 */
1649	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1650		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1651	/*
1652	 * Ensure that bulk-read covers a whole number of page cache
1653	 * pages.
1654	 */
1655	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1656	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1657		return 0;
1658	if (bu->eof) {
1659		/* At the end of file we can round up */
1660		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1661		return 0;
1662	}
1663	/* Exclude data nodes that do not make up a whole page cache page */
1664	block = key_block(c, &bu->key) + bu->blk_cnt;
1665	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1666	while (bu->cnt) {
1667		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1668			break;
1669		bu->cnt -= 1;
1670	}
1671	return 0;
1672}
1673
1674/**
1675 * read_wbuf - bulk-read from a LEB with a wbuf.
1676 * @wbuf: wbuf that may overlap the read
1677 * @buf: buffer into which to read
1678 * @len: read length
1679 * @lnum: LEB number from which to read
1680 * @offs: offset from which to read
1681 *
1682 * This functions returns %0 on success or a negative error code on failure.
1683 */
1684static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1685		     int offs)
1686{
1687	const struct ubifs_info *c = wbuf->c;
1688	int rlen, overlap;
1689
1690	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1691	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1692	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1693	ubifs_assert(c, offs + len <= c->leb_size);
1694
1695	spin_lock(&wbuf->lock);
1696	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1697	if (!overlap) {
1698		/* We may safely unlock the write-buffer and read the data */
1699		spin_unlock(&wbuf->lock);
1700		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1701	}
1702
1703	/* Don't read under wbuf */
1704	rlen = wbuf->offs - offs;
1705	if (rlen < 0)
1706		rlen = 0;
1707
1708	/* Copy the rest from the write-buffer */
1709	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1710	spin_unlock(&wbuf->lock);
1711
1712	if (rlen > 0)
1713		/* Read everything that goes before write-buffer */
1714		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1715
1716	return 0;
1717}
1718
1719/**
1720 * validate_data_node - validate data nodes for bulk-read.
1721 * @c: UBIFS file-system description object
1722 * @buf: buffer containing data node to validate
1723 * @zbr: zbranch of data node to validate
1724 *
1725 * This functions returns %0 on success or a negative error code on failure.
1726 */
1727static int validate_data_node(struct ubifs_info *c, void *buf,
1728			      struct ubifs_zbranch *zbr)
1729{
1730	union ubifs_key key1;
1731	struct ubifs_ch *ch = buf;
1732	int err, len;
1733
1734	if (ch->node_type != UBIFS_DATA_NODE) {
1735		ubifs_err(c, "bad node type (%d but expected %d)",
1736			  ch->node_type, UBIFS_DATA_NODE);
1737		goto out_err;
1738	}
1739
1740	err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1741	if (err) {
1742		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1743		goto out;
1744	}
1745
1746	err = ubifs_node_check_hash(c, buf, zbr->hash);
1747	if (err) {
1748		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1749		return err;
1750	}
1751
1752	len = le32_to_cpu(ch->len);
1753	if (len != zbr->len) {
1754		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1755		goto out_err;
1756	}
1757
1758	/* Make sure the key of the read node is correct */
1759	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1760	if (!keys_eq(c, &zbr->key, &key1)) {
1761		ubifs_err(c, "bad key in node at LEB %d:%d",
1762			  zbr->lnum, zbr->offs);
1763		dbg_tnck(&zbr->key, "looked for key ");
1764		dbg_tnck(&key1, "found node's key ");
1765		goto out_err;
1766	}
1767
1768	return 0;
1769
1770out_err:
1771	err = -EINVAL;
1772out:
1773	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1774	ubifs_dump_node(c, buf, zbr->len);
1775	dump_stack();
1776	return err;
1777}
1778
1779/**
1780 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1781 * @c: UBIFS file-system description object
1782 * @bu: bulk-read parameters and results
1783 *
1784 * This functions reads and validates the data nodes that were identified by the
1785 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1786 * -EAGAIN to indicate a race with GC, or another negative error code on
1787 * failure.
1788 */
1789int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1790{
1791	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1792	struct ubifs_wbuf *wbuf;
1793	void *buf;
1794
1795	len = bu->zbranch[bu->cnt - 1].offs;
1796	len += bu->zbranch[bu->cnt - 1].len - offs;
1797	if (len > bu->buf_len) {
1798		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1799		return -EINVAL;
1800	}
1801
1802	/* Do the read */
1803	wbuf = ubifs_get_wbuf(c, lnum);
1804	if (wbuf)
1805		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1806	else
1807		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1808
1809	/* Check for a race with GC */
1810	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1811		return -EAGAIN;
1812
1813	if (err && err != -EBADMSG) {
1814		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1815			  lnum, offs, err);
1816		dump_stack();
1817		dbg_tnck(&bu->key, "key ");
1818		return err;
1819	}
1820
1821	/* Validate the nodes read */
1822	buf = bu->buf;
1823	for (i = 0; i < bu->cnt; i++) {
1824		err = validate_data_node(c, buf, &bu->zbranch[i]);
1825		if (err)
1826			return err;
1827		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1828	}
1829
1830	return 0;
1831}
1832
1833/**
1834 * do_lookup_nm- look up a "hashed" node.
1835 * @c: UBIFS file-system description object
1836 * @key: node key to lookup
1837 * @node: the node is returned here
1838 * @nm: node name
1839 *
1840 * This function looks up and reads a node which contains name hash in the key.
1841 * Since the hash may have collisions, there may be many nodes with the same
1842 * key, so we have to sequentially look to all of them until the needed one is
1843 * found. This function returns zero in case of success, %-ENOENT if the node
1844 * was not found, and a negative error code in case of failure.
1845 */
1846static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1847			void *node, const struct fscrypt_name *nm)
1848{
1849	int found, n, err;
1850	struct ubifs_znode *znode;
1851
1852	dbg_tnck(key, "key ");
1853	mutex_lock(&c->tnc_mutex);
1854	found = ubifs_lookup_level0(c, key, &znode, &n);
1855	if (!found) {
1856		err = -ENOENT;
1857		goto out_unlock;
1858	} else if (found < 0) {
1859		err = found;
1860		goto out_unlock;
1861	}
1862
1863	ubifs_assert(c, n >= 0);
1864
1865	err = resolve_collision(c, key, &znode, &n, nm);
1866	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1867	if (unlikely(err < 0))
1868		goto out_unlock;
1869	if (err == 0) {
1870		err = -ENOENT;
1871		goto out_unlock;
1872	}
1873
1874	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1875
1876out_unlock:
1877	mutex_unlock(&c->tnc_mutex);
1878	return err;
1879}
1880
1881/**
1882 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1883 * @c: UBIFS file-system description object
1884 * @key: node key to lookup
1885 * @node: the node is returned here
1886 * @nm: node name
1887 *
1888 * This function looks up and reads a node which contains name hash in the key.
1889 * Since the hash may have collisions, there may be many nodes with the same
1890 * key, so we have to sequentially look to all of them until the needed one is
1891 * found. This function returns zero in case of success, %-ENOENT if the node
1892 * was not found, and a negative error code in case of failure.
1893 */
1894int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1895			void *node, const struct fscrypt_name *nm)
1896{
1897	int err, len;
1898	const struct ubifs_dent_node *dent = node;
1899
1900	/*
1901	 * We assume that in most of the cases there are no name collisions and
1902	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1903	 */
1904	err = ubifs_tnc_lookup(c, key, node);
1905	if (err)
1906		return err;
1907
1908	len = le16_to_cpu(dent->nlen);
1909	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1910		return 0;
1911
1912	/*
1913	 * Unluckily, there are hash collisions and we have to iterate over
1914	 * them look at each direntry with colliding name hash sequentially.
