Loading...
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright © 2001-2007 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 */
11
12#include <linux/kernel.h>
13#include <linux/mtd/mtd.h>
14#include <linux/compiler.h>
15#include <linux/sched.h> /* For cond_resched() */
16#include "nodelist.h"
17#include "debug.h"
18
19/**
20 * jffs2_reserve_space - request physical space to write nodes to flash
21 * @c: superblock info
22 * @minsize: Minimum acceptable size of allocation
23 * @len: Returned value of allocation length
24 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
25 *
26 * Requests a block of physical space on the flash. Returns zero for success
27 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
28 * error if appropriate. Doesn't return len since that's
29 *
30 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31 * allocation semaphore, to prevent more than one allocation from being
32 * active at any time. The semaphore is later released by jffs2_commit_allocation()
33 *
34 * jffs2_reserve_space() may trigger garbage collection in order to make room
35 * for the requested allocation.
36 */
37
38static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
39 uint32_t *len, uint32_t sumsize);
40
41int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 uint32_t *len, int prio, uint32_t sumsize)
43{
44 int ret = -EAGAIN;
45 int blocksneeded = c->resv_blocks_write;
46 /* align it */
47 minsize = PAD(minsize);
48
49 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
50 mutex_lock(&c->alloc_sem);
51
52 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
53
54 spin_lock(&c->erase_completion_lock);
55
56 /* this needs a little more thought (true <tglx> :)) */
57 while(ret == -EAGAIN) {
58 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
59 uint32_t dirty, avail;
60
61 /* calculate real dirty size
62 * dirty_size contains blocks on erase_pending_list
63 * those blocks are counted in c->nr_erasing_blocks.
64 * If one block is actually erased, it is not longer counted as dirty_space
65 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66 * with c->nr_erasing_blocks * c->sector_size again.
67 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68 * This helps us to force gc and pick eventually a clean block to spread the load.
69 * We add unchecked_size here, as we hopefully will find some space to use.
70 * This will affect the sum only once, as gc first finishes checking
71 * of nodes.
72 */
73 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74 if (dirty < c->nospc_dirty_size) {
75 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
77 break;
78 }
79 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 dirty, c->unchecked_size, c->sector_size));
81
82 spin_unlock(&c->erase_completion_lock);
83 mutex_unlock(&c->alloc_sem);
84 return -ENOSPC;
85 }
86
87 /* Calc possibly available space. Possibly available means that we
88 * don't know, if unchecked size contains obsoleted nodes, which could give us some
89 * more usable space. This will affect the sum only once, as gc first finishes checking
90 * of nodes.
91 + Return -ENOSPC, if the maximum possibly available space is less or equal than
92 * blocksneeded * sector_size.
93 * This blocks endless gc looping on a filesystem, which is nearly full, even if
94 * the check above passes.
95 */
96 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97 if ( (avail / c->sector_size) <= blocksneeded) {
98 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
100 break;
101 }
102
103 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 avail, blocksneeded * c->sector_size));
105 spin_unlock(&c->erase_completion_lock);
106 mutex_unlock(&c->alloc_sem);
107 return -ENOSPC;
108 }
109
110 mutex_unlock(&c->alloc_sem);
111
112 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
115 spin_unlock(&c->erase_completion_lock);
116
117 ret = jffs2_garbage_collect_pass(c);
118
119 if (ret == -EAGAIN) {
120 spin_lock(&c->erase_completion_lock);
121 if (c->nr_erasing_blocks &&
122 list_empty(&c->erase_pending_list) &&
123 list_empty(&c->erase_complete_list)) {
124 DECLARE_WAITQUEUE(wait, current);
125 set_current_state(TASK_UNINTERRUPTIBLE);
126 add_wait_queue(&c->erase_wait, &wait);
127 D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__));
128 spin_unlock(&c->erase_completion_lock);
129
130 schedule();
131 } else
132 spin_unlock(&c->erase_completion_lock);
133 } else if (ret)
134 return ret;
135
136 cond_resched();
137
138 if (signal_pending(current))
139 return -EINTR;
140
141 mutex_lock(&c->alloc_sem);
142 spin_lock(&c->erase_completion_lock);
143 }
144
145 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146 if (ret) {
147 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
148 }
149 }
150 spin_unlock(&c->erase_completion_lock);
151 if (!ret)
152 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
153 if (ret)
154 mutex_unlock(&c->alloc_sem);
155 return ret;
156}
157
158int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
159 uint32_t *len, uint32_t sumsize)
160{
161 int ret = -EAGAIN;
162 minsize = PAD(minsize);
163
164 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
165
166 spin_lock(&c->erase_completion_lock);
167 while(ret == -EAGAIN) {
168 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169 if (ret) {
170 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
171 }
172 }
173 spin_unlock(&c->erase_completion_lock);
174 if (!ret)
175 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
176
177 return ret;
178}
179
180
181/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
182
183static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
184{
185
186 if (c->nextblock == NULL) {
187 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
188 jeb->offset));
189 return;
190 }
191 /* Check, if we have a dirty block now, or if it was dirty already */
192 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
193 c->dirty_size += jeb->wasted_size;
194 c->wasted_size -= jeb->wasted_size;
195 jeb->dirty_size += jeb->wasted_size;
196 jeb->wasted_size = 0;
197 if (VERYDIRTY(c, jeb->dirty_size)) {
198 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
200 list_add_tail(&jeb->list, &c->very_dirty_list);
201 } else {
202 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
204 list_add_tail(&jeb->list, &c->dirty_list);
205 }
206 } else {
207 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
209 list_add_tail(&jeb->list, &c->clean_list);
210 }
211 c->nextblock = NULL;
212
213}
214
215/* Select a new jeb for nextblock */
216
217static int jffs2_find_nextblock(struct jffs2_sb_info *c)
218{
219 struct list_head *next;
220
221 /* Take the next block off the 'free' list */
222
223 if (list_empty(&c->free_list)) {
224
225 if (!c->nr_erasing_blocks &&
226 !list_empty(&c->erasable_list)) {
227 struct jffs2_eraseblock *ejeb;
228
229 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
230 list_move_tail(&ejeb->list, &c->erase_pending_list);
231 c->nr_erasing_blocks++;
232 jffs2_garbage_collect_trigger(c);
233 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
234 ejeb->offset));
235 }
236
237 if (!c->nr_erasing_blocks &&
238 !list_empty(&c->erasable_pending_wbuf_list)) {
239 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
240 /* c->nextblock is NULL, no update to c->nextblock allowed */
241 spin_unlock(&c->erase_completion_lock);
242 jffs2_flush_wbuf_pad(c);
243 spin_lock(&c->erase_completion_lock);
244 /* Have another go. It'll be on the erasable_list now */
245 return -EAGAIN;
246 }
247
248 if (!c->nr_erasing_blocks) {
249 /* Ouch. We're in GC, or we wouldn't have got here.
