Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
   4 *
   5 * Copyright (c) 2009, Intel Corporation.
   6 */
   7
   8#include <linux/bitfield.h>
   9#include <linux/bitops.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/preempt.h>
  14#include <linux/highmem.h>
  15#include <linux/delay.h>
  16#include <linux/slab.h>
  17#include <linux/spi/spi.h>
  18#include <linux/spi/spi-mem.h>
  19#include <linux/string.h>
  20#include <linux/of.h>
  21
  22#include "internals.h"
  23#include "spi-dw.h"
  24
  25#ifdef CONFIG_DEBUG_FS
  26#include <linux/debugfs.h>
  27#endif
  28
  29/* Slave spi_device related */
  30struct dw_spi_chip_data {
  31	u32 cr0;
  32	u32 rx_sample_dly;	/* RX sample delay */
  33};
  34
  35#ifdef CONFIG_DEBUG_FS
  36
  37#define DW_SPI_DBGFS_REG(_name, _off)	\
  38{					\
  39	.name = _name,			\
  40	.offset = _off,			\
  41}
  42
  43static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
  44	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
  45	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
  46	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
  47	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
  48	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
  49	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
  50	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
  51	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
  52	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
  53	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
  54	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
  55	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
  56	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
  57	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
  58	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
  59	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
  60};
  61
  62static void dw_spi_debugfs_init(struct dw_spi *dws)
  63{
  64	char name[32];
  65
  66	snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
  67	dws->debugfs = debugfs_create_dir(name, NULL);
  68
  69	dws->regset.regs = dw_spi_dbgfs_regs;
  70	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
  71	dws->regset.base = dws->regs;
  72	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
  73}
  74
  75static void dw_spi_debugfs_remove(struct dw_spi *dws)
  76{
  77	debugfs_remove_recursive(dws->debugfs);
  78}
  79
  80#else
  81static inline void dw_spi_debugfs_init(struct dw_spi *dws)
  82{
  83}
  84
  85static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
  86{
  87}
  88#endif /* CONFIG_DEBUG_FS */
  89
  90void dw_spi_set_cs(struct spi_device *spi, bool enable)
  91{
  92	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
  93	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
  94
  95	/*
  96	 * DW SPI controller demands any native CS being set in order to
  97	 * proceed with data transfer. So in order to activate the SPI
  98	 * communications we must set a corresponding bit in the Slave
  99	 * Enable register no matter whether the SPI core is configured to
 100	 * support active-high or active-low CS level.
 101	 */
 102	if (cs_high == enable)
 103		dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
 104	else
 105		dw_writel(dws, DW_SPI_SER, 0);
 106}
 107EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, "SPI_DW_CORE");
 108
 109/* Return the max entries we can fill into tx fifo */
 110static inline u32 dw_spi_tx_max(struct dw_spi *dws)
 111{
 112	u32 tx_room, rxtx_gap;
 113
 114	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
 115
 116	/*
 117	 * Another concern is about the tx/rx mismatch, we
 118	 * though to use (dws->fifo_len - rxflr - txflr) as
 119	 * one maximum value for tx, but it doesn't cover the
 120	 * data which is out of tx/rx fifo and inside the
 121	 * shift registers. So a control from sw point of
 122	 * view is taken.
