Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * JFFS2 -- Journalling Flash File System, Version 2.
  3 *
  4 * Copyright © 2001-2007 Red Hat, Inc.
  5 *
  6 * Created by David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * For licensing information, see the file 'LICENCE' in this directory.
  9 *
 10 */
 11
 
 
 12#include <linux/kernel.h>
 13#include <linux/mtd/mtd.h>
 14#include <linux/compiler.h>
 15#include <linux/sched.h> /* For cond_resched() */
 
 16#include "nodelist.h"
 17#include "debug.h"
 18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19/**
 20 *	jffs2_reserve_space - request physical space to write nodes to flash
 21 *	@c: superblock info
 22 *	@minsize: Minimum acceptable size of allocation
 23 *	@len: Returned value of allocation length
 24 *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 
 
 
 25 *
 26 *	Requests a block of physical space on the flash. Returns zero for success
 27 *	and puts 'len' into the appropriate place, or returns -ENOSPC or other 
 28 *	error if appropriate. Doesn't return len since that's 
 29 *
 30 *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
 31 *	allocation semaphore, to prevent more than one allocation from being
 32 *	active at any time. The semaphore is later released by jffs2_commit_allocation()
 33 *
 34 *	jffs2_reserve_space() may trigger garbage collection in order to make room
 35 *	for the requested allocation.
 36 */
 37
 38static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
 39				  uint32_t *len, uint32_t sumsize);
 40
 41int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 42			uint32_t *len, int prio, uint32_t sumsize)
 43{
 44	int ret = -EAGAIN;
 45	int blocksneeded = c->resv_blocks_write;
 46	/* align it */
 47	minsize = PAD(minsize);
 48
 49	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
 50	mutex_lock(&c->alloc_sem);
 51
 52	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
 53
 54	spin_lock(&c->erase_completion_lock);
 55
 
 
 
 
 
 
 
 
 
 56	/* this needs a little more thought (true <tglx> :)) */
 57	while(ret == -EAGAIN) {
 58		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
 59			uint32_t dirty, avail;
 60
 61			/* calculate real dirty size
 62			 * dirty_size contains blocks on erase_pending_list
 63			 * those blocks are counted in c->nr_erasing_blocks.
 64			 * If one block is actually erased, it is not longer counted as dirty_space
 65			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 66			 * with c->nr_erasing_blocks * c->sector_size again.
 67			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 68			 * This helps us to force gc and pick eventually a clean block to spread the load.
 69			 * We add unchecked_size here, as we hopefully will find some space to use.
 70			 * This will affect the sum only once, as gc first finishes checking
 71			 * of nodes.
 72			 */
 73			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
 74			if (dirty < c->nospc_dirty_size) {
 75				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 76					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
 
 77					break;
 78				}
 79				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
 80					  dirty, c->unchecked_size, c->sector_size));
 
 81
 82				spin_unlock(&c->erase_completion_lock);
 83				mutex_unlock(&c->alloc_sem);
 84				return -ENOSPC;
 85			}
 86
 87			/* Calc possibly available space. Possibly available means that we
 88			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
 89			 * more usable space. This will affect the sum only once, as gc first finishes checking
 90			 * of nodes.
 91			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
 92			 * blocksneeded * sector_size.
 93			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
 94			 * the check above passes.
 95			 */
 96			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
 97			if ( (avail / c->sector_size) <= blocksneeded) {
 98				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 99					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
 
100					break;
101				}
102
103				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104					  avail, blocksneeded * c->sector_size));
105				spin_unlock(&c->erase_completion_lock);
106				mutex_unlock(&c->alloc_sem);
107				return -ENOSPC;
108			}
109
110			mutex_unlock(&c->alloc_sem);
111
112			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
 
 
 
 
 
115			spin_unlock(&c->erase_completion_lock);
116
117			ret = jffs2_garbage_collect_pass(c);
118
119			if (ret == -EAGAIN) {
120				spin_lock(&c->erase_completion_lock);
121				if (c->nr_erasing_blocks &&
122				    list_empty(&c->erase_pending_list) &&
123				    list_empty(&c->erase_complete_list)) {
124					DECLARE_WAITQUEUE(wait, current);
125					set_current_state(TASK_UNINTERRUPTIBLE);
126					add_wait_queue(&c->erase_wait, &wait);
127					D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__));
 
128					spin_unlock(&c->erase_completion_lock);
129
130					schedule();
 
131				} else
132					spin_unlock(&c->erase_completion_lock);
133			} else if (ret)
134				return ret;
135
136			cond_resched();
137
138			if (signal_pending(current))
139				return -EINTR;
140
141			mutex_lock(&c->alloc_sem);
142			spin_lock(&c->erase_completion_lock);
143		}
144
145		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146		if (ret) {
147			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
148		}
149	}
 
 
150	spin_unlock(&c->erase_completion_lock);
151	if (!ret)
152		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
153	if (ret)
154		mutex_unlock(&c->alloc_sem);
155	return ret;
156}
157
158int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
159			   uint32_t *len, uint32_t sumsize)
160{
161	int ret = -EAGAIN;
162	minsize = PAD(minsize);
163
164	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
165
166	spin_lock(&c->erase_completion_lock);
167	while(ret == -EAGAIN) {
168		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169		if (ret) {
170			D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
 
171		}
 
 
 
 
 
 
172	}
173	spin_unlock(&c->erase_completion_lock);
174	if (!ret)
175		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
176
177	return ret;
178}
179
180
181/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
182
183static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
184{
185
186	if (c->nextblock == NULL) {
187		D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
188		  jeb->offset));
189		return;
190	}
191	/* Check, if we have a dirty block now, or if it was dirty already */
192	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
193		c->dirty_size += jeb->wasted_size;
194		c->wasted_size -= jeb->wasted_size;
195		jeb->dirty_size += jeb->wasted_size;
196		jeb->wasted_size = 0;
197		if (VERYDIRTY(c, jeb->dirty_size)) {
198			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 
200			list_add_tail(&jeb->list, &c->very_dirty_list);
201		} else {
202			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 
204			list_add_tail(&jeb->list, &c->dirty_list);
205		}
206	} else {
207		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 
209		list_add_tail(&jeb->list, &c->clean_list);
210	}
211	c->nextblock = NULL;
212
213}
214
215/* Select a new jeb for nextblock */
216
217static int jffs2_find_nextblock(struct jffs2_sb_info *c)
218{
219	struct list_head *next;
220
221	/* Take the next block off the 'free' list */
222
223	if (list_empty(&c->free_list)) {
224
225		if (!c->nr_erasing_blocks &&
226			!list_empty(&c->erasable_list)) {
227			struct jffs2_eraseblock *ejeb;
228
229			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
230			list_move_tail(&ejeb->list, &c->erase_pending_list);
231			c->nr_erasing_blocks++;
232			jffs2_garbage_collect_trigger(c);
233			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
234				  ejeb->offset));
235		}
236
237		if (!c->nr_erasing_blocks &&
238			!list_empty(&c->erasable_pending_wbuf_list)) {
239			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
 
