Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.1
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  25 * the UBIFS B-tree.
  26 *
  27 * At the moment the locking rules of the TNC tree are quite simple and
  28 * straightforward. We just have a mutex and lock it when we traverse the
  29 * tree. If a znode is not in memory, we read it from flash while still having
  30 * the mutex locked.
  31 */
  32
  33#include <linux/crc32.h>
  34#include <linux/slab.h>
  35#include "ubifs.h"
  36
  37/*
  38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  39 * @NAME_LESS: name corresponding to the first argument is less than second
  40 * @NAME_MATCHES: names match
  41 * @NAME_GREATER: name corresponding to the second argument is greater than
  42 *                first
  43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  44 *
  45 * These constants were introduce to improve readability.
  46 */
  47enum {
  48	NAME_LESS    = 0,
  49	NAME_MATCHES = 1,
  50	NAME_GREATER = 2,
  51	NOT_ON_MEDIA = 3,
  52};
  53
  54/**
  55 * insert_old_idx - record an index node obsoleted since the last commit start.
  56 * @c: UBIFS file-system description object
  57 * @lnum: LEB number of obsoleted index node
  58 * @offs: offset of obsoleted index node
  59 *
  60 * Returns %0 on success, and a negative error code on failure.
  61 *
  62 * For recovery, there must always be a complete intact version of the index on
  63 * flash at all times. That is called the "old index". It is the index as at the
  64 * time of the last successful commit. Many of the index nodes in the old index
  65 * may be dirty, but they must not be erased until the next successful commit
  66 * (at which point that index becomes the old index).
  67 *
  68 * That means that the garbage collection and the in-the-gaps method of
  69 * committing must be able to determine if an index node is in the old index.
  70 * Most of the old index nodes can be found by looking up the TNC using the
  71 * 'lookup_znode()' function. However, some of the old index nodes may have
  72 * been deleted from the current index or may have been changed so much that
  73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  74 * That is what this function does. The RB-tree is ordered by LEB number and
  75 * offset because they uniquely identify the old index node.
  76 */
  77static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  78{
  79	struct ubifs_old_idx *old_idx, *o;
  80	struct rb_node **p, *parent = NULL;
  81
  82	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  83	if (unlikely(!old_idx))
  84		return -ENOMEM;
  85	old_idx->lnum = lnum;
  86	old_idx->offs = offs;
  87
  88	p = &c->old_idx.rb_node;
  89	while (*p) {
  90		parent = *p;
  91		o = rb_entry(parent, struct ubifs_old_idx, rb);
  92		if (lnum < o->lnum)
  93			p = &(*p)->rb_left;
  94		else if (lnum > o->lnum)
  95			p = &(*p)->rb_right;
  96		else if (offs < o->offs)
  97			p = &(*p)->rb_left;
  98		else if (offs > o->offs)
  99			p = &(*p)->rb_right;
 100		else {
 101			ubifs_err("old idx added twice!");
 102			kfree(old_idx);
 103			return 0;
 104		}
 105	}
 106	rb_link_node(&old_idx->rb, parent, p);
 107	rb_insert_color(&old_idx->rb, &c->old_idx);
 108	return 0;
 109}
 110
 111/**
 112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 113 * @c: UBIFS file-system description object
 114 * @znode: znode of obsoleted index node
 115 *
 116 * Returns %0 on success, and a negative error code on failure.
 117 */
 118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 119{
 120	if (znode->parent) {
 121		struct ubifs_zbranch *zbr;
 122
 123		zbr = &znode->parent->zbranch[znode->iip];
 124		if (zbr->len)
 125			return insert_old_idx(c, zbr->lnum, zbr->offs);
 126	} else
 127		if (c->zroot.len)
 128			return insert_old_idx(c, c->zroot.lnum,
 129					      c->zroot.offs);
 130	return 0;
 131}
 132
 133/**
 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 135 * @c: UBIFS file-system description object
 136 * @znode: znode of obsoleted index node
 137 *
 138 * Returns %0 on success, and a negative error code on failure.
 139 */
 140static int ins_clr_old_idx_znode(struct ubifs_info *c,
 141				 struct ubifs_znode *znode)
 142{
 143	int err;
 144
 145	if (znode->parent) {
 146		struct ubifs_zbranch *zbr;
 147
 148		zbr = &znode->parent->zbranch[znode->iip];
 149		if (zbr->len) {
 150			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 151			if (err)
 152				return err;
 153			zbr->lnum = 0;
 154			zbr->offs = 0;
 155			zbr->len = 0;
 156		}
 157	} else
 158		if (c->zroot.len) {
 159			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 160			if (err)
 161				return err;
 162			c->zroot.lnum = 0;
 163			c->zroot.offs = 0;
 164			c->zroot.len = 0;
 165		}
 166	return 0;
 167}
 168
 169/**
 170 * destroy_old_idx - destroy the old_idx RB-tree.
 171 * @c: UBIFS file-system description object
 172 *
 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 174 * nodes that were in the index last commit but have since been deleted.  This
 175 * is necessary for recovery i.e. the old index must be kept intact until the
 176 * new index is successfully written.  The old-idx RB-tree is used for the
 177 * in-the-gaps method of writing index nodes and is destroyed every commit.
 178 */
 179void destroy_old_idx(struct ubifs_info *c)
 180{
 181	struct rb_node *this = c->old_idx.rb_node;
 182	struct ubifs_old_idx *old_idx;
 183
 184	while (this) {
 185		if (this->rb_left) {
 186			this = this->rb_left;
 187			continue;
 188		} else if (this->rb_right) {
 189			this = this->rb_right;
 190			continue;
 191		}
 192		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
 193		this = rb_parent(this);
 194		if (this) {
 195			if (this->rb_left == &old_idx->rb)
 196				this->rb_left = NULL;
 197			else
 198				this->rb_right = NULL;
 199		}
 200		kfree(old_idx);
 201	}
 202	c->old_idx = RB_ROOT;
 203}
 204
 205/**
 206 * copy_znode - copy a dirty znode.
 207 * @c: UBIFS file-system description object
 208 * @znode: znode to copy
 209 *
 210 * A dirty znode being committed may not be changed, so it is copied.
 211 */
 212static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 213				      struct ubifs_znode *znode)
 214{
 215	struct ubifs_znode *zn;
 216
 217	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 218	if (unlikely(!zn))
 219		return ERR_PTR(-ENOMEM);
 220
 221	memcpy(zn, znode, c->max_znode_sz);
 222	zn->cnext = NULL;
 223	__set_bit(DIRTY_ZNODE, &zn->flags);
 224	__clear_bit(COW_ZNODE, &zn->flags);
 225
 226	ubifs_assert(!ubifs_zn_obsolete(znode));
 227	__set_bit(OBSOLETE_ZNODE, &znode->flags);
 228
 229	if (znode->level != 0) {
 230		int i;
 231		const int n = zn->child_cnt;
 232
 233		/* The children now have new parent */
 234		for (i = 0; i < n; i++) {
 235			struct ubifs_zbranch *zbr = &zn->zbranch[i];
 236
 237			if (zbr->znode)
 238				zbr->znode->parent = zn;
 239		}
 240	}
 241
 242	atomic_long_inc(&c->dirty_zn_cnt);
 243	return zn;
 244}
 245
 246/**
 247 * add_idx_dirt - add dirt due to a dirty znode.
 248 * @c: UBIFS file-system description object
 249 * @lnum: LEB number of index node
 250 * @dirt: size of index node
 251 *
 252 * This function updates lprops dirty space and the new size of the index.
 253 */
 254static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 255{
 256	c->calc_idx_sz -= ALIGN(dirt, 8);
 257	return ubifs_add_dirt(c, lnum, dirt);
 258}
 259
 260/**
 261 * dirty_cow_znode - ensure a znode is not being committed.
 262 * @c: UBIFS file-system description object
 263 * @zbr: branch of znode to check
 264 *
 265 * Returns dirtied znode on success or negative error code on failure.
 266 */
 267static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 268					   struct ubifs_zbranch *zbr)
 269{
 270	struct ubifs_znode *znode = zbr->znode;
 271	struct ubifs_znode *zn;
 272	int err;
 273
 274	if (!ubifs_zn_cow(znode)) {
 275		/* znode is not being committed */
 276		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 277			atomic_long_inc(&c->dirty_zn_cnt);
 278			atomic_long_dec(&c->clean_zn_cnt);
 279			atomic_long_dec(&ubifs_clean_zn_cnt);
 280			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 281			if (unlikely(err))
 282				return ERR_PTR(err);
 283		}
 284		return znode;
 285	}
 286
 287	zn = copy_znode(c, znode);
 288	if (IS_ERR(zn))
 289		return zn;
 290
 291	if (zbr->len) {
 292		err = insert_old_idx(c, zbr->lnum, zbr->offs);
 293		if (unlikely(err))
 294			return ERR_PTR(err);
 295		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 296	} else
 297		err = 0;
 298
 299	zbr->znode = zn;
 300	zbr->lnum = 0;
 301	zbr->offs = 0;
 302	zbr->len = 0;
 303
 304	if (unlikely(err))
 305		return ERR_PTR(err);
 306	return zn;
 307}
 308
 309/**
 310 * lnc_add - add a leaf node to the leaf node cache.
 311 * @c: UBIFS file-system description object
 312 * @zbr: zbranch of leaf node
 313 * @node: leaf node
 314 *
 315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 316 * purpose of the leaf node cache is to save re-reading the same leaf node over
 317 * and over again. Most things are cached by VFS, however the file system must
 318 * cache directory entries for readdir and for resolving hash collisions. The
 319 * present implementation of the leaf node cache is extremely simple, and
 320 * allows for error returns that are not used but that may be needed if a more
 321 * complex implementation is created.
 322 *
 323 * Note, this function does not add the @node object to LNC directly, but
 324 * allocates a copy of the object and adds the copy to LNC. The reason for this
 325 * is that @node has been allocated outside of the TNC subsystem and will be
 326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 327 * may be changed at any time, e.g. freed by the shrinker.
 328 */
 329static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 330		   const void *node)
 331{
 332	int err;
 333	void *lnc_node;
 334	const struct ubifs_dent_node *dent = node;
 335
 336	ubifs_assert(!zbr->leaf);
 337	ubifs_assert(zbr->len != 0);
 338	ubifs_assert(is_hash_key(c, &zbr->key));
 339
 340	err = ubifs_validate_entry(c, dent);
 341	if (err) {
 342		dbg_dump_stack();
 343		dbg_dump_node(c, dent);
 344		return err;
 345	}
 346
 347	lnc_node = kmalloc(zbr->len, GFP_NOFS);
 348	if (!lnc_node)
 349		/* We don't have to have the cache, so no error */
 350		return 0;
 351
 352	memcpy(lnc_node, node, zbr->len);
 353	zbr->leaf = lnc_node;
 354	return 0;
 355}
 356
 357 /**
 358 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 359 * @c: UBIFS file-system description object
 360 * @zbr: zbranch of leaf node
 361 * @node: leaf node
 362 *
 363 * This function is similar to 'lnc_add()', but it does not create a copy of
 364 * @node but inserts @node to TNC directly.
 365 */
 366static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 367			    void *node)
 368{
 369	int err;
 370
 371	ubifs_assert(!zbr->leaf);
 372	ubifs_assert(zbr->len != 0);
 373
 374	err = ubifs_validate_entry(c, node);
 375	if (err) {
 376		dbg_dump_stack();
 377		dbg_dump_node(c, node);
 378		return err;
 379	}
 380
 381	zbr->leaf = node;
 382	return 0;
 383}
 384
 385/**
 386 * lnc_free - remove a leaf node from the leaf node cache.
 387 * @zbr: zbranch of leaf node
 388 * @node: leaf node
 389 */
 390static void lnc_free(struct ubifs_zbranch *zbr)
 391{
 392	if (!zbr->leaf)
 393		return;
 394	kfree(zbr->leaf);
 395	zbr->leaf = NULL;
 396}
 397
 398/**
 399 * tnc_read_node_nm - read a "hashed" leaf node.
 400 * @c: UBIFS file-system description object
 401 * @zbr: key and position of the node
 402 * @node: node is returned here
 403 *
 404 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 405 * (in it is there) or from the hash media, in which case the node is also
 406 * added to LNC. Returns zero in case of success or a negative negative error
 407 * code in case of failure.
 408 */
 409static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 410			    void *node)
 411{
 412	int err;
 413
 414	ubifs_assert(is_hash_key(c, &zbr->key));
 415
 416	if (zbr->leaf) {
 417		/* Read from the leaf node cache */
 418		ubifs_assert(zbr->len != 0);
 419		memcpy(node, zbr->leaf, zbr->len);
 420		return 0;
 421	}
 422
 423	err = ubifs_tnc_read_node(c, zbr, node);
 424	if (err)
 425		return err;
 426
 427	/* Add the node to the leaf node cache */
 428	err = lnc_add(c, zbr, node);
 429	return err;
 430}
 431
 432/**
 433 * try_read_node - read a node if it is a node.
 434 * @c: UBIFS file-system description object
 435 * @buf: buffer to read to
 436 * @type: node type
 437 * @len: node length (not aligned)
 438 * @lnum: LEB number of node to read
 439 * @offs: offset of node to read
 440 *
 441 * This function tries to read a node of known type and length, checks it and
 442 * stores it in @buf. This function returns %1 if a node is present and %0 if
 443 * a node is not present. A negative error code is returned for I/O errors.
 444 * This function performs that same function as ubifs_read_node except that
 445 * it does not require that there is actually a node present and instead
 446 * the return code indicates if a node was read.
 447 *
 448 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 449 * is true (it is controlled by corresponding mount option). However, if
 450 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 451 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 452 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 453 * journal nodes (when replying the journal or doing the recovery) and the
 454 * journal nodes may potentially be corrupted, so checking is required.
 455 */
 456static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 457			 int len, int lnum, int offs)
 458{
 459	int err, node_len;
 460	struct ubifs_ch *ch = buf;
 461	uint32_t crc, node_crc;
 462
 463	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 464
 465	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 466	if (err) {
 467		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 468			  type, lnum, offs, err);
 469		return err;
 470	}
 471
 472	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 473		return 0;
 474
 475	if (ch->node_type != type)
 476		return 0;
 477
 478	node_len = le32_to_cpu(ch->len);
 479	if (node_len != len)
 480		return 0;
 481
 482	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 483	    !c->remounting_rw)
 484		return 1;
 485
 486	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 487	node_crc = le32_to_cpu(ch->crc);
 488	if (crc != node_crc)
 489		return 0;
 490
 491	return 1;
 492}
 493
 494/**
 495 * fallible_read_node - try to read a leaf node.
 496 * @c: UBIFS file-system description object
 497 * @key:  key of node to read
 498 * @zbr:  position of node
 499 * @node: node returned
 500 *
 501 * This function tries to read a node and returns %1 if the node is read, %0
 502 * if the node is not present, and a negative error code in the case of error.
 503 */
 504static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 505			      struct ubifs_zbranch *zbr, void *node)
 506{
 507	int ret;
 508
 509	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
 510
 511	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 512			    zbr->offs);
 513	if (ret == 1) {
 514		union ubifs_key node_key;
 515		struct ubifs_dent_node *dent = node;
 516
 517		/* All nodes have key in the same place */
 518		key_read(c, &dent->key, &node_key);
 519		if (keys_cmp(c, key, &node_key) != 0)
 520			ret = 0;
 521	}
 522	if (ret == 0 && c->replaying)
 523		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
 524			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
 525	return ret;
 526}
 527
 528/**
 529 * matches_name - determine if a direntry or xattr entry matches a given name.
 530 * @c: UBIFS file-system description object
 531 * @zbr: zbranch of dent
 532 * @nm: name to match
 533 *
 534 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 535 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 536 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 537 * of failure, a negative error code is returned.
 538 */
 539static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 540			const struct qstr *nm)
 541{
 542	struct ubifs_dent_node *dent;
 543	int nlen, err;
 544
 545	/* If possible, match against the dent in the leaf node cache */
 546	if (!zbr->leaf) {
 547		dent = kmalloc(zbr->len, GFP_NOFS);
 548		if (!dent)
 549			return -ENOMEM;
 550
 551		err = ubifs_tnc_read_node(c, zbr, dent);
 552		if (err)
 553			goto out_free;
 554
 555		/* Add the node to the leaf node cache */
 556		err = lnc_add_directly(c, zbr, dent);
 557		if (err)
 558			goto out_free;
 559	} else
 560		dent = zbr->leaf;
 561
 562	nlen = le16_to_cpu(dent->nlen);
 563	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 564	if (err == 0) {
 565		if (nlen == nm->len)
 566			return NAME_MATCHES;
 567		else if (nlen < nm->len)
 568			return NAME_LESS;
 569		else
 570			return NAME_GREATER;
 571	} else if (err < 0)
 572		return NAME_LESS;
 573	else
 574		return NAME_GREATER;
 575
 576out_free:
 577	kfree(dent);
 578	return err;
 579}
 580
 581/**
 582 * get_znode - get a TNC znode that may not be loaded yet.
 583 * @c: UBIFS file-system description object
 584 * @znode: parent znode
 585 * @n: znode branch slot number
 586 *
 587 * This function returns the znode or a negative error code.
 588 */
 589static struct ubifs_znode *get_znode(struct ubifs_info *c,
 590				     struct ubifs_znode *znode, int n)
 591{
 592	struct ubifs_zbranch *zbr;
 593
 594	zbr = &znode->zbranch[n];
 595	if (zbr->znode)
 596		znode = zbr->znode;
 597	else
 598		znode = ubifs_load_znode(c, zbr, znode, n);
 599	return znode;
 600}
 601
 602/**
 603 * tnc_next - find next TNC entry.
 604 * @c: UBIFS file-system description object
 605 * @zn: znode is passed and returned here
 606 * @n: znode branch slot number is passed and returned here
 607 *
 608 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 609 * no next entry, or a negative error code otherwise.
 610 */
 611static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 612{
 613	struct ubifs_znode *znode = *zn;
 614	int nn = *n;
 615
 616	nn += 1;
 617	if (nn < znode->child_cnt) {
 618		*n = nn;
 619		return 0;
 620	}
 621	while (1) {
 622		struct ubifs_znode *zp;
 623
 624		zp = znode->parent;
 625		if (!zp)
 626			return -ENOENT;
 627		nn = znode->iip + 1;
 628		znode = zp;
 629		if (nn < znode->child_cnt) {
 630			znode = get_znode(c, znode, nn);
 631			if (IS_ERR(znode))
 632				return PTR_ERR(znode);
 633			while (znode->level != 0) {
 634				znode = get_znode(c, znode, 0);
 635				if (IS_ERR(znode))
 636					return PTR_ERR(znode);
 637			}
 638			nn = 0;
 639			break;
 640		}
 641	}
 642	*zn = znode;
 643	*n = nn;
 644	return 0;
 645}
 646
 647/**
 648 * tnc_prev - find previous TNC entry.
 649 * @c: UBIFS file-system description object
 650 * @zn: znode is returned here
 651 * @n: znode branch slot number is passed and returned here
 652 *
 653 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 654 * there is no next entry, or a negative error code otherwise.
 655 */
 656static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 657{
 658	struct ubifs_znode *znode = *zn;
 659	int nn = *n;
 660
 661	if (nn > 0) {
 662		*n = nn - 1;
 663		return 0;
 664	}
 665	while (1) {
 666		struct ubifs_znode *zp;
 667
 668		zp = znode->parent;
 669		if (!zp)
 670			return -ENOENT;
 671		nn = znode->iip - 1;
 672		znode = zp;
 673		if (nn >= 0) {
 674			znode = get_znode(c, znode, nn);
 675			if (IS_ERR(znode))
 676				return PTR_ERR(znode);
 677			while (znode->level != 0) {
 678				nn = znode->child_cnt - 1;
 679				znode = get_znode(c, znode, nn);
 680				if (IS_ERR(znode))
 681					return PTR_ERR(znode);
 682			}
 683			nn = znode->child_cnt - 1;
 684			break;
 685		}
 686	}
 687	*zn = znode;
 688	*n = nn;
 689	return 0;
 690}
 691
 692/**
 693 * resolve_collision - resolve a collision.
 694 * @c: UBIFS file-system description object
 695 * @key: key of a directory or extended attribute entry
 696 * @zn: znode is returned here
 697 * @n: zbranch number is passed and returned here
 698 * @nm: name of the entry
 699 *
 700 * This function is called for "hashed" keys to make sure that the found key
 701 * really corresponds to the looked up node (directory or extended attribute
 702 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 703 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 704 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 705 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 706 * previous one. A negative error code is returned on failures.
 707 */
 708static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 709			     struct ubifs_znode **zn, int *n,
 710			     const struct qstr *nm)
 711{
 712	int err;
 713
 714	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 715	if (unlikely(err < 0))
 716		return err;
 717	if (err == NAME_MATCHES)
 718		return 1;
 719
 720	if (err == NAME_GREATER) {
 721		/* Look left */
 722		while (1) {
 723			err = tnc_prev(c, zn, n);
 724			if (err == -ENOENT) {
 725				ubifs_assert(*n == 0);
 726				*n = -1;
 727				return 0;
 728			}
 729			if (err < 0)
 730				return err;
 731			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 732				/*
 733				 * We have found the branch after which we would
 734				 * like to insert, but inserting in this znode
 735				 * may still be wrong. Consider the following 3
 736				 * znodes, in the case where we are resolving a
 737				 * collision with Key2.
 738				 *
 739				 *                  znode zp
 740				 *            ----------------------
 741				 * level 1     |  Key0  |  Key1  |
 742				 *            -----------------------
 743				 *                 |            |
 744				 *       znode za  |            |  znode zb
 745				 *          ------------      ------------
 746				 * level 0  |  Key0  |        |  Key2  |
 747				 *          ------------      ------------
 748				 *
 749				 * The lookup finds Key2 in znode zb. Lets say
 750				 * there is no match and the name is greater so
 751				 * we look left. When we find Key0, we end up
 752				 * here. If we return now, we will insert into
 753				 * znode za at slot n = 1.  But that is invalid
 754				 * according to the parent's keys.  Key2 must
 755				 * be inserted into znode zb.
 756				 *
 757				 * Note, this problem is not relevant for the
 758				 * case when we go right, because
 759				 * 'tnc_insert()' would correct the parent key.
 760				 */
 761				if (*n == (*zn)->child_cnt - 1) {
 762					err = tnc_next(c, zn, n);
 763					if (err) {
 764						/* Should be impossible */
 765						ubifs_assert(0);
 766						if (err == -ENOENT)
 767							err = -EINVAL;
 768						return err;
 769					}
 770					ubifs_assert(*n == 0);
 771					*n = -1;
 772				}
 773				return 0;
 774			}
 775			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 776			if (err < 0)
 777				return err;
 778			if (err == NAME_LESS)
 779				return 0;
 780			if (err == NAME_MATCHES)
 781				return 1;
 782			ubifs_assert(err == NAME_GREATER);
 783		}
 784	} else {
 785		int nn = *n;
 786		struct ubifs_znode *znode = *zn;
 787
 788		/* Look right */
 789		while (1) {
 790			err = tnc_next(c, &znode, &nn);
 791			if (err == -ENOENT)
 792				return 0;
 793			if (err < 0)
 794				return err;
 795			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 796				return 0;
 797			err = matches_name(c, &znode->zbranch[nn], nm);
 798			if (err < 0)
 799				return err;
 800			if (err == NAME_GREATER)
 801				return 0;
 802			*zn = znode;
 803			*n = nn;
 804			if (err == NAME_MATCHES)
 805				return 1;
 806			ubifs_assert(err == NAME_LESS);
 807		}
 808	}
 809}
 810
 811/**
 812 * fallible_matches_name - determine if a dent matches a given name.
 813 * @c: UBIFS file-system description object
 814 * @zbr: zbranch of dent
 815 * @nm: name to match
 816 *
 817 * This is a "fallible" version of 'matches_name()' function which does not
 818 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 819 *
 820 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 821 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 822 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 823 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 824 * error code is returned in case of failure.
