Linux Audio

Check our new training course

Loading...
v3.1
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * journal.c
   5 *
   6 * Defines functions of journalling api
   7 *
   8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2 of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public
  21 * License along with this program; if not, write to the
  22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23 * Boston, MA 021110-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/types.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/kthread.h>
  31#include <linux/time.h>
  32#include <linux/random.h>
 
 
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "blockcheck.h"
  40#include "dir.h"
  41#include "dlmglue.h"
  42#include "extent_map.h"
  43#include "heartbeat.h"
  44#include "inode.h"
  45#include "journal.h"
  46#include "localalloc.h"
  47#include "slot_map.h"
  48#include "super.h"
  49#include "sysfile.h"
  50#include "uptodate.h"
  51#include "quota.h"
 
 
  52
  53#include "buffer_head_io.h"
  54#include "ocfs2_trace.h"
  55
  56DEFINE_SPINLOCK(trans_inc_lock);
  57
  58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  59
  60static int ocfs2_force_read_journal(struct inode *inode);
  61static int ocfs2_recover_node(struct ocfs2_super *osb,
  62			      int node_num, int slot_num);
  63static int __ocfs2_recovery_thread(void *arg);
  64static int ocfs2_commit_cache(struct ocfs2_super *osb);
  65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  67				      int dirty, int replayed);
  68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  69				 int slot_num);
  70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  71				 int slot);
 
  72static int ocfs2_commit_thread(void *arg);
  73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  74					    int slot_num,
  75					    struct ocfs2_dinode *la_dinode,
  76					    struct ocfs2_dinode *tl_dinode,
  77					    struct ocfs2_quota_recovery *qrec);
 
  78
  79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  80{
  81	return __ocfs2_wait_on_mount(osb, 0);
  82}
  83
  84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  85{
  86	return __ocfs2_wait_on_mount(osb, 1);
  87}
  88
  89/*
  90 * This replay_map is to track online/offline slots, so we could recover
  91 * offline slots during recovery and mount
  92 */
  93
  94enum ocfs2_replay_state {
  95	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
  96	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
  97	REPLAY_DONE 		/* Replay was already queued */
  98};
  99
 100struct ocfs2_replay_map {
 101	unsigned int rm_slots;
 102	enum ocfs2_replay_state rm_state;
 103	unsigned char rm_replay_slots[0];
 104};
 105
 106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
 107{
 108	if (!osb->replay_map)
 109		return;
 110
 111	/* If we've already queued the replay, we don't have any more to do */
 112	if (osb->replay_map->rm_state == REPLAY_DONE)
 113		return;
 114
 115	osb->replay_map->rm_state = state;
 116}
 117
 118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 119{
 120	struct ocfs2_replay_map *replay_map;
 121	int i, node_num;
 122
 123	/* If replay map is already set, we don't do it again */
 124	if (osb->replay_map)
 125		return 0;
 126
 127	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 128			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
 129
 130	if (!replay_map) {
 131		mlog_errno(-ENOMEM);
 132		return -ENOMEM;
 133	}
 134
 135	spin_lock(&osb->osb_lock);
 136
 137	replay_map->rm_slots = osb->max_slots;
 138	replay_map->rm_state = REPLAY_UNNEEDED;
 139
 140	/* set rm_replay_slots for offline slot(s) */
 141	for (i = 0; i < replay_map->rm_slots; i++) {
 142		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 143			replay_map->rm_replay_slots[i] = 1;
 144	}
 145
 146	osb->replay_map = replay_map;
 147	spin_unlock(&osb->osb_lock);
 148	return 0;
 149}
 150
 151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
 
 152{
 153	struct ocfs2_replay_map *replay_map = osb->replay_map;
 154	int i;
 155
 156	if (!replay_map)
 157		return;
 158
 159	if (replay_map->rm_state != REPLAY_NEEDED)
 160		return;
 161
 162	for (i = 0; i < replay_map->rm_slots; i++)
 163		if (replay_map->rm_replay_slots[i])
 164			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 165							NULL, NULL);
 
 166	replay_map->rm_state = REPLAY_DONE;
 167}
 168
 169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 170{
 171	struct ocfs2_replay_map *replay_map = osb->replay_map;
 172
 173	if (!osb->replay_map)
 174		return;
 175
 176	kfree(replay_map);
 177	osb->replay_map = NULL;
 178}
 179
 180int ocfs2_recovery_init(struct ocfs2_super *osb)
 181{
 182	struct ocfs2_recovery_map *rm;
 183
 184	mutex_init(&osb->recovery_lock);
 185	osb->disable_recovery = 0;
 186	osb->recovery_thread_task = NULL;
 187	init_waitqueue_head(&osb->recovery_event);
 188
 189	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 190		     osb->max_slots * sizeof(unsigned int),
 191		     GFP_KERNEL);
 192	if (!rm) {
 193		mlog_errno(-ENOMEM);
 194		return -ENOMEM;
 195	}
 196
 197	rm->rm_entries = (unsigned int *)((char *)rm +
 198					  sizeof(struct ocfs2_recovery_map));
 199	osb->recovery_map = rm;
 200
 201	return 0;
 202}
 203
 204/* we can't grab the goofy sem lock from inside wait_event, so we use
 205 * memory barriers to make sure that we'll see the null task before
 206 * being woken up */
 207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 208{
 209	mb();
 210	return osb->recovery_thread_task != NULL;
 211}
 212
 213void ocfs2_recovery_exit(struct ocfs2_super *osb)
 214{
 215	struct ocfs2_recovery_map *rm;
 216
 217	/* disable any new recovery threads and wait for any currently
 218	 * running ones to exit. Do this before setting the vol_state. */
 219	mutex_lock(&osb->recovery_lock);
 220	osb->disable_recovery = 1;
 221	mutex_unlock(&osb->recovery_lock);
 222	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 223
 224	/* At this point, we know that no more recovery threads can be
 225	 * launched, so wait for any recovery completion work to
 226	 * complete. */
 227	flush_workqueue(ocfs2_wq);
 
 228
 229	/*
 230	 * Now that recovery is shut down, and the osb is about to be
 231	 * freed,  the osb_lock is not taken here.
 232	 */
 233	rm = osb->recovery_map;
 234	/* XXX: Should we bug if there are dirty entries? */
 235
 236	kfree(rm);
 237}
 238
 239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 240				     unsigned int node_num)
 241{
 242	int i;
 243	struct ocfs2_recovery_map *rm = osb->recovery_map;
 244
 245	assert_spin_locked(&osb->osb_lock);
 246
 247	for (i = 0; i < rm->rm_used; i++) {
 248		if (rm->rm_entries[i] == node_num)
 249			return 1;
 250	}
 251
 252	return 0;
 253}
 254
 255/* Behaves like test-and-set.  Returns the previous value */
 256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 257				  unsigned int node_num)
 258{
 259	struct ocfs2_recovery_map *rm = osb->recovery_map;
 260
 261	spin_lock(&osb->osb_lock);
 262	if (__ocfs2_recovery_map_test(osb, node_num)) {
 263		spin_unlock(&osb->osb_lock);
 264		return 1;
 265	}
 266
 267	/* XXX: Can this be exploited? Not from o2dlm... */
 268	BUG_ON(rm->rm_used >= osb->max_slots);
 269
 270	rm->rm_entries[rm->rm_used] = node_num;
 271	rm->rm_used++;
 272	spin_unlock(&osb->osb_lock);
 273
 274	return 0;
 275}
 276
 277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 278				     unsigned int node_num)
 279{
 280	int i;
 281	struct ocfs2_recovery_map *rm = osb->recovery_map;
 282
 283	spin_lock(&osb->osb_lock);
 284
 285	for (i = 0; i < rm->rm_used; i++) {
 286		if (rm->rm_entries[i] == node_num)
 287			break;
 288	}
 289
 290	if (i < rm->rm_used) {
 291		/* XXX: be careful with the pointer math */
 292		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 293			(rm->rm_used - i - 1) * sizeof(unsigned int));
 294		rm->rm_used--;
 295	}
 296
 297	spin_unlock(&osb->osb_lock);
 298}
 299
 300static int ocfs2_commit_cache(struct ocfs2_super *osb)
 301{
 302	int status = 0;
 303	unsigned int flushed;
 304	struct ocfs2_journal *journal = NULL;
 305
 306	journal = osb->journal;
 307
 308	/* Flush all pending commits and checkpoint the journal. */
 309	down_write(&journal->j_trans_barrier);
 310
 311	flushed = atomic_read(&journal->j_num_trans);
 312	trace_ocfs2_commit_cache_begin(flushed);
 313	if (flushed == 0) {
 314		up_write(&journal->j_trans_barrier);
 315		goto finally;
 316	}
 317
 318	jbd2_journal_lock_updates(journal->j_journal);
 319	status = jbd2_journal_flush(journal->j_journal);
 320	jbd2_journal_unlock_updates(journal->j_journal);
 321	if (status < 0) {
 322		up_write(&journal->j_trans_barrier);
 323		mlog_errno(status);
 324		goto finally;
 325	}
 326
 327	ocfs2_inc_trans_id(journal);
 328
 329	flushed = atomic_read(&journal->j_num_trans);
 330	atomic_set(&journal->j_num_trans, 0);
 331	up_write(&journal->j_trans_barrier);
 332
 333	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 334
 335	ocfs2_wake_downconvert_thread(osb);
 336	wake_up(&journal->j_checkpointed);
 337finally:
 338	return status;
 339}
 340
 341handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 342{
 343	journal_t *journal = osb->journal->j_journal;
 344	handle_t *handle;
 345
 346	BUG_ON(!osb || !osb->journal->j_journal);
 347
 348	if (ocfs2_is_hard_readonly(osb))
 349		return ERR_PTR(-EROFS);
 350
 351	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 352	BUG_ON(max_buffs <= 0);
 353
 354	/* Nested transaction? Just return the handle... */
 355	if (journal_current_handle())
 356		return jbd2_journal_start(journal, max_buffs);
 357
 
 
 358	down_read(&osb->journal->j_trans_barrier);
 359
 360	handle = jbd2_journal_start(journal, max_buffs);
 361	if (IS_ERR(handle)) {
 362		up_read(&osb->journal->j_trans_barrier);
 
 363
 364		mlog_errno(PTR_ERR(handle));
 365
 366		if (is_journal_aborted(journal)) {
 367			ocfs2_abort(osb->sb, "Detected aborted journal");
 368			handle = ERR_PTR(-EROFS);
 369		}
 370	} else {
 371		if (!ocfs2_mount_local(osb))
 372			atomic_inc(&(osb->journal->j_num_trans));
 373	}
 374
 375	return handle;
 376}
 377
 378int ocfs2_commit_trans(struct ocfs2_super *osb,
 379		       handle_t *handle)
 380{
 381	int ret, nested;
 382	struct ocfs2_journal *journal = osb->journal;
 383
 384	BUG_ON(!handle);
 385
 386	nested = handle->h_ref > 1;
 387	ret = jbd2_journal_stop(handle);
 388	if (ret < 0)
 389		mlog_errno(ret);
 390
 391	if (!nested)
 392		up_read(&journal->j_trans_barrier);
 
 
 393
 394	return ret;
 395}
 396
 397/*
 398 * 'nblocks' is what you want to add to the current transaction.
 399 *
 400 * This might call jbd2_journal_restart() which will commit dirty buffers
 401 * and then restart the transaction. Before calling
 402 * ocfs2_extend_trans(), any changed blocks should have been
 403 * dirtied. After calling it, all blocks which need to be changed must
 404 * go through another set of journal_access/journal_dirty calls.
 405 *
 406 * WARNING: This will not release any semaphores or disk locks taken
 407 * during the transaction, so make sure they were taken *before*
 408 * start_trans or we'll have ordering deadlocks.
 409 *
 410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 411 * good because transaction ids haven't yet been recorded on the
 412 * cluster locks associated with this handle.
 413 */
 414int ocfs2_extend_trans(handle_t *handle, int nblocks)
 415{
 416	int status, old_nblocks;
 417
 418	BUG_ON(!handle);
 419	BUG_ON(nblocks < 0);
 420
 421	if (!nblocks)
 422		return 0;
 423
 424	old_nblocks = handle->h_buffer_credits;
 425
 426	trace_ocfs2_extend_trans(old_nblocks, nblocks);
 427
 428#ifdef CONFIG_OCFS2_DEBUG_FS
 429	status = 1;
 430#else
 431	status = jbd2_journal_extend(handle, nblocks);
 432	if (status < 0) {
 433		mlog_errno(status);
 434		goto bail;
 435	}
 436#endif
 437
 438	if (status > 0) {
 439		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 440		status = jbd2_journal_restart(handle,
 441					      old_nblocks + nblocks);
 442		if (status < 0) {
 443			mlog_errno(status);
 444			goto bail;
 445		}
 446	}
 447
 448	status = 0;
 449bail:
 450	return status;
 451}
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453struct ocfs2_triggers {
 454	struct jbd2_buffer_trigger_type	ot_triggers;
 455	int				ot_offset;
 456};
 457
 458static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 459{
 460	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 461}
 462
 463static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 464				 struct buffer_head *bh,
 465				 void *data, size_t size)
 466{
 467	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 468
 469	/*
 470	 * We aren't guaranteed to have the superblock here, so we
 471	 * must unconditionally compute the ecc data.
 472	 * __ocfs2_journal_access() will only set the triggers if
 473	 * metaecc is enabled.
 474	 */
 475	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 476}
 477
 478/*
 479 * Quota blocks have their own trigger because the struct ocfs2_block_check
 480 * offset depends on the blocksize.
 481 */
 482static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 483				 struct buffer_head *bh,
 484				 void *data, size_t size)
 485{
 486	struct ocfs2_disk_dqtrailer *dqt =
 487		ocfs2_block_dqtrailer(size, data);
 488
 489	/*
 490	 * We aren't guaranteed to have the superblock here, so we
 491	 * must unconditionally compute the ecc data.
 492	 * __ocfs2_journal_access() will only set the triggers if
 493	 * metaecc is enabled.
 494	 */
 495	ocfs2_block_check_compute(data, size, &dqt->dq_check);
 496}
 497
 498/*
 499 * Directory blocks also have their own trigger because the
 500 * struct ocfs2_block_check offset depends on the blocksize.
 501 */
 502static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 503				 struct buffer_head *bh,
 504				 void *data, size_t size)
 505{
 506	struct ocfs2_dir_block_trailer *trailer =
 507		ocfs2_dir_trailer_from_size(size, data);
 508
 509	/*
 510	 * We aren't guaranteed to have the superblock here, so we
 511	 * must unconditionally compute the ecc data.
 512	 * __ocfs2_journal_access() will only set the triggers if
 513	 * metaecc is enabled.
 514	 */
 515	ocfs2_block_check_compute(data, size, &trailer->db_check);
 516}
 517
 518static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 519				struct buffer_head *bh)
 520{
 521	mlog(ML_ERROR,
 522	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 523	     "bh->b_blocknr = %llu\n",
 524	     (unsigned long)bh,
 525	     (unsigned long long)bh->b_blocknr);
 526
 527	/* We aren't guaranteed to have the superblock here - but if we
 528	 * don't, it'll just crash. */
 529	ocfs2_error(bh->b_assoc_map->host->i_sb,
 530		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 531}
 532
 533static struct ocfs2_triggers di_triggers = {
 534	.ot_triggers = {
 535		.t_frozen = ocfs2_frozen_trigger,
 536		.t_abort = ocfs2_abort_trigger,
 537	},
 538	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
 539};
 540
 541static struct ocfs2_triggers eb_triggers = {
 542	.ot_triggers = {
 543		.t_frozen = ocfs2_frozen_trigger,
 544		.t_abort = ocfs2_abort_trigger,
 545	},
 546	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
 547};
 548
 549static struct ocfs2_triggers rb_triggers = {
 550	.ot_triggers = {
 551		.t_frozen = ocfs2_frozen_trigger,
 552		.t_abort = ocfs2_abort_trigger,
 553	},
 554	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
 555};
 556
 557static struct ocfs2_triggers gd_triggers = {
 558	.ot_triggers = {
 559		.t_frozen = ocfs2_frozen_trigger,
 560		.t_abort = ocfs2_abort_trigger,
 561	},
 562	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
 563};
 564
 565static struct ocfs2_triggers db_triggers = {
 566	.ot_triggers = {
 567		.t_frozen = ocfs2_db_frozen_trigger,
 568		.t_abort = ocfs2_abort_trigger,
 569	},
 570};
 571
 572static struct ocfs2_triggers xb_triggers = {
 573	.ot_triggers = {
 574		.t_frozen = ocfs2_frozen_trigger,
 575		.t_abort = ocfs2_abort_trigger,
 576	},
 577	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
 578};
 579
 580static struct ocfs2_triggers dq_triggers = {
 581	.ot_triggers = {
 582		.t_frozen = ocfs2_dq_frozen_trigger,
 583		.t_abort = ocfs2_abort_trigger,
 584	},
 585};
 586
 587static struct ocfs2_triggers dr_triggers = {
 588	.ot_triggers = {
 589		.t_frozen = ocfs2_frozen_trigger,
 590		.t_abort = ocfs2_abort_trigger,
 591	},
 592	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
 593};
 594
 595static struct ocfs2_triggers dl_triggers = {
 596	.ot_triggers = {
 597		.t_frozen = ocfs2_frozen_trigger,
 598		.t_abort = ocfs2_abort_trigger,
 599	},
 600	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
 601};
 602
 603static int __ocfs2_journal_access(handle_t *handle,
 604				  struct ocfs2_caching_info *ci,
 605				  struct buffer_head *bh,
 606				  struct ocfs2_triggers *triggers,
 607				  int type)
 608{
 609	int status;
 610	struct ocfs2_super *osb =
 611		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 612
 613	BUG_ON(!ci || !ci->ci_ops);
 614	BUG_ON(!handle);
 615	BUG_ON(!bh);
 616
 617	trace_ocfs2_journal_access(
 618		(unsigned long long)ocfs2_metadata_cache_owner(ci),
 619		(unsigned long long)bh->b_blocknr, type, bh->b_size);
 620
 621	/* we can safely remove this assertion after testing. */
 622	if (!buffer_uptodate(bh)) {
 623		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 624		mlog(ML_ERROR, "b_blocknr=%llu\n",
 625		     (unsigned long long)bh->b_blocknr);
 626		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627	}
 628
 629	/* Set the current transaction information on the ci so
 630	 * that the locking code knows whether it can drop it's locks
 631	 * on this ci or not. We're protected from the commit
 632	 * thread updating the current transaction id until
 633	 * ocfs2_commit_trans() because ocfs2_start_trans() took
 634	 * j_trans_barrier for us. */
 635	ocfs2_set_ci_lock_trans(osb->journal, ci);
 636
 637	ocfs2_metadata_cache_io_lock(ci);
 638	switch (type) {
 639	case OCFS2_JOURNAL_ACCESS_CREATE:
 640	case OCFS2_JOURNAL_ACCESS_WRITE:
 641		status = jbd2_journal_get_write_access(handle, bh);
 642		break;
 643
 644	case OCFS2_JOURNAL_ACCESS_UNDO:
 645		status = jbd2_journal_get_undo_access(handle, bh);
 646		break;
 647
 648	default:
 649		status = -EINVAL;
 650		mlog(ML_ERROR, "Unknown access type!\n");
 651	}
 652	if (!status && ocfs2_meta_ecc(osb) && triggers)
 653		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 654	ocfs2_metadata_cache_io_unlock(ci);
 655
 656	if (status < 0)
 657		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 658		     status, type);
 659
 660	return status;
 661}
 662
 663int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 664			    struct buffer_head *bh, int type)
 665{
 666	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 667}
 668
 669int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 670			    struct buffer_head *bh, int type)
 671{
 672	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 673}
 674
 675int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 676			    struct buffer_head *bh, int type)
 677{
 678	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 679				      type);
 680}
 681
 682int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 683			    struct buffer_head *bh, int type)
 684{
 685	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 686}
 687
 688int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 689			    struct buffer_head *bh, int type)
 690{
 691	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 692}
 693
 694int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 695			    struct buffer_head *bh, int type)
 696{
 697	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 698}
 699
 700int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 701			    struct buffer_head *bh, int type)
 702{
 703	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 704}
 705
 706int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 707			    struct buffer_head *bh, int type)
 708{
 709	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 710}
 711
 712int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 713			    struct buffer_head *bh, int type)
 714{
 715	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 716}
 717
 718int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 719			 struct buffer_head *bh, int type)
 720{
 721	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 722}
 723
 724void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 725{
 726	int status;
 727
 728	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 729
 730	status = jbd2_journal_dirty_metadata(handle, bh);
 731	BUG_ON(status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 732}
 733
 734#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 735
 736void ocfs2_set_journal_params(struct ocfs2_super *osb)
 737{
 738	journal_t *journal = osb->journal->j_journal;
 739	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 740
 741	if (osb->osb_commit_interval)
 742		commit_interval = osb->osb_commit_interval;
 743
 744	write_lock(&journal->j_state_lock);
 745	journal->j_commit_interval = commit_interval;
 746	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 747		journal->j_flags |= JBD2_BARRIER;
 748	else
 749		journal->j_flags &= ~JBD2_BARRIER;
 750	write_unlock(&journal->j_state_lock);
 751}
 752
 753int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754{
 755	int status = -1;
 756	struct inode *inode = NULL; /* the journal inode */
 757	journal_t *j_journal = NULL;
 
