Loading...
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
31#include <linux/time.h>
32#include <linux/random.h>
33
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "blockcheck.h"
40#include "dir.h"
41#include "dlmglue.h"
42#include "extent_map.h"
43#include "heartbeat.h"
44#include "inode.h"
45#include "journal.h"
46#include "localalloc.h"
47#include "slot_map.h"
48#include "super.h"
49#include "sysfile.h"
50#include "uptodate.h"
51#include "quota.h"
52
53#include "buffer_head_io.h"
54#include "ocfs2_trace.h"
55
56DEFINE_SPINLOCK(trans_inc_lock);
57
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72static int ocfs2_commit_thread(void *arg);
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
78
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81 return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86 return __ocfs2_wait_on_mount(osb, 1);
87}
88
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178}
179
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209 mb();
210 return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237}
238
239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241{
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253}
254
255/* Behaves like test-and-set. Returns the previous value */
256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258{
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275}
276
277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279{
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298}
299
300static int ocfs2_commit_cache(struct ocfs2_super *osb)
301{
302 int status = 0;
303 unsigned int flushed;
304 struct ocfs2_journal *journal = NULL;
305
306 journal = osb->journal;
307
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
310
311 flushed = atomic_read(&journal->j_num_trans);
312 trace_ocfs2_commit_cache_begin(flushed);
313 if (flushed == 0) {
314 up_write(&journal->j_trans_barrier);
315 goto finally;
316 }
317
318 jbd2_journal_lock_updates(journal->j_journal);
319 status = jbd2_journal_flush(journal->j_journal);
320 jbd2_journal_unlock_updates(journal->j_journal);
321 if (status < 0) {
322 up_write(&journal->j_trans_barrier);
323 mlog_errno(status);
324 goto finally;
325 }
326
327 ocfs2_inc_trans_id(journal);
328
329 flushed = atomic_read(&journal->j_num_trans);
330 atomic_set(&journal->j_num_trans, 0);
331 up_write(&journal->j_trans_barrier);
332
333 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334
335 ocfs2_wake_downconvert_thread(osb);
336 wake_up(&journal->j_checkpointed);
337finally:
338 return status;
339}
340
341handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342{
343 journal_t *journal = osb->journal->j_journal;
344 handle_t *handle;
345
346 BUG_ON(!osb || !osb->journal->j_journal);
347
348 if (ocfs2_is_hard_readonly(osb))
349 return ERR_PTR(-EROFS);
350
351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 BUG_ON(max_buffs <= 0);
353
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal, max_buffs);
357
358 down_read(&osb->journal->j_trans_barrier);
359
360 handle = jbd2_journal_start(journal, max_buffs);
361 if (IS_ERR(handle)) {
362 up_read(&osb->journal->j_trans_barrier);
363
364 mlog_errno(PTR_ERR(handle));
365
366 if (is_journal_aborted(journal)) {
367 ocfs2_abort(osb->sb, "Detected aborted journal");
368 handle = ERR_PTR(-EROFS);
369 }
370 } else {
371 if (!ocfs2_mount_local(osb))
372 atomic_inc(&(osb->journal->j_num_trans));
373 }
374
375 return handle;
376}
377
378int ocfs2_commit_trans(struct ocfs2_super *osb,
379 handle_t *handle)
380{
381 int ret, nested;
382 struct ocfs2_journal *journal = osb->journal;
383
384 BUG_ON(!handle);
385
386 nested = handle->h_ref > 1;
387 ret = jbd2_journal_stop(handle);
388 if (ret < 0)
389 mlog_errno(ret);
390
391 if (!nested)
392 up_read(&journal->j_trans_barrier);
393
394 return ret;
395}
396
397/*
398 * 'nblocks' is what you want to add to the current transaction.
399 *
400 * This might call jbd2_journal_restart() which will commit dirty buffers
401 * and then restart the transaction. Before calling
402 * ocfs2_extend_trans(), any changed blocks should have been
403 * dirtied. After calling it, all blocks which need to be changed must
404 * go through another set of journal_access/journal_dirty calls.
405 *
406 * WARNING: This will not release any semaphores or disk locks taken
407 * during the transaction, so make sure they were taken *before*
408 * start_trans or we'll have ordering deadlocks.
409 *
410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411 * good because transaction ids haven't yet been recorded on the
412 * cluster locks associated with this handle.
413 */
414int ocfs2_extend_trans(handle_t *handle, int nblocks)
415{
416 int status, old_nblocks;
417
418 BUG_ON(!handle);
419 BUG_ON(nblocks < 0);
420
421 if (!nblocks)
422 return 0;
423
424 old_nblocks = handle->h_buffer_credits;
425
426 trace_ocfs2_extend_trans(old_nblocks, nblocks);
427
428#ifdef CONFIG_OCFS2_DEBUG_FS
429 status = 1;
430#else
431 status = jbd2_journal_extend(handle, nblocks);
432 if (status < 0) {
433 mlog_errno(status);
434 goto bail;
435 }
436#endif
437
438 if (status > 0) {
439 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
440 status = jbd2_journal_restart(handle,
441 old_nblocks + nblocks);
442 if (status < 0) {
443 mlog_errno(status);
444 goto bail;
445 }
446 }
447
448 status = 0;
449bail:
450 return status;
451}
452
453struct ocfs2_triggers {
454 struct jbd2_buffer_trigger_type ot_triggers;
455 int ot_offset;
456};
457
458static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
459{
460 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
461}
462
463static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
464 struct buffer_head *bh,
465 void *data, size_t size)
466{
467 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
468
469 /*
470 * We aren't guaranteed to have the superblock here, so we
471 * must unconditionally compute the ecc data.
472 * __ocfs2_journal_access() will only set the triggers if
473 * metaecc is enabled.
474 */
475 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
476}
477
478/*
479 * Quota blocks have their own trigger because the struct ocfs2_block_check
480 * offset depends on the blocksize.
481 */
482static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
483 struct buffer_head *bh,
484 void *data, size_t size)
485{
486 struct ocfs2_disk_dqtrailer *dqt =
487 ocfs2_block_dqtrailer(size, data);
488
489 /*
490 * We aren't guaranteed to have the superblock here, so we
491 * must unconditionally compute the ecc data.
492 * __ocfs2_journal_access() will only set the triggers if
493 * metaecc is enabled.
494 */
495 ocfs2_block_check_compute(data, size, &dqt->dq_check);
496}
497
498/*
499 * Directory blocks also have their own trigger because the
500 * struct ocfs2_block_check offset depends on the blocksize.
501 */
502static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
503 struct buffer_head *bh,
504 void *data, size_t size)
505{
506 struct ocfs2_dir_block_trailer *trailer =
507 ocfs2_dir_trailer_from_size(size, data);
508
509 /*
510 * We aren't guaranteed to have the superblock here, so we
511 * must unconditionally compute the ecc data.
512 * __ocfs2_journal_access() will only set the triggers if
513 * metaecc is enabled.
514 */
515 ocfs2_block_check_compute(data, size, &trailer->db_check);
516}
517
518static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
519 struct buffer_head *bh)
520{
521 mlog(ML_ERROR,
522 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
523 "bh->b_blocknr = %llu\n",
524 (unsigned long)bh,
525 (unsigned long long)bh->b_blocknr);
526
527 /* We aren't guaranteed to have the superblock here - but if we
528 * don't, it'll just crash. */
529 ocfs2_error(bh->b_assoc_map->host->i_sb,
530 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
531}
532
533static struct ocfs2_triggers di_triggers = {
534 .ot_triggers = {
535 .t_frozen = ocfs2_frozen_trigger,
536 .t_abort = ocfs2_abort_trigger,
537 },
538 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
539};
540
541static struct ocfs2_triggers eb_triggers = {
542 .ot_triggers = {
543 .t_frozen = ocfs2_frozen_trigger,
544 .t_abort = ocfs2_abort_trigger,
545 },
546 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
547};
548
549static struct ocfs2_triggers rb_triggers = {
550 .ot_triggers = {
551 .t_frozen = ocfs2_frozen_trigger,
552 .t_abort = ocfs2_abort_trigger,
553 },
554 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
555};
556
557static struct ocfs2_triggers gd_triggers = {
558 .ot_triggers = {
559 .t_frozen = ocfs2_frozen_trigger,
560 .t_abort = ocfs2_abort_trigger,
561 },
562 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
563};
564
565static struct ocfs2_triggers db_triggers = {
566 .ot_triggers = {
567 .t_frozen = ocfs2_db_frozen_trigger,
568 .t_abort = ocfs2_abort_trigger,
569 },
570};
571
572static struct ocfs2_triggers xb_triggers = {
573 .ot_triggers = {
574 .t_frozen = ocfs2_frozen_trigger,
575 .t_abort = ocfs2_abort_trigger,
576 },
577 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
578};
579
580static struct ocfs2_triggers dq_triggers = {
581 .ot_triggers = {
582 .t_frozen = ocfs2_dq_frozen_trigger,
583 .t_abort = ocfs2_abort_trigger,
584 },
585};
586
587static struct ocfs2_triggers dr_triggers = {
588 .ot_triggers = {
589 .t_frozen = ocfs2_frozen_trigger,
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
593};
594
595static struct ocfs2_triggers dl_triggers = {
596 .ot_triggers = {
597 .t_frozen = ocfs2_frozen_trigger,
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
601};
602
603static int __ocfs2_journal_access(handle_t *handle,
604 struct ocfs2_caching_info *ci,
605 struct buffer_head *bh,
606 struct ocfs2_triggers *triggers,
607 int type)
608{
609 int status;
610 struct ocfs2_super *osb =
611 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
612
613 BUG_ON(!ci || !ci->ci_ops);
614 BUG_ON(!handle);
615 BUG_ON(!bh);
616
617 trace_ocfs2_journal_access(
618 (unsigned long long)ocfs2_metadata_cache_owner(ci),
619 (unsigned long long)bh->b_blocknr, type, bh->b_size);
620
621 /* we can safely remove this assertion after testing. */
622 if (!buffer_uptodate(bh)) {
623 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
624 mlog(ML_ERROR, "b_blocknr=%llu\n",
625 (unsigned long long)bh->b_blocknr);
626 BUG();
627 }
628
629 /* Set the current transaction information on the ci so
630 * that the locking code knows whether it can drop it's locks
631 * on this ci or not. We're protected from the commit
632 * thread updating the current transaction id until
633 * ocfs2_commit_trans() because ocfs2_start_trans() took
634 * j_trans_barrier for us. */
635 ocfs2_set_ci_lock_trans(osb->journal, ci);
636
637 ocfs2_metadata_cache_io_lock(ci);
638 switch (type) {
639 case OCFS2_JOURNAL_ACCESS_CREATE:
640 case OCFS2_JOURNAL_ACCESS_WRITE:
641 status = jbd2_journal_get_write_access(handle, bh);
642 break;
643
644 case OCFS2_JOURNAL_ACCESS_UNDO:
645 status = jbd2_journal_get_undo_access(handle, bh);
646 break;
647
648 default:
649 status = -EINVAL;
650 mlog(ML_ERROR, "Unknown access type!\n");
651 }
652 if (!status && ocfs2_meta_ecc(osb) && triggers)
653 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
654 ocfs2_metadata_cache_io_unlock(ci);
655
656 if (status < 0)
657 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
658 status, type);
659
660 return status;
661}
662
663int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
664 struct buffer_head *bh, int type)
665{
666 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
667}
668
669int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
670 struct buffer_head *bh, int type)
671{
672 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
673}
674
675int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
676 struct buffer_head *bh, int type)
677{
678 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
679 type);
680}
681
682int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
683 struct buffer_head *bh, int type)
684{
685 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
686}
687
688int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
689 struct buffer_head *bh, int type)
690{
691 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
692}
693
694int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
695 struct buffer_head *bh, int type)
696{
697 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
698}
699
700int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
701 struct buffer_head *bh, int type)
702{
703 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
704}
705
706int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
707 struct buffer_head *bh, int type)
708{
709 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
710}
711
712int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
713 struct buffer_head *bh, int type)
714{
715 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
716}
717
718int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
719 struct buffer_head *bh, int type)
720{
721 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
722}
723
724void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
725{
726 int status;
727
728 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
729
730 status = jbd2_journal_dirty_metadata(handle, bh);
731 BUG_ON(status);
732}
733
734#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
735
736void ocfs2_set_journal_params(struct ocfs2_super *osb)
737{
738 journal_t *journal = osb->journal->j_journal;
739 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
740
741 if (osb->osb_commit_interval)
742 commit_interval = osb->osb_commit_interval;
743
744 write_lock(&journal->j_state_lock);
745 journal->j_commit_interval = commit_interval;
746 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
747 journal->j_flags |= JBD2_BARRIER;
748 else
749 journal->j_flags &= ~JBD2_BARRIER;
750 write_unlock(&journal->j_state_lock);
751}
752
753int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
754{
755 int status = -1;
756 struct inode *inode = NULL; /* the journal inode */
757 journal_t *j_journal = NULL;
758 struct ocfs2_dinode *di = NULL;
759 struct buffer_head *bh = NULL;
760 struct ocfs2_super *osb;
761 int inode_lock = 0;
762
763 BUG_ON(!journal);
764
765 osb = journal->j_osb;
766
767 /* already have the inode for our journal */
768 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
769 osb->slot_num);
770 if (inode == NULL) {
771 status = -EACCES;
772 mlog_errno(status);
773 goto done;
774 }
775 if (is_bad_inode(inode)) {
776 mlog(ML_ERROR, "access error (bad inode)\n");
777 iput(inode);
778 inode = NULL;
779 status = -EACCES;
780 goto done;
781 }
782
783 SET_INODE_JOURNAL(inode);
784 OCFS2_I(inode)->ip_open_count++;
785
786 /* Skip recovery waits here - journal inode metadata never
787 * changes in a live cluster so it can be considered an
788 * exception to the rule. */
789 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
790 if (status < 0) {
791 if (status != -ERESTARTSYS)
792 mlog(ML_ERROR, "Could not get lock on journal!\n");
793 goto done;
794 }
795
796 inode_lock = 1;
797 di = (struct ocfs2_dinode *)bh->b_data;
798
799 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
800 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
801 inode->i_size);
802 status = -EINVAL;
803 goto done;
804 }
805
806 trace_ocfs2_journal_init(inode->i_size,
807 (unsigned long long)inode->i_blocks,
808 OCFS2_I(inode)->ip_clusters);
809
810 /* call the kernels journal init function now */
811 j_journal = jbd2_journal_init_inode(inode);
812 if (j_journal == NULL) {
813 mlog(ML_ERROR, "Linux journal layer error\n");
814 status = -EINVAL;
815 goto done;
816 }
817
818 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
819
820 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
821 OCFS2_JOURNAL_DIRTY_FL);
822
823 journal->j_journal = j_journal;
824 journal->j_inode = inode;
825 journal->j_bh = bh;
826
827 ocfs2_set_journal_params(osb);
828
829 journal->j_state = OCFS2_JOURNAL_LOADED;
830
831 status = 0;
832done:
833 if (status < 0) {
834 if (inode_lock)
835 ocfs2_inode_unlock(inode, 1);
836 brelse(bh);
837 if (inode) {
838 OCFS2_I(inode)->ip_open_count--;
839 iput(inode);
840 }
841 }
842
843 return status;
844}
845
846static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
847{
848 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
849}
850
851static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
852{
853 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
854}
855
856static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
857 int dirty, int replayed)
858{
859 int status;
860 unsigned int flags;
861 struct ocfs2_journal *journal = osb->journal;
862 struct buffer_head *bh = journal->j_bh;
863 struct ocfs2_dinode *fe;
864
865 fe = (struct ocfs2_dinode *)bh->b_data;
866
867 /* The journal bh on the osb always comes from ocfs2_journal_init()
868 * and was validated there inside ocfs2_inode_lock_full(). It's a
869 * code bug if we mess it up. */
870 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
871
872 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
873 if (dirty)
874 flags |= OCFS2_JOURNAL_DIRTY_FL;
875 else
876 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
877 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
878
879 if (replayed)
880 ocfs2_bump_recovery_generation(fe);
881
882 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
883 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
884 if (status < 0)
885 mlog_errno(status);
886
887 return status;
888}
889
890/*
891 * If the journal has been kmalloc'd it needs to be freed after this
892 * call.