 123	 */
 124	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
 125
 126	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
 127}
 128
 129/* Return the max entries we should read out of rx fifo */
 130static inline u32 dw_spi_rx_max(struct dw_spi *dws)
 131{
 132	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
 133}
 134
 135static void dw_writer(struct dw_spi *dws)
 136{
 137	u32 max = dw_spi_tx_max(dws);
 138	u32 txw = 0;
 139
 140	while (max--) {
 141		if (dws->tx) {
 142			if (dws->n_bytes == 1)
 143				txw = *(u8 *)(dws->tx);
 144			else if (dws->n_bytes == 2)
 145				txw = *(u16 *)(dws->tx);
 146			else
 147				txw = *(u32 *)(dws->tx);
 148
 149			dws->tx += dws->n_bytes;
 150		}
 151		dw_write_io_reg(dws, DW_SPI_DR, txw);
 152		--dws->tx_len;
 153	}
 154}
 155
 156static void dw_reader(struct dw_spi *dws)
 157{
 158	u32 max = dw_spi_rx_max(dws);
 159	u32 rxw;
 160
 161	while (max--) {
 162		rxw = dw_read_io_reg(dws, DW_SPI_DR);
 163		if (dws->rx) {
 164			if (dws->n_bytes == 1)
 165				*(u8 *)(dws->rx) = rxw;
 166			else if (dws->n_bytes == 2)
 167				*(u16 *)(dws->rx) = rxw;
 168			else
 169				*(u32 *)(dws->rx) = rxw;
 170
 171			dws->rx += dws->n_bytes;
 172		}
 173		--dws->rx_len;
 174	}
 175}
 176
 177int dw_spi_check_status(struct dw_spi *dws, bool raw)
 178{
 179	u32 irq_status;
 180	int ret = 0;
 181
 182	if (raw)
 183		irq_status = dw_readl(dws, DW_SPI_RISR);
 184	else
 185		irq_status = dw_readl(dws, DW_SPI_ISR);
 186
 187	if (irq_status & DW_SPI_INT_RXOI) {
 188		dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
 189		ret = -EIO;
 190	}
 191
 192	if (irq_status & DW_SPI_INT_RXUI) {
 193		dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
 194		ret = -EIO;
 195	}
 196
 197	if (irq_status & DW_SPI_INT_TXOI) {
 198		dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
 199		ret = -EIO;
 200	}
 201
 202	/* Generically handle the erroneous situation */
 203	if (ret) {
 204		dw_spi_reset_chip(dws);
 205		if (dws->host->cur_msg)
 206			dws->host->cur_msg->status = ret;
 207	}
 208
 209	return ret;
 210}
 211EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, "SPI_DW_CORE");
 212
 213static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
 214{
 215	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
 216
 217	if (dw_spi_check_status(dws, false)) {
 218		spi_finalize_current_transfer(dws->host);
 219		return IRQ_HANDLED;
 220	}
 221
 222	/*
 223	 * Read data from the Rx FIFO every time we've got a chance executing
 224	 * this method. If there is nothing left to receive, terminate the
 225	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
 226	 * final stage of the transfer. By doing so we'll get the next IRQ
 227	 * right when the leftover incoming data is received.
 228	 */
 229	dw_reader(dws);
 230	if (!dws->rx_len) {
 231		dw_spi_mask_intr(dws, 0xff);
 232		spi_finalize_current_transfer(dws->host);
 233	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
 234		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
 235	}
 236
 237	/*
 238	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
 239	 * disabled after the data transmission is finished so not to
 240	 * have the TXE IRQ flood at the final stage of the transfer.
 241	 */
 242	if (irq_status & DW_SPI_INT_TXEI) {
 243		dw_writer(dws);
 244		if (!dws->tx_len)
 245			dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
 246	}
 247
 248	return IRQ_HANDLED;
 249}
 250
 251static irqreturn_t dw_spi_irq(int irq, void *dev_id)
 252{
 253	struct spi_controller *host = dev_id;
 254	struct dw_spi *dws = spi_controller_get_devdata(host);
 255	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
 256
 257	if (!irq_status)
 258		return IRQ_NONE;
 259
 260	if (!host->cur_msg) {
 261		dw_spi_mask_intr(dws, 0xff);
 262		return IRQ_HANDLED;
 263	}
 264
 265	return dws->transfer_handler(dws);
 266}
 267
