Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom MPI3 Storage Controllers
   4 *
   5 * Copyright (C) 2017-2023 Broadcom Inc.
   6 *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
   7 *
   8 */
   9
  10#include "mpi3mr.h"
  11#include <linux/bsg-lib.h>
  12#include <uapi/scsi/scsi_bsg_mpi3mr.h>
  13
  14/**
  15 * mpi3mr_alloc_trace_buffer:	Allocate trace buffer
  16 * @mrioc: Adapter instance reference
  17 * @trace_size: Trace buffer size
  18 *
  19 * Allocate trace buffer
  20 * Return: 0 on success, non-zero on failure.
  21 */
  22static int mpi3mr_alloc_trace_buffer(struct mpi3mr_ioc *mrioc, u32 trace_size)
  23{
  24	struct diag_buffer_desc *diag_buffer = &mrioc->diag_buffers[0];
  25
  26	diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
  27	    trace_size, &diag_buffer->dma_addr, GFP_KERNEL);
  28	if (diag_buffer->addr) {
  29		dprint_init(mrioc, "trace diag buffer is allocated successfully\n");
  30		return 0;
  31	}
  32	return -1;
  33}
  34
  35/**
  36 * mpi3mr_alloc_diag_bufs - Allocate memory for diag buffers
  37 * @mrioc: Adapter instance reference
  38 *
  39 * This functions checks whether the driver defined buffer sizes
  40 * are greater than IOCFacts provided controller local buffer
  41 * sizes and if the driver defined sizes are more then the
  42 * driver allocates the specific buffer by reading driver page1
  43 *
  44 * Return: Nothing.
  45 */
  46void mpi3mr_alloc_diag_bufs(struct mpi3mr_ioc *mrioc)
  47{
  48	struct diag_buffer_desc *diag_buffer;
  49	struct mpi3_driver_page1 driver_pg1;
  50	u32 trace_dec_size, trace_min_size, fw_dec_size, fw_min_size,
  51		trace_size, fw_size;
  52	u16 pg_sz = sizeof(driver_pg1);
  53	int retval = 0;
  54	bool retry = false;
  55
  56	if (mrioc->diag_buffers[0].addr || mrioc->diag_buffers[1].addr)
  57		return;
  58
  59	retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz);
  60	if (retval) {
  61		ioc_warn(mrioc,
  62		    "%s: driver page 1 read failed, allocating trace\n"
  63		    "and firmware diag buffers of default size\n", __func__);
  64		trace_size = fw_size = MPI3MR_DEFAULT_HDB_MAX_SZ;
  65		trace_dec_size = fw_dec_size = MPI3MR_DEFAULT_HDB_DEC_SZ;
  66		trace_min_size = fw_min_size = MPI3MR_DEFAULT_HDB_MIN_SZ;
  67
  68	} else {
  69		trace_size = driver_pg1.host_diag_trace_max_size * 1024;
  70		trace_dec_size = driver_pg1.host_diag_trace_decrement_size
  71			 * 1024;
  72		trace_min_size = driver_pg1.host_diag_trace_min_size * 1024;
  73		fw_size = driver_pg1.host_diag_fw_max_size * 1024;
  74		fw_dec_size = driver_pg1.host_diag_fw_decrement_size * 1024;
  75		fw_min_size = driver_pg1.host_diag_fw_min_size * 1024;
  76		dprint_init(mrioc,
  77		    "%s:trace diag buffer sizes read from driver\n"
  78		    "page1: maximum size = %dKB, decrement size = %dKB\n"
  79		    ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_trace_max_size,
  80		    driver_pg1.host_diag_trace_decrement_size,
  81		    driver_pg1.host_diag_trace_min_size);
  82		dprint_init(mrioc,
  83		    "%s:firmware diag buffer sizes read from driver\n"
  84		    "page1: maximum size = %dKB, decrement size = %dKB\n"
  85		    ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_fw_max_size,
  86		    driver_pg1.host_diag_fw_decrement_size,
  87		    driver_pg1.host_diag_fw_min_size);
  88		if ((trace_size == 0) && (fw_size == 0))
  89			return;
  90	}
  91
  92
  93retry_trace:
  94	diag_buffer = &mrioc->diag_buffers[0];
  95	diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_TRACE;
  96	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
  97	if ((mrioc->facts.diag_trace_sz < trace_size) && (trace_size >=
  98		trace_min_size)) {
  99		if (!retry)
 100			dprint_init(mrioc,
 101			    "trying to allocate trace diag buffer of size = %dKB\n",
 102			    trace_size / 1024);
 103		if (get_order(trace_size) > MAX_PAGE_ORDER ||
 104		    mpi3mr_alloc_trace_buffer(mrioc, trace_size)) {
 105			retry = true;
 106			trace_size -= trace_dec_size;
 107			dprint_init(mrioc, "trace diag buffer allocation failed\n"
 108			"retrying smaller size %dKB\n", trace_size / 1024);
 109			goto retry_trace;
 110		} else
 111			diag_buffer->size = trace_size;
 112	}
 113
 114	retry = false;
 115retry_fw:
 116
 117	diag_buffer = &mrioc->diag_buffers[1];
 118
 119	diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_FW;
 120	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
 121	if ((mrioc->facts.diag_fw_sz < fw_size) && (fw_size >= fw_min_size)) {
 122		if (get_order(fw_size) <= MAX_PAGE_ORDER) {
 123			diag_buffer->addr
 124				= dma_alloc_coherent(&mrioc->pdev->dev, fw_size,
 125						     &diag_buffer->dma_addr,
 126						     GFP_KERNEL);
 127		}
 128		if (!retry)
 129			dprint_init(mrioc,
 130			    "%s:trying to allocate firmware diag buffer of size = %dKB\n",
 131			    __func__, fw_size / 1024);
 132		if (diag_buffer->addr) {
 133			dprint_init(mrioc, "%s:firmware diag buffer allocated successfully\n",
 134			    __func__);
 135			diag_buffer->size = fw_size;
 136		} else {
 137			retry = true;
 138			fw_size -= fw_dec_size;
 139			dprint_init(mrioc, "%s:trace diag buffer allocation failed,\n"
 140					"retrying smaller size %dKB\n",
 141					__func__, fw_size / 1024);
 142			goto retry_fw;
 143		}
 144	}
 145}
 146
 147/**
 148 * mpi3mr_issue_diag_buf_post - Send diag buffer post req
 149 * @mrioc: Adapter instance reference
 150 * @diag_buffer: Diagnostic buffer descriptor
 151 *
 152 * Issue diagnostic buffer post MPI request through admin queue
 153 * and wait for the completion of it or time out.
 154 *
 155 * Return: 0 on success, non-zero on failures.
 156 */
 157int mpi3mr_issue_diag_buf_post(struct mpi3mr_ioc *mrioc,
 158	struct diag_buffer_desc *diag_buffer)
 159{
 160	struct mpi3_diag_buffer_post_request diag_buf_post_req;
 161	u8 prev_status;
 162	int retval = 0;
 163
 164	memset(&diag_buf_post_req, 0, sizeof(diag_buf_post_req));
 165	mutex_lock(&mrioc->init_cmds.mutex);
 166	if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
 167		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
 168		mutex_unlock(&mrioc->init_cmds.mutex);
 169		return -1;
 170	}
 171	mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
 172	mrioc->init_cmds.is_waiting = 1;
 173	mrioc->init_cmds.callback = NULL;
 174	diag_buf_post_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
 175	diag_buf_post_req.function = MPI3_FUNCTION_DIAG_BUFFER_POST;
 176	diag_buf_post_req.type = diag_buffer->type;
 177	diag_buf_post_req.address = le64_to_cpu(diag_buffer->dma_addr);
 178	diag_buf_post_req.length = le32_to_cpu(diag_buffer->size);
 179
 180	dprint_bsg_info(mrioc, "%s: posting diag buffer type %d\n", __func__,
 181	    diag_buffer->type);
 182	prev_status = diag_buffer->status;
 183	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
 184	init_completion(&mrioc->init_cmds.done);
 185	retval = mpi3mr_admin_request_post(mrioc, &diag_buf_post_req,
 186	    sizeof(diag_buf_post_req), 1);
 187	if (retval) {
 188		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
 189		    __func__);
 190		goto out_unlock;
 191	}
 192	wait_for_completion_timeout(&mrioc->init_cmds.done,
 193	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
 194	if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
 195		mrioc->init_cmds.is_waiting = 0;
 196		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
 197		mpi3mr_check_rh_fault_ioc(mrioc,
 198		    MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT);
 199		retval = -1;
 200		goto out_unlock;
 201	}
 202	if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
 203	    != MPI3_IOCSTATUS_SUCCESS) {
 204		dprint_bsg_err(mrioc,
 205		    "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
 206		    __func__, diag_buffer->type,
 207		    (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
 208		    mrioc->init_cmds.ioc_loginfo);
 209		retval = -1;
 210		goto out_unlock;
 211	}
 212	dprint_bsg_info(mrioc, "%s: diag buffer type %d posted successfully\n",
 213	    __func__, diag_buffer->type);
 214
 215out_unlock:
 216	if (retval)
 217		diag_buffer->status = prev_status;
 218	mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
 219	mutex_unlock(&mrioc->init_cmds.mutex);
 220	return retval;
 221}
 222
 223/**
 224 * mpi3mr_post_diag_bufs - Post diag buffers to the controller
 225 * @mrioc: Adapter instance reference
 226 *
 227 * This function calls helper function to post both trace and
 228 * firmware buffers to the controller.
