Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
  4 *
  5 * Copyright (c) 2009, Intel Corporation.
  6 */
  7
  8#include <linux/dma-mapping.h>
  9#include <linux/interrupt.h>
 10#include <linux/module.h>
 11#include <linux/preempt.h>
 12#include <linux/highmem.h>
 13#include <linux/delay.h>
 14#include <linux/slab.h>
 15#include <linux/spi/spi.h>
 16#include <linux/spi/spi-mem.h>
 17#include <linux/string.h>
 18#include <linux/of.h>
 19
 20#include "spi-dw.h"
 21
 22#ifdef CONFIG_DEBUG_FS
 23#include <linux/debugfs.h>
 24#endif
 25
 26/* Slave spi_device related */
 27struct chip_data {
 28	u32 cr0;
 29	u32 rx_sample_dly;	/* RX sample delay */
 30};
 31
 32#ifdef CONFIG_DEBUG_FS
 33
 34#define DW_SPI_DBGFS_REG(_name, _off)	\
 35{					\
 36	.name = _name,			\
 37	.offset = _off,			\
 38}
 39
 40static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
 41	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
 42	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
 43	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
 44	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
 45	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
 46	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
 47	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
 48	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
 49	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
 50	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
 51	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
 52	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
 53	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
 54	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
 55	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
 56	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
 57};
 58
 59static int dw_spi_debugfs_init(struct dw_spi *dws)
 60{
 61	char name[32];
 62
 63	snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
 64	dws->debugfs = debugfs_create_dir(name, NULL);
 65	if (!dws->debugfs)
 66		return -ENOMEM;
 67
 68	dws->regset.regs = dw_spi_dbgfs_regs;
 69	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
 70	dws->regset.base = dws->regs;
 71	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
 72
 73	return 0;
 74}
 75
 76static void dw_spi_debugfs_remove(struct dw_spi *dws)
 77{
 78	debugfs_remove_recursive(dws->debugfs);
 79}
 80
 81#else
 82static inline int dw_spi_debugfs_init(struct dw_spi *dws)
 83{
 84	return 0;
 85}
 86
 87static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
 88{
 89}
 90#endif /* CONFIG_DEBUG_FS */
 91
 92void dw_spi_set_cs(struct spi_device *spi, bool enable)
 93{
 94	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 95	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
 96
 97	/*
 98	 * DW SPI controller demands any native CS being set in order to
 99	 * proceed with data transfer. So in order to activate the SPI
100	 * communications we must set a corresponding bit in the Slave
101	 * Enable register no matter whether the SPI core is configured to
102	 * support active-high or active-low CS level.
103	 */
104	if (cs_high == enable)
105		dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
106	else
107		dw_writel(dws, DW_SPI_SER, 0);
108}
109EXPORT_SYMBOL_GPL(dw_spi_set_cs);
110
111/* Return the max entries we can fill into tx fifo */
112static inline u32 tx_max(struct dw_spi *dws)
113{
114	u32 tx_room, rxtx_gap;
115
116	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
117
118	/*
119	 * Another concern is about the tx/rx mismatch, we
120	 * though to use (dws->fifo_len - rxflr - txflr) as
121	 * one maximum value for tx, but it doesn't cover the
122	 * data which is out of tx/rx fifo and inside the
123	 * shift registers. So a control from sw point of
124	 * view is taken.