 268static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
 269{
 270	u32 cr0 = 0;
 271
 272	if (dw_spi_ip_is(dws, PSSI)) {
 273		/* CTRLR0[ 5: 4] Frame Format */
 274		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
 275
 276		/*
 277		 * SPI mode (SCPOL|SCPH)
 278		 * CTRLR0[ 6] Serial Clock Phase
 279		 * CTRLR0[ 7] Serial Clock Polarity
 280		 */
 281		if (spi->mode & SPI_CPOL)
 282			cr0 |= DW_PSSI_CTRLR0_SCPOL;
 283		if (spi->mode & SPI_CPHA)
 284			cr0 |= DW_PSSI_CTRLR0_SCPHA;
 285
 286		/* CTRLR0[11] Shift Register Loop */
 287		if (spi->mode & SPI_LOOP)
 288			cr0 |= DW_PSSI_CTRLR0_SRL;
 289	} else {
 290		/* CTRLR0[ 7: 6] Frame Format */
 291		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
 292
 293		/*
 294		 * SPI mode (SCPOL|SCPH)
 295		 * CTRLR0[ 8] Serial Clock Phase
 296		 * CTRLR0[ 9] Serial Clock Polarity
 297		 */
 298		if (spi->mode & SPI_CPOL)
 299			cr0 |= DW_HSSI_CTRLR0_SCPOL;
 300		if (spi->mode & SPI_CPHA)
 301			cr0 |= DW_HSSI_CTRLR0_SCPHA;
 302
 303		/* CTRLR0[13] Shift Register Loop */
 304		if (spi->mode & SPI_LOOP)
 305			cr0 |= DW_HSSI_CTRLR0_SRL;
 306
 307		/* CTRLR0[31] MST */
 308		if (dw_spi_ver_is_ge(dws, HSSI, 102A))
 309			cr0 |= DW_HSSI_CTRLR0_MST;
 310	}
 311
 312	return cr0;
 313}
 314
 315void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
 316			  struct dw_spi_cfg *cfg)
 317{
 318	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
 319	u32 cr0 = chip->cr0;
 320	u32 speed_hz;
 321	u16 clk_div;
 322
 323	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
 324	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
 325
 326	if (dw_spi_ip_is(dws, PSSI))
 327		/* CTRLR0[ 9:8] Transfer Mode */
 328		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
 329	else
 330		/* CTRLR0[11:10] Transfer Mode */
 331		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
 332
 333	dw_writel(dws, DW_SPI_CTRLR0, cr0);
 334
 335	if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
 336	    cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
 337		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
 338
 339	/* Note DW APB SSI clock divider doesn't support odd numbers */
 340	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
 341	speed_hz = dws->max_freq / clk_div;
 342
 343	if (dws->current_freq != speed_hz) {
 344		dw_spi_set_clk(dws, clk_div);
 345		dws->current_freq = speed_hz;
 346	}
 347
 348	/* Update RX sample delay if required */
 349	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
 350		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
 351		dws->cur_rx_sample_dly = chip->rx_sample_dly;
 352	}
 353}
 354EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, "SPI_DW_CORE");
 355
 356static void dw_spi_irq_setup(struct dw_spi *dws)
 357{
 358	u16 level;
 359	u8 imask;
 360
 361	/*
 362	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
 363	 * will be adjusted at the final stage of the IRQ-based SPI transfer
 364	 * execution so not to lose the leftover of the incoming data.
 365	 */
 366	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
 367	dw_writel(dws, DW_SPI_TXFTLR, level);
 368	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
 369
 370	dws->transfer_handler = dw_spi_transfer_handler;
 371
 372	imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
 373		DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
 374	dw_spi_umask_intr(dws, imask);
 375}
 376
 377/*
 378 * The iterative procedure of the poll-based transfer is simple: write as much
 379 * as possible to the Tx FIFO, wait until the pending to receive data is ready
 380 * to be read, read it from the Rx FIFO and check whether the performed
 381 * procedure has been successful.
 382 *
 383 * Note this method the same way as the IRQ-based transfer won't work well for
 384 * the SPI devices connected to the controller with native CS due to the
 385 * automatic CS assertion/de-assertion.