 825 */
 826static int fallible_matches_name(struct ubifs_info *c,
 827				 struct ubifs_zbranch *zbr,
 828				 const struct qstr *nm)
 829{
 830	struct ubifs_dent_node *dent;
 831	int nlen, err;
 832
 833	/* If possible, match against the dent in the leaf node cache */
 834	if (!zbr->leaf) {
 835		dent = kmalloc(zbr->len, GFP_NOFS);
 836		if (!dent)
 837			return -ENOMEM;
 838
 839		err = fallible_read_node(c, &zbr->key, zbr, dent);
 840		if (err < 0)
 841			goto out_free;
 842		if (err == 0) {
 843			/* The node was not present */
 844			err = NOT_ON_MEDIA;
 845			goto out_free;
 846		}
 847		ubifs_assert(err == 1);
 848
 849		err = lnc_add_directly(c, zbr, dent);
 850		if (err)
 851			goto out_free;
 852	} else
 853		dent = zbr->leaf;
 854
 855	nlen = le16_to_cpu(dent->nlen);
 856	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 857	if (err == 0) {
 858		if (nlen == nm->len)
 859			return NAME_MATCHES;
 860		else if (nlen < nm->len)
 861			return NAME_LESS;
 862		else
 863			return NAME_GREATER;
 864	} else if (err < 0)
 865		return NAME_LESS;
 866	else
 867		return NAME_GREATER;
 868
 869out_free:
 870	kfree(dent);
 871	return err;
 872}
 873
 874/**
 875 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 876 * @c: UBIFS file-system description object
 877 * @key: key
 878 * @zn: znode is returned here
 879 * @n: branch number is passed and returned here
 880 * @nm: name of directory entry
 881 * @adding: indicates caller is adding a key to the TNC
 882 *
 883 * This is a "fallible" version of the 'resolve_collision()' function which
 884 * does not panic if one of the nodes referred to by TNC does not exist on the
 885 * media. This may happen when replaying the journal if a deleted node was
 886 * Garbage-collected and the commit was not done. A branch that refers to a node
 887 * that is not present is called a dangling branch. The following are the return
 888 * codes for this function:
 889 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 890 *    branch;
 891 *  o if we are @adding and @nm was not found, %0 is returned;
 892 *  o if we are not @adding and @nm was not found, but a dangling branch was
 893 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 894 *  o a negative error code is returned in case of failure.
 895 */
 896static int fallible_resolve_collision(struct ubifs_info *c,
 897				      const union ubifs_key *key,
 898				      struct ubifs_znode **zn, int *n,
 899				      const struct qstr *nm, int adding)
 900{
 901	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 902	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 903
 904	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 905	if (unlikely(cmp < 0))
 906		return cmp;
 907	if (cmp == NAME_MATCHES)
 908		return 1;
 909	if (cmp == NOT_ON_MEDIA) {
 910		o_znode = znode;
 911		o_n = nn;
 912		/*
 913		 * We are unlucky and hit a dangling branch straight away.
 914		 * Now we do not really know where to go to find the needed
 915		 * branch - to the left or to the right. Well, let's try left.
 916		 */
 917		unsure = 1;
 918	} else if (!adding)
 919		unsure = 1; /* Remove a dangling branch wherever it is */
 920
 921	if (cmp == NAME_GREATER || unsure) {
 922		/* Look left */
 923		while (1) {
 924			err = tnc_prev(c, zn, n);
 925			if (err == -ENOENT) {
 926				ubifs_assert(*n == 0);
 927				*n = -1;
 928				break;
 929			}
 930			if (err < 0)
 931				return err;
 932			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 933				/* See comments in 'resolve_collision()' */
 934				if (*n == (*zn)->child_cnt - 1) {
 935					err = tnc_next(c, zn, n);
 936					if (err) {
 937						/* Should be impossible */
 938						ubifs_assert(0);
 939						if (err == -ENOENT)
 940							err = -EINVAL;
 941						return err;
 942					}
 943					ubifs_assert(*n == 0);
 944					*n = -1;
 945				}
 946				break;
 947			}
 948			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 949			if (err < 0)
 950				return err;
 951			if (err == NAME_MATCHES)
 952				return 1;
 953			if (err == NOT_ON_MEDIA) {
 954				o_znode = *zn;
 955				o_n = *n;
 956				continue;
 957			}
 958			if (!adding)
 959				continue;
 960			if (err == NAME_LESS)
 961				break;
 962			else
 963				unsure = 0;
 964		}
 965	}
 966
 967	if (cmp == NAME_LESS || unsure) {
 968		/* Look right */
 969		*zn = znode;
 970		*n = nn;
 971		while (1) {
 972			err = tnc_next(c, &znode, &nn);
 973			if (err == -ENOENT)
 974				break;
 975			if (err < 0)
 976				return err;
 977			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 978				break;
 979			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 980			if (err < 0)
 981				return err;
 982			if (err == NAME_GREATER)
 983				break;
 984			*zn = znode;
 985			*n = nn;
 986			if (err == NAME_MATCHES)
 987				return 1;
 988			if (err == NOT_ON_MEDIA) {
 989				o_znode = znode;
 990				o_n = nn;
 991			}
 992		}
 993	}
 994
 995	/* Never match a dangling branch when adding */
 996	if (adding || !o_znode)
 997		return 0;
 998
 999	dbg_mnt("dangling match LEB %d:%d len %d %s",
1000		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001		o_znode->zbranch[o_n].len, DBGKEY(key));
1002	*zn = o_znode;
1003	*n = o_n;
1004	return 1;
1005}
1006
1007/**
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1012 *
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 */
1015static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016{
1017	if (zbr->lnum == lnum && zbr->offs == offs)
1018		return 1;
1019	else
1020		return 0;
1021}
1022
1023/**
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1031 *
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1039 */
1040static int resolve_collision_directly(struct ubifs_info *c,
1041				      const union ubifs_key *key,
1042				      struct ubifs_znode **zn, int *n,
1043				      int lnum, int offs)
1044{
1045	struct ubifs_znode *znode;
1046	int nn, err;
1047
1048	znode = *zn;
1049	nn = *n;
1050	if (matches_position(&znode->zbranch[nn], lnum, offs))
1051		return 1;
1052
1053	/* Look left */
1054	while (1) {
1055		err = tnc_prev(c, &znode, &nn);
1056		if (err == -ENOENT)
1057			break;
1058		if (err < 0)
1059			return err;
1060		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061			break;
1062		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063			*zn = znode;
1064			*n = nn;
1065			return 1;
1066		}
1067	}
1068
1069	/* Look right */
1070	znode = *zn;
1071	nn = *n;
1072	while (1) {
1073		err = tnc_next(c, &znode, &nn);
1074		if (err == -ENOENT)
1075			return 0;
1076		if (err < 0)
1077			return err;
1078		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079			return 0;
1080		*zn = znode;
1081		*n = nn;
1082		if (matches_position(&znode->zbranch[nn], lnum, offs))
1083			return 1;
1084	}
1085}
1086
1087/**
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1091 *
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1096 */
1097static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098					       struct ubifs_znode *znode)
1099{
1100	struct ubifs_znode *zp;
1101	int *path = c->bottom_up_buf, p = 0;
1102
1103	ubifs_assert(c->zroot.znode);
1104	ubifs_assert(znode);
1105	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106		kfree(c->bottom_up_buf);
1107		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108					   GFP_NOFS);
1109		if (!c->bottom_up_buf)
1110			return ERR_PTR(-ENOMEM);
1111		path = c->bottom_up_buf;
1112	}
1113	if (c->zroot.znode->level) {
1114		/* Go up until parent is dirty */
1115		while (1) {
1116			int n;
1117
1118			zp = znode->parent;
1119			if (!zp)
1120				break;
1121			n = znode->iip;
1122			ubifs_assert(p < c->zroot.znode->level);
1123			path[p++] = n;
1124			if (!zp->cnext && ubifs_zn_dirty(znode))
1125				break;
1126			znode = zp;
1127		}
1128	}
1129
1130	/* Come back down, dirtying as we go */
1131	while (1) {
1132		struct ubifs_zbranch *zbr;
1133
1134		zp = znode->parent;
1135		if (zp) {
1136			ubifs_assert(path[p - 1] >= 0);
1137			ubifs_assert(path[p - 1] < zp->child_cnt);
1138			zbr = &zp->zbranch[path[--p]];
1139			znode = dirty_cow_znode(c, zbr);
1140		} else {
1141			ubifs_assert(znode == c->zroot.znode);
1142			znode = dirty_cow_znode(c, &c->zroot);
1143		}
1144		if (IS_ERR(znode) || !p)
1145			break;
1146		ubifs_assert(path[p - 1] >= 0);
1147		ubifs_assert(path[p - 1] < znode->child_cnt);
1148		znode = znode->zbranch[path[p - 1]].znode;
1149	}
1150
1151	return znode;
1152}
1153
1154/**
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key:  key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1160 *
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163 * cases:
1164 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 *     is returned and slot number of the matched branch is stored in @n;
1166 *   o not exact match, which means that zero-level znode does not contain
1167 *     @key, then %0 is returned and slot number of the closest branch is stored
1168 *     in @n;
1169 *   o @key is so small that it is even less than the lowest key of the
1170 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171 *
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1175 */
1176int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177			struct ubifs_znode **zn, int *n)
1178{
1179	int err, exact;
1180	struct ubifs_znode *znode;
1181	unsigned long time = get_seconds();
1182
1183	dbg_tnc("search key %s", DBGKEY(key));
1184	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1185
1186	znode = c->zroot.znode;
1187	if (unlikely(!znode)) {
1188		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189		if (IS_ERR(znode))
1190			return PTR_ERR(znode);
1191	}
1192
1193	znode->time = time;
1194
1195	while (1) {
1196		struct ubifs_zbranch *zbr;
1197
1198		exact = ubifs_search_zbranch(c, znode, key, n);
1199
1200		if (znode->level == 0)
1201			break;
1202
1203		if (*n < 0)
1204			*n = 0;
1205		zbr = &znode->zbranch[*n];
1206
1207		if (zbr->znode) {
1208			znode->time = time;
1209			znode = zbr->znode;
1210			continue;
1211		}
1212
1213		/* znode is not in TNC cache, load it from the media */
1214		znode = ubifs_load_znode(c, zbr, znode, *n);
1215		if (IS_ERR(znode))
1216			return PTR_ERR(znode);
1217	}
1218
1219	*zn = znode;
1220	if (exact || !is_hash_key(c, key) || *n != -1) {
1221		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222		return exact;
1223	}
1224
1225	/*
1226	 * Here is a tricky place. We have not found the key and this is a
1227	 * "hashed" key, which may collide. The rest of the code deals with
1228	 * situations like this:
1229	 *
1230	 *                  | 3 | 5 |
1231	 *                  /       \
1232	 *          | 3 | 5 |      | 6 | 7 | (x)
1233	 *
1234	 * Or more a complex example:
1235	 *
1236	 *                | 1 | 5 |
1237	 *                /       \
1238	 *       | 1 | 3 |         | 5 | 8 |
1239	 *              \           /
1240	 *          | 5 | 5 |   | 6 | 7 | (x)
1241	 *
1242	 * In the examples, if we are looking for key "5", we may reach nodes
1243	 * marked with "(x)". In this case what we have do is to look at the
1244	 * left and see if there is "5" key there. If there is, we have to
1245	 * return it.
1246	 *
1247	 * Note, this whole situation is possible because we allow to have
1248	 * elements which are equivalent to the next key in the parent in the
1249	 * children of current znode. For example, this happens if we split a
1250	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251	 * like this:
1252	 *                      | 3 | 5 |
1253	 *                       /     \
1254	 *                | 3 | 5 |   | 5 | 6 | 7 |
1255	 *                              ^
1256	 * And this becomes what is at the first "picture" after key "5" marked
1257	 * with "^" is removed. What could be done is we could prohibit
1258	 * splitting in the middle of the colliding sequence. Also, when
1259	 * removing the leftmost key, we would have to correct the key of the
1260	 * parent node, which would introduce additional complications. Namely,
1261	 * if we changed the leftmost key of the parent znode, the garbage
1262	 * collector would be unable to find it (GC is doing this when GC'ing
1263	 * indexing LEBs). Although we already have an additional RB-tree where
1264	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265	 * after the commit. But anyway, this does not look easy to implement
1266	 * so we did not try this.
1267	 */
1268	err = tnc_prev(c, &znode, n);
1269	if (err == -ENOENT) {
1270		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271		*n = -1;
1272		return 0;
1273	}
1274	if (unlikely(err < 0))
1275		return err;
1276	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278		*n = -1;
1279		return 0;
1280	}
1281
1282	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283	*zn = znode;
1284	return 1;
1285}
1286
1287/**
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key:  key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1293 *
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296 * cases:
1297 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 *     is returned and slot number of the matched branch is stored in @n;
1299 *   o not exact match, which means that zero-level znode does not contain @key
1300 *     then %0 is returned and slot number of the closed branch is stored in
1301 *     @n;
1302 *   o @key is so small that it is even less than the lowest key of the
1303 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304 *
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1307 *
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1311 */
1312static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313			       struct ubifs_znode **zn, int *n)
1314{
1315	int err, exact;
1316	struct ubifs_znode *znode;
1317	unsigned long time = get_seconds();
1318
1319	dbg_tnc("search and dirty key %s", DBGKEY(key));
1320
1321	znode = c->zroot.znode;
1322	if (unlikely(!znode)) {
1323		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324		if (IS_ERR(znode))
1325			return PTR_ERR(znode);
1326	}
1327
1328	znode = dirty_cow_znode(c, &c->zroot);
1329	if (IS_ERR(znode))
1330		return PTR_ERR(znode);
1331
1332	znode->time = time;
1333
1334	while (1) {
1335		struct ubifs_zbranch *zbr;
1336
1337		exact = ubifs_search_zbranch(c, znode, key, n);
1338
1339		if (znode->level == 0)
1340			break;
1341
1342		if (*n < 0)
1343			*n = 0;
1344		zbr = &znode->zbranch[*n];
1345
1346		if (zbr->znode) {
1347			znode->time = time;
1348			znode = dirty_cow_znode(c, zbr);
1349			if (IS_ERR(znode))
1350				return PTR_ERR(znode);
1351			continue;
1352		}
1353
1354		/* znode is not in TNC cache, load it from the media */
1355		znode = ubifs_load_znode(c, zbr, znode, *n);
1356		if (IS_ERR(znode))
1357			return PTR_ERR(znode);
1358		znode = dirty_cow_znode(c, zbr);
1359		if (IS_ERR(znode))
1360			return PTR_ERR(znode);
1361	}
1362
1363	*zn = znode;
1364	if (exact || !is_hash_key(c, key) || *n != -1) {
1365		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366		return exact;
1367	}
1368
1369	/*
1370	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371	 * code.
1372	 */
1373	err = tnc_prev(c, &znode, n);
1374	if (err == -ENOENT) {
1375		*n = -1;
1376		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377		return 0;
1378	}
1379	if (unlikely(err < 0))
1380		return err;
1381	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382		*n = -1;
1383		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384		return 0;
1385	}
1386
1387	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388		znode = dirty_cow_bottom_up(c, znode);
1389		if (IS_ERR(znode))
1390			return PTR_ERR(znode);
1391	}
1392
1393	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394	*zn = znode;
1395	return 1;
1396}
1397
1398/**
1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400 * @c: UBIFS file-system description object
1401 * @lnum: LEB number
1402 * @gc_seq1: garbage collection sequence number
1403 *
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406 * %0 is returned.
1407 */
1408static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409{
1410	int gc_seq2, gced_lnum;
1411
1412	gced_lnum = c->gced_lnum;
1413	smp_rmb();
1414	gc_seq2 = c->gc_seq;
1415	/* Same seq means no GC */
1416	if (gc_seq1 == gc_seq2)
1417		return 0;
1418	/* Different by more than 1 means we don't know */
1419	if (gc_seq1 + 1 != gc_seq2)
1420		return 1;
1421	/*
1422	 * We have seen the sequence number has increased by 1. Now we need to
1423	 * be sure we read the right LEB number, so read it again.
1424	 */
1425	smp_rmb();
1426	if (gced_lnum != c->gced_lnum)
1427		return 1;
1428	/* Finally we can check lnum */
1429	if (gced_lnum == lnum)
1430		return 1;
1431	return 0;
1432}
1433
1434/**
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1441 *
1442 * This function looks up and reads node with key @key. The caller has to make
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1446 */
1447int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448		     void *node, int *lnum, int *offs)
1449{
1450	int found, n, err, safely = 0, gc_seq1;
1451	struct ubifs_znode *znode;
1452	struct ubifs_zbranch zbr, *zt;
1453
1454again:
1455	mutex_lock(&c->tnc_mutex);
1456	found = ubifs_lookup_level0(c, key, &znode, &n);
1457	if (!found) {
1458		err = -ENOENT;
1459		goto out;
1460	} else if (found < 0) {
1461		err = found;
1462		goto out;
1463	}
1464	zt = &znode->zbranch[n];
1465	if (lnum) {
1466		*lnum = zt->lnum;
1467		*offs = zt->offs;
1468	}
1469	if (is_hash_key(c, key)) {
1470		/*
1471		 * In this case the leaf node cache gets used, so we pass the
1472		 * address of the zbranch and keep the mutex locked
1473		 */
1474		err = tnc_read_node_nm(c, zt, node);
1475		goto out;
1476	}
1477	if (safely) {
1478		err = ubifs_tnc_read_node(c, zt, node);
1479		goto out;
1480	}
1481	/* Drop the TNC mutex prematurely and race with garbage collection */
1482	zbr = znode->zbranch[n];
1483	gc_seq1 = c->gc_seq;
1484	mutex_unlock(&c->tnc_mutex);
1485
1486	if (ubifs_get_wbuf(c, zbr.lnum)) {
1487		/* We do not GC journal heads */
1488		err = ubifs_tnc_read_node(c, &zbr, node);
1489		return err;
1490	}
1491
1492	err = fallible_read_node(c, key, &zbr, node);
1493	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494		/*
1495		 * The node may have been GC'ed out from under us so try again
1496		 * while keeping the TNC mutex locked.
1497		 */
1498		safely = 1;
1499		goto again;
1500	}
1501	return 0;
1502
1503out:
1504	mutex_unlock(&c->tnc_mutex);
1505	return err;
1506}
1507
1508/**
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1512 *
1513 * Lookup consecutive data node keys for the same inode that reside
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1516 *
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519 * maximum possible amount of nodes for bulk-read.
1520 */
1521int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522{
1523	int n, err = 0, lnum = -1, uninitialized_var(offs);
1524	int uninitialized_var(len);
1525	unsigned int block = key_block(c, &bu->key);
1526	struct ubifs_znode *znode;
1527
1528	bu->cnt = 0;
1529	bu->blk_cnt = 0;
1530	bu->eof = 0;
1531
1532	mutex_lock(&c->tnc_mutex);
1533	/* Find first key */
1534	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535	if (err < 0)
1536		goto out;
1537	if (err) {
1538		/* Key found */
1539		len = znode->zbranch[n].len;
1540		/* The buffer must be big enough for at least 1 node */
1541		if (len > bu->buf_len) {
1542			err = -EINVAL;
1543			goto out;
1544		}
1545		/* Add this key */
1546		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547		bu->blk_cnt += 1;
1548		lnum = znode->zbranch[n].lnum;
1549		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550	}
1551	while (1) {
1552		struct ubifs_zbranch *zbr;
1553		union ubifs_key *key;
1554		unsigned int next_block;
1555
1556		/* Find next key */
1557		err = tnc_next(c, &znode, &n);
1558		if (err)
1559			goto out;
1560		zbr = &znode->zbranch[n];
1561		key = &zbr->key;
1562		/* See if there is another data key for this file */
1563		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564		    key_type(c, key) != UBIFS_DATA_KEY) {
1565			err = -ENOENT;
1566			goto out;
1567		}
1568		if (lnum < 0) {
1569			/* First key found */
1570			lnum = zbr->lnum;
1571			offs = ALIGN(zbr->offs + zbr->len, 8);
1572			len = zbr->len;
1573			if (len > bu->buf_len) {
1574				err = -EINVAL;
1575				goto out;
1576			}
1577		} else {
1578			/*
1579			 * The data nodes must be in consecutive positions in
1580			 * the same LEB.
1581			 */
1582			if (zbr->lnum != lnum || zbr->offs != offs)
1583				goto out;
1584			offs += ALIGN(zbr->len, 8);
1585			len = ALIGN(len, 8) + zbr->len;
1586			/* Must not exceed buffer length */
1587			if (len > bu->buf_len)
1588				goto out;
1589		}
1590		/* Allow for holes */
1591		next_block = key_block(c, key);
1592		bu->blk_cnt += (next_block - block - 1);
1593		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594			goto out;
1595		block = next_block;
1596		/* Add this key */
1597		bu->zbranch[bu->cnt++] = *zbr;
1598		bu->blk_cnt += 1;
1599		/* See if we have room for more */
1600		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601			goto out;
1602		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603			goto out;
1604	}
1605out:
1606	if (err == -ENOENT) {
1607		bu->eof = 1;
1608		err = 0;
1609	}
1610	bu->gc_seq = c->gc_seq;
1611	mutex_unlock(&c->tnc_mutex);
1612	if (err)
1613		return err;
1614	/*
1615	 * An enormous hole could cause bulk-read to encompass too many
1616	 * page cache pages, so limit the number here.
1617	 */
1618	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620	/*
1621	 * Ensure that bulk-read covers a whole number of page cache
1622	 * pages.
1623	 */
1624	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626		return 0;
1627	if (bu->eof) {
1628		/* At the end of file we can round up */
1629		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630		return 0;
1631	}
1632	/* Exclude data nodes that do not make up a whole page cache page */
1633	block = key_block(c, &bu->key) + bu->blk_cnt;
1634	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635	while (bu->cnt) {
1636		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637			break;
1638		bu->cnt -= 1;
1639	}
1640	return 0;
1641}
1642
1643/**
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1647 * @len: read length
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1650 *
1651 * This functions returns %0 on success or a negative error code on failure.
1652 */
1653static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654		     int offs)
1655{
1656	const struct ubifs_info *c = wbuf->c;
1657	int rlen, overlap;
1658
1659	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662	ubifs_assert(offs + len <= c->leb_size);
1663
1664	spin_lock(&wbuf->lock);
1665	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666	if (!overlap) {
1667		/* We may safely unlock the write-buffer and read the data */
1668		spin_unlock(&wbuf->lock);
1669		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1670	}
1671
1672	/* Don't read under wbuf */
1673	rlen = wbuf->offs - offs;
1674	if (rlen < 0)
1675		rlen = 0;
1676
1677	/* Copy the rest from the write-buffer */
1678	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679	spin_unlock(&wbuf->lock);
1680
1681	if (rlen > 0)
1682		/* Read everything that goes before write-buffer */
1683		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1684
1685	return 0;
1686}
1687
1688/**
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1693 *
1694 * This functions returns %0 on success or a negative error code on failure.
1695 */
1696static int validate_data_node(struct ubifs_info *c, void *buf,
1697			      struct ubifs_zbranch *zbr)
1698{
1699	union ubifs_key key1;
1700	struct ubifs_ch *ch = buf;
1701	int err, len;
1702
1703	if (ch->node_type != UBIFS_DATA_NODE) {
1704		ubifs_err("bad node type (%d but expected %d)",
1705			  ch->node_type, UBIFS_DATA_NODE);
1706		goto out_err;
1707	}
1708
1709	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710	if (err) {
1711		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1712		goto out;
1713	}
1714
1715	len = le32_to_cpu(ch->len);
1716	if (len != zbr->len) {
1717		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1718		goto out_err;
1719	}
1720
1721	/* Make sure the key of the read node is correct */
1722	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723	if (!keys_eq(c, &zbr->key, &key1)) {
1724		ubifs_err("bad key in node at LEB %d:%d",
1725			  zbr->lnum, zbr->offs);
1726		dbg_tnc("looked for key %s found node's key %s",
1727			DBGKEY(&zbr->key), DBGKEY1(&key1));
1728		goto out_err;
1729	}
1730
1731	return 0;
1732
1733out_err:
1734	err = -EINVAL;
1735out:
1736	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737	dbg_dump_node(c, buf);
1738	dbg_dump_stack();
1739	return err;
1740}
1741
1742/**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753{
1754	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755	struct ubifs_wbuf *wbuf;
1756	void *buf;
1757
1758	len = bu->zbranch[bu->cnt - 1].offs;
1759	len += bu->zbranch[bu->cnt - 1].len - offs;
1760	if (len > bu->buf_len) {
1761		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1762		return -EINVAL;
1763	}
1764
1765	/* Do the read */
1766	wbuf = ubifs_get_wbuf(c, lnum);
1767	if (wbuf)
1768		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769	else
1770		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771
1772	/* Check for a race with GC */
1773	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774		return -EAGAIN;
1775
1776	if (err && err != -EBADMSG) {
1777		ubifs_err("failed to read from LEB %d:%d, error %d",
1778			  lnum, offs, err);
1779		dbg_dump_stack();
1780		dbg_tnc("key %s", DBGKEY(&bu->key));
1781		return err;
1782	}
1783
1784	/* Validate the nodes read */
1785	buf = bu->buf;
1786	for (i = 0; i < bu->cnt; i++) {
1787		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788		if (err)
1789			return err;
1790		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791	}
1792
1793	return 0;
1794}
1795
1796/**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
1803 * This function look up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810			void *node, const struct qstr *nm)
1811{
1812	int found, n, err;
1813	struct ubifs_znode *znode;
1814
1815	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1816	mutex_lock(&c->tnc_mutex);
1817	found = ubifs_lookup_level0(c, key, &znode, &n);
1818	if (!found) {
1819		err = -ENOENT;
1820		goto out_unlock;
1821	} else if (found < 0) {
1822		err = found;
1823		goto out_unlock;
1824	}
1825
1826	ubifs_assert(n >= 0);
1827
1828	err = resolve_collision(c, key, &znode, &n, nm);
1829	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830	if (unlikely(err < 0))
1831		goto out_unlock;
1832	if (err == 0) {
1833		err = -ENOENT;
1834		goto out_unlock;
1835	}
1836
1837	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1838
1839out_unlock:
1840	mutex_unlock(&c->tnc_mutex);
1841	return err;
1842}
1843
1844/**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
1851 * This function look up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858			void *node, const struct qstr *nm)
1859{
1860	int err, len;
1861	const struct ubifs_dent_node *dent = node;
1862
1863	/*
1864	 * We assume that in most of the cases there are no name collisions and
1865	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866	 */
1867	err = ubifs_tnc_lookup(c, key, node);
1868	if (err)
1869		return err;
1870
1871	len = le16_to_cpu(dent->nlen);
1872	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1873		return 0;
1874
1875	/*
1876	 * Unluckily, there are hash collisions and we have to iterate over
1877	 * them look at each direntry with colliding name hash sequentially.