125	 */
126	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
127
128	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
129}
130
131/* Return the max entries we should read out of rx fifo */
132static inline u32 rx_max(struct dw_spi *dws)
133{
134	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
135}
136
137static void dw_writer(struct dw_spi *dws)
138{
139	u32 max = tx_max(dws);
140	u32 txw = 0;
141
142	while (max--) {
143		if (dws->tx) {
144			if (dws->n_bytes == 1)
145				txw = *(u8 *)(dws->tx);
146			else if (dws->n_bytes == 2)
147				txw = *(u16 *)(dws->tx);
148			else
149				txw = *(u32 *)(dws->tx);
150
151			dws->tx += dws->n_bytes;
152		}
153		dw_write_io_reg(dws, DW_SPI_DR, txw);
154		--dws->tx_len;
155	}
156}
157
158static void dw_reader(struct dw_spi *dws)
159{
160	u32 max = rx_max(dws);
161	u32 rxw;
162
163	while (max--) {
164		rxw = dw_read_io_reg(dws, DW_SPI_DR);
165		if (dws->rx) {
166			if (dws->n_bytes == 1)
167				*(u8 *)(dws->rx) = rxw;
168			else if (dws->n_bytes == 2)
169				*(u16 *)(dws->rx) = rxw;
170			else
171				*(u32 *)(dws->rx) = rxw;
172
173			dws->rx += dws->n_bytes;
174		}
175		--dws->rx_len;
176	}
177}
178
179int dw_spi_check_status(struct dw_spi *dws, bool raw)
180{
181	u32 irq_status;
182	int ret = 0;
183
184	if (raw)
185		irq_status = dw_readl(dws, DW_SPI_RISR);
186	else
187		irq_status = dw_readl(dws, DW_SPI_ISR);
188
189	if (irq_status & SPI_INT_RXOI) {
190		dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
191		ret = -EIO;
192	}
193
194	if (irq_status & SPI_INT_RXUI) {
195		dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
196		ret = -EIO;
197	}
198
199	if (irq_status & SPI_INT_TXOI) {
200		dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
201		ret = -EIO;
202	}
203
204	/* Generically handle the erroneous situation */
205	if (ret) {
206		spi_reset_chip(dws);
207		if (dws->master->cur_msg)
208			dws->master->cur_msg->status = ret;
209	}
210
211	return ret;
212}
213EXPORT_SYMBOL_GPL(dw_spi_check_status);
214
215static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
216{
217	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
218
219	if (dw_spi_check_status(dws, false)) {
220		spi_finalize_current_transfer(dws->master);
221		return IRQ_HANDLED;
222	}
223
224	/*
225	 * Read data from the Rx FIFO every time we've got a chance executing
226	 * this method. If there is nothing left to receive, terminate the
227	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
228	 * final stage of the transfer. By doing so we'll get the next IRQ
229	 * right when the leftover incoming data is received.
230	 */
231	dw_reader(dws);
232	if (!dws->rx_len) {
233		spi_mask_intr(dws, 0xff);
234		spi_finalize_current_transfer(dws->master);
235	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
236		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
237	}
238
239	/*
240	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
241	 * disabled after the data transmission is finished so not to
242	 * have the TXE IRQ flood at the final stage of the transfer.
243	 */
244	if (irq_status & SPI_INT_TXEI) {
245		dw_writer(dws);
246		if (!dws->tx_len)
247			spi_mask_intr(dws, SPI_INT_TXEI);
248	}
249
250	return IRQ_HANDLED;
251}
252
253static irqreturn_t dw_spi_irq(int irq, void *dev_id)
254{
255	struct spi_controller *master = dev_id;
256	struct dw_spi *dws = spi_controller_get_devdata(master);
257	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
258
259	if (!irq_status)
260		return IRQ_NONE;
261
262	if (!master->cur_msg) {
263		spi_mask_intr(dws, 0xff);
264		return IRQ_HANDLED;
265	}
266
267	return dws->transfer_handler(dws);
268}
269
270static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
271{
272	u32 cr0 = 0;
273
274	if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
275		/* CTRLR0[ 5: 4] Frame Format */
276		cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
277
278		/*
279		 * SPI mode (SCPOL|SCPH)
280		 * CTRLR0[ 6] Serial Clock Phase
281		 * CTRLR0[ 7] Serial Clock Polarity
282		 */
283		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
284		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
285
286		/* CTRLR0[11] Shift Register Loop */
287		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
288	} else {
289		/* CTRLR0[ 7: 6] Frame Format */
290		cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