 758	struct ocfs2_dinode *di = NULL;
 759	struct buffer_head *bh = NULL;
 760	struct ocfs2_super *osb;
 761	int inode_lock = 0;
 762
 763	BUG_ON(!journal);
 764
 765	osb = journal->j_osb;
 766
 767	/* already have the inode for our journal */
 768	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 769					    osb->slot_num);
 770	if (inode == NULL) {
 771		status = -EACCES;
 772		mlog_errno(status);
 773		goto done;
 774	}
 775	if (is_bad_inode(inode)) {
 776		mlog(ML_ERROR, "access error (bad inode)\n");
 777		iput(inode);
 778		inode = NULL;
 779		status = -EACCES;
 780		goto done;
 781	}
 782
 783	SET_INODE_JOURNAL(inode);
 784	OCFS2_I(inode)->ip_open_count++;
 785
 786	/* Skip recovery waits here - journal inode metadata never
 787	 * changes in a live cluster so it can be considered an
 788	 * exception to the rule. */
 789	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 790	if (status < 0) {
 791		if (status != -ERESTARTSYS)
 792			mlog(ML_ERROR, "Could not get lock on journal!\n");
 793		goto done;
 794	}
 795
 796	inode_lock = 1;
 797	di = (struct ocfs2_dinode *)bh->b_data;
 798
 799	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
 800		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 801		     inode->i_size);
 802		status = -EINVAL;
 803		goto done;
 804	}
 805
 806	trace_ocfs2_journal_init(inode->i_size,
 807				 (unsigned long long)inode->i_blocks,
 808				 OCFS2_I(inode)->ip_clusters);
 809
 810	/* call the kernels journal init function now */
 811	j_journal = jbd2_journal_init_inode(inode);
 812	if (j_journal == NULL) {
 813		mlog(ML_ERROR, "Linux journal layer error\n");
 814		status = -EINVAL;
 815		goto done;
 816	}
 817
 818	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
 819
 820	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 821		  OCFS2_JOURNAL_DIRTY_FL);
 822
 823	journal->j_journal = j_journal;
 
 
 
 
 824	journal->j_inode = inode;
 825	journal->j_bh = bh;
 826
 827	ocfs2_set_journal_params(osb);
 828
 829	journal->j_state = OCFS2_JOURNAL_LOADED;
 830
 831	status = 0;
 832done:
 833	if (status < 0) {
 834		if (inode_lock)
 835			ocfs2_inode_unlock(inode, 1);
 836		brelse(bh);
 837		if (inode) {
 838			OCFS2_I(inode)->ip_open_count--;
 839			iput(inode);
 840		}
 841	}
 842
 843	return status;
 844}
 845
 846static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 847{
 848	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 849}
 850
 851static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 852{
 853	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 854}
 855
 856static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 857				      int dirty, int replayed)
 858{
 859	int status;
 860	unsigned int flags;
 861	struct ocfs2_journal *journal = osb->journal;
 862	struct buffer_head *bh = journal->j_bh;
 863	struct ocfs2_dinode *fe;
 864
 865	fe = (struct ocfs2_dinode *)bh->b_data;
 866
 867	/* The journal bh on the osb always comes from ocfs2_journal_init()
 868	 * and was validated there inside ocfs2_inode_lock_full().  It's a
 869	 * code bug if we mess it up. */
 870	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 871
 872	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 873	if (dirty)
 874		flags |= OCFS2_JOURNAL_DIRTY_FL;
 875	else
 876		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 877	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 878
 879	if (replayed)
 880		ocfs2_bump_recovery_generation(fe);
 881
 882	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 883	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 884	if (status < 0)
 885		mlog_errno(status);
 886
 887	return status;
 888}
 889
 890/*
 891 * If the journal has been kmalloc'd it needs to be freed after this
 892 * call.
 893 */
 894void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 895{
 896	struct ocfs2_journal *journal = NULL;
 897	int status = 0;
 898	struct inode *inode = NULL;
 899	int num_running_trans = 0;
 900
 901	BUG_ON(!osb);
 902
 903	journal = osb->journal;
 904	if (!journal)
 905		goto done;
 906
 907	inode = journal->j_inode;
 908
 909	if (journal->j_state != OCFS2_JOURNAL_LOADED)
 910		goto done;
 911
 912	/* need to inc inode use count - jbd2_journal_destroy will iput. */
 913	if (!igrab(inode))
 914		BUG();
 915
 916	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 917	trace_ocfs2_journal_shutdown(num_running_trans);
 918
 919	/* Do a commit_cache here. It will flush our journal, *and*
 920	 * release any locks that are still held.
 921	 * set the SHUTDOWN flag and release the trans lock.
 922	 * the commit thread will take the trans lock for us below. */
 923	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 924
 925	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
 926	 * drop the trans_lock (which we want to hold until we
 927	 * completely destroy the journal. */
 928	if (osb->commit_task) {
 929		/* Wait for the commit thread */
 930		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
 931		kthread_stop(osb->commit_task);
 932		osb->commit_task = NULL;
 933	}
 934
 935	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
 936
 937	if (ocfs2_mount_local(osb)) {
 938		jbd2_journal_lock_updates(journal->j_journal);
 939		status = jbd2_journal_flush(journal->j_journal);
 940		jbd2_journal_unlock_updates(journal->j_journal);
 941		if (status < 0)
 942			mlog_errno(status);
 943	}
 944
 945	if (status == 0) {
 
 946		/*
 947		 * Do not toggle if flush was unsuccessful otherwise
 948		 * will leave dirty metadata in a "clean" journal
 949		 */
 950		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
 951		if (status < 0)
 952			mlog_errno(status);
 953	}
 954
 955	/* Shutdown the kernel journal system */
 956	jbd2_journal_destroy(journal->j_journal);
 957	journal->j_journal = NULL;
 958
 959	OCFS2_I(inode)->ip_open_count--;
 960
 961	/* unlock our journal */
 962	ocfs2_inode_unlock(inode, 1);
 963
 964	brelse(journal->j_bh);
 965	journal->j_bh = NULL;
 966
 967	journal->j_state = OCFS2_JOURNAL_FREE;
 968
 969//	up_write(&journal->j_trans_barrier);
 970done:
 971	if (inode)
 972		iput(inode);
 
 973}
 974
 975static void ocfs2_clear_journal_error(struct super_block *sb,
 976				      journal_t *journal,
 977				      int slot)
 978{
 979	int olderr;
 980
 981	olderr = jbd2_journal_errno(journal);
 982	if (olderr) {
 983		mlog(ML_ERROR, "File system error %d recorded in "
 984		     "journal %u.\n", olderr, slot);
 985		mlog(ML_ERROR, "File system on device %s needs checking.\n",
 986		     sb->s_id);
 987
 988		jbd2_journal_ack_err(journal);
 989		jbd2_journal_clear_err(journal);
 990	}
 991}
 992
 993int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
 994{
 995	int status = 0;
 996	struct ocfs2_super *osb;
 997
 998	BUG_ON(!journal);
 999
1000	osb = journal->j_osb;
1001
1002	status = jbd2_journal_load(journal->j_journal);
1003	if (status < 0) {
1004		mlog(ML_ERROR, "Failed to load journal!\n");
1005		goto done;
1006	}
1007
1008	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009
 
 
 
 
 
 
 
 
1010	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1011	if (status < 0) {
1012		mlog_errno(status);
1013		goto done;
1014	}
1015
1016	/* Launch the commit thread */
1017	if (!local) {
1018		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019					       "ocfs2cmt");
1020		if (IS_ERR(osb->commit_task)) {
1021			status = PTR_ERR(osb->commit_task);
1022			osb->commit_task = NULL;
1023			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024			     "error=%d", status);
1025			goto done;
1026		}
1027	} else
1028		osb->commit_task = NULL;
1029
1030done:
1031	return status;
1032}
1033
1034
1035/* 'full' flag tells us whether we clear out all blocks or if we just
1036 * mark the journal clean */
1037int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038{
1039	int status;
1040
1041	BUG_ON(!journal);
1042
1043	status = jbd2_journal_wipe(journal->j_journal, full);
1044	if (status < 0) {
1045		mlog_errno(status);
1046		goto bail;
1047	}
1048
1049	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1050	if (status < 0)
1051		mlog_errno(status);
1052
1053bail:
1054	return status;
1055}
1056
1057static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058{
1059	int empty;
1060	struct ocfs2_recovery_map *rm = osb->recovery_map;
1061
1062	spin_lock(&osb->osb_lock);
1063	empty = (rm->rm_used == 0);
1064	spin_unlock(&osb->osb_lock);
1065
1066	return empty;
1067}
1068
1069void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070{
1071	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072}
1073
1074/*
1075 * JBD Might read a cached version of another nodes journal file. We
1076 * don't want this as this file changes often and we get no
1077 * notification on those changes. The only way to be sure that we've
1078 * got the most up to date version of those blocks then is to force
1079 * read them off disk. Just searching through the buffer cache won't
1080 * work as there may be pages backing this file which are still marked
1081 * up to date. We know things can't change on this file underneath us
1082 * as we have the lock by now :)
1083 */
1084static int ocfs2_force_read_journal(struct inode *inode)
1085{
1086	int status = 0;
1087	int i;
1088	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1089#define CONCURRENT_JOURNAL_FILL 32ULL
1090	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091
1092	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093
1094	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1095	v_blkno = 0;
1096	while (v_blkno < num_blocks) {
1097		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1098						     &p_blkno, &p_blocks, NULL);
1099		if (status < 0) {
1100			mlog_errno(status);
1101			goto bail;
1102		}
1103
1104		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105			p_blocks = CONCURRENT_JOURNAL_FILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106
1107		/* We are reading journal data which should not
1108		 * be put in the uptodate cache */
1109		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110						p_blkno, p_blocks, bhs);
1111		if (status < 0) {
1112			mlog_errno(status);
1113			goto bail;
1114		}
1115
1116		for(i = 0; i < p_blocks; i++) {
1117			brelse(bhs[i]);
1118			bhs[i] = NULL;
1119		}
1120
1121		v_blkno += p_blocks;
1122	}
1123
1124bail:
1125	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1126		brelse(bhs[i]);
1127	return status;
1128}
1129
1130struct ocfs2_la_recovery_item {
1131	struct list_head	lri_list;
1132	int			lri_slot;
1133	struct ocfs2_dinode	*lri_la_dinode;
1134	struct ocfs2_dinode	*lri_tl_dinode;
1135	struct ocfs2_quota_recovery *lri_qrec;
 
1136};
1137
1138/* Does the second half of the recovery process. By this point, the
1139 * node is marked clean and can actually be considered recovered,
1140 * hence it's no longer in the recovery map, but there's still some
1141 * cleanup we can do which shouldn't happen within the recovery thread
1142 * as locking in that context becomes very difficult if we are to take
1143 * recovering nodes into account.
1144 *
1145 * NOTE: This function can and will sleep on recovery of other nodes
1146 * during cluster locking, just like any other ocfs2 process.
1147 */
1148void ocfs2_complete_recovery(struct work_struct *work)
1149{
1150	int ret = 0;
1151	struct ocfs2_journal *journal =
1152		container_of(work, struct ocfs2_journal, j_recovery_work);
1153	struct ocfs2_super *osb = journal->j_osb;
1154	struct ocfs2_dinode *la_dinode, *tl_dinode;
1155	struct ocfs2_la_recovery_item *item, *n;
1156	struct ocfs2_quota_recovery *qrec;
 
1157	LIST_HEAD(tmp_la_list);
1158
1159	trace_ocfs2_complete_recovery(
1160		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1161
1162	spin_lock(&journal->j_lock);
1163	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164	spin_unlock(&journal->j_lock);
1165
1166	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1167		list_del_init(&item->lri_list);
1168
1169		ocfs2_wait_on_quotas(osb);
1170
1171		la_dinode = item->lri_la_dinode;
1172		tl_dinode = item->lri_tl_dinode;
1173		qrec = item->lri_qrec;
 
1174
1175		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178			qrec);
1179
1180		if (la_dinode) {
1181			ret = ocfs2_complete_local_alloc_recovery(osb,
1182								  la_dinode);
1183			if (ret < 0)
1184				mlog_errno(ret);
1185
1186			kfree(la_dinode);
1187		}
1188
1189		if (tl_dinode) {
1190			ret = ocfs2_complete_truncate_log_recovery(osb,
1191								   tl_dinode);
1192			if (ret < 0)
1193				mlog_errno(ret);
1194
1195			kfree(tl_dinode);
1196		}
1197
1198		ret = ocfs2_recover_orphans(osb, item->lri_slot);
 