1915	 */
1916
1917	return do_lookup_nm(c, key, node, nm);
1918}
1919
1920static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1921			    struct ubifs_dent_node *dent, uint32_t cookie,
1922			    struct ubifs_znode **zn, int *n, int exact)
1923{
1924	int err;
1925	struct ubifs_znode *znode = *zn;
1926	struct ubifs_zbranch *zbr;
1927	union ubifs_key *dkey;
1928
1929	if (!exact) {
1930		err = tnc_next(c, &znode, n);
1931		if (err)
1932			return err;
1933	}
1934
1935	for (;;) {
1936		zbr = &znode->zbranch[*n];
1937		dkey = &zbr->key;
1938
1939		if (key_inum(c, dkey) != key_inum(c, key) ||
1940		    key_type(c, dkey) != key_type(c, key)) {
1941			return -ENOENT;
1942		}
1943
1944		err = tnc_read_hashed_node(c, zbr, dent);
1945		if (err)
1946			return err;
1947
1948		if (key_hash(c, key) == key_hash(c, dkey) &&
1949		    le32_to_cpu(dent->cookie) == cookie) {
1950			*zn = znode;
1951			return 0;
1952		}
1953
1954		err = tnc_next(c, &znode, n);
1955		if (err)
1956			return err;
1957	}
1958}
1959
1960static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1961			struct ubifs_dent_node *dent, uint32_t cookie)
1962{
1963	int n, err;
1964	struct ubifs_znode *znode;
1965	union ubifs_key start_key;
1966
1967	ubifs_assert(c, is_hash_key(c, key));
1968
1969	lowest_dent_key(c, &start_key, key_inum(c, key));
1970
1971	mutex_lock(&c->tnc_mutex);
1972	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1973	if (unlikely(err < 0))
1974		goto out_unlock;
1975
1976	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1977
1978out_unlock:
1979	mutex_unlock(&c->tnc_mutex);
1980	return err;
1981}
1982
1983/**
1984 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1985 * @c: UBIFS file-system description object
1986 * @key: node key to lookup
1987 * @node: the node is returned here
1988 * @cookie: node cookie for collision resolution
1989 *
1990 * This function looks up and reads a node which contains name hash in the key.
1991 * Since the hash may have collisions, there may be many nodes with the same
1992 * key, so we have to sequentially look to all of them until the needed one
1993 * with the same cookie value is found.
1994 * This function returns zero in case of success, %-ENOENT if the node
1995 * was not found, and a negative error code in case of failure.
1996 */
1997int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1998			void *node, uint32_t cookie)
1999{
2000	int err;
2001	const struct ubifs_dent_node *dent = node;
2002
2003	if (!c->double_hash)
2004		return -EOPNOTSUPP;
2005
2006	/*
2007	 * We assume that in most of the cases there are no name collisions and
2008	 * 'ubifs_tnc_lookup()' returns us the right direntry.
2009	 */
2010	err = ubifs_tnc_lookup(c, key, node);
2011	if (err)
2012		return err;
2013
2014	if (le32_to_cpu(dent->cookie) == cookie)
2015		return 0;
2016
2017	/*
2018	 * Unluckily, there are hash collisions and we have to iterate over
2019	 * them look at each direntry with colliding name hash sequentially.
2020	 */
2021	return do_lookup_dh(c, key, node, cookie);
2022}
2023
2024/**
2025 * correct_parent_keys - correct parent znodes' keys.
2026 * @c: UBIFS file-system description object
2027 * @znode: znode to correct parent znodes for
2028 *
2029 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2030 * zbranch changes, keys of parent znodes have to be corrected. This helper
2031 * function is called in such situations and corrects the keys if needed.
2032 */
2033static void correct_parent_keys(const struct ubifs_info *c,
2034				struct ubifs_znode *znode)
2035{
2036	union ubifs_key *key, *key1;
2037
2038	ubifs_assert(c, znode->parent);
2039	ubifs_assert(c, znode->iip == 0);
2040
2041	key = &znode->zbranch[0].key;
2042	key1 = &znode->parent->zbranch[0].key;
2043
2044	while (keys_cmp(c, key, key1) < 0) {
2045		key_copy(c, key, key1);
2046		znode = znode->parent;
2047		znode->alt = 1;
2048		if (!znode->parent || znode->iip)
2049			break;
2050		key1 = &znode->parent->zbranch[0].key;
2051	}
2052}
2053
2054/**
2055 * insert_zbranch - insert a zbranch into a znode.
2056 * @c: UBIFS file-system description object
2057 * @znode: znode into which to insert
2058 * @zbr: zbranch to insert
2059 * @n: slot number to insert to
2060 *
2061 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2062 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2063 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2064 * slot, zbranches starting from @n have to be moved right.
2065 */
2066static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2067			   const struct ubifs_zbranch *zbr, int n)
2068{
2069	int i;
2070
2071	ubifs_assert(c, ubifs_zn_dirty(znode));
2072
2073	if (znode->level) {
2074		for (i = znode->child_cnt; i > n; i--) {
2075			znode->zbranch[i] = znode->zbranch[i - 1];
2076			if (znode->zbranch[i].znode)
2077				znode->zbranch[i].znode->iip = i;
2078		}
2079		if (zbr->znode)
2080			zbr->znode->iip = n;
2081	} else
2082		for (i = znode->child_cnt; i > n; i--)
2083			znode->zbranch[i] = znode->zbranch[i - 1];
2084
2085	znode->zbranch[n] = *zbr;
2086	znode->child_cnt += 1;
2087
2088	/*
2089	 * After inserting at slot zero, the lower bound of the key range of
2090	 * this znode may have changed. If this znode is subsequently split
2091	 * then the upper bound of the key range may change, and furthermore
2092	 * it could change to be lower than the original lower bound. If that
2093	 * happens, then it will no longer be possible to find this znode in the
2094	 * TNC using the key from the index node on flash. That is bad because
2095	 * if it is not found, we will assume it is obsolete and may overwrite
2096	 * it. Then if there is an unclean unmount, we will start using the
2097	 * old index which will be broken.
2098	 *
2099	 * So we first mark znodes that have insertions at slot zero, and then
2100	 * if they are split we add their lnum/offs to the old_idx tree.
2101	 */
2102	if (n == 0)
2103		znode->alt = 1;
2104}
2105
2106/**
2107 * tnc_insert - insert a node into TNC.
2108 * @c: UBIFS file-system description object
2109 * @znode: znode to insert into
2110 * @zbr: branch to insert
2111 * @n: slot number to insert new zbranch to
2112 *
2113 * This function inserts a new node described by @zbr into znode @znode. If
2114 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2115 * are splat as well if needed. Returns zero in case of success or a negative
2116 * error code in case of failure.
2117 */
2118static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2119		      struct ubifs_zbranch *zbr, int n)
2120{
2121	struct ubifs_znode *zn, *zi, *zp;
2122	int i, keep, move, appending = 0;
2123	union ubifs_key *key = &zbr->key, *key1;
2124
2125	ubifs_assert(c, n >= 0 && n <= c->fanout);
2126
2127	/* Implement naive insert for now */
2128again:
2129	zp = znode->parent;
2130	if (znode->child_cnt < c->fanout) {
2131		ubifs_assert(c, n != c->fanout);
2132		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
 
2133
2134		insert_zbranch(c, znode, zbr, n);
2135
2136		/* Ensure parent's key is correct */
2137		if (n == 0 && zp && znode->iip == 0)
2138			correct_parent_keys(c, znode);
2139
2140		return 0;
2141	}
2142
2143	/*
2144	 * Unfortunately, @znode does not have more empty slots and we have to
2145	 * split it.