893 */
894void ocfs2_journal_shutdown(struct ocfs2_super *osb)
895{
896 struct ocfs2_journal *journal = NULL;
897 int status = 0;
898 struct inode *inode = NULL;
899 int num_running_trans = 0;
900
901 BUG_ON(!osb);
902
903 journal = osb->journal;
904 if (!journal)
905 goto done;
906
907 inode = journal->j_inode;
908
909 if (journal->j_state != OCFS2_JOURNAL_LOADED)
910 goto done;
911
912 /* need to inc inode use count - jbd2_journal_destroy will iput. */
913 if (!igrab(inode))
914 BUG();
915
916 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
917 trace_ocfs2_journal_shutdown(num_running_trans);
918
919 /* Do a commit_cache here. It will flush our journal, *and*
920 * release any locks that are still held.
921 * set the SHUTDOWN flag and release the trans lock.
922 * the commit thread will take the trans lock for us below. */
923 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
924
925 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926 * drop the trans_lock (which we want to hold until we
927 * completely destroy the journal. */
928 if (osb->commit_task) {
929 /* Wait for the commit thread */
930 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
931 kthread_stop(osb->commit_task);
932 osb->commit_task = NULL;
933 }
934
935 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
936
937 if (ocfs2_mount_local(osb)) {
938 jbd2_journal_lock_updates(journal->j_journal);
939 status = jbd2_journal_flush(journal->j_journal);
940 jbd2_journal_unlock_updates(journal->j_journal);
941 if (status < 0)
942 mlog_errno(status);
943 }
944
945 if (status == 0) {
946 /*
947 * Do not toggle if flush was unsuccessful otherwise
948 * will leave dirty metadata in a "clean" journal
949 */
950 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
951 if (status < 0)
952 mlog_errno(status);
953 }
954
955 /* Shutdown the kernel journal system */
956 jbd2_journal_destroy(journal->j_journal);
957 journal->j_journal = NULL;
958
959 OCFS2_I(inode)->ip_open_count--;
960
961 /* unlock our journal */
962 ocfs2_inode_unlock(inode, 1);
963
964 brelse(journal->j_bh);
965 journal->j_bh = NULL;
966
967 journal->j_state = OCFS2_JOURNAL_FREE;
968
969// up_write(&journal->j_trans_barrier);
970done:
971 if (inode)
972 iput(inode);
973}
974
975static void ocfs2_clear_journal_error(struct super_block *sb,
976 journal_t *journal,
977 int slot)
978{
979 int olderr;
980
981 olderr = jbd2_journal_errno(journal);
982 if (olderr) {
983 mlog(ML_ERROR, "File system error %d recorded in "
984 "journal %u.\n", olderr, slot);
985 mlog(ML_ERROR, "File system on device %s needs checking.\n",
986 sb->s_id);
987
988 jbd2_journal_ack_err(journal);
989 jbd2_journal_clear_err(journal);
990 }
991}
992
993int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
994{
995 int status = 0;
996 struct ocfs2_super *osb;
997
998 BUG_ON(!journal);
999
1000 osb = journal->j_osb;
1001
1002 status = jbd2_journal_load(journal->j_journal);
1003 if (status < 0) {
1004 mlog(ML_ERROR, "Failed to load journal!\n");
1005 goto done;
1006 }
1007
1008 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009
1010 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1011 if (status < 0) {
1012 mlog_errno(status);
1013 goto done;
1014 }
1015
1016 /* Launch the commit thread */
1017 if (!local) {
1018 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019 "ocfs2cmt");
1020 if (IS_ERR(osb->commit_task)) {
1021 status = PTR_ERR(osb->commit_task);
1022 osb->commit_task = NULL;
1023 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024 "error=%d", status);
1025 goto done;
1026 }
1027 } else
1028 osb->commit_task = NULL;
1029
1030done:
1031 return status;
1032}
1033
1034
1035/* 'full' flag tells us whether we clear out all blocks or if we just
1036 * mark the journal clean */
1037int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038{
1039 int status;
1040
1041 BUG_ON(!journal);
1042
1043 status = jbd2_journal_wipe(journal->j_journal, full);
1044 if (status < 0) {
1045 mlog_errno(status);
1046 goto bail;
1047 }
1048
1049 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1050 if (status < 0)
1051 mlog_errno(status);
1052
1053bail:
1054 return status;
1055}
1056
1057static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058{
1059 int empty;
1060 struct ocfs2_recovery_map *rm = osb->recovery_map;
1061
1062 spin_lock(&osb->osb_lock);
1063 empty = (rm->rm_used == 0);
1064 spin_unlock(&osb->osb_lock);
1065
1066 return empty;
1067}
1068
1069void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070{
1071 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072}
1073
1074/*
1075 * JBD Might read a cached version of another nodes journal file. We
1076 * don't want this as this file changes often and we get no
1077 * notification on those changes. The only way to be sure that we've
1078 * got the most up to date version of those blocks then is to force
1079 * read them off disk. Just searching through the buffer cache won't
1080 * work as there may be pages backing this file which are still marked
1081 * up to date. We know things can't change on this file underneath us
1082 * as we have the lock by now :)
1083 */
1084static int ocfs2_force_read_journal(struct inode *inode)
1085{
1086 int status = 0;
1087 int i;
1088 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1089#define CONCURRENT_JOURNAL_FILL 32ULL
1090 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091
1092 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093
1094 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1095 v_blkno = 0;
1096 while (v_blkno < num_blocks) {
1097 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1098 &p_blkno, &p_blocks, NULL);
1099 if (status < 0) {
1100 mlog_errno(status);
1101 goto bail;
1102 }
1103
1104 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105 p_blocks = CONCURRENT_JOURNAL_FILL;
1106
1107 /* We are reading journal data which should not
1108 * be put in the uptodate cache */
1109 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110 p_blkno, p_blocks, bhs);
1111 if (status < 0) {
1112 mlog_errno(status);
1113 goto bail;
1114 }
1115
1116 for(i = 0; i < p_blocks; i++) {
1117 brelse(bhs[i]);
1118 bhs[i] = NULL;
1119 }
1120
1121 v_blkno += p_blocks;
1122 }
1123
1124bail:
1125 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1126 brelse(bhs[i]);
1127 return status;
1128}
1129
1130struct ocfs2_la_recovery_item {
1131 struct list_head lri_list;
1132 int lri_slot;
1133 struct ocfs2_dinode *lri_la_dinode;
1134 struct ocfs2_dinode *lri_tl_dinode;
1135 struct ocfs2_quota_recovery *lri_qrec;
1136};
1137
1138/* Does the second half of the recovery process. By this point, the
1139 * node is marked clean and can actually be considered recovered,
1140 * hence it's no longer in the recovery map, but there's still some
1141 * cleanup we can do which shouldn't happen within the recovery thread
1142 * as locking in that context becomes very difficult if we are to take
1143 * recovering nodes into account.
1144 *
1145 * NOTE: This function can and will sleep on recovery of other nodes
1146 * during cluster locking, just like any other ocfs2 process.
1147 */
1148void ocfs2_complete_recovery(struct work_struct *work)
1149{
1150 int ret = 0;
1151 struct ocfs2_journal *journal =
1152 container_of(work, struct ocfs2_journal, j_recovery_work);
1153 struct ocfs2_super *osb = journal->j_osb;
1154 struct ocfs2_dinode *la_dinode, *tl_dinode;
1155 struct ocfs2_la_recovery_item *item, *n;
1156 struct ocfs2_quota_recovery *qrec;
1157 LIST_HEAD(tmp_la_list);
1158
1159 trace_ocfs2_complete_recovery(
1160 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1161
1162 spin_lock(&journal->j_lock);
1163 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164 spin_unlock(&journal->j_lock);
1165
1166 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1167 list_del_init(&item->lri_list);
1168
1169 ocfs2_wait_on_quotas(osb);
1170
1171 la_dinode = item->lri_la_dinode;
1172 tl_dinode = item->lri_tl_dinode;
1173 qrec = item->lri_qrec;
1174
1175 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178 qrec);
1179
1180 if (la_dinode) {
1181 ret = ocfs2_complete_local_alloc_recovery(osb,
1182 la_dinode);
1183 if (ret < 0)
1184 mlog_errno(ret);
1185
1186 kfree(la_dinode);
1187 }
1188
1189 if (tl_dinode) {
1190 ret = ocfs2_complete_truncate_log_recovery(osb,
1191 tl_dinode);
1192 if (ret < 0)
1193 mlog_errno(ret);
1194
1195 kfree(tl_dinode);
1196 }
1197
1198 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1199 if (ret < 0)
1200 mlog_errno(ret);
1201
1202 if (qrec) {
1203 ret = ocfs2_finish_quota_recovery(osb, qrec,
1204 item->lri_slot);
1205 if (ret < 0)
1206 mlog_errno(ret);
1207 /* Recovery info is already freed now */
1208 }
1209
1210 kfree(item);
1211 }
1212
1213 trace_ocfs2_complete_recovery_end(ret);
1214}
1215
1216/* NOTE: This function always eats your references to la_dinode and
1217 * tl_dinode, either manually on error, or by passing them to
1218 * ocfs2_complete_recovery */
1219static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220 int slot_num,
1221 struct ocfs2_dinode *la_dinode,
1222 struct ocfs2_dinode *tl_dinode,
1223 struct ocfs2_quota_recovery *qrec)
1224{
1225 struct ocfs2_la_recovery_item *item;
1226
1227 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1228 if (!item) {
1229 /* Though we wish to avoid it, we are in fact safe in
1230 * skipping local alloc cleanup as fsck.ocfs2 is more
1231 * than capable of reclaiming unused space. */
1232 if (la_dinode)
1233 kfree(la_dinode);
1234
1235 if (tl_dinode)
1236 kfree(tl_dinode);
1237
1238 if (qrec)
1239 ocfs2_free_quota_recovery(qrec);
1240
1241 mlog_errno(-ENOMEM);
1242 return;
1243 }
1244
1245 INIT_LIST_HEAD(&item->lri_list);
1246 item->lri_la_dinode = la_dinode;
1247 item->lri_slot = slot_num;
1248 item->lri_tl_dinode = tl_dinode;
1249 item->lri_qrec = qrec;
1250
1251 spin_lock(&journal->j_lock);
1252 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253 queue_work(ocfs2_wq, &journal->j_recovery_work);
1254 spin_unlock(&journal->j_lock);
1255}
1256
1257/* Called by the mount code to queue recovery the last part of
1258 * recovery for it's own and offline slot(s). */
1259void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260{
1261 struct ocfs2_journal *journal = osb->journal;
1262
1263 if (ocfs2_is_hard_readonly(osb))
1264 return;
1265
1266 /* No need to queue up our truncate_log as regular cleanup will catch
1267 * that */
1268 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1269 osb->local_alloc_copy, NULL, NULL);
1270 ocfs2_schedule_truncate_log_flush(osb, 0);
1271
1272 osb->local_alloc_copy = NULL;
1273 osb->dirty = 0;
1274
1275 /* queue to recover orphan slots for all offline slots */
1276 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1277 ocfs2_queue_replay_slots(osb);
1278 ocfs2_free_replay_slots(osb);
1279}
1280
1281void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1282{
1283 if (osb->quota_rec) {
1284 ocfs2_queue_recovery_completion(osb->journal,
1285 osb->slot_num,
1286 NULL,
1287 NULL,
1288 osb->quota_rec);
1289 osb->quota_rec = NULL;
1290 }
1291}
1292
1293static int __ocfs2_recovery_thread(void *arg)
1294{
1295 int status, node_num, slot_num;
1296 struct ocfs2_super *osb = arg;
1297 struct ocfs2_recovery_map *rm = osb->recovery_map;
1298 int *rm_quota = NULL;
1299 int rm_quota_used = 0, i;
1300 struct ocfs2_quota_recovery *qrec;
1301
1302 status = ocfs2_wait_on_mount(osb);
1303 if (status < 0) {
1304 goto bail;
1305 }
1306
1307 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1308 if (!rm_quota) {
1309 status = -ENOMEM;
1310 goto bail;
1311 }
1312restart:
1313 status = ocfs2_super_lock(osb, 1);
1314 if (status < 0) {
1315 mlog_errno(status);
1316 goto bail;
1317 }
1318
1319 status = ocfs2_compute_replay_slots(osb);
1320 if (status < 0)
1321 mlog_errno(status);
1322
1323 /* queue recovery for our own slot */
1324 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1325 NULL, NULL);
1326
1327 spin_lock(&osb->osb_lock);
1328 while (rm->rm_used) {
1329 /* It's always safe to remove entry zero, as we won't
1330 * clear it until ocfs2_recover_node() has succeeded. */
1331 node_num = rm->rm_entries[0];
1332 spin_unlock(&osb->osb_lock);
1333 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1334 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1335 if (slot_num == -ENOENT) {
1336 status = 0;
1337 goto skip_recovery;
1338 }
1339
1340 /* It is a bit subtle with quota recovery. We cannot do it
1341 * immediately because we have to obtain cluster locks from
1342 * quota files and we also don't want to just skip it because
1343 * then quota usage would be out of sync until some node takes
1344 * the slot. So we remember which nodes need quota recovery
1345 * and when everything else is done, we recover quotas. */
1346 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1347 if (i == rm_quota_used)
1348 rm_quota[rm_quota_used++] = slot_num;
1349
1350 status = ocfs2_recover_node(osb, node_num, slot_num);
1351skip_recovery:
1352 if (!status) {
1353 ocfs2_recovery_map_clear(osb, node_num);
1354 } else {
1355 mlog(ML_ERROR,
1356 "Error %d recovering node %d on device (%u,%u)!\n",
1357 status, node_num,
1358 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1359 mlog(ML_ERROR, "Volume requires unmount.\n");
1360 }
1361
1362 spin_lock(&osb->osb_lock);
1363 }
1364 spin_unlock(&osb->osb_lock);
1365 trace_ocfs2_recovery_thread_end(status);
1366
1367 /* Refresh all journal recovery generations from disk */
1368 status = ocfs2_check_journals_nolocks(osb);
1369 status = (status == -EROFS) ? 0 : status;
1370 if (status < 0)
1371 mlog_errno(status);
1372
1373 /* Now it is right time to recover quotas... We have to do this under
1374 * superblock lock so that no one can start using the slot (and crash)
1375 * before we recover it */
1376 for (i = 0; i < rm_quota_used; i++) {
1377 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1378 if (IS_ERR(qrec)) {
1379 status = PTR_ERR(qrec);
1380 mlog_errno(status);
1381 continue;
1382 }
1383 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1384 NULL, NULL, qrec);
1385 }
1386
1387 ocfs2_super_unlock(osb, 1);
1388
1389 /* queue recovery for offline slots */
1390 ocfs2_queue_replay_slots(osb);
1391
1392bail:
1393 mutex_lock(&osb->recovery_lock);
1394 if (!status && !ocfs2_recovery_completed(osb)) {
1395 mutex_unlock(&osb->recovery_lock);
1396 goto restart;
1397 }
1398
1399 ocfs2_free_replay_slots(osb);
1400 osb->recovery_thread_task = NULL;
1401 mb(); /* sync with ocfs2_recovery_thread_running */
1402 wake_up(&osb->recovery_event);
1403
1404 mutex_unlock(&osb->recovery_lock);
1405
1406 if (rm_quota)
1407 kfree(rm_quota);
1408
1409 /* no one is callint kthread_stop() for us so the kthread() api
1410 * requires that we call do_exit(). And it isn't exported, but
1411 * complete_and_exit() seems to be a minimal wrapper around it. */
1412 complete_and_exit(NULL, status);
1413 return status;
1414}
1415
1416void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1417{
1418 mutex_lock(&osb->recovery_lock);
1419
1420 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1421 osb->disable_recovery, osb->recovery_thread_task,
1422 osb->disable_recovery ?