1878	 */
1879	return do_lookup_nm(c, key, node, nm);
1880}
1881
1882/**
1883 * correct_parent_keys - correct parent znodes' keys.
1884 * @c: UBIFS file-system description object
1885 * @znode: znode to correct parent znodes for
1886 *
1887 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1888 * zbranch changes, keys of parent znodes have to be corrected. This helper
1889 * function is called in such situations and corrects the keys if needed.
1890 */
1891static void correct_parent_keys(const struct ubifs_info *c,
1892				struct ubifs_znode *znode)
1893{
1894	union ubifs_key *key, *key1;
1895
1896	ubifs_assert(znode->parent);
1897	ubifs_assert(znode->iip == 0);
1898
1899	key = &znode->zbranch[0].key;
1900	key1 = &znode->parent->zbranch[0].key;
1901
1902	while (keys_cmp(c, key, key1) < 0) {
1903		key_copy(c, key, key1);
1904		znode = znode->parent;
1905		znode->alt = 1;
1906		if (!znode->parent || znode->iip)
1907			break;
1908		key1 = &znode->parent->zbranch[0].key;
1909	}
1910}
1911
1912/**
1913 * insert_zbranch - insert a zbranch into a znode.
1914 * @znode: znode into which to insert
1915 * @zbr: zbranch to insert
1916 * @n: slot number to insert to
1917 *
1918 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1919 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1920 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1921 * slot, zbranches starting from @n have to be moved right.
1922 */
1923static void insert_zbranch(struct ubifs_znode *znode,
1924			   const struct ubifs_zbranch *zbr, int n)
1925{
1926	int i;
1927
1928	ubifs_assert(ubifs_zn_dirty(znode));
1929
1930	if (znode->level) {
1931		for (i = znode->child_cnt; i > n; i--) {
1932			znode->zbranch[i] = znode->zbranch[i - 1];
1933			if (znode->zbranch[i].znode)
1934				znode->zbranch[i].znode->iip = i;
1935		}
1936		if (zbr->znode)
1937			zbr->znode->iip = n;
1938	} else
1939		for (i = znode->child_cnt; i > n; i--)
1940			znode->zbranch[i] = znode->zbranch[i - 1];
1941
1942	znode->zbranch[n] = *zbr;
1943	znode->child_cnt += 1;
1944
1945	/*
1946	 * After inserting at slot zero, the lower bound of the key range of
1947	 * this znode may have changed. If this znode is subsequently split
1948	 * then the upper bound of the key range may change, and furthermore
1949	 * it could change to be lower than the original lower bound. If that
1950	 * happens, then it will no longer be possible to find this znode in the
1951	 * TNC using the key from the index node on flash. That is bad because
1952	 * if it is not found, we will assume it is obsolete and may overwrite
1953	 * it. Then if there is an unclean unmount, we will start using the
1954	 * old index which will be broken.
1955	 *
1956	 * So we first mark znodes that have insertions at slot zero, and then
1957	 * if they are split we add their lnum/offs to the old_idx tree.
1958	 */
1959	if (n == 0)
1960		znode->alt = 1;
1961}
1962
1963/**
1964 * tnc_insert - insert a node into TNC.
1965 * @c: UBIFS file-system description object
1966 * @znode: znode to insert into
1967 * @zbr: branch to insert
1968 * @n: slot number to insert new zbranch to
1969 *
1970 * This function inserts a new node described by @zbr into znode @znode. If
1971 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1972 * are splat as well if needed. Returns zero in case of success or a negative
1973 * error code in case of failure.
1974 */
1975static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1976		      struct ubifs_zbranch *zbr, int n)
1977{
1978	struct ubifs_znode *zn, *zi, *zp;
1979	int i, keep, move, appending = 0;
1980	union ubifs_key *key = &zbr->key, *key1;
1981
1982	ubifs_assert(n >= 0 && n <= c->fanout);
1983
1984	/* Implement naive insert for now */
1985again:
1986	zp = znode->parent;
1987	if (znode->child_cnt < c->fanout) {
1988		ubifs_assert(n != c->fanout);
1989		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1990			DBGKEY(key));
1991
1992		insert_zbranch(znode, zbr, n);
1993
1994		/* Ensure parent's key is correct */
1995		if (n == 0 && zp && znode->iip == 0)
1996			correct_parent_keys(c, znode);
1997
1998		return 0;
1999	}
2000
2001	/*
2002	 * Unfortunately, @znode does not have more empty slots and we have to
2003	 * split it.
2004	 */
2005	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2006
2007	if (znode->alt)
2008		/*
2009		 * We can no longer be sure of finding this znode by key, so we
2010		 * record it in the old_idx tree.
2011		 */
2012		ins_clr_old_idx_znode(c, znode);
2013
2014	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2015	if (!zn)
2016		return -ENOMEM;
2017	zn->parent = zp;
2018	zn->level = znode->level;
2019
2020	/* Decide where to split */
2021	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2022		/* Try not to split consecutive data keys */
2023		if (n == c->fanout) {
2024			key1 = &znode->zbranch[n - 1].key;
2025			if (key_inum(c, key1) == key_inum(c, key) &&
2026			    key_type(c, key1) == UBIFS_DATA_KEY)
2027				appending = 1;
2028		} else
2029			goto check_split;
2030	} else if (appending && n != c->fanout) {
2031		/* Try not to split consecutive data keys */
2032		appending = 0;
2033check_split:
2034		if (n >= (c->fanout + 1) / 2) {
2035			key1 = &znode->zbranch[0].key;
2036			if (key_inum(c, key1) == key_inum(c, key) &&
2037			    key_type(c, key1) == UBIFS_DATA_KEY) {
2038				key1 = &znode->zbranch[n].key;
2039				if (key_inum(c, key1) != key_inum(c, key) ||
2040				    key_type(c, key1) != UBIFS_DATA_KEY) {
2041					keep = n;
2042					move = c->fanout - keep;
2043					zi = znode;
2044					goto do_split;
2045				}
2046			}
2047		}
2048	}
2049
2050	if (appending) {
2051		keep = c->fanout;
2052		move = 0;
2053	} else {
2054		keep = (c->fanout + 1) / 2;
2055		move = c->fanout - keep;
2056	}
2057
2058	/*
2059	 * Although we don't at present, we could look at the neighbors and see
2060	 * if we can move some zbranches there.
2061	 */
2062
2063	if (n < keep) {
2064		/* Insert into existing znode */
2065		zi = znode;
2066		move += 1;
2067		keep -= 1;
2068	} else {
2069		/* Insert into new znode */
2070		zi = zn;
2071		n -= keep;
2072		/* Re-parent */
2073		if (zn->level != 0)
2074			zbr->znode->parent = zn;
2075	}
2076
2077do_split:
2078
2079	__set_bit(DIRTY_ZNODE, &zn->flags);
2080	atomic_long_inc(&c->dirty_zn_cnt);
2081
2082	zn->child_cnt = move;
2083	znode->child_cnt = keep;
2084
2085	dbg_tnc("moving %d, keeping %d", move, keep);
2086
2087	/* Move zbranch */
2088	for (i = 0; i < move; i++) {
2089		zn->zbranch[i] = znode->zbranch[keep + i];
2090		/* Re-parent */
2091		if (zn->level != 0)
2092			if (zn->zbranch[i].znode) {
2093				zn->zbranch[i].znode->parent = zn;
2094				zn->zbranch[i].znode->iip = i;
2095			}
2096	}
2097
2098	/* Insert new key and branch */
2099	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2100
2101	insert_zbranch(zi, zbr, n);
2102
2103	/* Insert new znode (produced by spitting) into the parent */
2104	if (zp) {
2105		if (n == 0 && zi == znode && znode->iip == 0)
2106			correct_parent_keys(c, znode);
2107
2108		/* Locate insertion point */
2109		n = znode->iip + 1;
2110
2111		/* Tail recursion */
2112		zbr->key = zn->zbranch[0].key;
2113		zbr->znode = zn;
2114		zbr->lnum = 0;
2115		zbr->offs = 0;
2116		zbr->len = 0;
2117		znode = zp;
2118
2119		goto again;
2120	}
2121
2122	/* We have to split root znode */
2123	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2124
2125	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2126	if (!zi)
2127		return -ENOMEM;
2128
2129	zi->child_cnt = 2;
2130	zi->level = znode->level + 1;
2131
2132	__set_bit(DIRTY_ZNODE, &zi->flags);
2133	atomic_long_inc(&c->dirty_zn_cnt);
2134
2135	zi->zbranch[0].key = znode->zbranch[0].key;
2136	zi->zbranch[0].znode = znode;
2137	zi->zbranch[0].lnum = c->zroot.lnum;
2138	zi->zbranch[0].offs = c->zroot.offs;
2139	zi->zbranch[0].len = c->zroot.len;
2140	zi->zbranch[1].key = zn->zbranch[0].key;
2141	zi->zbranch[1].znode = zn;
2142
2143	c->zroot.lnum = 0;
2144	c->zroot.offs = 0;
2145	c->zroot.len = 0;
2146	c->zroot.znode = zi;
2147
2148	zn->parent = zi;
2149	zn->iip = 1;
2150	znode->parent = zi;
2151	znode->iip = 0;
2152
2153	return 0;
2154}
2155
2156/**
2157 * ubifs_tnc_add - add a node to TNC.
2158 * @c: UBIFS file-system description object
2159 * @key: key to add
2160 * @lnum: LEB number of node
2161 * @offs: node offset
2162 * @len: node length
2163 *
2164 * This function adds a node with key @key to TNC. The node may be new or it may
2165 * obsolete some existing one. Returns %0 on success or negative error code on
2166 * failure.
2167 */
2168int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2169		  int offs, int len)
2170{
2171	int found, n, err = 0;
2172	struct ubifs_znode *znode;
2173
2174	mutex_lock(&c->tnc_mutex);
2175	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2176	found = lookup_level0_dirty(c, key, &znode, &n);
2177	if (!found) {
2178		struct ubifs_zbranch zbr;
2179
2180		zbr.znode = NULL;
2181		zbr.lnum = lnum;
2182		zbr.offs = offs;
2183		zbr.len = len;
2184		key_copy(c, key, &zbr.key);
2185		err = tnc_insert(c, znode, &zbr, n + 1);
2186	} else if (found == 1) {
2187		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2188
2189		lnc_free(zbr);
2190		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2191		zbr->lnum = lnum;
2192		zbr->offs = offs;
2193		zbr->len = len;
2194	} else
2195		err = found;
2196	if (!err)
2197		err = dbg_check_tnc(c, 0);
2198	mutex_unlock(&c->tnc_mutex);
2199
2200	return err;
2201}
2202
2203/**
2204 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2205 * @c: UBIFS file-system description object
2206 * @key: key to add
2207 * @old_lnum: LEB number of old node
2208 * @old_offs: old node offset
2209 * @lnum: LEB number of node
2210 * @offs: node offset
2211 * @len: node length
2212 *
2213 * This function replaces a node with key @key in the TNC only if the old node
2214 * is found.  This function is called by garbage collection when node are moved.
2215 * Returns %0 on success or negative error code on failure.
2216 */
2217int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2218		      int old_lnum, int old_offs, int lnum, int offs, int len)
2219{
2220	int found, n, err = 0;
2221	struct ubifs_znode *znode;
2222
2223	mutex_lock(&c->tnc_mutex);
2224	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2225		old_offs, lnum, offs, len, DBGKEY(key));
2226	found = lookup_level0_dirty(c, key, &znode, &n);
2227	if (found < 0) {
2228		err = found;
2229		goto out_unlock;
2230	}
2231
2232	if (found == 1) {
2233		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2234
2235		found = 0;
2236		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2237			lnc_free(zbr);
2238			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2239			if (err)
2240				goto out_unlock;
2241			zbr->lnum = lnum;
2242			zbr->offs = offs;
2243			zbr->len = len;
2244			found = 1;
2245		} else if (is_hash_key(c, key)) {
2246			found = resolve_collision_directly(c, key, &znode, &n,
2247							   old_lnum, old_offs);
2248			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2249				found, znode, n, old_lnum, old_offs);
2250			if (found < 0) {
2251				err = found;
2252				goto out_unlock;
2253			}
2254
2255			if (found) {
2256				/* Ensure the znode is dirtied */
2257				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2258					znode = dirty_cow_bottom_up(c, znode);
2259					if (IS_ERR(znode)) {
2260						err = PTR_ERR(znode);
2261						goto out_unlock;
2262					}
2263				}
2264				zbr = &znode->zbranch[n];
2265				lnc_free(zbr);
2266				err = ubifs_add_dirt(c, zbr->lnum,
2267						     zbr->len);
2268				if (err)
2269					goto out_unlock;
2270				zbr->lnum = lnum;
2271				zbr->offs = offs;
2272				zbr->len = len;
2273			}
2274		}
2275	}
2276
2277	if (!found)
2278		err = ubifs_add_dirt(c, lnum, len);
2279
2280	if (!err)
2281		err = dbg_check_tnc(c, 0);
2282
2283out_unlock:
2284	mutex_unlock(&c->tnc_mutex);
2285	return err;
2286}
2287
2288/**
2289 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2290 * @c: UBIFS file-system description object
2291 * @key: key to add
2292 * @lnum: LEB number of node
2293 * @offs: node offset
2294 * @len: node length
2295 * @nm: node name
2296 *
2297 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2298 * may have collisions, like directory entry keys.
2299 */
2300int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2301		     int lnum, int offs, int len, const struct qstr *nm)
2302{
2303	int found, n, err = 0;
2304	struct ubifs_znode *znode;
2305
2306	mutex_lock(&c->tnc_mutex);
2307	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2308		DBGKEY(key));
2309	found = lookup_level0_dirty(c, key, &znode, &n);
2310	if (found < 0) {
2311		err = found;
2312		goto out_unlock;
2313	}
2314
2315	if (found == 1) {
2316		if (c->replaying)
2317			found = fallible_resolve_collision(c, key, &znode, &n,
2318							   nm, 1);
2319		else
2320			found = resolve_collision(c, key, &znode, &n, nm);
2321		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2322		if (found < 0) {
2323			err = found;
2324			goto out_unlock;
2325		}
2326
2327		/* Ensure the znode is dirtied */
2328		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2329			znode = dirty_cow_bottom_up(c, znode);
2330			if (IS_ERR(znode)) {
2331				err = PTR_ERR(znode);
2332				goto out_unlock;
2333			}
2334		}
2335
2336		if (found == 1) {
2337			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2338
2339			lnc_free(zbr);
2340			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2341			zbr->lnum = lnum;
2342			zbr->offs = offs;
2343			zbr->len = len;
2344			goto out_unlock;
2345		}
2346	}
2347
2348	if (!found) {
2349		struct ubifs_zbranch zbr;
2350
2351		zbr.znode = NULL;
2352		zbr.lnum = lnum;
2353		zbr.offs = offs;
2354		zbr.len = len;
2355		key_copy(c, key, &zbr.key);
2356		err = tnc_insert(c, znode, &zbr, n + 1);
2357		if (err)
2358			goto out_unlock;
2359		if (c->replaying) {
2360			/*
2361			 * We did not find it in the index so there may be a
2362			 * dangling branch still in the index. So we remove it
2363			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2364			 * an unmatchable name.
2365			 */
2366			struct qstr noname = { .len = 0, .name = "" };
2367
2368			err = dbg_check_tnc(c, 0);
2369			mutex_unlock(&c->tnc_mutex);
2370			if (err)
2371				return err;
2372			return ubifs_tnc_remove_nm(c, key, &noname);
2373		}
2374	}
2375
2376out_unlock:
2377	if (!err)
2378		err = dbg_check_tnc(c, 0);
2379	mutex_unlock(&c->tnc_mutex);
2380	return err;
2381}
2382
2383/**
2384 * tnc_delete - delete a znode form TNC.
2385 * @c: UBIFS file-system description object
2386 * @znode: znode to delete from
2387 * @n: zbranch slot number to delete
2388 *
2389 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2390 * case of success and a negative error code in case of failure.
2391 */
2392static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2393{
2394	struct ubifs_zbranch *zbr;
2395	struct ubifs_znode *zp;
2396	int i, err;
2397
2398	/* Delete without merge for now */
2399	ubifs_assert(znode->level == 0);
2400	ubifs_assert(n >= 0 && n < c->fanout);
2401	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2402
2403	zbr = &znode->zbranch[n];
2404	lnc_free(zbr);
2405
2406	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2407	if (err) {
2408		dbg_dump_znode(c, znode);
2409		return err;
2410	}
2411
2412	/* We do not "gap" zbranch slots */
2413	for (i = n; i < znode->child_cnt - 1; i++)
2414		znode->zbranch[i] = znode->zbranch[i + 1];
2415	znode->child_cnt -= 1;
2416
2417	if (znode->child_cnt > 0)
2418		return 0;
2419
2420	/*
2421	 * This was the last zbranch, we have to delete this znode from the
2422	 * parent.
2423	 */
2424
2425	do {
2426		ubifs_assert(!ubifs_zn_obsolete(znode));
2427		ubifs_assert(ubifs_zn_dirty(znode));
2428
2429		zp = znode->parent;
2430		n = znode->iip;
2431
2432		atomic_long_dec(&c->dirty_zn_cnt);
2433
2434		err = insert_old_idx_znode(c, znode);
2435		if (err)
2436			return err;
2437
2438		if (znode->cnext) {
2439			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2440			atomic_long_inc(&c->clean_zn_cnt);
2441			atomic_long_inc(&ubifs_clean_zn_cnt);
2442		} else
2443			kfree(znode);
2444		znode = zp;
2445	} while (znode->child_cnt == 1); /* while removing last child */
2446
2447	/* Remove from znode, entry n - 1 */
2448	znode->child_cnt -= 1;
2449	ubifs_assert(znode->level != 0);
2450	for (i = n; i < znode->child_cnt; i++) {
2451		znode->zbranch[i] = znode->zbranch[i + 1];
2452		if (znode->zbranch[i].znode)
2453			znode->zbranch[i].znode->iip = i;
2454	}
2455
2456	/*
2457	 * If this is the root and it has only 1 child then
2458	 * collapse the tree.
2459	 */
2460	if (!znode->parent) {
2461		while (znode->child_cnt == 1 && znode->level != 0) {
2462			zp = znode;
2463			zbr = &znode->zbranch[0];
2464			znode = get_znode(c, znode, 0);
2465			if (IS_ERR(znode))
2466				return PTR_ERR(znode);
2467			znode = dirty_cow_znode(c, zbr);
2468			if (IS_ERR(znode))
2469				return PTR_ERR(znode);
2470			znode->parent = NULL;
2471			znode->iip = 0;
2472			if (c->zroot.len) {
2473				err = insert_old_idx(c, c->zroot.lnum,
2474						     c->zroot.offs);
2475				if (err)
2476					return err;
2477			}
2478			c->zroot.lnum = zbr->lnum;
2479			c->zroot.offs = zbr->offs;
2480			c->zroot.len = zbr->len;
2481			c->zroot.znode = znode;
2482			ubifs_assert(!ubifs_zn_obsolete(zp));
2483			ubifs_assert(ubifs_zn_dirty(zp));
2484			atomic_long_dec(&c->dirty_zn_cnt);
2485
2486			if (zp->cnext) {
2487				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2488				atomic_long_inc(&c->clean_zn_cnt);
2489				atomic_long_inc(&ubifs_clean_zn_cnt);
2490			} else
2491				kfree(zp);
2492		}
2493	}
2494
2495	return 0;
2496}
2497
2498/**
2499 * ubifs_tnc_remove - remove an index entry of a node.
2500 * @c: UBIFS file-system description object
2501 * @key: key of node
2502 *
2503 * Returns %0 on success or negative error code on failure.
2504 */
2505int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2506{
2507	int found, n, err = 0;
2508	struct ubifs_znode *znode;
2509
2510	mutex_lock(&c->tnc_mutex);
2511	dbg_tnc("key %s", DBGKEY(key));
2512	found = lookup_level0_dirty(c, key, &znode, &n);
2513	if (found < 0) {
2514		err = found;
2515		goto out_unlock;
2516	}
2517	if (found == 1)
2518		err = tnc_delete(c, znode, n);
2519	if (!err)
2520		err = dbg_check_tnc(c, 0);
2521
2522out_unlock:
2523	mutex_unlock(&c->tnc_mutex);
2524	return err;
2525}
2526
2527/**
2528 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2529 * @c: UBIFS file-system description object
2530 * @key: key of node
2531 * @nm: directory entry name
2532 *
2533 * Returns %0 on success or negative error code on failure.
2534 */
2535int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2536			const struct qstr *nm)
2537{
2538	int n, err;
2539	struct ubifs_znode *znode;
2540
2541	mutex_lock(&c->tnc_mutex);
2542	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2543	err = lookup_level0_dirty(c, key, &znode, &n);
2544	if (err < 0)
2545		goto out_unlock;
2546
2547	if (err) {
2548		if (c->replaying)
2549			err = fallible_resolve_collision(c, key, &znode, &n,
2550							 nm, 0);
2551		else
2552			err = resolve_collision(c, key, &znode, &n, nm);
2553		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2554		if (err < 0)
2555			goto out_unlock;
2556		if (err) {
2557			/* Ensure the znode is dirtied */
2558			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2559				znode = dirty_cow_bottom_up(c, znode);
2560				if (IS_ERR(znode)) {
2561					err = PTR_ERR(znode);
2562					goto out_unlock;
2563				}
2564			}
2565			err = tnc_delete(c, znode, n);
2566		}
2567	}
2568
2569out_unlock:
2570	if (!err)
2571		err = dbg_check_tnc(c, 0);
2572	mutex_unlock(&c->tnc_mutex);
2573	return err;
2574}
2575
2576/**
2577 * key_in_range - determine if a key falls within a range of keys.
2578 * @c: UBIFS file-system description object
2579 * @key: key to check
2580 * @from_key: lowest key in range
2581 * @to_key: highest key in range
2582 *
2583 * This function returns %1 if the key is in range and %0 otherwise.
2584 */
2585static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2586			union ubifs_key *from_key, union ubifs_key *to_key)
2587{
2588	if (keys_cmp(c, key, from_key) < 0)
2589		return 0;
2590	if (keys_cmp(c, key, to_key) > 0)
2591		return 0;
2592	return 1;
2593}
2594
2595/**
2596 * ubifs_tnc_remove_range - remove index entries in range.
2597 * @c: UBIFS file-system description object
2598 * @from_key: lowest key to remove
2599 * @to_key: highest key to remove
2600 *
2601 * This function removes index entries starting at @from_key and ending at
2602 * @to_key.  This function returns zero in case of success and a negative error
2603 * code in case of failure.