 386 */
 387static int dw_spi_poll_transfer(struct dw_spi *dws,
 388				struct spi_transfer *transfer)
 389{
 390	struct spi_delay delay;
 391	u16 nbits;
 392	int ret;
 393
 394	delay.unit = SPI_DELAY_UNIT_SCK;
 395	nbits = dws->n_bytes * BITS_PER_BYTE;
 396
 397	do {
 398		dw_writer(dws);
 399
 400		delay.value = nbits * (dws->rx_len - dws->tx_len);
 401		spi_delay_exec(&delay, transfer);
 402
 403		dw_reader(dws);
 404
 405		ret = dw_spi_check_status(dws, true);
 406		if (ret)
 407			return ret;
 408	} while (dws->rx_len);
 409
 410	return 0;
 411}
 412
 413static int dw_spi_transfer_one(struct spi_controller *host,
 414			       struct spi_device *spi,
 415			       struct spi_transfer *transfer)
 416{
 417	struct dw_spi *dws = spi_controller_get_devdata(host);
 418	struct dw_spi_cfg cfg = {
 419		.tmode = DW_SPI_CTRLR0_TMOD_TR,
 420		.dfs = transfer->bits_per_word,
 421		.freq = transfer->speed_hz,
 422	};
 423	int ret;
 424
 425	dws->dma_mapped = 0;
 426	dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word));
 427	dws->tx = (void *)transfer->tx_buf;
 428	dws->tx_len = transfer->len / dws->n_bytes;
 429	dws->rx = transfer->rx_buf;
 430	dws->rx_len = dws->tx_len;
 431
 432	/* Ensure the data above is visible for all CPUs */
 433	smp_mb();
 434
 435	dw_spi_enable_chip(dws, 0);
 436
 437	dw_spi_update_config(dws, spi, &cfg);
 438
 439	transfer->effective_speed_hz = dws->current_freq;
 440
 441	/* Check if current transfer is a DMA transaction */
 442	dws->dma_mapped = spi_xfer_is_dma_mapped(host, spi, transfer);
 443
 444	/* For poll mode just disable all interrupts */
 445	dw_spi_mask_intr(dws, 0xff);
 446
 447	if (dws->dma_mapped) {
 448		ret = dws->dma_ops->dma_setup(dws, transfer);
 449		if (ret)
 450			return ret;
 451	}
 452
 453	dw_spi_enable_chip(dws, 1);
 454
 455	if (dws->dma_mapped)
 456		return dws->dma_ops->dma_transfer(dws, transfer);
 457	else if (dws->irq == IRQ_NOTCONNECTED)
 458		return dw_spi_poll_transfer(dws, transfer);
 459
 460	dw_spi_irq_setup(dws);
 461
 462	return 1;
 463}
 464
 465static void dw_spi_handle_err(struct spi_controller *host,
 466			      struct spi_message *msg)
 467{
 468	struct dw_spi *dws = spi_controller_get_devdata(host);
 469
 470	if (dws->dma_mapped)
 471		dws->dma_ops->dma_stop(dws);
 472
 473	dw_spi_reset_chip(dws);
 474}
 475
 476static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 477{
 478	if (op->data.dir == SPI_MEM_DATA_IN)
 479		op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
 480
 481	return 0;
 482}
 483
 484static bool dw_spi_supports_mem_op(struct spi_mem *mem,
 485				   const struct spi_mem_op *op)
 486{
 487	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
 488	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
 489		return false;
 490
 491	return spi_mem_default_supports_op(mem, op);
 492}
 493
 494static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
 495{
 496	unsigned int i, j, len;
 497	u8 *out;
 498
 499	/*
 500	 * Calculate the total length of the EEPROM command transfer and
 501	 * either use the pre-allocated buffer or create a temporary one.
 502	 */
 503	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
 504	if (op->data.dir == SPI_MEM_DATA_OUT)
 505		len += op->data.nbytes;
 506
 507	if (len <= DW_SPI_BUF_SIZE) {
 508		out = dws->buf;
 509	} else {
 510		out = kzalloc(len, GFP_KERNEL);
 511		if (!out)
 512			return -ENOMEM;
 513	}
 514
 515	/*
 516	 * Collect the operation code, address and dummy bytes into the single
 517	 * buffer. If it's a transfer with data to be sent, also copy it into the
 518	 * single buffer in order to speed the data transmission up.