1199		if (ret < 0)
1200			mlog_errno(ret);
1201
1202		if (qrec) {
1203			ret = ocfs2_finish_quota_recovery(osb, qrec,
1204							  item->lri_slot);
1205			if (ret < 0)
1206				mlog_errno(ret);
1207			/* Recovery info is already freed now */
1208		}
1209
1210		kfree(item);
1211	}
1212
1213	trace_ocfs2_complete_recovery_end(ret);
1214}
1215
1216/* NOTE: This function always eats your references to la_dinode and
1217 * tl_dinode, either manually on error, or by passing them to
1218 * ocfs2_complete_recovery */
1219static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220					    int slot_num,
1221					    struct ocfs2_dinode *la_dinode,
1222					    struct ocfs2_dinode *tl_dinode,
1223					    struct ocfs2_quota_recovery *qrec)
 
1224{
1225	struct ocfs2_la_recovery_item *item;
1226
1227	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1228	if (!item) {
1229		/* Though we wish to avoid it, we are in fact safe in
1230		 * skipping local alloc cleanup as fsck.ocfs2 is more
1231		 * than capable of reclaiming unused space. */
1232		if (la_dinode)
1233			kfree(la_dinode);
1234
1235		if (tl_dinode)
1236			kfree(tl_dinode);
1237
1238		if (qrec)
1239			ocfs2_free_quota_recovery(qrec);
1240
1241		mlog_errno(-ENOMEM);
1242		return;
1243	}
1244
1245	INIT_LIST_HEAD(&item->lri_list);
1246	item->lri_la_dinode = la_dinode;
1247	item->lri_slot = slot_num;
1248	item->lri_tl_dinode = tl_dinode;
1249	item->lri_qrec = qrec;
 
1250
1251	spin_lock(&journal->j_lock);
1252	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253	queue_work(ocfs2_wq, &journal->j_recovery_work);
1254	spin_unlock(&journal->j_lock);
1255}
1256
1257/* Called by the mount code to queue recovery the last part of
1258 * recovery for it's own and offline slot(s). */
1259void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260{
1261	struct ocfs2_journal *journal = osb->journal;
1262
1263	if (ocfs2_is_hard_readonly(osb))
1264		return;
1265
1266	/* No need to queue up our truncate_log as regular cleanup will catch
1267	 * that */
1268	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1269					osb->local_alloc_copy, NULL, NULL);
 
1270	ocfs2_schedule_truncate_log_flush(osb, 0);
1271
1272	osb->local_alloc_copy = NULL;
1273	osb->dirty = 0;
1274
1275	/* queue to recover orphan slots for all offline slots */
1276	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1277	ocfs2_queue_replay_slots(osb);
1278	ocfs2_free_replay_slots(osb);
1279}
1280
1281void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1282{
1283	if (osb->quota_rec) {
1284		ocfs2_queue_recovery_completion(osb->journal,
1285						osb->slot_num,
1286						NULL,
1287						NULL,
1288						osb->quota_rec);
 
1289		osb->quota_rec = NULL;
1290	}
1291}
1292
1293static int __ocfs2_recovery_thread(void *arg)
1294{
1295	int status, node_num, slot_num;
1296	struct ocfs2_super *osb = arg;
1297	struct ocfs2_recovery_map *rm = osb->recovery_map;
1298	int *rm_quota = NULL;
1299	int rm_quota_used = 0, i;
1300	struct ocfs2_quota_recovery *qrec;
1301
 
 
 
 
 
 
1302	status = ocfs2_wait_on_mount(osb);
1303	if (status < 0) {
1304		goto bail;
1305	}
1306
1307	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1308	if (!rm_quota) {
1309		status = -ENOMEM;
1310		goto bail;
 
 
1311	}
1312restart:
1313	status = ocfs2_super_lock(osb, 1);
1314	if (status < 0) {
1315		mlog_errno(status);
1316		goto bail;
1317	}
1318
1319	status = ocfs2_compute_replay_slots(osb);
1320	if (status < 0)
1321		mlog_errno(status);
1322
1323	/* queue recovery for our own slot */
1324	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1325					NULL, NULL);
1326
1327	spin_lock(&osb->osb_lock);
1328	while (rm->rm_used) {
1329		/* It's always safe to remove entry zero, as we won't
1330		 * clear it until ocfs2_recover_node() has succeeded. */
1331		node_num = rm->rm_entries[0];
1332		spin_unlock(&osb->osb_lock);
1333		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1334		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1335		if (slot_num == -ENOENT) {
1336			status = 0;
1337			goto skip_recovery;
1338		}
1339
1340		/* It is a bit subtle with quota recovery. We cannot do it
1341		 * immediately because we have to obtain cluster locks from
1342		 * quota files and we also don't want to just skip it because
1343		 * then quota usage would be out of sync until some node takes
1344		 * the slot. So we remember which nodes need quota recovery
1345		 * and when everything else is done, we recover quotas. */
1346		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1347		if (i == rm_quota_used)
1348			rm_quota[rm_quota_used++] = slot_num;
 
 
 
 
 
1349
1350		status = ocfs2_recover_node(osb, node_num, slot_num);
1351skip_recovery:
1352		if (!status) {
1353			ocfs2_recovery_map_clear(osb, node_num);
1354		} else {
1355			mlog(ML_ERROR,
1356			     "Error %d recovering node %d on device (%u,%u)!\n",
1357			     status, node_num,
1358			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1359			mlog(ML_ERROR, "Volume requires unmount.\n");
1360		}
1361
1362		spin_lock(&osb->osb_lock);
1363	}
1364	spin_unlock(&osb->osb_lock);
1365	trace_ocfs2_recovery_thread_end(status);
1366
1367	/* Refresh all journal recovery generations from disk */
1368	status = ocfs2_check_journals_nolocks(osb);
1369	status = (status == -EROFS) ? 0 : status;
1370	if (status < 0)
1371		mlog_errno(status);
1372
1373	/* Now it is right time to recover quotas... We have to do this under
1374	 * superblock lock so that no one can start using the slot (and crash)
1375	 * before we recover it */
1376	for (i = 0; i < rm_quota_used; i++) {
1377		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1378		if (IS_ERR(qrec)) {
1379			status = PTR_ERR(qrec);
1380			mlog_errno(status);
1381			continue;
 
 
 
 
 
 
1382		}
1383		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1384						NULL, NULL, qrec);
1385	}
1386
1387	ocfs2_super_unlock(osb, 1);
1388
1389	/* queue recovery for offline slots */
1390	ocfs2_queue_replay_slots(osb);
1391
1392bail:
1393	mutex_lock(&osb->recovery_lock);
1394	if (!status && !ocfs2_recovery_completed(osb)) {
1395		mutex_unlock(&osb->recovery_lock);
1396		goto restart;
1397	}
1398
1399	ocfs2_free_replay_slots(osb);
1400	osb->recovery_thread_task = NULL;
1401	mb(); /* sync with ocfs2_recovery_thread_running */
1402	wake_up(&osb->recovery_event);
1403
1404	mutex_unlock(&osb->recovery_lock);
1405
1406	if (rm_quota)
1407		kfree(rm_quota);
1408
1409	/* no one is callint kthread_stop() for us so the kthread() api
1410	 * requires that we call do_exit().  And it isn't exported, but
1411	 * complete_and_exit() seems to be a minimal wrapper around it. */
1412	complete_and_exit(NULL, status);
1413	return status;
1414}
1415
1416void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1417{
1418	mutex_lock(&osb->recovery_lock);
1419
1420	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1421		osb->disable_recovery, osb->recovery_thread_task,
1422		osb->disable_recovery ?
1423		-1 : ocfs2_recovery_map_set(osb, node_num));
1424
1425	if (osb->disable_recovery)
1426		goto out;
1427
1428	if (osb->recovery_thread_task)
1429		goto out;
1430
1431	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1432						 "ocfs2rec");
1433	if (IS_ERR(osb->recovery_thread_task)) {
1434		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1435		osb->recovery_thread_task = NULL;
1436	}
1437
1438out:
1439	mutex_unlock(&osb->recovery_lock);
1440	wake_up(&osb->recovery_event);
1441}
1442
1443static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1444				    int slot_num,
1445				    struct buffer_head **bh,
1446				    struct inode **ret_inode)
1447{
1448	int status = -EACCES;
1449	struct inode *inode = NULL;
1450
1451	BUG_ON(slot_num >= osb->max_slots);
1452
1453	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1454					    slot_num);
1455	if (!inode || is_bad_inode(inode)) {
1456		mlog_errno(status);
1457		goto bail;
1458	}
1459	SET_INODE_JOURNAL(inode);
1460
1461	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1462	if (status < 0) {
1463		mlog_errno(status);
1464		goto bail;
1465	}
1466
1467	status = 0;
1468
1469bail:
1470	if (inode) {
1471		if (status || !ret_inode)
1472			iput(inode);
1473		else
1474			*ret_inode = inode;
1475	}
1476	return status;
1477}
1478
1479/* Does the actual journal replay and marks the journal inode as
1480 * clean. Will only replay if the journal inode is marked dirty. */
1481static int ocfs2_replay_journal(struct ocfs2_super *osb,
1482				int node_num,
1483				int slot_num)
1484{
1485	int status;
1486	int got_lock = 0;
1487	unsigned int flags;
1488	struct inode *inode = NULL;
1489	struct ocfs2_dinode *fe;
1490	journal_t *journal = NULL;
1491	struct buffer_head *bh = NULL;
1492	u32 slot_reco_gen;
1493
1494	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1495	if (status) {
1496		mlog_errno(status);
1497		goto done;
1498	}
1499
1500	fe = (struct ocfs2_dinode *)bh->b_data;
1501	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1502	brelse(bh);
1503	bh = NULL;
1504
1505	/*
1506	 * As the fs recovery is asynchronous, there is a small chance that
1507	 * another node mounted (and recovered) the slot before the recovery
1508	 * thread could get the lock. To handle that, we dirty read the journal
1509	 * inode for that slot to get the recovery generation. If it is
1510	 * different than what we expected, the slot has been recovered.
1511	 * If not, it needs recovery.
1512	 */
1513	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1514		trace_ocfs2_replay_journal_recovered(slot_num,
1515		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1516		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1517		status = -EBUSY;
1518		goto done;
1519	}
1520
1521	/* Continue with recovery as the journal has not yet been recovered */
1522
1523	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1524	if (status < 0) {
1525		trace_ocfs2_replay_journal_lock_err(status);
1526		if (status != -ERESTARTSYS)
1527			mlog(ML_ERROR, "Could not lock journal!\n");
1528		goto done;
1529	}
1530	got_lock = 1;
1531
1532	fe = (struct ocfs2_dinode *) bh->b_data;
1533
1534	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1535	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1536
1537	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1538		trace_ocfs2_replay_journal_skip(node_num);
1539		/* Refresh recovery generation for the slot */
1540		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1541		goto done;
1542	}
1543
1544	/* we need to run complete recovery for offline orphan slots */
1545	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1546
1547	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1548	     node_num, slot_num,
1549	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1550
1551	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1552
1553	status = ocfs2_force_read_journal(inode);
1554	if (status < 0) {
1555		mlog_errno(status);
1556		goto done;
1557	}
1558
1559	journal = jbd2_journal_init_inode(inode);
1560	if (journal == NULL) {
1561		mlog(ML_ERROR, "Linux journal layer error\n");
1562		status = -EIO;
1563		goto done;
1564	}
1565
1566	status = jbd2_journal_load(journal);
1567	if (status < 0) {
1568		mlog_errno(status);
1569		if (!igrab(inode))
1570			BUG();
1571		jbd2_journal_destroy(journal);
1572		goto done;
1573	}
1574
1575	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1576
1577	/* wipe the journal */
1578	jbd2_journal_lock_updates(journal);
1579	status = jbd2_journal_flush(journal);
1580	jbd2_journal_unlock_updates(journal);
1581	if (status < 0)
1582		mlog_errno(status);
1583
1584	/* This will mark the node clean */
1585	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1587	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1588
1589	/* Increment recovery generation to indicate successful recovery */
1590	ocfs2_bump_recovery_generation(fe);
1591	osb->slot_recovery_generations[slot_num] =
1592					ocfs2_get_recovery_generation(fe);
1593
1594	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1595	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1596	if (status < 0)
1597		mlog_errno(status);
1598
1599	if (!igrab(inode))
1600		BUG();
1601
1602	jbd2_journal_destroy(journal);
1603
 
 
 