2604 */
2605int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2606			   union ubifs_key *to_key)
2607{
2608	int i, n, k, err = 0;
2609	struct ubifs_znode *znode;
2610	union ubifs_key *key;
2611
2612	mutex_lock(&c->tnc_mutex);
2613	while (1) {
2614		/* Find first level 0 znode that contains keys to remove */
2615		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2616		if (err < 0)
2617			goto out_unlock;
2618
2619		if (err)
2620			key = from_key;
2621		else {
2622			err = tnc_next(c, &znode, &n);
2623			if (err == -ENOENT) {
2624				err = 0;
2625				goto out_unlock;
2626			}
2627			if (err < 0)
2628				goto out_unlock;
2629			key = &znode->zbranch[n].key;
2630			if (!key_in_range(c, key, from_key, to_key)) {
2631				err = 0;
2632				goto out_unlock;
2633			}
2634		}
2635
2636		/* Ensure the znode is dirtied */
2637		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2638			znode = dirty_cow_bottom_up(c, znode);
2639			if (IS_ERR(znode)) {
2640				err = PTR_ERR(znode);
2641				goto out_unlock;
2642			}
2643		}
2644
2645		/* Remove all keys in range except the first */
2646		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2647			key = &znode->zbranch[i].key;
2648			if (!key_in_range(c, key, from_key, to_key))
2649				break;
2650			lnc_free(&znode->zbranch[i]);
2651			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2652					     znode->zbranch[i].len);
2653			if (err) {
2654				dbg_dump_znode(c, znode);
2655				goto out_unlock;
2656			}
2657			dbg_tnc("removing %s", DBGKEY(key));
2658		}
2659		if (k) {
2660			for (i = n + 1 + k; i < znode->child_cnt; i++)
2661				znode->zbranch[i - k] = znode->zbranch[i];
2662			znode->child_cnt -= k;
2663		}
2664
2665		/* Now delete the first */
2666		err = tnc_delete(c, znode, n);
2667		if (err)
2668			goto out_unlock;
2669	}
2670
2671out_unlock:
2672	if (!err)
2673		err = dbg_check_tnc(c, 0);
2674	mutex_unlock(&c->tnc_mutex);
2675	return err;
2676}
2677
2678/**
2679 * ubifs_tnc_remove_ino - remove an inode from TNC.
2680 * @c: UBIFS file-system description object
2681 * @inum: inode number to remove
2682 *
2683 * This function remove inode @inum and all the extended attributes associated
2684 * with the anode from TNC and returns zero in case of success or a negative
2685 * error code in case of failure.
2686 */
2687int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2688{
2689	union ubifs_key key1, key2;
2690	struct ubifs_dent_node *xent, *pxent = NULL;
2691	struct qstr nm = { .name = NULL };
2692
2693	dbg_tnc("ino %lu", (unsigned long)inum);
2694
2695	/*
2696	 * Walk all extended attribute entries and remove them together with
2697	 * corresponding extended attribute inodes.
2698	 */
2699	lowest_xent_key(c, &key1, inum);
2700	while (1) {
2701		ino_t xattr_inum;
2702		int err;
2703
2704		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2705		if (IS_ERR(xent)) {
2706			err = PTR_ERR(xent);
2707			if (err == -ENOENT)
2708				break;
2709			return err;
2710		}
2711
2712		xattr_inum = le64_to_cpu(xent->inum);
2713		dbg_tnc("xent '%s', ino %lu", xent->name,
2714			(unsigned long)xattr_inum);
2715
2716		nm.name = xent->name;
2717		nm.len = le16_to_cpu(xent->nlen);
2718		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2719		if (err) {
2720			kfree(xent);
2721			return err;
2722		}
2723
2724		lowest_ino_key(c, &key1, xattr_inum);
2725		highest_ino_key(c, &key2, xattr_inum);
2726		err = ubifs_tnc_remove_range(c, &key1, &key2);
2727		if (err) {
2728			kfree(xent);
2729			return err;
2730		}
2731
2732		kfree(pxent);
2733		pxent = xent;
2734		key_read(c, &xent->key, &key1);
2735	}
2736
2737	kfree(pxent);
2738	lowest_ino_key(c, &key1, inum);
2739	highest_ino_key(c, &key2, inum);
2740
2741	return ubifs_tnc_remove_range(c, &key1, &key2);
2742}
2743
2744/**
2745 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2746 * @c: UBIFS file-system description object
2747 * @key: key of last entry
2748 * @nm: name of last entry found or %NULL
2749 *
2750 * This function finds and reads the next directory or extended attribute entry
2751 * after the given key (@key) if there is one. @nm is used to resolve
2752 * collisions.
2753 *
2754 * If the name of the current entry is not known and only the key is known,
2755 * @nm->name has to be %NULL. In this case the semantics of this function is a
2756 * little bit different and it returns the entry corresponding to this key, not
2757 * the next one. If the key was not found, the closest "right" entry is
2758 * returned.
2759 *
2760 * If the fist entry has to be found, @key has to contain the lowest possible
2761 * key value for this inode and @name has to be %NULL.
2762 *
2763 * This function returns the found directory or extended attribute entry node
2764 * in case of success, %-ENOENT is returned if no entry was found, and a
2765 * negative error code is returned in case of failure.
2766 */
2767struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2768					   union ubifs_key *key,
2769					   const struct qstr *nm)
2770{
2771	int n, err, type = key_type(c, key);
2772	struct ubifs_znode *znode;
2773	struct ubifs_dent_node *dent;
2774	struct ubifs_zbranch *zbr;
2775	union ubifs_key *dkey;
2776
2777	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2778	ubifs_assert(is_hash_key(c, key));
2779
2780	mutex_lock(&c->tnc_mutex);
2781	err = ubifs_lookup_level0(c, key, &znode, &n);
2782	if (unlikely(err < 0))
2783		goto out_unlock;
2784
2785	if (nm->name) {
2786		if (err) {
2787			/* Handle collisions */
2788			err = resolve_collision(c, key, &znode, &n, nm);
2789			dbg_tnc("rc returned %d, znode %p, n %d",
2790				err, znode, n);
2791			if (unlikely(err < 0))
2792				goto out_unlock;
2793		}
2794
2795		/* Now find next entry */
2796		err = tnc_next(c, &znode, &n);
2797		if (unlikely(err))
2798			goto out_unlock;
2799	} else {
2800		/*
2801		 * The full name of the entry was not given, in which case the
2802		 * behavior of this function is a little different and it
2803		 * returns current entry, not the next one.
2804		 */
2805		if (!err) {
2806			/*
2807			 * However, the given key does not exist in the TNC
2808			 * tree and @znode/@n variables contain the closest
2809			 * "preceding" element. Switch to the next one.
2810			 */
2811			err = tnc_next(c, &znode, &n);
2812			if (err)
2813				goto out_unlock;
2814		}
2815	}
2816
2817	zbr = &znode->zbranch[n];
2818	dent = kmalloc(zbr->len, GFP_NOFS);
2819	if (unlikely(!dent)) {
2820		err = -ENOMEM;
2821		goto out_unlock;
2822	}
2823
2824	/*
2825	 * The above 'tnc_next()' call could lead us to the next inode, check
2826	 * this.
2827	 */
2828	dkey = &zbr->key;
2829	if (key_inum(c, dkey) != key_inum(c, key) ||
2830	    key_type(c, dkey) != type) {
2831		err = -ENOENT;
2832		goto out_free;
2833	}
2834
2835	err = tnc_read_node_nm(c, zbr, dent);
2836	if (unlikely(err))
2837		goto out_free;
2838
2839	mutex_unlock(&c->tnc_mutex);
2840	return dent;
2841
2842out_free:
2843	kfree(dent);
2844out_unlock:
2845	mutex_unlock(&c->tnc_mutex);
2846	return ERR_PTR(err);
2847}
2848
2849/**
2850 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2851 * @c: UBIFS file-system description object
2852 *
2853 * Destroy left-over obsolete znodes from a failed commit.
2854 */
2855static void tnc_destroy_cnext(struct ubifs_info *c)
2856{
2857	struct ubifs_znode *cnext;
2858
2859	if (!c->cnext)
2860		return;
2861	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2862	cnext = c->cnext;
2863	do {
2864		struct ubifs_znode *znode = cnext;
2865
2866		cnext = cnext->cnext;
2867		if (ubifs_zn_obsolete(znode))
2868			kfree(znode);
2869	} while (cnext && cnext != c->cnext);
2870}
2871
2872/**
2873 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2874 * @c: UBIFS file-system description object
2875 */
2876void ubifs_tnc_close(struct ubifs_info *c)
2877{
2878	tnc_destroy_cnext(c);
2879	if (c->zroot.znode) {
2880		long n;
2881
2882		ubifs_destroy_tnc_subtree(c->zroot.znode);
2883		n = atomic_long_read(&c->clean_zn_cnt);
2884		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2885	}
2886	kfree(c->gap_lebs);
2887	kfree(c->ilebs);
2888	destroy_old_idx(c);
2889}
2890
2891/**
2892 * left_znode - get the znode to the left.
2893 * @c: UBIFS file-system description object
2894 * @znode: znode
2895 *
2896 * This function returns a pointer to the znode to the left of @znode or NULL if
2897 * there is not one. A negative error code is returned on failure.
2898 */
2899static struct ubifs_znode *left_znode(struct ubifs_info *c,
2900				      struct ubifs_znode *znode)
2901{
2902	int level = znode->level;
2903
2904	while (1) {
2905		int n = znode->iip - 1;
2906
2907		/* Go up until we can go left */
2908		znode = znode->parent;
2909		if (!znode)
2910			return NULL;
2911		if (n >= 0) {
2912			/* Now go down the rightmost branch to 'level' */
2913			znode = get_znode(c, znode, n);
2914			if (IS_ERR(znode))
2915				return znode;
2916			while (znode->level != level) {
2917				n = znode->child_cnt - 1;
2918				znode = get_znode(c, znode, n);
2919				if (IS_ERR(znode))
2920					return znode;
2921			}
2922			break;
2923		}
2924	}
2925	return znode;
2926}
2927
2928/**
2929 * right_znode - get the znode to the right.
2930 * @c: UBIFS file-system description object
2931 * @znode: znode
2932 *
2933 * This function returns a pointer to the znode to the right of @znode or NULL
2934 * if there is not one. A negative error code is returned on failure.
2935 */
2936static struct ubifs_znode *right_znode(struct ubifs_info *c,
2937				       struct ubifs_znode *znode)
2938{
2939	int level = znode->level;
2940
2941	while (1) {
2942		int n = znode->iip + 1;
2943
2944		/* Go up until we can go right */
2945		znode = znode->parent;
2946		if (!znode)
2947			return NULL;
2948		if (n < znode->child_cnt) {
2949			/* Now go down the leftmost branch to 'level' */
2950			znode = get_znode(c, znode, n);
2951			if (IS_ERR(znode))
2952				return znode;
2953			while (znode->level != level) {
2954				znode = get_znode(c, znode, 0);
2955				if (IS_ERR(znode))
2956					return znode;
2957			}
2958			break;
2959		}
2960	}
2961	return znode;
2962}
2963
2964/**
2965 * lookup_znode - find a particular indexing node from TNC.
2966 * @c: UBIFS file-system description object
2967 * @key: index node key to lookup
2968 * @level: index node level
2969 * @lnum: index node LEB number
2970 * @offs: index node offset
2971 *
2972 * This function searches an indexing node by its first key @key and its
2973 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2974 * nodes it traverses to TNC. This function is called for indexing nodes which
2975 * were found on the media by scanning, for example when garbage-collecting or
2976 * when doing in-the-gaps commit. This means that the indexing node which is
2977 * looked for does not have to have exactly the same leftmost key @key, because
2978 * the leftmost key may have been changed, in which case TNC will contain a
2979 * dirty znode which still refers the same @lnum:@offs. This function is clever
2980 * enough to recognize such indexing nodes.
2981 *
2982 * Note, if a znode was deleted or changed too much, then this function will
2983 * not find it. For situations like this UBIFS has the old index RB-tree
2984 * (indexed by @lnum:@offs).
2985 *
2986 * This function returns a pointer to the znode found or %NULL if it is not
2987 * found. A negative error code is returned on failure.
2988 */
2989static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2990					union ubifs_key *key, int level,
2991					int lnum, int offs)
2992{
2993	struct ubifs_znode *znode, *zn;
2994	int n, nn;
2995
2996	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2997
2998	/*
2999	 * The arguments have probably been read off flash, so don't assume
3000	 * they are valid.
3001	 */
3002	if (level < 0)
3003		return ERR_PTR(-EINVAL);
3004
3005	/* Get the root znode */
3006	znode = c->zroot.znode;
3007	if (!znode) {
3008		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3009		if (IS_ERR(znode))
3010			return znode;
3011	}
3012	/* Check if it is the one we are looking for */
3013	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3014		return znode;
3015	/* Descend to the parent level i.e. (level + 1) */
3016	if (level >= znode->level)
3017		return NULL;
3018	while (1) {
3019		ubifs_search_zbranch(c, znode, key, &n);
3020		if (n < 0) {
3021			/*
3022			 * We reached a znode where the leftmost key is greater
3023			 * than the key we are searching for. This is the same
3024			 * situation as the one described in a huge comment at
3025			 * the end of the 'ubifs_lookup_level0()' function. And
3026			 * for exactly the same reasons we have to try to look
3027			 * left before giving up.
3028			 */
3029			znode = left_znode(c, znode);
3030			if (!znode)
3031				return NULL;
3032			if (IS_ERR(znode))
3033				return znode;
3034			ubifs_search_zbranch(c, znode, key, &n);
3035			ubifs_assert(n >= 0);
3036		}
3037		if (znode->level == level + 1)
3038			break;
3039		znode = get_znode(c, znode, n);
3040		if (IS_ERR(znode))
3041			return znode;
3042	}
3043	/* Check if the child is the one we are looking for */
3044	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3045		return get_znode(c, znode, n);
3046	/* If the key is unique, there is nowhere else to look */
3047	if (!is_hash_key(c, key))
3048		return NULL;
3049	/*
3050	 * The key is not unique and so may be also in the znodes to either
3051	 * side.
3052	 */
3053	zn = znode;
3054	nn = n;
3055	/* Look left */
3056	while (1) {
3057		/* Move one branch to the left */
3058		if (n)
3059			n -= 1;
3060		else {
3061			znode = left_znode(c, znode);
3062			if (!znode)
3063				break;
3064			if (IS_ERR(znode))
3065				return znode;
3066			n = znode->child_cnt - 1;
3067		}
3068		/* Check it */
3069		if (znode->zbranch[n].lnum == lnum &&
3070		    znode->zbranch[n].offs == offs)
3071			return get_znode(c, znode, n);
3072		/* Stop if the key is less than the one we are looking for */
3073		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3074			break;
3075	}
3076	/* Back to the middle */
3077	znode = zn;
3078	n = nn;
3079	/* Look right */
3080	while (1) {
3081		/* Move one branch to the right */
3082		if (++n >= znode->child_cnt) {
3083			znode = right_znode(c, znode);
3084			if (!znode)
3085				break;
3086			if (IS_ERR(znode))
3087				return znode;
3088			n = 0;
3089		}
3090		/* Check it */
3091		if (znode->zbranch[n].lnum == lnum &&
3092		    znode->zbranch[n].offs == offs)
3093			return get_znode(c, znode, n);
3094		/* Stop if the key is greater than the one we are looking for */
3095		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3096			break;
3097	}
3098	return NULL;
3099}
3100
3101/**
3102 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3103 * @c: UBIFS file-system description object
3104 * @key: key of index node
3105 * @level: index node level
3106 * @lnum: LEB number of index node
3107 * @offs: offset of index node
3108 *
3109 * This function returns %0 if the index node is not referred to in the TNC, %1
3110 * if the index node is referred to in the TNC and the corresponding znode is
3111 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3112 * znode is clean, and a negative error code in case of failure.
3113 *
3114 * Note, the @key argument has to be the key of the first child. Also note,
3115 * this function relies on the fact that 0:0 is never a valid LEB number and
3116 * offset for a main-area node.
3117 */
3118int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3119		       int lnum, int offs)
3120{
3121	struct ubifs_znode *znode;
3122
3123	znode = lookup_znode(c, key, level, lnum, offs);
3124	if (!znode)
3125		return 0;
3126	if (IS_ERR(znode))
3127		return PTR_ERR(znode);
3128
3129	return ubifs_zn_dirty(znode) ? 1 : 2;
3130}
3131
3132/**
3133 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3134 * @c: UBIFS file-system description object
3135 * @key: node key
3136 * @lnum: node LEB number
3137 * @offs: node offset
3138 *
3139 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3140 * not, and a negative error code in case of failure.
3141 *
3142 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3143 * and offset for a main-area node.
3144 */
3145static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3146			       int lnum, int offs)
3147{
3148	struct ubifs_zbranch *zbr;
3149	struct ubifs_znode *znode, *zn;
3150	int n, found, err, nn;
3151	const int unique = !is_hash_key(c, key);
3152
3153	found = ubifs_lookup_level0(c, key, &znode, &n);
3154	if (found < 0)
3155		return found; /* Error code */
3156	if (!found)
3157		return 0;
3158	zbr = &znode->zbranch[n];
3159	if (lnum == zbr->lnum && offs == zbr->offs)
3160		return 1; /* Found it */
3161	if (unique)
3162		return 0;
3163	/*
3164	 * Because the key is not unique, we have to look left
3165	 * and right as well
3166	 */
3167	zn = znode;
3168	nn = n;
3169	/* Look left */
3170	while (1) {
3171		err = tnc_prev(c, &znode, &n);
3172		if (err == -ENOENT)
3173			break;
3174		if (err)
3175			return err;
3176		if (keys_cmp(c, key, &znode->zbranch[n].key))
3177			break;
3178		zbr = &znode->zbranch[n];
3179		if (lnum == zbr->lnum && offs == zbr->offs)
3180			return 1; /* Found it */
3181	}
3182	/* Look right */
3183	znode = zn;
3184	n = nn;
3185	while (1) {
3186		err = tnc_next(c, &znode, &n);
3187		if (err) {
3188			if (err == -ENOENT)
3189				return 0;
3190			return err;
3191		}
3192		if (keys_cmp(c, key, &znode->zbranch[n].key))
3193			break;
3194		zbr = &znode->zbranch[n];
3195		if (lnum == zbr->lnum && offs == zbr->offs)
3196			return 1; /* Found it */
3197	}
3198	return 0;
3199}
3200
3201/**
3202 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3203 * @c: UBIFS file-system description object
3204 * @key: node key
3205 * @level: index node level (if it is an index node)
3206 * @lnum: node LEB number
3207 * @offs: node offset
3208 * @is_idx: non-zero if the node is an index node
3209 *
3210 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3211 * negative error code in case of failure. For index nodes, @key has to be the
3212 * key of the first child. An index node is considered to be in the TNC only if
3213 * the corresponding znode is clean or has not been loaded.
3214 */
3215int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3216		       int lnum, int offs, int is_idx)
3217{
3218	int err;
3219
3220	mutex_lock(&c->tnc_mutex);
3221	if (is_idx) {
3222		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3223		if (err < 0)
3224			goto out_unlock;
3225		if (err == 1)
3226			/* The index node was found but it was dirty */
3227			err = 0;
3228		else if (err == 2)
3229			/* The index node was found and it was clean */
3230			err = 1;
3231		else
3232			BUG_ON(err != 0);
3233	} else
3234		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3235
3236out_unlock:
3237	mutex_unlock(&c->tnc_mutex);
3238	return err;
3239}
3240
3241/**
3242 * ubifs_dirty_idx_node - dirty an index node.
3243 * @c: UBIFS file-system description object
3244 * @key: index node key
3245 * @level: index node level
3246 * @lnum: index node LEB number
3247 * @offs: index node offset
3248 *
3249 * This function loads and dirties an index node so that it can be garbage
3250 * collected. The @key argument has to be the key of the first child. This
3251 * function relies on the fact that 0:0 is never a valid LEB number and offset
3252 * for a main-area node. Returns %0 on success and a negative error code on
3253 * failure.
3254 */
3255int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3256			 int lnum, int offs)
3257{
3258	struct ubifs_znode *znode;
3259	int err = 0;
3260
3261	mutex_lock(&c->tnc_mutex);
3262	znode = lookup_znode(c, key, level, lnum, offs);
3263	if (!znode)
3264		goto out_unlock;
3265	if (IS_ERR(znode)) {
3266		err = PTR_ERR(znode);
3267		goto out_unlock;
3268	}
3269	znode = dirty_cow_bottom_up(c, znode);
3270	if (IS_ERR(znode)) {
3271		err = PTR_ERR(znode);
3272		goto out_unlock;
3273	}
3274
3275out_unlock:
3276	mutex_unlock(&c->tnc_mutex);
3277	return err;
3278}
3279
3280#ifdef CONFIG_UBIFS_FS_DEBUG
3281
3282/**
3283 * dbg_check_inode_size - check if inode size is correct.
3284 * @c: UBIFS file-system description object
3285 * @inum: inode number
3286 * @size: inode size
3287 *
3288 * This function makes sure that the inode size (@size) is correct and it does
3289 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3290 * if it has a data page beyond @size, and other negative error code in case of
3291 * other errors.
3292 */
3293int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3294			 loff_t size)
3295{
3296	int err, n;
3297	union ubifs_key from_key, to_key, *key;
3298	struct ubifs_znode *znode;
3299	unsigned int block;
3300
3301	if (!S_ISREG(inode->i_mode))
3302		return 0;
3303	if (!dbg_is_chk_gen(c))
3304		return 0;
3305
3306	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3307	data_key_init(c, &from_key, inode->i_ino, block);
3308	highest_data_key(c, &to_key, inode->i_ino);
3309
3310	mutex_lock(&c->tnc_mutex);
3311	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3312	if (err < 0)
3313		goto out_unlock;
3314
3315	if (err) {
3316		err = -EINVAL;
3317		key = &from_key;
3318		goto out_dump;
3319	}
3320
3321	err = tnc_next(c, &znode, &n);
3322	if (err == -ENOENT) {
3323		err = 0;
3324		goto out_unlock;
3325	}
3326	if (err < 0)
3327		goto out_unlock;
3328
3329	ubifs_assert(err == 0);
3330	key = &znode->zbranch[n].key;
3331	if (!key_in_range(c, key, &from_key, &to_key))
3332		goto out_unlock;
3333
3334out_dump:
3335	block = key_block(c, key);
3336	ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3337		  "(data key %s)", (unsigned long)inode->i_ino, size,
3338		  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3339	mutex_unlock(&c->tnc_mutex);
3340	dbg_dump_inode(c, inode);
3341	dbg_dump_stack();
3342	return -EINVAL;
3343
3344out_unlock:
3345	mutex_unlock(&c->tnc_mutex);
3346	return err;
3347}
3348
3349#endif /* CONFIG_UBIFS_FS_DEBUG */
v3.15
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  25 * the UBIFS B-tree.
  26 *
  27 * At the moment the locking rules of the TNC tree are quite simple and
  28 * straightforward. We just have a mutex and lock it when we traverse the
  29 * tree. If a znode is not in memory, we read it from flash while still having
  30 * the mutex locked.
  31 */
  32
  33#include <linux/crc32.h>
  34#include <linux/slab.h>
  35#include "ubifs.h"
  36
  37/*
  38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  39 * @NAME_LESS: name corresponding to the first argument is less than second
  40 * @NAME_MATCHES: names match
  41 * @NAME_GREATER: name corresponding to the second argument is greater than
  42 *                first
  43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  44 *
  45 * These constants were introduce to improve readability.
  46 */
  47enum {
  48	NAME_LESS    = 0,
  49	NAME_MATCHES = 1,
  50	NAME_GREATER = 2,
  51	NOT_ON_MEDIA = 3,
  52};
  53
  54/**
  55 * insert_old_idx - record an index node obsoleted since the last commit start.
  56 * @c: UBIFS file-system description object
  57 * @lnum: LEB number of obsoleted index node
  58 * @offs: offset of obsoleted index node
  59 *
  60 * Returns %0 on success, and a negative error code on failure.
  61 *
  62 * For recovery, there must always be a complete intact version of the index on
  63 * flash at all times. That is called the "old index". It is the index as at the
  64 * time of the last successful commit. Many of the index nodes in the old index
  65 * may be dirty, but they must not be erased until the next successful commit
  66 * (at which point that index becomes the old index).
  67 *
  68 * That means that the garbage collection and the in-the-gaps method of
  69 * committing must be able to determine if an index node is in the old index.
  70 * Most of the old index nodes can be found by looking up the TNC using the
  71 * 'lookup_znode()' function. However, some of the old index nodes may have
  72 * been deleted from the current index or may have been changed so much that
  73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  74 * That is what this function does. The RB-tree is ordered by LEB number and
  75 * offset because they uniquely identify the old index node.