291
292		/*
293		 * SPI mode (SCPOL|SCPH)
294		 * CTRLR0[ 8] Serial Clock Phase
295		 * CTRLR0[ 9] Serial Clock Polarity
296		 */
297		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
298		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
299
300		/* CTRLR0[13] Shift Register Loop */
301		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
302
303		if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
304			cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
305	}
306
307	return cr0;
308}
309
310void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
311			  struct dw_spi_cfg *cfg)
312{
313	struct chip_data *chip = spi_get_ctldata(spi);
314	u32 cr0 = chip->cr0;
315	u32 speed_hz;
316	u16 clk_div;
317
318	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
319	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
320
321	if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
322		/* CTRLR0[ 9:8] Transfer Mode */
323		cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
324	else
325		/* CTRLR0[11:10] Transfer Mode */
326		cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
327
328	dw_writel(dws, DW_SPI_CTRLR0, cr0);
329
330	if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
331		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
332
333	/* Note DW APB SSI clock divider doesn't support odd numbers */
334	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
335	speed_hz = dws->max_freq / clk_div;
336
337	if (dws->current_freq != speed_hz) {
338		spi_set_clk(dws, clk_div);
339		dws->current_freq = speed_hz;
340	}
341
342	/* Update RX sample delay if required */
343	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
344		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
345		dws->cur_rx_sample_dly = chip->rx_sample_dly;
346	}
347}
348EXPORT_SYMBOL_GPL(dw_spi_update_config);
349
350static void dw_spi_irq_setup(struct dw_spi *dws)
351{
352	u16 level;
353	u8 imask;
354
355	/*
356	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
357	 * will be adjusted at the final stage of the IRQ-based SPI transfer
358	 * execution so not to lose the leftover of the incoming data.
359	 */
360	level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
361	dw_writel(dws, DW_SPI_TXFTLR, level);
362	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
363
364	dws->transfer_handler = dw_spi_transfer_handler;
365
366	imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
367		SPI_INT_RXFI;
368	spi_umask_intr(dws, imask);
369}
370
371/*
372 * The iterative procedure of the poll-based transfer is simple: write as much
373 * as possible to the Tx FIFO, wait until the pending to receive data is ready
374 * to be read, read it from the Rx FIFO and check whether the performed
375 * procedure has been successful.
376 *
377 * Note this method the same way as the IRQ-based transfer won't work well for
378 * the SPI devices connected to the controller with native CS due to the
379 * automatic CS assertion/de-assertion.
380 */
381static int dw_spi_poll_transfer(struct dw_spi *dws,
382				struct spi_transfer *transfer)
383{
384	struct spi_delay delay;
385	u16 nbits;
386	int ret;
387
388	delay.unit = SPI_DELAY_UNIT_SCK;
389	nbits = dws->n_bytes * BITS_PER_BYTE;
390
391	do {
392		dw_writer(dws);
393
394		delay.value = nbits * (dws->rx_len - dws->tx_len);
395		spi_delay_exec(&delay, transfer);
396
397		dw_reader(dws);
398
399		ret = dw_spi_check_status(dws, true);
400		if (ret)
401			return ret;
402	} while (dws->rx_len);
403
404	return 0;
405}
406
407static int dw_spi_transfer_one(struct spi_controller *master,
408		struct spi_device *spi, struct spi_transfer *transfer)
409{
410	struct dw_spi *dws = spi_controller_get_devdata(master);
411	struct dw_spi_cfg cfg = {
412		.tmode = SPI_TMOD_TR,
413		.dfs = transfer->bits_per_word,
414		.freq = transfer->speed_hz,
415	};
416	int ret;
417
418	dws->dma_mapped = 0;
419	dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
420	dws->tx = (void *)transfer->tx_buf;
421	dws->tx_len = transfer->len / dws->n_bytes;
422	dws->rx = transfer->rx_buf;
423	dws->rx_len = dws->tx_len;
424
425	/* Ensure the data above is visible for all CPUs */
426	smp_mb();
427
428	spi_enable_chip(dws, 0);
429
430	dw_spi_update_config(dws, spi, &cfg);
431
432	transfer->effective_speed_hz = dws->current_freq;
433