 229 *
 230 * Return: None
 231 */
 232int mpi3mr_post_diag_bufs(struct mpi3mr_ioc *mrioc)
 233{
 234	u8 i;
 235	struct diag_buffer_desc *diag_buffer;
 236
 237	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
 238		diag_buffer = &mrioc->diag_buffers[i];
 239		if (!(diag_buffer->addr))
 240			continue;
 241		if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer))
 242			return -1;
 243	}
 244	return 0;
 245}
 246
 247/**
 248 * mpi3mr_issue_diag_buf_release - Send diag buffer release req
 249 * @mrioc: Adapter instance reference
 250 * @diag_buffer: Diagnostic buffer descriptor
 251 *
 252 * Issue diagnostic buffer manage MPI request with release
 253 * action request through admin queue and wait for the
 254 * completion of it or time out.
 255 *
 256 * Return: 0 on success, non-zero on failures.
 257 */
 258int mpi3mr_issue_diag_buf_release(struct mpi3mr_ioc *mrioc,
 259	struct diag_buffer_desc *diag_buffer)
 260{
 261	struct mpi3_diag_buffer_manage_request diag_buf_manage_req;
 262	int retval = 0;
 263
 264	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
 265	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
 266		return retval;
 267
 268	memset(&diag_buf_manage_req, 0, sizeof(diag_buf_manage_req));
 269	mutex_lock(&mrioc->init_cmds.mutex);
 270	if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
 271		dprint_reset(mrioc, "%s: command is in use\n", __func__);
 272		mutex_unlock(&mrioc->init_cmds.mutex);
 273		return -1;
 274	}
 275	mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
 276	mrioc->init_cmds.is_waiting = 1;
 277	mrioc->init_cmds.callback = NULL;
 278	diag_buf_manage_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
 279	diag_buf_manage_req.function = MPI3_FUNCTION_DIAG_BUFFER_MANAGE;
 280	diag_buf_manage_req.type = diag_buffer->type;
 281	diag_buf_manage_req.action = MPI3_DIAG_BUFFER_ACTION_RELEASE;
 282
 283
 284	dprint_reset(mrioc, "%s: releasing diag buffer type %d\n", __func__,
 285	    diag_buffer->type);
 286	init_completion(&mrioc->init_cmds.done);
 287	retval = mpi3mr_admin_request_post(mrioc, &diag_buf_manage_req,
 288	    sizeof(diag_buf_manage_req), 1);
 289	if (retval) {
 290		dprint_reset(mrioc, "%s: admin request post failed\n", __func__);
 291		mpi3mr_set_trigger_data_in_hdb(diag_buffer,
 292		    MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
 293		goto out_unlock;
 294	}
 295	wait_for_completion_timeout(&mrioc->init_cmds.done,
 296	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
 297	if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
 298		mrioc->init_cmds.is_waiting = 0;
 299		dprint_reset(mrioc, "%s: command timedout\n", __func__);
 300		mpi3mr_check_rh_fault_ioc(mrioc,
 301		    MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT);
 302		retval = -1;
 303		goto out_unlock;
 304	}
 305	if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
 306	    != MPI3_IOCSTATUS_SUCCESS) {
 307		dprint_reset(mrioc,
 308		    "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
 309		    __func__, diag_buffer->type,
 310		    (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
 311		    mrioc->init_cmds.ioc_loginfo);
 312		retval = -1;
 313		goto out_unlock;
 314	}
 315	dprint_reset(mrioc, "%s: diag buffer type %d released successfully\n",
 316	    __func__, diag_buffer->type);
 317
 318out_unlock:
 319	mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
 320	mutex_unlock(&mrioc->init_cmds.mutex);
 321	return retval;
 322}
 323
 324/**
 325 * mpi3mr_process_trigger - Generic HDB Trigger handler
 326 * @mrioc: Adapter instance reference
 327 * @trigger_type: Trigger type
 328 * @trigger_data: Trigger data
 329 * @trigger_flags: Trigger flags
 330 *
 331 * This function checks validity of HDB, triggers and based on
 332 * trigger information, creates an event to be processed in the
 333 * firmware event worker thread .
 334 *
 335 * This function should be called with trigger spinlock held
 336 *
 337 * Return: Nothing
 338 */
 339static void mpi3mr_process_trigger(struct mpi3mr_ioc *mrioc, u8 trigger_type,
 340	union mpi3mr_trigger_data *trigger_data, u8 trigger_flags)
 341{
 342	struct trigger_event_data event_data;
 343	struct diag_buffer_desc *trace_hdb = NULL;
 344	struct diag_buffer_desc *fw_hdb = NULL;
 345	u64 global_trigger;
 346
 347	trace_hdb = mpi3mr_diag_buffer_for_type(mrioc,
 348	    MPI3_DIAG_BUFFER_TYPE_TRACE);
 349	if (trace_hdb &&
 350	    (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
 351	    (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
 352		trace_hdb =  NULL;
 353
 354	fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
 355
 356	if (fw_hdb &&
 357	    (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
 358	    (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
 359		fw_hdb = NULL;
 360
 361	if (mrioc->snapdump_trigger_active || (mrioc->fw_release_trigger_active
 362	    && mrioc->trace_release_trigger_active) ||
 363	    (!trace_hdb && !fw_hdb) || (!mrioc->driver_pg2) ||
 364	    ((trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
 365	     && (!mrioc->driver_pg2->num_triggers)))
 366		return;
 367
 368	memset(&event_data, 0, sizeof(event_data));
 369	event_data.trigger_type = trigger_type;
 370	memcpy(&event_data.trigger_specific_data, trigger_data,
 371	    sizeof(*trigger_data));
 372	global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger);
 373
 374	if (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_SNAPDUMP_ENABLED) {
 375		event_data.snapdump = true;
 376		event_data.trace_hdb = trace_hdb;
 377		event_data.fw_hdb = fw_hdb;
 378		mrioc->snapdump_trigger_active = true;
 379	} else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_GLOBAL) {
 380		if ((trace_hdb) && (global_trigger &
 381		    MPI3_DRIVER2_GLOBALTRIGGER_DIAG_TRACE_RELEASE) &&
 382		    (!mrioc->trace_release_trigger_active)) {
 383			event_data.trace_hdb = trace_hdb;
 384			mrioc->trace_release_trigger_active = true;
 385		}
 386		if ((fw_hdb) && (global_trigger &
 387		    MPI3_DRIVER2_GLOBALTRIGGER_DIAG_FW_RELEASE) &&
 388		    (!mrioc->fw_release_trigger_active)) {
 389			event_data.fw_hdb = fw_hdb;
 390			mrioc->fw_release_trigger_active = true;
 391		}
 392	} else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) {
 393		if ((trace_hdb) && (trigger_flags &
 394		    MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_TRACE_RELEASE) &&
 395		    (!mrioc->trace_release_trigger_active)) {
 396			event_data.trace_hdb = trace_hdb;
 397			mrioc->trace_release_trigger_active = true;
 398		}
 399		if ((fw_hdb) && (trigger_flags &
 400		    MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_FW_RELEASE) &&
 401		    (!mrioc->fw_release_trigger_active)) {
 402			event_data.fw_hdb = fw_hdb;
 403			mrioc->fw_release_trigger_active = true;
 404		}
 405	}
 406
 407	if (event_data.trace_hdb || event_data.fw_hdb)
 408		mpi3mr_hdb_trigger_data_event(mrioc, &event_data);
 409}
 410
 411/**
 412 * mpi3mr_global_trigger - Global HDB trigger handler
 413 * @mrioc: Adapter instance reference
 414 * @trigger_data: Trigger data
 415 *
 416 * This function checks whether the given global trigger is
 417 * enabled in the driver page 2 and if so calls generic trigger
 418 * handler to queue event for HDB release.