240			/* c->nextblock is NULL, no update to c->nextblock allowed */
241			spin_unlock(&c->erase_completion_lock);
242			jffs2_flush_wbuf_pad(c);
243			spin_lock(&c->erase_completion_lock);
244			/* Have another go. It'll be on the erasable_list now */
245			return -EAGAIN;
246		}
247
248		if (!c->nr_erasing_blocks) {
249			/* Ouch. We're in GC, or we wouldn't have got here.
250			   And there's no space left. At all. */
251			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
253				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
 
 
254			return -ENOSPC;
255		}
256
257		spin_unlock(&c->erase_completion_lock);
258		/* Don't wait for it; just erase one right now */
259		jffs2_erase_pending_blocks(c, 1);
260		spin_lock(&c->erase_completion_lock);
261
262		/* An erase may have failed, decreasing the
263		   amount of free space available. So we must
264		   restart from the beginning */
265		return -EAGAIN;
266	}
267
268	next = c->free_list.next;
269	list_del(next);
270	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
271	c->nr_free_blocks--;
272
273	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
274
275#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
276	/* adjust write buffer offset, else we get a non contiguous write bug */
277	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
278		c->wbuf_ofs = 0xffffffff;
279#endif
280
281	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
 
282
283	return 0;
284}
285
286/* Called with alloc sem _and_ erase_completion_lock */
287static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
288				  uint32_t *len, uint32_t sumsize)
289{
290	struct jffs2_eraseblock *jeb = c->nextblock;
291	uint32_t reserved_size;				/* for summary information at the end of the jeb */
292	int ret;
293
294 restart:
295	reserved_size = 0;
296
297	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
298							/* NOSUM_SIZE means not to generate summary */
299
300		if (jeb) {
301			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
302			dbg_summary("minsize=%d , jeb->free=%d ,"
303						"summary->size=%d , sumsize=%d\n",
304						minsize, jeb->free_size,
305						c->summary->sum_size, sumsize);
306		}
307
308		/* Is there enough space for writing out the current node, or we have to
309		   write out summary information now, close this jeb and select new nextblock? */
310		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
311					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
312
313			/* Has summary been disabled for this jeb? */
314			if (jffs2_sum_is_disabled(c->summary)) {
315				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
316				goto restart;
317			}
318
319			/* Writing out the collected summary information */
320			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
321			ret = jffs2_sum_write_sumnode(c);
322
323			if (ret)
324				return ret;
325
326			if (jffs2_sum_is_disabled(c->summary)) {
327				/* jffs2_write_sumnode() couldn't write out the summary information
328				   diabling summary for this jeb and free the collected information
329				 */
330				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
331				goto restart;
332			}
333
334			jffs2_close_nextblock(c, jeb);
335			jeb = NULL;
336			/* keep always valid value in reserved_size */
337			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
338		}
339	} else {
340		if (jeb && minsize > jeb->free_size) {
341			uint32_t waste;
342
343			/* Skip the end of this block and file it as having some dirty space */
344			/* If there's a pending write to it, flush now */
345
346			if (jffs2_wbuf_dirty(c)) {
347				spin_unlock(&c->erase_completion_lock);
348				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
 
349				jffs2_flush_wbuf_pad(c);
350				spin_lock(&c->erase_completion_lock);
351				jeb = c->nextblock;
352				goto restart;
353			}
354
355			spin_unlock(&c->erase_completion_lock);
356
357			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
358			if (ret)
359				return ret;
360			/* Just lock it again and continue. Nothing much can change because
361			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
362			   we hold c->erase_completion_lock in the majority of this function...
363			   but that's a question for another (more caffeine-rich) day. */
364			spin_lock(&c->erase_completion_lock);
365
 
 
 
366			waste = jeb->free_size;
367			jffs2_link_node_ref(c, jeb,
368					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
369					    waste, NULL);
370			/* FIXME: that made it count as dirty. Convert to wasted */
371			jeb->dirty_size -= waste;
372			c->dirty_size -= waste;
373			jeb->wasted_size += waste;
374			c->wasted_size += waste;
375
376			jffs2_close_nextblock(c, jeb);
377			jeb = NULL;
378		}
379	}
380
381	if (!jeb) {
382
383		ret = jffs2_find_nextblock(c);
384		if (ret)
385			return ret;
386
387		jeb = c->nextblock;
388
389		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
 
391			goto restart;
392		}
393	}
394	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
395	   enough space */
396	*len = jeb->free_size - reserved_size;
397
398	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
399	    !jeb->first_node->next_in_ino) {
400		/* Only node in it beforehand was a CLEANMARKER node (we think).
401		   So mark it obsolete now that there's going to be another node
402		   in the block. This will reduce used_size to zero but We've
403		   already set c->nextblock so that jffs2_mark_node_obsolete()
404		   won't try to refile it to the dirty_list.
405		*/
406		spin_unlock(&c->erase_completion_lock);
407		jffs2_mark_node_obsolete(c, jeb->first_node);
408		spin_lock(&c->erase_completion_lock);
409	}
410
411	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
412		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
 
413	return 0;
414}
415
416/**
417 *	jffs2_add_physical_node_ref - add a physical node reference to the list
418 *	@c: superblock info
419 *	@new: new node reference to add
420 *	@len: length of this physical node
 
421 *
422 *	Should only be used to report nodes for which space has been allocated
423 *	by jffs2_reserve_space.
424 *
425 *	Must be called with the alloc_sem held.
 