434	/* Check if current transfer is a DMA transaction */
435	if (master->can_dma && master->can_dma(master, spi, transfer))
436		dws->dma_mapped = master->cur_msg_mapped;
437
438	/* For poll mode just disable all interrupts */
439	spi_mask_intr(dws, 0xff);
440
441	if (dws->dma_mapped) {
442		ret = dws->dma_ops->dma_setup(dws, transfer);
443		if (ret)
444			return ret;
445	}
446
447	spi_enable_chip(dws, 1);
448
449	if (dws->dma_mapped)
450		return dws->dma_ops->dma_transfer(dws, transfer);
451	else if (dws->irq == IRQ_NOTCONNECTED)
452		return dw_spi_poll_transfer(dws, transfer);
453
454	dw_spi_irq_setup(dws);
455
456	return 1;
457}
458
459static void dw_spi_handle_err(struct spi_controller *master,
460		struct spi_message *msg)
461{
462	struct dw_spi *dws = spi_controller_get_devdata(master);
463
464	if (dws->dma_mapped)
465		dws->dma_ops->dma_stop(dws);
466
467	spi_reset_chip(dws);
468}
469
470static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
471{
472	if (op->data.dir == SPI_MEM_DATA_IN)
473		op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);
474
475	return 0;
476}
477
478static bool dw_spi_supports_mem_op(struct spi_mem *mem,
479				   const struct spi_mem_op *op)
480{
481	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
482	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
483		return false;
484
485	return spi_mem_default_supports_op(mem, op);
486}
487
488static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
489{
490	unsigned int i, j, len;
491	u8 *out;
492
493	/*
494	 * Calculate the total length of the EEPROM command transfer and
495	 * either use the pre-allocated buffer or create a temporary one.
496	 */
497	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
498	if (op->data.dir == SPI_MEM_DATA_OUT)
499		len += op->data.nbytes;
500
501	if (len <= SPI_BUF_SIZE) {
502		out = dws->buf;
503	} else {
504		out = kzalloc(len, GFP_KERNEL);
505		if (!out)
506			return -ENOMEM;
507	}
508
509	/*
510	 * Collect the operation code, address and dummy bytes into the single
511	 * buffer. If it's a transfer with data to be sent, also copy it into the
512	 * single buffer in order to speed the data transmission up.
513	 */
514	for (i = 0; i < op->cmd.nbytes; ++i)
515		out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
516	for (j = 0; j < op->addr.nbytes; ++i, ++j)
517		out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
518	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
519		out[i] = 0x0;
520
521	if (op->data.dir == SPI_MEM_DATA_OUT)
522		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
523
524	dws->n_bytes = 1;
525	dws->tx = out;
526	dws->tx_len = len;
527	if (op->data.dir == SPI_MEM_DATA_IN) {
528		dws->rx = op->data.buf.in;
529		dws->rx_len = op->data.nbytes;
530	} else {
531		dws->rx = NULL;
532		dws->rx_len = 0;
533	}
534
535	return 0;
536}
537
538static void dw_spi_free_mem_buf(struct dw_spi *dws)
539{
540	if (dws->tx != dws->buf)
541		kfree(dws->tx);
542}
543
544static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
545{
546	u32 room, entries, sts;
547	unsigned int len;
548	u8 *buf;
549
550	/*
551	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
552	 * since native CS hasn't been enabled yet and the automatic data
553	 * transmission won't start til we do that.
554	 */
555	len = min(dws->fifo_len, dws->tx_len);
556	buf = dws->tx;
557	while (len--)
558		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
559
560	/*
561	 * After setting any bit in the SER register the transmission will
562	 * start automatically. We have to keep up with that procedure
563	 * otherwise the CS de-assertion will happen whereupon the memory
564	 * operation will be pre-terminated.
565	 */
566	len = dws->tx_len - ((void *)buf - dws->tx);
567	dw_spi_set_cs(spi, false);
568	while (len) {
569		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
570		if (!entries) {
571			dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
572			return -EIO;
573		}
574		room = min(dws->fifo_len - entries, len);
575		for (; room; --room, --len)
576			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
577	}
578
579	/*
580	 * Data fetching will start automatically if the EEPROM-read mode is
581	 * activated. We have to keep up with the incoming data pace to
582	 * prevent the Rx FIFO overflow causing the inbound data loss.