250 And there's no space left. At all. */
251 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
253 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
254 return -ENOSPC;
255 }
256
257 spin_unlock(&c->erase_completion_lock);
258 /* Don't wait for it; just erase one right now */
259 jffs2_erase_pending_blocks(c, 1);
260 spin_lock(&c->erase_completion_lock);
261
262 /* An erase may have failed, decreasing the
263 amount of free space available. So we must
264 restart from the beginning */
265 return -EAGAIN;
266 }
267
268 next = c->free_list.next;
269 list_del(next);
270 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
271 c->nr_free_blocks--;
272
273 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
274
275#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
276 /* adjust write buffer offset, else we get a non contiguous write bug */
277 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
278 c->wbuf_ofs = 0xffffffff;
279#endif
280
281 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
282
283 return 0;
284}
285
286/* Called with alloc sem _and_ erase_completion_lock */
287static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
288 uint32_t *len, uint32_t sumsize)
289{
290 struct jffs2_eraseblock *jeb = c->nextblock;
291 uint32_t reserved_size; /* for summary information at the end of the jeb */
292 int ret;
293
294 restart:
295 reserved_size = 0;
296
297 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
298 /* NOSUM_SIZE means not to generate summary */
299
300 if (jeb) {
301 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
302 dbg_summary("minsize=%d , jeb->free=%d ,"
303 "summary->size=%d , sumsize=%d\n",
304 minsize, jeb->free_size,
305 c->summary->sum_size, sumsize);
306 }
307
308 /* Is there enough space for writing out the current node, or we have to
309 write out summary information now, close this jeb and select new nextblock? */
310 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
311 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
312
313 /* Has summary been disabled for this jeb? */
314 if (jffs2_sum_is_disabled(c->summary)) {
315 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
316 goto restart;
317 }
318
319 /* Writing out the collected summary information */
320 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
321 ret = jffs2_sum_write_sumnode(c);
322
323 if (ret)
324 return ret;
325
326 if (jffs2_sum_is_disabled(c->summary)) {
327 /* jffs2_write_sumnode() couldn't write out the summary information
328 diabling summary for this jeb and free the collected information
329 */
330 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
331 goto restart;
332 }
333
334 jffs2_close_nextblock(c, jeb);
335 jeb = NULL;
336 /* keep always valid value in reserved_size */
337 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
338 }
339 } else {
340 if (jeb && minsize > jeb->free_size) {
341 uint32_t waste;
342
343 /* Skip the end of this block and file it as having some dirty space */
344 /* If there's a pending write to it, flush now */
345
346 if (jffs2_wbuf_dirty(c)) {
347 spin_unlock(&c->erase_completion_lock);
348 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
349 jffs2_flush_wbuf_pad(c);
350 spin_lock(&c->erase_completion_lock);
351 jeb = c->nextblock;
352 goto restart;
353 }
354
355 spin_unlock(&c->erase_completion_lock);
356
357 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
358 if (ret)
359 return ret;
360 /* Just lock it again and continue. Nothing much can change because
361 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
362 we hold c->erase_completion_lock in the majority of this function...
363 but that's a question for another (more caffeine-rich) day. */
364 spin_lock(&c->erase_completion_lock);
365
366 waste = jeb->free_size;
367 jffs2_link_node_ref(c, jeb,
368 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
369 waste, NULL);
370 /* FIXME: that made it count as dirty. Convert to wasted */
371 jeb->dirty_size -= waste;
372 c->dirty_size -= waste;
373 jeb->wasted_size += waste;
374 c->wasted_size += waste;
375
376 jffs2_close_nextblock(c, jeb);
377 jeb = NULL;
378 }
379 }
380
381 if (!jeb) {
382
383 ret = jffs2_find_nextblock(c);
384 if (ret)
385 return ret;
386
387 jeb = c->nextblock;
388
389 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
391 goto restart;
392 }
393 }
394 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
395 enough space */
396 *len = jeb->free_size - reserved_size;
397
398 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
399 !jeb->first_node->next_in_ino) {
400 /* Only node in it beforehand was a CLEANMARKER node (we think).
401 So mark it obsolete now that there's going to be another node
402 in the block. This will reduce used_size to zero but We've
403 already set c->nextblock so that jffs2_mark_node_obsolete()
404 won't try to refile it to the dirty_list.
405 */
406 spin_unlock(&c->erase_completion_lock);
407 jffs2_mark_node_obsolete(c, jeb->first_node);
408 spin_lock(&c->erase_completion_lock);
409 }
410
411 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
412 *len, jeb->offset + (c->sector_size - jeb->free_size)));
413 return 0;
414}
415
416/**
417 * jffs2_add_physical_node_ref - add a physical node reference to the list
418 * @c: superblock info
419 * @new: new node reference to add
420 * @len: length of this physical node
421 *
422 * Should only be used to report nodes for which space has been allocated
423 * by jffs2_reserve_space.
424 *
425 * Must be called with the alloc_sem held.