  76 */
  77static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  78{
  79	struct ubifs_old_idx *old_idx, *o;
  80	struct rb_node **p, *parent = NULL;
  81
  82	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  83	if (unlikely(!old_idx))
  84		return -ENOMEM;
  85	old_idx->lnum = lnum;
  86	old_idx->offs = offs;
  87
  88	p = &c->old_idx.rb_node;
  89	while (*p) {
  90		parent = *p;
  91		o = rb_entry(parent, struct ubifs_old_idx, rb);
  92		if (lnum < o->lnum)
  93			p = &(*p)->rb_left;
  94		else if (lnum > o->lnum)
  95			p = &(*p)->rb_right;
  96		else if (offs < o->offs)
  97			p = &(*p)->rb_left;
  98		else if (offs > o->offs)
  99			p = &(*p)->rb_right;
 100		else {
 101			ubifs_err("old idx added twice!");
 102			kfree(old_idx);
 103			return 0;
 104		}
 105	}
 106	rb_link_node(&old_idx->rb, parent, p);
 107	rb_insert_color(&old_idx->rb, &c->old_idx);
 108	return 0;
 109}
 110
 111/**
 112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 113 * @c: UBIFS file-system description object
 114 * @znode: znode of obsoleted index node
 115 *
 116 * Returns %0 on success, and a negative error code on failure.
 117 */
 118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 119{
 120	if (znode->parent) {
 121		struct ubifs_zbranch *zbr;
 122
 123		zbr = &znode->parent->zbranch[znode->iip];
 124		if (zbr->len)
 125			return insert_old_idx(c, zbr->lnum, zbr->offs);
 126	} else
 127		if (c->zroot.len)
 128			return insert_old_idx(c, c->zroot.lnum,
 129					      c->zroot.offs);
 130	return 0;
 131}
 132
 133/**
 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 135 * @c: UBIFS file-system description object
 136 * @znode: znode of obsoleted index node
 137 *
 138 * Returns %0 on success, and a negative error code on failure.
 139 */
 140static int ins_clr_old_idx_znode(struct ubifs_info *c,
 141				 struct ubifs_znode *znode)
 142{
 143	int err;
 144
 145	if (znode->parent) {
 146		struct ubifs_zbranch *zbr;
 147
 148		zbr = &znode->parent->zbranch[znode->iip];
 149		if (zbr->len) {
 150			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 151			if (err)
 152				return err;
 153			zbr->lnum = 0;
 154			zbr->offs = 0;
 155			zbr->len = 0;
 156		}
 157	} else
 158		if (c->zroot.len) {
 159			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 160			if (err)
 161				return err;
 162			c->zroot.lnum = 0;
 163			c->zroot.offs = 0;
 164			c->zroot.len = 0;
 165		}
 166	return 0;
 167}
 168
 169/**
 170 * destroy_old_idx - destroy the old_idx RB-tree.
 171 * @c: UBIFS file-system description object
 172 *
 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 174 * nodes that were in the index last commit but have since been deleted.  This
 175 * is necessary for recovery i.e. the old index must be kept intact until the
 176 * new index is successfully written.  The old-idx RB-tree is used for the
 177 * in-the-gaps method of writing index nodes and is destroyed every commit.
 178 */
 179void destroy_old_idx(struct ubifs_info *c)
 180{
 181	struct ubifs_old_idx *old_idx, *n;
 
 182
 183	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184		kfree(old_idx);
 185
 186	c->old_idx = RB_ROOT;
 187}
 188
 189/**
 190 * copy_znode - copy a dirty znode.
 191 * @c: UBIFS file-system description object
 192 * @znode: znode to copy
 193 *
 194 * A dirty znode being committed may not be changed, so it is copied.
 195 */
 196static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 197				      struct ubifs_znode *znode)
 198{
 199	struct ubifs_znode *zn;
 200
 201	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 202	if (unlikely(!zn))
 203		return ERR_PTR(-ENOMEM);
 204
 205	memcpy(zn, znode, c->max_znode_sz);
 206	zn->cnext = NULL;
 207	__set_bit(DIRTY_ZNODE, &zn->flags);
 208	__clear_bit(COW_ZNODE, &zn->flags);
 209
 210	ubifs_assert(!ubifs_zn_obsolete(znode));
 211	__set_bit(OBSOLETE_ZNODE, &znode->flags);
 212
 213	if (znode->level != 0) {
 214		int i;
 215		const int n = zn->child_cnt;
 216
 217		/* The children now have new parent */
 218		for (i = 0; i < n; i++) {
 219			struct ubifs_zbranch *zbr = &zn->zbranch[i];
 220
 221			if (zbr->znode)
 222				zbr->znode->parent = zn;
 223		}
 224	}
 225
 226	atomic_long_inc(&c->dirty_zn_cnt);
 227	return zn;
 228}
 229
 230/**
 231 * add_idx_dirt - add dirt due to a dirty znode.
 232 * @c: UBIFS file-system description object
 233 * @lnum: LEB number of index node
 234 * @dirt: size of index node
 235 *
 236 * This function updates lprops dirty space and the new size of the index.
 237 */
 238static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 239{
 240	c->calc_idx_sz -= ALIGN(dirt, 8);
 241	return ubifs_add_dirt(c, lnum, dirt);
 242}
 243
 244/**
 245 * dirty_cow_znode - ensure a znode is not being committed.
 246 * @c: UBIFS file-system description object
 247 * @zbr: branch of znode to check
 248 *
 249 * Returns dirtied znode on success or negative error code on failure.
 250 */
 251static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 252					   struct ubifs_zbranch *zbr)
 253{
 254	struct ubifs_znode *znode = zbr->znode;
 255	struct ubifs_znode *zn;
 256	int err;
 257
 258	if (!ubifs_zn_cow(znode)) {
 259		/* znode is not being committed */
 260		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 261			atomic_long_inc(&c->dirty_zn_cnt);
 262			atomic_long_dec(&c->clean_zn_cnt);
 263			atomic_long_dec(&ubifs_clean_zn_cnt);
 264			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 265			if (unlikely(err))
 266				return ERR_PTR(err);
 267		}
 268		return znode;
 269	}
 270
 271	zn = copy_znode(c, znode);
 272	if (IS_ERR(zn))
 273		return zn;
 274
 275	if (zbr->len) {
 276		err = insert_old_idx(c, zbr->lnum, zbr->offs);
 277		if (unlikely(err))
 278			return ERR_PTR(err);
 279		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 280	} else
 281		err = 0;
 282
 283	zbr->znode = zn;
 284	zbr->lnum = 0;
 285	zbr->offs = 0;
 286	zbr->len = 0;
 287
 288	if (unlikely(err))
 289		return ERR_PTR(err);
 290	return zn;
 291}
 292
 293/**
 294 * lnc_add - add a leaf node to the leaf node cache.
 295 * @c: UBIFS file-system description object
 296 * @zbr: zbranch of leaf node
 297 * @node: leaf node
 298 *
 299 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 300 * purpose of the leaf node cache is to save re-reading the same leaf node over
 301 * and over again. Most things are cached by VFS, however the file system must
 302 * cache directory entries for readdir and for resolving hash collisions. The
 303 * present implementation of the leaf node cache is extremely simple, and
 304 * allows for error returns that are not used but that may be needed if a more
 305 * complex implementation is created.
 306 *
 307 * Note, this function does not add the @node object to LNC directly, but
 308 * allocates a copy of the object and adds the copy to LNC. The reason for this
 309 * is that @node has been allocated outside of the TNC subsystem and will be
 310 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 311 * may be changed at any time, e.g. freed by the shrinker.
 312 */
 313static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 314		   const void *node)
 315{
 316	int err;
 317	void *lnc_node;
 318	const struct ubifs_dent_node *dent = node;
 319
 320	ubifs_assert(!zbr->leaf);
 321	ubifs_assert(zbr->len != 0);
 322	ubifs_assert(is_hash_key(c, &zbr->key));
 323
 324	err = ubifs_validate_entry(c, dent);
 325	if (err) {
 326		dump_stack();
 327		ubifs_dump_node(c, dent);
 328		return err;
 329	}
 330
 331	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 332	if (!lnc_node)
 333		/* We don't have to have the cache, so no error */
 334		return 0;
 335
 
 336	zbr->leaf = lnc_node;
 337	return 0;
 338}
 339
 340 /**
 341 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 342 * @c: UBIFS file-system description object
 343 * @zbr: zbranch of leaf node
 344 * @node: leaf node
 345 *
 346 * This function is similar to 'lnc_add()', but it does not create a copy of
 347 * @node but inserts @node to TNC directly.
 348 */
 349static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 350			    void *node)
 351{
 352	int err;
 353
 354	ubifs_assert(!zbr->leaf);
 355	ubifs_assert(zbr->len != 0);
 356
 357	err = ubifs_validate_entry(c, node);
 358	if (err) {
 359		dump_stack();
 360		ubifs_dump_node(c, node);
 361		return err;
 362	}
 363
 364	zbr->leaf = node;
 365	return 0;
 366}
 367
 368/**
 369 * lnc_free - remove a leaf node from the leaf node cache.
 370 * @zbr: zbranch of leaf node
 371 * @node: leaf node
 372 */
 373static void lnc_free(struct ubifs_zbranch *zbr)
 374{
 375	if (!zbr->leaf)
 376		return;
 377	kfree(zbr->leaf);
 378	zbr->leaf = NULL;
 379}
 380
 381/**
 382 * tnc_read_node_nm - read a "hashed" leaf node.
 383 * @c: UBIFS file-system description object
 384 * @zbr: key and position of the node
 385 * @node: node is returned here
 386 *
 387 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 388 * (in it is there) or from the hash media, in which case the node is also
 389 * added to LNC. Returns zero in case of success or a negative negative error
 390 * code in case of failure.
 391 */
 392static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 393			    void *node)
 394{
 395	int err;
 396
 397	ubifs_assert(is_hash_key(c, &zbr->key));
 398
 399	if (zbr->leaf) {
 400		/* Read from the leaf node cache */
 401		ubifs_assert(zbr->len != 0);
 402		memcpy(node, zbr->leaf, zbr->len);
 403		return 0;
 404	}
 405
 406	err = ubifs_tnc_read_node(c, zbr, node);
 407	if (err)
 408		return err;
 409
 410	/* Add the node to the leaf node cache */
 411	err = lnc_add(c, zbr, node);
 412	return err;
 413}
 414
 415/**
 416 * try_read_node - read a node if it is a node.
 417 * @c: UBIFS file-system description object
 418 * @buf: buffer to read to
 419 * @type: node type
 420 * @len: node length (not aligned)
 421 * @lnum: LEB number of node to read
 422 * @offs: offset of node to read
 423 *
 424 * This function tries to read a node of known type and length, checks it and
 425 * stores it in @buf. This function returns %1 if a node is present and %0 if
 426 * a node is not present. A negative error code is returned for I/O errors.
 427 * This function performs that same function as ubifs_read_node except that
 428 * it does not require that there is actually a node present and instead
 429 * the return code indicates if a node was read.
 430 *
 431 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 432 * is true (it is controlled by corresponding mount option). However, if
 433 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 434 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 435 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 436 * journal nodes (when replying the journal or doing the recovery) and the
 437 * journal nodes may potentially be corrupted, so checking is required.
 438 */
 439static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 440			 int len, int lnum, int offs)
 441{
 442	int err, node_len;
 443	struct ubifs_ch *ch = buf;
 444	uint32_t crc, node_crc;
 445
 446	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 447
 448	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 449	if (err) {
 450		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 451			  type, lnum, offs, err);
 452		return err;
 453	}
 454
 455	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 456		return 0;
 457
 458	if (ch->node_type != type)
 459		return 0;
 460
 461	node_len = le32_to_cpu(ch->len);
 462	if (node_len != len)
 463		return 0;
 464
 465	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 466	    !c->remounting_rw)
 467		return 1;
 468
 469	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 470	node_crc = le32_to_cpu(ch->crc);
 471	if (crc != node_crc)
 472		return 0;
 473
 474	return 1;
 475}
 476
 477/**
 478 * fallible_read_node - try to read a leaf node.
 479 * @c: UBIFS file-system description object
 480 * @key:  key of node to read
 481 * @zbr:  position of node
 482 * @node: node returned
 483 *
 484 * This function tries to read a node and returns %1 if the node is read, %0
 485 * if the node is not present, and a negative error code in the case of error.
 486 */
 487static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 488			      struct ubifs_zbranch *zbr, void *node)
 489{
 490	int ret;
 491
 492	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 493
 494	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 495			    zbr->offs);
 496	if (ret == 1) {
 497		union ubifs_key node_key;
 498		struct ubifs_dent_node *dent = node;
 499
 500		/* All nodes have key in the same place */
 501		key_read(c, &dent->key, &node_key);
 502		if (keys_cmp(c, key, &node_key) != 0)
 503			ret = 0;
 504	}
 505	if (ret == 0 && c->replaying)
 506		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 507			zbr->lnum, zbr->offs, zbr->len);
 508	return ret;
 509}
 510
 511/**
 512 * matches_name - determine if a direntry or xattr entry matches a given name.
 513 * @c: UBIFS file-system description object
 514 * @zbr: zbranch of dent
 515 * @nm: name to match
 516 *
 517 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 518 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 519 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 520 * of failure, a negative error code is returned.
 521 */
 522static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 523			const struct qstr *nm)
 524{
 525	struct ubifs_dent_node *dent;
 526	int nlen, err;
 527
 528	/* If possible, match against the dent in the leaf node cache */
 529	if (!zbr->leaf) {
 530		dent = kmalloc(zbr->len, GFP_NOFS);
 531		if (!dent)
 532			return -ENOMEM;
 533
 534		err = ubifs_tnc_read_node(c, zbr, dent);
 535		if (err)
 536			goto out_free;
 537
 538		/* Add the node to the leaf node cache */
 539		err = lnc_add_directly(c, zbr, dent);
 540		if (err)
 541			goto out_free;
 542	} else
 543		dent = zbr->leaf;
 544
 545	nlen = le16_to_cpu(dent->nlen);
 546	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 547	if (err == 0) {
 548		if (nlen == nm->len)
 549			return NAME_MATCHES;
 550		else if (nlen < nm->len)
 551			return NAME_LESS;
 552		else
 553			return NAME_GREATER;
 554	} else if (err < 0)
 555		return NAME_LESS;
 556	else
 557		return NAME_GREATER;
 558
 559out_free:
 560	kfree(dent);
 561	return err;
 562}
 563
 564/**
 565 * get_znode - get a TNC znode that may not be loaded yet.
 566 * @c: UBIFS file-system description object
 567 * @znode: parent znode
 568 * @n: znode branch slot number
 569 *
 570 * This function returns the znode or a negative error code.
 571 */
 572static struct ubifs_znode *get_znode(struct ubifs_info *c,
 573				     struct ubifs_znode *znode, int n)
 574{
 575	struct ubifs_zbranch *zbr;
 576
 577	zbr = &znode->zbranch[n];
 578	if (zbr->znode)
 579		znode = zbr->znode;
 580	else
 581		znode = ubifs_load_znode(c, zbr, znode, n);
 582	return znode;
 583}
 584
 585/**
 586 * tnc_next - find next TNC entry.
 587 * @c: UBIFS file-system description object
 588 * @zn: znode is passed and returned here
 589 * @n: znode branch slot number is passed and returned here
 590 *
 591 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 592 * no next entry, or a negative error code otherwise.
 593 */
 594static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 595{
 596	struct ubifs_znode *znode = *zn;
 597	int nn = *n;
 598
 599	nn += 1;
 600	if (nn < znode->child_cnt) {
 601		*n = nn;
 602		return 0;
 603	}
 604	while (1) {
 605		struct ubifs_znode *zp;
 606
 607		zp = znode->parent;
 608		if (!zp)
 609			return -ENOENT;
 610		nn = znode->iip + 1;
 611		znode = zp;
 612		if (nn < znode->child_cnt) {
 613			znode = get_znode(c, znode, nn);
 614			if (IS_ERR(znode))
 615				return PTR_ERR(znode);
 616			while (znode->level != 0) {
 617				znode = get_znode(c, znode, 0);
 618				if (IS_ERR(znode))
 619					return PTR_ERR(znode);
 620			}
 621			nn = 0;
 622			break;
 623		}
 624	}
 625	*zn = znode;
 626	*n = nn;
 627	return 0;
 628}
 629
 630/**
 631 * tnc_prev - find previous TNC entry.
 632 * @c: UBIFS file-system description object
 633 * @zn: znode is returned here
 634 * @n: znode branch slot number is passed and returned here
 635 *
 636 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 637 * there is no next entry, or a negative error code otherwise.
 638 */
 639static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 640{
 641	struct ubifs_znode *znode = *zn;
 642	int nn = *n;
 643
 644	if (nn > 0) {
 645		*n = nn - 1;
 646		return 0;
 647	}
 648	while (1) {
 649		struct ubifs_znode *zp;
 650
 651		zp = znode->parent;
 652		if (!zp)
 653			return -ENOENT;
 654		nn = znode->iip - 1;
 655		znode = zp;
 656		if (nn >= 0) {
 657			znode = get_znode(c, znode, nn);
 658			if (IS_ERR(znode))
 659				return PTR_ERR(znode);
 660			while (znode->level != 0) {
 661				nn = znode->child_cnt - 1;
 662				znode = get_znode(c, znode, nn);
 663				if (IS_ERR(znode))
 664					return PTR_ERR(znode);
 665			}
 666			nn = znode->child_cnt - 1;
 667			break;
 668		}
 669	}
 670	*zn = znode;
 671	*n = nn;
 672	return 0;
 673}
 674
 675/**
 676 * resolve_collision - resolve a collision.
 677 * @c: UBIFS file-system description object
 678 * @key: key of a directory or extended attribute entry
 679 * @zn: znode is returned here
 680 * @n: zbranch number is passed and returned here
 681 * @nm: name of the entry
 682 *
 683 * This function is called for "hashed" keys to make sure that the found key
 684 * really corresponds to the looked up node (directory or extended attribute
 685 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 686 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 687 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 688 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 689 * previous one. A negative error code is returned on failures.
 690 */
 691static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 692			     struct ubifs_znode **zn, int *n,
 693			     const struct qstr *nm)
 694{
 695	int err;
 696
 697	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 698	if (unlikely(err < 0))
 699		return err;
 700	if (err == NAME_MATCHES)
 701		return 1;
 702
 703	if (err == NAME_GREATER) {
 704		/* Look left */
 705		while (1) {
 706			err = tnc_prev(c, zn, n);
 707			if (err == -ENOENT) {
 708				ubifs_assert(*n == 0);
 709				*n = -1;
 710				return 0;
 711			}
 712			if (err < 0)
 713				return err;
 714			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 715				/*
 716				 * We have found the branch after which we would
 717				 * like to insert, but inserting in this znode
 718				 * may still be wrong. Consider the following 3
 719				 * znodes, in the case where we are resolving a
 720				 * collision with Key2.
 721				 *
 722				 *                  znode zp
 723				 *            ----------------------
 724				 * level 1     |  Key0  |  Key1  |
 725				 *            -----------------------
 726				 *                 |            |
 727				 *       znode za  |            |  znode zb
 728				 *          ------------      ------------
 729				 * level 0  |  Key0  |        |  Key2  |
 730				 *          ------------      ------------
 731				 *
 732				 * The lookup finds Key2 in znode zb. Lets say
 733				 * there is no match and the name is greater so
 734				 * we look left. When we find Key0, we end up
 735				 * here. If we return now, we will insert into
 736				 * znode za at slot n = 1.  But that is invalid
 737				 * according to the parent's keys.  Key2 must
 738				 * be inserted into znode zb.
 739				 *
 740				 * Note, this problem is not relevant for the
 741				 * case when we go right, because
 742				 * 'tnc_insert()' would correct the parent key.
 743				 */
 744				if (*n == (*zn)->child_cnt - 1) {
 745					err = tnc_next(c, zn, n);
 746					if (err) {
 747						/* Should be impossible */
 748						ubifs_assert(0);
 749						if (err == -ENOENT)
 750							err = -EINVAL;
 751						return err;
 752					}
 753					ubifs_assert(*n == 0);
 754					*n = -1;
 755				}
 756				return 0;
 757			}
 758			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 759			if (err < 0)
 760				return err;
 761			if (err == NAME_LESS)
 762				return 0;
 763			if (err == NAME_MATCHES)
 764				return 1;
 765			ubifs_assert(err == NAME_GREATER);
 766		}
 767	} else {
 768		int nn = *n;
 769		struct ubifs_znode *znode = *zn;
 770
 771		/* Look right */
 772		while (1) {
 773			err = tnc_next(c, &znode, &nn);
 774			if (err == -ENOENT)
 775				return 0;
 776			if (err < 0)
 777				return err;
 778			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 779				return 0;
 780			err = matches_name(c, &znode->zbranch[nn], nm);
 781			if (err < 0)
 782				return err;
 783			if (err == NAME_GREATER)
 784				return 0;
 785			*zn = znode;
 786			*n = nn;
 787			if (err == NAME_MATCHES)
 788				return 1;
 789			ubifs_assert(err == NAME_LESS);
 790		}
 791	}
 792}
 793
 794/**
 795 * fallible_matches_name - determine if a dent matches a given name.
 796 * @c: UBIFS file-system description object
 797 * @zbr: zbranch of dent
 798 * @nm: name to match
 799 *
 800 * This is a "fallible" version of 'matches_name()' function which does not
 801 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 802 *
 803 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 804 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 805 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 806 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 807 * error code is returned in case of failure.
 808 */
 809static int fallible_matches_name(struct ubifs_info *c,
 810				 struct ubifs_zbranch *zbr,
 811				 const struct qstr *nm)
 812{
 813	struct ubifs_dent_node *dent;
 814	int nlen, err;
 815
 816	/* If possible, match against the dent in the leaf node cache */
 817	if (!zbr->leaf) {
 818		dent = kmalloc(zbr->len, GFP_NOFS);
 819		if (!dent)
 820			return -ENOMEM;
 821
 822		err = fallible_read_node(c, &zbr->key, zbr, dent);
 823		if (err < 0)
 824			goto out_free;
 825		if (err == 0) {
 826			/* The node was not present */
 827			err = NOT_ON_MEDIA;
 828			goto out_free;
 829		}
 830		ubifs_assert(err == 1);
 831
 832		err = lnc_add_directly(c, zbr, dent);
 833		if (err)
 834			goto out_free;
 835	} else
 836		dent = zbr->leaf;
 837
 838	nlen = le16_to_cpu(dent->nlen);
 839	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 840	if (err == 0) {
 841		if (nlen == nm->len)
 842			return NAME_MATCHES;
 843		else if (nlen < nm->len)
 844			return NAME_LESS;
 845		else
 846			return NAME_GREATER;
 847	} else if (err < 0)
 848		return NAME_LESS;
 849	else
 850		return NAME_GREATER;
 851
 852out_free:
 853	kfree(dent);
 854	return err;
 855}
 856
 857/**
 858 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 859 * @c: UBIFS file-system description object
 860 * @key: key
 861 * @zn: znode is returned here
 862 * @n: branch number is passed and returned here
 863 * @nm: name of directory entry
 864 * @adding: indicates caller is adding a key to the TNC
 865 *
 866 * This is a "fallible" version of the 'resolve_collision()' function which
 867 * does not panic if one of the nodes referred to by TNC does not exist on the
 868 * media. This may happen when replaying the journal if a deleted node was
 869 * Garbage-collected and the commit was not done. A branch that refers to a node
 870 * that is not present is called a dangling branch. The following are the return
 871 * codes for this function:
 872 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 873 *    branch;
 874 *  o if we are @adding and @nm was not found, %0 is returned;
 875 *  o if we are not @adding and @nm was not found, but a dangling branch was
 876 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 877 *  o a negative error code is returned in case of failure.
 878 */
 879static int fallible_resolve_collision(struct ubifs_info *c,
 880				      const union ubifs_key *key,
 881				      struct ubifs_znode **zn, int *n,
 882				      const struct qstr *nm, int adding)
 883{
 884	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 885	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 886
 887	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 888	if (unlikely(cmp < 0))
 889		return cmp;
 890	if (cmp == NAME_MATCHES)
 891		return 1;
 892	if (cmp == NOT_ON_MEDIA) {
 893		o_znode = znode;
 894		o_n = nn;
 895		/*
 896		 * We are unlucky and hit a dangling branch straight away.
 897		 * Now we do not really know where to go to find the needed
 898		 * branch - to the left or to the right. Well, let's try left.