2146	 */
2147	dbg_tnck(key, "splitting level %d, key ", znode->level);
2148
2149	if (znode->alt)
2150		/*
2151		 * We can no longer be sure of finding this znode by key, so we
2152		 * record it in the old_idx tree.
2153		 */
2154		ins_clr_old_idx_znode(c, znode);
2155
2156	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2157	if (!zn)
2158		return -ENOMEM;
2159	zn->parent = zp;
2160	zn->level = znode->level;
2161
2162	/* Decide where to split */
2163	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2164		/* Try not to split consecutive data keys */
2165		if (n == c->fanout) {
2166			key1 = &znode->zbranch[n - 1].key;
2167			if (key_inum(c, key1) == key_inum(c, key) &&
2168			    key_type(c, key1) == UBIFS_DATA_KEY)
2169				appending = 1;
2170		} else
2171			goto check_split;
2172	} else if (appending && n != c->fanout) {
2173		/* Try not to split consecutive data keys */
2174		appending = 0;
2175check_split:
2176		if (n >= (c->fanout + 1) / 2) {
2177			key1 = &znode->zbranch[0].key;
2178			if (key_inum(c, key1) == key_inum(c, key) &&
2179			    key_type(c, key1) == UBIFS_DATA_KEY) {
2180				key1 = &znode->zbranch[n].key;
2181				if (key_inum(c, key1) != key_inum(c, key) ||
2182				    key_type(c, key1) != UBIFS_DATA_KEY) {
2183					keep = n;
2184					move = c->fanout - keep;
2185					zi = znode;
2186					goto do_split;
2187				}
2188			}
2189		}
2190	}
2191
2192	if (appending) {
2193		keep = c->fanout;
2194		move = 0;
2195	} else {
2196		keep = (c->fanout + 1) / 2;
2197		move = c->fanout - keep;
2198	}
2199
2200	/*
2201	 * Although we don't at present, we could look at the neighbors and see
2202	 * if we can move some zbranches there.
2203	 */
2204
2205	if (n < keep) {
2206		/* Insert into existing znode */
2207		zi = znode;
2208		move += 1;
2209		keep -= 1;
2210	} else {
2211		/* Insert into new znode */
2212		zi = zn;
2213		n -= keep;
2214		/* Re-parent */
2215		if (zn->level != 0)
2216			zbr->znode->parent = zn;
2217	}
2218
2219do_split:
2220
2221	__set_bit(DIRTY_ZNODE, &zn->flags);
2222	atomic_long_inc(&c->dirty_zn_cnt);
2223
2224	zn->child_cnt = move;
2225	znode->child_cnt = keep;
2226
2227	dbg_tnc("moving %d, keeping %d", move, keep);
2228
2229	/* Move zbranch */
2230	for (i = 0; i < move; i++) {
2231		zn->zbranch[i] = znode->zbranch[keep + i];
2232		/* Re-parent */
2233		if (zn->level != 0)
2234			if (zn->zbranch[i].znode) {
2235				zn->zbranch[i].znode->parent = zn;
2236				zn->zbranch[i].znode->iip = i;
2237			}
2238	}
2239
2240	/* Insert new key and branch */
2241	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2242
2243	insert_zbranch(c, zi, zbr, n);
2244
2245	/* Insert new znode (produced by spitting) into the parent */
2246	if (zp) {
2247		if (n == 0 && zi == znode && znode->iip == 0)
2248			correct_parent_keys(c, znode);
2249
2250		/* Locate insertion point */
2251		n = znode->iip + 1;
2252
2253		/* Tail recursion */
2254		zbr->key = zn->zbranch[0].key;
2255		zbr->znode = zn;
2256		zbr->lnum = 0;
2257		zbr->offs = 0;
2258		zbr->len = 0;
2259		znode = zp;
2260
2261		goto again;
2262	}
2263
2264	/* We have to split root znode */
2265	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2266
2267	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2268	if (!zi)
2269		return -ENOMEM;
2270
2271	zi->child_cnt = 2;
2272	zi->level = znode->level + 1;
2273
2274	__set_bit(DIRTY_ZNODE, &zi->flags);
2275	atomic_long_inc(&c->dirty_zn_cnt);
2276
2277	zi->zbranch[0].key = znode->zbranch[0].key;
2278	zi->zbranch[0].znode = znode;
2279	zi->zbranch[0].lnum = c->zroot.lnum;
2280	zi->zbranch[0].offs = c->zroot.offs;
2281	zi->zbranch[0].len = c->zroot.len;
2282	zi->zbranch[1].key = zn->zbranch[0].key;
2283	zi->zbranch[1].znode = zn;
2284
2285	c->zroot.lnum = 0;
2286	c->zroot.offs = 0;
2287	c->zroot.len = 0;
2288	c->zroot.znode = zi;
2289
2290	zn->parent = zi;
2291	zn->iip = 1;
2292	znode->parent = zi;
2293	znode->iip = 0;
2294
2295	return 0;
2296}
2297
2298/**
2299 * ubifs_tnc_add - add a node to TNC.
2300 * @c: UBIFS file-system description object
2301 * @key: key to add
2302 * @lnum: LEB number of node
2303 * @offs: node offset
2304 * @len: node length
2305 * @hash: The hash over the node
2306 *
2307 * This function adds a node with key @key to TNC. The node may be new or it may
2308 * obsolete some existing one. Returns %0 on success or negative error code on
2309 * failure.
2310 */
2311int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2312		  int offs, int len, const u8 *hash)
2313{
2314	int found, n, err = 0;
2315	struct ubifs_znode *znode;
2316
2317	mutex_lock(&c->tnc_mutex);
2318	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2319	found = lookup_level0_dirty(c, key, &znode, &n);
2320	if (!found) {
2321		struct ubifs_zbranch zbr;
2322
2323		zbr.znode = NULL;
2324		zbr.lnum = lnum;
2325		zbr.offs = offs;
2326		zbr.len = len;
2327		ubifs_copy_hash(c, hash, zbr.hash);
2328		key_copy(c, key, &zbr.key);
2329		err = tnc_insert(c, znode, &zbr, n + 1);
2330	} else if (found == 1) {
2331		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2332
2333		lnc_free(zbr);
2334		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2335		zbr->lnum = lnum;
2336		zbr->offs = offs;
2337		zbr->len = len;
2338		ubifs_copy_hash(c, hash, zbr->hash);
2339	} else
2340		err = found;
2341	if (!err)
2342		err = dbg_check_tnc(c, 0);
2343	mutex_unlock(&c->tnc_mutex);
2344
2345	return err;
2346}
2347
2348/**
2349 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2350 * @c: UBIFS file-system description object
2351 * @key: key to add
2352 * @old_lnum: LEB number of old node
2353 * @old_offs: old node offset
2354 * @lnum: LEB number of node
2355 * @offs: node offset
2356 * @len: node length
2357 *
2358 * This function replaces a node with key @key in the TNC only if the old node
2359 * is found.  This function is called by garbage collection when node are moved.
2360 * Returns %0 on success or negative error code on failure.