426 */
427
428struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
429 uint32_t ofs, uint32_t len,
430 struct jffs2_inode_cache *ic)
431{
432 struct jffs2_eraseblock *jeb;
433 struct jffs2_raw_node_ref *new;
434
435 jeb = &c->blocks[ofs / c->sector_size];
436
437 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
438 ofs & ~3, ofs & 3, len));
439#if 1
440 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
441 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442 even after refiling c->nextblock */
443 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
446 if (c->nextblock)
447 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
448 else
449 printk(KERN_WARNING "No nextblock");
450 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
451 return ERR_PTR(-EINVAL);
452 }
453#endif
454 spin_lock(&c->erase_completion_lock);
455
456 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
457
458 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
462 if (jffs2_wbuf_dirty(c)) {
463 /* Flush the last write in the block if it's outstanding */
464 spin_unlock(&c->erase_completion_lock);
465 jffs2_flush_wbuf_pad(c);
466 spin_lock(&c->erase_completion_lock);
467 }
468
469 list_add_tail(&jeb->list, &c->clean_list);
470 c->nextblock = NULL;
471 }
472 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
473 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
474
475 spin_unlock(&c->erase_completion_lock);
476
477 return new;
478}
479
480
481void jffs2_complete_reservation(struct jffs2_sb_info *c)
482{
483 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
484 spin_lock(&c->erase_completion_lock);
485 jffs2_garbage_collect_trigger(c);
486 spin_unlock(&c->erase_completion_lock);
487 mutex_unlock(&c->alloc_sem);
488}
489
490static inline int on_list(struct list_head *obj, struct list_head *head)
491{
492 struct list_head *this;
493
494 list_for_each(this, head) {
495 if (this == obj) {
496 D1(printk("%p is on list at %p\n", obj, head));
497 return 1;
498
499 }
500 }
501 return 0;
502}
503
504void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
505{
506 struct jffs2_eraseblock *jeb;
507 int blocknr;
508 struct jffs2_unknown_node n;
509 int ret, addedsize;
510 size_t retlen;
511 uint32_t freed_len;
512
513 if(unlikely(!ref)) {
514 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
515 return;
516 }
517 if (ref_obsolete(ref)) {
518 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
519 return;
520 }
521 blocknr = ref->flash_offset / c->sector_size;
522 if (blocknr >= c->nr_blocks) {
523 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
524 BUG();
525 }
526 jeb = &c->blocks[blocknr];
527
528 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
529 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
530 /* Hm. This may confuse static lock analysis. If any of the above
531 three conditions is false, we're going to return from this
532 function without actually obliterating any nodes or freeing
533 any jffs2_raw_node_refs. So we don't need to stop erases from
534 happening, or protect against people holding an obsolete
535 jffs2_raw_node_ref without the erase_completion_lock. */
536 mutex_lock(&c->erase_free_sem);
537 }
538
539 spin_lock(&c->erase_completion_lock);
540
541 freed_len = ref_totlen(c, jeb, ref);
542
543 if (ref_flags(ref) == REF_UNCHECKED) {
544 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
545 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
546 freed_len, blocknr, ref->flash_offset, jeb->used_size);
547 BUG();
548 })
549 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
550 jeb->unchecked_size -= freed_len;
551 c->unchecked_size -= freed_len;
552 } else {
553 D1(if (unlikely(jeb->used_size < freed_len)) {
554 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
555 freed_len, blocknr, ref->flash_offset, jeb->used_size);
556 BUG();
557 })
558 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
559 jeb->used_size -= freed_len;
560 c->used_size -= freed_len;
561 }
562
563 // Take care, that wasted size is taken into concern
564 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
565 D1(printk("Dirtying\n"));
566 addedsize = freed_len;
567 jeb->dirty_size += freed_len;
568 c->dirty_size += freed_len;
569
570 /* Convert wasted space to dirty, if not a bad block */
571 if (jeb->wasted_size) {
572 if (on_list(&jeb->list, &c->bad_used_list)) {
573 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
574 jeb->offset));
575 addedsize = 0; /* To fool the refiling code later */
576 } else {
577 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
578 jeb->wasted_size, jeb->offset));
579 addedsize += jeb->wasted_size;
580 jeb->dirty_size += jeb->wasted_size;
581 c->dirty_size += jeb->wasted_size;
582 c->wasted_size -= jeb->wasted_size;
583 jeb->wasted_size = 0;
584 }
585 }
586 } else {
587 D1(printk("Wasting\n"));
588 addedsize = 0;
589 jeb->wasted_size += freed_len;
590 c->wasted_size += freed_len;
591 }
592 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
593
594 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
595 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
596
597 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
598 /* Flash scanning is in progress. Don't muck about with the block
599 lists because they're not ready yet, and don't actually
600 obliterate nodes that look obsolete. If they weren't
601 marked obsolete on the flash at the time they _became_
602 obsolete, there was probably a reason for that. */
603 spin_unlock(&c->erase_completion_lock);
604 /* We didn't lock the erase_free_sem */
605 return;
606 }
607
608 if (jeb == c->nextblock) {
609 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
610 } else if (!jeb->used_size && !jeb->unchecked_size) {
611 if (jeb == c->gcblock) {
612 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
613 c->gcblock = NULL;
614 } else {
615 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
616 list_del(&jeb->list);
617 }
618 if (jffs2_wbuf_dirty(c)) {
619 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
620 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
621 } else {
622 if (jiffies & 127) {
623 /* Most of the time, we just erase it immediately. Otherwise we
624 spend ages scanning it on mount, etc. */
625 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
626 list_add_tail(&jeb->list, &c->erase_pending_list);
627 c->nr_erasing_blocks++;
628 jffs2_garbage_collect_trigger(c);
629 } else {
630 /* Sometimes, however, we leave it elsewhere so it doesn't get
631 immediately reused, and we spread the load a bit. */
632 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
633 list_add_tail(&jeb->list, &c->erasable_list);
634 }
635 }
636 D1(printk(KERN_DEBUG "Done OK\n"));
637 } else if (jeb == c->gcblock) {
638 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
639 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
640 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
641 list_del(&jeb->list);
642 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
643 list_add_tail(&jeb->list, &c->dirty_list);
644 } else if (VERYDIRTY(c, jeb->dirty_size) &&
645 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
646 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
647 list_del(&jeb->list);
648 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
649 list_add_tail(&jeb->list, &c->very_dirty_list);
650 } else {
651 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
652 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
653 }
654
655 spin_unlock(&c->erase_completion_lock);
656
657 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
658 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
659 /* We didn't lock the erase_free_sem */
660 return;
661 }
662
663 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
664 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
665 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
666 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
667
668 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
669 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
670 if (ret) {
671 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
672 goto out_erase_sem;
673 }
674 if (retlen != sizeof(n)) {
675 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
676 goto out_erase_sem;
677 }
678 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
679 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
680 goto out_erase_sem;
681 }
682 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
683 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
684 goto out_erase_sem;
685 }
686 /* XXX FIXME: This is ugly now */
687 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
688 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
689 if (ret) {
690 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
691 goto out_erase_sem;
692 }
693 if (retlen != sizeof(n)) {
694 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
695 goto out_erase_sem;
696 }
697
698 /* Nodes which have been marked obsolete no longer need to be
699 associated with any inode. Remove them from the per-inode list.