1423 -1 : ocfs2_recovery_map_set(osb, node_num));
1424
1425 if (osb->disable_recovery)
1426 goto out;
1427
1428 if (osb->recovery_thread_task)
1429 goto out;
1430
1431 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1432 "ocfs2rec");
1433 if (IS_ERR(osb->recovery_thread_task)) {
1434 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1435 osb->recovery_thread_task = NULL;
1436 }
1437
1438out:
1439 mutex_unlock(&osb->recovery_lock);
1440 wake_up(&osb->recovery_event);
1441}
1442
1443static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1444 int slot_num,
1445 struct buffer_head **bh,
1446 struct inode **ret_inode)
1447{
1448 int status = -EACCES;
1449 struct inode *inode = NULL;
1450
1451 BUG_ON(slot_num >= osb->max_slots);
1452
1453 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1454 slot_num);
1455 if (!inode || is_bad_inode(inode)) {
1456 mlog_errno(status);
1457 goto bail;
1458 }
1459 SET_INODE_JOURNAL(inode);
1460
1461 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1462 if (status < 0) {
1463 mlog_errno(status);
1464 goto bail;
1465 }
1466
1467 status = 0;
1468
1469bail:
1470 if (inode) {
1471 if (status || !ret_inode)
1472 iput(inode);
1473 else
1474 *ret_inode = inode;
1475 }
1476 return status;
1477}
1478
1479/* Does the actual journal replay and marks the journal inode as
1480 * clean. Will only replay if the journal inode is marked dirty. */
1481static int ocfs2_replay_journal(struct ocfs2_super *osb,
1482 int node_num,
1483 int slot_num)
1484{
1485 int status;
1486 int got_lock = 0;
1487 unsigned int flags;
1488 struct inode *inode = NULL;
1489 struct ocfs2_dinode *fe;
1490 journal_t *journal = NULL;
1491 struct buffer_head *bh = NULL;
1492 u32 slot_reco_gen;
1493
1494 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1495 if (status) {
1496 mlog_errno(status);
1497 goto done;
1498 }
1499
1500 fe = (struct ocfs2_dinode *)bh->b_data;
1501 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1502 brelse(bh);
1503 bh = NULL;
1504
1505 /*
1506 * As the fs recovery is asynchronous, there is a small chance that
1507 * another node mounted (and recovered) the slot before the recovery
1508 * thread could get the lock. To handle that, we dirty read the journal
1509 * inode for that slot to get the recovery generation. If it is
1510 * different than what we expected, the slot has been recovered.
1511 * If not, it needs recovery.
1512 */
1513 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1514 trace_ocfs2_replay_journal_recovered(slot_num,
1515 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1516 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1517 status = -EBUSY;
1518 goto done;
1519 }
1520
1521 /* Continue with recovery as the journal has not yet been recovered */
1522
1523 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1524 if (status < 0) {
1525 trace_ocfs2_replay_journal_lock_err(status);
1526 if (status != -ERESTARTSYS)
1527 mlog(ML_ERROR, "Could not lock journal!\n");
1528 goto done;
1529 }
1530 got_lock = 1;
1531
1532 fe = (struct ocfs2_dinode *) bh->b_data;
1533
1534 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1535 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1536
1537 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1538 trace_ocfs2_replay_journal_skip(node_num);
1539 /* Refresh recovery generation for the slot */
1540 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1541 goto done;
1542 }
1543
1544 /* we need to run complete recovery for offline orphan slots */
1545 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1546
1547 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1548 node_num, slot_num,
1549 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1550
1551 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1552
1553 status = ocfs2_force_read_journal(inode);
1554 if (status < 0) {
1555 mlog_errno(status);
1556 goto done;
1557 }
1558
1559 journal = jbd2_journal_init_inode(inode);
1560 if (journal == NULL) {
1561 mlog(ML_ERROR, "Linux journal layer error\n");
1562 status = -EIO;
1563 goto done;
1564 }
1565
1566 status = jbd2_journal_load(journal);
1567 if (status < 0) {
1568 mlog_errno(status);
1569 if (!igrab(inode))
1570 BUG();
1571 jbd2_journal_destroy(journal);
1572 goto done;
1573 }
1574
1575 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1576
1577 /* wipe the journal */
1578 jbd2_journal_lock_updates(journal);
1579 status = jbd2_journal_flush(journal);
1580 jbd2_journal_unlock_updates(journal);
1581 if (status < 0)
1582 mlog_errno(status);
1583
1584 /* This will mark the node clean */
1585 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1587 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1588
1589 /* Increment recovery generation to indicate successful recovery */
1590 ocfs2_bump_recovery_generation(fe);
1591 osb->slot_recovery_generations[slot_num] =
1592 ocfs2_get_recovery_generation(fe);
1593
1594 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1595 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1596 if (status < 0)
1597 mlog_errno(status);
1598
1599 if (!igrab(inode))
1600 BUG();
1601
1602 jbd2_journal_destroy(journal);
1603
1604done:
1605 /* drop the lock on this nodes journal */
1606 if (got_lock)
1607 ocfs2_inode_unlock(inode, 1);
1608
1609 if (inode)
1610 iput(inode);
1611
1612 brelse(bh);
1613
1614 return status;
1615}
1616
1617/*
1618 * Do the most important parts of node recovery:
1619 * - Replay it's journal
1620 * - Stamp a clean local allocator file
1621 * - Stamp a clean truncate log
1622 * - Mark the node clean
1623 *
1624 * If this function completes without error, a node in OCFS2 can be
1625 * said to have been safely recovered. As a result, failure during the
1626 * second part of a nodes recovery process (local alloc recovery) is
1627 * far less concerning.
1628 */
1629static int ocfs2_recover_node(struct ocfs2_super *osb,
1630 int node_num, int slot_num)
1631{
1632 int status = 0;
1633 struct ocfs2_dinode *la_copy = NULL;
1634 struct ocfs2_dinode *tl_copy = NULL;
1635
1636 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1637
1638 /* Should not ever be called to recover ourselves -- in that
1639 * case we should've called ocfs2_journal_load instead. */
1640 BUG_ON(osb->node_num == node_num);
1641
1642 status = ocfs2_replay_journal(osb, node_num, slot_num);
1643 if (status < 0) {
1644 if (status == -EBUSY) {
1645 trace_ocfs2_recover_node_skip(slot_num, node_num);
1646 status = 0;
1647 goto done;
1648 }
1649 mlog_errno(status);
1650 goto done;
1651 }
1652
1653 /* Stamp a clean local alloc file AFTER recovering the journal... */
1654 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1655 if (status < 0) {
1656 mlog_errno(status);
1657 goto done;
1658 }
1659
1660 /* An error from begin_truncate_log_recovery is not
1661 * serious enough to warrant halting the rest of
1662 * recovery. */
1663 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1664 if (status < 0)
1665 mlog_errno(status);
1666
1667 /* Likewise, this would be a strange but ultimately not so
1668 * harmful place to get an error... */
1669 status = ocfs2_clear_slot(osb, slot_num);
1670 if (status < 0)
1671 mlog_errno(status);
1672
1673 /* This will kfree the memory pointed to by la_copy and tl_copy */
1674 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1675 tl_copy, NULL);
1676
1677 status = 0;
1678done:
1679
1680 return status;
1681}
1682
1683/* Test node liveness by trylocking his journal. If we get the lock,
1684 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1685 * still alive (we couldn't get the lock) and < 0 on error. */
1686static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1687 int slot_num)
1688{
1689 int status, flags;
1690 struct inode *inode = NULL;
1691
1692 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1693 slot_num);
1694 if (inode == NULL) {
1695 mlog(ML_ERROR, "access error\n");
1696 status = -EACCES;
1697 goto bail;
1698 }
1699 if (is_bad_inode(inode)) {
1700 mlog(ML_ERROR, "access error (bad inode)\n");
1701 iput(inode);
1702 inode = NULL;
1703 status = -EACCES;
1704 goto bail;
1705 }
1706 SET_INODE_JOURNAL(inode);
1707
1708 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1709 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1710 if (status < 0) {
1711 if (status != -EAGAIN)
1712 mlog_errno(status);
1713 goto bail;
1714 }
1715
1716 ocfs2_inode_unlock(inode, 1);
1717bail:
1718 if (inode)
1719 iput(inode);
1720
1721 return status;
1722}
1723
1724/* Call this underneath ocfs2_super_lock. It also assumes that the
1725 * slot info struct has been updated from disk. */
1726int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1727{
1728 unsigned int node_num;
1729 int status, i;
1730 u32 gen;
1731 struct buffer_head *bh = NULL;
1732 struct ocfs2_dinode *di;
1733
1734 /* This is called with the super block cluster lock, so we
1735 * know that the slot map can't change underneath us. */
1736
1737 for (i = 0; i < osb->max_slots; i++) {
1738 /* Read journal inode to get the recovery generation */
1739 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1740 if (status) {
1741 mlog_errno(status);
1742 goto bail;
1743 }
1744 di = (struct ocfs2_dinode *)bh->b_data;
1745 gen = ocfs2_get_recovery_generation(di);
1746 brelse(bh);
1747 bh = NULL;
1748
1749 spin_lock(&osb->osb_lock);
1750 osb->slot_recovery_generations[i] = gen;
1751
1752 trace_ocfs2_mark_dead_nodes(i,
1753 osb->slot_recovery_generations[i]);
1754
1755 if (i == osb->slot_num) {
1756 spin_unlock(&osb->osb_lock);
1757 continue;
1758 }
1759
1760 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1761 if (status == -ENOENT) {
1762 spin_unlock(&osb->osb_lock);
1763 continue;
1764 }
1765
1766 if (__ocfs2_recovery_map_test(osb, node_num)) {
1767 spin_unlock(&osb->osb_lock);
1768 continue;
1769 }
1770 spin_unlock(&osb->osb_lock);
1771
1772 /* Ok, we have a slot occupied by another node which
1773 * is not in the recovery map. We trylock his journal
1774 * file here to test if he's alive. */
1775 status = ocfs2_trylock_journal(osb, i);
1776 if (!status) {
1777 /* Since we're called from mount, we know that
1778 * the recovery thread can't race us on
1779 * setting / checking the recovery bits. */
1780 ocfs2_recovery_thread(osb, node_num);
1781 } else if ((status < 0) && (status != -EAGAIN)) {
1782 mlog_errno(status);
1783 goto bail;
1784 }
1785 }
1786
1787 status = 0;
1788bail:
1789 return status;
1790}
1791
1792/*
1793 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1794 * randomness to the timeout to minimize multple nodes firing the timer at the
1795 * same time.
1796 */
1797static inline unsigned long ocfs2_orphan_scan_timeout(void)
1798{
1799 unsigned long time;
1800
1801 get_random_bytes(&time, sizeof(time));
1802 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1803 return msecs_to_jiffies(time);
1804}
1805
1806/*
1807 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1808 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1809 * is done to catch any orphans that are left over in orphan directories.
1810 *
1811 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1812 * seconds. It gets an EX lock on os_lockres and checks sequence number
1813 * stored in LVB. If the sequence number has changed, it means some other
1814 * node has done the scan. This node skips the scan and tracks the
1815 * sequence number. If the sequence number didn't change, it means a scan
1816 * hasn't happened. The node queues a scan and increments the
1817 * sequence number in the LVB.