2361 */
2362int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2363		      int old_lnum, int old_offs, int lnum, int offs, int len)
2364{
2365	int found, n, err = 0;
2366	struct ubifs_znode *znode;
2367
2368	mutex_lock(&c->tnc_mutex);
2369	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2370		 old_offs, lnum, offs, len);
2371	found = lookup_level0_dirty(c, key, &znode, &n);
2372	if (found < 0) {
2373		err = found;
2374		goto out_unlock;
2375	}
2376
2377	if (found == 1) {
2378		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2379
2380		found = 0;
2381		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2382			lnc_free(zbr);
2383			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2384			if (err)
2385				goto out_unlock;
2386			zbr->lnum = lnum;
2387			zbr->offs = offs;
2388			zbr->len = len;
2389			found = 1;
2390		} else if (is_hash_key(c, key)) {
2391			found = resolve_collision_directly(c, key, &znode, &n,
2392							   old_lnum, old_offs);
2393			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2394				found, znode, n, old_lnum, old_offs);
2395			if (found < 0) {
2396				err = found;
2397				goto out_unlock;
2398			}
2399
2400			if (found) {
2401				/* Ensure the znode is dirtied */
2402				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2403					znode = dirty_cow_bottom_up(c, znode);
2404					if (IS_ERR(znode)) {
2405						err = PTR_ERR(znode);
2406						goto out_unlock;
2407					}
2408				}
2409				zbr = &znode->zbranch[n];
2410				lnc_free(zbr);
2411				err = ubifs_add_dirt(c, zbr->lnum,
2412						     zbr->len);
2413				if (err)
2414					goto out_unlock;
2415				zbr->lnum = lnum;
2416				zbr->offs = offs;
2417				zbr->len = len;
2418			}
2419		}
2420	}
2421
2422	if (!found)
2423		err = ubifs_add_dirt(c, lnum, len);
2424
2425	if (!err)
2426		err = dbg_check_tnc(c, 0);
2427
2428out_unlock:
2429	mutex_unlock(&c->tnc_mutex);
2430	return err;
2431}
2432
2433/**
2434 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2435 * @c: UBIFS file-system description object
2436 * @key: key to add
2437 * @lnum: LEB number of node
2438 * @offs: node offset
2439 * @len: node length
2440 * @hash: The hash over the node
2441 * @nm: node name
2442 *
2443 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2444 * may have collisions, like directory entry keys.
2445 */
2446int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2447		     int lnum, int offs, int len, const u8 *hash,
2448		     const struct fscrypt_name *nm)
2449{
2450	int found, n, err = 0;
2451	struct ubifs_znode *znode;
2452
2453	mutex_lock(&c->tnc_mutex);
2454	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
 
2455	found = lookup_level0_dirty(c, key, &znode, &n);
2456	if (found < 0) {
2457		err = found;
2458		goto out_unlock;
2459	}
2460
2461	if (found == 1) {
2462		if (c->replaying)
2463			found = fallible_resolve_collision(c, key, &znode, &n,
2464							   nm, 1);
2465		else
2466			found = resolve_collision(c, key, &znode, &n, nm);
2467		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2468		if (found < 0) {
2469			err = found;
2470			goto out_unlock;
2471		}
2472
2473		/* Ensure the znode is dirtied */
2474		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2475			znode = dirty_cow_bottom_up(c, znode);
2476			if (IS_ERR(znode)) {
2477				err = PTR_ERR(znode);
2478				goto out_unlock;
2479			}
2480		}
2481
2482		if (found == 1) {
2483			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2484
2485			lnc_free(zbr);
2486			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2487			zbr->lnum = lnum;
2488			zbr->offs = offs;
2489			zbr->len = len;
2490			ubifs_copy_hash(c, hash, zbr->hash);
2491			goto out_unlock;
2492		}
2493	}
2494
2495	if (!found) {
2496		struct ubifs_zbranch zbr;
2497
2498		zbr.znode = NULL;
2499		zbr.lnum = lnum;
2500		zbr.offs = offs;
2501		zbr.len = len;
2502		ubifs_copy_hash(c, hash, zbr.hash);
2503		key_copy(c, key, &zbr.key);
2504		err = tnc_insert(c, znode, &zbr, n + 1);
2505		if (err)
2506			goto out_unlock;
2507		if (c->replaying) {
2508			/*
2509			 * We did not find it in the index so there may be a
2510			 * dangling branch still in the index. So we remove it
2511			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2512			 * an unmatchable name.
2513			 */
2514			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2515
2516			err = dbg_check_tnc(c, 0);
2517			mutex_unlock(&c->tnc_mutex);
2518			if (err)
2519				return err;
2520			return ubifs_tnc_remove_nm(c, key, &noname);
2521		}
2522	}
2523
2524out_unlock:
2525	if (!err)
2526		err = dbg_check_tnc(c, 0);
2527	mutex_unlock(&c->tnc_mutex);
2528	return err;
2529}
2530
2531/**
2532 * tnc_delete - delete a znode form TNC.
2533 * @c: UBIFS file-system description object
2534 * @znode: znode to delete from
2535 * @n: zbranch slot number to delete
2536 *
2537 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2538 * case of success and a negative error code in case of failure.
2539 */
2540static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2541{
2542	struct ubifs_zbranch *zbr;
2543	struct ubifs_znode *zp;
2544	int i, err;
2545
2546	/* Delete without merge for now */
2547	ubifs_assert(c, znode->level == 0);
2548	ubifs_assert(c, n >= 0 && n < c->fanout);
2549	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2550
2551	zbr = &znode->zbranch[n];
2552	lnc_free(zbr);
2553
2554	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2555	if (err) {
2556		ubifs_dump_znode(c, znode);
2557		return err;
2558	}
2559
2560	/* We do not "gap" zbranch slots */
2561	for (i = n; i < znode->child_cnt - 1; i++)
2562		znode->zbranch[i] = znode->zbranch[i + 1];
2563	znode->child_cnt -= 1;
2564
2565	if (znode->child_cnt > 0)
2566		return 0;
2567
2568	/*
2569	 * This was the last zbranch, we have to delete this znode from the
2570	 * parent.
2571	 */
2572
2573	do {
2574		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2575		ubifs_assert(c, ubifs_zn_dirty(znode));
2576
2577		zp = znode->parent;
2578		n = znode->iip;
2579
2580		atomic_long_dec(&c->dirty_zn_cnt);
2581
2582		err = insert_old_idx_znode(c, znode);
2583		if (err)
2584			return err;
2585
2586		if (znode->cnext) {
2587			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2588			atomic_long_inc(&c->clean_zn_cnt);
2589			atomic_long_inc(&ubifs_clean_zn_cnt);
2590		} else
2591			kfree(znode);
2592		znode = zp;
2593	} while (znode->child_cnt == 1); /* while removing last child */
2594
2595	/* Remove from znode, entry n - 1 */
2596	znode->child_cnt -= 1;
2597	ubifs_assert(c, znode->level != 0);
2598	for (i = n; i < znode->child_cnt; i++) {
2599		znode->zbranch[i] = znode->zbranch[i + 1];
2600		if (znode->zbranch[i].znode)
2601			znode->zbranch[i].znode->iip = i;
2602	}
2603
2604	/*
2605	 * If this is the root and it has only 1 child then
2606	 * collapse the tree.