 899		 */
 900		unsure = 1;
 901	} else if (!adding)
 902		unsure = 1; /* Remove a dangling branch wherever it is */
 903
 904	if (cmp == NAME_GREATER || unsure) {
 905		/* Look left */
 906		while (1) {
 907			err = tnc_prev(c, zn, n);
 908			if (err == -ENOENT) {
 909				ubifs_assert(*n == 0);
 910				*n = -1;
 911				break;
 912			}
 913			if (err < 0)
 914				return err;
 915			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 916				/* See comments in 'resolve_collision()' */
 917				if (*n == (*zn)->child_cnt - 1) {
 918					err = tnc_next(c, zn, n);
 919					if (err) {
 920						/* Should be impossible */
 921						ubifs_assert(0);
 922						if (err == -ENOENT)
 923							err = -EINVAL;
 924						return err;
 925					}
 926					ubifs_assert(*n == 0);
 927					*n = -1;
 928				}
 929				break;
 930			}
 931			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 932			if (err < 0)
 933				return err;
 934			if (err == NAME_MATCHES)
 935				return 1;
 936			if (err == NOT_ON_MEDIA) {
 937				o_znode = *zn;
 938				o_n = *n;
 939				continue;
 940			}
 941			if (!adding)
 942				continue;
 943			if (err == NAME_LESS)
 944				break;
 945			else
 946				unsure = 0;
 947		}
 948	}
 949
 950	if (cmp == NAME_LESS || unsure) {
 951		/* Look right */
 952		*zn = znode;
 953		*n = nn;
 954		while (1) {
 955			err = tnc_next(c, &znode, &nn);
 956			if (err == -ENOENT)
 957				break;
 958			if (err < 0)
 959				return err;
 960			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 961				break;
 962			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 963			if (err < 0)
 964				return err;
 965			if (err == NAME_GREATER)
 966				break;
 967			*zn = znode;
 968			*n = nn;
 969			if (err == NAME_MATCHES)
 970				return 1;
 971			if (err == NOT_ON_MEDIA) {
 972				o_znode = znode;
 973				o_n = nn;
 974			}
 975		}
 976	}
 977
 978	/* Never match a dangling branch when adding */
 979	if (adding || !o_znode)
 980		return 0;
 981
 982	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 983		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 984		o_znode->zbranch[o_n].len);
 985	*zn = o_znode;
 986	*n = o_n;
 987	return 1;
 988}
 989
 990/**
 991 * matches_position - determine if a zbranch matches a given position.
 992 * @zbr: zbranch of dent
 993 * @lnum: LEB number of dent to match
 994 * @offs: offset of dent to match
 995 *
 996 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
 997 */
 998static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
 999{
1000	if (zbr->lnum == lnum && zbr->offs == offs)
1001		return 1;
1002	else
1003		return 0;
1004}
1005
1006/**
1007 * resolve_collision_directly - resolve a collision directly.
1008 * @c: UBIFS file-system description object
1009 * @key: key of directory entry
1010 * @zn: znode is passed and returned here
1011 * @n: zbranch number is passed and returned here
1012 * @lnum: LEB number of dent node to match
1013 * @offs: offset of dent node to match
1014 *
1015 * This function is used for "hashed" keys to make sure the found directory or
1016 * extended attribute entry node is what was looked for. It is used when the
1017 * flash address of the right node is known (@lnum:@offs) which makes it much
1018 * easier to resolve collisions (no need to read entries and match full
1019 * names). This function returns %1 and sets @zn and @n if the collision is
1020 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1021 * previous directory entry. Otherwise a negative error code is returned.
1022 */
1023static int resolve_collision_directly(struct ubifs_info *c,
1024				      const union ubifs_key *key,
1025				      struct ubifs_znode **zn, int *n,
1026				      int lnum, int offs)
1027{
1028	struct ubifs_znode *znode;
1029	int nn, err;
1030
1031	znode = *zn;
1032	nn = *n;
1033	if (matches_position(&znode->zbranch[nn], lnum, offs))
1034		return 1;
1035
1036	/* Look left */
1037	while (1) {
1038		err = tnc_prev(c, &znode, &nn);
1039		if (err == -ENOENT)
1040			break;
1041		if (err < 0)
1042			return err;
1043		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1044			break;
1045		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1046			*zn = znode;
1047			*n = nn;
1048			return 1;
1049		}
1050	}
1051
1052	/* Look right */
1053	znode = *zn;
1054	nn = *n;
1055	while (1) {
1056		err = tnc_next(c, &znode, &nn);
1057		if (err == -ENOENT)
1058			return 0;
1059		if (err < 0)
1060			return err;
1061		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1062			return 0;
1063		*zn = znode;
1064		*n = nn;
1065		if (matches_position(&znode->zbranch[nn], lnum, offs))
1066			return 1;
1067	}
1068}
1069
1070/**
1071 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1072 * @c: UBIFS file-system description object
1073 * @znode: znode to dirty
1074 *
1075 * If we do not have a unique key that resides in a znode, then we cannot
1076 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1077 * This function records the path back to the last dirty ancestor, and then
1078 * dirties the znodes on that path.
1079 */
1080static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1081					       struct ubifs_znode *znode)
1082{
1083	struct ubifs_znode *zp;
1084	int *path = c->bottom_up_buf, p = 0;
1085
1086	ubifs_assert(c->zroot.znode);
1087	ubifs_assert(znode);
1088	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1089		kfree(c->bottom_up_buf);
1090		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1091					   GFP_NOFS);
1092		if (!c->bottom_up_buf)
1093			return ERR_PTR(-ENOMEM);
1094		path = c->bottom_up_buf;
1095	}
1096	if (c->zroot.znode->level) {
1097		/* Go up until parent is dirty */
1098		while (1) {
1099			int n;
1100
1101			zp = znode->parent;
1102			if (!zp)
1103				break;
1104			n = znode->iip;
1105			ubifs_assert(p < c->zroot.znode->level);
1106			path[p++] = n;
1107			if (!zp->cnext && ubifs_zn_dirty(znode))
1108				break;
1109			znode = zp;
1110		}
1111	}
1112
1113	/* Come back down, dirtying as we go */
1114	while (1) {
1115		struct ubifs_zbranch *zbr;
1116
1117		zp = znode->parent;
1118		if (zp) {
1119			ubifs_assert(path[p - 1] >= 0);
1120			ubifs_assert(path[p - 1] < zp->child_cnt);
1121			zbr = &zp->zbranch[path[--p]];
1122			znode = dirty_cow_znode(c, zbr);
1123		} else {
1124			ubifs_assert(znode == c->zroot.znode);
1125			znode = dirty_cow_znode(c, &c->zroot);
1126		}
1127		if (IS_ERR(znode) || !p)
1128			break;
1129		ubifs_assert(path[p - 1] >= 0);
1130		ubifs_assert(path[p - 1] < znode->child_cnt);
1131		znode = znode->zbranch[path[p - 1]].znode;
1132	}
1133
1134	return znode;
1135}
1136
1137/**
1138 * ubifs_lookup_level0 - search for zero-level znode.
1139 * @c: UBIFS file-system description object
1140 * @key:  key to lookup
1141 * @zn: znode is returned here
1142 * @n: znode branch slot number is returned here
1143 *
1144 * This function looks up the TNC tree and search for zero-level znode which
1145 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1146 * cases:
1147 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1148 *     is returned and slot number of the matched branch is stored in @n;
1149 *   o not exact match, which means that zero-level znode does not contain
1150 *     @key, then %0 is returned and slot number of the closest branch is stored
1151 *     in @n;
1152 *   o @key is so small that it is even less than the lowest key of the
1153 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1154 *
1155 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1156 * function reads corresponding indexing nodes and inserts them to TNC. In
1157 * case of failure, a negative error code is returned.
1158 */
1159int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1160			struct ubifs_znode **zn, int *n)
1161{
1162	int err, exact;
1163	struct ubifs_znode *znode;
1164	unsigned long time = get_seconds();
1165
1166	dbg_tnck(key, "search key ");
1167	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1168
1169	znode = c->zroot.znode;
1170	if (unlikely(!znode)) {
1171		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1172		if (IS_ERR(znode))
1173			return PTR_ERR(znode);
1174	}
1175
1176	znode->time = time;
1177
1178	while (1) {
1179		struct ubifs_zbranch *zbr;
1180
1181		exact = ubifs_search_zbranch(c, znode, key, n);
1182
1183		if (znode->level == 0)
1184			break;
1185
1186		if (*n < 0)
1187			*n = 0;
1188		zbr = &znode->zbranch[*n];
1189
1190		if (zbr->znode) {
1191			znode->time = time;
1192			znode = zbr->znode;
1193			continue;
1194		}
1195
1196		/* znode is not in TNC cache, load it from the media */
1197		znode = ubifs_load_znode(c, zbr, znode, *n);
1198		if (IS_ERR(znode))
1199			return PTR_ERR(znode);
1200	}
1201
1202	*zn = znode;
1203	if (exact || !is_hash_key(c, key) || *n != -1) {
1204		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1205		return exact;
1206	}
1207
1208	/*
1209	 * Here is a tricky place. We have not found the key and this is a
1210	 * "hashed" key, which may collide. The rest of the code deals with
1211	 * situations like this:
1212	 *
1213	 *                  | 3 | 5 |
1214	 *                  /       \
1215	 *          | 3 | 5 |      | 6 | 7 | (x)
1216	 *
1217	 * Or more a complex example:
1218	 *
1219	 *                | 1 | 5 |
1220	 *                /       \
1221	 *       | 1 | 3 |         | 5 | 8 |
1222	 *              \           /
1223	 *          | 5 | 5 |   | 6 | 7 | (x)
1224	 *
1225	 * In the examples, if we are looking for key "5", we may reach nodes
1226	 * marked with "(x)". In this case what we have do is to look at the
1227	 * left and see if there is "5" key there. If there is, we have to
1228	 * return it.
1229	 *
1230	 * Note, this whole situation is possible because we allow to have
1231	 * elements which are equivalent to the next key in the parent in the
1232	 * children of current znode. For example, this happens if we split a
1233	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1234	 * like this:
1235	 *                      | 3 | 5 |
1236	 *                       /     \
1237	 *                | 3 | 5 |   | 5 | 6 | 7 |
1238	 *                              ^
1239	 * And this becomes what is at the first "picture" after key "5" marked
1240	 * with "^" is removed. What could be done is we could prohibit
1241	 * splitting in the middle of the colliding sequence. Also, when
1242	 * removing the leftmost key, we would have to correct the key of the
1243	 * parent node, which would introduce additional complications. Namely,
1244	 * if we changed the leftmost key of the parent znode, the garbage
1245	 * collector would be unable to find it (GC is doing this when GC'ing
1246	 * indexing LEBs). Although we already have an additional RB-tree where
1247	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1248	 * after the commit. But anyway, this does not look easy to implement
1249	 * so we did not try this.
1250	 */
1251	err = tnc_prev(c, &znode, n);
1252	if (err == -ENOENT) {
1253		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1254		*n = -1;
1255		return 0;
1256	}
1257	if (unlikely(err < 0))
1258		return err;
1259	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1260		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261		*n = -1;
1262		return 0;
1263	}
1264
1265	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1266	*zn = znode;
1267	return 1;
1268}
1269
1270/**
1271 * lookup_level0_dirty - search for zero-level znode dirtying.
1272 * @c: UBIFS file-system description object
1273 * @key:  key to lookup
1274 * @zn: znode is returned here
1275 * @n: znode branch slot number is returned here
1276 *
1277 * This function looks up the TNC tree and search for zero-level znode which
1278 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1279 * cases:
1280 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1281 *     is returned and slot number of the matched branch is stored in @n;
1282 *   o not exact match, which means that zero-level znode does not contain @key
1283 *     then %0 is returned and slot number of the closed branch is stored in
1284 *     @n;
1285 *   o @key is so small that it is even less than the lowest key of the
1286 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1287 *
1288 * Additionally all znodes in the path from the root to the located zero-level
1289 * znode are marked as dirty.
1290 *
1291 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1292 * function reads corresponding indexing nodes and inserts them to TNC. In
1293 * case of failure, a negative error code is returned.
1294 */
1295static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1296			       struct ubifs_znode **zn, int *n)
1297{
1298	int err, exact;
1299	struct ubifs_znode *znode;
1300	unsigned long time = get_seconds();
1301
1302	dbg_tnck(key, "search and dirty key ");
1303
1304	znode = c->zroot.znode;
1305	if (unlikely(!znode)) {
1306		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1307		if (IS_ERR(znode))
1308			return PTR_ERR(znode);
1309	}
1310
1311	znode = dirty_cow_znode(c, &c->zroot);
1312	if (IS_ERR(znode))
1313		return PTR_ERR(znode);
1314
1315	znode->time = time;
1316
1317	while (1) {
1318		struct ubifs_zbranch *zbr;
1319
1320		exact = ubifs_search_zbranch(c, znode, key, n);
1321
1322		if (znode->level == 0)
1323			break;
1324
1325		if (*n < 0)
1326			*n = 0;
1327		zbr = &znode->zbranch[*n];
1328
1329		if (zbr->znode) {
1330			znode->time = time;
1331			znode = dirty_cow_znode(c, zbr);
1332			if (IS_ERR(znode))
1333				return PTR_ERR(znode);
1334			continue;
1335		}
1336
1337		/* znode is not in TNC cache, load it from the media */
1338		znode = ubifs_load_znode(c, zbr, znode, *n);
1339		if (IS_ERR(znode))
1340			return PTR_ERR(znode);
1341		znode = dirty_cow_znode(c, zbr);
1342		if (IS_ERR(znode))
1343			return PTR_ERR(znode);
1344	}
1345
1346	*zn = znode;
1347	if (exact || !is_hash_key(c, key) || *n != -1) {
1348		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1349		return exact;
1350	}
1351
1352	/*
1353	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1354	 * code.
1355	 */
1356	err = tnc_prev(c, &znode, n);
1357	if (err == -ENOENT) {
1358		*n = -1;
1359		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1360		return 0;
1361	}
1362	if (unlikely(err < 0))
1363		return err;
1364	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1365		*n = -1;
1366		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367		return 0;
1368	}
1369
1370	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1371		znode = dirty_cow_bottom_up(c, znode);
1372		if (IS_ERR(znode))
1373			return PTR_ERR(znode);
1374	}
1375
1376	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1377	*zn = znode;
1378	return 1;
1379}
1380
1381/**
1382 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1383 * @c: UBIFS file-system description object
1384 * @lnum: LEB number
1385 * @gc_seq1: garbage collection sequence number
1386 *
1387 * This function determines if @lnum may have been garbage collected since
1388 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1389 * %0 is returned.
1390 */
1391static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1392{
1393	int gc_seq2, gced_lnum;
1394
1395	gced_lnum = c->gced_lnum;
1396	smp_rmb();
1397	gc_seq2 = c->gc_seq;
1398	/* Same seq means no GC */
1399	if (gc_seq1 == gc_seq2)
1400		return 0;
1401	/* Different by more than 1 means we don't know */
1402	if (gc_seq1 + 1 != gc_seq2)
1403		return 1;
1404	/*
1405	 * We have seen the sequence number has increased by 1. Now we need to
1406	 * be sure we read the right LEB number, so read it again.
1407	 */
1408	smp_rmb();
1409	if (gced_lnum != c->gced_lnum)
1410		return 1;
1411	/* Finally we can check lnum */
1412	if (gced_lnum == lnum)
1413		return 1;
1414	return 0;
1415}
1416
1417/**
1418 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419 * @c: UBIFS file-system description object
1420 * @key: node key to lookup
1421 * @node: the node is returned here
1422 * @lnum: LEB number is returned here
1423 * @offs: offset is returned here
1424 *
1425 * This function looks up and reads node with key @key. The caller has to make
1426 * sure the @node buffer is large enough to fit the node. Returns zero in case
1427 * of success, %-ENOENT if the node was not found, and a negative error code in
1428 * case of failure. The node location can be returned in @lnum and @offs.
1429 */
1430int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431		     void *node, int *lnum, int *offs)
1432{
1433	int found, n, err, safely = 0, gc_seq1;
1434	struct ubifs_znode *znode;
1435	struct ubifs_zbranch zbr, *zt;
1436
1437again:
1438	mutex_lock(&c->tnc_mutex);
1439	found = ubifs_lookup_level0(c, key, &znode, &n);
1440	if (!found) {
1441		err = -ENOENT;
1442		goto out;
1443	} else if (found < 0) {
1444		err = found;
1445		goto out;
1446	}
1447	zt = &znode->zbranch[n];
1448	if (lnum) {
1449		*lnum = zt->lnum;
1450		*offs = zt->offs;
1451	}
1452	if (is_hash_key(c, key)) {
1453		/*
1454		 * In this case the leaf node cache gets used, so we pass the
1455		 * address of the zbranch and keep the mutex locked
1456		 */
1457		err = tnc_read_node_nm(c, zt, node);
1458		goto out;
1459	}
1460	if (safely) {
1461		err = ubifs_tnc_read_node(c, zt, node);
1462		goto out;
1463	}
1464	/* Drop the TNC mutex prematurely and race with garbage collection */
1465	zbr = znode->zbranch[n];
1466	gc_seq1 = c->gc_seq;
1467	mutex_unlock(&c->tnc_mutex);
1468
1469	if (ubifs_get_wbuf(c, zbr.lnum)) {
1470		/* We do not GC journal heads */
1471		err = ubifs_tnc_read_node(c, &zbr, node);
1472		return err;
1473	}
1474
1475	err = fallible_read_node(c, key, &zbr, node);
1476	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1477		/*
1478		 * The node may have been GC'ed out from under us so try again
1479		 * while keeping the TNC mutex locked.
1480		 */
1481		safely = 1;
1482		goto again;
1483	}
1484	return 0;
1485
1486out:
1487	mutex_unlock(&c->tnc_mutex);
1488	return err;
1489}
1490
1491/**
1492 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493 * @c: UBIFS file-system description object
1494 * @bu: bulk-read parameters and results
1495 *
1496 * Lookup consecutive data node keys for the same inode that reside
1497 * consecutively in the same LEB. This function returns zero in case of success
1498 * and a negative error code in case of failure.
1499 *
1500 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1502 * maximum possible amount of nodes for bulk-read.
1503 */
1504int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505{
1506	int n, err = 0, lnum = -1, uninitialized_var(offs);
1507	int uninitialized_var(len);
1508	unsigned int block = key_block(c, &bu->key);
1509	struct ubifs_znode *znode;
1510
1511	bu->cnt = 0;
1512	bu->blk_cnt = 0;
1513	bu->eof = 0;
1514
1515	mutex_lock(&c->tnc_mutex);
1516	/* Find first key */
1517	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518	if (err < 0)
1519		goto out;
1520	if (err) {
1521		/* Key found */
1522		len = znode->zbranch[n].len;
1523		/* The buffer must be big enough for at least 1 node */
1524		if (len > bu->buf_len) {
1525			err = -EINVAL;
1526			goto out;
1527		}
1528		/* Add this key */
1529		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530		bu->blk_cnt += 1;
1531		lnum = znode->zbranch[n].lnum;
1532		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533	}
1534	while (1) {
1535		struct ubifs_zbranch *zbr;
1536		union ubifs_key *key;
1537		unsigned int next_block;
1538
1539		/* Find next key */
1540		err = tnc_next(c, &znode, &n);
1541		if (err)
1542			goto out;
1543		zbr = &znode->zbranch[n];
1544		key = &zbr->key;
1545		/* See if there is another data key for this file */
1546		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547		    key_type(c, key) != UBIFS_DATA_KEY) {
1548			err = -ENOENT;
1549			goto out;
1550		}
1551		if (lnum < 0) {
1552			/* First key found */
1553			lnum = zbr->lnum;
1554			offs = ALIGN(zbr->offs + zbr->len, 8);
1555			len = zbr->len;
1556			if (len > bu->buf_len) {
1557				err = -EINVAL;
1558				goto out;
1559			}
1560		} else {
1561			/*
1562			 * The data nodes must be in consecutive positions in
1563			 * the same LEB.
1564			 */
1565			if (zbr->lnum != lnum || zbr->offs != offs)
1566				goto out;
1567			offs += ALIGN(zbr->len, 8);
1568			len = ALIGN(len, 8) + zbr->len;
1569			/* Must not exceed buffer length */
1570			if (len > bu->buf_len)
1571				goto out;
1572		}
1573		/* Allow for holes */
1574		next_block = key_block(c, key);
1575		bu->blk_cnt += (next_block - block - 1);
1576		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577			goto out;
1578		block = next_block;
1579		/* Add this key */
1580		bu->zbranch[bu->cnt++] = *zbr;
1581		bu->blk_cnt += 1;
1582		/* See if we have room for more */
1583		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584			goto out;
1585		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586			goto out;
1587	}
1588out:
1589	if (err == -ENOENT) {
1590		bu->eof = 1;
1591		err = 0;
1592	}
1593	bu->gc_seq = c->gc_seq;
1594	mutex_unlock(&c->tnc_mutex);
1595	if (err)
1596		return err;
1597	/*
1598	 * An enormous hole could cause bulk-read to encompass too many
1599	 * page cache pages, so limit the number here.
1600	 */
1601	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1602		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603	/*
1604	 * Ensure that bulk-read covers a whole number of page cache
1605	 * pages.
1606	 */
1607	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609		return 0;
1610	if (bu->eof) {
1611		/* At the end of file we can round up */
1612		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613		return 0;
1614	}
1615	/* Exclude data nodes that do not make up a whole page cache page */
1616	block = key_block(c, &bu->key) + bu->blk_cnt;
1617	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618	while (bu->cnt) {
1619		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620			break;
1621		bu->cnt -= 1;
1622	}
1623	return 0;
1624}
1625
1626/**
1627 * read_wbuf - bulk-read from a LEB with a wbuf.
1628 * @wbuf: wbuf that may overlap the read
1629 * @buf: buffer into which to read
1630 * @len: read length
1631 * @lnum: LEB number from which to read
1632 * @offs: offset from which to read
1633 *
1634 * This functions returns %0 on success or a negative error code on failure.
1635 */
1636static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637		     int offs)
1638{
1639	const struct ubifs_info *c = wbuf->c;
1640	int rlen, overlap;
1641
1642	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645	ubifs_assert(offs + len <= c->leb_size);
1646
1647	spin_lock(&wbuf->lock);
1648	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649	if (!overlap) {
1650		/* We may safely unlock the write-buffer and read the data */
1651		spin_unlock(&wbuf->lock);
1652		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1653	}
1654
1655	/* Don't read under wbuf */
1656	rlen = wbuf->offs - offs;
1657	if (rlen < 0)
1658		rlen = 0;
1659
1660	/* Copy the rest from the write-buffer */
1661	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662	spin_unlock(&wbuf->lock);
1663
1664	if (rlen > 0)
1665		/* Read everything that goes before write-buffer */
1666		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1667
1668	return 0;
1669}
1670
1671/**
1672 * validate_data_node - validate data nodes for bulk-read.
1673 * @c: UBIFS file-system description object
1674 * @buf: buffer containing data node to validate
1675 * @zbr: zbranch of data node to validate
1676 *
1677 * This functions returns %0 on success or a negative error code on failure.
1678 */
1679static int validate_data_node(struct ubifs_info *c, void *buf,
1680			      struct ubifs_zbranch *zbr)
1681{
1682	union ubifs_key key1;
1683	struct ubifs_ch *ch = buf;
1684	int err, len;
1685
1686	if (ch->node_type != UBIFS_DATA_NODE) {
1687		ubifs_err("bad node type (%d but expected %d)",
1688			  ch->node_type, UBIFS_DATA_NODE);
1689		goto out_err;
1690	}
1691
1692	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1693	if (err) {
1694		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1695		goto out;
1696	}
1697
1698	len = le32_to_cpu(ch->len);
1699	if (len != zbr->len) {
1700		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1701		goto out_err;
1702	}
1703
1704	/* Make sure the key of the read node is correct */
1705	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706	if (!keys_eq(c, &zbr->key, &key1)) {
1707		ubifs_err("bad key in node at LEB %d:%d",
1708			  zbr->lnum, zbr->offs);
1709		dbg_tnck(&zbr->key, "looked for key ");
1710		dbg_tnck(&key1, "found node's key ");
1711		goto out_err;
1712	}
1713
1714	return 0;
1715
1716out_err:
1717	err = -EINVAL;
1718out:
1719	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1720	ubifs_dump_node(c, buf);
1721	dump_stack();
1722	return err;
1723}
1724
1725/**
1726 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727 * @c: UBIFS file-system description object
1728 * @bu: bulk-read parameters and results
1729 *
1730 * This functions reads and validates the data nodes that were identified by the
1731 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732 * -EAGAIN to indicate a race with GC, or another negative error code on
1733 * failure.