1818 */
1819void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1820{
1821 struct ocfs2_orphan_scan *os;
1822 int status, i;
1823 u32 seqno = 0;
1824
1825 os = &osb->osb_orphan_scan;
1826
1827 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1828 goto out;
1829
1830 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1831 atomic_read(&os->os_state));
1832
1833 status = ocfs2_orphan_scan_lock(osb, &seqno);
1834 if (status < 0) {
1835 if (status != -EAGAIN)
1836 mlog_errno(status);
1837 goto out;
1838 }
1839
1840 /* Do no queue the tasks if the volume is being umounted */
1841 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1842 goto unlock;
1843
1844 if (os->os_seqno != seqno) {
1845 os->os_seqno = seqno;
1846 goto unlock;
1847 }
1848
1849 for (i = 0; i < osb->max_slots; i++)
1850 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1851 NULL);
1852 /*
1853 * We queued a recovery on orphan slots, increment the sequence
1854 * number and update LVB so other node will skip the scan for a while
1855 */
1856 seqno++;
1857 os->os_count++;
1858 os->os_scantime = CURRENT_TIME;
1859unlock:
1860 ocfs2_orphan_scan_unlock(osb, seqno);
1861out:
1862 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1863 atomic_read(&os->os_state));
1864 return;
1865}
1866
1867/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1868void ocfs2_orphan_scan_work(struct work_struct *work)
1869{
1870 struct ocfs2_orphan_scan *os;
1871 struct ocfs2_super *osb;
1872
1873 os = container_of(work, struct ocfs2_orphan_scan,
1874 os_orphan_scan_work.work);
1875 osb = os->os_osb;
1876
1877 mutex_lock(&os->os_lock);
1878 ocfs2_queue_orphan_scan(osb);
1879 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1880 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1881 ocfs2_orphan_scan_timeout());
1882 mutex_unlock(&os->os_lock);
1883}
1884
1885void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1886{
1887 struct ocfs2_orphan_scan *os;
1888
1889 os = &osb->osb_orphan_scan;
1890 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1891 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1892 mutex_lock(&os->os_lock);
1893 cancel_delayed_work(&os->os_orphan_scan_work);
1894 mutex_unlock(&os->os_lock);
1895 }
1896}
1897
1898void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1899{
1900 struct ocfs2_orphan_scan *os;
1901
1902 os = &osb->osb_orphan_scan;
1903 os->os_osb = osb;
1904 os->os_count = 0;
1905 os->os_seqno = 0;
1906 mutex_init(&os->os_lock);
1907 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1908}
1909
1910void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1911{
1912 struct ocfs2_orphan_scan *os;
1913
1914 os = &osb->osb_orphan_scan;
1915 os->os_scantime = CURRENT_TIME;
1916 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1917 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1918 else {
1919 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1920 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1921 ocfs2_orphan_scan_timeout());
1922 }
1923}
1924
1925struct ocfs2_orphan_filldir_priv {
1926 struct inode *head;
1927 struct ocfs2_super *osb;
1928};
1929
1930static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1931 loff_t pos, u64 ino, unsigned type)
1932{
1933 struct ocfs2_orphan_filldir_priv *p = priv;
1934 struct inode *iter;
1935
1936 if (name_len == 1 && !strncmp(".", name, 1))
1937 return 0;
1938 if (name_len == 2 && !strncmp("..", name, 2))
1939 return 0;
1940
1941 /* Skip bad inodes so that recovery can continue */
1942 iter = ocfs2_iget(p->osb, ino,
1943 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1944 if (IS_ERR(iter))
1945 return 0;
1946
1947 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1948 /* No locking is required for the next_orphan queue as there
1949 * is only ever a single process doing orphan recovery. */
1950 OCFS2_I(iter)->ip_next_orphan = p->head;
1951 p->head = iter;
1952
1953 return 0;
1954}
1955
1956static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1957 int slot,
1958 struct inode **head)
1959{
1960 int status;
1961 struct inode *orphan_dir_inode = NULL;
1962 struct ocfs2_orphan_filldir_priv priv;
1963 loff_t pos = 0;
1964
1965 priv.osb = osb;
1966 priv.head = *head;
1967
1968 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1969 ORPHAN_DIR_SYSTEM_INODE,
1970 slot);
1971 if (!orphan_dir_inode) {
1972 status = -ENOENT;
1973 mlog_errno(status);
1974 return status;
1975 }
1976
1977 mutex_lock(&orphan_dir_inode->i_mutex);
1978 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1979 if (status < 0) {
1980 mlog_errno(status);
1981 goto out;
1982 }
1983
1984 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1985 ocfs2_orphan_filldir);
1986 if (status) {
1987 mlog_errno(status);
1988 goto out_cluster;
1989 }
1990
1991 *head = priv.head;
1992
1993out_cluster:
1994 ocfs2_inode_unlock(orphan_dir_inode, 0);
1995out:
1996 mutex_unlock(&orphan_dir_inode->i_mutex);
1997 iput(orphan_dir_inode);
1998 return status;
1999}
2000
2001static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2002 int slot)
2003{
2004 int ret;
2005
2006 spin_lock(&osb->osb_lock);
2007 ret = !osb->osb_orphan_wipes[slot];
2008 spin_unlock(&osb->osb_lock);
2009 return ret;
2010}
2011
2012static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2013 int slot)
2014{
2015 spin_lock(&osb->osb_lock);
2016 /* Mark ourselves such that new processes in delete_inode()
2017 * know to quit early. */
2018 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2019 while (osb->osb_orphan_wipes[slot]) {
2020 /* If any processes are already in the middle of an
2021 * orphan wipe on this dir, then we need to wait for
2022 * them. */
2023 spin_unlock(&osb->osb_lock);
2024 wait_event_interruptible(osb->osb_wipe_event,
2025 ocfs2_orphan_recovery_can_continue(osb, slot));
2026 spin_lock(&osb->osb_lock);
2027 }
2028 spin_unlock(&osb->osb_lock);
2029}
2030
2031static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2032 int slot)
2033{
2034 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2035}
2036
2037/*
2038 * Orphan recovery. Each mounted node has it's own orphan dir which we
2039 * must run during recovery. Our strategy here is to build a list of
2040 * the inodes in the orphan dir and iget/iput them. The VFS does
2041 * (most) of the rest of the work.
2042 *
2043 * Orphan recovery can happen at any time, not just mount so we have a
2044 * couple of extra considerations.
2045 *
2046 * - We grab as many inodes as we can under the orphan dir lock -
2047 * doing iget() outside the orphan dir risks getting a reference on
2048 * an invalid inode.
2049 * - We must be sure not to deadlock with other processes on the
2050 * system wanting to run delete_inode(). This can happen when they go
2051 * to lock the orphan dir and the orphan recovery process attempts to
2052 * iget() inside the orphan dir lock. This can be avoided by
2053 * advertising our state to ocfs2_delete_inode().
2054 */
2055static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2056 int slot)
2057{
2058 int ret = 0;
2059 struct inode *inode = NULL;
2060 struct inode *iter;
2061 struct ocfs2_inode_info *oi;
2062
2063 trace_ocfs2_recover_orphans(slot);
2064
2065 ocfs2_mark_recovering_orphan_dir(osb, slot);
2066 ret = ocfs2_queue_orphans(osb, slot, &inode);
2067 ocfs2_clear_recovering_orphan_dir(osb, slot);
2068
2069 /* Error here should be noted, but we want to continue with as
2070 * many queued inodes as we've got. */
2071 if (ret)
2072 mlog_errno(ret);
2073
2074 while (inode) {
2075 oi = OCFS2_I(inode);
2076 trace_ocfs2_recover_orphans_iput(
2077 (unsigned long long)oi->ip_blkno);
2078
2079 iter = oi->ip_next_orphan;
2080
2081 spin_lock(&oi->ip_lock);
2082 /* The remote delete code may have set these on the
2083 * assumption that the other node would wipe them
2084 * successfully. If they are still in the node's
2085 * orphan dir, we need to reset that state. */
2086 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2087
2088 /* Set the proper information to get us going into
2089 * ocfs2_delete_inode. */
2090 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2091 spin_unlock(&oi->ip_lock);
2092
2093 iput(inode);
2094
2095 inode = iter;
2096 }
2097
2098 return ret;
2099}
2100
2101static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2102{
2103 /* This check is good because ocfs2 will wait on our recovery
2104 * thread before changing it to something other than MOUNTED
2105 * or DISABLED. */
2106 wait_event(osb->osb_mount_event,
2107 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2108 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2109 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2110
2111 /* If there's an error on mount, then we may never get to the
2112 * MOUNTED flag, but this is set right before
2113 * dismount_volume() so we can trust it. */
2114 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2115 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2116 mlog(0, "mount error, exiting!\n");
2117 return -EBUSY;
2118 }
2119
2120 return 0;
2121}
2122
2123static int ocfs2_commit_thread(void *arg)
2124{
2125 int status;
2126 struct ocfs2_super *osb = arg;
2127 struct ocfs2_journal *journal = osb->journal;
2128
2129 /* we can trust j_num_trans here because _should_stop() is only set in
2130 * shutdown and nobody other than ourselves should be able to start
2131 * transactions. committing on shutdown might take a few iterations
2132 * as final transactions put deleted inodes on the list */
2133 while (!(kthread_should_stop() &&
2134 atomic_read(&journal->j_num_trans) == 0)) {
2135
2136 wait_event_interruptible(osb->checkpoint_event,
2137 atomic_read(&journal->j_num_trans)
2138 || kthread_should_stop());
2139
2140 status = ocfs2_commit_cache(osb);
2141 if (status < 0)
2142 mlog_errno(status);
2143
2144 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2145 mlog(ML_KTHREAD,
2146 "commit_thread: %u transactions pending on "
2147 "shutdown\n",
2148 atomic_read(&journal->j_num_trans));
2149 }
2150 }
2151
2152 return 0;
2153}
2154
2155/* Reads all the journal inodes without taking any cluster locks. Used
2156 * for hard readonly access to determine whether any journal requires
2157 * recovery. Also used to refresh the recovery generation numbers after
2158 * a journal has been recovered by another node.
2159 */
2160int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2161{
2162 int ret = 0;
2163 unsigned int slot;
2164 struct buffer_head *di_bh = NULL;
2165 struct ocfs2_dinode *di;
2166 int journal_dirty = 0;
2167
2168 for(slot = 0; slot < osb->max_slots; slot++) {
2169 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2170 if (ret) {
2171 mlog_errno(ret);
2172 goto out;
2173 }
2174
2175 di = (struct ocfs2_dinode *) di_bh->b_data;
2176
2177 osb->slot_recovery_generations[slot] =
2178 ocfs2_get_recovery_generation(di);
2179
2180 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2181 OCFS2_JOURNAL_DIRTY_FL)
2182 journal_dirty = 1;
2183
2184 brelse(di_bh);
2185 di_bh = NULL;
2186 }
2187
2188out:
2189 if (journal_dirty)
2190 ret = -EROFS;
2191 return ret;
2192}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * journal.c
4 *
5 * Defines functions of journalling api
6 *
7 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
8 */
9
10#include <linux/fs.h>
11#include <linux/types.h>
12#include <linux/slab.h>
13#include <linux/highmem.h>
14#include <linux/kthread.h>
15#include <linux/time.h>
16#include <linux/random.h>
17#include <linux/delay.h>
18#include <linux/writeback.h>
19
20#include <cluster/masklog.h>
21
22#include "ocfs2.h"
23
24#include "alloc.h"
25#include "blockcheck.h"
26#include "dir.h"
27#include "dlmglue.h"
28#include "extent_map.h"
29#include "heartbeat.h"
30#include "inode.h"
31#include "journal.h"
32#include "localalloc.h"
33#include "slot_map.h"
34#include "super.h"
35#include "sysfile.h"
36#include "uptodate.h"
37#include "quota.h"
38#include "file.h"
39#include "namei.h"
40
41#include "buffer_head_io.h"
42#include "ocfs2_trace.h"
43
44DEFINE_SPINLOCK(trans_inc_lock);
45
46#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47
48static int ocfs2_force_read_journal(struct inode *inode);
49static int ocfs2_recover_node(struct ocfs2_super *osb,
50 int node_num, int slot_num);
51static int __ocfs2_recovery_thread(void *arg);
52static int ocfs2_commit_cache(struct ocfs2_super *osb);
53static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 int dirty, int replayed);
56static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 int slot_num);
58static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 int slot,
60 enum ocfs2_orphan_reco_type orphan_reco_type);
61static int ocfs2_commit_thread(void *arg);
62static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 int slot_num,
64 struct ocfs2_dinode *la_dinode,
65 struct ocfs2_dinode *tl_dinode,
66 struct ocfs2_quota_recovery *qrec,
67 enum ocfs2_orphan_reco_type orphan_reco_type);
68
69static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70{
71 return __ocfs2_wait_on_mount(osb, 0);
72}
73
74static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75{
76 return __ocfs2_wait_on_mount(osb, 1);
77}
78
79/*
80 * This replay_map is to track online/offline slots, so we could recover
81 * offline slots during recovery and mount
82 */
83
84enum ocfs2_replay_state {
85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
87 REPLAY_DONE /* Replay was already queued */
88};
89
90struct ocfs2_replay_map {
91 unsigned int rm_slots;
92 enum ocfs2_replay_state rm_state;
93 unsigned char rm_replay_slots[] __counted_by(rm_slots);
94};
95
96static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97{
98 if (!osb->replay_map)
99 return;
100
101 /* If we've already queued the replay, we don't have any more to do */
102 if (osb->replay_map->rm_state == REPLAY_DONE)
103 return;
104
105 osb->replay_map->rm_state = state;
106}
107
108int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109{
110 struct ocfs2_replay_map *replay_map;
111 int i, node_num;
112
113 /* If replay map is already set, we don't do it again */
114 if (osb->replay_map)
115 return 0;
116
117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 osb->max_slots),
119 GFP_KERNEL);
120 if (!replay_map) {
121 mlog_errno(-ENOMEM);
122 return -ENOMEM;
123 }
124
125 spin_lock(&osb->osb_lock);
126
127 replay_map->rm_slots = osb->max_slots;
128 replay_map->rm_state = REPLAY_UNNEEDED;
129
130 /* set rm_replay_slots for offline slot(s) */
131 for (i = 0; i < replay_map->rm_slots; i++) {
132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 replay_map->rm_replay_slots[i] = 1;
134 }
135
136 osb->replay_map = replay_map;
137 spin_unlock(&osb->osb_lock);
138 return 0;
139}
140
141static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 enum ocfs2_orphan_reco_type orphan_reco_type)
143{
144 struct ocfs2_replay_map *replay_map = osb->replay_map;
145 int i;
146
147 if (!replay_map)
148 return;
149
150 if (replay_map->rm_state != REPLAY_NEEDED)
151 return;
152
153 for (i = 0; i < replay_map->rm_slots; i++)
154 if (replay_map->rm_replay_slots[i])
155 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 NULL, NULL,
157 orphan_reco_type);
158 replay_map->rm_state = REPLAY_DONE;
159}
160
161void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162{
163 struct ocfs2_replay_map *replay_map = osb->replay_map;
164
165 if (!osb->replay_map)
166 return;
167
168 kfree(replay_map);
169 osb->replay_map = NULL;
170}
171
172int ocfs2_recovery_init(struct ocfs2_super *osb)
173{
174 struct ocfs2_recovery_map *rm;
175
176 mutex_init(&osb->recovery_lock);
177 osb->disable_recovery = 0;
178 osb->recovery_thread_task = NULL;
179 init_waitqueue_head(&osb->recovery_event);
180
181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 GFP_KERNEL);
183 if (!rm) {
184 mlog_errno(-ENOMEM);
185 return -ENOMEM;
186 }
187
188 osb->recovery_map = rm;
189
190 return 0;
191}
192
193/* we can't grab the goofy sem lock from inside wait_event, so we use
194 * memory barriers to make sure that we'll see the null task before
195 * being woken up */
196static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197{
198 mb();
199 return osb->recovery_thread_task != NULL;
200}
201
202void ocfs2_recovery_exit(struct ocfs2_super *osb)
203{
204 struct ocfs2_recovery_map *rm;
205
206 /* disable any new recovery threads and wait for any currently
207 * running ones to exit. Do this before setting the vol_state. */
208 mutex_lock(&osb->recovery_lock);
209 osb->disable_recovery = 1;
210 mutex_unlock(&osb->recovery_lock);
211 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212
213 /* At this point, we know that no more recovery threads can be
214 * launched, so wait for any recovery completion work to
215 * complete. */
216 if (osb->ocfs2_wq)
217 flush_workqueue(osb->ocfs2_wq);
218
219 /*
220 * Now that recovery is shut down, and the osb is about to be
221 * freed, the osb_lock is not taken here.