2607	 */
2608	if (!znode->parent) {
2609		while (znode->child_cnt == 1 && znode->level != 0) {
2610			zp = znode;
2611			zbr = &znode->zbranch[0];
2612			znode = get_znode(c, znode, 0);
2613			if (IS_ERR(znode))
2614				return PTR_ERR(znode);
2615			znode = dirty_cow_znode(c, zbr);
2616			if (IS_ERR(znode))
2617				return PTR_ERR(znode);
2618			znode->parent = NULL;
2619			znode->iip = 0;
2620			if (c->zroot.len) {
2621				err = insert_old_idx(c, c->zroot.lnum,
2622						     c->zroot.offs);
2623				if (err)
2624					return err;
2625			}
2626			c->zroot.lnum = zbr->lnum;
2627			c->zroot.offs = zbr->offs;
2628			c->zroot.len = zbr->len;
2629			c->zroot.znode = znode;
2630			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2631			ubifs_assert(c, ubifs_zn_dirty(zp));
2632			atomic_long_dec(&c->dirty_zn_cnt);
2633
2634			if (zp->cnext) {
2635				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2636				atomic_long_inc(&c->clean_zn_cnt);
2637				atomic_long_inc(&ubifs_clean_zn_cnt);
2638			} else
2639				kfree(zp);
2640		}
2641	}
2642
2643	return 0;
2644}
2645
2646/**
2647 * ubifs_tnc_remove - remove an index entry of a node.
2648 * @c: UBIFS file-system description object
2649 * @key: key of node
2650 *
2651 * Returns %0 on success or negative error code on failure.
2652 */
2653int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2654{
2655	int found, n, err = 0;
2656	struct ubifs_znode *znode;
2657
2658	mutex_lock(&c->tnc_mutex);
2659	dbg_tnck(key, "key ");
2660	found = lookup_level0_dirty(c, key, &znode, &n);
2661	if (found < 0) {
2662		err = found;
2663		goto out_unlock;
2664	}
2665	if (found == 1)
2666		err = tnc_delete(c, znode, n);
2667	if (!err)
2668		err = dbg_check_tnc(c, 0);
2669
2670out_unlock:
2671	mutex_unlock(&c->tnc_mutex);
2672	return err;
2673}
2674
2675/**
2676 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2677 * @c: UBIFS file-system description object
2678 * @key: key of node
2679 * @nm: directory entry name
2680 *
2681 * Returns %0 on success or negative error code on failure.
2682 */
2683int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2684			const struct fscrypt_name *nm)
2685{
2686	int n, err;
2687	struct ubifs_znode *znode;
2688
2689	mutex_lock(&c->tnc_mutex);
2690	dbg_tnck(key, "key ");
2691	err = lookup_level0_dirty(c, key, &znode, &n);
2692	if (err < 0)
2693		goto out_unlock;
2694
2695	if (err) {
2696		if (c->replaying)
2697			err = fallible_resolve_collision(c, key, &znode, &n,
2698							 nm, 0);
2699		else
2700			err = resolve_collision(c, key, &znode, &n, nm);
2701		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2702		if (err < 0)
2703			goto out_unlock;
2704		if (err) {
2705			/* Ensure the znode is dirtied */
2706			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2707				znode = dirty_cow_bottom_up(c, znode);
2708				if (IS_ERR(znode)) {
2709					err = PTR_ERR(znode);
2710					goto out_unlock;
2711				}
2712			}
2713			err = tnc_delete(c, znode, n);
2714		}
2715	}
2716
2717out_unlock:
2718	if (!err)
2719		err = dbg_check_tnc(c, 0);
2720	mutex_unlock(&c->tnc_mutex);
2721	return err;
2722}
2723
2724/**
2725 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2726 * @c: UBIFS file-system description object
2727 * @key: key of node
2728 * @cookie: node cookie for collision resolution
2729 *
2730 * Returns %0 on success or negative error code on failure.
2731 */
2732int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2733			uint32_t cookie)
2734{
2735	int n, err;
2736	struct ubifs_znode *znode;
2737	struct ubifs_dent_node *dent;
2738	struct ubifs_zbranch *zbr;
2739
2740	if (!c->double_hash)
2741		return -EOPNOTSUPP;
2742
2743	mutex_lock(&c->tnc_mutex);
2744	err = lookup_level0_dirty(c, key, &znode, &n);
2745	if (err <= 0)
2746		goto out_unlock;
2747
2748	zbr = &znode->zbranch[n];
2749	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2750	if (!dent) {
2751		err = -ENOMEM;
2752		goto out_unlock;
2753	}
2754
2755	err = tnc_read_hashed_node(c, zbr, dent);
2756	if (err)
2757		goto out_free;
2758
2759	/* If the cookie does not match, we're facing a hash collision. */
2760	if (le32_to_cpu(dent->cookie) != cookie) {
2761		union ubifs_key start_key;
2762
2763		lowest_dent_key(c, &start_key, key_inum(c, key));
2764
2765		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2766		if (unlikely(err < 0))
2767			goto out_free;
2768
2769		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2770		if (err)
2771			goto out_free;
2772	}
2773
2774	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2775		znode = dirty_cow_bottom_up(c, znode);
2776		if (IS_ERR(znode)) {
2777			err = PTR_ERR(znode);
2778			goto out_free;
2779		}
2780	}
2781	err = tnc_delete(c, znode, n);
2782
2783out_free:
2784	kfree(dent);
2785out_unlock:
2786	if (!err)
2787		err = dbg_check_tnc(c, 0);
2788	mutex_unlock(&c->tnc_mutex);
2789	return err;
2790}
2791
2792/**
2793 * key_in_range - determine if a key falls within a range of keys.
2794 * @c: UBIFS file-system description object
2795 * @key: key to check
2796 * @from_key: lowest key in range
2797 * @to_key: highest key in range
2798 *
2799 * This function returns %1 if the key is in range and %0 otherwise.
2800 */
2801static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2802			union ubifs_key *from_key, union ubifs_key *to_key)
2803{
2804	if (keys_cmp(c, key, from_key) < 0)
2805		return 0;
2806	if (keys_cmp(c, key, to_key) > 0)
2807		return 0;
2808	return 1;
2809}
2810
2811/**
2812 * ubifs_tnc_remove_range - remove index entries in range.
2813 * @c: UBIFS file-system description object
2814 * @from_key: lowest key to remove
2815 * @to_key: highest key to remove
2816 *
2817 * This function removes index entries starting at @from_key and ending at
2818 * @to_key.  This function returns zero in case of success and a negative error
2819 * code in case of failure.
2820 */
2821int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2822			   union ubifs_key *to_key)
2823{
2824	int i, n, k, err = 0;
2825	struct ubifs_znode *znode;
2826	union ubifs_key *key;
2827
2828	mutex_lock(&c->tnc_mutex);
2829	while (1) {
2830		/* Find first level 0 znode that contains keys to remove */
2831		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2832		if (err < 0)
2833			goto out_unlock;
2834
2835		if (err)
2836			key = from_key;
2837		else {
2838			err = tnc_next(c, &znode, &n);
2839			if (err == -ENOENT) {
2840				err = 0;
2841				goto out_unlock;
2842			}
2843			if (err < 0)
2844				goto out_unlock;
2845			key = &znode->zbranch[n].key;
2846			if (!key_in_range(c, key, from_key, to_key)) {
2847				err = 0;
2848				goto out_unlock;
2849			}
2850		}
2851
2852		/* Ensure the znode is dirtied */
2853		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2854			znode = dirty_cow_bottom_up(c, znode);
2855			if (IS_ERR(znode)) {
2856				err = PTR_ERR(znode);
2857				goto out_unlock;
2858			}
2859		}
2860
2861		/* Remove all keys in range except the first */
2862		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2863			key = &znode->zbranch[i].key;
2864			if (!key_in_range(c, key, from_key, to_key))
2865				break;
2866			lnc_free(&znode->zbranch[i]);
2867			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2868					     znode->zbranch[i].len);
2869			if (err) {
2870				ubifs_dump_znode(c, znode);
2871				goto out_unlock;
2872			}
2873			dbg_tnck(key, "removing key ");
2874		}
2875		if (k) {
2876			for (i = n + 1 + k; i < znode->child_cnt; i++)
2877				znode->zbranch[i - k] = znode->zbranch[i];
2878			znode->child_cnt -= k;
2879		}
2880
2881		/* Now delete the first */
2882		err = tnc_delete(c, znode, n);
2883		if (err)
2884			goto out_unlock;
2885	}
2886
2887out_unlock:
2888	if (!err)
2889		err = dbg_check_tnc(c, 0);
2890	mutex_unlock(&c->tnc_mutex);
2891	return err;
2892}
2893
2894/**
2895 * ubifs_tnc_remove_ino - remove an inode from TNC.