 419 *
 420 * Return: Nothing
 421 */
 422void mpi3mr_global_trigger(struct mpi3mr_ioc *mrioc, u64 trigger_data)
 423{
 424	unsigned long flags;
 425	union mpi3mr_trigger_data trigger_specific_data;
 426
 427	spin_lock_irqsave(&mrioc->trigger_lock, flags);
 428	if (le64_to_cpu(mrioc->driver_pg2->global_trigger) & trigger_data) {
 429		memset(&trigger_specific_data, 0,
 430		    sizeof(trigger_specific_data));
 431		trigger_specific_data.global = trigger_data;
 432		mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_GLOBAL,
 433		    &trigger_specific_data, 0);
 434	}
 435	spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
 436}
 437
 438/**
 439 * mpi3mr_scsisense_trigger - SCSI sense HDB trigger handler
 440 * @mrioc: Adapter instance reference
 441 * @sensekey: Sense Key
 442 * @asc: Additional Sense Code
 443 * @ascq: Additional Sense Code Qualifier
 444 *
 445 * This function compares SCSI sense trigger values with driver
 446 * page 2 values and calls generic trigger handler to release
 447 * HDBs if match found
 448 *
 449 * Return: Nothing
 450 */
 451void mpi3mr_scsisense_trigger(struct mpi3mr_ioc *mrioc, u8 sensekey, u8 asc,
 452	u8 ascq)
 453{
 454	struct mpi3_driver2_trigger_scsi_sense *scsi_sense_trigger = NULL;
 455	u64 i = 0;
 456	unsigned long flags;
 457	u8 num_triggers, trigger_flags;
 458
 459	if (mrioc->scsisense_trigger_present) {
 460		spin_lock_irqsave(&mrioc->trigger_lock, flags);
 461		scsi_sense_trigger = (struct mpi3_driver2_trigger_scsi_sense *)
 462			mrioc->driver_pg2->trigger;
 463		num_triggers = mrioc->driver_pg2->num_triggers;
 464		for (i = 0; i < num_triggers; i++, scsi_sense_trigger++) {
 465			if (scsi_sense_trigger->type !=
 466			    MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE)
 467				continue;
 468			if (!(scsi_sense_trigger->sense_key ==
 469			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_SENSE_KEY_MATCH_ALL
 470			      || scsi_sense_trigger->sense_key == sensekey))
 471				continue;
 472			if (!(scsi_sense_trigger->asc ==
 473			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASC_MATCH_ALL ||
 474			    scsi_sense_trigger->asc == asc))
 475				continue;
 476			if (!(scsi_sense_trigger->ascq ==
 477			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASCQ_MATCH_ALL ||
 478			    scsi_sense_trigger->ascq == ascq))
 479				continue;
 480			trigger_flags = scsi_sense_trigger->flags;
 481			mpi3mr_process_trigger(mrioc,
 482			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
 483			    (union mpi3mr_trigger_data *)scsi_sense_trigger,
 484			    trigger_flags);
 485			break;
 486		}
 487		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
 488	}
 489}
 490
 491/**
 492 * mpi3mr_event_trigger - MPI event HDB trigger handler
 493 * @mrioc: Adapter instance reference
 494 * @event: MPI Event
 495 *
 496 * This function compares event trigger values with driver page
 497 * 2 values and calls generic trigger handler to release
 498 * HDBs if match found.
 499 *
 500 * Return: Nothing
 501 */
 502void mpi3mr_event_trigger(struct mpi3mr_ioc *mrioc, u8 event)
 503{
 504	struct mpi3_driver2_trigger_event *event_trigger = NULL;
 505	u64 i = 0;
 506	unsigned long flags;
 507	u8 num_triggers, trigger_flags;
 508
 509	if (mrioc->event_trigger_present) {
 510		spin_lock_irqsave(&mrioc->trigger_lock, flags);
 511		event_trigger = (struct mpi3_driver2_trigger_event *)
 512			mrioc->driver_pg2->trigger;
 513		num_triggers = mrioc->driver_pg2->num_triggers;
 514
 515		for (i = 0; i < num_triggers; i++, event_trigger++) {
 516			if (event_trigger->type !=
 517			    MPI3_DRIVER2_TRIGGER_TYPE_EVENT)
 518				continue;
 519			if (event_trigger->event != event)
 520				continue;
 521			trigger_flags = event_trigger->flags;
 522			mpi3mr_process_trigger(mrioc,
 523			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
 524			    (union mpi3mr_trigger_data *)event_trigger,
 525			    trigger_flags);
 526			break;
 527		}
 528		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
 529	}
 530}
 531
 532/**
 533 * mpi3mr_reply_trigger - MPI Reply HDB trigger handler
 534 * @mrioc: Adapter instance reference
 535 * @ioc_status: Masked value of IOC Status from MPI Reply
 536 * @ioc_loginfo: IOC Log Info from MPI Reply
 537 *
 538 * This function compares IOC status and IOC log info trigger
 539 * values with driver page 2 values and calls generic trigger
 540 * handler to release HDBs if match found.
 541 *
 542 * Return: Nothing
 543 */
 544void mpi3mr_reply_trigger(struct mpi3mr_ioc *mrioc, u16 ioc_status,
 545	u32 ioc_loginfo)
 546{
 547	struct mpi3_driver2_trigger_reply *reply_trigger = NULL;
 548	u64 i = 0;
 549	unsigned long flags;
 550	u8 num_triggers, trigger_flags;
 551
 552	if (mrioc->reply_trigger_present) {
 553		spin_lock_irqsave(&mrioc->trigger_lock, flags);
 554		reply_trigger = (struct mpi3_driver2_trigger_reply *)
 555			mrioc->driver_pg2->trigger;
 556		num_triggers = mrioc->driver_pg2->num_triggers;
 557		for (i = 0; i < num_triggers; i++, reply_trigger++) {
 558			if (reply_trigger->type !=
 559			    MPI3_DRIVER2_TRIGGER_TYPE_REPLY)
 560				continue;
 561			if ((le16_to_cpu(reply_trigger->ioc_status) !=
 562			     ioc_status)
 563			    && (le16_to_cpu(reply_trigger->ioc_status) !=
 564			    MPI3_DRIVER2_TRIGGER_REPLY_IOCSTATUS_MATCH_ALL))
 565				continue;
 566			if ((le32_to_cpu(reply_trigger->ioc_log_info) !=
 567			    (le32_to_cpu(reply_trigger->ioc_log_info_mask) &
 568			     ioc_loginfo)))
 569				continue;
 570			trigger_flags = reply_trigger->flags;
 571			mpi3mr_process_trigger(mrioc,
 572			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
 573			    (union mpi3mr_trigger_data *)reply_trigger,
 574			    trigger_flags);
 575			break;
 576		}
 577		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
 578	}
 579}
 580
 581/**
 582 * mpi3mr_get_num_trigger - Gets number of HDB triggers
 583 * @mrioc: Adapter instance reference
 584 * @num_triggers: Number of triggers
 585 * @page_action: Page action
 586 *
 587 * This function reads number of triggers by reading driver page
 588 * 2
 589 *
 590 * Return: 0 on success and proper error codes on failure
 591 */
 592static int mpi3mr_get_num_trigger(struct mpi3mr_ioc *mrioc, u8 *num_triggers,
 593	u8 page_action)
 594{
 595	struct mpi3_driver_page2 drvr_page2;
 596	int retval = 0;
 597
 598	*num_triggers = 0;
 599
 600	retval = mpi3mr_cfg_get_driver_pg2(mrioc, &drvr_page2,
 601	    sizeof(struct mpi3_driver_page2), page_action);
 602
 603	if (retval) {
 604		dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
 605		return retval;
 606	}
 607	*num_triggers = drvr_page2.num_triggers;
 608	return retval;
 609}
 610
 611/**
 612 * mpi3mr_refresh_trigger - Handler for Refresh trigger BSG
 613 * @mrioc: Adapter instance reference
 614 * @page_action: Page action
 615 *
 616 * This function caches the driver page 2 in the driver's memory
 617 * by reading driver page 2 from the controller for a given page
 618 * type and updates the HDB trigger values