583	 */
584	len = dws->rx_len;
585	buf = dws->rx;
586	while (len) {
587		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
588		if (!entries) {
589			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
590			if (sts & SPI_INT_RXOI) {
591				dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
592				return -EIO;
593			}
594			continue;
595		}
596		entries = min(entries, len);
597		for (; entries; --entries, --len)
598			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
599	}
600
601	return 0;
602}
603
604static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
605{
606	return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
607}
608
609static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
610{
611	int retry = SPI_WAIT_RETRIES;
612	struct spi_delay delay;
613	unsigned long ns, us;
614	u32 nents;
615
616	nents = dw_readl(dws, DW_SPI_TXFLR);
617	ns = NSEC_PER_SEC / dws->current_freq * nents;
618	ns *= dws->n_bytes * BITS_PER_BYTE;
619	if (ns <= NSEC_PER_USEC) {
620		delay.unit = SPI_DELAY_UNIT_NSECS;
621		delay.value = ns;
622	} else {
623		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
624		delay.unit = SPI_DELAY_UNIT_USECS;
625		delay.value = clamp_val(us, 0, USHRT_MAX);
626	}
627
628	while (dw_spi_ctlr_busy(dws) && retry--)
629		spi_delay_exec(&delay, NULL);
630
631	if (retry < 0) {
632		dev_err(&dws->master->dev, "Mem op hanged up\n");
633		return -EIO;
634	}
635
636	return 0;
637}
638
639static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
640{
641	spi_enable_chip(dws, 0);
642	dw_spi_set_cs(spi, true);
643	spi_enable_chip(dws, 1);
644}
645
646/*
647 * The SPI memory operation implementation below is the best choice for the
648 * devices, which are selected by the native chip-select lane. It's
649 * specifically developed to workaround the problem with automatic chip-select
650 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
651 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
652 * unavailable.
653 */
654static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
655{
656	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
657	struct dw_spi_cfg cfg;
658	unsigned long flags;
659	int ret;
660
661	/*
662	 * Collect the outbound data into a single buffer to speed the
663	 * transmission up at least on the initial stage.
664	 */
665	ret = dw_spi_init_mem_buf(dws, op);
666	if (ret)
667		return ret;
668
669	/*
670	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
671	 * operation. Transmit-only mode is suitable for the rest of them.
672	 */
673	cfg.dfs = 8;
674	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
675	if (op->data.dir == SPI_MEM_DATA_IN) {
676		cfg.tmode = SPI_TMOD_EPROMREAD;
677		cfg.ndf = op->data.nbytes;
678	} else {
679		cfg.tmode = SPI_TMOD_TO;
680	}
681
682	spi_enable_chip(dws, 0);
683
684	dw_spi_update_config(dws, mem->spi, &cfg);
685
686	spi_mask_intr(dws, 0xff);
687
688	spi_enable_chip(dws, 1);
689
690	/*
691	 * DW APB SSI controller has very nasty peculiarities. First originally
692	 * (without any vendor-specific modifications) it doesn't provide a
693	 * direct way to set and clear the native chip-select signal. Instead
694	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
695	 * transmission is going on, and automatically de-asserts it back to
696	 * the high level if the Tx FIFO doesn't have anything to be pushed
697	 * out. Due to that a multi-tasking or heavy IRQs activity might be
698	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
699	 * getting empty and sudden CS de-assertion, which in the middle of the
700	 * transfer will most likely cause the data loss. Secondly the
701	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
702	 * data being automatically pulled in into the Rx FIFO. So if the
703	 * driver software is late in fetching the data from the FIFO before
704	 * it's overflown, new incoming data will be lost. In order to make
705	 * sure the executed memory operations are CS-atomic and to prevent the
706	 * Rx FIFO overflow we have to disable the local interrupts so to block
707	 * any preemption during the subsequent IO operations.
708	 *
709	 * Note. At some circumstances disabling IRQs may not help to prevent
710	 * the problems described above. The CS de-assertion and Rx FIFO
711	 * overflow may still happen due to the relatively slow system bus or
712	 * CPU not working fast enough, so the write-then-read algo implemented
713	 * here just won't keep up with the SPI bus data transfer. Such
714	 * situation is highly platform specific and is supposed to be fixed by
715	 * manually restricting the SPI bus frequency using the
716	 * dws->max_mem_freq parameter.