222 */
223 rm = osb->recovery_map;
224 /* XXX: Should we bug if there are dirty entries? */
225
226 kfree(rm);
227}
228
229static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230 unsigned int node_num)
231{
232 int i;
233 struct ocfs2_recovery_map *rm = osb->recovery_map;
234
235 assert_spin_locked(&osb->osb_lock);
236
237 for (i = 0; i < rm->rm_used; i++) {
238 if (rm->rm_entries[i] == node_num)
239 return 1;
240 }
241
242 return 0;
243}
244
245/* Behaves like test-and-set. Returns the previous value */
246static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247 unsigned int node_num)
248{
249 struct ocfs2_recovery_map *rm = osb->recovery_map;
250
251 spin_lock(&osb->osb_lock);
252 if (__ocfs2_recovery_map_test(osb, node_num)) {
253 spin_unlock(&osb->osb_lock);
254 return 1;
255 }
256
257 /* XXX: Can this be exploited? Not from o2dlm... */
258 BUG_ON(rm->rm_used >= osb->max_slots);
259
260 rm->rm_entries[rm->rm_used] = node_num;
261 rm->rm_used++;
262 spin_unlock(&osb->osb_lock);
263
264 return 0;
265}
266
267static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268 unsigned int node_num)
269{
270 int i;
271 struct ocfs2_recovery_map *rm = osb->recovery_map;
272
273 spin_lock(&osb->osb_lock);
274
275 for (i = 0; i < rm->rm_used; i++) {
276 if (rm->rm_entries[i] == node_num)
277 break;
278 }
279
280 if (i < rm->rm_used) {
281 /* XXX: be careful with the pointer math */
282 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283 (rm->rm_used - i - 1) * sizeof(unsigned int));
284 rm->rm_used--;
285 }
286
287 spin_unlock(&osb->osb_lock);
288}
289
290static int ocfs2_commit_cache(struct ocfs2_super *osb)
291{
292 int status = 0;
293 unsigned int flushed;
294 struct ocfs2_journal *journal = NULL;
295
296 journal = osb->journal;
297
298 /* Flush all pending commits and checkpoint the journal. */
299 down_write(&journal->j_trans_barrier);
300
301 flushed = atomic_read(&journal->j_num_trans);
302 trace_ocfs2_commit_cache_begin(flushed);
303 if (flushed == 0) {
304 up_write(&journal->j_trans_barrier);
305 goto finally;
306 }
307
308 jbd2_journal_lock_updates(journal->j_journal);
309 status = jbd2_journal_flush(journal->j_journal, 0);
310 jbd2_journal_unlock_updates(journal->j_journal);
311 if (status < 0) {
312 up_write(&journal->j_trans_barrier);
313 mlog_errno(status);
314 goto finally;
315 }
316
317 ocfs2_inc_trans_id(journal);
318
319 flushed = atomic_read(&journal->j_num_trans);
320 atomic_set(&journal->j_num_trans, 0);
321 up_write(&journal->j_trans_barrier);
322
323 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324
325 ocfs2_wake_downconvert_thread(osb);
326 wake_up(&journal->j_checkpointed);
327finally:
328 return status;
329}
330
331handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332{
333 journal_t *journal = osb->journal->j_journal;
334 handle_t *handle;
335
336 BUG_ON(!osb || !osb->journal->j_journal);
337
338 if (ocfs2_is_hard_readonly(osb))
339 return ERR_PTR(-EROFS);
340
341 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342 BUG_ON(max_buffs <= 0);
343
344 /* Nested transaction? Just return the handle... */
345 if (journal_current_handle())
346 return jbd2_journal_start(journal, max_buffs);
347
348 sb_start_intwrite(osb->sb);
349
350 down_read(&osb->journal->j_trans_barrier);
351
352 handle = jbd2_journal_start(journal, max_buffs);
353 if (IS_ERR(handle)) {
354 up_read(&osb->journal->j_trans_barrier);
355 sb_end_intwrite(osb->sb);
356
357 mlog_errno(PTR_ERR(handle));
358
359 if (is_journal_aborted(journal)) {
360 ocfs2_abort(osb->sb, "Detected aborted journal\n");
361 handle = ERR_PTR(-EROFS);
362 }
363 } else {
364 if (!ocfs2_mount_local(osb))
365 atomic_inc(&(osb->journal->j_num_trans));
366 }
367
368 return handle;
369}
370
371int ocfs2_commit_trans(struct ocfs2_super *osb,
372 handle_t *handle)
373{
374 int ret, nested;
375 struct ocfs2_journal *journal = osb->journal;
376
377 BUG_ON(!handle);
378
379 nested = handle->h_ref > 1;
380 ret = jbd2_journal_stop(handle);
381 if (ret < 0)
382 mlog_errno(ret);
383
384 if (!nested) {
385 up_read(&journal->j_trans_barrier);
386 sb_end_intwrite(osb->sb);
387 }
388
389 return ret;
390}
391
392/*
393 * 'nblocks' is what you want to add to the current transaction.
394 *
395 * This might call jbd2_journal_restart() which will commit dirty buffers
396 * and then restart the transaction. Before calling
397 * ocfs2_extend_trans(), any changed blocks should have been
398 * dirtied. After calling it, all blocks which need to be changed must
399 * go through another set of journal_access/journal_dirty calls.
400 *
401 * WARNING: This will not release any semaphores or disk locks taken
402 * during the transaction, so make sure they were taken *before*
403 * start_trans or we'll have ordering deadlocks.
404 *
405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406 * good because transaction ids haven't yet been recorded on the
407 * cluster locks associated with this handle.
408 */
409int ocfs2_extend_trans(handle_t *handle, int nblocks)
410{
411 int status, old_nblocks;
412
413 BUG_ON(!handle);
414 BUG_ON(nblocks < 0);
415
416 if (!nblocks)
417 return 0;
418
419 old_nblocks = jbd2_handle_buffer_credits(handle);
420
421 trace_ocfs2_extend_trans(old_nblocks, nblocks);
422
423#ifdef CONFIG_OCFS2_DEBUG_FS
424 status = 1;
425#else
426 status = jbd2_journal_extend(handle, nblocks, 0);
427 if (status < 0) {
428 mlog_errno(status);
429 goto bail;
430 }
431#endif
432
433 if (status > 0) {
434 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435 status = jbd2_journal_restart(handle,
436 old_nblocks + nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
440 }
441 }
442
443 status = 0;
444bail:
445 return status;
446}
447
448/*
449 * Make sure handle has at least 'nblocks' credits available. If it does not
450 * have that many credits available, we will try to extend the handle to have
451 * enough credits. If that fails, we will restart transaction to have enough
452 * credits. Similar notes regarding data consistency and locking implications
453 * as for ocfs2_extend_trans() apply here.
454 */
455int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
456{
457 int old_nblks = jbd2_handle_buffer_credits(handle);
458
459 trace_ocfs2_assure_trans_credits(old_nblks);
460 if (old_nblks >= nblocks)
461 return 0;
462 return ocfs2_extend_trans(handle, nblocks - old_nblks);
463}
464
465/*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472{
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = jbd2_handle_buffer_credits(handle);
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495bail:
496 return status;
497}
498
499static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500{
501 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502}
503
504static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 struct buffer_head *bh,
506 void *data, size_t size)
507{
508 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509
510 /*
511 * We aren't guaranteed to have the superblock here, so we
512 * must unconditionally compute the ecc data.
513 * __ocfs2_journal_access() will only set the triggers if
514 * metaecc is enabled.
515 */
516 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517}
518
519/*
520 * Quota blocks have their own trigger because the struct ocfs2_block_check
521 * offset depends on the blocksize.
522 */
523static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 struct buffer_head *bh,
525 void *data, size_t size)
526{
527 struct ocfs2_disk_dqtrailer *dqt =
528 ocfs2_block_dqtrailer(size, data);
529
530 /*
531 * We aren't guaranteed to have the superblock here, so we
532 * must unconditionally compute the ecc data.
533 * __ocfs2_journal_access() will only set the triggers if
534 * metaecc is enabled.
535 */
536 ocfs2_block_check_compute(data, size, &dqt->dq_check);
537}
538
539/*
540 * Directory blocks also have their own trigger because the
541 * struct ocfs2_block_check offset depends on the blocksize.
542 */
543static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 struct buffer_head *bh,
545 void *data, size_t size)
546{
547 struct ocfs2_dir_block_trailer *trailer =
548 ocfs2_dir_trailer_from_size(size, data);
549
550 /*
551 * We aren't guaranteed to have the superblock here, so we
552 * must unconditionally compute the ecc data.
553 * __ocfs2_journal_access() will only set the triggers if
554 * metaecc is enabled.
555 */
556 ocfs2_block_check_compute(data, size, &trailer->db_check);
557}
558
559static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 struct buffer_head *bh)
561{
562 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
563
564 mlog(ML_ERROR,
565 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
566 "bh->b_blocknr = %llu\n",
567 (unsigned long)bh,
568 (unsigned long long)bh->b_blocknr);
569
570 ocfs2_error(ot->sb,
571 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572}
573
574static void ocfs2_setup_csum_triggers(struct super_block *sb,
575 enum ocfs2_journal_trigger_type type,
576 struct ocfs2_triggers *ot)
577{
578 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
579
580 switch (type) {
581 case OCFS2_JTR_DI:
582 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
583 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
584 break;
585 case OCFS2_JTR_EB:
586 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
587 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
588 break;
589 case OCFS2_JTR_RB:
590 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
591 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
592 break;
593 case OCFS2_JTR_GD:
594 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
595 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
596 break;
597 case OCFS2_JTR_DB:
598 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
599 break;
600 case OCFS2_JTR_XB:
601 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
602 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
603 break;
604 case OCFS2_JTR_DQ:
605 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
606 break;
607 case OCFS2_JTR_DR:
608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
610 break;
611 case OCFS2_JTR_DL:
612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
614 break;
615 case OCFS2_JTR_NONE:
616 /* To make compiler happy... */
617 return;
618 }
619
620 ot->ot_triggers.t_abort = ocfs2_abort_trigger;
621 ot->sb = sb;
622}
623
624void ocfs2_initialize_journal_triggers(struct super_block *sb,
625 struct ocfs2_triggers triggers[])
626{
627 enum ocfs2_journal_trigger_type type;
628
629 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
630 ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
631}
632
633static int __ocfs2_journal_access(handle_t *handle,
634 struct ocfs2_caching_info *ci,
635 struct buffer_head *bh,
636 struct ocfs2_triggers *triggers,
637 int type)
638{
639 int status;
640 struct ocfs2_super *osb =
641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642
643 BUG_ON(!ci || !ci->ci_ops);
644 BUG_ON(!handle);
645 BUG_ON(!bh);
646
647 trace_ocfs2_journal_access(
648 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649 (unsigned long long)bh->b_blocknr, type, bh->b_size);
650
651 /* we can safely remove this assertion after testing. */
652 if (!buffer_uptodate(bh)) {
653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 (unsigned long long)bh->b_blocknr, bh->b_state);
656
657 lock_buffer(bh);
658 /*
659 * A previous transaction with a couple of buffer heads fail
660 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 * For current transaction, the bh is just among those error
662 * bhs which previous transaction handle. We can't just clear
663 * its BH_Write_EIO and reuse directly, since other bhs are
664 * not written to disk yet and that will cause metadata
665 * inconsistency. So we should set fs read-only to avoid
666 * further damage.
667 */
668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 unlock_buffer(bh);
670 return ocfs2_error(osb->sb, "A previous attempt to "
671 "write this buffer head failed\n");
672 }
673 unlock_buffer(bh);
674 }
675
676 /* Set the current transaction information on the ci so
677 * that the locking code knows whether it can drop it's locks
678 * on this ci or not. We're protected from the commit
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
682 ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684 ocfs2_metadata_cache_io_lock(ci);
685 switch (type) {
686 case OCFS2_JOURNAL_ACCESS_CREATE:
687 case OCFS2_JOURNAL_ACCESS_WRITE:
688 status = jbd2_journal_get_write_access(handle, bh);
689 break;
690
691 case OCFS2_JOURNAL_ACCESS_UNDO:
692 status = jbd2_journal_get_undo_access(handle, bh);
693 break;
694
695 default:
696 status = -EINVAL;
697 mlog(ML_ERROR, "Unknown access type!\n");
698 }
699 if (!status && ocfs2_meta_ecc(osb) && triggers)
700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 ocfs2_metadata_cache_io_unlock(ci);
702
703 if (status < 0)
704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 status, type);
706
707 return status;
708}
709
710int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
712{
713 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
714
715 return __ocfs2_journal_access(handle, ci, bh,
716 &osb->s_journal_triggers[OCFS2_JTR_DI],
717 type);
718}
719
720int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
721 struct buffer_head *bh, int type)
722{
723 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
724
725 return __ocfs2_journal_access(handle, ci, bh,
726 &osb->s_journal_triggers[OCFS2_JTR_EB],
727 type);
728}
729
730int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
732{
733 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
734
735 return __ocfs2_journal_access(handle, ci, bh,
736 &osb->s_journal_triggers[OCFS2_JTR_RB],
737 type);
738}
739
740int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
741 struct buffer_head *bh, int type)
742{
743 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
744
745 return __ocfs2_journal_access(handle, ci, bh,
746 &osb->s_journal_triggers[OCFS2_JTR_GD],
747 type);
748}
749
750int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 struct buffer_head *bh, int type)
752{
753 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
754
755 return __ocfs2_journal_access(handle, ci, bh,
756 &osb->s_journal_triggers[OCFS2_JTR_DB],
757 type);
758}
759
760int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
761 struct buffer_head *bh, int type)
762{
763 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
764
765 return __ocfs2_journal_access(handle, ci, bh,
766 &osb->s_journal_triggers[OCFS2_JTR_XB],
767 type);
768}
769
770int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
771 struct buffer_head *bh, int type)
772{
773 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
774
775 return __ocfs2_journal_access(handle, ci, bh,
776 &osb->s_journal_triggers[OCFS2_JTR_DQ],
777 type);
778}
779
780int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
781 struct buffer_head *bh, int type)
782{
783 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
784
785 return __ocfs2_journal_access(handle, ci, bh,
786 &osb->s_journal_triggers[OCFS2_JTR_DR],
787 type);
788}
789
790int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
791 struct buffer_head *bh, int type)
792{
793 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
794
795 return __ocfs2_journal_access(handle, ci, bh,
796 &osb->s_journal_triggers[OCFS2_JTR_DL],
797 type);
798}
799
800int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
801 struct buffer_head *bh, int type)
802{
803 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
804}
805
806void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
807{
808 int status;
809
810 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
811
812 status = jbd2_journal_dirty_metadata(handle, bh);
813 if (status) {
814 mlog_errno(status);
815 if (!is_handle_aborted(handle)) {
816 journal_t *journal = handle->h_transaction->t_journal;
817
818 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
819 "handle type %u started at line %u, credits %u/%u "
820 "errcode %d. Aborting transaction and journal.\n",
821 handle->h_type, handle->h_line_no,
822 handle->h_requested_credits,
823 jbd2_handle_buffer_credits(handle), status);
824 handle->h_err = status;
825 jbd2_journal_abort_handle(handle);
826 jbd2_journal_abort(journal, status);
827 }
828 }
829}
830
831#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
832
833void ocfs2_set_journal_params(struct ocfs2_super *osb)
834{
835 journal_t *journal = osb->journal->j_journal;
836 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
837
838 if (osb->osb_commit_interval)
839 commit_interval = osb->osb_commit_interval;
840
841 write_lock(&journal->j_state_lock);
842 journal->j_commit_interval = commit_interval;
843 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
844 journal->j_flags |= JBD2_BARRIER;
845 else
846 journal->j_flags &= ~JBD2_BARRIER;
847 write_unlock(&journal->j_state_lock);
848}
849
850/*
851 * alloc & initialize skeleton for journal structure.
852 * ocfs2_journal_init() will make fs have journal ability.