700
701 Note we can't do this for NAND at the moment because we need
702 obsolete dirent nodes to stay on the lists, because of the
703 horridness in jffs2_garbage_collect_deletion_dirent(). Also
704 because we delete the inocache, and on NAND we need that to
705 stay around until all the nodes are actually erased, in order
706 to stop us from giving the same inode number to another newly
707 created inode. */
708 if (ref->next_in_ino) {
709 struct jffs2_inode_cache *ic;
710 struct jffs2_raw_node_ref **p;
711
712 spin_lock(&c->erase_completion_lock);
713
714 ic = jffs2_raw_ref_to_ic(ref);
715 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
716 ;
717
718 *p = ref->next_in_ino;
719 ref->next_in_ino = NULL;
720
721 switch (ic->class) {
722#ifdef CONFIG_JFFS2_FS_XATTR
723 case RAWNODE_CLASS_XATTR_DATUM:
724 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
725 break;
726 case RAWNODE_CLASS_XATTR_REF:
727 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
728 break;
729#endif
730 default:
731 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
732 jffs2_del_ino_cache(c, ic);
733 break;
734 }
735 spin_unlock(&c->erase_completion_lock);
736 }
737
738 out_erase_sem:
739 mutex_unlock(&c->erase_free_sem);
740}
741
742int jffs2_thread_should_wake(struct jffs2_sb_info *c)
743{
744 int ret = 0;
745 uint32_t dirty;
746 int nr_very_dirty = 0;
747 struct jffs2_eraseblock *jeb;
748
749 if (!list_empty(&c->erase_complete_list) ||
750 !list_empty(&c->erase_pending_list))
751 return 1;
752
753 if (c->unchecked_size) {
754 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
755 c->unchecked_size, c->checked_ino));
756 return 1;
757 }
758
759 /* dirty_size contains blocks on erase_pending_list
760 * those blocks are counted in c->nr_erasing_blocks.
761 * If one block is actually erased, it is not longer counted as dirty_space
762 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
763 * with c->nr_erasing_blocks * c->sector_size again.
764 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
765 * This helps us to force gc and pick eventually a clean block to spread the load.
766 */
767 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
768
769 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
770 (dirty > c->nospc_dirty_size))
771 ret = 1;
772
773 list_for_each_entry(jeb, &c->very_dirty_list, list) {
774 nr_very_dirty++;
775 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
776 ret = 1;
777 /* In debug mode, actually go through and count them all */
778 D1(continue);
779 break;
780 }
781 }
782
783 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
784 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
785
786 return ret;
787}
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright © 2001-2007 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/kernel.h>
15#include <linux/mtd/mtd.h>
16#include <linux/compiler.h>
17#include <linux/sched/signal.h>
18#include "nodelist.h"
19#include "debug.h"
20
21/*
22 * Check whether the user is allowed to write.
23 */
24static int jffs2_rp_can_write(struct jffs2_sb_info *c)
25{
26 uint32_t avail;
27 struct jffs2_mount_opts *opts = &c->mount_opts;
28
29 avail = c->dirty_size + c->free_size + c->unchecked_size +
30 c->erasing_size - c->resv_blocks_write * c->sector_size
31 - c->nospc_dirty_size;
32
33 if (avail < 2 * opts->rp_size)
34 jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
35 "erasing_size %u, unchecked_size %u, "
36 "nr_erasing_blocks %u, avail %u, resrv %u\n",
37 opts->rp_size, c->dirty_size, c->free_size,
38 c->erasing_size, c->unchecked_size,
39 c->nr_erasing_blocks, avail, c->nospc_dirty_size);
40
41 if (avail > opts->rp_size)
42 return 1;
43
44 /* Always allow root */
45 if (capable(CAP_SYS_RESOURCE))
46 return 1;
47
48 jffs2_dbg(1, "forbid writing\n");
49 return 0;
50}
51
52/**
53 * jffs2_reserve_space - request physical space to write nodes to flash
54 * @c: superblock info
55 * @minsize: Minimum acceptable size of allocation
56 * @len: Returned value of allocation length
57 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
58 *
59 * Requests a block of physical space on the flash. Returns zero for success
60 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
61 * error if appropriate. Doesn't return len since that's
62 *
63 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
64 * allocation semaphore, to prevent more than one allocation from being
65 * active at any time. The semaphore is later released by jffs2_commit_allocation()
66 *
67 * jffs2_reserve_space() may trigger garbage collection in order to make room
68 * for the requested allocation.
69 */
70
71static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
72 uint32_t *len, uint32_t sumsize);
73
74int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
75 uint32_t *len, int prio, uint32_t sumsize)
76{
77 int ret = -EAGAIN;
78 int blocksneeded = c->resv_blocks_write;
79 /* align it */
80 minsize = PAD(minsize);
81
82 jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
83 mutex_lock(&c->alloc_sem);
84
85 jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
86
87 spin_lock(&c->erase_completion_lock);
88
89 /*
90 * Check if the free space is greater then size of the reserved pool.