 619 *
 620 * Return: 0 on success and proper error codes on failure
 621 */
 622int mpi3mr_refresh_trigger(struct mpi3mr_ioc *mrioc, u8 page_action)
 623{
 624	u16 pg_sz = sizeof(struct mpi3_driver_page2);
 625	struct mpi3_driver_page2 *drvr_page2 = NULL;
 626	u8 trigger_type, num_triggers;
 627	int retval;
 628	int i = 0;
 629	unsigned long flags;
 630
 631	retval = mpi3mr_get_num_trigger(mrioc, &num_triggers, page_action);
 632
 633	if (retval)
 634		goto out;
 635
 636	pg_sz = offsetof(struct mpi3_driver_page2, trigger) +
 637		(num_triggers * sizeof(union mpi3_driver2_trigger_element));
 638	drvr_page2 = kzalloc(pg_sz, GFP_KERNEL);
 639	if (!drvr_page2) {
 640		retval = -ENOMEM;
 641		goto out;
 642	}
 643
 644	retval = mpi3mr_cfg_get_driver_pg2(mrioc, drvr_page2, pg_sz, page_action);
 645	if (retval) {
 646		dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
 647		kfree(drvr_page2);
 648		goto out;
 649	}
 650	spin_lock_irqsave(&mrioc->trigger_lock, flags);
 651	kfree(mrioc->driver_pg2);
 652	mrioc->driver_pg2 = drvr_page2;
 653	mrioc->reply_trigger_present = false;
 654	mrioc->event_trigger_present = false;
 655	mrioc->scsisense_trigger_present = false;
 656
 657	for (i = 0; (i < mrioc->driver_pg2->num_triggers); i++) {
 658		trigger_type = mrioc->driver_pg2->trigger[i].event.type;
 659		switch (trigger_type) {
 660		case MPI3_DRIVER2_TRIGGER_TYPE_REPLY:
 661			mrioc->reply_trigger_present = true;
 662			break;
 663		case MPI3_DRIVER2_TRIGGER_TYPE_EVENT:
 664			mrioc->event_trigger_present = true;
 665			break;
 666		case MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE:
 667			mrioc->scsisense_trigger_present = true;
 668			break;
 669		default:
 670			break;
 671		}
 672	}
 673	spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
 674out:
 675	return retval;
 676}
 677
 678/**
 679 * mpi3mr_release_diag_bufs - Release diag buffers
 680 * @mrioc: Adapter instance reference
 681 * @skip_rel_action: Skip release action and set buffer state
 682 *
 683 * This function calls helper function to release both trace and
 684 * firmware buffers from the controller.
 685 *
 686 * Return: None
 687 */
 688void mpi3mr_release_diag_bufs(struct mpi3mr_ioc *mrioc, u8 skip_rel_action)
 689{
 690	u8 i;
 691	struct diag_buffer_desc *diag_buffer;
 692
 693	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
 694		diag_buffer = &mrioc->diag_buffers[i];
 695		if (!(diag_buffer->addr))
 696			continue;
 697		if (diag_buffer->status == MPI3MR_HDB_BUFSTATUS_RELEASED)
 698			continue;
 699		if (!skip_rel_action)
 700			mpi3mr_issue_diag_buf_release(mrioc, diag_buffer);
 701		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
 702		atomic64_inc(&event_counter);
 703	}
 704}
 705
 706/**
 707 * mpi3mr_set_trigger_data_in_hdb - Updates HDB trigger type and
 708 * trigger data
 709 *
 710 * @hdb: HDB pointer
 711 * @type: Trigger type
 712 * @data: Trigger data
 713 * @force: Trigger overwrite flag
 714 * @trigger_data: Pointer to trigger data information
 715 *
 716 * Updates trigger type and trigger data based on parameter
 717 * passed to this function
 718 *
 719 * Return: Nothing
 720 */
 721void mpi3mr_set_trigger_data_in_hdb(struct diag_buffer_desc *hdb,
 722	u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
 723{
 724	if ((!force) && (hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN))
 725		return;
 726	hdb->trigger_type = type;
 727	if (!trigger_data)
 728		memset(&hdb->trigger_data, 0, sizeof(*trigger_data));
 729	else
 730		memcpy(&hdb->trigger_data, trigger_data, sizeof(*trigger_data));
 731}
 732
 733/**
 734 * mpi3mr_set_trigger_data_in_all_hdb - Updates HDB trigger type
 735 * and trigger data for all HDB
 736 *
 737 * @mrioc: Adapter instance reference
 738 * @type: Trigger type
 739 * @data: Trigger data
 740 * @force: Trigger overwrite flag
 741 * @trigger_data: Pointer to trigger data information
 742 *
 743 * Updates trigger type and trigger data based on parameter
 744 * passed to this function
 745 *
 746 * Return: Nothing
 747 */
 748void mpi3mr_set_trigger_data_in_all_hdb(struct mpi3mr_ioc *mrioc,
 749	u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
 750{
 751	struct diag_buffer_desc *hdb = NULL;
 752
 753	hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE);
 754	if (hdb)
 755		mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
 756	hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
 757	if (hdb)
 758		mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
 759}
 760
 761/**
 762 * mpi3mr_hdbstatuschg_evt_th - HDB status change evt tophalf
 763 * @mrioc: Adapter instance reference
 764 * @event_reply: event data
 765 *
 766 * Modifies the status of the applicable diag buffer descriptors
 767 *
 768 * Return: Nothing
 769 */
 770void mpi3mr_hdbstatuschg_evt_th(struct mpi3mr_ioc *mrioc,
 771	struct mpi3_event_notification_reply *event_reply)
 772{
 773	struct mpi3_event_data_diag_buffer_status_change *evtdata;
 774	struct diag_buffer_desc *diag_buffer;
 775
 776	evtdata = (struct mpi3_event_data_diag_buffer_status_change *)
 777	    event_reply->event_data;
 778
 779	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, evtdata->type);
 780	if (!diag_buffer)
 781		return;
 782	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
 783	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
 784		return;
 785	switch (evtdata->reason_code) {
 786	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RELEASED:
 787	{
 788		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
 789		mpi3mr_set_trigger_data_in_hdb(diag_buffer,
 790		    MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
 791		atomic64_inc(&event_counter);
 792		break;
 793	}
 794	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RESUMED:
 795	{
 796		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
 797		break;
 798	}
 799	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_PAUSED:
 800	{
 801		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED;
 802		break;
 803	}
 804	default:
 805		dprint_event_th(mrioc, "%s: unknown reason_code(%d)\n",
 806		    __func__, evtdata->reason_code);
 807		break;
 808	}
 809}
 810
 811/**
 812 * mpi3mr_diag_buffer_for_type - returns buffer desc for type
 813 * @mrioc: Adapter instance reference
 814 * @buf_type: Diagnostic buffer type
 815 *
 816 * Identifies matching diag descriptor from mrioc for given diag
 817 * buffer type.
 818 *
 819 * Return: diag buffer descriptor on success, NULL on failures.
 820 */
 821
 822struct diag_buffer_desc *
 823mpi3mr_diag_buffer_for_type(struct mpi3mr_ioc *mrioc, u8 buf_type)
 824{
 825	u8 i;
 826
 827	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
 828		if (mrioc->diag_buffers[i].type == buf_type)
 829			return &mrioc->diag_buffers[i];
 830	}
 831	return NULL;
 832}
 833
 834/**
 835 * mpi3mr_bsg_pel_abort - sends PEL abort request
 836 * @mrioc: Adapter instance reference
 837 *
 838 * This function sends PEL abort request to the firmware through
 839 * admin request queue.