1604done:
1605	/* drop the lock on this nodes journal */
1606	if (got_lock)
1607		ocfs2_inode_unlock(inode, 1);
1608
1609	if (inode)
1610		iput(inode);
1611
1612	brelse(bh);
1613
1614	return status;
1615}
1616
1617/*
1618 * Do the most important parts of node recovery:
1619 *  - Replay it's journal
1620 *  - Stamp a clean local allocator file
1621 *  - Stamp a clean truncate log
1622 *  - Mark the node clean
1623 *
1624 * If this function completes without error, a node in OCFS2 can be
1625 * said to have been safely recovered. As a result, failure during the
1626 * second part of a nodes recovery process (local alloc recovery) is
1627 * far less concerning.
1628 */
1629static int ocfs2_recover_node(struct ocfs2_super *osb,
1630			      int node_num, int slot_num)
1631{
1632	int status = 0;
1633	struct ocfs2_dinode *la_copy = NULL;
1634	struct ocfs2_dinode *tl_copy = NULL;
1635
1636	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1637
1638	/* Should not ever be called to recover ourselves -- in that
1639	 * case we should've called ocfs2_journal_load instead. */
1640	BUG_ON(osb->node_num == node_num);
1641
1642	status = ocfs2_replay_journal(osb, node_num, slot_num);
1643	if (status < 0) {
1644		if (status == -EBUSY) {
1645			trace_ocfs2_recover_node_skip(slot_num, node_num);
1646			status = 0;
1647			goto done;
1648		}
1649		mlog_errno(status);
1650		goto done;
1651	}
1652
1653	/* Stamp a clean local alloc file AFTER recovering the journal... */
1654	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1655	if (status < 0) {
1656		mlog_errno(status);
1657		goto done;
1658	}
1659
1660	/* An error from begin_truncate_log_recovery is not
1661	 * serious enough to warrant halting the rest of
1662	 * recovery. */
1663	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1664	if (status < 0)
1665		mlog_errno(status);
1666
1667	/* Likewise, this would be a strange but ultimately not so
1668	 * harmful place to get an error... */
1669	status = ocfs2_clear_slot(osb, slot_num);
1670	if (status < 0)
1671		mlog_errno(status);
1672
1673	/* This will kfree the memory pointed to by la_copy and tl_copy */
1674	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1675					tl_copy, NULL);
1676
1677	status = 0;
1678done:
1679
1680	return status;
1681}
1682
1683/* Test node liveness by trylocking his journal. If we get the lock,
1684 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1685 * still alive (we couldn't get the lock) and < 0 on error. */
1686static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1687				 int slot_num)
1688{
1689	int status, flags;
1690	struct inode *inode = NULL;
1691
1692	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1693					    slot_num);
1694	if (inode == NULL) {
1695		mlog(ML_ERROR, "access error\n");
1696		status = -EACCES;
1697		goto bail;
1698	}
1699	if (is_bad_inode(inode)) {
1700		mlog(ML_ERROR, "access error (bad inode)\n");
1701		iput(inode);
1702		inode = NULL;
1703		status = -EACCES;
1704		goto bail;
1705	}
1706	SET_INODE_JOURNAL(inode);
1707
1708	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1709	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1710	if (status < 0) {
1711		if (status != -EAGAIN)
1712			mlog_errno(status);
1713		goto bail;
1714	}
1715
1716	ocfs2_inode_unlock(inode, 1);
1717bail:
1718	if (inode)
1719		iput(inode);
1720
1721	return status;
1722}
1723
1724/* Call this underneath ocfs2_super_lock. It also assumes that the
1725 * slot info struct has been updated from disk. */
1726int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1727{
1728	unsigned int node_num;
1729	int status, i;
1730	u32 gen;
1731	struct buffer_head *bh = NULL;
1732	struct ocfs2_dinode *di;
1733
1734	/* This is called with the super block cluster lock, so we
1735	 * know that the slot map can't change underneath us. */
1736
1737	for (i = 0; i < osb->max_slots; i++) {
1738		/* Read journal inode to get the recovery generation */
1739		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1740		if (status) {
1741			mlog_errno(status);
1742			goto bail;
1743		}
1744		di = (struct ocfs2_dinode *)bh->b_data;
1745		gen = ocfs2_get_recovery_generation(di);
1746		brelse(bh);
1747		bh = NULL;
1748
1749		spin_lock(&osb->osb_lock);
1750		osb->slot_recovery_generations[i] = gen;
1751
1752		trace_ocfs2_mark_dead_nodes(i,
1753					    osb->slot_recovery_generations[i]);
1754
1755		if (i == osb->slot_num) {
1756			spin_unlock(&osb->osb_lock);
1757			continue;
1758		}
1759
1760		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1761		if (status == -ENOENT) {
1762			spin_unlock(&osb->osb_lock);
1763			continue;
1764		}
1765
1766		if (__ocfs2_recovery_map_test(osb, node_num)) {
1767			spin_unlock(&osb->osb_lock);
1768			continue;
1769		}
1770		spin_unlock(&osb->osb_lock);
1771
1772		/* Ok, we have a slot occupied by another node which
1773		 * is not in the recovery map. We trylock his journal
1774		 * file here to test if he's alive. */
1775		status = ocfs2_trylock_journal(osb, i);
1776		if (!status) {
1777			/* Since we're called from mount, we know that
1778			 * the recovery thread can't race us on
1779			 * setting / checking the recovery bits. */
1780			ocfs2_recovery_thread(osb, node_num);
1781		} else if ((status < 0) && (status != -EAGAIN)) {
1782			mlog_errno(status);
1783			goto bail;
1784		}
1785	}
1786
1787	status = 0;
1788bail:
1789	return status;
1790}
1791
1792/*
1793 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1794 * randomness to the timeout to minimize multple nodes firing the timer at the
1795 * same time.
1796 */
1797static inline unsigned long ocfs2_orphan_scan_timeout(void)
1798{
1799	unsigned long time;
1800
1801	get_random_bytes(&time, sizeof(time));
1802	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1803	return msecs_to_jiffies(time);
1804}
1805
1806/*
1807 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1808 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1809 * is done to catch any orphans that are left over in orphan directories.
1810 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1812 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1813 * stored in LVB. If the sequence number has changed, it means some other
1814 * node has done the scan.  This node skips the scan and tracks the
1815 * sequence number.  If the sequence number didn't change, it means a scan
1816 * hasn't happened.  The node queues a scan and increments the
1817 * sequence number in the LVB.
1818 */
1819void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1820{
1821	struct ocfs2_orphan_scan *os;
1822	int status, i;
1823	u32 seqno = 0;
1824
1825	os = &osb->osb_orphan_scan;
1826
1827	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1828		goto out;
1829
1830	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1831					    atomic_read(&os->os_state));
1832
1833	status = ocfs2_orphan_scan_lock(osb, &seqno);
1834	if (status < 0) {
1835		if (status != -EAGAIN)
1836			mlog_errno(status);
1837		goto out;
1838	}
1839
1840	/* Do no queue the tasks if the volume is being umounted */
1841	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1842		goto unlock;
1843
1844	if (os->os_seqno != seqno) {
1845		os->os_seqno = seqno;
1846		goto unlock;
1847	}
1848
1849	for (i = 0; i < osb->max_slots; i++)
1850		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1851						NULL);
1852	/*
1853	 * We queued a recovery on orphan slots, increment the sequence
1854	 * number and update LVB so other node will skip the scan for a while
1855	 */
1856	seqno++;
1857	os->os_count++;
1858	os->os_scantime = CURRENT_TIME;
1859unlock:
1860	ocfs2_orphan_scan_unlock(osb, seqno);
1861out:
1862	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1863					  atomic_read(&os->os_state));
1864	return;
1865}
1866
1867/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1868void ocfs2_orphan_scan_work(struct work_struct *work)
1869{
1870	struct ocfs2_orphan_scan *os;
1871	struct ocfs2_super *osb;
1872
1873	os = container_of(work, struct ocfs2_orphan_scan,
1874			  os_orphan_scan_work.work);
1875	osb = os->os_osb;
1876
1877	mutex_lock(&os->os_lock);
1878	ocfs2_queue_orphan_scan(osb);
1879	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1880		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1881				      ocfs2_orphan_scan_timeout());
1882	mutex_unlock(&os->os_lock);
1883}
1884
1885void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1886{
1887	struct ocfs2_orphan_scan *os;
1888
1889	os = &osb->osb_orphan_scan;
1890	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1891		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1892		mutex_lock(&os->os_lock);
1893		cancel_delayed_work(&os->os_orphan_scan_work);
1894		mutex_unlock(&os->os_lock);
1895	}
1896}
1897
1898void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1899{
1900	struct ocfs2_orphan_scan *os;
1901
1902	os = &osb->osb_orphan_scan;
1903	os->os_osb = osb;
1904	os->os_count = 0;
1905	os->os_seqno = 0;
1906	mutex_init(&os->os_lock);
1907	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1908}
1909
1910void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1911{
1912	struct ocfs2_orphan_scan *os;
1913
1914	os = &osb->osb_orphan_scan;
1915	os->os_scantime = CURRENT_TIME;
1916	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1917		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1918	else {
1919		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1920		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1921				   ocfs2_orphan_scan_timeout());
1922	}
1923}
1924
1925struct ocfs2_orphan_filldir_priv {
 
1926	struct inode		*head;
1927	struct ocfs2_super	*osb;
 
1928};
1929
1930static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1931				loff_t pos, u64 ino, unsigned type)
 
1932{
1933	struct ocfs2_orphan_filldir_priv *p = priv;
 
1934	struct inode *iter;
1935
1936	if (name_len == 1 && !strncmp(".", name, 1))
1937		return 0;
1938	if (name_len == 2 && !strncmp("..", name, 2))
1939		return 0;
 
 
 
 
 
 
1940
1941	/* Skip bad inodes so that recovery can continue */
1942	iter = ocfs2_iget(p->osb, ino,
1943			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1944	if (IS_ERR(iter))
1945		return 0;
 
 
 
 
 
 
 
 
 
 
 
1946
1947	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1948	/* No locking is required for the next_orphan queue as there
1949	 * is only ever a single process doing orphan recovery. */
1950	OCFS2_I(iter)->ip_next_orphan = p->head;
1951	p->head = iter;
1952
1953	return 0;
1954}
1955
1956static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1957			       int slot,
1958			       struct inode **head)
 
1959{
1960	int status;
1961	struct inode *orphan_dir_inode = NULL;
1962	struct ocfs2_orphan_filldir_priv priv;
1963	loff_t pos = 0;
1964
1965	priv.osb = osb;
1966	priv.head = *head;
 
1967
1968	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1969						       ORPHAN_DIR_SYSTEM_INODE,
1970						       slot);
1971	if  (!orphan_dir_inode) {
1972		status = -ENOENT;
1973		mlog_errno(status);
1974		return status;
1975	}
1976
1977	mutex_lock(&orphan_dir_inode->i_mutex);
1978	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1979	if (status < 0) {
1980		mlog_errno(status);
1981		goto out;
1982	}
1983
1984	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1985				   ocfs2_orphan_filldir);
1986	if (status) {
1987		mlog_errno(status);
1988		goto out_cluster;
1989	}
1990
1991	*head = priv.head;
1992
1993out_cluster:
1994	ocfs2_inode_unlock(orphan_dir_inode, 0);
1995out:
1996	mutex_unlock(&orphan_dir_inode->i_mutex);
1997	iput(orphan_dir_inode);
1998	return status;
1999}
2000
2001static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2002					      int slot)
2003{
2004	int ret;
2005
2006	spin_lock(&osb->osb_lock);
2007	ret = !osb->osb_orphan_wipes[slot];
2008	spin_unlock(&osb->osb_lock);
2009	return ret;
2010}
2011
2012static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2013					     int slot)
2014{
2015	spin_lock(&osb->osb_lock);
2016	/* Mark ourselves such that new processes in delete_inode()
2017	 * know to quit early. */
2018	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2019	while (osb->osb_orphan_wipes[slot]) {
2020		/* If any processes are already in the middle of an
2021		 * orphan wipe on this dir, then we need to wait for
2022		 * them. */
2023		spin_unlock(&osb->osb_lock);
2024		wait_event_interruptible(osb->osb_wipe_event,
2025					 ocfs2_orphan_recovery_can_continue(osb, slot));
2026		spin_lock(&osb->osb_lock);
2027	}
2028	spin_unlock(&osb->osb_lock);
2029}
2030
2031static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2032					      int slot)
2033{
2034	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2035}
2036
2037/*
2038 * Orphan recovery. Each mounted node has it's own orphan dir which we
2039 * must run during recovery. Our strategy here is to build a list of
2040 * the inodes in the orphan dir and iget/iput them. The VFS does
2041 * (most) of the rest of the work.
2042 *
2043 * Orphan recovery can happen at any time, not just mount so we have a
2044 * couple of extra considerations.
2045 *
2046 * - We grab as many inodes as we can under the orphan dir lock -
2047 *   doing iget() outside the orphan dir risks getting a reference on
2048 *   an invalid inode.
2049 * - We must be sure not to deadlock with other processes on the
2050 *   system wanting to run delete_inode(). This can happen when they go
2051 *   to lock the orphan dir and the orphan recovery process attempts to
2052 *   iget() inside the orphan dir lock. This can be avoided by
2053 *   advertising our state to ocfs2_delete_inode().
2054 */
2055static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2056				 int slot)
 
2057{
2058	int ret = 0;
2059	struct inode *inode = NULL;
2060	struct inode *iter;
2061	struct ocfs2_inode_info *oi;
 
 
2062
2063	trace_ocfs2_recover_orphans(slot);
2064
2065	ocfs2_mark_recovering_orphan_dir(osb, slot);
2066	ret = ocfs2_queue_orphans(osb, slot, &inode);
2067	ocfs2_clear_recovering_orphan_dir(osb, slot);
2068
2069	/* Error here should be noted, but we want to continue with as
2070	 * many queued inodes as we've got. */
2071	if (ret)
2072		mlog_errno(ret);
2073
2074	while (inode) {
2075		oi = OCFS2_I(inode);
2076		trace_ocfs2_recover_orphans_iput(
2077					(unsigned long long)oi->ip_blkno);
2078
2079		iter = oi->ip_next_orphan;
 
2080
2081		spin_lock(&oi->ip_lock);
2082		/* The remote delete code may have set these on the
2083		 * assumption that the other node would wipe them
2084		 * successfully.  If they are still in the node's
2085		 * orphan dir, we need to reset that state. */
2086		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2087
2088		/* Set the proper information to get us going into
2089		 * ocfs2_delete_inode. */
2090		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2091		spin_unlock(&oi->ip_lock);
 
 
 
 
 
2092
2093		iput(inode);
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095		inode = iter;
2096	}
2097
2098	return ret;
2099}
2100
2101static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2102{
2103	/* This check is good because ocfs2 will wait on our recovery
2104	 * thread before changing it to something other than MOUNTED
2105	 * or DISABLED. */
2106	wait_event(osb->osb_mount_event,
2107		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2108		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2109		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2110
2111	/* If there's an error on mount, then we may never get to the
2112	 * MOUNTED flag, but this is set right before
2113	 * dismount_volume() so we can trust it. */
2114	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2115		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2116		mlog(0, "mount error, exiting!\n");
2117		return -EBUSY;
2118	}
2119
2120	return 0;
2121}
2122
2123static int ocfs2_commit_thread(void *arg)
2124{
2125	int status;
2126	struct ocfs2_super *osb = arg;
2127	struct ocfs2_journal *journal = osb->journal;
2128
2129	/* we can trust j_num_trans here because _should_stop() is only set in
2130	 * shutdown and nobody other than ourselves should be able to start
2131	 * transactions.  committing on shutdown might take a few iterations
2132	 * as final transactions put deleted inodes on the list */
2133	while (!(kthread_should_stop() &&
2134		 atomic_read(&journal->j_num_trans) == 0)) {
2135
2136		wait_event_interruptible(osb->checkpoint_event,
2137					 atomic_read(&journal->j_num_trans)
2138					 || kthread_should_stop());
2139
2140		status = ocfs2_commit_cache(osb);
2141		if (status < 0)
2142			mlog_errno(status);
 
 
 
 
 
 
 
 
 
 
 
 
2143
2144		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2145			mlog(ML_KTHREAD,
2146			     "commit_thread: %u transactions pending on "
2147			     "shutdown\n",
2148			     atomic_read(&journal->j_num_trans));
2149		}
2150	}
2151
2152	return 0;
2153}
2154
2155/* Reads all the journal inodes without taking any cluster locks. Used
2156 * for hard readonly access to determine whether any journal requires
2157 * recovery. Also used to refresh the recovery generation numbers after
2158 * a journal has been recovered by another node.
2159 */
2160int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2161{
2162	int ret = 0;
2163	unsigned int slot;
2164	struct buffer_head *di_bh = NULL;
2165	struct ocfs2_dinode *di;
2166	int journal_dirty = 0;
2167
2168	for(slot = 0; slot < osb->max_slots; slot++) {
2169		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2170		if (ret) {
2171			mlog_errno(ret);
2172			goto out;
2173		}
2174
2175		di = (struct ocfs2_dinode *) di_bh->b_data;
2176
2177		osb->slot_recovery_generations[slot] =
2178					ocfs2_get_recovery_generation(di);
2179
2180		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2181		    OCFS2_JOURNAL_DIRTY_FL)
2182			journal_dirty = 1;
2183
2184		brelse(di_bh);
2185		di_bh = NULL;
2186	}
2187
2188out:
2189	if (journal_dirty)
2190		ret = -EROFS;
2191	return ret;
2192}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
   3 * journal.c
   4 *
   5 * Defines functions of journalling api
   6 *
   7 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/types.h>
  12#include <linux/slab.h>
  13#include <linux/highmem.h>
  14#include <linux/kthread.h>
  15#include <linux/time.h>
  16#include <linux/random.h>
  17#include <linux/delay.h>
  18#include <linux/writeback.h>
  19
  20#include <cluster/masklog.h>
  21
  22#include "ocfs2.h"
  23
  24#include "alloc.h"
  25#include "blockcheck.h"
  26#include "dir.h"
  27#include "dlmglue.h"
  28#include "extent_map.h"
  29#include "heartbeat.h"
  30#include "inode.h"
  31#include "journal.h"
  32#include "localalloc.h"
  33#include "slot_map.h"
  34#include "super.h"
  35#include "sysfile.h"
  36#include "uptodate.h"
  37#include "quota.h"
  38#include "file.h"
  39#include "namei.h"
  40
  41#include "buffer_head_io.h"
  42#include "ocfs2_trace.h"
  43
  44DEFINE_SPINLOCK(trans_inc_lock);
  45
  46#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  47
  48static int ocfs2_force_read_journal(struct inode *inode);
  49static int ocfs2_recover_node(struct ocfs2_super *osb,
  50			      int node_num, int slot_num);
  51static int __ocfs2_recovery_thread(void *arg);
  52static int ocfs2_commit_cache(struct ocfs2_super *osb);
  53static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  54static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  55				      int dirty, int replayed);
  56static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  57				 int slot_num);
  58static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  59				 int slot,
  60				 enum ocfs2_orphan_reco_type orphan_reco_type);
  61static int ocfs2_commit_thread(void *arg);
  62static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  63					    int slot_num,
  64					    struct ocfs2_dinode *la_dinode,
  65					    struct ocfs2_dinode *tl_dinode,
  66					    struct ocfs2_quota_recovery *qrec,
  67					    enum ocfs2_orphan_reco_type orphan_reco_type);
  68
  69static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  70{
  71	return __ocfs2_wait_on_mount(osb, 0);
  72}
  73
  74static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  75{
  76	return __ocfs2_wait_on_mount(osb, 1);
  77}
  78
  79/*
  80 * This replay_map is to track online/offline slots, so we could recover
  81 * offline slots during recovery and mount
  82 */
  83
  84enum ocfs2_replay_state {
  85	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
  86	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
  87	REPLAY_DONE 		/* Replay was already queued */
  88};
  89
  90struct ocfs2_replay_map {
  91	unsigned int rm_slots;
  92	enum ocfs2_replay_state rm_state;
  93	unsigned char rm_replay_slots[] __counted_by(rm_slots);
  94};
  95
  96static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
  97{
  98	if (!osb->replay_map)
  99		return;
 100
 101	/* If we've already queued the replay, we don't have any more to do */
 102	if (osb->replay_map->rm_state == REPLAY_DONE)
 103		return;
 104
 105	osb->replay_map->rm_state = state;
 106}
 107
 108int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 109{
 110	struct ocfs2_replay_map *replay_map;
 111	int i, node_num;
 112
 113	/* If replay map is already set, we don't do it again */
 114	if (osb->replay_map)
 115		return 0;
 116
 117	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
 118					 osb->max_slots),
 119			     GFP_KERNEL);
 120	if (!replay_map) {
 121		mlog_errno(-ENOMEM);
 122		return -ENOMEM;
 123	}
 124
 125	spin_lock(&osb->osb_lock);
 126
 127	replay_map->rm_slots = osb->max_slots;
 128	replay_map->rm_state = REPLAY_UNNEEDED;
 129
 130	/* set rm_replay_slots for offline slot(s) */
 131	for (i = 0; i < replay_map->rm_slots; i++) {
 132		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 133			replay_map->rm_replay_slots[i] = 1;
 134	}
 135
 136	osb->replay_map = replay_map;
 137	spin_unlock(&osb->osb_lock);
 138	return 0;
 139}
 140
 141static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 142		enum ocfs2_orphan_reco_type orphan_reco_type)
 143{
 144	struct ocfs2_replay_map *replay_map = osb->replay_map;
 145	int i;
 146
 147	if (!replay_map)
 148		return;
 149
 150	if (replay_map->rm_state != REPLAY_NEEDED)
 151		return;
 152
 153	for (i = 0; i < replay_map->rm_slots; i++)
 154		if (replay_map->rm_replay_slots[i])
 155			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 156							NULL, NULL,
 157							orphan_reco_type);
 158	replay_map->rm_state = REPLAY_DONE;
 159}
 160
 161void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 162{
 163	struct ocfs2_replay_map *replay_map = osb->replay_map;
 164
 165	if (!osb->replay_map)
 166		return;
 167
 168	kfree(replay_map);
 169	osb->replay_map = NULL;
 170}
 171
 172int ocfs2_recovery_init(struct ocfs2_super *osb)
 173{
 174	struct ocfs2_recovery_map *rm;
 175
 176	mutex_init(&osb->recovery_lock);
 177	osb->disable_recovery = 0;
 178	osb->recovery_thread_task = NULL;
 179	init_waitqueue_head(&osb->recovery_event);
 180
 181	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
 