91 * If not, only allow root to proceed with writing.
92 */
93 if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
94 ret = -ENOSPC;
95 goto out;
96 }
97
98 /* this needs a little more thought (true <tglx> :)) */
99 while(ret == -EAGAIN) {
100 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
101 uint32_t dirty, avail;
102
103 /* calculate real dirty size
104 * dirty_size contains blocks on erase_pending_list
105 * those blocks are counted in c->nr_erasing_blocks.
106 * If one block is actually erased, it is not longer counted as dirty_space
107 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
108 * with c->nr_erasing_blocks * c->sector_size again.
109 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
110 * This helps us to force gc and pick eventually a clean block to spread the load.
111 * We add unchecked_size here, as we hopefully will find some space to use.
112 * This will affect the sum only once, as gc first finishes checking
113 * of nodes.
114 */
115 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
116 if (dirty < c->nospc_dirty_size) {
117 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
118 jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
119 __func__);
120 break;
121 }
122 jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
123 dirty, c->unchecked_size,
124 c->sector_size);
125
126 spin_unlock(&c->erase_completion_lock);
127 mutex_unlock(&c->alloc_sem);
128 return -ENOSPC;
129 }
130
131 /* Calc possibly available space. Possibly available means that we
132 * don't know, if unchecked size contains obsoleted nodes, which could give us some
133 * more usable space. This will affect the sum only once, as gc first finishes checking
134 * of nodes.
135 + Return -ENOSPC, if the maximum possibly available space is less or equal than
136 * blocksneeded * sector_size.
137 * This blocks endless gc looping on a filesystem, which is nearly full, even if
138 * the check above passes.
139 */
140 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
141 if ( (avail / c->sector_size) <= blocksneeded) {
142 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
143 jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
144 __func__);
145 break;
146 }
147
148 jffs2_dbg(1, "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
149 avail, blocksneeded * c->sector_size);
150 spin_unlock(&c->erase_completion_lock);
151 mutex_unlock(&c->alloc_sem);
152 return -ENOSPC;
153 }
154
155 mutex_unlock(&c->alloc_sem);
156
157 jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
158 c->nr_free_blocks, c->nr_erasing_blocks,
159 c->free_size, c->dirty_size, c->wasted_size,
160 c->used_size, c->erasing_size, c->bad_size,
161 c->free_size + c->dirty_size +
162 c->wasted_size + c->used_size +
163 c->erasing_size + c->bad_size,
164 c->flash_size);
165 spin_unlock(&c->erase_completion_lock);
166
167 ret = jffs2_garbage_collect_pass(c);
168
169 if (ret == -EAGAIN) {
170 spin_lock(&c->erase_completion_lock);
171 if (c->nr_erasing_blocks &&
172 list_empty(&c->erase_pending_list) &&
173 list_empty(&c->erase_complete_list)) {
174 DECLARE_WAITQUEUE(wait, current);
175 set_current_state(TASK_UNINTERRUPTIBLE);
176 add_wait_queue(&c->erase_wait, &wait);
177 jffs2_dbg(1, "%s waiting for erase to complete\n",
178 __func__);
179 spin_unlock(&c->erase_completion_lock);
180
181 schedule();
182 remove_wait_queue(&c->erase_wait, &wait);
183 } else
184 spin_unlock(&c->erase_completion_lock);
185 } else if (ret)
186 return ret;
187
188 cond_resched();
189
190 if (signal_pending(current))
191 return -EINTR;
192
193 mutex_lock(&c->alloc_sem);
194 spin_lock(&c->erase_completion_lock);
195 }
196
197 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
198 if (ret) {
199 jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
200 }
201 }
202
203out:
204 spin_unlock(&c->erase_completion_lock);
205 if (!ret)
206 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
207 if (ret)
208 mutex_unlock(&c->alloc_sem);
209 return ret;
210}
211
212int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
213 uint32_t *len, uint32_t sumsize)
214{
215 int ret;
216 minsize = PAD(minsize);
217
218 jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
219
220 while (true) {
221 spin_lock(&c->erase_completion_lock);
222 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
223 if (ret) {
224 jffs2_dbg(1, "%s(): looping, ret is %d\n",
225 __func__, ret);
226 }
227 spin_unlock(&c->erase_completion_lock);
228
229 if (ret == -EAGAIN)
230 cond_resched();
231 else
232 break;
233 }
234 if (!ret)
235 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
236
237 return ret;
238}
239
240
241/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
242
243static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
244{
245
246 if (c->nextblock == NULL) {
247 jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
248 __func__, jeb->offset);
249 return;
250 }
251 /* Check, if we have a dirty block now, or if it was dirty already */
252 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
253 c->dirty_size += jeb->wasted_size;
254 c->wasted_size -= jeb->wasted_size;
255 jeb->dirty_size += jeb->wasted_size;
256 jeb->wasted_size = 0;
257 if (VERYDIRTY(c, jeb->dirty_size)) {
258 jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
259 jeb->offset, jeb->free_size, jeb->dirty_size,
260 jeb->used_size);
261 list_add_tail(&jeb->list, &c->very_dirty_list);
262 } else {
263 jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
264 jeb->offset, jeb->free_size, jeb->dirty_size,
265 jeb->used_size);
266 list_add_tail(&jeb->list, &c->dirty_list);
267 }
268 } else {
269 jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
270 jeb->offset, jeb->free_size, jeb->dirty_size,
271 jeb->used_size);
272 list_add_tail(&jeb->list, &c->clean_list);
273 }
274 c->nextblock = NULL;
275
276}
277
278/* Select a new jeb for nextblock */
279
280static int jffs2_find_nextblock(struct jffs2_sb_info *c)
281{
282 struct list_head *next;
283
284 /* Take the next block off the 'free' list */
285
286 if (list_empty(&c->free_list)) {
287
288 if (!c->nr_erasing_blocks &&
289 !list_empty(&c->erasable_list)) {
290 struct jffs2_eraseblock *ejeb;
291
292 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
293 list_move_tail(&ejeb->list, &c->erase_pending_list);
294 c->nr_erasing_blocks++;
295 jffs2_garbage_collect_trigger(c);
296 jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
297 __func__, ejeb->offset);
298 }
299
300 if (!c->nr_erasing_blocks &&
301 !list_empty(&c->erasable_pending_wbuf_list)) {
302 jffs2_dbg(1, "%s(): Flushing write buffer\n",
303 __func__);
304 /* c->nextblock is NULL, no update to c->nextblock allowed */
305 spin_unlock(&c->erase_completion_lock);
306 jffs2_flush_wbuf_pad(c);
307 spin_lock(&c->erase_completion_lock);
308 /* Have another go. It'll be on the erasable_list now */
309 return -EAGAIN;
310 }
311
312 if (!c->nr_erasing_blocks) {
313 /* Ouch. We're in GC, or we wouldn't have got here.