853 */
854int ocfs2_journal_alloc(struct ocfs2_super *osb)
855{
856 int status = 0;
857 struct ocfs2_journal *journal;
858
859 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
860 if (!journal) {
861 mlog(ML_ERROR, "unable to alloc journal\n");
862 status = -ENOMEM;
863 goto bail;
864 }
865 osb->journal = journal;
866 journal->j_osb = osb;
867
868 atomic_set(&journal->j_num_trans, 0);
869 init_rwsem(&journal->j_trans_barrier);
870 init_waitqueue_head(&journal->j_checkpointed);
871 spin_lock_init(&journal->j_lock);
872 journal->j_trans_id = 1UL;
873 INIT_LIST_HEAD(&journal->j_la_cleanups);
874 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
875 journal->j_state = OCFS2_JOURNAL_FREE;
876
877bail:
878 return status;
879}
880
881static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
882{
883 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
884 struct writeback_control wbc = {
885 .sync_mode = WB_SYNC_ALL,
886 .nr_to_write = mapping->nrpages * 2,
887 .range_start = jinode->i_dirty_start,
888 .range_end = jinode->i_dirty_end,
889 };
890
891 return filemap_fdatawrite_wbc(mapping, &wbc);
892}
893
894int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
895{
896 int status = -1;
897 struct inode *inode = NULL; /* the journal inode */
898 journal_t *j_journal = NULL;
899 struct ocfs2_journal *journal = osb->journal;
900 struct ocfs2_dinode *di = NULL;
901 struct buffer_head *bh = NULL;
902 int inode_lock = 0;
903
904 BUG_ON(!journal);
905 /* already have the inode for our journal */
906 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
907 osb->slot_num);
908 if (inode == NULL) {
909 status = -EACCES;
910 mlog_errno(status);
911 goto done;
912 }
913 if (is_bad_inode(inode)) {
914 mlog(ML_ERROR, "access error (bad inode)\n");
915 iput(inode);
916 inode = NULL;
917 status = -EACCES;
918 goto done;
919 }
920
921 SET_INODE_JOURNAL(inode);
922 OCFS2_I(inode)->ip_open_count++;
923
924 /* Skip recovery waits here - journal inode metadata never
925 * changes in a live cluster so it can be considered an
926 * exception to the rule. */
927 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
928 if (status < 0) {
929 if (status != -ERESTARTSYS)
930 mlog(ML_ERROR, "Could not get lock on journal!\n");
931 goto done;
932 }
933
934 inode_lock = 1;
935 di = (struct ocfs2_dinode *)bh->b_data;
936
937 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
938 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
939 i_size_read(inode));
940 status = -EINVAL;
941 goto done;
942 }
943
944 trace_ocfs2_journal_init(i_size_read(inode),
945 (unsigned long long)inode->i_blocks,
946 OCFS2_I(inode)->ip_clusters);
947
948 /* call the kernels journal init function now */
949 j_journal = jbd2_journal_init_inode(inode);
950 if (IS_ERR(j_journal)) {
951 mlog(ML_ERROR, "Linux journal layer error\n");
952 status = PTR_ERR(j_journal);
953 goto done;
954 }
955
956 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
957
958 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
959 OCFS2_JOURNAL_DIRTY_FL);
960
961 journal->j_journal = j_journal;
962 journal->j_journal->j_submit_inode_data_buffers =
963 ocfs2_journal_submit_inode_data_buffers;
964 journal->j_journal->j_finish_inode_data_buffers =
965 jbd2_journal_finish_inode_data_buffers;
966 journal->j_inode = inode;
967 journal->j_bh = bh;
968
969 ocfs2_set_journal_params(osb);
970
971 journal->j_state = OCFS2_JOURNAL_LOADED;
972
973 status = 0;
974done:
975 if (status < 0) {
976 if (inode_lock)
977 ocfs2_inode_unlock(inode, 1);
978 brelse(bh);
979 if (inode) {
980 OCFS2_I(inode)->ip_open_count--;
981 iput(inode);
982 }
983 }
984
985 return status;
986}
987
988static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
989{
990 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
991}
992
993static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
994{
995 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
996}
997
998static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
999 int dirty, int replayed)
1000{
1001 int status;
1002 unsigned int flags;
1003 struct ocfs2_journal *journal = osb->journal;
1004 struct buffer_head *bh = journal->j_bh;
1005 struct ocfs2_dinode *fe;
1006
1007 fe = (struct ocfs2_dinode *)bh->b_data;
1008
1009 /* The journal bh on the osb always comes from ocfs2_journal_init()
1010 * and was validated there inside ocfs2_inode_lock_full(). It's a
1011 * code bug if we mess it up. */
1012 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1013
1014 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015 if (dirty)
1016 flags |= OCFS2_JOURNAL_DIRTY_FL;
1017 else
1018 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1020
1021 if (replayed)
1022 ocfs2_bump_recovery_generation(fe);
1023
1024 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026 if (status < 0)
1027 mlog_errno(status);
1028
1029 return status;
1030}
1031
1032/*
1033 * If the journal has been kmalloc'd it needs to be freed after this
1034 * call.
1035 */
1036void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1037{
1038 struct ocfs2_journal *journal = NULL;
1039 int status = 0;
1040 struct inode *inode = NULL;
1041 int num_running_trans = 0;
1042
1043 BUG_ON(!osb);
1044
1045 journal = osb->journal;
1046 if (!journal)
1047 goto done;
1048
1049 inode = journal->j_inode;
1050
1051 if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052 goto done;
1053
1054 /* need to inc inode use count - jbd2_journal_destroy will iput. */
1055 if (!igrab(inode))
1056 BUG();
1057
1058 num_running_trans = atomic_read(&(journal->j_num_trans));
1059 trace_ocfs2_journal_shutdown(num_running_trans);
1060
1061 /* Do a commit_cache here. It will flush our journal, *and*
1062 * release any locks that are still held.
1063 * set the SHUTDOWN flag and release the trans lock.
1064 * the commit thread will take the trans lock for us below. */
1065 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1066
1067 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068 * drop the trans_lock (which we want to hold until we
1069 * completely destroy the journal. */
1070 if (osb->commit_task) {
1071 /* Wait for the commit thread */
1072 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073 kthread_stop(osb->commit_task);
1074 osb->commit_task = NULL;
1075 }
1076
1077 BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1078
1079 if (ocfs2_mount_local(osb) &&
1080 (journal->j_journal->j_flags & JBD2_LOADED)) {
1081 jbd2_journal_lock_updates(journal->j_journal);
1082 status = jbd2_journal_flush(journal->j_journal, 0);
1083 jbd2_journal_unlock_updates(journal->j_journal);
1084 if (status < 0)
1085 mlog_errno(status);
1086 }
1087
1088 /* Shutdown the kernel journal system */
1089 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1090 /*
1091 * Do not toggle if flush was unsuccessful otherwise
1092 * will leave dirty metadata in a "clean" journal
1093 */
1094 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1095 if (status < 0)
1096 mlog_errno(status);
1097 }
1098 journal->j_journal = NULL;
1099
1100 OCFS2_I(inode)->ip_open_count--;
1101
1102 /* unlock our journal */
1103 ocfs2_inode_unlock(inode, 1);
1104
1105 brelse(journal->j_bh);
1106 journal->j_bh = NULL;
1107
1108 journal->j_state = OCFS2_JOURNAL_FREE;
1109
1110done:
1111 iput(inode);
1112 kfree(journal);
1113 osb->journal = NULL;
1114}
1115
1116static void ocfs2_clear_journal_error(struct super_block *sb,
1117 journal_t *journal,
1118 int slot)
1119{
1120 int olderr;
1121
1122 olderr = jbd2_journal_errno(journal);
1123 if (olderr) {
1124 mlog(ML_ERROR, "File system error %d recorded in "
1125 "journal %u.\n", olderr, slot);
1126 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1127 sb->s_id);
1128
1129 jbd2_journal_ack_err(journal);
1130 jbd2_journal_clear_err(journal);
1131 }
1132}
1133
1134int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1135{
1136 int status = 0;
1137 struct ocfs2_super *osb;
1138
1139 BUG_ON(!journal);
1140
1141 osb = journal->j_osb;
1142
1143 status = jbd2_journal_load(journal->j_journal);
1144 if (status < 0) {
1145 mlog(ML_ERROR, "Failed to load journal!\n");
1146 goto done;
1147 }
1148
1149 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1150
1151 if (replayed) {
1152 jbd2_journal_lock_updates(journal->j_journal);
1153 status = jbd2_journal_flush(journal->j_journal, 0);
1154 jbd2_journal_unlock_updates(journal->j_journal);
1155 if (status < 0)
1156 mlog_errno(status);
1157 }
1158
1159 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1160 if (status < 0) {
1161 mlog_errno(status);
1162 goto done;
1163 }
1164
1165 /* Launch the commit thread */
1166 if (!local) {
1167 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1168 "ocfs2cmt-%s", osb->uuid_str);
1169 if (IS_ERR(osb->commit_task)) {
1170 status = PTR_ERR(osb->commit_task);
1171 osb->commit_task = NULL;
1172 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1173 "error=%d", status);
1174 goto done;
1175 }
1176 } else
1177 osb->commit_task = NULL;
1178
1179done:
1180 return status;
1181}
1182
1183
1184/* 'full' flag tells us whether we clear out all blocks or if we just
1185 * mark the journal clean */
1186int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1187{
1188 int status;
1189
1190 BUG_ON(!journal);
1191
1192 status = jbd2_journal_wipe(journal->j_journal, full);
1193 if (status < 0) {
1194 mlog_errno(status);
1195 goto bail;
1196 }
1197
1198 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1199 if (status < 0)
1200 mlog_errno(status);
1201
1202bail:
1203 return status;
1204}
1205
1206static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1207{
1208 int empty;
1209 struct ocfs2_recovery_map *rm = osb->recovery_map;
1210
1211 spin_lock(&osb->osb_lock);
1212 empty = (rm->rm_used == 0);
1213 spin_unlock(&osb->osb_lock);
1214
1215 return empty;
1216}
1217
1218void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1219{
1220 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1221}
1222
1223/*
1224 * JBD Might read a cached version of another nodes journal file. We
1225 * don't want this as this file changes often and we get no
1226 * notification on those changes. The only way to be sure that we've
1227 * got the most up to date version of those blocks then is to force
1228 * read them off disk. Just searching through the buffer cache won't
1229 * work as there may be pages backing this file which are still marked
1230 * up to date. We know things can't change on this file underneath us
1231 * as we have the lock by now :)
1232 */
1233static int ocfs2_force_read_journal(struct inode *inode)
1234{
1235 int status = 0;
1236 int i;
1237 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1238 struct buffer_head *bh = NULL;
1239 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1240
1241 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1242 v_blkno = 0;
1243 while (v_blkno < num_blocks) {
1244 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1245 &p_blkno, &p_blocks, NULL);
1246 if (status < 0) {
1247 mlog_errno(status);
1248 goto bail;
1249 }
1250
1251 for (i = 0; i < p_blocks; i++, p_blkno++) {
1252 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1253 osb->sb->s_blocksize);
1254 /* block not cached. */
1255 if (!bh)
1256 continue;
1257
1258 brelse(bh);
1259 bh = NULL;
1260 /* We are reading journal data which should not
1261 * be put in the uptodate cache.
1262 */
1263 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1264 if (status < 0) {
1265 mlog_errno(status);
1266 goto bail;
1267 }
1268
1269 brelse(bh);
1270 bh = NULL;
1271 }
1272
1273 v_blkno += p_blocks;
1274 }
1275
1276bail:
1277 return status;
1278}
1279
1280struct ocfs2_la_recovery_item {
1281 struct list_head lri_list;
1282 int lri_slot;
1283 struct ocfs2_dinode *lri_la_dinode;
1284 struct ocfs2_dinode *lri_tl_dinode;
1285 struct ocfs2_quota_recovery *lri_qrec;
1286 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1287};
1288
1289/* Does the second half of the recovery process. By this point, the
1290 * node is marked clean and can actually be considered recovered,
1291 * hence it's no longer in the recovery map, but there's still some
1292 * cleanup we can do which shouldn't happen within the recovery thread
1293 * as locking in that context becomes very difficult if we are to take
1294 * recovering nodes into account.
1295 *
1296 * NOTE: This function can and will sleep on recovery of other nodes
1297 * during cluster locking, just like any other ocfs2 process.