 519	 */
 520	for (i = 0; i < op->cmd.nbytes; ++i)
 521		out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
 522	for (j = 0; j < op->addr.nbytes; ++i, ++j)
 523		out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
 524	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
 525		out[i] = 0x0;
 526
 527	if (op->data.dir == SPI_MEM_DATA_OUT)
 528		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
 529
 530	dws->n_bytes = 1;
 531	dws->tx = out;
 532	dws->tx_len = len;
 533	if (op->data.dir == SPI_MEM_DATA_IN) {
 534		dws->rx = op->data.buf.in;
 535		dws->rx_len = op->data.nbytes;
 536	} else {
 537		dws->rx = NULL;
 538		dws->rx_len = 0;
 539	}
 540
 541	return 0;
 542}
 543
 544static void dw_spi_free_mem_buf(struct dw_spi *dws)
 545{
 546	if (dws->tx != dws->buf)
 547		kfree(dws->tx);
 548}
 549
 550static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
 551{
 552	u32 room, entries, sts;
 553	unsigned int len;
 554	u8 *buf;
 555
 556	/*
 557	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
 558	 * since native CS hasn't been enabled yet and the automatic data
 559	 * transmission won't start til we do that.
 560	 */
 561	len = min(dws->fifo_len, dws->tx_len);
 562	buf = dws->tx;
 563	while (len--)
 564		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
 565
 566	/*
 567	 * After setting any bit in the SER register the transmission will
 568	 * start automatically. We have to keep up with that procedure
 569	 * otherwise the CS de-assertion will happen whereupon the memory
 570	 * operation will be pre-terminated.
 571	 */
 572	len = dws->tx_len - ((void *)buf - dws->tx);
 573	dw_spi_set_cs(spi, false);
 574	while (len) {
 575		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
 576		if (!entries) {
 577			dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
 578			return -EIO;
 579		}
 580		room = min(dws->fifo_len - entries, len);
 581		for (; room; --room, --len)
 582			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
 583	}
 584
 585	/*
 586	 * Data fetching will start automatically if the EEPROM-read mode is
 587	 * activated. We have to keep up with the incoming data pace to
 588	 * prevent the Rx FIFO overflow causing the inbound data loss.
 589	 */
 590	len = dws->rx_len;
 591	buf = dws->rx;
 592	while (len) {
 593		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
 594		if (!entries) {
 595			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
 596			if (sts & DW_SPI_INT_RXOI) {
 597				dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
 598				return -EIO;
 599			}
 600			continue;
 601		}
 602		entries = min(entries, len);
 603		for (; entries; --entries, --len)
 604			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
 605	}
 606
 607	return 0;
 608}
 609
 610static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
 611{
 612	return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
 613}
 614
 615static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
 616{
 617	int retry = DW_SPI_WAIT_RETRIES;
 618	struct spi_delay delay;
 619	unsigned long ns, us;
 620	u32 nents;
 621
 622	nents = dw_readl(dws, DW_SPI_TXFLR);
 623	ns = NSEC_PER_SEC / dws->current_freq * nents;
 624	ns *= dws->n_bytes * BITS_PER_BYTE;
 625	if (ns <= NSEC_PER_USEC) {
 626		delay.unit = SPI_DELAY_UNIT_NSECS;
 627		delay.value = ns;
 628	} else {
 629		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
 630		delay.unit = SPI_DELAY_UNIT_USECS;
 631		delay.value = clamp_val(us, 0, USHRT_MAX);
 632	}
 633
 634	while (dw_spi_ctlr_busy(dws) && retry--)
 635		spi_delay_exec(&delay, NULL);
 636
 637	if (retry < 0) {
 638		dev_err(&dws->host->dev, "Mem op hanged up\n");
 639		return -EIO;
 640	}
 641
 642	return 0;
 643}
 644
 645static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
 646{
 647	dw_spi_enable_chip(dws, 0);
 648	dw_spi_set_cs(spi, true);
 649	dw_spi_enable_chip(dws, 1);
 650}
 651
 652/*
 653 * The SPI memory operation implementation below is the best choice for the
 654 * devices, which are selected by the native chip-select lane. It's
 655 * specifically developed to workaround the problem with automatic chip-select
 656 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
 657 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
 658 * unavailable.