314 And there's no space left. At all. */
315 pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
316 c->nr_erasing_blocks, c->nr_free_blocks,
317 list_empty(&c->erasable_list) ? "yes" : "no",
318 list_empty(&c->erasing_list) ? "yes" : "no",
319 list_empty(&c->erase_pending_list) ? "yes" : "no");
320 return -ENOSPC;
321 }
322
323 spin_unlock(&c->erase_completion_lock);
324 /* Don't wait for it; just erase one right now */
325 jffs2_erase_pending_blocks(c, 1);
326 spin_lock(&c->erase_completion_lock);
327
328 /* An erase may have failed, decreasing the
329 amount of free space available. So we must
330 restart from the beginning */
331 return -EAGAIN;
332 }
333
334 next = c->free_list.next;
335 list_del(next);
336 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
337 c->nr_free_blocks--;
338
339 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
340
341#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
342 /* adjust write buffer offset, else we get a non contiguous write bug */
343 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
344 c->wbuf_ofs = 0xffffffff;
345#endif
346
347 jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
348 __func__, c->nextblock->offset);
349
350 return 0;
351}
352
353/* Called with alloc sem _and_ erase_completion_lock */
354static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
355 uint32_t *len, uint32_t sumsize)
356{
357 struct jffs2_eraseblock *jeb = c->nextblock;
358 uint32_t reserved_size; /* for summary information at the end of the jeb */
359 int ret;
360
361 restart:
362 reserved_size = 0;
363
364 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
365 /* NOSUM_SIZE means not to generate summary */
366
367 if (jeb) {
368 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
369 dbg_summary("minsize=%d , jeb->free=%d ,"
370 "summary->size=%d , sumsize=%d\n",
371 minsize, jeb->free_size,
372 c->summary->sum_size, sumsize);
373 }
374
375 /* Is there enough space for writing out the current node, or we have to
376 write out summary information now, close this jeb and select new nextblock? */
377 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
378 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
379
380 /* Has summary been disabled for this jeb? */
381 if (jffs2_sum_is_disabled(c->summary)) {
382 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
383 goto restart;
384 }
385
386 /* Writing out the collected summary information */
387 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
388 ret = jffs2_sum_write_sumnode(c);
389
390 if (ret)
391 return ret;
392
393 if (jffs2_sum_is_disabled(c->summary)) {
394 /* jffs2_write_sumnode() couldn't write out the summary information
395 diabling summary for this jeb and free the collected information
396 */
397 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
398 goto restart;
399 }
400
401 jffs2_close_nextblock(c, jeb);
402 jeb = NULL;
403 /* keep always valid value in reserved_size */
404 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
405 }
406 } else {
407 if (jeb && minsize > jeb->free_size) {
408 uint32_t waste;
409
410 /* Skip the end of this block and file it as having some dirty space */
411 /* If there's a pending write to it, flush now */
412
413 if (jffs2_wbuf_dirty(c)) {
414 spin_unlock(&c->erase_completion_lock);
415 jffs2_dbg(1, "%s(): Flushing write buffer\n",
416 __func__);
417 jffs2_flush_wbuf_pad(c);
418 spin_lock(&c->erase_completion_lock);
419 jeb = c->nextblock;
420 goto restart;
421 }
422
423 spin_unlock(&c->erase_completion_lock);
424
425 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
426
427 /* Just lock it again and continue. Nothing much can change because
428 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
429 we hold c->erase_completion_lock in the majority of this function...
430 but that's a question for another (more caffeine-rich) day. */
431 spin_lock(&c->erase_completion_lock);
432
433 if (ret)
434 return ret;
435
436 waste = jeb->free_size;
437 jffs2_link_node_ref(c, jeb,
438 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
439 waste, NULL);
440 /* FIXME: that made it count as dirty. Convert to wasted */
441 jeb->dirty_size -= waste;
442 c->dirty_size -= waste;
443 jeb->wasted_size += waste;
444 c->wasted_size += waste;
445
446 jffs2_close_nextblock(c, jeb);
447 jeb = NULL;
448 }
449 }
450
451 if (!jeb) {
452
453 ret = jffs2_find_nextblock(c);
454 if (ret)
455 return ret;
456
457 jeb = c->nextblock;
458
459 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
460 pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
461 jeb->offset, jeb->free_size);
462 goto restart;
463 }
464 }
465 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
466 enough space */
467 *len = jeb->free_size - reserved_size;
468
469 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
470 !jeb->first_node->next_in_ino) {
471 /* Only node in it beforehand was a CLEANMARKER node (we think).
472 So mark it obsolete now that there's going to be another node
473 in the block. This will reduce used_size to zero but We've
474 already set c->nextblock so that jffs2_mark_node_obsolete()
475 won't try to refile it to the dirty_list.