1298 */
1299void ocfs2_complete_recovery(struct work_struct *work)
1300{
1301 int ret = 0;
1302 struct ocfs2_journal *journal =
1303 container_of(work, struct ocfs2_journal, j_recovery_work);
1304 struct ocfs2_super *osb = journal->j_osb;
1305 struct ocfs2_dinode *la_dinode, *tl_dinode;
1306 struct ocfs2_la_recovery_item *item, *n;
1307 struct ocfs2_quota_recovery *qrec;
1308 enum ocfs2_orphan_reco_type orphan_reco_type;
1309 LIST_HEAD(tmp_la_list);
1310
1311 trace_ocfs2_complete_recovery(
1312 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1313
1314 spin_lock(&journal->j_lock);
1315 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1316 spin_unlock(&journal->j_lock);
1317
1318 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1319 list_del_init(&item->lri_list);
1320
1321 ocfs2_wait_on_quotas(osb);
1322
1323 la_dinode = item->lri_la_dinode;
1324 tl_dinode = item->lri_tl_dinode;
1325 qrec = item->lri_qrec;
1326 orphan_reco_type = item->lri_orphan_reco_type;
1327
1328 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1329 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1330 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1331 qrec);
1332
1333 if (la_dinode) {
1334 ret = ocfs2_complete_local_alloc_recovery(osb,
1335 la_dinode);
1336 if (ret < 0)
1337 mlog_errno(ret);
1338
1339 kfree(la_dinode);
1340 }
1341
1342 if (tl_dinode) {
1343 ret = ocfs2_complete_truncate_log_recovery(osb,
1344 tl_dinode);
1345 if (ret < 0)
1346 mlog_errno(ret);
1347
1348 kfree(tl_dinode);
1349 }
1350
1351 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1352 orphan_reco_type);
1353 if (ret < 0)
1354 mlog_errno(ret);
1355
1356 if (qrec) {
1357 ret = ocfs2_finish_quota_recovery(osb, qrec,
1358 item->lri_slot);
1359 if (ret < 0)
1360 mlog_errno(ret);
1361 /* Recovery info is already freed now */
1362 }
1363
1364 kfree(item);
1365 }
1366
1367 trace_ocfs2_complete_recovery_end(ret);
1368}
1369
1370/* NOTE: This function always eats your references to la_dinode and
1371 * tl_dinode, either manually on error, or by passing them to
1372 * ocfs2_complete_recovery */
1373static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1374 int slot_num,
1375 struct ocfs2_dinode *la_dinode,
1376 struct ocfs2_dinode *tl_dinode,
1377 struct ocfs2_quota_recovery *qrec,
1378 enum ocfs2_orphan_reco_type orphan_reco_type)
1379{
1380 struct ocfs2_la_recovery_item *item;
1381
1382 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1383 if (!item) {
1384 /* Though we wish to avoid it, we are in fact safe in
1385 * skipping local alloc cleanup as fsck.ocfs2 is more
1386 * than capable of reclaiming unused space. */
1387 kfree(la_dinode);
1388 kfree(tl_dinode);
1389
1390 if (qrec)
1391 ocfs2_free_quota_recovery(qrec);
1392
1393 mlog_errno(-ENOMEM);
1394 return;
1395 }
1396
1397 INIT_LIST_HEAD(&item->lri_list);
1398 item->lri_la_dinode = la_dinode;
1399 item->lri_slot = slot_num;
1400 item->lri_tl_dinode = tl_dinode;
1401 item->lri_qrec = qrec;
1402 item->lri_orphan_reco_type = orphan_reco_type;
1403
1404 spin_lock(&journal->j_lock);
1405 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1406 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1407 spin_unlock(&journal->j_lock);
1408}
1409
1410/* Called by the mount code to queue recovery the last part of
1411 * recovery for it's own and offline slot(s). */
1412void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1413{
1414 struct ocfs2_journal *journal = osb->journal;
1415
1416 if (ocfs2_is_hard_readonly(osb))
1417 return;
1418
1419 /* No need to queue up our truncate_log as regular cleanup will catch
1420 * that */
1421 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1422 osb->local_alloc_copy, NULL, NULL,
1423 ORPHAN_NEED_TRUNCATE);
1424 ocfs2_schedule_truncate_log_flush(osb, 0);
1425
1426 osb->local_alloc_copy = NULL;
1427
1428 /* queue to recover orphan slots for all offline slots */
1429 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1430 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1431 ocfs2_free_replay_slots(osb);
1432}
1433
1434void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1435{
1436 if (osb->quota_rec) {
1437 ocfs2_queue_recovery_completion(osb->journal,
1438 osb->slot_num,
1439 NULL,
1440 NULL,
1441 osb->quota_rec,
1442 ORPHAN_NEED_TRUNCATE);
1443 osb->quota_rec = NULL;
1444 }
1445}
1446
1447static int __ocfs2_recovery_thread(void *arg)
1448{
1449 int status, node_num, slot_num;
1450 struct ocfs2_super *osb = arg;
1451 struct ocfs2_recovery_map *rm = osb->recovery_map;
1452 int *rm_quota = NULL;
1453 int rm_quota_used = 0, i;
1454 struct ocfs2_quota_recovery *qrec;
1455
1456 /* Whether the quota supported. */
1457 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1458 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1459 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1460 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1461
1462 status = ocfs2_wait_on_mount(osb);
1463 if (status < 0) {
1464 goto bail;
1465 }
1466
1467 if (quota_enabled) {
1468 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1469 if (!rm_quota) {
1470 status = -ENOMEM;
1471 goto bail;
1472 }
1473 }
1474restart:
1475 status = ocfs2_super_lock(osb, 1);
1476 if (status < 0) {
1477 mlog_errno(status);
1478 goto bail;
1479 }
1480
1481 status = ocfs2_compute_replay_slots(osb);
1482 if (status < 0)
1483 mlog_errno(status);
1484
1485 /* queue recovery for our own slot */
1486 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1487 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1488
1489 spin_lock(&osb->osb_lock);
1490 while (rm->rm_used) {
1491 /* It's always safe to remove entry zero, as we won't
1492 * clear it until ocfs2_recover_node() has succeeded. */
1493 node_num = rm->rm_entries[0];
1494 spin_unlock(&osb->osb_lock);
1495 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1496 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1497 if (slot_num == -ENOENT) {
1498 status = 0;
1499 goto skip_recovery;
1500 }
1501
1502 /* It is a bit subtle with quota recovery. We cannot do it
1503 * immediately because we have to obtain cluster locks from
1504 * quota files and we also don't want to just skip it because
1505 * then quota usage would be out of sync until some node takes
1506 * the slot. So we remember which nodes need quota recovery
1507 * and when everything else is done, we recover quotas. */
1508 if (quota_enabled) {
1509 for (i = 0; i < rm_quota_used
1510 && rm_quota[i] != slot_num; i++)
1511 ;
1512
1513 if (i == rm_quota_used)
1514 rm_quota[rm_quota_used++] = slot_num;
1515 }
1516
1517 status = ocfs2_recover_node(osb, node_num, slot_num);
1518skip_recovery:
1519 if (!status) {
1520 ocfs2_recovery_map_clear(osb, node_num);
1521 } else {
1522 mlog(ML_ERROR,
1523 "Error %d recovering node %d on device (%u,%u)!\n",
1524 status, node_num,
1525 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1526 mlog(ML_ERROR, "Volume requires unmount.\n");
1527 }
1528
1529 spin_lock(&osb->osb_lock);
1530 }
1531 spin_unlock(&osb->osb_lock);
1532 trace_ocfs2_recovery_thread_end(status);
1533
1534 /* Refresh all journal recovery generations from disk */
1535 status = ocfs2_check_journals_nolocks(osb);
1536 status = (status == -EROFS) ? 0 : status;
1537 if (status < 0)
1538 mlog_errno(status);
1539
1540 /* Now it is right time to recover quotas... We have to do this under
1541 * superblock lock so that no one can start using the slot (and crash)
1542 * before we recover it */
1543 if (quota_enabled) {
1544 for (i = 0; i < rm_quota_used; i++) {
1545 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1546 if (IS_ERR(qrec)) {
1547 status = PTR_ERR(qrec);
1548 mlog_errno(status);
1549 continue;
1550 }
1551 ocfs2_queue_recovery_completion(osb->journal,
1552 rm_quota[i],
1553 NULL, NULL, qrec,
1554 ORPHAN_NEED_TRUNCATE);
1555 }
1556 }
1557
1558 ocfs2_super_unlock(osb, 1);
1559
1560 /* queue recovery for offline slots */
1561 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1562
1563bail:
1564 mutex_lock(&osb->recovery_lock);
1565 if (!status && !ocfs2_recovery_completed(osb)) {
1566 mutex_unlock(&osb->recovery_lock);
1567 goto restart;
1568 }
1569
1570 ocfs2_free_replay_slots(osb);
1571 osb->recovery_thread_task = NULL;
1572 mb(); /* sync with ocfs2_recovery_thread_running */
1573 wake_up(&osb->recovery_event);
1574
1575 mutex_unlock(&osb->recovery_lock);
1576
1577 if (quota_enabled)
1578 kfree(rm_quota);
1579
1580 return status;
1581}
1582
1583void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1584{
1585 mutex_lock(&osb->recovery_lock);
1586
1587 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1588 osb->disable_recovery, osb->recovery_thread_task,
1589 osb->disable_recovery ?
1590 -1 : ocfs2_recovery_map_set(osb, node_num));
1591
1592 if (osb->disable_recovery)
1593 goto out;
1594
1595 if (osb->recovery_thread_task)
1596 goto out;
1597
1598 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1599 "ocfs2rec-%s", osb->uuid_str);
1600 if (IS_ERR(osb->recovery_thread_task)) {
1601 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1602 osb->recovery_thread_task = NULL;
1603 }
1604
1605out:
1606 mutex_unlock(&osb->recovery_lock);
1607 wake_up(&osb->recovery_event);
1608}
1609
1610static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1611 int slot_num,
1612 struct buffer_head **bh,
1613 struct inode **ret_inode)
1614{
1615 int status = -EACCES;
1616 struct inode *inode = NULL;
1617
1618 BUG_ON(slot_num >= osb->max_slots);
1619
1620 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1621 slot_num);
1622 if (!inode || is_bad_inode(inode)) {
1623 mlog_errno(status);
1624 goto bail;
1625 }
1626 SET_INODE_JOURNAL(inode);
1627
1628 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1629 if (status < 0) {
1630 mlog_errno(status);
1631 goto bail;
1632 }
1633
1634 status = 0;
1635
1636bail:
1637 if (inode) {
1638 if (status || !ret_inode)
1639 iput(inode);
1640 else
1641 *ret_inode = inode;
1642 }
1643 return status;
1644}
1645
1646/* Does the actual journal replay and marks the journal inode as
1647 * clean. Will only replay if the journal inode is marked dirty. */
1648static int ocfs2_replay_journal(struct ocfs2_super *osb,
1649 int node_num,
1650 int slot_num)
1651{
1652 int status;
1653 int got_lock = 0;
1654 unsigned int flags;
1655 struct inode *inode = NULL;
1656 struct ocfs2_dinode *fe;
1657 journal_t *journal = NULL;
1658 struct buffer_head *bh = NULL;
1659 u32 slot_reco_gen;
1660
1661 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1662 if (status) {
1663 mlog_errno(status);
1664 goto done;
1665 }
1666
1667 fe = (struct ocfs2_dinode *)bh->b_data;
1668 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1669 brelse(bh);
1670 bh = NULL;
1671
1672 /*
1673 * As the fs recovery is asynchronous, there is a small chance that
1674 * another node mounted (and recovered) the slot before the recovery
1675 * thread could get the lock. To handle that, we dirty read the journal
1676 * inode for that slot to get the recovery generation. If it is
1677 * different than what we expected, the slot has been recovered.
1678 * If not, it needs recovery.
1679 */
1680 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1681 trace_ocfs2_replay_journal_recovered(slot_num,
1682 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1683 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1684 status = -EBUSY;
1685 goto done;
1686 }
1687
1688 /* Continue with recovery as the journal has not yet been recovered */
1689
1690 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1691 if (status < 0) {
1692 trace_ocfs2_replay_journal_lock_err(status);
1693 if (status != -ERESTARTSYS)
1694 mlog(ML_ERROR, "Could not lock journal!\n");
1695 goto done;
1696 }
1697 got_lock = 1;
1698
1699 fe = (struct ocfs2_dinode *) bh->b_data;
1700
1701 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1702 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1703
1704 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1705 trace_ocfs2_replay_journal_skip(node_num);
1706 /* Refresh recovery generation for the slot */
1707 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1708 goto done;
1709 }
1710
1711 /* we need to run complete recovery for offline orphan slots */
1712 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1713
1714 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1715 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1716 MINOR(osb->sb->s_dev));
1717
1718 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1719
1720 status = ocfs2_force_read_journal(inode);
1721 if (status < 0) {
1722 mlog_errno(status);
1723 goto done;
1724 }
1725
1726 journal = jbd2_journal_init_inode(inode);
1727 if (IS_ERR(journal)) {
1728 mlog(ML_ERROR, "Linux journal layer error\n");
1729 status = PTR_ERR(journal);
1730 goto done;
1731 }
1732
1733 status = jbd2_journal_load(journal);
1734 if (status < 0) {
1735 mlog_errno(status);
1736 BUG_ON(!igrab(inode));
1737 jbd2_journal_destroy(journal);
1738 goto done;
1739 }
1740
1741 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1742
1743 /* wipe the journal */
1744 jbd2_journal_lock_updates(journal);
1745 status = jbd2_journal_flush(journal, 0);
1746 jbd2_journal_unlock_updates(journal);
1747 if (status < 0)
1748 mlog_errno(status);
1749
1750 /* This will mark the node clean */
1751 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1752 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1753 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1754
1755 /* Increment recovery generation to indicate successful recovery */
1756 ocfs2_bump_recovery_generation(fe);
1757 osb->slot_recovery_generations[slot_num] =
1758 ocfs2_get_recovery_generation(fe);
1759
1760 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1761 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1762 if (status < 0)
1763 mlog_errno(status);
1764
1765 BUG_ON(!igrab(inode));
1766
1767 jbd2_journal_destroy(journal);
1768
1769 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1770 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1771 MINOR(osb->sb->s_dev));
1772done:
1773 /* drop the lock on this nodes journal */
1774 if (got_lock)
1775 ocfs2_inode_unlock(inode, 1);
1776
1777 iput(inode);
1778 brelse(bh);
1779
1780 return status;
1781}
1782
1783/*
1784 * Do the most important parts of node recovery:
1785 * - Replay it's journal
1786 * - Stamp a clean local allocator file
1787 * - Stamp a clean truncate log
1788 * - Mark the node clean
1789 *
1790 * If this function completes without error, a node in OCFS2 can be
1791 * said to have been safely recovered. As a result, failure during the
1792 * second part of a nodes recovery process (local alloc recovery) is
1793 * far less concerning.
1794 */
1795static int ocfs2_recover_node(struct ocfs2_super *osb,
1796 int node_num, int slot_num)
1797{
1798 int status = 0;
1799 struct ocfs2_dinode *la_copy = NULL;
1800 struct ocfs2_dinode *tl_copy = NULL;
1801
1802 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1803
1804 /* Should not ever be called to recover ourselves -- in that
1805 * case we should've called ocfs2_journal_load instead. */
1806 BUG_ON(osb->node_num == node_num);
1807
1808 status = ocfs2_replay_journal(osb, node_num, slot_num);
1809 if (status < 0) {
1810 if (status == -EBUSY) {
1811 trace_ocfs2_recover_node_skip(slot_num, node_num);
1812 status = 0;
1813 goto done;
1814 }
1815 mlog_errno(status);
1816 goto done;
1817 }
1818
1819 /* Stamp a clean local alloc file AFTER recovering the journal... */
1820 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1821 if (status < 0) {
1822 mlog_errno(status);
1823 goto done;
1824 }
1825
1826 /* An error from begin_truncate_log_recovery is not
1827 * serious enough to warrant halting the rest of
1828 * recovery. */
1829 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1830 if (status < 0)
1831 mlog_errno(status);
1832
1833 /* Likewise, this would be a strange but ultimately not so
1834 * harmful place to get an error... */
1835 status = ocfs2_clear_slot(osb, slot_num);
1836 if (status < 0)
1837 mlog_errno(status);
1838
1839 /* This will kfree the memory pointed to by la_copy and tl_copy */
1840 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1841 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1842
1843 status = 0;
1844done:
1845
1846 return status;
1847}
1848
1849/* Test node liveness by trylocking his journal. If we get the lock,
1850 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1851 * still alive (we couldn't get the lock) and < 0 on error. */
1852static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1853 int slot_num)
1854{
1855 int status, flags;
1856 struct inode *inode = NULL;
1857
1858 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1859 slot_num);
1860 if (inode == NULL) {
1861 mlog(ML_ERROR, "access error\n");
1862 status = -EACCES;
1863 goto bail;
1864 }
1865 if (is_bad_inode(inode)) {
1866 mlog(ML_ERROR, "access error (bad inode)\n");
1867 iput(inode);
1868 inode = NULL;
1869 status = -EACCES;
1870 goto bail;
1871 }
1872 SET_INODE_JOURNAL(inode);
1873
1874 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1875 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1876 if (status < 0) {
1877 if (status != -EAGAIN)
1878 mlog_errno(status);
1879 goto bail;
1880 }
1881
1882 ocfs2_inode_unlock(inode, 1);
1883bail:
1884 iput(inode);
1885
1886 return status;
1887}
1888
1889/* Call this underneath ocfs2_super_lock. It also assumes that the
1890 * slot info struct has been updated from disk. */
1891int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1892{
1893 unsigned int node_num;
1894 int status, i;
1895 u32 gen;
1896 struct buffer_head *bh = NULL;
1897 struct ocfs2_dinode *di;
1898
1899 /* This is called with the super block cluster lock, so we
1900 * know that the slot map can't change underneath us. */
1901
1902 for (i = 0; i < osb->max_slots; i++) {
1903 /* Read journal inode to get the recovery generation */
1904 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1905 if (status) {
1906 mlog_errno(status);
1907 goto bail;
1908 }
1909 di = (struct ocfs2_dinode *)bh->b_data;
1910 gen = ocfs2_get_recovery_generation(di);
1911 brelse(bh);
1912 bh = NULL;
1913
1914 spin_lock(&osb->osb_lock);
1915 osb->slot_recovery_generations[i] = gen;
1916
1917 trace_ocfs2_mark_dead_nodes(i,
1918 osb->slot_recovery_generations[i]);
1919
1920 if (i == osb->slot_num) {
1921 spin_unlock(&osb->osb_lock);
1922 continue;
1923 }
1924
1925 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1926 if (status == -ENOENT) {
1927 spin_unlock(&osb->osb_lock);
1928 continue;
1929 }
1930
1931 if (__ocfs2_recovery_map_test(osb, node_num)) {
1932 spin_unlock(&osb->osb_lock);
1933 continue;
1934 }
1935 spin_unlock(&osb->osb_lock);
1936
1937 /* Ok, we have a slot occupied by another node which
1938 * is not in the recovery map. We trylock his journal
1939 * file here to test if he's alive. */
1940 status = ocfs2_trylock_journal(osb, i);
1941 if (!status) {
1942 /* Since we're called from mount, we know that
1943 * the recovery thread can't race us on
1944 * setting / checking the recovery bits. */
1945 ocfs2_recovery_thread(osb, node_num);
1946 } else if ((status < 0) && (status != -EAGAIN)) {
1947 mlog_errno(status);
1948 goto bail;
1949 }
1950 }
1951
1952 status = 0;
1953bail:
1954 return status;
1955}
1956
1957/*
1958 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1959 * randomness to the timeout to minimize multple nodes firing the timer at the
1960 * same time.