717	 */
718	local_irq_save(flags);
719	preempt_disable();
720
721	ret = dw_spi_write_then_read(dws, mem->spi);
722
723	local_irq_restore(flags);
724	preempt_enable();
725
726	/*
727	 * Wait for the operation being finished and check the controller
728	 * status only if there hasn't been any run-time error detected. In the
729	 * former case it's just pointless. In the later one to prevent an
730	 * additional error message printing since any hw error flag being set
731	 * would be due to an error detected on the data transfer.
732	 */
733	if (!ret) {
734		ret = dw_spi_wait_mem_op_done(dws);
735		if (!ret)
736			ret = dw_spi_check_status(dws, true);
737	}
738
739	dw_spi_stop_mem_op(dws, mem->spi);
740
741	dw_spi_free_mem_buf(dws);
742
743	return ret;
744}
745
746/*
747 * Initialize the default memory operations if a glue layer hasn't specified
748 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
749 * controller doesn't have an embedded dirmap interface. Note the memory
750 * operations implemented in this driver is the best choice only for the DW APB
751 * SSI controller with standard native CS functionality. If a hardware vendor
752 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
753 * be safer to use the normal SPI-messages-based transfers implementation.
754 */
755static void dw_spi_init_mem_ops(struct dw_spi *dws)
756{
757	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
758	    !dws->set_cs) {
759		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
760		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
761		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
762		if (!dws->max_mem_freq)
763			dws->max_mem_freq = dws->max_freq;
764	}
765}
766
767/* This may be called twice for each spi dev */
768static int dw_spi_setup(struct spi_device *spi)
769{
770	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
771	struct chip_data *chip;
772
773	/* Only alloc on first setup */
774	chip = spi_get_ctldata(spi);
775	if (!chip) {
776		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
777		u32 rx_sample_dly_ns;
778
779		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
780		if (!chip)
781			return -ENOMEM;
782		spi_set_ctldata(spi, chip);
783		/* Get specific / default rx-sample-delay */
784		if (device_property_read_u32(&spi->dev,
785					     "rx-sample-delay-ns",
786					     &rx_sample_dly_ns) != 0)
787			/* Use default controller value */
788			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
789		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
790							NSEC_PER_SEC /
791							dws->max_freq);
792	}
793
794	/*
795	 * Update CR0 data each time the setup callback is invoked since
796	 * the device parameters could have been changed, for instance, by
797	 * the MMC SPI driver or something else.
798	 */
799	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
800
801	return 0;
802}
803
804static void dw_spi_cleanup(struct spi_device *spi)
805{
806	struct chip_data *chip = spi_get_ctldata(spi);
807
808	kfree(chip);
809	spi_set_ctldata(spi, NULL);
810}
811
812/* Restart the controller, disable all interrupts, clean rx fifo */
813static void spi_hw_init(struct device *dev, struct dw_spi *dws)
814{
815	spi_reset_chip(dws);
816
817	/*
818	 * Try to detect the FIFO depth if not set by interface driver,
819	 * the depth could be from 2 to 256 from HW spec
820	 */
821	if (!dws->fifo_len) {
822		u32 fifo;
823
824		for (fifo = 1; fifo < 256; fifo++) {
825			dw_writel(dws, DW_SPI_TXFTLR, fifo);
826			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
827				break;
828		}
829		dw_writel(dws, DW_SPI_TXFTLR, 0);
830
831		dws->fifo_len = (fifo == 1) ? 0 : fifo;
832		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
833	}
834
835	/*
836	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
837	 * writability. Note DWC SSI controller also has the extended DFS, but
838	 * with zero offset.