 840 *
 841 * Return: 0 on success, -1 on failure
 842 */
 843static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
 844{
 845	struct mpi3_pel_req_action_abort pel_abort_req;
 846	struct mpi3_pel_reply *pel_reply;
 847	int retval = 0;
 848	u16 pe_log_status;
 849
 850	if (mrioc->reset_in_progress) {
 851		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
 852		return -1;
 853	}
 854	if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
 855		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
 856		return -1;
 857	}
 858
 859	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
 860	mutex_lock(&mrioc->pel_abort_cmd.mutex);
 861	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
 862		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
 863		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
 864		return -1;
 865	}
 866	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
 867	mrioc->pel_abort_cmd.is_waiting = 1;
 868	mrioc->pel_abort_cmd.callback = NULL;
 869	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
 870	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
 871	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
 872	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
 873
 874	mrioc->pel_abort_requested = 1;
 875	init_completion(&mrioc->pel_abort_cmd.done);
 876	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
 877	    sizeof(pel_abort_req), 0);
 878	if (retval) {
 879		retval = -1;
 880		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
 881		    __func__);
 882		mrioc->pel_abort_requested = 0;
 883		goto out_unlock;
 884	}
 885
 886	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
 887	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
 888	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
 889		mrioc->pel_abort_cmd.is_waiting = 0;
 890		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
 891		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
 892			mpi3mr_soft_reset_handler(mrioc,
 893			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
 894		retval = -1;
 895		goto out_unlock;
 896	}
 897	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
 898	     != MPI3_IOCSTATUS_SUCCESS) {
 899		dprint_bsg_err(mrioc,
 900		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
 901		    __func__, (mrioc->pel_abort_cmd.ioc_status &
 902		    MPI3_IOCSTATUS_STATUS_MASK),
 903		    mrioc->pel_abort_cmd.ioc_loginfo);
 904		retval = -1;
 905		goto out_unlock;
 906	}
 907	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
 908		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
 909		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
 910		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
 911			dprint_bsg_err(mrioc,
 912			    "%s: command failed, pel_status(0x%04x)\n",
 913			    __func__, pe_log_status);
 914			retval = -1;
 915		}
 916	}
 917
 918out_unlock:
 919	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
 920	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
 921	return retval;
 922}
 923/**
 924 * mpi3mr_bsg_verify_adapter - verify adapter number is valid
 925 * @ioc_number: Adapter number
 926 *
 927 * This function returns the adapter instance pointer of given
 928 * adapter number. If adapter number does not match with the
 929 * driver's adapter list, driver returns NULL.
 930 *
 931 * Return: adapter instance reference
 932 */
 933static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
 934{
 935	struct mpi3mr_ioc *mrioc = NULL;
 936
 937	spin_lock(&mrioc_list_lock);
 938	list_for_each_entry(mrioc, &mrioc_list, list) {
 939		if (mrioc->id == ioc_number) {
 940			spin_unlock(&mrioc_list_lock);
 941			return mrioc;
 942		}
 943	}
 944	spin_unlock(&mrioc_list_lock);
 945	return NULL;
 946}
 947
 948/**
 949 * mpi3mr_bsg_refresh_hdb_triggers - Refresh HDB trigger data
 950 * @mrioc: Adapter instance reference
 951 * @job: BSG Job pointer
 952 *
 953 * This function reads the controller trigger config page as
 954 * defined by the input page type and refreshes the driver's
 955 * local trigger information structures with the controller's
 956 * config page data.
 957 *
 958 * Return: 0 on success and proper error codes on failure
 959 */
 960static long
 961mpi3mr_bsg_refresh_hdb_triggers(struct mpi3mr_ioc *mrioc,
 962				struct bsg_job *job)
 963{
 964	struct mpi3mr_bsg_out_refresh_hdb_triggers refresh_triggers;
 965	uint32_t data_out_sz;
 966	u8 page_action;
 967	long rval = -EINVAL;
 968
 969	data_out_sz = job->request_payload.payload_len;
 970
 971	if (data_out_sz != sizeof(refresh_triggers)) {
 972		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
 973		    __func__);
 974		return rval;
 975	}
 976
 977	if (mrioc->unrecoverable) {
 978		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
 979		    __func__);
 980		return -EFAULT;
 981	}
 982	if (mrioc->reset_in_progress) {
 983		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
 984		return -EAGAIN;
 985	}
 986
 987	sg_copy_to_buffer(job->request_payload.sg_list,
 988	    job->request_payload.sg_cnt,
 989	    &refresh_triggers, sizeof(refresh_triggers));
 990
 991	switch (refresh_triggers.page_type) {
 992	case MPI3MR_HDB_REFRESH_TYPE_CURRENT:
 993		page_action = MPI3_CONFIG_ACTION_READ_CURRENT;
 994		break;
 995	case MPI3MR_HDB_REFRESH_TYPE_DEFAULT:
 996		page_action = MPI3_CONFIG_ACTION_READ_DEFAULT;
 997		break;
 998	case MPI3MR_HDB_HDB_REFRESH_TYPE_PERSISTENT:
 999		page_action = MPI3_CONFIG_ACTION_READ_PERSISTENT;
1000		break;
1001	default:
1002		dprint_bsg_err(mrioc,
1003		    "%s: unsupported refresh trigger, page_type %d\n",
1004		    __func__, refresh_triggers.page_type);
1005		return rval;
1006	}
1007	rval = mpi3mr_refresh_trigger(mrioc, page_action);
1008
1009	return rval;
1010}
1011
1012/**
1013 * mpi3mr_bsg_upload_hdb - Upload a specific HDB to user space
1014 * @mrioc: Adapter instance reference
1015 * @job: BSG Job pointer
1016 *
1017 * Return: 0 on success and proper error codes on failure
1018 */
1019static long mpi3mr_bsg_upload_hdb(struct mpi3mr_ioc *mrioc,
1020				  struct bsg_job *job)
1021{
1022	struct mpi3mr_bsg_out_upload_hdb upload_hdb;
1023	struct diag_buffer_desc *diag_buffer;
1024	uint32_t data_out_size;
1025	uint32_t data_in_size;
1026
1027	data_out_size = job->request_payload.payload_len;
1028	data_in_size = job->reply_payload.payload_len;
1029
1030	if (data_out_size != sizeof(upload_hdb)) {
1031		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1032		    __func__);
1033		return -EINVAL;
1034	}
1035
1036	sg_copy_to_buffer(job->request_payload.sg_list,
1037			  job->request_payload.sg_cnt,
1038			  &upload_hdb, sizeof(upload_hdb));
1039
1040	if ((!upload_hdb.length) || (data_in_size != upload_hdb.length)) {
1041		dprint_bsg_err(mrioc, "%s: invalid length argument\n",
1042		    __func__);
1043		return -EINVAL;
1044	}
1045	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, upload_hdb.buf_type);
1046	if ((!diag_buffer) || (!diag_buffer->addr)) {
1047		dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1048		    __func__, upload_hdb.buf_type);
1049		return -EINVAL;
1050	}
1051
1052	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) &&
1053	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) {
1054		dprint_bsg_err(mrioc,
1055		    "%s: invalid buffer status %d for type %d\n",
1056		    __func__, diag_buffer->status, upload_hdb.buf_type);
1057		return -EINVAL;
1058	}
1059
1060	if ((upload_hdb.start_offset + upload_hdb.length) > diag_buffer->size) {
1061		dprint_bsg_err(mrioc,
1062		    "%s: invalid start offset %d, length %d for type %d\n",
1063		    __func__, upload_hdb.start_offset, upload_hdb.length,
1064		    upload_hdb.buf_type);
1065		return -EINVAL;
1066	}
1067	sg_copy_from_buffer(job->reply_payload.sg_list,
1068			    job->reply_payload.sg_cnt,
1069	    (diag_buffer->addr + upload_hdb.start_offset),
1070	    data_in_size);
1071	return 0;
1072}
1073
1074/**
1075 * mpi3mr_bsg_repost_hdb - Re-post HDB
1076 * @mrioc: Adapter instance reference
1077 * @job: BSG job pointer
1078 *
1079 * This function retrieves the HDB descriptor corresponding to a
1080 * given buffer type and if the HDB is in released status then
1081 * posts the HDB with the firmware.