2896 * @c: UBIFS file-system description object
2897 * @inum: inode number to remove
2898 *
2899 * This function remove inode @inum and all the extended attributes associated
2900 * with the anode from TNC and returns zero in case of success or a negative
2901 * error code in case of failure.
2902 */
2903int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2904{
2905	union ubifs_key key1, key2;
2906	struct ubifs_dent_node *xent, *pxent = NULL;
2907	struct fscrypt_name nm = {0};
2908
2909	dbg_tnc("ino %lu", (unsigned long)inum);
2910
2911	/*
2912	 * Walk all extended attribute entries and remove them together with
2913	 * corresponding extended attribute inodes.
2914	 */
2915	lowest_xent_key(c, &key1, inum);
2916	while (1) {
2917		ino_t xattr_inum;
2918		int err;
2919
2920		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2921		if (IS_ERR(xent)) {
2922			err = PTR_ERR(xent);
2923			if (err == -ENOENT)
2924				break;
2925			kfree(pxent);
2926			return err;
2927		}
2928
2929		xattr_inum = le64_to_cpu(xent->inum);
2930		dbg_tnc("xent '%s', ino %lu", xent->name,
2931			(unsigned long)xattr_inum);
2932
2933		fname_name(&nm) = xent->name;
2934		fname_len(&nm) = le16_to_cpu(xent->nlen);
2935		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2936		if (err) {
2937			kfree(pxent);
2938			kfree(xent);
2939			return err;
2940		}
2941
2942		lowest_ino_key(c, &key1, xattr_inum);
2943		highest_ino_key(c, &key2, xattr_inum);
2944		err = ubifs_tnc_remove_range(c, &key1, &key2);
2945		if (err) {
2946			kfree(pxent);
2947			kfree(xent);
2948			return err;
2949		}
2950
2951		kfree(pxent);
2952		pxent = xent;
2953		key_read(c, &xent->key, &key1);
2954	}
2955
2956	kfree(pxent);
2957	lowest_ino_key(c, &key1, inum);
2958	highest_ino_key(c, &key2, inum);
2959
2960	return ubifs_tnc_remove_range(c, &key1, &key2);
2961}
2962
2963/**
2964 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2965 * @c: UBIFS file-system description object
2966 * @key: key of last entry
2967 * @nm: name of last entry found or %NULL
2968 *
2969 * This function finds and reads the next directory or extended attribute entry
2970 * after the given key (@key) if there is one. @nm is used to resolve
2971 * collisions.
2972 *
2973 * If the name of the current entry is not known and only the key is known,
2974 * @nm->name has to be %NULL. In this case the semantics of this function is a
2975 * little bit different and it returns the entry corresponding to this key, not
2976 * the next one. If the key was not found, the closest "right" entry is
2977 * returned.
2978 *
2979 * If the fist entry has to be found, @key has to contain the lowest possible
2980 * key value for this inode and @name has to be %NULL.
2981 *
2982 * This function returns the found directory or extended attribute entry node
2983 * in case of success, %-ENOENT is returned if no entry was found, and a
2984 * negative error code is returned in case of failure.
2985 */
2986struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2987					   union ubifs_key *key,
2988					   const struct fscrypt_name *nm)
2989{
2990	int n, err, type = key_type(c, key);
2991	struct ubifs_znode *znode;
2992	struct ubifs_dent_node *dent;
2993	struct ubifs_zbranch *zbr;
2994	union ubifs_key *dkey;
2995
2996	dbg_tnck(key, "key ");
2997	ubifs_assert(c, is_hash_key(c, key));
2998
2999	mutex_lock(&c->tnc_mutex);
3000	err = ubifs_lookup_level0(c, key, &znode, &n);
3001	if (unlikely(err < 0))
3002		goto out_unlock;
3003
3004	if (fname_len(nm) > 0) {
3005		if (err) {
3006			/* Handle collisions */
3007			if (c->replaying)
3008				err = fallible_resolve_collision(c, key, &znode, &n,
3009							 nm, 0);
3010			else
3011				err = resolve_collision(c, key, &znode, &n, nm);
3012			dbg_tnc("rc returned %d, znode %p, n %d",
3013				err, znode, n);
3014			if (unlikely(err < 0))
3015				goto out_unlock;
3016		}
3017
3018		/* Now find next entry */
3019		err = tnc_next(c, &znode, &n);
3020		if (unlikely(err))
3021			goto out_unlock;
3022	} else {
3023		/*
3024		 * The full name of the entry was not given, in which case the
3025		 * behavior of this function is a little different and it
3026		 * returns current entry, not the next one.
3027		 */
3028		if (!err) {
3029			/*
3030			 * However, the given key does not exist in the TNC
3031			 * tree and @znode/@n variables contain the closest
3032			 * "preceding" element. Switch to the next one.
3033			 */
3034			err = tnc_next(c, &znode, &n);
3035			if (err)
3036				goto out_unlock;
3037		}
3038	}
3039
3040	zbr = &znode->zbranch[n];
3041	dent = kmalloc(zbr->len, GFP_NOFS);
3042	if (unlikely(!dent)) {
3043		err = -ENOMEM;
3044		goto out_unlock;
3045	}
3046
3047	/*
3048	 * The above 'tnc_next()' call could lead us to the next inode, check
3049	 * this.
3050	 */
3051	dkey = &zbr->key;
3052	if (key_inum(c, dkey) != key_inum(c, key) ||
3053	    key_type(c, dkey) != type) {
3054		err = -ENOENT;
3055		goto out_free;
3056	}
3057
3058	err = tnc_read_hashed_node(c, zbr, dent);
3059	if (unlikely(err))
3060		goto out_free;
3061
3062	mutex_unlock(&c->tnc_mutex);
3063	return dent;
3064
3065out_free:
3066	kfree(dent);
3067out_unlock:
3068	mutex_unlock(&c->tnc_mutex);
3069	return ERR_PTR(err);
3070}
3071
3072/**
3073 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3074 * @c: UBIFS file-system description object
3075 *
3076 * Destroy left-over obsolete znodes from a failed commit.
3077 */
3078static void tnc_destroy_cnext(struct ubifs_info *c)
3079{
3080	struct ubifs_znode *cnext;
3081
3082	if (!c->cnext)
3083		return;
3084	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3085	cnext = c->cnext;
3086	do {
3087		struct ubifs_znode *znode = cnext;
3088
3089		cnext = cnext->cnext;
3090		if (ubifs_zn_obsolete(znode))
3091			kfree(znode);
3092		else if (!ubifs_zn_cow(znode)) {
3093			/*
3094			 * Don't forget to update clean znode count after
3095			 * committing failed, because ubifs will check this
3096			 * count while closing tnc. Non-obsolete znode could
3097			 * be re-dirtied during committing process, so dirty
3098			 * flag is untrustable. The flag 'COW_ZNODE' is set
3099			 * for each dirty znode before committing, and it is
3100			 * cleared as long as the znode become clean, so we
3101			 * can statistic clean znode count according to this
3102			 * flag.