 
426 */
427
428struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
429						       uint32_t ofs, uint32_t len,
430						       struct jffs2_inode_cache *ic)
431{
432	struct jffs2_eraseblock *jeb;
433	struct jffs2_raw_node_ref *new;
434
435	jeb = &c->blocks[ofs / c->sector_size];
436
437	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
438		  ofs & ~3, ofs & 3, len));
439#if 1
440	/* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
441	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442	   even after refiling c->nextblock */
443	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445		printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
 
446		if (c->nextblock)
447			printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
448		else
449			printk(KERN_WARNING "No nextblock");
450		printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
 
451		return ERR_PTR(-EINVAL);
452	}
453#endif
454	spin_lock(&c->erase_completion_lock);
455
456	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
457
458	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 
462		if (jffs2_wbuf_dirty(c)) {
463			/* Flush the last write in the block if it's outstanding */
464			spin_unlock(&c->erase_completion_lock);
465			jffs2_flush_wbuf_pad(c);
466			spin_lock(&c->erase_completion_lock);
467		}
468
469		list_add_tail(&jeb->list, &c->clean_list);
470		c->nextblock = NULL;
471	}
472	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
473	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
474
475	spin_unlock(&c->erase_completion_lock);
476
477	return new;
478}
479
480
481void jffs2_complete_reservation(struct jffs2_sb_info *c)
482{
483	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
484	spin_lock(&c->erase_completion_lock);
485	jffs2_garbage_collect_trigger(c);
486	spin_unlock(&c->erase_completion_lock);
487	mutex_unlock(&c->alloc_sem);
488}
489
490static inline int on_list(struct list_head *obj, struct list_head *head)
491{
492	struct list_head *this;
493
494	list_for_each(this, head) {
495		if (this == obj) {
496			D1(printk("%p is on list at %p\n", obj, head));
497			return 1;
498
499		}
500	}
501	return 0;
502}
503
504void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
505{
506	struct jffs2_eraseblock *jeb;
507	int blocknr;
508	struct jffs2_unknown_node n;
509	int ret, addedsize;
510	size_t retlen;
511	uint32_t freed_len;
512
513	if(unlikely(!ref)) {
514		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
515		return;
516	}
517	if (ref_obsolete(ref)) {
518		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
 
519		return;
520	}
521	blocknr = ref->flash_offset / c->sector_size;
522	if (blocknr >= c->nr_blocks) {
523		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
 
524		BUG();
525	}
526	jeb = &c->blocks[blocknr];
527
528	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
529	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
530		/* Hm. This may confuse static lock analysis. If any of the above
531		   three conditions is false, we're going to return from this
532		   function without actually obliterating any nodes or freeing
533		   any jffs2_raw_node_refs. So we don't need to stop erases from
534		   happening, or protect against people holding an obsolete
535		   jffs2_raw_node_ref without the erase_completion_lock. */
536		mutex_lock(&c->erase_free_sem);
537	}
538
539	spin_lock(&c->erase_completion_lock);
540
541	freed_len = ref_totlen(c, jeb, ref);
542
543	if (ref_flags(ref) == REF_UNCHECKED) {
544		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
545			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
546			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
 
547			BUG();
548		})
549		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
 
550		jeb->unchecked_size -= freed_len;
551		c->unchecked_size -= freed_len;
552	} else {
553		D1(if (unlikely(jeb->used_size < freed_len)) {
554			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
555			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
 
556			BUG();
557		})
558		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
 
559		jeb->used_size -= freed_len;
560		c->used_size -= freed_len;
561	}
562
563	// Take care, that wasted size is taken into concern
564	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
565		D1(printk("Dirtying\n"));
566		addedsize = freed_len;
567		jeb->dirty_size += freed_len;
568		c->dirty_size += freed_len;
569
570		/* Convert wasted space to dirty, if not a bad block */
571		if (jeb->wasted_size) {
572			if (on_list(&jeb->list, &c->bad_used_list)) {
573				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
574					  jeb->offset));
575				addedsize = 0; /* To fool the refiling code later */
576			} else {
577				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
578					  jeb->wasted_size, jeb->offset));
579				addedsize += jeb->wasted_size;
580				jeb->dirty_size += jeb->wasted_size;
581				c->dirty_size += jeb->wasted_size;
582				c->wasted_size -= jeb->wasted_size;
583				jeb->wasted_size = 0;
584			}
585		}
586	} else {
587		D1(printk("Wasting\n"));
588		addedsize = 0;
589		jeb->wasted_size += freed_len;
590		c->wasted_size += freed_len;
591	}
592	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
593
594	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
595	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
596
597	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
598		/* Flash scanning is in progress. Don't muck about with the block
599		   lists because they're not ready yet, and don't actually
600		   obliterate nodes that look obsolete. If they weren't
601		   marked obsolete on the flash at the time they _became_
602		   obsolete, there was probably a reason for that. */
603		spin_unlock(&c->erase_completion_lock);
604		/* We didn't lock the erase_free_sem */
605		return;
606	}
607
608	if (jeb == c->nextblock) {
609		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
 
610	} else if (!jeb->used_size && !jeb->unchecked_size) {
611		if (jeb == c->gcblock) {
612			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
 
613			c->gcblock = NULL;
614		} else {
615			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
 
616			list_del(&jeb->list);
617		}
618		if (jffs2_wbuf_dirty(c)) {
619			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
620			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
621		} else {
622			if (jiffies & 127) {
623				/* Most of the time, we just erase it immediately. Otherwise we
624				   spend ages scanning it on mount, etc. */
625				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
626				list_add_tail(&jeb->list, &c->erase_pending_list);
627				c->nr_erasing_blocks++;
628				jffs2_garbage_collect_trigger(c);
629			} else {
630				/* Sometimes, however, we leave it elsewhere so it doesn't get
631				   immediately reused, and we spread the load a bit. */
632				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
633				list_add_tail(&jeb->list, &c->erasable_list);
634			}
635		}
636		D1(printk(KERN_DEBUG "Done OK\n"));
637	} else if (jeb == c->gcblock) {
638		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
 
639	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
640		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
 