 659 */
 660static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
 661{
 662	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
 663	struct dw_spi_cfg cfg;
 664	unsigned long flags;
 665	int ret;
 666
 667	/*
 668	 * Collect the outbound data into a single buffer to speed the
 669	 * transmission up at least on the initial stage.
 670	 */
 671	ret = dw_spi_init_mem_buf(dws, op);
 672	if (ret)
 673		return ret;
 674
 675	/*
 676	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
 677	 * operation. Transmit-only mode is suitable for the rest of them.
 678	 */
 679	cfg.dfs = 8;
 680	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
 681	if (op->data.dir == SPI_MEM_DATA_IN) {
 682		cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
 683		cfg.ndf = op->data.nbytes;
 684	} else {
 685		cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
 686	}
 687
 688	dw_spi_enable_chip(dws, 0);
 689
 690	dw_spi_update_config(dws, mem->spi, &cfg);
 691
 692	dw_spi_mask_intr(dws, 0xff);
 693
 694	dw_spi_enable_chip(dws, 1);
 695
 696	/*
 697	 * DW APB SSI controller has very nasty peculiarities. First originally
 698	 * (without any vendor-specific modifications) it doesn't provide a
 699	 * direct way to set and clear the native chip-select signal. Instead
 700	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
 701	 * transmission is going on, and automatically de-asserts it back to
 702	 * the high level if the Tx FIFO doesn't have anything to be pushed
 703	 * out. Due to that a multi-tasking or heavy IRQs activity might be
 704	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
 705	 * getting empty and sudden CS de-assertion, which in the middle of the
 706	 * transfer will most likely cause the data loss. Secondly the
 707	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
 708	 * data being automatically pulled in into the Rx FIFO. So if the
 709	 * driver software is late in fetching the data from the FIFO before
 710	 * it's overflown, new incoming data will be lost. In order to make
 711	 * sure the executed memory operations are CS-atomic and to prevent the
 712	 * Rx FIFO overflow we have to disable the local interrupts so to block
 713	 * any preemption during the subsequent IO operations.
 714	 *
 715	 * Note. At some circumstances disabling IRQs may not help to prevent
 716	 * the problems described above. The CS de-assertion and Rx FIFO
 717	 * overflow may still happen due to the relatively slow system bus or
 718	 * CPU not working fast enough, so the write-then-read algo implemented
 719	 * here just won't keep up with the SPI bus data transfer. Such
 720	 * situation is highly platform specific and is supposed to be fixed by
 721	 * manually restricting the SPI bus frequency using the
 722	 * dws->max_mem_freq parameter.
 723	 */
 724	local_irq_save(flags);
 725	preempt_disable();
 726
 727	ret = dw_spi_write_then_read(dws, mem->spi);
 728
 729	local_irq_restore(flags);
 730	preempt_enable();
 731
 732	/*
 733	 * Wait for the operation being finished and check the controller
 734	 * status only if there hasn't been any run-time error detected. In the
 735	 * former case it's just pointless. In the later one to prevent an
 736	 * additional error message printing since any hw error flag being set
 737	 * would be due to an error detected on the data transfer.
 738	 */
 739	if (!ret) {
 740		ret = dw_spi_wait_mem_op_done(dws);
 741		if (!ret)
 742			ret = dw_spi_check_status(dws, true);
 743	}
 744
 745	dw_spi_stop_mem_op(dws, mem->spi);
 746
 747	dw_spi_free_mem_buf(dws);
 748
 749	return ret;
 750}
 751
 752/*
 753 * Initialize the default memory operations if a glue layer hasn't specified
 754 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
 755 * controller doesn't have an embedded dirmap interface. Note the memory
 756 * operations implemented in this driver is the best choice only for the DW APB
 757 * SSI controller with standard native CS functionality. If a hardware vendor
 758 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
 759 * be safer to use the normal SPI-messages-based transfers implementation.