1734 */
1735int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736{
1737	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738	struct ubifs_wbuf *wbuf;
1739	void *buf;
1740
1741	len = bu->zbranch[bu->cnt - 1].offs;
1742	len += bu->zbranch[bu->cnt - 1].len - offs;
1743	if (len > bu->buf_len) {
1744		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1745		return -EINVAL;
1746	}
1747
1748	/* Do the read */
1749	wbuf = ubifs_get_wbuf(c, lnum);
1750	if (wbuf)
1751		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752	else
1753		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1754
1755	/* Check for a race with GC */
1756	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757		return -EAGAIN;
1758
1759	if (err && err != -EBADMSG) {
1760		ubifs_err("failed to read from LEB %d:%d, error %d",
1761			  lnum, offs, err);
1762		dump_stack();
1763		dbg_tnck(&bu->key, "key ");
1764		return err;
1765	}
1766
1767	/* Validate the nodes read */
1768	buf = bu->buf;
1769	for (i = 0; i < bu->cnt; i++) {
1770		err = validate_data_node(c, buf, &bu->zbranch[i]);
1771		if (err)
1772			return err;
1773		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774	}
1775
1776	return 0;
1777}
1778
1779/**
1780 * do_lookup_nm- look up a "hashed" node.
1781 * @c: UBIFS file-system description object
1782 * @key: node key to lookup
1783 * @node: the node is returned here
1784 * @nm: node name
1785 *
1786 * This function look up and reads a node which contains name hash in the key.
1787 * Since the hash may have collisions, there may be many nodes with the same
1788 * key, so we have to sequentially look to all of them until the needed one is
1789 * found. This function returns zero in case of success, %-ENOENT if the node
1790 * was not found, and a negative error code in case of failure.
1791 */
1792static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1793			void *node, const struct qstr *nm)
1794{
1795	int found, n, err;
1796	struct ubifs_znode *znode;
1797
1798	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1799	mutex_lock(&c->tnc_mutex);
1800	found = ubifs_lookup_level0(c, key, &znode, &n);
1801	if (!found) {
1802		err = -ENOENT;
1803		goto out_unlock;
1804	} else if (found < 0) {
1805		err = found;
1806		goto out_unlock;
1807	}
1808
1809	ubifs_assert(n >= 0);
1810
1811	err = resolve_collision(c, key, &znode, &n, nm);
1812	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813	if (unlikely(err < 0))
1814		goto out_unlock;
1815	if (err == 0) {
1816		err = -ENOENT;
1817		goto out_unlock;
1818	}
1819
1820	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1821
1822out_unlock:
1823	mutex_unlock(&c->tnc_mutex);
1824	return err;
1825}
1826
1827/**
1828 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829 * @c: UBIFS file-system description object
1830 * @key: node key to lookup
1831 * @node: the node is returned here
1832 * @nm: node name
1833 *
1834 * This function look up and reads a node which contains name hash in the key.
1835 * Since the hash may have collisions, there may be many nodes with the same
1836 * key, so we have to sequentially look to all of them until the needed one is
1837 * found. This function returns zero in case of success, %-ENOENT if the node
1838 * was not found, and a negative error code in case of failure.
1839 */
1840int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1841			void *node, const struct qstr *nm)
1842{
1843	int err, len;
1844	const struct ubifs_dent_node *dent = node;
1845
1846	/*
1847	 * We assume that in most of the cases there are no name collisions and
1848	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849	 */
1850	err = ubifs_tnc_lookup(c, key, node);
1851	if (err)
1852		return err;
1853
1854	len = le16_to_cpu(dent->nlen);
1855	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1856		return 0;
1857
1858	/*
1859	 * Unluckily, there are hash collisions and we have to iterate over
1860	 * them look at each direntry with colliding name hash sequentially.
1861	 */
1862	return do_lookup_nm(c, key, node, nm);
1863}
1864
1865/**
1866 * correct_parent_keys - correct parent znodes' keys.
1867 * @c: UBIFS file-system description object
1868 * @znode: znode to correct parent znodes for
1869 *
1870 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1871 * zbranch changes, keys of parent znodes have to be corrected. This helper
1872 * function is called in such situations and corrects the keys if needed.
1873 */
1874static void correct_parent_keys(const struct ubifs_info *c,
1875				struct ubifs_znode *znode)
1876{
1877	union ubifs_key *key, *key1;
1878
1879	ubifs_assert(znode->parent);
1880	ubifs_assert(znode->iip == 0);
1881
1882	key = &znode->zbranch[0].key;
1883	key1 = &znode->parent->zbranch[0].key;
1884
1885	while (keys_cmp(c, key, key1) < 0) {
1886		key_copy(c, key, key1);
1887		znode = znode->parent;
1888		znode->alt = 1;
1889		if (!znode->parent || znode->iip)
1890			break;
1891		key1 = &znode->parent->zbranch[0].key;
1892	}
1893}
1894
1895/**
1896 * insert_zbranch - insert a zbranch into a znode.
1897 * @znode: znode into which to insert
1898 * @zbr: zbranch to insert
1899 * @n: slot number to insert to
1900 *
1901 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1902 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1903 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1904 * slot, zbranches starting from @n have to be moved right.
1905 */
1906static void insert_zbranch(struct ubifs_znode *znode,
1907			   const struct ubifs_zbranch *zbr, int n)
1908{
1909	int i;
1910
1911	ubifs_assert(ubifs_zn_dirty(znode));
1912
1913	if (znode->level) {
1914		for (i = znode->child_cnt; i > n; i--) {
1915			znode->zbranch[i] = znode->zbranch[i - 1];
1916			if (znode->zbranch[i].znode)
1917				znode->zbranch[i].znode->iip = i;
1918		}
1919		if (zbr->znode)
1920			zbr->znode->iip = n;
1921	} else
1922		for (i = znode->child_cnt; i > n; i--)
1923			znode->zbranch[i] = znode->zbranch[i - 1];
1924
1925	znode->zbranch[n] = *zbr;
1926	znode->child_cnt += 1;
1927
1928	/*
1929	 * After inserting at slot zero, the lower bound of the key range of
1930	 * this znode may have changed. If this znode is subsequently split
1931	 * then the upper bound of the key range may change, and furthermore
1932	 * it could change to be lower than the original lower bound. If that
1933	 * happens, then it will no longer be possible to find this znode in the
1934	 * TNC using the key from the index node on flash. That is bad because
1935	 * if it is not found, we will assume it is obsolete and may overwrite
1936	 * it. Then if there is an unclean unmount, we will start using the
1937	 * old index which will be broken.
1938	 *
1939	 * So we first mark znodes that have insertions at slot zero, and then
1940	 * if they are split we add their lnum/offs to the old_idx tree.
1941	 */
1942	if (n == 0)
1943		znode->alt = 1;
1944}
1945
1946/**
1947 * tnc_insert - insert a node into TNC.
1948 * @c: UBIFS file-system description object
1949 * @znode: znode to insert into
1950 * @zbr: branch to insert
1951 * @n: slot number to insert new zbranch to
1952 *
1953 * This function inserts a new node described by @zbr into znode @znode. If
1954 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1955 * are splat as well if needed. Returns zero in case of success or a negative
1956 * error code in case of failure.
1957 */
1958static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1959		      struct ubifs_zbranch *zbr, int n)
1960{
1961	struct ubifs_znode *zn, *zi, *zp;
1962	int i, keep, move, appending = 0;
1963	union ubifs_key *key = &zbr->key, *key1;
1964
1965	ubifs_assert(n >= 0 && n <= c->fanout);
1966
1967	/* Implement naive insert for now */
1968again:
1969	zp = znode->parent;
1970	if (znode->child_cnt < c->fanout) {
1971		ubifs_assert(n != c->fanout);
1972		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
 
1973
1974		insert_zbranch(znode, zbr, n);
1975
1976		/* Ensure parent's key is correct */
1977		if (n == 0 && zp && znode->iip == 0)
1978			correct_parent_keys(c, znode);
1979
1980		return 0;
1981	}
1982
1983	/*
1984	 * Unfortunately, @znode does not have more empty slots and we have to
1985	 * split it.
1986	 */
1987	dbg_tnck(key, "splitting level %d, key ", znode->level);
1988
1989	if (znode->alt)
1990		/*
1991		 * We can no longer be sure of finding this znode by key, so we
1992		 * record it in the old_idx tree.
1993		 */
1994		ins_clr_old_idx_znode(c, znode);
1995
1996	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1997	if (!zn)
1998		return -ENOMEM;
1999	zn->parent = zp;
2000	zn->level = znode->level;
2001
2002	/* Decide where to split */
2003	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2004		/* Try not to split consecutive data keys */
2005		if (n == c->fanout) {
2006			key1 = &znode->zbranch[n - 1].key;
2007			if (key_inum(c, key1) == key_inum(c, key) &&
2008			    key_type(c, key1) == UBIFS_DATA_KEY)
2009				appending = 1;
2010		} else
2011			goto check_split;
2012	} else if (appending && n != c->fanout) {
2013		/* Try not to split consecutive data keys */
2014		appending = 0;
2015check_split:
2016		if (n >= (c->fanout + 1) / 2) {
2017			key1 = &znode->zbranch[0].key;
2018			if (key_inum(c, key1) == key_inum(c, key) &&
2019			    key_type(c, key1) == UBIFS_DATA_KEY) {
2020				key1 = &znode->zbranch[n].key;
2021				if (key_inum(c, key1) != key_inum(c, key) ||
2022				    key_type(c, key1) != UBIFS_DATA_KEY) {
2023					keep = n;
2024					move = c->fanout - keep;
2025					zi = znode;
2026					goto do_split;
2027				}
2028			}
2029		}
2030	}
2031
2032	if (appending) {
2033		keep = c->fanout;
2034		move = 0;
2035	} else {
2036		keep = (c->fanout + 1) / 2;
2037		move = c->fanout - keep;
2038	}
2039
2040	/*
2041	 * Although we don't at present, we could look at the neighbors and see
2042	 * if we can move some zbranches there.
2043	 */
2044
2045	if (n < keep) {
2046		/* Insert into existing znode */
2047		zi = znode;
2048		move += 1;
2049		keep -= 1;
2050	} else {
2051		/* Insert into new znode */
2052		zi = zn;
2053		n -= keep;
2054		/* Re-parent */
2055		if (zn->level != 0)
2056			zbr->znode->parent = zn;
2057	}
2058
2059do_split:
2060
2061	__set_bit(DIRTY_ZNODE, &zn->flags);
2062	atomic_long_inc(&c->dirty_zn_cnt);
2063
2064	zn->child_cnt = move;
2065	znode->child_cnt = keep;
2066
2067	dbg_tnc("moving %d, keeping %d", move, keep);
2068
2069	/* Move zbranch */
2070	for (i = 0; i < move; i++) {
2071		zn->zbranch[i] = znode->zbranch[keep + i];
2072		/* Re-parent */
2073		if (zn->level != 0)
2074			if (zn->zbranch[i].znode) {
2075				zn->zbranch[i].znode->parent = zn;
2076				zn->zbranch[i].znode->iip = i;
2077			}
2078	}
2079
2080	/* Insert new key and branch */
2081	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2082
2083	insert_zbranch(zi, zbr, n);
2084
2085	/* Insert new znode (produced by spitting) into the parent */
2086	if (zp) {
2087		if (n == 0 && zi == znode && znode->iip == 0)
2088			correct_parent_keys(c, znode);
2089
2090		/* Locate insertion point */
2091		n = znode->iip + 1;
2092
2093		/* Tail recursion */
2094		zbr->key = zn->zbranch[0].key;
2095		zbr->znode = zn;
2096		zbr->lnum = 0;
2097		zbr->offs = 0;
2098		zbr->len = 0;
2099		znode = zp;
2100
2101		goto again;
2102	}
2103
2104	/* We have to split root znode */
2105	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2106
2107	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2108	if (!zi)
2109		return -ENOMEM;
2110
2111	zi->child_cnt = 2;
2112	zi->level = znode->level + 1;
2113
2114	__set_bit(DIRTY_ZNODE, &zi->flags);
2115	atomic_long_inc(&c->dirty_zn_cnt);
2116
2117	zi->zbranch[0].key = znode->zbranch[0].key;
2118	zi->zbranch[0].znode = znode;
2119	zi->zbranch[0].lnum = c->zroot.lnum;
2120	zi->zbranch[0].offs = c->zroot.offs;
2121	zi->zbranch[0].len = c->zroot.len;
2122	zi->zbranch[1].key = zn->zbranch[0].key;
2123	zi->zbranch[1].znode = zn;
2124
2125	c->zroot.lnum = 0;
2126	c->zroot.offs = 0;
2127	c->zroot.len = 0;
2128	c->zroot.znode = zi;
2129
2130	zn->parent = zi;
2131	zn->iip = 1;
2132	znode->parent = zi;
2133	znode->iip = 0;
2134
2135	return 0;
2136}
2137
2138/**
2139 * ubifs_tnc_add - add a node to TNC.
2140 * @c: UBIFS file-system description object
2141 * @key: key to add
2142 * @lnum: LEB number of node
2143 * @offs: node offset
2144 * @len: node length
2145 *
2146 * This function adds a node with key @key to TNC. The node may be new or it may
2147 * obsolete some existing one. Returns %0 on success or negative error code on
2148 * failure.
2149 */
2150int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2151		  int offs, int len)
2152{
2153	int found, n, err = 0;
2154	struct ubifs_znode *znode;
2155
2156	mutex_lock(&c->tnc_mutex);
2157	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2158	found = lookup_level0_dirty(c, key, &znode, &n);
2159	if (!found) {
2160		struct ubifs_zbranch zbr;
2161
2162		zbr.znode = NULL;
2163		zbr.lnum = lnum;
2164		zbr.offs = offs;
2165		zbr.len = len;
2166		key_copy(c, key, &zbr.key);
2167		err = tnc_insert(c, znode, &zbr, n + 1);
2168	} else if (found == 1) {
2169		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2170
2171		lnc_free(zbr);
2172		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2173		zbr->lnum = lnum;
2174		zbr->offs = offs;
2175		zbr->len = len;
2176	} else
2177		err = found;
2178	if (!err)
2179		err = dbg_check_tnc(c, 0);
2180	mutex_unlock(&c->tnc_mutex);
2181
2182	return err;
2183}
2184
2185/**
2186 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2187 * @c: UBIFS file-system description object
2188 * @key: key to add
2189 * @old_lnum: LEB number of old node
2190 * @old_offs: old node offset
2191 * @lnum: LEB number of node
2192 * @offs: node offset
2193 * @len: node length
2194 *
2195 * This function replaces a node with key @key in the TNC only if the old node
2196 * is found.  This function is called by garbage collection when node are moved.
2197 * Returns %0 on success or negative error code on failure.
2198 */
2199int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2200		      int old_lnum, int old_offs, int lnum, int offs, int len)
2201{
2202	int found, n, err = 0;
2203	struct ubifs_znode *znode;
2204
2205	mutex_lock(&c->tnc_mutex);
2206	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2207		 old_offs, lnum, offs, len);
2208	found = lookup_level0_dirty(c, key, &znode, &n);
2209	if (found < 0) {
2210		err = found;
2211		goto out_unlock;
2212	}
2213
2214	if (found == 1) {
2215		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2216
2217		found = 0;
2218		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2219			lnc_free(zbr);
2220			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2221			if (err)
2222				goto out_unlock;
2223			zbr->lnum = lnum;
2224			zbr->offs = offs;
2225			zbr->len = len;
2226			found = 1;
2227		} else if (is_hash_key(c, key)) {
2228			found = resolve_collision_directly(c, key, &znode, &n,
2229							   old_lnum, old_offs);
2230			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2231				found, znode, n, old_lnum, old_offs);
2232			if (found < 0) {
2233				err = found;
2234				goto out_unlock;
2235			}
2236
2237			if (found) {
2238				/* Ensure the znode is dirtied */
2239				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2240					znode = dirty_cow_bottom_up(c, znode);
2241					if (IS_ERR(znode)) {
2242						err = PTR_ERR(znode);
2243						goto out_unlock;
2244					}
2245				}
2246				zbr = &znode->zbranch[n];
2247				lnc_free(zbr);
2248				err = ubifs_add_dirt(c, zbr->lnum,
2249						     zbr->len);
2250				if (err)
2251					goto out_unlock;
2252				zbr->lnum = lnum;
2253				zbr->offs = offs;
2254				zbr->len = len;
2255			}
2256		}
2257	}
2258
2259	if (!found)
2260		err = ubifs_add_dirt(c, lnum, len);
2261
2262	if (!err)
2263		err = dbg_check_tnc(c, 0);
2264
2265out_unlock:
2266	mutex_unlock(&c->tnc_mutex);
2267	return err;
2268}
2269
2270/**
2271 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2272 * @c: UBIFS file-system description object
2273 * @key: key to add
2274 * @lnum: LEB number of node
2275 * @offs: node offset
2276 * @len: node length
2277 * @nm: node name
2278 *
2279 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2280 * may have collisions, like directory entry keys.
2281 */
2282int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2283		     int lnum, int offs, int len, const struct qstr *nm)
2284{
2285	int found, n, err = 0;
2286	struct ubifs_znode *znode;
2287
2288	mutex_lock(&c->tnc_mutex);
2289	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2290		 lnum, offs, nm->len, nm->name);
2291	found = lookup_level0_dirty(c, key, &znode, &n);
2292	if (found < 0) {
2293		err = found;
2294		goto out_unlock;
2295	}
2296
2297	if (found == 1) {
2298		if (c->replaying)
2299			found = fallible_resolve_collision(c, key, &znode, &n,
2300							   nm, 1);
2301		else
2302			found = resolve_collision(c, key, &znode, &n, nm);
2303		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2304		if (found < 0) {
2305			err = found;
2306			goto out_unlock;
2307		}
2308
2309		/* Ensure the znode is dirtied */
2310		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2311			znode = dirty_cow_bottom_up(c, znode);
2312			if (IS_ERR(znode)) {
2313				err = PTR_ERR(znode);
2314				goto out_unlock;
2315			}
2316		}
2317
2318		if (found == 1) {
2319			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2320
2321			lnc_free(zbr);
2322			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2323			zbr->lnum = lnum;
2324			zbr->offs = offs;
2325			zbr->len = len;
2326			goto out_unlock;
2327		}
2328	}
2329
2330	if (!found) {
2331		struct ubifs_zbranch zbr;
2332
2333		zbr.znode = NULL;
2334		zbr.lnum = lnum;
2335		zbr.offs = offs;
2336		zbr.len = len;
2337		key_copy(c, key, &zbr.key);
2338		err = tnc_insert(c, znode, &zbr, n + 1);
2339		if (err)
2340			goto out_unlock;
2341		if (c->replaying) {
2342			/*
2343			 * We did not find it in the index so there may be a
2344			 * dangling branch still in the index. So we remove it
2345			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2346			 * an unmatchable name.
2347			 */
2348			struct qstr noname = { .name = "" };
2349
2350			err = dbg_check_tnc(c, 0);
2351			mutex_unlock(&c->tnc_mutex);
2352			if (err)
2353				return err;
2354			return ubifs_tnc_remove_nm(c, key, &noname);
2355		}
2356	}
2357
2358out_unlock:
2359	if (!err)
2360		err = dbg_check_tnc(c, 0);
2361	mutex_unlock(&c->tnc_mutex);
2362	return err;
2363}
2364
2365/**
2366 * tnc_delete - delete a znode form TNC.
2367 * @c: UBIFS file-system description object
2368 * @znode: znode to delete from
2369 * @n: zbranch slot number to delete
2370 *
2371 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2372 * case of success and a negative error code in case of failure.
2373 */
2374static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2375{
2376	struct ubifs_zbranch *zbr;
2377	struct ubifs_znode *zp;
2378	int i, err;
2379
2380	/* Delete without merge for now */
2381	ubifs_assert(znode->level == 0);
2382	ubifs_assert(n >= 0 && n < c->fanout);
2383	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2384
2385	zbr = &znode->zbranch[n];
2386	lnc_free(zbr);
2387
2388	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2389	if (err) {
2390		ubifs_dump_znode(c, znode);
2391		return err;
2392	}
2393
2394	/* We do not "gap" zbranch slots */
2395	for (i = n; i < znode->child_cnt - 1; i++)
2396		znode->zbranch[i] = znode->zbranch[i + 1];
2397	znode->child_cnt -= 1;
2398
2399	if (znode->child_cnt > 0)
2400		return 0;
2401
2402	/*
2403	 * This was the last zbranch, we have to delete this znode from the
2404	 * parent.
2405	 */
2406
2407	do {
2408		ubifs_assert(!ubifs_zn_obsolete(znode));
2409		ubifs_assert(ubifs_zn_dirty(znode));
2410
2411		zp = znode->parent;
2412		n = znode->iip;
2413
2414		atomic_long_dec(&c->dirty_zn_cnt);
2415
2416		err = insert_old_idx_znode(c, znode);
2417		if (err)
2418			return err;
2419
2420		if (znode->cnext) {
2421			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2422			atomic_long_inc(&c->clean_zn_cnt);
2423			atomic_long_inc(&ubifs_clean_zn_cnt);
2424		} else
2425			kfree(znode);
2426		znode = zp;
2427	} while (znode->child_cnt == 1); /* while removing last child */
2428
2429	/* Remove from znode, entry n - 1 */
2430	znode->child_cnt -= 1;
2431	ubifs_assert(znode->level != 0);
2432	for (i = n; i < znode->child_cnt; i++) {
2433		znode->zbranch[i] = znode->zbranch[i + 1];
2434		if (znode->zbranch[i].znode)
2435			znode->zbranch[i].znode->iip = i;
2436	}
2437
2438	/*
2439	 * If this is the root and it has only 1 child then
2440	 * collapse the tree.
2441	 */
2442	if (!znode->parent) {
2443		while (znode->child_cnt == 1 && znode->level != 0) {
2444			zp = znode;
2445			zbr = &znode->zbranch[0];
2446			znode = get_znode(c, znode, 0);
2447			if (IS_ERR(znode))
2448				return PTR_ERR(znode);
2449			znode = dirty_cow_znode(c, zbr);
2450			if (IS_ERR(znode))
2451				return PTR_ERR(znode);
2452			znode->parent = NULL;
2453			znode->iip = 0;
2454			if (c->zroot.len) {
2455				err = insert_old_idx(c, c->zroot.lnum,
2456						     c->zroot.offs);
2457				if (err)
2458					return err;
2459			}
2460			c->zroot.lnum = zbr->lnum;
2461			c->zroot.offs = zbr->offs;
2462			c->zroot.len = zbr->len;
2463			c->zroot.znode = znode;
2464			ubifs_assert(!ubifs_zn_obsolete(zp));
2465			ubifs_assert(ubifs_zn_dirty(zp));
2466			atomic_long_dec(&c->dirty_zn_cnt);
2467
2468			if (zp->cnext) {
2469				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2470				atomic_long_inc(&c->clean_zn_cnt);
2471				atomic_long_inc(&ubifs_clean_zn_cnt);
2472			} else
2473				kfree(zp);
2474		}
2475	}
2476
2477	return 0;
2478}
2479
2480/**
2481 * ubifs_tnc_remove - remove an index entry of a node.
2482 * @c: UBIFS file-system description object
2483 * @key: key of node
2484 *
2485 * Returns %0 on success or negative error code on failure.
2486 */
2487int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2488{
2489	int found, n, err = 0;
2490	struct ubifs_znode *znode;
2491
2492	mutex_lock(&c->tnc_mutex);
2493	dbg_tnck(key, "key ");
2494	found = lookup_level0_dirty(c, key, &znode, &n);
2495	if (found < 0) {
2496		err = found;
2497		goto out_unlock;
2498	}
2499	if (found == 1)
2500		err = tnc_delete(c, znode, n);
2501	if (!err)
2502		err = dbg_check_tnc(c, 0);
2503
2504out_unlock:
2505	mutex_unlock(&c->tnc_mutex);
2506	return err;
2507}
2508
2509/**
2510 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2511 * @c: UBIFS file-system description object
2512 * @key: key of node
2513 * @nm: directory entry name
2514 *
2515 * Returns %0 on success or negative error code on failure.