641		list_del(&jeb->list);
642		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
643		list_add_tail(&jeb->list, &c->dirty_list);
644	} else if (VERYDIRTY(c, jeb->dirty_size) &&
645		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
646		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
 
647		list_del(&jeb->list);
648		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
649		list_add_tail(&jeb->list, &c->very_dirty_list);
650	} else {
651		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
652			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 
653	}
654
655	spin_unlock(&c->erase_completion_lock);
656
657	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
658		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
659		/* We didn't lock the erase_free_sem */
660		return;
661	}
662
663	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
664	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
665	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
666	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
667
668	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
 
669	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
670	if (ret) {
671		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
 
672		goto out_erase_sem;
673	}
674	if (retlen != sizeof(n)) {
675		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
 
676		goto out_erase_sem;
677	}
678	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
679		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
 
680		goto out_erase_sem;
681	}
682	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
683		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
 
684		goto out_erase_sem;
685	}
686	/* XXX FIXME: This is ugly now */
687	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
688	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
689	if (ret) {
690		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
 
691		goto out_erase_sem;
692	}
693	if (retlen != sizeof(n)) {
694		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
 
695		goto out_erase_sem;
696	}
697
698	/* Nodes which have been marked obsolete no longer need to be
699	   associated with any inode. Remove them from the per-inode list.
700
701	   Note we can't do this for NAND at the moment because we need
702	   obsolete dirent nodes to stay on the lists, because of the
703	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
704	   because we delete the inocache, and on NAND we need that to
705	   stay around until all the nodes are actually erased, in order
706	   to stop us from giving the same inode number to another newly
707	   created inode. */
708	if (ref->next_in_ino) {
709		struct jffs2_inode_cache *ic;
710		struct jffs2_raw_node_ref **p;
711
712		spin_lock(&c->erase_completion_lock);
713
714		ic = jffs2_raw_ref_to_ic(ref);
715		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
716			;
717
718		*p = ref->next_in_ino;
719		ref->next_in_ino = NULL;
720
721		switch (ic->class) {
722#ifdef CONFIG_JFFS2_FS_XATTR
723			case RAWNODE_CLASS_XATTR_DATUM:
724				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
725				break;
726			case RAWNODE_CLASS_XATTR_REF:
727				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
728				break;
729#endif
730			default:
731				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
732					jffs2_del_ino_cache(c, ic);
733				break;
734		}
735		spin_unlock(&c->erase_completion_lock);
736	}
737
738 out_erase_sem:
739	mutex_unlock(&c->erase_free_sem);
740}
741
742int jffs2_thread_should_wake(struct jffs2_sb_info *c)
743{
744	int ret = 0;
745	uint32_t dirty;
746	int nr_very_dirty = 0;
747	struct jffs2_eraseblock *jeb;
748
749	if (!list_empty(&c->erase_complete_list) ||
750	    !list_empty(&c->erase_pending_list))
751		return 1;
752
753	if (c->unchecked_size) {
754		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
755			  c->unchecked_size, c->checked_ino));
756		return 1;
757	}
758
759	/* dirty_size contains blocks on erase_pending_list
760	 * those blocks are counted in c->nr_erasing_blocks.
761	 * If one block is actually erased, it is not longer counted as dirty_space
762	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
763	 * with c->nr_erasing_blocks * c->sector_size again.
764	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
765	 * This helps us to force gc and pick eventually a clean block to spread the load.
766	 */
767	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
768
769	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
770			(dirty > c->nospc_dirty_size))
771		ret = 1;
772
773	list_for_each_entry(jeb, &c->very_dirty_list, list) {
774		nr_very_dirty++;
775		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
776			ret = 1;
777			/* In debug mode, actually go through and count them all */
778			D1(continue);
779			break;
780		}
781	}
782
783	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
784		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
 
785
786	return ret;
787}
v6.13.7
  1/*
  2 * JFFS2 -- Journalling Flash File System, Version 2.
  3 *
  4 * Copyright © 2001-2007 Red Hat, Inc.
  5 *
  6 * Created by David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * For licensing information, see the file 'LICENCE' in this directory.
  9 *
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/kernel.h>
 15#include <linux/mtd/mtd.h>
 16#include <linux/compiler.h>
 17#include <linux/sched/signal.h>
 18#include <linux/string_choices.h>
 19#include "nodelist.h"
 20#include "debug.h"
 21
 22/*
 23 * Check whether the user is allowed to write.
 24 */
 25static int jffs2_rp_can_write(struct jffs2_sb_info *c)
 26{
 27	uint32_t avail;
 28	struct jffs2_mount_opts *opts = &c->mount_opts;
 29
 30	avail = c->dirty_size + c->free_size + c->unchecked_size +
 31		c->erasing_size - c->resv_blocks_write * c->sector_size
 32		- c->nospc_dirty_size;
 33
 34	if (avail < 2 * opts->rp_size)
 35		jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
 36			  "erasing_size %u, unchecked_size %u, "
 37			  "nr_erasing_blocks %u, avail %u, resrv %u\n",
 38			  opts->rp_size, c->dirty_size, c->free_size,
 39			  c->erasing_size, c->unchecked_size,
 40			  c->nr_erasing_blocks, avail, c->nospc_dirty_size);
 41
 42	if (avail > opts->rp_size)
 43		return 1;
 44
 45	/* Always allow root */
 46	if (capable(CAP_SYS_RESOURCE))
 47		return 1;
 48
 49	jffs2_dbg(1, "forbid writing\n");
 50	return 0;
 51}
 52
 53static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
 54				  uint32_t *len, uint32_t sumsize);
 55
 56/**
 57 *	jffs2_reserve_space - request physical space to write nodes to flash
 58 *	@c: superblock info
 59 *	@minsize: Minimum acceptable size of allocation
 60 *	@len: Returned value of allocation length
 61 *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 62 *	@sumsize: summary size requested or JFFS2_SUMMARY_NOSUM_SIZE for no summary
 63 *
 64 *	Requests a block of physical space on the flash.
 65 *
 66 *	Returns: %0 for success	and puts 'len' into the appropriate place,
 67 *	or returns -ENOSPC or other error if appropriate.
 68 *	Doesn't return len since that's already returned in @len.
 69 *
 70 *	If it returns %0, jffs2_reserve_space() also downs the per-filesystem
 71 *	allocation semaphore, to prevent more than one allocation from being
 72 *	active at any time. The semaphore is later released by jffs2_commit_allocation().
 73 *
 74 *	jffs2_reserve_space() may trigger garbage collection in order to make room
 75 *	for the requested allocation.
 76 */
 77
 