3103			 */
3104			atomic_long_inc(&c->clean_zn_cnt);
3105			atomic_long_inc(&ubifs_clean_zn_cnt);
3106		}
3107	} while (cnext && cnext != c->cnext);
3108}
3109
3110/**
3111 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3112 * @c: UBIFS file-system description object
3113 */
3114void ubifs_tnc_close(struct ubifs_info *c)
3115{
3116	tnc_destroy_cnext(c);
3117	ubifs_destroy_tnc_tree(c);
 
 
 
 
 
 
3118	kfree(c->gap_lebs);
3119	kfree(c->ilebs);
3120	destroy_old_idx(c);
3121}
3122
3123/**
3124 * left_znode - get the znode to the left.
3125 * @c: UBIFS file-system description object
3126 * @znode: znode
3127 *
3128 * This function returns a pointer to the znode to the left of @znode or NULL if
3129 * there is not one. A negative error code is returned on failure.
3130 */
3131static struct ubifs_znode *left_znode(struct ubifs_info *c,
3132				      struct ubifs_znode *znode)
3133{
3134	int level = znode->level;
3135
3136	while (1) {
3137		int n = znode->iip - 1;
3138
3139		/* Go up until we can go left */
3140		znode = znode->parent;
3141		if (!znode)
3142			return NULL;
3143		if (n >= 0) {
3144			/* Now go down the rightmost branch to 'level' */
3145			znode = get_znode(c, znode, n);
3146			if (IS_ERR(znode))
3147				return znode;
3148			while (znode->level != level) {
3149				n = znode->child_cnt - 1;
3150				znode = get_znode(c, znode, n);
3151				if (IS_ERR(znode))
3152					return znode;
3153			}
3154			break;
3155		}
3156	}
3157	return znode;
3158}
3159
3160/**
3161 * right_znode - get the znode to the right.
3162 * @c: UBIFS file-system description object
3163 * @znode: znode
3164 *
3165 * This function returns a pointer to the znode to the right of @znode or NULL
3166 * if there is not one. A negative error code is returned on failure.
3167 */
3168static struct ubifs_znode *right_znode(struct ubifs_info *c,
3169				       struct ubifs_znode *znode)
3170{
3171	int level = znode->level;
3172
3173	while (1) {
3174		int n = znode->iip + 1;
3175
3176		/* Go up until we can go right */
3177		znode = znode->parent;
3178		if (!znode)
3179			return NULL;
3180		if (n < znode->child_cnt) {
3181			/* Now go down the leftmost branch to 'level' */
3182			znode = get_znode(c, znode, n);
3183			if (IS_ERR(znode))
3184				return znode;
3185			while (znode->level != level) {
3186				znode = get_znode(c, znode, 0);
3187				if (IS_ERR(znode))
3188					return znode;
3189			}
3190			break;
3191		}
3192	}
3193	return znode;
3194}
3195
3196/**
3197 * lookup_znode - find a particular indexing node from TNC.
3198 * @c: UBIFS file-system description object
3199 * @key: index node key to lookup
3200 * @level: index node level
3201 * @lnum: index node LEB number
3202 * @offs: index node offset
3203 *
3204 * This function searches an indexing node by its first key @key and its
3205 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3206 * nodes it traverses to TNC. This function is called for indexing nodes which
3207 * were found on the media by scanning, for example when garbage-collecting or
3208 * when doing in-the-gaps commit. This means that the indexing node which is
3209 * looked for does not have to have exactly the same leftmost key @key, because
3210 * the leftmost key may have been changed, in which case TNC will contain a
3211 * dirty znode which still refers the same @lnum:@offs. This function is clever
3212 * enough to recognize such indexing nodes.
3213 *
3214 * Note, if a znode was deleted or changed too much, then this function will
3215 * not find it. For situations like this UBIFS has the old index RB-tree
3216 * (indexed by @lnum:@offs).
3217 *
3218 * This function returns a pointer to the znode found or %NULL if it is not
3219 * found. A negative error code is returned on failure.
3220 */
3221static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3222					union ubifs_key *key, int level,
3223					int lnum, int offs)
3224{
3225	struct ubifs_znode *znode, *zn;
3226	int n, nn;
3227
3228	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3229
3230	/*
3231	 * The arguments have probably been read off flash, so don't assume
3232	 * they are valid.
3233	 */
3234	if (level < 0)
3235		return ERR_PTR(-EINVAL);
3236
3237	/* Get the root znode */
3238	znode = c->zroot.znode;
3239	if (!znode) {
3240		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3241		if (IS_ERR(znode))
3242			return znode;
3243	}
3244	/* Check if it is the one we are looking for */
3245	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3246		return znode;
3247	/* Descend to the parent level i.e. (level + 1) */
3248	if (level >= znode->level)
3249		return NULL;
3250	while (1) {
3251		ubifs_search_zbranch(c, znode, key, &n);
3252		if (n < 0) {
3253			/*
3254			 * We reached a znode where the leftmost key is greater
3255			 * than the key we are searching for. This is the same
3256			 * situation as the one described in a huge comment at
3257			 * the end of the 'ubifs_lookup_level0()' function. And
3258			 * for exactly the same reasons we have to try to look
3259			 * left before giving up.
3260			 */
3261			znode = left_znode(c, znode);
3262			if (!znode)
3263				return NULL;
3264			if (IS_ERR(znode))
3265				return znode;
3266			ubifs_search_zbranch(c, znode, key, &n);
3267			ubifs_assert(c, n >= 0);
3268		}
3269		if (znode->level == level + 1)
3270			break;
3271		znode = get_znode(c, znode, n);
3272		if (IS_ERR(znode))
3273			return znode;
3274	}
3275	/* Check if the child is the one we are looking for */
3276	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3277		return get_znode(c, znode, n);
3278	/* If the key is unique, there is nowhere else to look */
3279	if (!is_hash_key(c, key))
3280		return NULL;
3281	/*
3282	 * The key is not unique and so may be also in the znodes to either
3283	 * side.
3284	 */
3285	zn = znode;
3286	nn = n;
3287	/* Look left */
3288	while (1) {
3289		/* Move one branch to the left */
3290		if (n)
3291			n -= 1;
3292		else {
3293			znode = left_znode(c, znode);
3294			if (!znode)
3295				break;
3296			if (IS_ERR(znode))
3297				return znode;
3298			n = znode->child_cnt - 1;
3299		}
3300		/* Check it */
3301		if (znode->zbranch[n].lnum == lnum &&
3302		    znode->zbranch[n].offs == offs)
3303			return get_znode(c, znode, n);
3304		/* Stop if the key is less than the one we are looking for */
3305		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3306			break;
3307	}
3308	/* Back to the middle */
3309	znode = zn;
3310	n = nn;
3311	/* Look right */
3312	while (1) {
3313		/* Move one branch to the right */
3314		if (++n >= znode->child_cnt) {
3315			znode = right_znode(c, znode);
3316			if (!znode)
3317				break;
3318			if (IS_ERR(znode))
3319				return znode;
3320			n = 0;
3321		}
3322		/* Check it */
3323		if (znode->zbranch[n].lnum == lnum &&
3324		    znode->zbranch[n].offs == offs)
3325			return get_znode(c, znode, n);
3326		/* Stop if the key is greater than the one we are looking for */
3327		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3328			break;
3329	}
3330	return NULL;
3331}
3332
3333/**
3334 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3335 * @c: UBIFS file-system description object
3336 * @key: key of index node
3337 * @level: index node level
3338 * @lnum: LEB number of index node
3339 * @offs: offset of index node
3340 *
3341 * This function returns %0 if the index node is not referred to in the TNC, %1
3342 * if the index node is referred to in the TNC and the corresponding znode is
3343 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3344 * znode is clean, and a negative error code in case of failure.