 182		     GFP_KERNEL);
 183	if (!rm) {
 184		mlog_errno(-ENOMEM);
 185		return -ENOMEM;
 186	}
 187
 
 
 188	osb->recovery_map = rm;
 189
 190	return 0;
 191}
 192
 193/* we can't grab the goofy sem lock from inside wait_event, so we use
 194 * memory barriers to make sure that we'll see the null task before
 195 * being woken up */
 196static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 197{
 198	mb();
 199	return osb->recovery_thread_task != NULL;
 200}
 201
 202void ocfs2_recovery_exit(struct ocfs2_super *osb)
 203{
 204	struct ocfs2_recovery_map *rm;
 205
 206	/* disable any new recovery threads and wait for any currently
 207	 * running ones to exit. Do this before setting the vol_state. */
 208	mutex_lock(&osb->recovery_lock);
 209	osb->disable_recovery = 1;
 210	mutex_unlock(&osb->recovery_lock);
 211	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 212
 213	/* At this point, we know that no more recovery threads can be
 214	 * launched, so wait for any recovery completion work to
 215	 * complete. */
 216	if (osb->ocfs2_wq)
 217		flush_workqueue(osb->ocfs2_wq);
 218
 219	/*
 220	 * Now that recovery is shut down, and the osb is about to be
 221	 * freed,  the osb_lock is not taken here.
 222	 */
 223	rm = osb->recovery_map;
 224	/* XXX: Should we bug if there are dirty entries? */
 225
 226	kfree(rm);
 227}
 228
 229static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 230				     unsigned int node_num)
 231{
 232	int i;
 233	struct ocfs2_recovery_map *rm = osb->recovery_map;
 234
 235	assert_spin_locked(&osb->osb_lock);
 236
 237	for (i = 0; i < rm->rm_used; i++) {
 238		if (rm->rm_entries[i] == node_num)
 239			return 1;
 240	}
 241
 242	return 0;
 243}
 244
 245/* Behaves like test-and-set.  Returns the previous value */
 246static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 247				  unsigned int node_num)
 248{
 249	struct ocfs2_recovery_map *rm = osb->recovery_map;
 250
 251	spin_lock(&osb->osb_lock);
 252	if (__ocfs2_recovery_map_test(osb, node_num)) {
 253		spin_unlock(&osb->osb_lock);
 254		return 1;
 255	}
 256
 257	/* XXX: Can this be exploited? Not from o2dlm... */
 258	BUG_ON(rm->rm_used >= osb->max_slots);
 259
 260	rm->rm_entries[rm->rm_used] = node_num;
 261	rm->rm_used++;
 262	spin_unlock(&osb->osb_lock);
 263
 264	return 0;
 265}
 266
 267static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 268				     unsigned int node_num)
 269{
 270	int i;
 271	struct ocfs2_recovery_map *rm = osb->recovery_map;
 272
 273	spin_lock(&osb->osb_lock);
 274
 275	for (i = 0; i < rm->rm_used; i++) {
 276		if (rm->rm_entries[i] == node_num)
 277			break;
 278	}
 279
 280	if (i < rm->rm_used) {
 281		/* XXX: be careful with the pointer math */
 282		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 283			(rm->rm_used - i - 1) * sizeof(unsigned int));
 284		rm->rm_used--;
 285	}
 286
 287	spin_unlock(&osb->osb_lock);
 288}
 289
 290static int ocfs2_commit_cache(struct ocfs2_super *osb)
 291{
 292	int status = 0;
 293	unsigned int flushed;
 294	struct ocfs2_journal *journal = NULL;
 295
 296	journal = osb->journal;
 297
 298	/* Flush all pending commits and checkpoint the journal. */
 299	down_write(&journal->j_trans_barrier);
 300
 301	flushed = atomic_read(&journal->j_num_trans);
 302	trace_ocfs2_commit_cache_begin(flushed);
 303	if (flushed == 0) {
 304		up_write(&journal->j_trans_barrier);
 305		goto finally;
 306	}
 307
 308	jbd2_journal_lock_updates(journal->j_journal);
 309	status = jbd2_journal_flush(journal->j_journal, 0);
 310	jbd2_journal_unlock_updates(journal->j_journal);
 311	if (status < 0) {
 312		up_write(&journal->j_trans_barrier);
 313		mlog_errno(status);
 314		goto finally;
 315	}
 316
 317	ocfs2_inc_trans_id(journal);
 318
 319	flushed = atomic_read(&journal->j_num_trans);
 320	atomic_set(&journal->j_num_trans, 0);
 321	up_write(&journal->j_trans_barrier);
 322
 323	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 324
 325	ocfs2_wake_downconvert_thread(osb);
 326	wake_up(&journal->j_checkpointed);
 327finally:
 328	return status;
 329}
 330
 331handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 332{
 333	journal_t *journal = osb->journal->j_journal;
 334	handle_t *handle;
 335
 336	BUG_ON(!osb || !osb->journal->j_journal);
 337
 338	if (ocfs2_is_hard_readonly(osb))
 339		return ERR_PTR(-EROFS);
 340
 341	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 342	BUG_ON(max_buffs <= 0);
 343
 344	/* Nested transaction? Just return the handle... */
 345	if (journal_current_handle())
 346		return jbd2_journal_start(journal, max_buffs);
 347
 348	sb_start_intwrite(osb->sb);
 349
 350	down_read(&osb->journal->j_trans_barrier);
 351
 352	handle = jbd2_journal_start(journal, max_buffs);
 353	if (IS_ERR(handle)) {
 354		up_read(&osb->journal->j_trans_barrier);
 355		sb_end_intwrite(osb->sb);
 356
 357		mlog_errno(PTR_ERR(handle));
 358
 359		if (is_journal_aborted(journal)) {
 360			ocfs2_abort(osb->sb, "Detected aborted journal\n");
 361			handle = ERR_PTR(-EROFS);
 362		}
 363	} else {
 364		if (!ocfs2_mount_local(osb))
 365			atomic_inc(&(osb->journal->j_num_trans));
 366	}
 367
 368	return handle;
 369}
 370
 371int ocfs2_commit_trans(struct ocfs2_super *osb,
 372		       handle_t *handle)
 373{
 374	int ret, nested;
 375	struct ocfs2_journal *journal = osb->journal;
 376
 377	BUG_ON(!handle);
 378
 379	nested = handle->h_ref > 1;
 380	ret = jbd2_journal_stop(handle);
 381	if (ret < 0)
 382		mlog_errno(ret);
 383
 384	if (!nested) {
 385		up_read(&journal->j_trans_barrier);
 386		sb_end_intwrite(osb->sb);
 387	}
 388
 389	return ret;
 390}
 391
 392/*
 393 * 'nblocks' is what you want to add to the current transaction.
 394 *
 395 * This might call jbd2_journal_restart() which will commit dirty buffers
 396 * and then restart the transaction. Before calling
 397 * ocfs2_extend_trans(), any changed blocks should have been
 398 * dirtied. After calling it, all blocks which need to be changed must
 399 * go through another set of journal_access/journal_dirty calls.
 400 *
 401 * WARNING: This will not release any semaphores or disk locks taken
 402 * during the transaction, so make sure they were taken *before*
 403 * start_trans or we'll have ordering deadlocks.
 404 *
 405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 406 * good because transaction ids haven't yet been recorded on the
 407 * cluster locks associated with this handle.
 408 */
 409int ocfs2_extend_trans(handle_t *handle, int nblocks)
 410{
 411	int status, old_nblocks;
 412
 413	BUG_ON(!handle);
 414	BUG_ON(nblocks < 0);
 415
 416	if (!nblocks)
 417		return 0;
 418
 419	old_nblocks = jbd2_handle_buffer_credits(handle);
 420
 421	trace_ocfs2_extend_trans(old_nblocks, nblocks);
 422
 423#ifdef CONFIG_OCFS2_DEBUG_FS
 424	status = 1;
 425#else
 426	status = jbd2_journal_extend(handle, nblocks, 0);
 427	if (status < 0) {
 428		mlog_errno(status);
 429		goto bail;
 430	}
 431#endif
 432
 433	if (status > 0) {
 434		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 435		status = jbd2_journal_restart(handle,
 436					      old_nblocks + nblocks);
 437		if (status < 0) {
 438			mlog_errno(status);
 439			goto bail;
 440		}
 441	}
 442
 443	status = 0;
 444bail:
 445	return status;
 446}
 447
 448/*
 449 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 450 * If that fails, restart the transaction & regain write access for the
 451 * buffer head which is used for metadata modifications.
 452 * Taken from Ext4: extend_or_restart_transaction()
 453 */
 454int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 455{
 456	int status, old_nblks;
 457
 458	BUG_ON(!handle);
 459
 460	old_nblks = jbd2_handle_buffer_credits(handle);
 461	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 462
 463	if (old_nblks < thresh)
 464		return 0;
 465
 466	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
 467	if (status < 0) {
 468		mlog_errno(status);
 469		goto bail;
 470	}
 471
 472	if (status > 0) {
 473		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 474		if (status < 0)
 475			mlog_errno(status);
 476	}
 477
 478bail:
 479	return status;
 480}
 481
 482
 483struct ocfs2_triggers {
 484	struct jbd2_buffer_trigger_type	ot_triggers;
 485	int				ot_offset;
 486};
 487
 488static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 489{
 490	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 491}
 492
 493static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 494				 struct buffer_head *bh,
 495				 void *data, size_t size)
 496{
 497	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 498
 499	/*
 500	 * We aren't guaranteed to have the superblock here, so we
 501	 * must unconditionally compute the ecc data.
 502	 * __ocfs2_journal_access() will only set the triggers if
 503	 * metaecc is enabled.
 504	 */
 505	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 506}
 507
 508/*
 509 * Quota blocks have their own trigger because the struct ocfs2_block_check
 510 * offset depends on the blocksize.
 511 */
 512static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 513				 struct buffer_head *bh,
 514				 void *data, size_t size)
 515{
 516	struct ocfs2_disk_dqtrailer *dqt =
 517		ocfs2_block_dqtrailer(size, data);
 518
 519	/*
 520	 * We aren't guaranteed to have the superblock here, so we
 521	 * must unconditionally compute the ecc data.
 522	 * __ocfs2_journal_access() will only set the triggers if
 523	 * metaecc is enabled.
 524	 */
 525	ocfs2_block_check_compute(data, size, &dqt->dq_check);
 526}
 527
 528/*
 529 * Directory blocks also have their own trigger because the
 530 * struct ocfs2_block_check offset depends on the blocksize.
 531 */
 532static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 533				 struct buffer_head *bh,
 534				 void *data, size_t size)
 535{
 536	struct ocfs2_dir_block_trailer *trailer =
 537		ocfs2_dir_trailer_from_size(size, data);
 538
 539	/*
 540	 * We aren't guaranteed to have the superblock here, so we
 541	 * must unconditionally compute the ecc data.
 542	 * __ocfs2_journal_access() will only set the triggers if
 543	 * metaecc is enabled.
 544	 */
 545	ocfs2_block_check_compute(data, size, &trailer->db_check);
 546}
 547
 548static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 549				struct buffer_head *bh)
 550{
 551	mlog(ML_ERROR,
 552	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 553	     "bh->b_blocknr = %llu\n",
 554	     (unsigned long)bh,
 555	     (unsigned long long)bh->b_blocknr);
 556
 