 
 
 78int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 79			uint32_t *len, int prio, uint32_t sumsize)
 80{
 81	int ret = -EAGAIN;
 82	int blocksneeded = c->resv_blocks_write;
 83	/* align it */
 84	minsize = PAD(minsize);
 85
 86	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
 87	mutex_lock(&c->alloc_sem);
 88
 89	jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
 90
 91	spin_lock(&c->erase_completion_lock);
 92
 93	/*
 94	 * Check if the free space is greater then size of the reserved pool.
 95	 * If not, only allow root to proceed with writing.
 96	 */
 97	if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
 98		ret = -ENOSPC;
 99		goto out;
100	}
101
102	/* this needs a little more thought (true <tglx> :)) */
103	while(ret == -EAGAIN) {
104		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
105			uint32_t dirty, avail;
106
107			/* calculate real dirty size
108			 * dirty_size contains blocks on erase_pending_list
109			 * those blocks are counted in c->nr_erasing_blocks.
110			 * If one block is actually erased, it is not longer counted as dirty_space
111			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
112			 * with c->nr_erasing_blocks * c->sector_size again.
113			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
114			 * This helps us to force gc and pick eventually a clean block to spread the load.
115			 * We add unchecked_size here, as we hopefully will find some space to use.
116			 * This will affect the sum only once, as gc first finishes checking
117			 * of nodes.
118			 */
119			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
120			if (dirty < c->nospc_dirty_size) {
121				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
122					jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
123						  __func__);
124					break;
125				}
126				jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
127					  dirty, c->unchecked_size,
128					  c->sector_size);
129
130				spin_unlock(&c->erase_completion_lock);
131				mutex_unlock(&c->alloc_sem);
132				return -ENOSPC;
133			}
134
135			/* Calc possibly available space. Possibly available means that we
136			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
137			 * more usable space. This will affect the sum only once, as gc first finishes checking
138			 * of nodes.
139			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
140			 * blocksneeded * sector_size.
141			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
142			 * the check above passes.
143			 */
144			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
145			if ( (avail / c->sector_size) <= blocksneeded) {
146				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
147					jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
148						  __func__);
149					break;
150				}
151
152				jffs2_dbg(1, "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
153					  avail, blocksneeded * c->sector_size);
154				spin_unlock(&c->erase_completion_lock);
155				mutex_unlock(&c->alloc_sem);
156				return -ENOSPC;
157			}
158
159			mutex_unlock(&c->alloc_sem);
160
161			jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
162				  c->nr_free_blocks, c->nr_erasing_blocks,
163				  c->free_size, c->dirty_size, c->wasted_size,
164				  c->used_size, c->erasing_size, c->bad_size,
165				  c->free_size + c->dirty_size +
166				  c->wasted_size + c->used_size +
167				  c->erasing_size + c->bad_size,
168				  c->flash_size);
169			spin_unlock(&c->erase_completion_lock);
170
171			ret = jffs2_garbage_collect_pass(c);
172
173			if (ret == -EAGAIN) {
174				spin_lock(&c->erase_completion_lock);
175				if (c->nr_erasing_blocks &&
176				    list_empty(&c->erase_pending_list) &&
177				    list_empty(&c->erase_complete_list)) {
178					DECLARE_WAITQUEUE(wait, current);
179					set_current_state(TASK_UNINTERRUPTIBLE);
180					add_wait_queue(&c->erase_wait, &wait);
181					jffs2_dbg(1, "%s waiting for erase to complete\n",
182						  __func__);
183					spin_unlock(&c->erase_completion_lock);
184
185					schedule();
186					remove_wait_queue(&c->erase_wait, &wait);
187				} else
188					spin_unlock(&c->erase_completion_lock);
189			} else if (ret)
190				return ret;
191
192			cond_resched();
193
194			if (signal_pending(current))
195				return -EINTR;
196
197			mutex_lock(&c->alloc_sem);
198			spin_lock(&c->erase_completion_lock);
199		}
200
201		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
202		if (ret) {
203			jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
204		}
205	}
206
207out:
208	spin_unlock(&c->erase_completion_lock);
209	if (!ret)
210		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
211	if (ret)
212		mutex_unlock(&c->alloc_sem);
213	return ret;
214}
215
216int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
217			   uint32_t *len, uint32_t sumsize)
218{
219	int ret;
220	minsize = PAD(minsize);
221
222	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
223
224	while (true) {
225		spin_lock(&c->erase_completion_lock);
226		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
227		if (ret) {
228			jffs2_dbg(1, "%s(): looping, ret is %d\n",
229				  __func__, ret);
230		}
231		spin_unlock(&c->erase_completion_lock);
232
233		if (ret == -EAGAIN)
234			cond_resched();
235		else
236			break;
237	}
 