2516 */
2517int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2518			const struct qstr *nm)
2519{
2520	int n, err;
2521	struct ubifs_znode *znode;
2522
2523	mutex_lock(&c->tnc_mutex);
2524	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2525	err = lookup_level0_dirty(c, key, &znode, &n);
2526	if (err < 0)
2527		goto out_unlock;
2528
2529	if (err) {
2530		if (c->replaying)
2531			err = fallible_resolve_collision(c, key, &znode, &n,
2532							 nm, 0);
2533		else
2534			err = resolve_collision(c, key, &znode, &n, nm);
2535		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2536		if (err < 0)
2537			goto out_unlock;
2538		if (err) {
2539			/* Ensure the znode is dirtied */
2540			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2541				znode = dirty_cow_bottom_up(c, znode);
2542				if (IS_ERR(znode)) {
2543					err = PTR_ERR(znode);
2544					goto out_unlock;
2545				}
2546			}
2547			err = tnc_delete(c, znode, n);
2548		}
2549	}
2550
2551out_unlock:
2552	if (!err)
2553		err = dbg_check_tnc(c, 0);
2554	mutex_unlock(&c->tnc_mutex);
2555	return err;
2556}
2557
2558/**
2559 * key_in_range - determine if a key falls within a range of keys.
2560 * @c: UBIFS file-system description object
2561 * @key: key to check
2562 * @from_key: lowest key in range
2563 * @to_key: highest key in range
2564 *
2565 * This function returns %1 if the key is in range and %0 otherwise.
2566 */
2567static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2568			union ubifs_key *from_key, union ubifs_key *to_key)
2569{
2570	if (keys_cmp(c, key, from_key) < 0)
2571		return 0;
2572	if (keys_cmp(c, key, to_key) > 0)
2573		return 0;
2574	return 1;
2575}
2576
2577/**
2578 * ubifs_tnc_remove_range - remove index entries in range.
2579 * @c: UBIFS file-system description object
2580 * @from_key: lowest key to remove
2581 * @to_key: highest key to remove
2582 *
2583 * This function removes index entries starting at @from_key and ending at
2584 * @to_key.  This function returns zero in case of success and a negative error
2585 * code in case of failure.
2586 */
2587int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2588			   union ubifs_key *to_key)
2589{
2590	int i, n, k, err = 0;
2591	struct ubifs_znode *znode;
2592	union ubifs_key *key;
2593
2594	mutex_lock(&c->tnc_mutex);
2595	while (1) {
2596		/* Find first level 0 znode that contains keys to remove */
2597		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2598		if (err < 0)
2599			goto out_unlock;
2600
2601		if (err)
2602			key = from_key;
2603		else {
2604			err = tnc_next(c, &znode, &n);
2605			if (err == -ENOENT) {
2606				err = 0;
2607				goto out_unlock;
2608			}
2609			if (err < 0)
2610				goto out_unlock;
2611			key = &znode->zbranch[n].key;
2612			if (!key_in_range(c, key, from_key, to_key)) {
2613				err = 0;
2614				goto out_unlock;
2615			}
2616		}
2617
2618		/* Ensure the znode is dirtied */
2619		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2620			znode = dirty_cow_bottom_up(c, znode);
2621			if (IS_ERR(znode)) {
2622				err = PTR_ERR(znode);
2623				goto out_unlock;
2624			}
2625		}
2626
2627		/* Remove all keys in range except the first */
2628		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2629			key = &znode->zbranch[i].key;
2630			if (!key_in_range(c, key, from_key, to_key))
2631				break;
2632			lnc_free(&znode->zbranch[i]);
2633			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2634					     znode->zbranch[i].len);
2635			if (err) {
2636				ubifs_dump_znode(c, znode);
2637				goto out_unlock;
2638			}
2639			dbg_tnck(key, "removing key ");
2640		}
2641		if (k) {
2642			for (i = n + 1 + k; i < znode->child_cnt; i++)
2643				znode->zbranch[i - k] = znode->zbranch[i];
2644			znode->child_cnt -= k;
2645		}
2646
2647		/* Now delete the first */
2648		err = tnc_delete(c, znode, n);
2649		if (err)
2650			goto out_unlock;
2651	}
2652
2653out_unlock:
2654	if (!err)
2655		err = dbg_check_tnc(c, 0);
2656	mutex_unlock(&c->tnc_mutex);
2657	return err;
2658}
2659
2660/**
2661 * ubifs_tnc_remove_ino - remove an inode from TNC.
2662 * @c: UBIFS file-system description object
2663 * @inum: inode number to remove
2664 *
2665 * This function remove inode @inum and all the extended attributes associated
2666 * with the anode from TNC and returns zero in case of success or a negative
2667 * error code in case of failure.
2668 */
2669int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2670{
2671	union ubifs_key key1, key2;
2672	struct ubifs_dent_node *xent, *pxent = NULL;
2673	struct qstr nm = { .name = NULL };
2674
2675	dbg_tnc("ino %lu", (unsigned long)inum);
2676
2677	/*
2678	 * Walk all extended attribute entries and remove them together with
2679	 * corresponding extended attribute inodes.
2680	 */
2681	lowest_xent_key(c, &key1, inum);
2682	while (1) {
2683		ino_t xattr_inum;
2684		int err;
2685
2686		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2687		if (IS_ERR(xent)) {
2688			err = PTR_ERR(xent);
2689			if (err == -ENOENT)
2690				break;
2691			return err;
2692		}
2693
2694		xattr_inum = le64_to_cpu(xent->inum);
2695		dbg_tnc("xent '%s', ino %lu", xent->name,
2696			(unsigned long)xattr_inum);
2697
2698		nm.name = xent->name;
2699		nm.len = le16_to_cpu(xent->nlen);
2700		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2701		if (err) {
2702			kfree(xent);
2703			return err;
2704		}
2705
2706		lowest_ino_key(c, &key1, xattr_inum);
2707		highest_ino_key(c, &key2, xattr_inum);
2708		err = ubifs_tnc_remove_range(c, &key1, &key2);
2709		if (err) {
2710			kfree(xent);
2711			return err;
2712		}
2713
2714		kfree(pxent);
2715		pxent = xent;
2716		key_read(c, &xent->key, &key1);
2717	}
2718
2719	kfree(pxent);
2720	lowest_ino_key(c, &key1, inum);
2721	highest_ino_key(c, &key2, inum);
2722
2723	return ubifs_tnc_remove_range(c, &key1, &key2);
2724}
2725
2726/**
2727 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2728 * @c: UBIFS file-system description object
2729 * @key: key of last entry
2730 * @nm: name of last entry found or %NULL
2731 *
2732 * This function finds and reads the next directory or extended attribute entry
2733 * after the given key (@key) if there is one. @nm is used to resolve
2734 * collisions.
2735 *
2736 * If the name of the current entry is not known and only the key is known,
2737 * @nm->name has to be %NULL. In this case the semantics of this function is a
2738 * little bit different and it returns the entry corresponding to this key, not
2739 * the next one. If the key was not found, the closest "right" entry is
2740 * returned.
2741 *
2742 * If the fist entry has to be found, @key has to contain the lowest possible
2743 * key value for this inode and @name has to be %NULL.
2744 *
2745 * This function returns the found directory or extended attribute entry node
2746 * in case of success, %-ENOENT is returned if no entry was found, and a
2747 * negative error code is returned in case of failure.
2748 */
2749struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2750					   union ubifs_key *key,
2751					   const struct qstr *nm)
2752{
2753	int n, err, type = key_type(c, key);
2754	struct ubifs_znode *znode;
2755	struct ubifs_dent_node *dent;
2756	struct ubifs_zbranch *zbr;
2757	union ubifs_key *dkey;
2758
2759	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2760	ubifs_assert(is_hash_key(c, key));
2761
2762	mutex_lock(&c->tnc_mutex);
2763	err = ubifs_lookup_level0(c, key, &znode, &n);
2764	if (unlikely(err < 0))
2765		goto out_unlock;
2766
2767	if (nm->name) {
2768		if (err) {
2769			/* Handle collisions */
2770			err = resolve_collision(c, key, &znode, &n, nm);
2771			dbg_tnc("rc returned %d, znode %p, n %d",
2772				err, znode, n);
2773			if (unlikely(err < 0))
2774				goto out_unlock;
2775		}
2776
2777		/* Now find next entry */
2778		err = tnc_next(c, &znode, &n);
2779		if (unlikely(err))
2780			goto out_unlock;
2781	} else {
2782		/*
2783		 * The full name of the entry was not given, in which case the
2784		 * behavior of this function is a little different and it
2785		 * returns current entry, not the next one.
2786		 */
2787		if (!err) {
2788			/*
2789			 * However, the given key does not exist in the TNC
2790			 * tree and @znode/@n variables contain the closest
2791			 * "preceding" element. Switch to the next one.
2792			 */
2793			err = tnc_next(c, &znode, &n);
2794			if (err)
2795				goto out_unlock;
2796		}
2797	}
2798
2799	zbr = &znode->zbranch[n];
2800	dent = kmalloc(zbr->len, GFP_NOFS);
2801	if (unlikely(!dent)) {
2802		err = -ENOMEM;
2803		goto out_unlock;
2804	}
2805
2806	/*
2807	 * The above 'tnc_next()' call could lead us to the next inode, check
2808	 * this.
2809	 */
2810	dkey = &zbr->key;
2811	if (key_inum(c, dkey) != key_inum(c, key) ||
2812	    key_type(c, dkey) != type) {
2813		err = -ENOENT;
2814		goto out_free;
2815	}
2816
2817	err = tnc_read_node_nm(c, zbr, dent);
2818	if (unlikely(err))
2819		goto out_free;
2820
2821	mutex_unlock(&c->tnc_mutex);
2822	return dent;
2823
2824out_free:
2825	kfree(dent);
2826out_unlock:
2827	mutex_unlock(&c->tnc_mutex);
2828	return ERR_PTR(err);
2829}
2830
2831/**
2832 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2833 * @c: UBIFS file-system description object
2834 *
2835 * Destroy left-over obsolete znodes from a failed commit.
2836 */
2837static void tnc_destroy_cnext(struct ubifs_info *c)
2838{
2839	struct ubifs_znode *cnext;
2840
2841	if (!c->cnext)
2842		return;
2843	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2844	cnext = c->cnext;
2845	do {
2846		struct ubifs_znode *znode = cnext;
2847
2848		cnext = cnext->cnext;
2849		if (ubifs_zn_obsolete(znode))
2850			kfree(znode);
2851	} while (cnext && cnext != c->cnext);
2852}
2853
2854/**
2855 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2856 * @c: UBIFS file-system description object
2857 */
2858void ubifs_tnc_close(struct ubifs_info *c)
2859{
2860	tnc_destroy_cnext(c);
2861	if (c->zroot.znode) {
2862		long n;
2863
2864		ubifs_destroy_tnc_subtree(c->zroot.znode);
2865		n = atomic_long_read(&c->clean_zn_cnt);
2866		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2867	}
2868	kfree(c->gap_lebs);
2869	kfree(c->ilebs);
2870	destroy_old_idx(c);
2871}
2872
2873/**
2874 * left_znode - get the znode to the left.
2875 * @c: UBIFS file-system description object
2876 * @znode: znode
2877 *
2878 * This function returns a pointer to the znode to the left of @znode or NULL if
2879 * there is not one. A negative error code is returned on failure.
2880 */
2881static struct ubifs_znode *left_znode(struct ubifs_info *c,
2882				      struct ubifs_znode *znode)
2883{
2884	int level = znode->level;
2885
2886	while (1) {
2887		int n = znode->iip - 1;
2888
2889		/* Go up until we can go left */
2890		znode = znode->parent;
2891		if (!znode)
2892			return NULL;
2893		if (n >= 0) {
2894			/* Now go down the rightmost branch to 'level' */
2895			znode = get_znode(c, znode, n);
2896			if (IS_ERR(znode))
2897				return znode;
2898			while (znode->level != level) {
2899				n = znode->child_cnt - 1;
2900				znode = get_znode(c, znode, n);
2901				if (IS_ERR(znode))
2902					return znode;
2903			}
2904			break;
2905		}
2906	}
2907	return znode;
2908}
2909
2910/**
2911 * right_znode - get the znode to the right.
2912 * @c: UBIFS file-system description object
2913 * @znode: znode
2914 *
2915 * This function returns a pointer to the znode to the right of @znode or NULL
2916 * if there is not one. A negative error code is returned on failure.
2917 */
2918static struct ubifs_znode *right_znode(struct ubifs_info *c,
2919				       struct ubifs_znode *znode)
2920{
2921	int level = znode->level;
2922
2923	while (1) {
2924		int n = znode->iip + 1;
2925
2926		/* Go up until we can go right */
2927		znode = znode->parent;
2928		if (!znode)
2929			return NULL;
2930		if (n < znode->child_cnt) {
2931			/* Now go down the leftmost branch to 'level' */
2932			znode = get_znode(c, znode, n);
2933			if (IS_ERR(znode))
2934				return znode;
2935			while (znode->level != level) {
2936				znode = get_znode(c, znode, 0);
2937				if (IS_ERR(znode))
2938					return znode;
2939			}
2940			break;
2941		}
2942	}
2943	return znode;
2944}
2945
2946/**
2947 * lookup_znode - find a particular indexing node from TNC.
2948 * @c: UBIFS file-system description object
2949 * @key: index node key to lookup
2950 * @level: index node level
2951 * @lnum: index node LEB number
2952 * @offs: index node offset
2953 *
2954 * This function searches an indexing node by its first key @key and its
2955 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2956 * nodes it traverses to TNC. This function is called for indexing nodes which
2957 * were found on the media by scanning, for example when garbage-collecting or
2958 * when doing in-the-gaps commit. This means that the indexing node which is
2959 * looked for does not have to have exactly the same leftmost key @key, because
2960 * the leftmost key may have been changed, in which case TNC will contain a
2961 * dirty znode which still refers the same @lnum:@offs. This function is clever
2962 * enough to recognize such indexing nodes.
2963 *
2964 * Note, if a znode was deleted or changed too much, then this function will
2965 * not find it. For situations like this UBIFS has the old index RB-tree
2966 * (indexed by @lnum:@offs).
2967 *
2968 * This function returns a pointer to the znode found or %NULL if it is not
2969 * found. A negative error code is returned on failure.
2970 */
2971static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2972					union ubifs_key *key, int level,
2973					int lnum, int offs)
2974{
2975	struct ubifs_znode *znode, *zn;
2976	int n, nn;
2977
2978	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2979
2980	/*
2981	 * The arguments have probably been read off flash, so don't assume
2982	 * they are valid.
2983	 */
2984	if (level < 0)
2985		return ERR_PTR(-EINVAL);
2986
2987	/* Get the root znode */
2988	znode = c->zroot.znode;
2989	if (!znode) {
2990		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2991		if (IS_ERR(znode))
2992			return znode;
2993	}
2994	/* Check if it is the one we are looking for */
2995	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2996		return znode;
2997	/* Descend to the parent level i.e. (level + 1) */
2998	if (level >= znode->level)
2999		return NULL;
3000	while (1) {
3001		ubifs_search_zbranch(c, znode, key, &n);
3002		if (n < 0) {
3003			/*
3004			 * We reached a znode where the leftmost key is greater
3005			 * than the key we are searching for. This is the same
3006			 * situation as the one described in a huge comment at
3007			 * the end of the 'ubifs_lookup_level0()' function. And
3008			 * for exactly the same reasons we have to try to look
3009			 * left before giving up.
3010			 */
3011			znode = left_znode(c, znode);
3012			if (!znode)
3013				return NULL;
3014			if (IS_ERR(znode))
3015				return znode;
3016			ubifs_search_zbranch(c, znode, key, &n);
3017			ubifs_assert(n >= 0);
3018		}
3019		if (znode->level == level + 1)
3020			break;
3021		znode = get_znode(c, znode, n);
3022		if (IS_ERR(znode))
3023			return znode;
3024	}
3025	/* Check if the child is the one we are looking for */
3026	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3027		return get_znode(c, znode, n);
3028	/* If the key is unique, there is nowhere else to look */
3029	if (!is_hash_key(c, key))
3030		return NULL;
3031	/*
3032	 * The key is not unique and so may be also in the znodes to either
3033	 * side.
3034	 */
3035	zn = znode;
3036	nn = n;
3037	/* Look left */
3038	while (1) {
3039		/* Move one branch to the left */
3040		if (n)
3041			n -= 1;
3042		else {
3043			znode = left_znode(c, znode);
3044			if (!znode)
3045				break;
3046			if (IS_ERR(znode))
3047				return znode;
3048			n = znode->child_cnt - 1;
3049		}
3050		/* Check it */
3051		if (znode->zbranch[n].lnum == lnum &&
3052		    znode->zbranch[n].offs == offs)
3053			return get_znode(c, znode, n);
3054		/* Stop if the key is less than the one we are looking for */
3055		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3056			break;
3057	}
3058	/* Back to the middle */
3059	znode = zn;
3060	n = nn;
3061	/* Look right */
3062	while (1) {
3063		/* Move one branch to the right */
3064		if (++n >= znode->child_cnt) {
3065			znode = right_znode(c, znode);
3066			if (!znode)
3067				break;
3068			if (IS_ERR(znode))
3069				return znode;
3070			n = 0;
3071		}
3072		/* Check it */
3073		if (znode->zbranch[n].lnum == lnum &&
3074		    znode->zbranch[n].offs == offs)
3075			return get_znode(c, znode, n);
3076		/* Stop if the key is greater than the one we are looking for */
3077		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3078			break;
3079	}
3080	return NULL;
3081}
3082
3083/**
3084 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3085 * @c: UBIFS file-system description object
3086 * @key: key of index node
3087 * @level: index node level
3088 * @lnum: LEB number of index node
3089 * @offs: offset of index node
3090 *
3091 * This function returns %0 if the index node is not referred to in the TNC, %1
3092 * if the index node is referred to in the TNC and the corresponding znode is
3093 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3094 * znode is clean, and a negative error code in case of failure.
3095 *
3096 * Note, the @key argument has to be the key of the first child. Also note,
3097 * this function relies on the fact that 0:0 is never a valid LEB number and
3098 * offset for a main-area node.
3099 */
3100int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3101		       int lnum, int offs)
3102{
3103	struct ubifs_znode *znode;
3104
3105	znode = lookup_znode(c, key, level, lnum, offs);
3106	if (!znode)
3107		return 0;
3108	if (IS_ERR(znode))
3109		return PTR_ERR(znode);
3110
3111	return ubifs_zn_dirty(znode) ? 1 : 2;
3112}
3113
3114/**
3115 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3116 * @c: UBIFS file-system description object
3117 * @key: node key
3118 * @lnum: node LEB number
3119 * @offs: node offset
3120 *
3121 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3122 * not, and a negative error code in case of failure.
3123 *
3124 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3125 * and offset for a main-area node.
3126 */
3127static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3128			       int lnum, int offs)
3129{
3130	struct ubifs_zbranch *zbr;
3131	struct ubifs_znode *znode, *zn;
3132	int n, found, err, nn;
3133	const int unique = !is_hash_key(c, key);
3134
3135	found = ubifs_lookup_level0(c, key, &znode, &n);
3136	if (found < 0)
3137		return found; /* Error code */
3138	if (!found)
3139		return 0;
3140	zbr = &znode->zbranch[n];
3141	if (lnum == zbr->lnum && offs == zbr->offs)
3142		return 1; /* Found it */
3143	if (unique)
3144		return 0;
3145	/*
3146	 * Because the key is not unique, we have to look left
3147	 * and right as well
3148	 */
3149	zn = znode;
3150	nn = n;
3151	/* Look left */
3152	while (1) {
3153		err = tnc_prev(c, &znode, &n);
3154		if (err == -ENOENT)
3155			break;
3156		if (err)
3157			return err;
3158		if (keys_cmp(c, key, &znode->zbranch[n].key))
3159			break;
3160		zbr = &znode->zbranch[n];
3161		if (lnum == zbr->lnum && offs == zbr->offs)
3162			return 1; /* Found it */
3163	}
3164	/* Look right */
3165	znode = zn;
3166	n = nn;
3167	while (1) {
3168		err = tnc_next(c, &znode, &n);
3169		if (err) {
3170			if (err == -ENOENT)
3171				return 0;
3172			return err;
3173		}
3174		if (keys_cmp(c, key, &znode->zbranch[n].key))
3175			break;
3176		zbr = &znode->zbranch[n];
3177		if (lnum == zbr->lnum && offs == zbr->offs)
3178			return 1; /* Found it */
3179	}
3180	return 0;
3181}
3182
3183/**
3184 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3185 * @c: UBIFS file-system description object
3186 * @key: node key
3187 * @level: index node level (if it is an index node)
3188 * @lnum: node LEB number
3189 * @offs: node offset
3190 * @is_idx: non-zero if the node is an index node
3191 *
3192 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3193 * negative error code in case of failure. For index nodes, @key has to be the
3194 * key of the first child. An index node is considered to be in the TNC only if
3195 * the corresponding znode is clean or has not been loaded.
3196 */
3197int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3198		       int lnum, int offs, int is_idx)
3199{
3200	int err;
3201
3202	mutex_lock(&c->tnc_mutex);
3203	if (is_idx) {
3204		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3205		if (err < 0)
3206			goto out_unlock;
3207		if (err == 1)
3208			/* The index node was found but it was dirty */
3209			err = 0;
3210		else if (err == 2)
3211			/* The index node was found and it was clean */
3212			err = 1;
3213		else
3214			BUG_ON(err != 0);
3215	} else
3216		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3217
3218out_unlock:
3219	mutex_unlock(&c->tnc_mutex);
3220	return err;
3221}
3222
3223/**
3224 * ubifs_dirty_idx_node - dirty an index node.
3225 * @c: UBIFS file-system description object
3226 * @key: index node key
3227 * @level: index node level
3228 * @lnum: index node LEB number
3229 * @offs: index node offset
3230 *
3231 * This function loads and dirties an index node so that it can be garbage
3232 * collected. The @key argument has to be the key of the first child. This
3233 * function relies on the fact that 0:0 is never a valid LEB number and offset
3234 * for a main-area node. Returns %0 on success and a negative error code on
3235 * failure.
3236 */
3237int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3238			 int lnum, int offs)
3239{
3240	struct ubifs_znode *znode;
3241	int err = 0;
3242
3243	mutex_lock(&c->tnc_mutex);
3244	znode = lookup_znode(c, key, level, lnum, offs);
3245	if (!znode)
3246		goto out_unlock;
3247	if (IS_ERR(znode)) {
3248		err = PTR_ERR(znode);
3249		goto out_unlock;
3250	}
3251	znode = dirty_cow_bottom_up(c, znode);
3252	if (IS_ERR(znode)) {
3253		err = PTR_ERR(znode);
3254		goto out_unlock;
3255	}
3256
3257out_unlock:
3258	mutex_unlock(&c->tnc_mutex);
3259	return err;
3260}
3261
 
 
3262/**
3263 * dbg_check_inode_size - check if inode size is correct.
3264 * @c: UBIFS file-system description object
3265 * @inum: inode number
3266 * @size: inode size
3267 *
3268 * This function makes sure that the inode size (@size) is correct and it does
3269 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3270 * if it has a data page beyond @size, and other negative error code in case of
3271 * other errors.
3272 */
3273int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3274			 loff_t size)
3275{
3276	int err, n;
3277	union ubifs_key from_key, to_key, *key;
3278	struct ubifs_znode *znode;
3279	unsigned int block;
3280
3281	if (!S_ISREG(inode->i_mode))
3282		return 0;
3283	if (!dbg_is_chk_gen(c))
3284		return 0;
3285
3286	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3287	data_key_init(c, &from_key, inode->i_ino, block);
3288	highest_data_key(c, &to_key, inode->i_ino);
3289
3290	mutex_lock(&c->tnc_mutex);
3291	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3292	if (err < 0)
3293		goto out_unlock;
3294
3295	if (err) {
3296		err = -EINVAL;
3297		key = &from_key;
3298		goto out_dump;
3299	}
3300
3301	err = tnc_next(c, &znode, &n);
3302	if (err == -ENOENT) {
3303		err = 0;
3304		goto out_unlock;
3305	}
3306	if (err < 0)
3307		goto out_unlock;
3308
3309	ubifs_assert(err == 0);
3310	key = &znode->zbranch[n].key;
3311	if (!key_in_range(c, key, &from_key, &to_key))
3312		goto out_unlock;
3313
3314out_dump:
3315	block = key_block(c, key);
3316	ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
3317		  (unsigned long)inode->i_ino, size,
3318		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3319	mutex_unlock(&c->tnc_mutex);
3320	ubifs_dump_inode(c, inode);
3321	dump_stack();
3322	return -EINVAL;
3323
3324out_unlock:
3325	mutex_unlock(&c->tnc_mutex);
3326	return err;
3327}