1082 *
1083 * Return: 0 on success and proper error codes on failure
1084 */
1085static long mpi3mr_bsg_repost_hdb(struct mpi3mr_ioc *mrioc,
1086				  struct bsg_job *job)
1087{
1088	struct mpi3mr_bsg_out_repost_hdb repost_hdb;
1089	struct diag_buffer_desc *diag_buffer;
1090	uint32_t data_out_sz;
1091
1092	data_out_sz = job->request_payload.payload_len;
1093
1094	if (data_out_sz != sizeof(repost_hdb)) {
1095		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1096		    __func__);
1097		return -EINVAL;
1098	}
1099	if (mrioc->unrecoverable) {
1100		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1101		    __func__);
1102		return -EFAULT;
1103	}
1104	if (mrioc->reset_in_progress) {
1105		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1106		return -EAGAIN;
1107	}
1108
1109	sg_copy_to_buffer(job->request_payload.sg_list,
1110			  job->request_payload.sg_cnt,
1111			  &repost_hdb, sizeof(repost_hdb));
1112
1113	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, repost_hdb.buf_type);
1114	if ((!diag_buffer) || (!diag_buffer->addr)) {
1115		dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1116		    __func__, repost_hdb.buf_type);
1117		return -EINVAL;
1118	}
1119
1120	if (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) {
1121		dprint_bsg_err(mrioc,
1122		    "%s: invalid buffer status %d for type %d\n",
1123		    __func__, diag_buffer->status, repost_hdb.buf_type);
1124		return -EINVAL;
1125	}
1126
1127	if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) {
1128		dprint_bsg_err(mrioc, "%s: post failed for type %d\n",
1129		    __func__, repost_hdb.buf_type);
1130		return -EFAULT;
1131	}
1132	mpi3mr_set_trigger_data_in_hdb(diag_buffer,
1133	    MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
1134
1135	return 0;
1136}
1137
1138/**
1139 * mpi3mr_bsg_query_hdb - Handler for query HDB command
1140 * @mrioc: Adapter instance reference
1141 * @job: BSG job pointer
1142 *
1143 * This function prepares and copies the host diagnostic buffer
1144 * entries to the user buffer.
1145 *
1146 * Return: 0 on success and proper error codes on failure
1147 */
1148static long mpi3mr_bsg_query_hdb(struct mpi3mr_ioc *mrioc,
1149				 struct bsg_job *job)
1150{
1151	long rval = 0;
1152	struct mpi3mr_bsg_in_hdb_status *hbd_status;
1153	struct mpi3mr_hdb_entry *hbd_status_entry;
1154	u32 length, min_length;
1155	u8 i;
1156	struct diag_buffer_desc *diag_buffer;
1157	uint32_t data_in_sz = 0;
1158
1159	data_in_sz = job->request_payload.payload_len;
1160
1161	length = (sizeof(*hbd_status) + ((MPI3MR_MAX_NUM_HDB - 1) *
1162		    sizeof(*hbd_status_entry)));
1163	hbd_status = kmalloc(length, GFP_KERNEL);
1164	if (!hbd_status)
1165		return -ENOMEM;
1166	hbd_status_entry = &hbd_status->entry[0];
1167
1168	hbd_status->num_hdb_types = MPI3MR_MAX_NUM_HDB;
1169	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
1170		diag_buffer = &mrioc->diag_buffers[i];
1171		hbd_status_entry->buf_type = diag_buffer->type;
1172		hbd_status_entry->status = diag_buffer->status;
1173		hbd_status_entry->trigger_type = diag_buffer->trigger_type;
1174		memcpy(&hbd_status_entry->trigger_data,
1175		    &diag_buffer->trigger_data,
1176		    sizeof(hbd_status_entry->trigger_data));
1177		hbd_status_entry->size = (diag_buffer->size / 1024);
1178		hbd_status_entry++;
1179	}
1180	hbd_status->element_trigger_format =
1181		MPI3MR_HDB_QUERY_ELEMENT_TRIGGER_FORMAT_DATA;
1182
1183	if (data_in_sz < 4) {
1184		dprint_bsg_err(mrioc, "%s: invalid size passed\n", __func__);
1185		rval = -EINVAL;
1186		goto out;
1187	}
1188	min_length = min(data_in_sz, length);
1189	if (job->request_payload.payload_len >= min_length) {
1190		sg_copy_from_buffer(job->request_payload.sg_list,
1191				    job->request_payload.sg_cnt,
1192				    hbd_status, min_length);
1193		rval = 0;
1194	}
1195out:
1196	kfree(hbd_status);
1197	return rval;
1198}
1199
1200
1201/**
1202 * mpi3mr_enable_logdata - Handler for log data enable
1203 * @mrioc: Adapter instance reference
1204 * @job: BSG job reference
1205 *
1206 * This function enables log data caching in the driver if not
1207 * already enabled and return the maximum number of log data
1208 * entries that can be cached in the driver.
1209 *
1210 * Return: 0 on success and proper error codes on failure
1211 */
1212static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
1213	struct bsg_job *job)
1214{
1215	struct mpi3mr_logdata_enable logdata_enable;
1216
1217	if (!mrioc->logdata_buf) {
1218		mrioc->logdata_entry_sz =
1219		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
1220		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
1221		mrioc->logdata_buf_idx = 0;
1222		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
1223		    mrioc->logdata_entry_sz, GFP_KERNEL);
1224
1225		if (!mrioc->logdata_buf)
1226			return -ENOMEM;
1227	}
1228
1229	memset(&logdata_enable, 0, sizeof(logdata_enable));
1230	logdata_enable.max_entries =
1231	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1232	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
1233		sg_copy_from_buffer(job->request_payload.sg_list,
1234				    job->request_payload.sg_cnt,
1235				    &logdata_enable, sizeof(logdata_enable));
1236		return 0;
1237	}
1238
1239	return -EINVAL;
1240}
1241/**
1242 * mpi3mr_get_logdata - Handler for get log data
1243 * @mrioc: Adapter instance reference
1244 * @job: BSG job pointer
1245 * This function copies the log data entries to the user buffer
1246 * when log caching is enabled in the driver.
1247 *
1248 * Return: 0 on success and proper error codes on failure
1249 */
1250static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
1251	struct bsg_job *job)
1252{
1253	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
1254
1255	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
1256		return -EINVAL;
1257
1258	num_entries = job->request_payload.payload_len / entry_sz;
1259	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
1260		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1261	sz = num_entries * entry_sz;
1262
1263	if (job->request_payload.payload_len >= sz) {
1264		sg_copy_from_buffer(job->request_payload.sg_list,
1265				    job->request_payload.sg_cnt,
1266				    mrioc->logdata_buf, sz);
1267		return 0;
1268	}
1269	return -EINVAL;
1270}
1271
1272/**
1273 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
1274 * @mrioc: Adapter instance reference
1275 * @job: BSG job pointer
1276 *
1277 * This function is the handler for PEL enable driver.
1278 * Validates the application given class and locale and if
1279 * requires aborts the existing PEL wait request and/or issues
1280 * new PEL wait request to the firmware and returns.
1281 *
1282 * Return: 0 on success and proper error codes on failure.
1283 */
1284static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
1285				  struct bsg_job *job)
1286{
1287	long rval = -EINVAL;
1288	struct mpi3mr_bsg_out_pel_enable pel_enable;
1289	u8 issue_pel_wait;
1290	u8 tmp_class;
1291	u16 tmp_locale;
1292
1293	if (job->request_payload.payload_len != sizeof(pel_enable)) {
1294		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1295		    __func__);
1296		return rval;
1297	}
1298
1299	if (mrioc->unrecoverable) {
1300		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1301			       __func__);
1302		return -EFAULT;
1303	}
1304
1305	if (mrioc->reset_in_progress) {
1306		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1307		return -EAGAIN;
1308	}
1309
1310	if (mrioc->stop_bsgs) {
1311		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1312		return -EAGAIN;
1313	}
1314
1315	sg_copy_to_buffer(job->request_payload.sg_list,
1316			  job->request_payload.sg_cnt,
1317			  &pel_enable, sizeof(pel_enable));
1318
1319	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
1320		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
1321			__func__, pel_enable.pel_class);
1322		rval = 0;
1323		goto out;
1324	}
1325	if (!mrioc->pel_enabled)
1326		issue_pel_wait = 1;
1327	else {
1328		if ((mrioc->pel_class <= pel_enable.pel_class) &&
1329		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
1330		      pel_enable.pel_locale)) {
1331			issue_pel_wait = 0;
1332			rval = 0;
1333		} else {
1334			pel_enable.pel_locale |= mrioc->pel_locale;
1335
1336			if (mrioc->pel_class < pel_enable.pel_class)
1337				pel_enable.pel_class = mrioc->pel_class;
1338
1339			rval = mpi3mr_bsg_pel_abort(mrioc);
1340			if (rval) {
1341				dprint_bsg_err(mrioc,
1342				    "%s: pel_abort failed, status(%ld)\n",
1343				    __func__, rval);
1344				goto out;
1345			}
1346			issue_pel_wait = 1;
1347		}
1348	}
1349	if (issue_pel_wait) {
1350		tmp_class = mrioc->pel_class;
1351		tmp_locale = mrioc->pel_locale;
1352		mrioc->pel_class = pel_enable.pel_class;
1353		mrioc->pel_locale = pel_enable.pel_locale;
1354		mrioc->pel_enabled = 1;
1355		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
1356		if (rval) {
1357			mrioc->pel_class = tmp_class;
1358			mrioc->pel_locale = tmp_locale;
1359			mrioc->pel_enabled = 0;
1360			dprint_bsg_err(mrioc,
1361			    "%s: pel get sequence number failed, status(%ld)\n",
1362			    __func__, rval);
1363		}
1364	}
1365
1366out:
1367	return rval;
1368}
1369/**
1370 * mpi3mr_get_all_tgt_info - Get all target information
1371 * @mrioc: Adapter instance reference
1372 * @job: BSG job reference
1373 *
1374 * This function copies the driver managed target devices device
1375 * handle, persistent ID, bus ID and taret ID to the user
1376 * provided buffer for the specific controller. This function
1377 * also provides the number of devices managed by the driver for
1378 * the specific controller.