238	if (!ret)
239		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
240
241	return ret;
242}
243
244
245/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
246
247static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
248{
249
250	if (c->nextblock == NULL) {
251		jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
252			  __func__, jeb->offset);
253		return;
254	}
255	/* Check, if we have a dirty block now, or if it was dirty already */
256	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
257		c->dirty_size += jeb->wasted_size;
258		c->wasted_size -= jeb->wasted_size;
259		jeb->dirty_size += jeb->wasted_size;
260		jeb->wasted_size = 0;
261		if (VERYDIRTY(c, jeb->dirty_size)) {
262			jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
263				  jeb->offset, jeb->free_size, jeb->dirty_size,
264				  jeb->used_size);
265			list_add_tail(&jeb->list, &c->very_dirty_list);
266		} else {
267			jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
268				  jeb->offset, jeb->free_size, jeb->dirty_size,
269				  jeb->used_size);
270			list_add_tail(&jeb->list, &c->dirty_list);
271		}
272	} else {
273		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
274			  jeb->offset, jeb->free_size, jeb->dirty_size,
275			  jeb->used_size);
276		list_add_tail(&jeb->list, &c->clean_list);
277	}
278	c->nextblock = NULL;
279
280}
281
282/* Select a new jeb for nextblock */
283
284static int jffs2_find_nextblock(struct jffs2_sb_info *c)
285{
286	struct list_head *next;
287
288	/* Take the next block off the 'free' list */
289
290	if (list_empty(&c->free_list)) {
291
292		if (!c->nr_erasing_blocks &&
293			!list_empty(&c->erasable_list)) {
294			struct jffs2_eraseblock *ejeb;
295
296			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
297			list_move_tail(&ejeb->list, &c->erase_pending_list);
298			c->nr_erasing_blocks++;
299			jffs2_garbage_collect_trigger(c);
300			jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
301				  __func__, ejeb->offset);
302		}
303
304		if (!c->nr_erasing_blocks &&
305			!list_empty(&c->erasable_pending_wbuf_list)) {
306			jffs2_dbg(1, "%s(): Flushing write buffer\n",
307				  __func__);
308			/* c->nextblock is NULL, no update to c->nextblock allowed */
309			spin_unlock(&c->erase_completion_lock);
310			jffs2_flush_wbuf_pad(c);
311			spin_lock(&c->erase_completion_lock);
312			/* Have another go. It'll be on the erasable_list now */
313			return -EAGAIN;
314		}
315
316		if (!c->nr_erasing_blocks) {
317			/* Ouch. We're in GC, or we wouldn't have got here.
318			   And there's no space left. At all. */
319			pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
320				c->nr_erasing_blocks, c->nr_free_blocks,
321				str_yes_no(list_empty(&c->erasable_list)),
322				str_yes_no(list_empty(&c->erasing_list)),
323				str_yes_no(list_empty(&c->erase_pending_list)));
324			return -ENOSPC;
325		}
326
327		spin_unlock(&c->erase_completion_lock);
328		/* Don't wait for it; just erase one right now */
329		jffs2_erase_pending_blocks(c, 1);
330		spin_lock(&c->erase_completion_lock);
331
332		/* An erase may have failed, decreasing the
333		   amount of free space available. So we must
334		   restart from the beginning */
335		return -EAGAIN;
336	}
337
338	next = c->free_list.next;
339	list_del(next);
340	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
341	c->nr_free_blocks--;
342
343	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
344
345#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
346	/* adjust write buffer offset, else we get a non contiguous write bug */
347	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
348		c->wbuf_ofs = 0xffffffff;
349#endif
350
351	jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
352		  __func__, c->nextblock->offset);
353
354	return 0;
355}
356
357/* Called with alloc sem _and_ erase_completion_lock */
358static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
359				  uint32_t *len, uint32_t sumsize)
360{
361	struct jffs2_eraseblock *jeb = c->nextblock;
362	uint32_t reserved_size;				/* for summary information at the end of the jeb */
363	int ret;
364
365 restart:
366	reserved_size = 0;
367
368	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
369							/* NOSUM_SIZE means not to generate summary */
370
371		if (jeb) {
372			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
373			dbg_summary("minsize=%d , jeb->free=%d ,"
374						"summary->size=%d , sumsize=%d\n",
375						minsize, jeb->free_size,
376						c->summary->sum_size, sumsize);
377		}
378
379		/* Is there enough space for writing out the current node, or we have to
380		   write out summary information now, close this jeb and select new nextblock? */
381		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
382					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
383
384			/* Has summary been disabled for this jeb? */
385			if (jffs2_sum_is_disabled(c->summary)) {
386				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
387				goto restart;
388			}
389
390			/* Writing out the collected summary information */
391			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
392			ret = jffs2_sum_write_sumnode(c);
393
394			if (ret)
395				return ret;
396
397			if (jffs2_sum_is_disabled(c->summary)) {
398				/* jffs2_write_sumnode() couldn't write out the summary information
399				   diabling summary for this jeb and free the collected information
400				 */
401				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
402				goto restart;
403			}
404
405			jffs2_close_nextblock(c, jeb);
406			jeb = NULL;
407			/* keep always valid value in reserved_size */
408			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
409		}
410	} else {
411		if (jeb && minsize > jeb->free_size) {
412			uint32_t waste;
413
414			/* Skip the end of this block and file it as having some dirty space */
415			/* If there's a pending write to it, flush now */
416
417			if (jffs2_wbuf_dirty(c)) {
418				spin_unlock(&c->erase_completion_lock);
419				jffs2_dbg(1, "%s(): Flushing write buffer\n",
420					  __func__);
421				jffs2_flush_wbuf_pad(c);
422				spin_lock(&c->erase_completion_lock);
423				jeb = c->nextblock;
424				goto restart;
425			}
426
427			spin_unlock(&c->erase_completion_lock);
428
429			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
430
 