476 */
477 spin_unlock(&c->erase_completion_lock);
478 jffs2_mark_node_obsolete(c, jeb->first_node);
479 spin_lock(&c->erase_completion_lock);
480 }
481
482 jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
483 __func__,
484 *len, jeb->offset + (c->sector_size - jeb->free_size));
485 return 0;
486}
487
488/**
489 * jffs2_add_physical_node_ref - add a physical node reference to the list
490 * @c: superblock info
491 * @new: new node reference to add
492 * @len: length of this physical node
493 *
494 * Should only be used to report nodes for which space has been allocated
495 * by jffs2_reserve_space.
496 *
497 * Must be called with the alloc_sem held.
498 */
499
500struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
501 uint32_t ofs, uint32_t len,
502 struct jffs2_inode_cache *ic)
503{
504 struct jffs2_eraseblock *jeb;
505 struct jffs2_raw_node_ref *new;
506
507 jeb = &c->blocks[ofs / c->sector_size];
508
509 jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
510 __func__, ofs & ~3, ofs & 3, len);
511#if 1
512 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
513 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
514 even after refiling c->nextblock */
515 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
516 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
517 pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
518 ofs & ~3, ofs & 3);
519 if (c->nextblock)
520 pr_warn("nextblock 0x%08x", c->nextblock->offset);
521 else
522 pr_warn("No nextblock");
523 pr_cont(", expected at %08x\n",
524 jeb->offset + (c->sector_size - jeb->free_size));
525 return ERR_PTR(-EINVAL);
526 }
527#endif
528 spin_lock(&c->erase_completion_lock);
529
530 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
531
532 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
533 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
534 jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
535 jeb->offset, jeb->free_size, jeb->dirty_size,
536 jeb->used_size);
537 if (jffs2_wbuf_dirty(c)) {
538 /* Flush the last write in the block if it's outstanding */
539 spin_unlock(&c->erase_completion_lock);
540 jffs2_flush_wbuf_pad(c);
541 spin_lock(&c->erase_completion_lock);
542 }
543
544 list_add_tail(&jeb->list, &c->clean_list);
545 c->nextblock = NULL;
546 }
547 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
548 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
549
550 spin_unlock(&c->erase_completion_lock);
551
552 return new;
553}
554
555
556void jffs2_complete_reservation(struct jffs2_sb_info *c)
557{
558 jffs2_dbg(1, "jffs2_complete_reservation()\n");
559 spin_lock(&c->erase_completion_lock);
560 jffs2_garbage_collect_trigger(c);
561 spin_unlock(&c->erase_completion_lock);
562 mutex_unlock(&c->alloc_sem);
563}
564
565static inline int on_list(struct list_head *obj, struct list_head *head)
566{
567 struct list_head *this;
568
569 list_for_each(this, head) {
570 if (this == obj) {
571 jffs2_dbg(1, "%p is on list at %p\n", obj, head);
572 return 1;
573
574 }
575 }
576 return 0;
577}
578
579void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
580{
581 struct jffs2_eraseblock *jeb;
582 int blocknr;
583 struct jffs2_unknown_node n;
584 int ret, addedsize;
585 size_t retlen;
586 uint32_t freed_len;
587
588 if(unlikely(!ref)) {
589 pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
590 return;
591 }
592 if (ref_obsolete(ref)) {
593 jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
594 __func__, ref_offset(ref));
595 return;
596 }
597 blocknr = ref->flash_offset / c->sector_size;
598 if (blocknr >= c->nr_blocks) {
599 pr_notice("raw node at 0x%08x is off the end of device!\n",
600 ref->flash_offset);
601 BUG();
602 }
603 jeb = &c->blocks[blocknr];
604
605 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
606 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
607 /* Hm. This may confuse static lock analysis. If any of the above
608 three conditions is false, we're going to return from this
609 function without actually obliterating any nodes or freeing
610 any jffs2_raw_node_refs. So we don't need to stop erases from
611 happening, or protect against people holding an obsolete
612 jffs2_raw_node_ref without the erase_completion_lock. */
613 mutex_lock(&c->erase_free_sem);
614 }
615
616 spin_lock(&c->erase_completion_lock);
617
618 freed_len = ref_totlen(c, jeb, ref);
619
620 if (ref_flags(ref) == REF_UNCHECKED) {
621 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
622 pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
623 freed_len, blocknr,
624 ref->flash_offset, jeb->used_size);
625 BUG();
626 })
627 jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
628 ref_offset(ref), freed_len);
629 jeb->unchecked_size -= freed_len;
630 c->unchecked_size -= freed_len;
631 } else {
632 D1(if (unlikely(jeb->used_size < freed_len)) {
633 pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
634 freed_len, blocknr,
635 ref->flash_offset, jeb->used_size);
636 BUG();
637 })
638 jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
639 ref_offset(ref), freed_len);
640 jeb->used_size -= freed_len;
641 c->used_size -= freed_len;
642 }
643
644 // Take care, that wasted size is taken into concern
645 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
646 jffs2_dbg(1, "Dirtying\n");
647 addedsize = freed_len;
648 jeb->dirty_size += freed_len;
649 c->dirty_size += freed_len;
650
651 /* Convert wasted space to dirty, if not a bad block */
652 if (jeb->wasted_size) {
653 if (on_list(&jeb->list, &c->bad_used_list)) {
654 jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
655 jeb->offset);
656 addedsize = 0; /* To fool the refiling code later */
657 } else {
658 jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
659 jeb->wasted_size, jeb->offset);
660 addedsize += jeb->wasted_size;
661 jeb->dirty_size += jeb->wasted_size;
662 c->dirty_size += jeb->wasted_size;
663 c->wasted_size -= jeb->wasted_size;
664 jeb->wasted_size = 0;
665 }
666 }
667 } else {
668 jffs2_dbg(1, "Wasting\n");
669 addedsize = 0;
670 jeb->wasted_size += freed_len;
671 c->wasted_size += freed_len;
672 }
673 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
674
675 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
676 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
677
678 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
679 /* Flash scanning is in progress. Don't muck about with the block
680 lists because they're not ready yet, and don't actually
681 obliterate nodes that look obsolete. If they weren't
682 marked obsolete on the flash at the time they _became_
683 obsolete, there was probably a reason for that. */
684 spin_unlock(&c->erase_completion_lock);