 
 557	ocfs2_error(bh->b_assoc_map->host->i_sb,
 558		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 559}
 560
 561static struct ocfs2_triggers di_triggers = {
 562	.ot_triggers = {
 563		.t_frozen = ocfs2_frozen_trigger,
 564		.t_abort = ocfs2_abort_trigger,
 565	},
 566	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
 567};
 568
 569static struct ocfs2_triggers eb_triggers = {
 570	.ot_triggers = {
 571		.t_frozen = ocfs2_frozen_trigger,
 572		.t_abort = ocfs2_abort_trigger,
 573	},
 574	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
 575};
 576
 577static struct ocfs2_triggers rb_triggers = {
 578	.ot_triggers = {
 579		.t_frozen = ocfs2_frozen_trigger,
 580		.t_abort = ocfs2_abort_trigger,
 581	},
 582	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
 583};
 584
 585static struct ocfs2_triggers gd_triggers = {
 586	.ot_triggers = {
 587		.t_frozen = ocfs2_frozen_trigger,
 588		.t_abort = ocfs2_abort_trigger,
 589	},
 590	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
 591};
 592
 593static struct ocfs2_triggers db_triggers = {
 594	.ot_triggers = {
 595		.t_frozen = ocfs2_db_frozen_trigger,
 596		.t_abort = ocfs2_abort_trigger,
 597	},
 598};
 599
 600static struct ocfs2_triggers xb_triggers = {
 601	.ot_triggers = {
 602		.t_frozen = ocfs2_frozen_trigger,
 603		.t_abort = ocfs2_abort_trigger,
 604	},
 605	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
 606};
 607
 608static struct ocfs2_triggers dq_triggers = {
 609	.ot_triggers = {
 610		.t_frozen = ocfs2_dq_frozen_trigger,
 611		.t_abort = ocfs2_abort_trigger,
 612	},
 613};
 614
 615static struct ocfs2_triggers dr_triggers = {
 616	.ot_triggers = {
 617		.t_frozen = ocfs2_frozen_trigger,
 618		.t_abort = ocfs2_abort_trigger,
 619	},
 620	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
 621};
 622
 623static struct ocfs2_triggers dl_triggers = {
 624	.ot_triggers = {
 625		.t_frozen = ocfs2_frozen_trigger,
 626		.t_abort = ocfs2_abort_trigger,
 627	},
 628	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
 629};
 630
 631static int __ocfs2_journal_access(handle_t *handle,
 632				  struct ocfs2_caching_info *ci,
 633				  struct buffer_head *bh,
 634				  struct ocfs2_triggers *triggers,
 635				  int type)
 636{
 637	int status;
 638	struct ocfs2_super *osb =
 639		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 640
 641	BUG_ON(!ci || !ci->ci_ops);
 642	BUG_ON(!handle);
 643	BUG_ON(!bh);
 644
 645	trace_ocfs2_journal_access(
 646		(unsigned long long)ocfs2_metadata_cache_owner(ci),
 647		(unsigned long long)bh->b_blocknr, type, bh->b_size);
 648
 649	/* we can safely remove this assertion after testing. */
 650	if (!buffer_uptodate(bh)) {
 651		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 652		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
 653		     (unsigned long long)bh->b_blocknr, bh->b_state);
 654
 655		lock_buffer(bh);
 656		/*
 657		 * A previous transaction with a couple of buffer heads fail
 658		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
 659		 * For current transaction, the bh is just among those error
 660		 * bhs which previous transaction handle. We can't just clear
 661		 * its BH_Write_EIO and reuse directly, since other bhs are
 662		 * not written to disk yet and that will cause metadata
 663		 * inconsistency. So we should set fs read-only to avoid
 664		 * further damage.
 665		 */
 666		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 667			unlock_buffer(bh);
 668			return ocfs2_error(osb->sb, "A previous attempt to "
 669					"write this buffer head failed\n");
 670		}
 671		unlock_buffer(bh);
 672	}
 673
 674	/* Set the current transaction information on the ci so
 675	 * that the locking code knows whether it can drop it's locks
 676	 * on this ci or not. We're protected from the commit
 677	 * thread updating the current transaction id until
 678	 * ocfs2_commit_trans() because ocfs2_start_trans() took
 679	 * j_trans_barrier for us. */
 680	ocfs2_set_ci_lock_trans(osb->journal, ci);
 681
 682	ocfs2_metadata_cache_io_lock(ci);
 683	switch (type) {
 684	case OCFS2_JOURNAL_ACCESS_CREATE:
 685	case OCFS2_JOURNAL_ACCESS_WRITE:
 686		status = jbd2_journal_get_write_access(handle, bh);
 687		break;
 688
 689	case OCFS2_JOURNAL_ACCESS_UNDO:
 690		status = jbd2_journal_get_undo_access(handle, bh);
 691		break;
 692
 693	default:
 694		status = -EINVAL;
 695		mlog(ML_ERROR, "Unknown access type!\n");
 696	}
 697	if (!status && ocfs2_meta_ecc(osb) && triggers)
 698		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 699	ocfs2_metadata_cache_io_unlock(ci);
 700
 701	if (status < 0)
 702		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 703		     status, type);
 704
 705	return status;
 706}
 707
 708int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 709			    struct buffer_head *bh, int type)
 710{
 711	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 712}
 713
 714int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 715			    struct buffer_head *bh, int type)
 716{
 717	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 718}
 719
 720int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 721			    struct buffer_head *bh, int type)
 722{
 723	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 724				      type);
 725}
 726
 727int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 728			    struct buffer_head *bh, int type)
 729{
 730	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 731}
 732
 733int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 734			    struct buffer_head *bh, int type)
 735{
 736	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 737}
 738
 739int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 740			    struct buffer_head *bh, int type)
 741{
 742	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 743}
 744
 745int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 746			    struct buffer_head *bh, int type)
 747{
 748	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 749}
 750
 751int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 752			    struct buffer_head *bh, int type)
 753{
 754	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 755}
 756
 757int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 758			    struct buffer_head *bh, int type)
 759{
 760	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 761}
 762
 763int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 764			 struct buffer_head *bh, int type)
 765{
 766	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 767}
 768
 769void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 770{
 771	int status;
 772
 773	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 774
 775	status = jbd2_journal_dirty_metadata(handle, bh);
 776	if (status) {
 777		mlog_errno(status);
 778		if (!is_handle_aborted(handle)) {
 779			journal_t *journal = handle->h_transaction->t_journal;
 780
 781			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 782					"Aborting transaction and journal.\n");
 783			handle->h_err = status;
 784			jbd2_journal_abort_handle(handle);
 785			jbd2_journal_abort(journal, status);
 786			ocfs2_abort(bh->b_assoc_map->host->i_sb,
 787				    "Journal already aborted.\n");
 788		}
 789	}
 790}
 791
 792#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 793
 794void ocfs2_set_journal_params(struct ocfs2_super *osb)
 795{
 796	journal_t *journal = osb->journal->j_journal;
 797	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 798
 799	if (osb->osb_commit_interval)
 800		commit_interval = osb->osb_commit_interval;
 801
 802	write_lock(&journal->j_state_lock);
 803	journal->j_commit_interval = commit_interval;
 804	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 805		journal->j_flags |= JBD2_BARRIER;
 806	else
 807		journal->j_flags &= ~JBD2_BARRIER;
 808	write_unlock(&journal->j_state_lock);
 809}
 810
 811/*
 812 * alloc & initialize skeleton for journal structure.
 813 * ocfs2_journal_init() will make fs have journal ability.
 814 */
 815int ocfs2_journal_alloc(struct ocfs2_super *osb)
 816{
 817	int status = 0;
 818	struct ocfs2_journal *journal;
 819
 820	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
 821	if (!journal) {
 822		mlog(ML_ERROR, "unable to alloc journal\n");
 823		status = -ENOMEM;
 824		goto bail;
 825	}
 826	osb->journal = journal;
 827	journal->j_osb = osb;
 828
 829	atomic_set(&journal->j_num_trans, 0);
 830	init_rwsem(&journal->j_trans_barrier);
 831	init_waitqueue_head(&journal->j_checkpointed);
 832	spin_lock_init(&journal->j_lock);
 833	journal->j_trans_id = 1UL;
 834	INIT_LIST_HEAD(&journal->j_la_cleanups);
 835	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
 836	journal->j_state = OCFS2_JOURNAL_FREE;
 837
 838bail:
 839	return status;
 840}
 841
 842static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 843{
 844	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 845	struct writeback_control wbc = {
 846		.sync_mode =  WB_SYNC_ALL,
 847		.nr_to_write = mapping->nrpages * 2,
 848		.range_start = jinode->i_dirty_start,
 849		.range_end = jinode->i_dirty_end,
 850	};
 851
 852	return filemap_fdatawrite_wbc(mapping, &wbc);
 853}
 854
 855int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
 856{
 857	int status = -1;
 858	struct inode *inode = NULL; /* the journal inode */
 859	journal_t *j_journal = NULL;
 860	struct ocfs2_journal *journal = osb->journal;
 861	struct ocfs2_dinode *di = NULL;
 862	struct buffer_head *bh = NULL;
 
 863	int inode_lock = 0;
 864
 865	BUG_ON(!journal);
 
 
 
 866	/* already have the inode for our journal */
 867	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 868					    osb->slot_num);
 869	if (inode == NULL) {
 870		status = -EACCES;
 871		mlog_errno(status);
 872		goto done;
 873	}
 874	if (is_bad_inode(inode)) {
 875		mlog(ML_ERROR, "access error (bad inode)\n");
 876		iput(inode);
 877		inode = NULL;
 878		status = -EACCES;
 879		goto done;
 880	}
 881
 882	SET_INODE_JOURNAL(inode);
 883	OCFS2_I(inode)->ip_open_count++;
 884
 885	/* Skip recovery waits here - journal inode metadata never
 886	 * changes in a live cluster so it can be considered an
 887	 * exception to the rule. */
 888	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 889	if (status < 0) {
 890		if (status != -ERESTARTSYS)
 891			mlog(ML_ERROR, "Could not get lock on journal!\n");
 892		goto done;
 893	}
 894
 895	inode_lock = 1;
 896	di = (struct ocfs2_dinode *)bh->b_data;
 897
 898	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 899		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 900		     i_size_read(inode));
 901		status = -EINVAL;
 902		goto done;
 903	}
 904
 905	trace_ocfs2_journal_init(i_size_read(inode),
 906				 (unsigned long long)inode->i_blocks,
 907				 OCFS2_I(inode)->ip_clusters);
 908
 909	/* call the kernels journal init function now */
 910	j_journal = jbd2_journal_init_inode(inode);
 911	if (IS_ERR(j_journal)) {
 912		mlog(ML_ERROR, "Linux journal layer error\n");
 913		status = PTR_ERR(j_journal);
 914		goto done;
 915	}
 916
 917	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
 918
 919	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 920		  OCFS2_JOURNAL_DIRTY_FL);
 921
 922	journal->j_journal = j_journal;
 923	journal->j_journal->j_submit_inode_data_buffers =
 924		ocfs2_journal_submit_inode_data_buffers;
 925	journal->j_journal->j_finish_inode_data_buffers =
 926		jbd2_journal_finish_inode_data_buffers;
 927	journal->j_inode = inode;
 928	journal->j_bh = bh;
 929
 930	ocfs2_set_journal_params(osb);
 931
 932	journal->j_state = OCFS2_JOURNAL_LOADED;
 933
 934	status = 0;
 935done:
 936	if (status < 0) {
 937		if (inode_lock)
 938			ocfs2_inode_unlock(inode, 1);
 939		brelse(bh);
 940		if (inode) {
 941			OCFS2_I(inode)->ip_open_count--;
 942			iput(inode);
 943		}
 944	}
 945
 946	return status;
 947}
 948
 949static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 950{
 951	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 952}
 953
 954static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 955{
 956	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 957}
 958
 959static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 960				      int dirty, int replayed)
 961{
 962	int status;
 963	unsigned int flags;
 964	struct ocfs2_journal *journal = osb->journal;
 965	struct buffer_head *bh = journal->j_bh;
 966	struct ocfs2_dinode *fe;
 967
 968	fe = (struct ocfs2_dinode *)bh->b_data;
 969
 970	/* The journal bh on the osb always comes from ocfs2_journal_init()
 971	 * and was validated there inside ocfs2_inode_lock_full().  It's a
 972	 * code bug if we mess it up. */
 973	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 974
 975	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 976	if (dirty)
 977		flags |= OCFS2_JOURNAL_DIRTY_FL;
 978	else
 979		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 980	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 981
 982	if (replayed)
 983		ocfs2_bump_recovery_generation(fe);
 984
 985	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 986	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 987	if (status < 0)
 988		mlog_errno(status);
 989
 990	return status;
 991}
 992
 993/*
 994 * If the journal has been kmalloc'd it needs to be freed after this
 995 * call.
 996 */
 997void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 998{
 999	struct ocfs2_journal *journal = NULL;
1000	int status = 0;
1001	struct inode *inode = NULL;
1002	int num_running_trans = 0;
1003
1004	BUG_ON(!osb);
1005
1006	journal = osb->journal;
1007	if (!journal)
1008		goto done;
1009
1010	inode = journal->j_inode;
1011
1012	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1013		goto done;
1014
1015	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1016	if (!igrab(inode))
1017		BUG();
1018
1019	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1020	trace_ocfs2_journal_shutdown(num_running_trans);
1021
1022	/* Do a commit_cache here. It will flush our journal, *and*
1023	 * release any locks that are still held.
1024	 * set the SHUTDOWN flag and release the trans lock.
1025	 * the commit thread will take the trans lock for us below. */
1026	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1027
1028	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1029	 * drop the trans_lock (which we want to hold until we
1030	 * completely destroy the journal. */
1031	if (osb->commit_task) {
1032		/* Wait for the commit thread */
1033		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1034		kthread_stop(osb->commit_task);
1035		osb->commit_task = NULL;
1036	}
1037
1038	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1039
1040	if (ocfs2_mount_local(osb)) {
1041		jbd2_journal_lock_updates(journal->j_journal);
1042		status = jbd2_journal_flush(journal->j_journal, 0);
1043		jbd2_journal_unlock_updates(journal->j_journal);
1044		if (status < 0)
1045			mlog_errno(status);
1046	}
1047
1048	/* Shutdown the kernel journal system */
1049	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1050		/*
1051		 * Do not toggle if flush was unsuccessful otherwise
1052		 * will leave dirty metadata in a "clean" journal
1053		 */
1054		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1055		if (status < 0)
1056			mlog_errno(status);
1057	}
 
 
 
1058	journal->j_journal = NULL;
1059
1060	OCFS2_I(inode)->ip_open_count--;
1061
1062	/* unlock our journal */
1063	ocfs2_inode_unlock(inode, 1);
1064
1065	brelse(journal->j_bh);
1066	journal->j_bh = NULL;
1067
1068	journal->j_state = OCFS2_JOURNAL_FREE;
1069
 
1070done:
1071	iput(inode);
1072	kfree(journal);
1073	osb->journal = NULL;
1074}
1075
1076static void ocfs2_clear_journal_error(struct super_block *sb,
1077				      journal_t *journal,
1078				      int slot)
1079{
1080	int olderr;
1081
1082	olderr = jbd2_journal_errno(journal);
1083	if (olderr) {
1084		mlog(ML_ERROR, "File system error %d recorded in "
1085		     "journal %u.\n", olderr, slot);
1086		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1087		     sb->s_id);
1088
1089		jbd2_journal_ack_err(journal);
1090		jbd2_journal_clear_err(journal);
1091	}
1092}
1093
1094int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1095{
1096	int status = 0;
1097	struct ocfs2_super *osb;
1098
1099	BUG_ON(!journal);
1100
1101	osb = journal->j_osb;
1102
1103	status = jbd2_journal_load(journal->j_journal);
1104	if (status < 0) {
1105		mlog(ML_ERROR, "Failed to load journal!\n");
1106		goto done;
1107	}
1108
1109	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1110
1111	if (replayed) {
1112		jbd2_journal_lock_updates(journal->j_journal);
1113		status = jbd2_journal_flush(journal->j_journal, 0);
1114		jbd2_journal_unlock_updates(journal->j_journal);
1115		if (status < 0)
1116			mlog_errno(status);
1117	}
1118
1119	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1120	if (status < 0) {
1121		mlog_errno(status);
1122		goto done;
1123	}
1124
1125	/* Launch the commit thread */
1126	if (!local) {
1127		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1128				"ocfs2cmt-%s", osb->uuid_str);
1129		if (IS_ERR(osb->commit_task)) {
1130			status = PTR_ERR(osb->commit_task);
1131			osb->commit_task = NULL;
1132			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1133			     "error=%d", status);
1134			goto done;
1135		}
1136	} else
1137		osb->commit_task = NULL;
1138
1139done:
1140	return status;
1141}
1142
1143
1144/* 'full' flag tells us whether we clear out all blocks or if we just
1145 * mark the journal clean */
1146int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1147{
1148	int status;
1149
1150	BUG_ON(!journal);
1151
1152	status = jbd2_journal_wipe(journal->j_journal, full);
1153	if (status < 0) {
1154		mlog_errno(status);
1155		goto bail;
1156	}
1157
1158	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1159	if (status < 0)
1160		mlog_errno(status);
1161
1162bail:
1163	return status;
1164}
1165
1166static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1167{
1168	int empty;
1169	struct ocfs2_recovery_map *rm = osb->recovery_map;
1170
1171	spin_lock(&osb->osb_lock);
1172	empty = (rm->rm_used == 0);
1173	spin_unlock(&osb->osb_lock);
1174
1175	return empty;
1176}
1177
1178void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1179{
1180	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1181}
1182
1183/*
1184 * JBD Might read a cached version of another nodes journal file. We
1185 * don't want this as this file changes often and we get no
1186 * notification on those changes. The only way to be sure that we've
1187 * got the most up to date version of those blocks then is to force
1188 * read them off disk. Just searching through the buffer cache won't
1189 * work as there may be pages backing this file which are still marked
1190 * up to date. We know things can't change on this file underneath us
1191 * as we have the lock by now :)
1192 */
1193static int ocfs2_force_read_journal(struct inode *inode)
1194{
1195	int status = 0;
1196	int i;
1197	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1198	struct buffer_head *bh = NULL;
1199	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 
 
1200
1201	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1202	v_blkno = 0;
1203	while (v_blkno < num_blocks) {
1204		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1205						     &p_blkno, &p_blocks, NULL);
1206		if (status < 0) {
1207			mlog_errno(status);
1208			goto bail;
1209		}
1210
1211		for (i = 0; i < p_blocks; i++, p_blkno++) {
1212			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1213					osb->sb->s_blocksize);
1214			/* block not cached. */
1215			if (!bh)
1216				continue;
1217
1218			brelse(bh);
1219			bh = NULL;
1220			/* We are reading journal data which should not
1221			 * be put in the uptodate cache.
1222			 */
1223			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1224			if (status < 0) {
1225				mlog_errno(status);
1226				goto bail;
1227			}
1228
1229			brelse(bh);
1230			bh = NULL;
 
 
 
 
 
 
 
 
 
 
1231		}
1232
1233		v_blkno += p_blocks;
1234	}
1235
1236bail:
 