431			/* Just lock it again and continue. Nothing much can change because
432			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
433			   we hold c->erase_completion_lock in the majority of this function...
434			   but that's a question for another (more caffeine-rich) day. */
435			spin_lock(&c->erase_completion_lock);
436
437			if (ret)
438				return ret;
439
440			waste = jeb->free_size;
441			jffs2_link_node_ref(c, jeb,
442					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
443					    waste, NULL);
444			/* FIXME: that made it count as dirty. Convert to wasted */
445			jeb->dirty_size -= waste;
446			c->dirty_size -= waste;
447			jeb->wasted_size += waste;
448			c->wasted_size += waste;
449
450			jffs2_close_nextblock(c, jeb);
451			jeb = NULL;
452		}
453	}
454
455	if (!jeb) {
456
457		ret = jffs2_find_nextblock(c);
458		if (ret)
459			return ret;
460
461		jeb = c->nextblock;
462
463		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
464			pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
465				jeb->offset, jeb->free_size);
466			goto restart;
467		}
468	}
469	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
470	   enough space */
471	*len = jeb->free_size - reserved_size;
472
473	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
474	    !jeb->first_node->next_in_ino) {
475		/* Only node in it beforehand was a CLEANMARKER node (we think).
476		   So mark it obsolete now that there's going to be another node
477		   in the block. This will reduce used_size to zero but We've
478		   already set c->nextblock so that jffs2_mark_node_obsolete()
479		   won't try to refile it to the dirty_list.
480		*/
481		spin_unlock(&c->erase_completion_lock);
482		jffs2_mark_node_obsolete(c, jeb->first_node);
483		spin_lock(&c->erase_completion_lock);
484	}
485
486	jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
487		  __func__,
488		  *len, jeb->offset + (c->sector_size - jeb->free_size));
489	return 0;
490}
491
492/**
493 *	jffs2_add_physical_node_ref - add a physical node reference to the list
494 *	@c: superblock info
495 *	@ofs: offset in the block
496 *	@len: length of this physical node
497 *	@ic: inode cache pointer
498 *
499 *	Should only be used to report nodes for which space has been allocated
500 *	by jffs2_reserve_space.
501 *
502 *	Must be called with the alloc_sem held.
503 *
504 *	Returns: pointer to new node on success or -errno code on error
505 */
506
507struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
508						       uint32_t ofs, uint32_t len,
509						       struct jffs2_inode_cache *ic)
510{
511	struct jffs2_eraseblock *jeb;
512	struct jffs2_raw_node_ref *new;
513
514	jeb = &c->blocks[ofs / c->sector_size];
515
516	jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
517		  __func__, ofs & ~3, ofs & 3, len);
518#if 1
519	/* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
520	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
521	   even after refiling c->nextblock */
522	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
523	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
524		pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
525			ofs & ~3, ofs & 3);
526		if (c->nextblock)
527			pr_warn("nextblock 0x%08x", c->nextblock->offset);
528		else
529			pr_warn("No nextblock");
530		pr_cont(", expected at %08x\n",
531			jeb->offset + (c->sector_size - jeb->free_size));
532		return ERR_PTR(-EINVAL);
533	}
534#endif
535	spin_lock(&c->erase_completion_lock);
536
537	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
538
539	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
540		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
541		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
542			  jeb->offset, jeb->free_size, jeb->dirty_size,
543			  jeb->used_size);
544		if (jffs2_wbuf_dirty(c)) {
545			/* Flush the last write in the block if it's outstanding */
546			spin_unlock(&c->erase_completion_lock);
547			jffs2_flush_wbuf_pad(c);
548			spin_lock(&c->erase_completion_lock);
549		}
550
551		list_add_tail(&jeb->list, &c->clean_list);
552		c->nextblock = NULL;
553	}
554	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
555	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
556
557	spin_unlock(&c->erase_completion_lock);
558
559	return new;
560}
561
562
563void jffs2_complete_reservation(struct jffs2_sb_info *c)
564{
565	jffs2_dbg(1, "jffs2_complete_reservation()\n");
566	spin_lock(&c->erase_completion_lock);
567	jffs2_garbage_collect_trigger(c);
568	spin_unlock(&c->erase_completion_lock);
569	mutex_unlock(&c->alloc_sem);
570}
571
572static inline int on_list(struct list_head *obj, struct list_head *head)
573{
574	struct list_head *this;
575
576	list_for_each(this, head) {
577		if (this == obj) {
578			jffs2_dbg(1, "%p is on list at %p\n", obj, head);
579			return 1;
580
581		}
582	}
583	return 0;
584}
585
586void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
587{
588	struct jffs2_eraseblock *jeb;
589	int blocknr;
590	struct jffs2_unknown_node n;
591	int ret, addedsize;
592	size_t retlen;
593	uint32_t freed_len;
594
595	if(unlikely(!ref)) {
596		pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
597		return;
598	}
599	if (ref_obsolete(ref)) {
600		jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
601			  __func__, ref_offset(ref));
602		return;
603	}
604	blocknr = ref->flash_offset / c->sector_size;
605	if (blocknr >= c->nr_blocks) {
606		pr_notice("raw node at 0x%08x is off the end of device!\n",
607			  ref->flash_offset);
608		BUG();
609	}
610	jeb = &c->blocks[blocknr];
611
612	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
613	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
614		/* Hm. This may confuse static lock analysis. If any of the above
615		   three conditions is false, we're going to return from this
616		   function without actually obliterating any nodes or freeing
617		   any jffs2_raw_node_refs. So we don't need to stop erases from
618		   happening, or protect against people holding an obsolete
619		   jffs2_raw_node_ref without the erase_completion_lock. */
620		mutex_lock(&c->erase_free_sem);
621	}
622
623	spin_lock(&c->erase_completion_lock);
624
625	freed_len = ref_totlen(c, jeb, ref);
626
627	if (ref_flags(ref) == REF_UNCHECKED) {
628		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
629				pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
630					  freed_len, blocknr,
631					  ref->flash_offset, jeb->used_size);
632			BUG();
633		})
634		jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
635				ref_offset(ref), freed_len);
636		jeb->unchecked_size -= freed_len;
637		c->unchecked_size -= freed_len;
638	} else {
639		D1(if (unlikely(jeb->used_size < freed_len)) {
640				pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
641					  freed_len, blocknr,
642					  ref->flash_offset, jeb->used_size);
643			BUG();
644		})
645		jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
646				ref_offset(ref), freed_len);
647		jeb->used_size -= freed_len;
648		c->used_size -= freed_len;
649	}
650
651	// Take care, that wasted size is taken into concern
652	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
653		jffs2_dbg(1, "Dirtying\n");
654		addedsize = freed_len;
655		jeb->dirty_size += freed_len;
656		c->dirty_size += freed_len;
657
658		/* Convert wasted space to dirty, if not a bad block */
659		if (jeb->wasted_size) {
660			if (on_list(&jeb->list, &c->bad_used_list)) {
661				jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
662					  jeb->offset);
663				addedsize = 0; /* To fool the refiling code later */
664			} else {
665				jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
666					  jeb->wasted_size, jeb->offset);
667				addedsize += jeb->wasted_size;
668				jeb->dirty_size += jeb->wasted_size;