685 /* We didn't lock the erase_free_sem */
686 return;
687 }
688
689 if (jeb == c->nextblock) {
690 jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
691 jeb->offset);
692 } else if (!jeb->used_size && !jeb->unchecked_size) {
693 if (jeb == c->gcblock) {
694 jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
695 jeb->offset);
696 c->gcblock = NULL;
697 } else {
698 jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
699 jeb->offset);
700 list_del(&jeb->list);
701 }
702 if (jffs2_wbuf_dirty(c)) {
703 jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
704 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
705 } else {
706 if (jiffies & 127) {
707 /* Most of the time, we just erase it immediately. Otherwise we
708 spend ages scanning it on mount, etc. */
709 jffs2_dbg(1, "...and adding to erase_pending_list\n");
710 list_add_tail(&jeb->list, &c->erase_pending_list);
711 c->nr_erasing_blocks++;
712 jffs2_garbage_collect_trigger(c);
713 } else {
714 /* Sometimes, however, we leave it elsewhere so it doesn't get
715 immediately reused, and we spread the load a bit. */
716 jffs2_dbg(1, "...and adding to erasable_list\n");
717 list_add_tail(&jeb->list, &c->erasable_list);
718 }
719 }
720 jffs2_dbg(1, "Done OK\n");
721 } else if (jeb == c->gcblock) {
722 jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
723 jeb->offset);
724 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
725 jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
726 jeb->offset);
727 list_del(&jeb->list);
728 jffs2_dbg(1, "...and adding to dirty_list\n");
729 list_add_tail(&jeb->list, &c->dirty_list);
730 } else if (VERYDIRTY(c, jeb->dirty_size) &&
731 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
732 jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
733 jeb->offset);
734 list_del(&jeb->list);
735 jffs2_dbg(1, "...and adding to very_dirty_list\n");
736 list_add_tail(&jeb->list, &c->very_dirty_list);
737 } else {
738 jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
739 jeb->offset, jeb->free_size, jeb->dirty_size,
740 jeb->used_size);
741 }
742
743 spin_unlock(&c->erase_completion_lock);
744
745 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
746 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
747 /* We didn't lock the erase_free_sem */
748 return;
749 }
750
751 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
752 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
753 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
754 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
755
756 jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
757 ref_offset(ref));
758 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
759 if (ret) {
760 pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
761 ref_offset(ref), ret);
762 goto out_erase_sem;
763 }
764 if (retlen != sizeof(n)) {
765 pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
766 ref_offset(ref), retlen);
767 goto out_erase_sem;
768 }
769 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
770 pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
771 je32_to_cpu(n.totlen), freed_len);
772 goto out_erase_sem;
773 }
774 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
775 jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
776 ref_offset(ref), je16_to_cpu(n.nodetype));
777 goto out_erase_sem;
778 }
779 /* XXX FIXME: This is ugly now */
780 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
781 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
782 if (ret) {
783 pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
784 ref_offset(ref), ret);
785 goto out_erase_sem;
786 }
787 if (retlen != sizeof(n)) {
788 pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
789 ref_offset(ref), retlen);
790 goto out_erase_sem;
791 }
792
793 /* Nodes which have been marked obsolete no longer need to be
794 associated with any inode. Remove them from the per-inode list.
795
796 Note we can't do this for NAND at the moment because we need
797 obsolete dirent nodes to stay on the lists, because of the
798 horridness in jffs2_garbage_collect_deletion_dirent(). Also
799 because we delete the inocache, and on NAND we need that to
800 stay around until all the nodes are actually erased, in order
801 to stop us from giving the same inode number to another newly
802 created inode. */
803 if (ref->next_in_ino) {
804 struct jffs2_inode_cache *ic;
805 struct jffs2_raw_node_ref **p;
806
807 spin_lock(&c->erase_completion_lock);
808
809 ic = jffs2_raw_ref_to_ic(ref);
810 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
811 ;
812
813 *p = ref->next_in_ino;
814 ref->next_in_ino = NULL;
815
816 switch (ic->class) {
817#ifdef CONFIG_JFFS2_FS_XATTR
818 case RAWNODE_CLASS_XATTR_DATUM:
819 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
820 break;
821 case RAWNODE_CLASS_XATTR_REF:
822 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
823 break;
824#endif
825 default:
826 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
827 jffs2_del_ino_cache(c, ic);
828 break;
829 }
830 spin_unlock(&c->erase_completion_lock);
831 }
832
833 out_erase_sem:
834 mutex_unlock(&c->erase_free_sem);
835}
836
837int jffs2_thread_should_wake(struct jffs2_sb_info *c)
838{
839 int ret = 0;
840 uint32_t dirty;
841 int nr_very_dirty = 0;
842 struct jffs2_eraseblock *jeb;
843
844 if (!list_empty(&c->erase_complete_list) ||
845 !list_empty(&c->erase_pending_list))
846 return 1;
847
848 if (c->unchecked_size) {
849 jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, check_ino #%d\n",
850 c->unchecked_size, c->check_ino);
851 return 1;
852 }
853
854 /* dirty_size contains blocks on erase_pending_list
855 * those blocks are counted in c->nr_erasing_blocks.
856 * If one block is actually erased, it is not longer counted as dirty_space
857 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
858 * with c->nr_erasing_blocks * c->sector_size again.
859 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
860 * This helps us to force gc and pick eventually a clean block to spread the load.
861 */
862 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
863
864 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
865 (dirty > c->nospc_dirty_size))
866 ret = 1;
867
868 list_for_each_entry(jeb, &c->very_dirty_list, list) {
869 nr_very_dirty++;
870 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
871 ret = 1;
872 /* In debug mode, actually go through and count them all */
873 D1(continue);
874 break;
875 }
876 }
877
878 jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
879 __func__, c->nr_free_blocks, c->nr_erasing_blocks,
880 c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
881
882 return ret;
883}