1961 */
1962static inline unsigned long ocfs2_orphan_scan_timeout(void)
1963{
1964 unsigned long time;
1965
1966 get_random_bytes(&time, sizeof(time));
1967 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1968 return msecs_to_jiffies(time);
1969}
1970
1971/*
1972 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1973 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1974 * is done to catch any orphans that are left over in orphan directories.
1975 *
1976 * It scans all slots, even ones that are in use. It does so to handle the
1977 * case described below:
1978 *
1979 * Node 1 has an inode it was using. The dentry went away due to memory
1980 * pressure. Node 1 closes the inode, but it's on the free list. The node
1981 * has the open lock.
1982 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1983 * but node 1 has no dentry and doesn't get the message. It trylocks the
1984 * open lock, sees that another node has a PR, and does nothing.
1985 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1986 * open lock, sees the PR still, and does nothing.
1987 * Basically, we have to trigger an orphan iput on node 1. The only way
1988 * for this to happen is if node 1 runs node 2's orphan dir.
1989 *
1990 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1991 * seconds. It gets an EX lock on os_lockres and checks sequence number
1992 * stored in LVB. If the sequence number has changed, it means some other
1993 * node has done the scan. This node skips the scan and tracks the
1994 * sequence number. If the sequence number didn't change, it means a scan
1995 * hasn't happened. The node queues a scan and increments the
1996 * sequence number in the LVB.
1997 */
1998static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1999{
2000 struct ocfs2_orphan_scan *os;
2001 int status, i;
2002 u32 seqno = 0;
2003
2004 os = &osb->osb_orphan_scan;
2005
2006 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2007 goto out;
2008
2009 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2010 atomic_read(&os->os_state));
2011
2012 status = ocfs2_orphan_scan_lock(osb, &seqno);
2013 if (status < 0) {
2014 if (status != -EAGAIN)
2015 mlog_errno(status);
2016 goto out;
2017 }
2018
2019 /* Do no queue the tasks if the volume is being umounted */
2020 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2021 goto unlock;
2022
2023 if (os->os_seqno != seqno) {
2024 os->os_seqno = seqno;
2025 goto unlock;
2026 }
2027
2028 for (i = 0; i < osb->max_slots; i++)
2029 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2030 NULL, ORPHAN_NO_NEED_TRUNCATE);
2031 /*
2032 * We queued a recovery on orphan slots, increment the sequence
2033 * number and update LVB so other node will skip the scan for a while
2034 */
2035 seqno++;
2036 os->os_count++;
2037 os->os_scantime = ktime_get_seconds();
2038unlock:
2039 ocfs2_orphan_scan_unlock(osb, seqno);
2040out:
2041 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2042 atomic_read(&os->os_state));
2043 return;
2044}
2045
2046/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2047static void ocfs2_orphan_scan_work(struct work_struct *work)
2048{
2049 struct ocfs2_orphan_scan *os;
2050 struct ocfs2_super *osb;
2051
2052 os = container_of(work, struct ocfs2_orphan_scan,
2053 os_orphan_scan_work.work);
2054 osb = os->os_osb;
2055
2056 mutex_lock(&os->os_lock);
2057 ocfs2_queue_orphan_scan(osb);
2058 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2059 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060 ocfs2_orphan_scan_timeout());
2061 mutex_unlock(&os->os_lock);
2062}
2063
2064void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2065{
2066 struct ocfs2_orphan_scan *os;
2067
2068 os = &osb->osb_orphan_scan;
2069 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2070 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2071 mutex_lock(&os->os_lock);
2072 cancel_delayed_work(&os->os_orphan_scan_work);
2073 mutex_unlock(&os->os_lock);
2074 }
2075}
2076
2077void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2078{
2079 struct ocfs2_orphan_scan *os;
2080
2081 os = &osb->osb_orphan_scan;
2082 os->os_osb = osb;
2083 os->os_count = 0;
2084 os->os_seqno = 0;
2085 mutex_init(&os->os_lock);
2086 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2087}
2088
2089void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2090{
2091 struct ocfs2_orphan_scan *os;
2092
2093 os = &osb->osb_orphan_scan;
2094 os->os_scantime = ktime_get_seconds();
2095 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2096 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2097 else {
2098 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2099 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2100 ocfs2_orphan_scan_timeout());
2101 }
2102}
2103
2104struct ocfs2_orphan_filldir_priv {
2105 struct dir_context ctx;
2106 struct inode *head;
2107 struct ocfs2_super *osb;
2108 enum ocfs2_orphan_reco_type orphan_reco_type;
2109};
2110
2111static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2112 int name_len, loff_t pos, u64 ino,
2113 unsigned type)
2114{
2115 struct ocfs2_orphan_filldir_priv *p =
2116 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2117 struct inode *iter;
2118
2119 if (name_len == 1 && !strncmp(".", name, 1))
2120 return true;
2121 if (name_len == 2 && !strncmp("..", name, 2))
2122 return true;
2123
2124 /* do not include dio entry in case of orphan scan */
2125 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2126 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2127 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2128 return true;
2129
2130 /* Skip bad inodes so that recovery can continue */
2131 iter = ocfs2_iget(p->osb, ino,
2132 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2133 if (IS_ERR(iter))
2134 return true;
2135
2136 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2137 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2138 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2139
2140 /* Skip inodes which are already added to recover list, since dio may
2141 * happen concurrently with unlink/rename */
2142 if (OCFS2_I(iter)->ip_next_orphan) {
2143 iput(iter);
2144 return true;
2145 }
2146
2147 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2148 /* No locking is required for the next_orphan queue as there
2149 * is only ever a single process doing orphan recovery. */
2150 OCFS2_I(iter)->ip_next_orphan = p->head;
2151 p->head = iter;
2152
2153 return true;
2154}
2155
2156static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2157 int slot,
2158 struct inode **head,
2159 enum ocfs2_orphan_reco_type orphan_reco_type)
2160{
2161 int status;
2162 struct inode *orphan_dir_inode = NULL;
2163 struct ocfs2_orphan_filldir_priv priv = {
2164 .ctx.actor = ocfs2_orphan_filldir,
2165 .osb = osb,
2166 .head = *head,
2167 .orphan_reco_type = orphan_reco_type
2168 };
2169
2170 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2171 ORPHAN_DIR_SYSTEM_INODE,
2172 slot);
2173 if (!orphan_dir_inode) {
2174 status = -ENOENT;
2175 mlog_errno(status);
2176 return status;
2177 }
2178
2179 inode_lock(orphan_dir_inode);
2180 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2181 if (status < 0) {
2182 mlog_errno(status);
2183 goto out;
2184 }
2185
2186 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2187 if (status) {
2188 mlog_errno(status);
2189 goto out_cluster;
2190 }
2191
2192 *head = priv.head;
2193
2194out_cluster:
2195 ocfs2_inode_unlock(orphan_dir_inode, 0);
2196out:
2197 inode_unlock(orphan_dir_inode);
2198 iput(orphan_dir_inode);
2199 return status;
2200}
2201
2202static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2203 int slot)
2204{
2205 int ret;
2206
2207 spin_lock(&osb->osb_lock);
2208 ret = !osb->osb_orphan_wipes[slot];
2209 spin_unlock(&osb->osb_lock);
2210 return ret;
2211}
2212
2213static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2214 int slot)
2215{
2216 spin_lock(&osb->osb_lock);
2217 /* Mark ourselves such that new processes in delete_inode()
2218 * know to quit early. */
2219 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2220 while (osb->osb_orphan_wipes[slot]) {
2221 /* If any processes are already in the middle of an
2222 * orphan wipe on this dir, then we need to wait for
2223 * them. */
2224 spin_unlock(&osb->osb_lock);
2225 wait_event_interruptible(osb->osb_wipe_event,
2226 ocfs2_orphan_recovery_can_continue(osb, slot));
2227 spin_lock(&osb->osb_lock);
2228 }
2229 spin_unlock(&osb->osb_lock);
2230}
2231
2232static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2233 int slot)
2234{
2235 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2236}
2237
2238/*
2239 * Orphan recovery. Each mounted node has it's own orphan dir which we
2240 * must run during recovery. Our strategy here is to build a list of
2241 * the inodes in the orphan dir and iget/iput them. The VFS does
2242 * (most) of the rest of the work.
2243 *
2244 * Orphan recovery can happen at any time, not just mount so we have a
2245 * couple of extra considerations.
2246 *
2247 * - We grab as many inodes as we can under the orphan dir lock -
2248 * doing iget() outside the orphan dir risks getting a reference on
2249 * an invalid inode.
2250 * - We must be sure not to deadlock with other processes on the
2251 * system wanting to run delete_inode(). This can happen when they go
2252 * to lock the orphan dir and the orphan recovery process attempts to
2253 * iget() inside the orphan dir lock. This can be avoided by
2254 * advertising our state to ocfs2_delete_inode().
2255 */
2256static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2257 int slot,
2258 enum ocfs2_orphan_reco_type orphan_reco_type)
2259{
2260 int ret = 0;
2261 struct inode *inode = NULL;
2262 struct inode *iter;
2263 struct ocfs2_inode_info *oi;
2264 struct buffer_head *di_bh = NULL;
2265 struct ocfs2_dinode *di = NULL;
2266
2267 trace_ocfs2_recover_orphans(slot);
2268
2269 ocfs2_mark_recovering_orphan_dir(osb, slot);
2270 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2271 ocfs2_clear_recovering_orphan_dir(osb, slot);
2272
2273 /* Error here should be noted, but we want to continue with as
2274 * many queued inodes as we've got. */
2275 if (ret)
2276 mlog_errno(ret);
2277
2278 while (inode) {
2279 oi = OCFS2_I(inode);
2280 trace_ocfs2_recover_orphans_iput(
2281 (unsigned long long)oi->ip_blkno);
2282
2283 iter = oi->ip_next_orphan;
2284 oi->ip_next_orphan = NULL;
2285
2286 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2287 inode_lock(inode);
2288 ret = ocfs2_rw_lock(inode, 1);
2289 if (ret < 0) {
2290 mlog_errno(ret);
2291 goto unlock_mutex;
2292 }
2293 /*
2294 * We need to take and drop the inode lock to
2295 * force read inode from disk.
2296 */
2297 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2298 if (ret) {
2299 mlog_errno(ret);
2300 goto unlock_rw;
2301 }
2302
2303 di = (struct ocfs2_dinode *)di_bh->b_data;
2304
2305 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2306 ret = ocfs2_truncate_file(inode, di_bh,
2307 i_size_read(inode));
2308 if (ret < 0) {
2309 if (ret != -ENOSPC)
2310 mlog_errno(ret);
2311 goto unlock_inode;
2312 }
2313
2314 ret = ocfs2_del_inode_from_orphan(osb, inode,
2315 di_bh, 0, 0);
2316 if (ret)
2317 mlog_errno(ret);
2318 }
2319unlock_inode:
2320 ocfs2_inode_unlock(inode, 1);
2321 brelse(di_bh);
2322 di_bh = NULL;
2323unlock_rw:
2324 ocfs2_rw_unlock(inode, 1);
2325unlock_mutex:
2326 inode_unlock(inode);
2327
2328 /* clear dio flag in ocfs2_inode_info */
2329 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2330 } else {
2331 spin_lock(&oi->ip_lock);
2332 /* Set the proper information to get us going into
2333 * ocfs2_delete_inode. */
2334 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2335 spin_unlock(&oi->ip_lock);
2336 }
2337
2338 iput(inode);
2339 inode = iter;
2340 }
2341
2342 return ret;
2343}
2344
2345static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2346{
2347 /* This check is good because ocfs2 will wait on our recovery
2348 * thread before changing it to something other than MOUNTED
2349 * or DISABLED. */
2350 wait_event(osb->osb_mount_event,
2351 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2352 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2353 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2354
2355 /* If there's an error on mount, then we may never get to the
2356 * MOUNTED flag, but this is set right before
2357 * dismount_volume() so we can trust it. */
2358 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2359 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2360 mlog(0, "mount error, exiting!\n");
2361 return -EBUSY;
2362 }
2363
2364 return 0;
2365}
2366
2367static int ocfs2_commit_thread(void *arg)
2368{
2369 int status;
2370 struct ocfs2_super *osb = arg;
2371 struct ocfs2_journal *journal = osb->journal;
2372
2373 /* we can trust j_num_trans here because _should_stop() is only set in
2374 * shutdown and nobody other than ourselves should be able to start
2375 * transactions. committing on shutdown might take a few iterations
2376 * as final transactions put deleted inodes on the list */
2377 while (!(kthread_should_stop() &&
2378 atomic_read(&journal->j_num_trans) == 0)) {
2379
2380 wait_event_interruptible(osb->checkpoint_event,
2381 atomic_read(&journal->j_num_trans)
2382 || kthread_should_stop());
2383
2384 status = ocfs2_commit_cache(osb);
2385 if (status < 0) {
2386 static unsigned long abort_warn_time;
2387
2388 /* Warn about this once per minute */
2389 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2390 mlog(ML_ERROR, "status = %d, journal is "
2391 "already aborted.\n", status);
2392 /*
2393 * After ocfs2_commit_cache() fails, j_num_trans has a
2394 * non-zero value. Sleep here to avoid a busy-wait
2395 * loop.
2396 */
2397 msleep_interruptible(1000);
2398 }
2399
2400 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2401 mlog(ML_KTHREAD,
2402 "commit_thread: %u transactions pending on "
2403 "shutdown\n",
2404 atomic_read(&journal->j_num_trans));
2405 }
2406 }
2407
2408 return 0;
2409}
2410
2411/* Reads all the journal inodes without taking any cluster locks. Used
2412 * for hard readonly access to determine whether any journal requires
2413 * recovery. Also used to refresh the recovery generation numbers after
2414 * a journal has been recovered by another node.
2415 */
2416int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2417{
2418 int ret = 0;
2419 unsigned int slot;
2420 struct buffer_head *di_bh = NULL;
2421 struct ocfs2_dinode *di;
2422 int journal_dirty = 0;
2423
2424 for(slot = 0; slot < osb->max_slots; slot++) {
2425 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2426 if (ret) {
2427 mlog_errno(ret);
2428 goto out;
2429 }
2430
2431 di = (struct ocfs2_dinode *) di_bh->b_data;
2432
2433 osb->slot_recovery_generations[slot] =
2434 ocfs2_get_recovery_generation(di);
2435
2436 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2437 OCFS2_JOURNAL_DIRTY_FL)
2438 journal_dirty = 1;
2439
2440 brelse(di_bh);
2441 di_bh = NULL;
2442 }
2443
2444out:
2445 if (journal_dirty)
2446 ret = -EROFS;
2447 return ret;
2448}