669				c->dirty_size += jeb->wasted_size;
670				c->wasted_size -= jeb->wasted_size;
671				jeb->wasted_size = 0;
672			}
673		}
674	} else {
675		jffs2_dbg(1, "Wasting\n");
676		addedsize = 0;
677		jeb->wasted_size += freed_len;
678		c->wasted_size += freed_len;
679	}
680	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
681
682	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
683	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
684
685	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
686		/* Flash scanning is in progress. Don't muck about with the block
687		   lists because they're not ready yet, and don't actually
688		   obliterate nodes that look obsolete. If they weren't
689		   marked obsolete on the flash at the time they _became_
690		   obsolete, there was probably a reason for that. */
691		spin_unlock(&c->erase_completion_lock);
692		/* We didn't lock the erase_free_sem */
693		return;
694	}
695
696	if (jeb == c->nextblock) {
697		jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
698			  jeb->offset);
699	} else if (!jeb->used_size && !jeb->unchecked_size) {
700		if (jeb == c->gcblock) {
701			jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
702				  jeb->offset);
703			c->gcblock = NULL;
704		} else {
705			jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
706				  jeb->offset);
707			list_del(&jeb->list);
708		}
709		if (jffs2_wbuf_dirty(c)) {
710			jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
711			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
712		} else {
713			if (jiffies & 127) {
714				/* Most of the time, we just erase it immediately. Otherwise we
715				   spend ages scanning it on mount, etc. */
716				jffs2_dbg(1, "...and adding to erase_pending_list\n");
717				list_add_tail(&jeb->list, &c->erase_pending_list);
718				c->nr_erasing_blocks++;
719				jffs2_garbage_collect_trigger(c);
720			} else {
721				/* Sometimes, however, we leave it elsewhere so it doesn't get
722				   immediately reused, and we spread the load a bit. */
723				jffs2_dbg(1, "...and adding to erasable_list\n");
724				list_add_tail(&jeb->list, &c->erasable_list);
725			}
726		}
727		jffs2_dbg(1, "Done OK\n");
728	} else if (jeb == c->gcblock) {
729		jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
730			  jeb->offset);
731	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
732		jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
733			  jeb->offset);
734		list_del(&jeb->list);
735		jffs2_dbg(1, "...and adding to dirty_list\n");
736		list_add_tail(&jeb->list, &c->dirty_list);
737	} else if (VERYDIRTY(c, jeb->dirty_size) &&
738		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
739		jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
740			  jeb->offset);
741		list_del(&jeb->list);
742		jffs2_dbg(1, "...and adding to very_dirty_list\n");
743		list_add_tail(&jeb->list, &c->very_dirty_list);
744	} else {
745		jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
746			  jeb->offset, jeb->free_size, jeb->dirty_size,
747			  jeb->used_size);
748	}
749
750	spin_unlock(&c->erase_completion_lock);
751
752	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
753		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
754		/* We didn't lock the erase_free_sem */
755		return;
756	}
757
758	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
759	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
760	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
761	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
762
763	jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
764		  ref_offset(ref));
765	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
766	if (ret) {
767		pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
768			ref_offset(ref), ret);
769		goto out_erase_sem;
770	}
771	if (retlen != sizeof(n)) {
772		pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
773			ref_offset(ref), retlen);
774		goto out_erase_sem;
775	}
776	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
777		pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
778			je32_to_cpu(n.totlen), freed_len);
779		goto out_erase_sem;
780	}
781	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
782		jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
783			  ref_offset(ref), je16_to_cpu(n.nodetype));
784		goto out_erase_sem;
785	}
786	/* XXX FIXME: This is ugly now */
787	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
788	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
789	if (ret) {
790		pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
791			ref_offset(ref), ret);
792		goto out_erase_sem;
793	}
794	if (retlen != sizeof(n)) {
795		pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
796			ref_offset(ref), retlen);
797		goto out_erase_sem;
798	}
799
800	/* Nodes which have been marked obsolete no longer need to be
801	   associated with any inode. Remove them from the per-inode list.
802
803	   Note we can't do this for NAND at the moment because we need
804	   obsolete dirent nodes to stay on the lists, because of the
805	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
806	   because we delete the inocache, and on NAND we need that to
807	   stay around until all the nodes are actually erased, in order
808	   to stop us from giving the same inode number to another newly
809	   created inode. */
810	if (ref->next_in_ino) {
811		struct jffs2_inode_cache *ic;
812		struct jffs2_raw_node_ref **p;
813
814		spin_lock(&c->erase_completion_lock);
815
816		ic = jffs2_raw_ref_to_ic(ref);
817		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
818			;
819
820		*p = ref->next_in_ino;
821		ref->next_in_ino = NULL;
822
823		switch (ic->class) {
824#ifdef CONFIG_JFFS2_FS_XATTR
825			case RAWNODE_CLASS_XATTR_DATUM:
826				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
827				break;
828			case RAWNODE_CLASS_XATTR_REF:
829				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
830				break;
831#endif
832			default:
833				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
834					jffs2_del_ino_cache(c, ic);
835				break;
836		}
837		spin_unlock(&c->erase_completion_lock);
838	}
839
840 out_erase_sem:
841	mutex_unlock(&c->erase_free_sem);
842}
843
844int jffs2_thread_should_wake(struct jffs2_sb_info *c)
845{
846	int ret = 0;
847	uint32_t dirty;
848	int nr_very_dirty = 0;
849	struct jffs2_eraseblock *jeb;
850
851	if (!list_empty(&c->erase_complete_list) ||
852	    !list_empty(&c->erase_pending_list))
853		return 1;
854
855	if (c->unchecked_size) {
856		jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, check_ino #%d\n",
857			  c->unchecked_size, c->check_ino);
858		return 1;
859	}
860
861	/* dirty_size contains blocks on erase_pending_list
862	 * those blocks are counted in c->nr_erasing_blocks.
863	 * If one block is actually erased, it is not longer counted as dirty_space
864	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
865	 * with c->nr_erasing_blocks * c->sector_size again.
866	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
867	 * This helps us to force gc and pick eventually a clean block to spread the load.
868	 */
869	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
870
871	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
872			(dirty > c->nospc_dirty_size))
873		ret = 1;
874
875	list_for_each_entry(jeb, &c->very_dirty_list, list) {
876		nr_very_dirty++;
877		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
878			ret = 1;
879			/* In debug mode, actually go through and count them all */
880			D1(continue);
881			break;
882		}
883	}
884
885	jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
886		  __func__, c->nr_free_blocks, c->nr_erasing_blocks,
887		  c->dirty_size, nr_very_dirty, str_yes_no(ret));
888
889	return ret;
890}