1379 *
1380 * Return: 0 on success and proper error codes on failure
1381 */
1382static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
1383	struct bsg_job *job)
1384{
1385	u16 num_devices = 0, i = 0, size;
1386	unsigned long flags;
1387	struct mpi3mr_tgt_dev *tgtdev;
1388	struct mpi3mr_device_map_info *devmap_info = NULL;
1389	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
1390	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
1391
1392	if (job->request_payload.payload_len < sizeof(u32)) {
1393		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1394		    __func__);
1395		return -EINVAL;
1396	}
1397
1398	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1399	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
1400		num_devices++;
1401	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1402
1403	if ((job->request_payload.payload_len <= sizeof(u64)) ||
1404		list_empty(&mrioc->tgtdev_list)) {
1405		sg_copy_from_buffer(job->request_payload.sg_list,
1406				    job->request_payload.sg_cnt,
1407				    &num_devices, sizeof(num_devices));
1408		return 0;
1409	}
1410
1411	kern_entrylen = num_devices * sizeof(*devmap_info);
1412	size = sizeof(u64) + kern_entrylen;
1413	alltgt_info = kzalloc(size, GFP_KERNEL);
1414	if (!alltgt_info)
1415		return -ENOMEM;
1416
1417	devmap_info = alltgt_info->dmi;
1418	memset((u8 *)devmap_info, 0xFF, kern_entrylen);
1419	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1420	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
1421		if (i < num_devices) {
1422			devmap_info[i].handle = tgtdev->dev_handle;
1423			devmap_info[i].perst_id = tgtdev->perst_id;
1424			if (tgtdev->host_exposed && tgtdev->starget) {
1425				devmap_info[i].target_id = tgtdev->starget->id;
1426				devmap_info[i].bus_id =
1427				    tgtdev->starget->channel;
1428			}
1429			i++;
1430		}
1431	}
1432	num_devices = i;
1433	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1434
1435	alltgt_info->num_devices = num_devices;
1436
1437	usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
1438		sizeof(*devmap_info);
1439	usr_entrylen *= sizeof(*devmap_info);
1440	min_entrylen = min(usr_entrylen, kern_entrylen);
1441
1442	sg_copy_from_buffer(job->request_payload.sg_list,
1443			    job->request_payload.sg_cnt,
1444			    alltgt_info, (min_entrylen + sizeof(u64)));
1445	kfree(alltgt_info);
1446	return 0;
1447}
1448/**
1449 * mpi3mr_get_change_count - Get topology change count
1450 * @mrioc: Adapter instance reference
1451 * @job: BSG job reference
1452 *
1453 * This function copies the toplogy change count provided by the
1454 * driver in events and cached in the driver to the user
1455 * provided buffer for the specific controller.
1456 *
1457 * Return: 0 on success and proper error codes on failure
1458 */
1459static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
1460	struct bsg_job *job)
1461{
1462	struct mpi3mr_change_count chgcnt;
1463
1464	memset(&chgcnt, 0, sizeof(chgcnt));
1465	chgcnt.change_count = mrioc->change_count;
1466	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
1467		sg_copy_from_buffer(job->request_payload.sg_list,
1468				    job->request_payload.sg_cnt,
1469				    &chgcnt, sizeof(chgcnt));
1470		return 0;
1471	}
1472	return -EINVAL;
1473}
1474
1475/**
1476 * mpi3mr_bsg_adp_reset - Issue controller reset
1477 * @mrioc: Adapter instance reference
1478 * @job: BSG job reference
1479 *
1480 * This function identifies the user provided reset type and
1481 * issues approporiate reset to the controller and wait for that
1482 * to complete and reinitialize the controller and then returns
1483 *
1484 * Return: 0 on success and proper error codes on failure
1485 */
1486static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
1487	struct bsg_job *job)
1488{
1489	long rval = -EINVAL;
1490	u8 save_snapdump;
1491	struct mpi3mr_bsg_adp_reset adpreset;
1492
1493	if (job->request_payload.payload_len !=
1494			sizeof(adpreset)) {
1495		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1496		    __func__);
1497		goto out;
1498	}
1499
1500	if (mrioc->unrecoverable || mrioc->block_on_pci_err)
1501		return -EINVAL;
1502
1503	sg_copy_to_buffer(job->request_payload.sg_list,
1504			  job->request_payload.sg_cnt,
1505			  &adpreset, sizeof(adpreset));
1506
1507	switch (adpreset.reset_type) {
1508	case MPI3MR_BSG_ADPRESET_SOFT:
1509		save_snapdump = 0;
1510		break;
1511	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
1512		save_snapdump = 1;
1513		break;
1514	default:
1515		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
1516		    __func__, adpreset.reset_type);
1517		goto out;
1518	}
1519
1520	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
1521	    save_snapdump);
1522
1523	if (rval)
1524		dprint_bsg_err(mrioc,
1525		    "%s: reset handler returned error(%ld) for reset type %d\n",
1526		    __func__, rval, adpreset.reset_type);
1527out:
1528	return rval;
1529}
1530
1531/**
1532 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
1533 * @mrioc: Adapter instance reference
1534 * @job: BSG job reference
1535 *
1536 * This function provides adapter information for the given
1537 * controller
1538 *
1539 * Return: 0 on success and proper error codes on failure
1540 */
1541static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
1542	struct bsg_job *job)
1543{
1544	enum mpi3mr_iocstate ioc_state;
1545	struct mpi3mr_bsg_in_adpinfo adpinfo;
1546
1547	memset(&adpinfo, 0, sizeof(adpinfo));
1548	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
1549	adpinfo.pci_dev_id = mrioc->pdev->device;
1550	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
1551	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
1552	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
1553	adpinfo.pci_bus = mrioc->pdev->bus->number;
1554	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
1555	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
1556	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
1557	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
1558
1559	ioc_state = mpi3mr_get_iocstate(mrioc);
1560	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1561		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1562	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1563		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1564	else if (ioc_state == MRIOC_STATE_FAULT)
1565		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1566	else
1567		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1568
1569	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
1570	    sizeof(adpinfo.driver_info));
1571
1572	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
1573		sg_copy_from_buffer(job->request_payload.sg_list,
1574				    job->request_payload.sg_cnt,
1575				    &adpinfo, sizeof(adpinfo));
1576		return 0;
1577	}
1578	return -EINVAL;
1579}
1580
1581/**
1582 * mpi3mr_bsg_process_drv_cmds - Driver Command handler
1583 * @job: BSG job reference
1584 *
1585 * This function is the top level handler for driver commands,
1586 * this does basic validation of the buffer and identifies the
1587 * opcode and switches to correct sub handler.