 760 */
 761static void dw_spi_init_mem_ops(struct dw_spi *dws)
 762{
 763	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
 764	    !dws->set_cs) {
 765		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
 766		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
 767		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
 768		if (!dws->max_mem_freq)
 769			dws->max_mem_freq = dws->max_freq;
 770	}
 771}
 772
 773/* This may be called twice for each spi dev */
 774static int dw_spi_setup(struct spi_device *spi)
 775{
 776	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 777	struct dw_spi_chip_data *chip;
 778
 779	/* Only alloc on first setup */
 780	chip = spi_get_ctldata(spi);
 781	if (!chip) {
 782		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 783		u32 rx_sample_dly_ns;
 784
 785		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
 786		if (!chip)
 787			return -ENOMEM;
 788		spi_set_ctldata(spi, chip);
 789		/* Get specific / default rx-sample-delay */
 790		if (device_property_read_u32(&spi->dev,
 791					     "rx-sample-delay-ns",
 792					     &rx_sample_dly_ns) != 0)
 793			/* Use default controller value */
 794			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
 795		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
 796							NSEC_PER_SEC /
 797							dws->max_freq);
 798	}
 799
 800	/*
 801	 * Update CR0 data each time the setup callback is invoked since
 802	 * the device parameters could have been changed, for instance, by
 803	 * the MMC SPI driver or something else.
 804	 */
 805	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
 806
 807	return 0;
 808}
 809
 810static void dw_spi_cleanup(struct spi_device *spi)
 811{
 812	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
 813
 814	kfree(chip);
 815	spi_set_ctldata(spi, NULL);
 816}
 817
 818/* Restart the controller, disable all interrupts, clean rx fifo */
 819static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
 820{
 821	dw_spi_reset_chip(dws);
 822
 823	/*
 824	 * Retrieve the Synopsys component version if it hasn't been specified
 825	 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
 826	 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
 827	 */
 828	if (!dws->ver) {
 829		dws->ver = dw_readl(dws, DW_SPI_VERSION);
 830
 831		dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
 832			dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
 833			DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
 834			DW_SPI_GET_BYTE(dws->ver, 1));
 835	}
 836
 837	/*
 838	 * Try to detect the number of native chip-selects if the platform
 839	 * driver didn't set it up. There can be up to 16 lines configured.
 840	 */
 841	if (!dws->num_cs) {
 842		u32 ser;
 843
 844		dw_writel(dws, DW_SPI_SER, 0xffff);
 845		ser = dw_readl(dws, DW_SPI_SER);
 846		dw_writel(dws, DW_SPI_SER, 0);
 847
 848		dws->num_cs = hweight16(ser);
 849	}
 850
 851	/*
 852	 * Try to detect the FIFO depth if not set by interface driver,
 853	 * the depth could be from 2 to 256 from HW spec
 854	 */
 855	if (!dws->fifo_len) {
 856		u32 fifo;
 857
 858		for (fifo = 1; fifo < 256; fifo++) {
 859			dw_writel(dws, DW_SPI_TXFTLR, fifo);
 860			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
 861				break;
 862		}
 863		dw_writel(dws, DW_SPI_TXFTLR, 0);
 864
 865		dws->fifo_len = (fifo == 1) ? 0 : fifo;
 866		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
 867	}
 868
 869	/*
 870	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
 871	 * writability. Note DWC SSI controller also has the extended DFS, but
 872	 * with zero offset.