 
1237	return status;
1238}
1239
1240struct ocfs2_la_recovery_item {
1241	struct list_head	lri_list;
1242	int			lri_slot;
1243	struct ocfs2_dinode	*lri_la_dinode;
1244	struct ocfs2_dinode	*lri_tl_dinode;
1245	struct ocfs2_quota_recovery *lri_qrec;
1246	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1247};
1248
1249/* Does the second half of the recovery process. By this point, the
1250 * node is marked clean and can actually be considered recovered,
1251 * hence it's no longer in the recovery map, but there's still some
1252 * cleanup we can do which shouldn't happen within the recovery thread
1253 * as locking in that context becomes very difficult if we are to take
1254 * recovering nodes into account.
1255 *
1256 * NOTE: This function can and will sleep on recovery of other nodes
1257 * during cluster locking, just like any other ocfs2 process.
1258 */
1259void ocfs2_complete_recovery(struct work_struct *work)
1260{
1261	int ret = 0;
1262	struct ocfs2_journal *journal =
1263		container_of(work, struct ocfs2_journal, j_recovery_work);
1264	struct ocfs2_super *osb = journal->j_osb;
1265	struct ocfs2_dinode *la_dinode, *tl_dinode;
1266	struct ocfs2_la_recovery_item *item, *n;
1267	struct ocfs2_quota_recovery *qrec;
1268	enum ocfs2_orphan_reco_type orphan_reco_type;
1269	LIST_HEAD(tmp_la_list);
1270
1271	trace_ocfs2_complete_recovery(
1272		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1273
1274	spin_lock(&journal->j_lock);
1275	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1276	spin_unlock(&journal->j_lock);
1277
1278	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1279		list_del_init(&item->lri_list);
1280
1281		ocfs2_wait_on_quotas(osb);
1282
1283		la_dinode = item->lri_la_dinode;
1284		tl_dinode = item->lri_tl_dinode;
1285		qrec = item->lri_qrec;
1286		orphan_reco_type = item->lri_orphan_reco_type;
1287
1288		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1289			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1290			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1291			qrec);
1292
1293		if (la_dinode) {
1294			ret = ocfs2_complete_local_alloc_recovery(osb,
1295								  la_dinode);
1296			if (ret < 0)
1297				mlog_errno(ret);
1298
1299			kfree(la_dinode);
1300		}
1301
1302		if (tl_dinode) {
1303			ret = ocfs2_complete_truncate_log_recovery(osb,
1304								   tl_dinode);
1305			if (ret < 0)
1306				mlog_errno(ret);
1307
1308			kfree(tl_dinode);
1309		}
1310
1311		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1312				orphan_reco_type);
1313		if (ret < 0)
1314			mlog_errno(ret);
1315
1316		if (qrec) {
1317			ret = ocfs2_finish_quota_recovery(osb, qrec,
1318							  item->lri_slot);
1319			if (ret < 0)
1320				mlog_errno(ret);
1321			/* Recovery info is already freed now */
1322		}
1323
1324		kfree(item);
1325	}
1326
1327	trace_ocfs2_complete_recovery_end(ret);
1328}
1329
1330/* NOTE: This function always eats your references to la_dinode and
1331 * tl_dinode, either manually on error, or by passing them to
1332 * ocfs2_complete_recovery */
1333static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1334					    int slot_num,
1335					    struct ocfs2_dinode *la_dinode,
1336					    struct ocfs2_dinode *tl_dinode,
1337					    struct ocfs2_quota_recovery *qrec,
1338					    enum ocfs2_orphan_reco_type orphan_reco_type)
1339{
1340	struct ocfs2_la_recovery_item *item;
1341
1342	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1343	if (!item) {
1344		/* Though we wish to avoid it, we are in fact safe in
1345		 * skipping local alloc cleanup as fsck.ocfs2 is more
1346		 * than capable of reclaiming unused space. */
1347		kfree(la_dinode);
1348		kfree(tl_dinode);
 
 
 
1349
1350		if (qrec)
1351			ocfs2_free_quota_recovery(qrec);
1352
1353		mlog_errno(-ENOMEM);
1354		return;
1355	}
1356
1357	INIT_LIST_HEAD(&item->lri_list);
1358	item->lri_la_dinode = la_dinode;
1359	item->lri_slot = slot_num;
1360	item->lri_tl_dinode = tl_dinode;
1361	item->lri_qrec = qrec;
1362	item->lri_orphan_reco_type = orphan_reco_type;
1363
1364	spin_lock(&journal->j_lock);
1365	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1366	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1367	spin_unlock(&journal->j_lock);
1368}
1369
1370/* Called by the mount code to queue recovery the last part of
1371 * recovery for it's own and offline slot(s). */
1372void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1373{
1374	struct ocfs2_journal *journal = osb->journal;
1375
1376	if (ocfs2_is_hard_readonly(osb))
1377		return;
1378
1379	/* No need to queue up our truncate_log as regular cleanup will catch
1380	 * that */
1381	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1382					osb->local_alloc_copy, NULL, NULL,
1383					ORPHAN_NEED_TRUNCATE);
1384	ocfs2_schedule_truncate_log_flush(osb, 0);
1385
1386	osb->local_alloc_copy = NULL;
 
1387
1388	/* queue to recover orphan slots for all offline slots */
1389	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1390	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1391	ocfs2_free_replay_slots(osb);
1392}
1393
1394void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1395{
1396	if (osb->quota_rec) {
1397		ocfs2_queue_recovery_completion(osb->journal,
1398						osb->slot_num,
1399						NULL,
1400						NULL,
1401						osb->quota_rec,
1402						ORPHAN_NEED_TRUNCATE);
1403		osb->quota_rec = NULL;
1404	}
1405}
1406
1407static int __ocfs2_recovery_thread(void *arg)
1408{
1409	int status, node_num, slot_num;
1410	struct ocfs2_super *osb = arg;
1411	struct ocfs2_recovery_map *rm = osb->recovery_map;
1412	int *rm_quota = NULL;
1413	int rm_quota_used = 0, i;
1414	struct ocfs2_quota_recovery *qrec;
1415
1416	/* Whether the quota supported. */
1417	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1418			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1419		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1420			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1421
1422	status = ocfs2_wait_on_mount(osb);
1423	if (status < 0) {
1424		goto bail;
1425	}
1426
1427	if (quota_enabled) {
1428		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1429		if (!rm_quota) {
1430			status = -ENOMEM;
1431			goto bail;
1432		}
1433	}
1434restart:
1435	status = ocfs2_super_lock(osb, 1);
1436	if (status < 0) {
1437		mlog_errno(status);
1438		goto bail;
1439	}
1440
1441	status = ocfs2_compute_replay_slots(osb);
1442	if (status < 0)
1443		mlog_errno(status);
1444
1445	/* queue recovery for our own slot */
1446	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1447					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1448
1449	spin_lock(&osb->osb_lock);
1450	while (rm->rm_used) {
1451		/* It's always safe to remove entry zero, as we won't
1452		 * clear it until ocfs2_recover_node() has succeeded. */
1453		node_num = rm->rm_entries[0];
1454		spin_unlock(&osb->osb_lock);
1455		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1456		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1457		if (slot_num == -ENOENT) {
1458			status = 0;
1459			goto skip_recovery;
1460		}
1461
1462		/* It is a bit subtle with quota recovery. We cannot do it
1463		 * immediately because we have to obtain cluster locks from
1464		 * quota files and we also don't want to just skip it because
1465		 * then quota usage would be out of sync until some node takes
1466		 * the slot. So we remember which nodes need quota recovery
1467		 * and when everything else is done, we recover quotas. */
1468		if (quota_enabled) {
1469			for (i = 0; i < rm_quota_used
1470					&& rm_quota[i] != slot_num; i++)
1471				;
1472
1473			if (i == rm_quota_used)
1474				rm_quota[rm_quota_used++] = slot_num;
1475		}
1476
1477		status = ocfs2_recover_node(osb, node_num, slot_num);
1478skip_recovery:
1479		if (!status) {
1480			ocfs2_recovery_map_clear(osb, node_num);
1481		} else {
1482			mlog(ML_ERROR,
1483			     "Error %d recovering node %d on device (%u,%u)!\n",
1484			     status, node_num,
1485			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1486			mlog(ML_ERROR, "Volume requires unmount.\n");
1487		}
1488
1489		spin_lock(&osb->osb_lock);
1490	}
1491	spin_unlock(&osb->osb_lock);
1492	trace_ocfs2_recovery_thread_end(status);
1493
1494	/* Refresh all journal recovery generations from disk */
1495	status = ocfs2_check_journals_nolocks(osb);
1496	status = (status == -EROFS) ? 0 : status;
1497	if (status < 0)
1498		mlog_errno(status);
1499
1500	/* Now it is right time to recover quotas... We have to do this under
1501	 * superblock lock so that no one can start using the slot (and crash)
1502	 * before we recover it */
1503	if (quota_enabled) {
1504		for (i = 0; i < rm_quota_used; i++) {
1505			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1506			if (IS_ERR(qrec)) {
1507				status = PTR_ERR(qrec);
1508				mlog_errno(status);
1509				continue;
1510			}
1511			ocfs2_queue_recovery_completion(osb->journal,
1512					rm_quota[i],
1513					NULL, NULL, qrec,
1514					ORPHAN_NEED_TRUNCATE);
1515		}
 
 
1516	}
1517
1518	ocfs2_super_unlock(osb, 1);
1519
1520	/* queue recovery for offline slots */
1521	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1522
1523bail:
1524	mutex_lock(&osb->recovery_lock);
1525	if (!status && !ocfs2_recovery_completed(osb)) {
1526		mutex_unlock(&osb->recovery_lock);
1527		goto restart;
1528	}
1529
1530	ocfs2_free_replay_slots(osb);
1531	osb->recovery_thread_task = NULL;
1532	mb(); /* sync with ocfs2_recovery_thread_running */
1533	wake_up(&osb->recovery_event);
1534
1535	mutex_unlock(&osb->recovery_lock);
1536
1537	if (quota_enabled)
1538		kfree(rm_quota);
1539
 
 
 
 
1540	return status;
1541}
1542
1543void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1544{
1545	mutex_lock(&osb->recovery_lock);
1546
1547	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1548		osb->disable_recovery, osb->recovery_thread_task,
1549		osb->disable_recovery ?
1550		-1 : ocfs2_recovery_map_set(osb, node_num));
1551
1552	if (osb->disable_recovery)
1553		goto out;
1554
1555	if (osb->recovery_thread_task)
1556		goto out;
1557
1558	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1559			"ocfs2rec-%s", osb->uuid_str);
1560	if (IS_ERR(osb->recovery_thread_task)) {
1561		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1562		osb->recovery_thread_task = NULL;
1563	}
1564
1565out:
1566	mutex_unlock(&osb->recovery_lock);
1567	wake_up(&osb->recovery_event);
1568}
1569
1570static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1571				    int slot_num,
1572				    struct buffer_head **bh,
1573				    struct inode **ret_inode)
1574{
1575	int status = -EACCES;
1576	struct inode *inode = NULL;
1577
1578	BUG_ON(slot_num >= osb->max_slots);
1579
1580	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1581					    slot_num);
1582	if (!inode || is_bad_inode(inode)) {
1583		mlog_errno(status);
1584		goto bail;
1585	}
1586	SET_INODE_JOURNAL(inode);
1587
1588	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1589	if (status < 0) {
1590		mlog_errno(status);
1591		goto bail;
1592	}
1593
1594	status = 0;
1595
1596bail:
1597	if (inode) {
1598		if (status || !ret_inode)
1599			iput(inode);
1600		else
1601			*ret_inode = inode;
1602	}
1603	return status;
1604}
1605
1606/* Does the actual journal replay and marks the journal inode as
1607 * clean. Will only replay if the journal inode is marked dirty. */
1608static int ocfs2_replay_journal(struct ocfs2_super *osb,
1609				int node_num,
1610				int slot_num)
1611{
1612	int status;
1613	int got_lock = 0;
1614	unsigned int flags;
1615	struct inode *inode = NULL;
1616	struct ocfs2_dinode *fe;
1617	journal_t *journal = NULL;
1618	struct buffer_head *bh = NULL;
1619	u32 slot_reco_gen;
1620
1621	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1622	if (status) {
1623		mlog_errno(status);
1624		goto done;
1625	}
1626
1627	fe = (struct ocfs2_dinode *)bh->b_data;
1628	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1629	brelse(bh);
1630	bh = NULL;
1631
1632	/*
1633	 * As the fs recovery is asynchronous, there is a small chance that
1634	 * another node mounted (and recovered) the slot before the recovery
1635	 * thread could get the lock. To handle that, we dirty read the journal
1636	 * inode for that slot to get the recovery generation. If it is
1637	 * different than what we expected, the slot has been recovered.
1638	 * If not, it needs recovery.
1639	 */
1640	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1641		trace_ocfs2_replay_journal_recovered(slot_num,
1642		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1643		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1644		status = -EBUSY;
1645		goto done;
1646	}
1647
1648	/* Continue with recovery as the journal has not yet been recovered */
1649
1650	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1651	if (status < 0) {
1652		trace_ocfs2_replay_journal_lock_err(status);
1653		if (status != -ERESTARTSYS)
1654			mlog(ML_ERROR, "Could not lock journal!\n");
1655		goto done;
1656	}
1657	got_lock = 1;
1658
1659	fe = (struct ocfs2_dinode *) bh->b_data;
1660
1661	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1662	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1663
1664	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1665		trace_ocfs2_replay_journal_skip(node_num);
1666		/* Refresh recovery generation for the slot */
1667		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1668		goto done;
1669	}
1670
1671	/* we need to run complete recovery for offline orphan slots */
1672	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1673
1674	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1675	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1676	       MINOR(osb->sb->s_dev));
1677
1678	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1679
1680	status = ocfs2_force_read_journal(inode);
1681	if (status < 0) {
1682		mlog_errno(status);
1683		goto done;
1684	}
1685
1686	journal = jbd2_journal_init_inode(inode);
1687	if (IS_ERR(journal)) {
1688		mlog(ML_ERROR, "Linux journal layer error\n");
1689		status = PTR_ERR(journal);
1690		goto done;
1691	}
1692
1693	status = jbd2_journal_load(journal);
1694	if (status < 0) {
1695		mlog_errno(status);
1696		BUG_ON(!igrab(inode));
 
1697		jbd2_journal_destroy(journal);
1698		goto done;
1699	}
1700
1701	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1702
1703	/* wipe the journal */
1704	jbd2_journal_lock_updates(journal);
1705	status = jbd2_journal_flush(journal, 0);
1706	jbd2_journal_unlock_updates(journal);
1707	if (status < 0)
1708		mlog_errno(status);
1709
1710	/* This will mark the node clean */
1711	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1712	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1713	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1714
1715	/* Increment recovery generation to indicate successful recovery */
1716	ocfs2_bump_recovery_generation(fe);
1717	osb->slot_recovery_generations[slot_num] =
1718					ocfs2_get_recovery_generation(fe);
1719
1720	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1721	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1722	if (status < 0)
1723		mlog_errno(status);
1724
1725	BUG_ON(!igrab(inode));
 
1726
1727	jbd2_journal_destroy(journal);
1728
1729	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1730	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1731	       MINOR(osb->sb->s_dev));
1732done:
1733	/* drop the lock on this nodes journal */
1734	if (got_lock)
1735		ocfs2_inode_unlock(inode, 1);
1736
1737	iput(inode);
 
 
1738	brelse(bh);
1739
1740	return status;
1741}
1742
1743/*
1744 * Do the most important parts of node recovery:
1745 *  - Replay it's journal
1746 *  - Stamp a clean local allocator file
1747 *  - Stamp a clean truncate log
1748 *  - Mark the node clean
1749 *
1750 * If this function completes without error, a node in OCFS2 can be
1751 * said to have been safely recovered. As a result, failure during the
1752 * second part of a nodes recovery process (local alloc recovery) is
1753 * far less concerning.
1754 */
1755static int ocfs2_recover_node(struct ocfs2_super *osb,
1756			      int node_num, int slot_num)
1757{
1758	int status = 0;
1759	struct ocfs2_dinode *la_copy = NULL;
1760	struct ocfs2_dinode *tl_copy = NULL;
1761
1762	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1763
1764	/* Should not ever be called to recover ourselves -- in that
1765	 * case we should've called ocfs2_journal_load instead. */
1766	BUG_ON(osb->node_num == node_num);
1767
1768	status = ocfs2_replay_journal(osb, node_num, slot_num);
1769	if (status < 0) {
1770		if (status == -EBUSY) {
1771			trace_ocfs2_recover_node_skip(slot_num, node_num);
1772			status = 0;
1773			goto done;
1774		}
1775		mlog_errno(status);
1776		goto done;
1777	}
1778
1779	/* Stamp a clean local alloc file AFTER recovering the journal... */
1780	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1781	if (status < 0) {
1782		mlog_errno(status);
1783		goto done;
1784	}
1785
1786	/* An error from begin_truncate_log_recovery is not
1787	 * serious enough to warrant halting the rest of
1788	 * recovery. */
1789	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1790	if (status < 0)
1791		mlog_errno(status);
1792
1793	/* Likewise, this would be a strange but ultimately not so
1794	 * harmful place to get an error... */
1795	status = ocfs2_clear_slot(osb, slot_num);
1796	if (status < 0)
1797		mlog_errno(status);
1798
1799	/* This will kfree the memory pointed to by la_copy and tl_copy */
1800	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1801					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1802
1803	status = 0;
1804done:
1805
1806	return status;
1807}
1808
1809/* Test node liveness by trylocking his journal. If we get the lock,
1810 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1811 * still alive (we couldn't get the lock) and < 0 on error. */
1812static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1813				 int slot_num)
1814{
1815	int status, flags;
1816	struct inode *inode = NULL;
1817
1818	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1819					    slot_num);
1820	if (inode == NULL) {
1821		mlog(ML_ERROR, "access error\n");
1822		status = -EACCES;
1823		goto bail;
1824	}
1825	if (is_bad_inode(inode)) {
1826		mlog(ML_ERROR, "access error (bad inode)\n");
1827		iput(inode);
1828		inode = NULL;
1829		status = -EACCES;
1830		goto bail;
1831	}
1832	SET_INODE_JOURNAL(inode);
1833
1834	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1835	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1836	if (status < 0) {
1837		if (status != -EAGAIN)
1838			mlog_errno(status);
1839		goto bail;
1840	}
1841
1842	ocfs2_inode_unlock(inode, 1);
1843bail:
1844	iput(inode);
 