839	 */
840	if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
841		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
842
843		spi_enable_chip(dws, 0);
844		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
845		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
846		dw_writel(dws, DW_SPI_CTRLR0, tmp);
847		spi_enable_chip(dws, 1);
848
849		if (!(cr0 & SPI_DFS_MASK)) {
850			dws->caps |= DW_SPI_CAP_DFS32;
851			dws->dfs_offset = SPI_DFS32_OFFSET;
852			dev_dbg(dev, "Detected 32-bits max data frame size\n");
853		}
854	} else {
855		dws->caps |= DW_SPI_CAP_DFS32;
856	}
857
858	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
859	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
860		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
861}
862
863int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
864{
865	struct spi_controller *master;
866	int ret;
867
868	if (!dws)
869		return -EINVAL;
870
871	master = spi_alloc_master(dev, 0);
872	if (!master)
873		return -ENOMEM;
874
875	dws->master = master;
876	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
877
878	spi_controller_set_devdata(master, dws);
879
880	/* Basic HW init */
881	spi_hw_init(dev, dws);
882
883	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
884			  master);
885	if (ret < 0 && ret != -ENOTCONN) {
886		dev_err(dev, "can not get IRQ\n");
887		goto err_free_master;
888	}
889
890	dw_spi_init_mem_ops(dws);
891
892	master->use_gpio_descriptors = true;
893	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
894	if (dws->caps & DW_SPI_CAP_DFS32)
895		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
896	else
897		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
898	master->bus_num = dws->bus_num;
899	master->num_chipselect = dws->num_cs;
900	master->setup = dw_spi_setup;
901	master->cleanup = dw_spi_cleanup;
902	if (dws->set_cs)
903		master->set_cs = dws->set_cs;
904	else
905		master->set_cs = dw_spi_set_cs;
906	master->transfer_one = dw_spi_transfer_one;
907	master->handle_err = dw_spi_handle_err;
908	if (dws->mem_ops.exec_op)
909		master->mem_ops = &dws->mem_ops;
910	master->max_speed_hz = dws->max_freq;
911	master->dev.of_node = dev->of_node;
912	master->dev.fwnode = dev->fwnode;
913	master->flags = SPI_MASTER_GPIO_SS;
914	master->auto_runtime_pm = true;
915
916	/* Get default rx sample delay */
917	device_property_read_u32(dev, "rx-sample-delay-ns",
918				 &dws->def_rx_sample_dly_ns);
919
920	if (dws->dma_ops && dws->dma_ops->dma_init) {
921		ret = dws->dma_ops->dma_init(dev, dws);
922		if (ret) {
923			dev_warn(dev, "DMA init failed\n");
924		} else {
925			master->can_dma = dws->dma_ops->can_dma;
926			master->flags |= SPI_CONTROLLER_MUST_TX;
927		}
928	}
929
930	ret = spi_register_controller(master);
931	if (ret) {
932		dev_err(&master->dev, "problem registering spi master\n");
933		goto err_dma_exit;
934	}
935
936	dw_spi_debugfs_init(dws);
937	return 0;
938
939err_dma_exit:
940	if (dws->dma_ops && dws->dma_ops->dma_exit)
941		dws->dma_ops->dma_exit(dws);
942	spi_enable_chip(dws, 0);
943	free_irq(dws->irq, master);
944err_free_master:
945	spi_controller_put(master);
946	return ret;
947}
948EXPORT_SYMBOL_GPL(dw_spi_add_host);
949
950void dw_spi_remove_host(struct dw_spi *dws)
951{
952	dw_spi_debugfs_remove(dws);
953
954	spi_unregister_controller(dws->master);
955
956	if (dws->dma_ops && dws->dma_ops->dma_exit)
957		dws->dma_ops->dma_exit(dws);
958
959	spi_shutdown_chip(dws);
960
961	free_irq(dws->irq, dws->master);
962}
963EXPORT_SYMBOL_GPL(dw_spi_remove_host);
964
965int dw_spi_suspend_host(struct dw_spi *dws)
966{
967	int ret;
968
969	ret = spi_controller_suspend(dws->master);
970	if (ret)
971		return ret;
972
973	spi_shutdown_chip(dws);
974	return 0;
975}
976EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
977
978int dw_spi_resume_host(struct dw_spi *dws)
979{
980	spi_hw_init(&dws->master->dev, dws);
981	return spi_controller_resume(dws->master);
982}
983EXPORT_SYMBOL_GPL(dw_spi_resume_host);
984
985MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
986MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
987MODULE_LICENSE("GPL v2");