 873	 */
 874	if (dw_spi_ip_is(dws, PSSI)) {
 875		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
 876
 877		dw_spi_enable_chip(dws, 0);
 878		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
 879		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
 880		dw_writel(dws, DW_SPI_CTRLR0, tmp);
 881		dw_spi_enable_chip(dws, 1);
 882
 883		if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
 884			dws->caps |= DW_SPI_CAP_DFS32;
 885			dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
 886			dev_dbg(dev, "Detected 32-bits max data frame size\n");
 887		}
 888	} else {
 889		dws->caps |= DW_SPI_CAP_DFS32;
 890	}
 891
 892	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
 893	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
 894		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
 895}
 896
 897int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
 898{
 899	struct spi_controller *host;
 900	int ret;
 901
 902	if (!dws)
 903		return -EINVAL;
 904
 905	host = spi_alloc_host(dev, 0);
 906	if (!host)
 907		return -ENOMEM;
 908
 909	device_set_node(&host->dev, dev_fwnode(dev));
 910
 911	dws->host = host;
 912	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
 913
 914	spi_controller_set_devdata(host, dws);
 915
 916	/* Basic HW init */
 917	dw_spi_hw_init(dev, dws);
 918
 919	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
 920			  host);
 921	if (ret < 0 && ret != -ENOTCONN) {
 922		dev_err(dev, "can not get IRQ\n");
 923		goto err_free_host;
 924	}
 925
 926	dw_spi_init_mem_ops(dws);
 927
 928	host->use_gpio_descriptors = true;
 929	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
 930	if (dws->caps & DW_SPI_CAP_DFS32)
 931		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 932	else
 933		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 934	host->bus_num = dws->bus_num;
 935	host->num_chipselect = dws->num_cs;
 936	host->setup = dw_spi_setup;
 937	host->cleanup = dw_spi_cleanup;
 938	if (dws->set_cs)
 939		host->set_cs = dws->set_cs;
 940	else
 941		host->set_cs = dw_spi_set_cs;
 942	host->transfer_one = dw_spi_transfer_one;
 943	host->handle_err = dw_spi_handle_err;
 944	if (dws->mem_ops.exec_op)
 945		host->mem_ops = &dws->mem_ops;
 946	host->max_speed_hz = dws->max_freq;
 947	host->flags = SPI_CONTROLLER_GPIO_SS;
 948	host->auto_runtime_pm = true;
 949
 950	/* Get default rx sample delay */
 951	device_property_read_u32(dev, "rx-sample-delay-ns",
 952				 &dws->def_rx_sample_dly_ns);
 953
 954	if (dws->dma_ops && dws->dma_ops->dma_init) {
 955		ret = dws->dma_ops->dma_init(dev, dws);
 956		if (ret == -EPROBE_DEFER) {
 957			goto err_free_irq;
 958		} else if (ret) {
 959			dev_warn(dev, "DMA init failed\n");
 960		} else {
 961			host->can_dma = dws->dma_ops->can_dma;
 962			host->flags |= SPI_CONTROLLER_MUST_TX;
 963		}
 964	}
 965
 966	ret = spi_register_controller(host);
 967	if (ret) {
 968		dev_err_probe(dev, ret, "problem registering spi host\n");
 969		goto err_dma_exit;
 970	}
 971
 972	dw_spi_debugfs_init(dws);
 973	return 0;
 974
 975err_dma_exit:
 976	if (dws->dma_ops && dws->dma_ops->dma_exit)
 977		dws->dma_ops->dma_exit(dws);
 978	dw_spi_enable_chip(dws, 0);
 979err_free_irq:
 980	free_irq(dws->irq, host);
 981err_free_host:
 982	spi_controller_put(host);
 983	return ret;
 984}
 985EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, "SPI_DW_CORE");
 986
 987void dw_spi_remove_host(struct dw_spi *dws)
 988{
 989	dw_spi_debugfs_remove(dws);
 990
 991	spi_unregister_controller(dws->host);
 992
 993	if (dws->dma_ops && dws->dma_ops->dma_exit)
 994		dws->dma_ops->dma_exit(dws);
 995
 996	dw_spi_shutdown_chip(dws);
 997
 998	free_irq(dws->irq, dws->host);
 999}
1000EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, "SPI_DW_CORE");
1001
1002int dw_spi_suspend_host(struct dw_spi *dws)
1003{
1004	int ret;
1005
1006	ret = spi_controller_suspend(dws->host);
1007	if (ret)
1008		return ret;
1009
1010	dw_spi_shutdown_chip(dws);
1011	return 0;
1012}
1013EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, "SPI_DW_CORE");
1014
1015int dw_spi_resume_host(struct dw_spi *dws)
1016{
1017	dw_spi_hw_init(&dws->host->dev, dws);
1018	return spi_controller_resume(dws->host);
1019}
1020EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, "SPI_DW_CORE");
1021
1022MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1023MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1024MODULE_LICENSE("GPL v2");