1845
1846	return status;
1847}
1848
1849/* Call this underneath ocfs2_super_lock. It also assumes that the
1850 * slot info struct has been updated from disk. */
1851int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1852{
1853	unsigned int node_num;
1854	int status, i;
1855	u32 gen;
1856	struct buffer_head *bh = NULL;
1857	struct ocfs2_dinode *di;
1858
1859	/* This is called with the super block cluster lock, so we
1860	 * know that the slot map can't change underneath us. */
1861
1862	for (i = 0; i < osb->max_slots; i++) {
1863		/* Read journal inode to get the recovery generation */
1864		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1865		if (status) {
1866			mlog_errno(status);
1867			goto bail;
1868		}
1869		di = (struct ocfs2_dinode *)bh->b_data;
1870		gen = ocfs2_get_recovery_generation(di);
1871		brelse(bh);
1872		bh = NULL;
1873
1874		spin_lock(&osb->osb_lock);
1875		osb->slot_recovery_generations[i] = gen;
1876
1877		trace_ocfs2_mark_dead_nodes(i,
1878					    osb->slot_recovery_generations[i]);
1879
1880		if (i == osb->slot_num) {
1881			spin_unlock(&osb->osb_lock);
1882			continue;
1883		}
1884
1885		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1886		if (status == -ENOENT) {
1887			spin_unlock(&osb->osb_lock);
1888			continue;
1889		}
1890
1891		if (__ocfs2_recovery_map_test(osb, node_num)) {
1892			spin_unlock(&osb->osb_lock);
1893			continue;
1894		}
1895		spin_unlock(&osb->osb_lock);
1896
1897		/* Ok, we have a slot occupied by another node which
1898		 * is not in the recovery map. We trylock his journal
1899		 * file here to test if he's alive. */
1900		status = ocfs2_trylock_journal(osb, i);
1901		if (!status) {
1902			/* Since we're called from mount, we know that
1903			 * the recovery thread can't race us on
1904			 * setting / checking the recovery bits. */
1905			ocfs2_recovery_thread(osb, node_num);
1906		} else if ((status < 0) && (status != -EAGAIN)) {
1907			mlog_errno(status);
1908			goto bail;
1909		}
1910	}
1911
1912	status = 0;
1913bail:
1914	return status;
1915}
1916
1917/*
1918 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1919 * randomness to the timeout to minimize multple nodes firing the timer at the
1920 * same time.
1921 */
1922static inline unsigned long ocfs2_orphan_scan_timeout(void)
1923{
1924	unsigned long time;
1925
1926	get_random_bytes(&time, sizeof(time));
1927	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1928	return msecs_to_jiffies(time);
1929}
1930
1931/*
1932 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1933 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1934 * is done to catch any orphans that are left over in orphan directories.
1935 *
1936 * It scans all slots, even ones that are in use. It does so to handle the
1937 * case described below:
1938 *
1939 *   Node 1 has an inode it was using. The dentry went away due to memory
1940 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1941 *   has the open lock.
1942 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1943 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1944 *   open lock, sees that another node has a PR, and does nothing.
1945 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1946 *   open lock, sees the PR still, and does nothing.
1947 *   Basically, we have to trigger an orphan iput on node 1. The only way
1948 *   for this to happen is if node 1 runs node 2's orphan dir.
1949 *
1950 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1951 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1952 * stored in LVB. If the sequence number has changed, it means some other
1953 * node has done the scan.  This node skips the scan and tracks the
1954 * sequence number.  If the sequence number didn't change, it means a scan
1955 * hasn't happened.  The node queues a scan and increments the
1956 * sequence number in the LVB.
1957 */
1958static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1959{
1960	struct ocfs2_orphan_scan *os;
1961	int status, i;
1962	u32 seqno = 0;
1963
1964	os = &osb->osb_orphan_scan;
1965
1966	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1967		goto out;
1968
1969	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1970					    atomic_read(&os->os_state));
1971
1972	status = ocfs2_orphan_scan_lock(osb, &seqno);
1973	if (status < 0) {
1974		if (status != -EAGAIN)
1975			mlog_errno(status);
1976		goto out;
1977	}
1978
1979	/* Do no queue the tasks if the volume is being umounted */
1980	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1981		goto unlock;
1982
1983	if (os->os_seqno != seqno) {
1984		os->os_seqno = seqno;
1985		goto unlock;
1986	}
1987
1988	for (i = 0; i < osb->max_slots; i++)
1989		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1990						NULL, ORPHAN_NO_NEED_TRUNCATE);
1991	/*
1992	 * We queued a recovery on orphan slots, increment the sequence
1993	 * number and update LVB so other node will skip the scan for a while
1994	 */
1995	seqno++;
1996	os->os_count++;
1997	os->os_scantime = ktime_get_seconds();
1998unlock:
1999	ocfs2_orphan_scan_unlock(osb, seqno);
2000out:
2001	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2002					  atomic_read(&os->os_state));
2003	return;
2004}
2005
2006/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2007static void ocfs2_orphan_scan_work(struct work_struct *work)
2008{
2009	struct ocfs2_orphan_scan *os;
2010	struct ocfs2_super *osb;
2011
2012	os = container_of(work, struct ocfs2_orphan_scan,
2013			  os_orphan_scan_work.work);
2014	osb = os->os_osb;
2015
2016	mutex_lock(&os->os_lock);
2017	ocfs2_queue_orphan_scan(osb);
2018	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2019		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2020				      ocfs2_orphan_scan_timeout());
2021	mutex_unlock(&os->os_lock);
2022}
2023
2024void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2025{
2026	struct ocfs2_orphan_scan *os;
2027
2028	os = &osb->osb_orphan_scan;
2029	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2030		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2031		mutex_lock(&os->os_lock);
2032		cancel_delayed_work(&os->os_orphan_scan_work);
2033		mutex_unlock(&os->os_lock);
2034	}
2035}
2036
2037void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2038{
2039	struct ocfs2_orphan_scan *os;
2040
2041	os = &osb->osb_orphan_scan;
2042	os->os_osb = osb;
2043	os->os_count = 0;
2044	os->os_seqno = 0;
2045	mutex_init(&os->os_lock);
2046	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2047}
2048
2049void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2050{
2051	struct ocfs2_orphan_scan *os;
2052
2053	os = &osb->osb_orphan_scan;
2054	os->os_scantime = ktime_get_seconds();
2055	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2056		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2057	else {
2058		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2059		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060				   ocfs2_orphan_scan_timeout());
2061	}
2062}
2063
2064struct ocfs2_orphan_filldir_priv {
2065	struct dir_context	ctx;
2066	struct inode		*head;
2067	struct ocfs2_super	*osb;
2068	enum ocfs2_orphan_reco_type orphan_reco_type;
2069};
2070
2071static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2072				int name_len, loff_t pos, u64 ino,
2073				unsigned type)
2074{
2075	struct ocfs2_orphan_filldir_priv *p =
2076		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2077	struct inode *iter;
2078
2079	if (name_len == 1 && !strncmp(".", name, 1))
2080		return true;
2081	if (name_len == 2 && !strncmp("..", name, 2))
2082		return true;
2083
2084	/* do not include dio entry in case of orphan scan */
2085	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2086			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2087			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2088		return true;
2089
2090	/* Skip bad inodes so that recovery can continue */
2091	iter = ocfs2_iget(p->osb, ino,
2092			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2093	if (IS_ERR(iter))
2094		return true;
2095
2096	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2097			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2098		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2099
2100	/* Skip inodes which are already added to recover list, since dio may
2101	 * happen concurrently with unlink/rename */
2102	if (OCFS2_I(iter)->ip_next_orphan) {
2103		iput(iter);
2104		return true;
2105	}
2106
2107	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2108	/* No locking is required for the next_orphan queue as there
2109	 * is only ever a single process doing orphan recovery. */
2110	OCFS2_I(iter)->ip_next_orphan = p->head;
2111	p->head = iter;
2112
2113	return true;
2114}
2115
2116static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2117			       int slot,
2118			       struct inode **head,
2119			       enum ocfs2_orphan_reco_type orphan_reco_type)
2120{
2121	int status;
2122	struct inode *orphan_dir_inode = NULL;
2123	struct ocfs2_orphan_filldir_priv priv = {
2124		.ctx.actor = ocfs2_orphan_filldir,
2125		.osb = osb,
2126		.head = *head,
2127		.orphan_reco_type = orphan_reco_type
2128	};
2129
2130	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2131						       ORPHAN_DIR_SYSTEM_INODE,
2132						       slot);
2133	if  (!orphan_dir_inode) {
2134		status = -ENOENT;
2135		mlog_errno(status);
2136		return status;
2137	}
2138
2139	inode_lock(orphan_dir_inode);
2140	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2141	if (status < 0) {
2142		mlog_errno(status);
2143		goto out;
2144	}
2145
2146	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
 
2147	if (status) {
2148		mlog_errno(status);
2149		goto out_cluster;
2150	}
2151
2152	*head = priv.head;
2153
2154out_cluster:
2155	ocfs2_inode_unlock(orphan_dir_inode, 0);
2156out:
2157	inode_unlock(orphan_dir_inode);
2158	iput(orphan_dir_inode);
2159	return status;
2160}
2161
2162static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2163					      int slot)
2164{
2165	int ret;
2166
2167	spin_lock(&osb->osb_lock);
2168	ret = !osb->osb_orphan_wipes[slot];
2169	spin_unlock(&osb->osb_lock);
2170	return ret;
2171}
2172
2173static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2174					     int slot)
2175{
2176	spin_lock(&osb->osb_lock);
2177	/* Mark ourselves such that new processes in delete_inode()
2178	 * know to quit early. */
2179	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2180	while (osb->osb_orphan_wipes[slot]) {
2181		/* If any processes are already in the middle of an
2182		 * orphan wipe on this dir, then we need to wait for
2183		 * them. */
2184		spin_unlock(&osb->osb_lock);
2185		wait_event_interruptible(osb->osb_wipe_event,
2186					 ocfs2_orphan_recovery_can_continue(osb, slot));
2187		spin_lock(&osb->osb_lock);
2188	}
2189	spin_unlock(&osb->osb_lock);
2190}
2191
2192static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2193					      int slot)
2194{
2195	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2196}
2197
2198/*
2199 * Orphan recovery. Each mounted node has it's own orphan dir which we
2200 * must run during recovery. Our strategy here is to build a list of
2201 * the inodes in the orphan dir and iget/iput them. The VFS does
2202 * (most) of the rest of the work.
2203 *
2204 * Orphan recovery can happen at any time, not just mount so we have a
2205 * couple of extra considerations.
2206 *
2207 * - We grab as many inodes as we can under the orphan dir lock -
2208 *   doing iget() outside the orphan dir risks getting a reference on
2209 *   an invalid inode.
2210 * - We must be sure not to deadlock with other processes on the
2211 *   system wanting to run delete_inode(). This can happen when they go
2212 *   to lock the orphan dir and the orphan recovery process attempts to
2213 *   iget() inside the orphan dir lock. This can be avoided by
2214 *   advertising our state to ocfs2_delete_inode().
2215 */
2216static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2217				 int slot,
2218				 enum ocfs2_orphan_reco_type orphan_reco_type)
2219{
2220	int ret = 0;
2221	struct inode *inode = NULL;
2222	struct inode *iter;
2223	struct ocfs2_inode_info *oi;
2224	struct buffer_head *di_bh = NULL;
2225	struct ocfs2_dinode *di = NULL;
2226
2227	trace_ocfs2_recover_orphans(slot);
2228
2229	ocfs2_mark_recovering_orphan_dir(osb, slot);
2230	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2231	ocfs2_clear_recovering_orphan_dir(osb, slot);
2232
2233	/* Error here should be noted, but we want to continue with as
2234	 * many queued inodes as we've got. */
2235	if (ret)
2236		mlog_errno(ret);
2237
2238	while (inode) {
2239		oi = OCFS2_I(inode);
2240		trace_ocfs2_recover_orphans_iput(
2241					(unsigned long long)oi->ip_blkno);
2242
2243		iter = oi->ip_next_orphan;
2244		oi->ip_next_orphan = NULL;
2245
2246		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2247			inode_lock(inode);
2248			ret = ocfs2_rw_lock(inode, 1);
2249			if (ret < 0) {
2250				mlog_errno(ret);
2251				goto unlock_mutex;
2252			}
2253			/*
2254			 * We need to take and drop the inode lock to
2255			 * force read inode from disk.
2256			 */
2257			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2258			if (ret) {
2259				mlog_errno(ret);
2260				goto unlock_rw;
2261			}
2262
2263			di = (struct ocfs2_dinode *)di_bh->b_data;
2264
2265			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2266				ret = ocfs2_truncate_file(inode, di_bh,
2267						i_size_read(inode));
2268				if (ret < 0) {
2269					if (ret != -ENOSPC)
2270						mlog_errno(ret);
2271					goto unlock_inode;
2272				}
2273
2274				ret = ocfs2_del_inode_from_orphan(osb, inode,
2275						di_bh, 0, 0);
2276				if (ret)
2277					mlog_errno(ret);
2278			}
2279unlock_inode:
2280			ocfs2_inode_unlock(inode, 1);
2281			brelse(di_bh);
2282			di_bh = NULL;
2283unlock_rw:
2284			ocfs2_rw_unlock(inode, 1);
2285unlock_mutex:
2286			inode_unlock(inode);
2287
2288			/* clear dio flag in ocfs2_inode_info */
2289			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2290		} else {
2291			spin_lock(&oi->ip_lock);
2292			/* Set the proper information to get us going into
2293			 * ocfs2_delete_inode. */
2294			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2295			spin_unlock(&oi->ip_lock);
2296		}
2297
2298		iput(inode);
2299		inode = iter;
2300	}
2301
2302	return ret;
2303}
2304
2305static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2306{
2307	/* This check is good because ocfs2 will wait on our recovery
2308	 * thread before changing it to something other than MOUNTED
2309	 * or DISABLED. */
2310	wait_event(osb->osb_mount_event,
2311		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2312		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2313		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2314
2315	/* If there's an error on mount, then we may never get to the
2316	 * MOUNTED flag, but this is set right before
2317	 * dismount_volume() so we can trust it. */
2318	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2319		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2320		mlog(0, "mount error, exiting!\n");
2321		return -EBUSY;
2322	}
2323
2324	return 0;
2325}
2326
2327static int ocfs2_commit_thread(void *arg)
2328{
2329	int status;
2330	struct ocfs2_super *osb = arg;
2331	struct ocfs2_journal *journal = osb->journal;
2332
2333	/* we can trust j_num_trans here because _should_stop() is only set in
2334	 * shutdown and nobody other than ourselves should be able to start
2335	 * transactions.  committing on shutdown might take a few iterations
2336	 * as final transactions put deleted inodes on the list */
2337	while (!(kthread_should_stop() &&
2338		 atomic_read(&journal->j_num_trans) == 0)) {
2339
2340		wait_event_interruptible(osb->checkpoint_event,
2341					 atomic_read(&journal->j_num_trans)
2342					 || kthread_should_stop());
2343
2344		status = ocfs2_commit_cache(osb);
2345		if (status < 0) {
2346			static unsigned long abort_warn_time;
2347
2348			/* Warn about this once per minute */
2349			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2350				mlog(ML_ERROR, "status = %d, journal is "
2351						"already aborted.\n", status);
2352			/*
2353			 * After ocfs2_commit_cache() fails, j_num_trans has a
2354			 * non-zero value.  Sleep here to avoid a busy-wait
2355			 * loop.
2356			 */
2357			msleep_interruptible(1000);
2358		}
2359
2360		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2361			mlog(ML_KTHREAD,
2362			     "commit_thread: %u transactions pending on "
2363			     "shutdown\n",
2364			     atomic_read(&journal->j_num_trans));
2365		}
2366	}
2367
2368	return 0;
2369}
2370
2371/* Reads all the journal inodes without taking any cluster locks. Used
2372 * for hard readonly access to determine whether any journal requires
2373 * recovery. Also used to refresh the recovery generation numbers after
2374 * a journal has been recovered by another node.
2375 */
2376int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2377{
2378	int ret = 0;
2379	unsigned int slot;
2380	struct buffer_head *di_bh = NULL;
2381	struct ocfs2_dinode *di;
2382	int journal_dirty = 0;
2383
2384	for(slot = 0; slot < osb->max_slots; slot++) {
2385		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2386		if (ret) {
2387			mlog_errno(ret);
2388			goto out;
2389		}
2390
2391		di = (struct ocfs2_dinode *) di_bh->b_data;
2392
2393		osb->slot_recovery_generations[slot] =
2394					ocfs2_get_recovery_generation(di);
2395
2396		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2397		    OCFS2_JOURNAL_DIRTY_FL)
2398			journal_dirty = 1;
2399
2400		brelse(di_bh);
2401		di_bh = NULL;
2402	}
2403
2404out:
2405	if (journal_dirty)
2406		ret = -EROFS;
2407	return ret;
2408}