3345 *
3346 * Note, the @key argument has to be the key of the first child. Also note,
3347 * this function relies on the fact that 0:0 is never a valid LEB number and
3348 * offset for a main-area node.
3349 */
3350int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3351		       int lnum, int offs)
3352{
3353	struct ubifs_znode *znode;
3354
3355	znode = lookup_znode(c, key, level, lnum, offs);
3356	if (!znode)
3357		return 0;
3358	if (IS_ERR(znode))
3359		return PTR_ERR(znode);
3360
3361	return ubifs_zn_dirty(znode) ? 1 : 2;
3362}
3363
3364/**
3365 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3366 * @c: UBIFS file-system description object
3367 * @key: node key
3368 * @lnum: node LEB number
3369 * @offs: node offset
3370 *
3371 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3372 * not, and a negative error code in case of failure.
3373 *
3374 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3375 * and offset for a main-area node.
3376 */
3377static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3378			       int lnum, int offs)
3379{
3380	struct ubifs_zbranch *zbr;
3381	struct ubifs_znode *znode, *zn;
3382	int n, found, err, nn;
3383	const int unique = !is_hash_key(c, key);
3384
3385	found = ubifs_lookup_level0(c, key, &znode, &n);
3386	if (found < 0)
3387		return found; /* Error code */
3388	if (!found)
3389		return 0;
3390	zbr = &znode->zbranch[n];
3391	if (lnum == zbr->lnum && offs == zbr->offs)
3392		return 1; /* Found it */
3393	if (unique)
3394		return 0;
3395	/*
3396	 * Because the key is not unique, we have to look left
3397	 * and right as well
3398	 */
3399	zn = znode;
3400	nn = n;
3401	/* Look left */
3402	while (1) {
3403		err = tnc_prev(c, &znode, &n);
3404		if (err == -ENOENT)
3405			break;
3406		if (err)
3407			return err;
3408		if (keys_cmp(c, key, &znode->zbranch[n].key))
3409			break;
3410		zbr = &znode->zbranch[n];
3411		if (lnum == zbr->lnum && offs == zbr->offs)
3412			return 1; /* Found it */
3413	}
3414	/* Look right */
3415	znode = zn;
3416	n = nn;
3417	while (1) {
3418		err = tnc_next(c, &znode, &n);
3419		if (err) {
3420			if (err == -ENOENT)
3421				return 0;
3422			return err;
3423		}
3424		if (keys_cmp(c, key, &znode->zbranch[n].key))
3425			break;
3426		zbr = &znode->zbranch[n];
3427		if (lnum == zbr->lnum && offs == zbr->offs)
3428			return 1; /* Found it */
3429	}
3430	return 0;
3431}
3432
3433/**
3434 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3435 * @c: UBIFS file-system description object
3436 * @key: node key
3437 * @level: index node level (if it is an index node)
3438 * @lnum: node LEB number
3439 * @offs: node offset
3440 * @is_idx: non-zero if the node is an index node
3441 *
3442 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3443 * negative error code in case of failure. For index nodes, @key has to be the
3444 * key of the first child. An index node is considered to be in the TNC only if
3445 * the corresponding znode is clean or has not been loaded.
3446 */
3447int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3448		       int lnum, int offs, int is_idx)
3449{
3450	int err;
3451
3452	mutex_lock(&c->tnc_mutex);
3453	if (is_idx) {
3454		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3455		if (err < 0)
3456			goto out_unlock;
3457		if (err == 1)
3458			/* The index node was found but it was dirty */
3459			err = 0;
3460		else if (err == 2)
3461			/* The index node was found and it was clean */
3462			err = 1;
3463		else
3464			BUG_ON(err != 0);
3465	} else
3466		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3467
3468out_unlock:
3469	mutex_unlock(&c->tnc_mutex);
3470	return err;
3471}
3472
3473/**
3474 * ubifs_dirty_idx_node - dirty an index node.
3475 * @c: UBIFS file-system description object
3476 * @key: index node key
3477 * @level: index node level
3478 * @lnum: index node LEB number
3479 * @offs: index node offset
3480 *
3481 * This function loads and dirties an index node so that it can be garbage
3482 * collected. The @key argument has to be the key of the first child. This
3483 * function relies on the fact that 0:0 is never a valid LEB number and offset
3484 * for a main-area node. Returns %0 on success and a negative error code on
3485 * failure.
3486 */
3487int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3488			 int lnum, int offs)
3489{
3490	struct ubifs_znode *znode;
3491	int err = 0;
3492
3493	mutex_lock(&c->tnc_mutex);
3494	znode = lookup_znode(c, key, level, lnum, offs);
3495	if (!znode)
3496		goto out_unlock;
3497	if (IS_ERR(znode)) {
3498		err = PTR_ERR(znode);
3499		goto out_unlock;
3500	}
3501	znode = dirty_cow_bottom_up(c, znode);
3502	if (IS_ERR(znode)) {
3503		err = PTR_ERR(znode);
3504		goto out_unlock;
3505	}
3506
3507out_unlock:
3508	mutex_unlock(&c->tnc_mutex);
3509	return err;
3510}
3511
 
 
3512/**
3513 * dbg_check_inode_size - check if inode size is correct.
3514 * @c: UBIFS file-system description object
3515 * @inode: inode to check
3516 * @size: inode size
3517 *
3518 * This function makes sure that the inode size (@size) is correct and it does
3519 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3520 * if it has a data page beyond @size, and other negative error code in case of
3521 * other errors.
3522 */
3523int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3524			 loff_t size)
3525{
3526	int err, n;
3527	union ubifs_key from_key, to_key, *key;
3528	struct ubifs_znode *znode;
3529	unsigned int block;
3530
3531	if (!S_ISREG(inode->i_mode))
3532		return 0;
3533	if (!dbg_is_chk_gen(c))
3534		return 0;
3535
3536	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3537	data_key_init(c, &from_key, inode->i_ino, block);
3538	highest_data_key(c, &to_key, inode->i_ino);
3539
3540	mutex_lock(&c->tnc_mutex);
3541	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3542	if (err < 0)
3543		goto out_unlock;
3544
3545	if (err) {
 
3546		key = &from_key;
3547		goto out_dump;
3548	}
3549
3550	err = tnc_next(c, &znode, &n);
3551	if (err == -ENOENT) {
3552		err = 0;
3553		goto out_unlock;
3554	}
3555	if (err < 0)
3556		goto out_unlock;
3557
3558	ubifs_assert(c, err == 0);
3559	key = &znode->zbranch[n].key;
3560	if (!key_in_range(c, key, &from_key, &to_key))
3561		goto out_unlock;
3562
3563out_dump:
3564	block = key_block(c, key);
3565	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3566		  (unsigned long)inode->i_ino, size,
3567		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3568	mutex_unlock(&c->tnc_mutex);
3569	ubifs_dump_inode(c, inode);
3570	dump_stack();
3571	return -EINVAL;
3572
3573out_unlock:
3574	mutex_unlock(&c->tnc_mutex);
3575	return err;
3576}