1588 *
1589 * Return: 0 on success and proper error codes on failure
1590 */
1591static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
1592{
1593	long rval = -EINVAL;
1594	struct mpi3mr_ioc *mrioc = NULL;
1595	struct mpi3mr_bsg_packet *bsg_req = NULL;
1596	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
1597
1598	bsg_req = job->request;
1599	drvrcmd = &bsg_req->cmd.drvrcmd;
1600
1601	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
1602	if (!mrioc)
1603		return -ENODEV;
1604
1605	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
1606		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
1607		return rval;
1608	}
1609
1610	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
1611		return -ERESTARTSYS;
1612
1613	switch (drvrcmd->opcode) {
1614	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
1615		rval = mpi3mr_bsg_adp_reset(mrioc, job);
1616		break;
1617	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
1618		rval = mpi3mr_get_all_tgt_info(mrioc, job);
1619		break;
1620	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
1621		rval = mpi3mr_get_change_count(mrioc, job);
1622		break;
1623	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
1624		rval = mpi3mr_enable_logdata(mrioc, job);
1625		break;
1626	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
1627		rval = mpi3mr_get_logdata(mrioc, job);
1628		break;
1629	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
1630		rval = mpi3mr_bsg_pel_enable(mrioc, job);
1631		break;
1632	case MPI3MR_DRVBSG_OPCODE_QUERY_HDB:
1633		rval = mpi3mr_bsg_query_hdb(mrioc, job);
1634		break;
1635	case MPI3MR_DRVBSG_OPCODE_REPOST_HDB:
1636		rval = mpi3mr_bsg_repost_hdb(mrioc, job);
1637		break;
1638	case MPI3MR_DRVBSG_OPCODE_UPLOAD_HDB:
1639		rval = mpi3mr_bsg_upload_hdb(mrioc, job);
1640		break;
1641	case MPI3MR_DRVBSG_OPCODE_REFRESH_HDB_TRIGGERS:
1642		rval = mpi3mr_bsg_refresh_hdb_triggers(mrioc, job);
1643		break;
1644	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
1645	default:
1646		pr_err("%s: unsupported driver command opcode %d\n",
1647		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
1648		break;
1649	}
1650	mutex_unlock(&mrioc->bsg_cmds.mutex);
1651	return rval;
1652}
1653
1654/**
1655 * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
1656 * @drv_bufs: DMA address of the buffers to be placed in sgl
1657 * @bufcnt: Number of DMA buffers
1658 *
1659 * This function returns total number of data SGEs required
1660 * including zero length SGEs and excluding management request
1661 * and response buffer for the given list of data buffer
1662 * descriptors
1663 *
1664 * Return: Number of SGE elements needed
1665 */
1666static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
1667					      u8 bufcnt)
1668{
1669	u16 i, sge_count = 0;
1670
1671	for (i = 0; i < bufcnt; i++, drv_bufs++) {
1672		if (drv_bufs->data_dir == DMA_NONE ||
1673		    drv_bufs->kern_buf)
1674			continue;
1675		sge_count += drv_bufs->num_dma_desc;
1676		if (!drv_bufs->num_dma_desc)
1677			sge_count++;
1678	}
1679	return sge_count;
1680}
1681
1682/**
1683 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
1684 * @mrioc: Adapter instance reference
1685 * @mpi_req: MPI request
1686 * @sgl_offset: offset to start sgl in the MPI request
1687 * @drv_bufs: DMA address of the buffers to be placed in sgl
1688 * @bufcnt: Number of DMA buffers
1689 * @is_rmc: Does the buffer list has management command buffer
1690 * @is_rmr: Does the buffer list has management response buffer
1691 * @num_datasges: Number of data buffers in the list
1692 *
1693 * This function places the DMA address of the given buffers in
1694 * proper format as SGEs in the given MPI request.
1695 *
1696 * Return: 0 on success,-1 on failure
1697 */
1698static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
1699				u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
1700				u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
1701{
1702	struct mpi3_request_header *mpi_header =
1703		(struct mpi3_request_header *)mpi_req;
1704	u8 *sgl = (mpi_req + sgl_offset), count = 0;
1705	struct mpi3_mgmt_passthrough_request *rmgmt_req =
1706	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
1707	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1708	u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
1709	u16 available_sges, i, sges_needed;
1710	u32 sge_element_size = sizeof(struct mpi3_sge_common);
1711	bool chain_used = false;
1712
1713	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
1714		MPI3_SGE_FLAGS_DLAS_SYSTEM;
1715	sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
1716	sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
1717	last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
1718	    MPI3_SGE_FLAGS_DLAS_SYSTEM;
1719
1720	sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
1721
1722	if (is_rmc) {
1723		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
1724		    sgl_flags_last, drv_buf_iter->kern_buf_len,
1725		    drv_buf_iter->kern_buf_dma);
1726		sgl = (u8 *)drv_buf_iter->kern_buf +
1727			drv_buf_iter->bsg_buf_len;
1728		available_sges = (drv_buf_iter->kern_buf_len -
1729		    drv_buf_iter->bsg_buf_len) / sge_element_size;
1730
1731		if (sges_needed > available_sges)
1732			return -1;
1733
1734		chain_used = true;
1735		drv_buf_iter++;
1736		count++;
1737		if (is_rmr) {
1738			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
1739			    sgl_flags_last, drv_buf_iter->kern_buf_len,
1740			    drv_buf_iter->kern_buf_dma);
1741			drv_buf_iter++;
1742			count++;
1743		} else
1744			mpi3mr_build_zero_len_sge(
1745			    &rmgmt_req->response_sgl);
1746		if (num_datasges) {
1747			i = 0;
1748			goto build_sges;
1749		}
1750	} else {
1751		if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
1752			return -1;
1753		available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
1754		sge_element_size;
1755		if (!available_sges)
1756			return -1;
1757	}
1758	if (!num_datasges) {
1759		mpi3mr_build_zero_len_sge(sgl);
1760		return 0;
1761	}
1762	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1763		if ((sges_needed > 2) || (sges_needed > available_sges))
1764			return -1;
1765		for (; count < bufcnt; count++, drv_buf_iter++) {
1766			if (drv_buf_iter->data_dir == DMA_NONE ||
1767			    !drv_buf_iter->num_dma_desc)
1768				continue;
1769			mpi3mr_add_sg_single(sgl, sgl_flags_last,
1770					     drv_buf_iter->dma_desc[0].size,
1771					     drv_buf_iter->dma_desc[0].dma_addr);
1772			sgl += sge_element_size;
1773		}
1774		return 0;
1775	}
1776	i = 0;
1777
1778build_sges:
1779	for (; count < bufcnt; count++, drv_buf_iter++) {
1780		if (drv_buf_iter->data_dir == DMA_NONE)
1781			continue;
1782		if (!drv_buf_iter->num_dma_desc) {
1783			if (chain_used && !available_sges)
1784				return -1;
1785			if (!chain_used && (available_sges == 1) &&
1786			    (sges_needed > 1))
1787				goto setup_chain;
1788			flag = sgl_flag_eob;
1789			if (num_datasges == 1)
1790				flag = sgl_flags_last;
1791			mpi3mr_add_sg_single(sgl, flag, 0, 0);
1792			sgl += sge_element_size;
1793			sges_needed--;
1794			available_sges--;
1795			num_datasges--;
1796			continue;
1797		}
1798		for (; i < drv_buf_iter->num_dma_desc; i++) {
1799			if (chain_used && !available_sges)
1800				return -1;
1801			if (!chain_used && (available_sges == 1) &&
1802			    (sges_needed > 1))
1803				goto setup_chain;
1804			flag = sgl_flags;
1805			if (i == (drv_buf_iter->num_dma_desc - 1)) {
1806				if (num_datasges == 1)
1807					flag = sgl_flags_last;
1808				else
1809					flag = sgl_flag_eob;
1810			}
1811
1812			mpi3mr_add_sg_single(sgl, flag,
1813					     drv_buf_iter->dma_desc[i].size,
1814					     drv_buf_iter->dma_desc[i].dma_addr);
1815			sgl += sge_element_size;
1816			available_sges--;
1817			sges_needed--;
1818		}
1819		num_datasges--;
1820		i = 0;
1821	}
1822	return 0;
1823
1824setup_chain:
1825	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1826	if (sges_needed > available_sges)
1827		return -1;
1828	mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
1829			     (sges_needed * sge_element_size),
1830			     mrioc->ioctl_chain_sge.dma_addr);
1831	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1832	sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
1833	chain_used = true;
1834	goto build_sges;
1835}
1836
1837/**
1838 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
1839 * @nvme_encap_request: NVMe encapsulated MPI request
1840 *
1841 * This function returns the type of the data format specified
1842 * in user provided NVMe command in NVMe encapsulated request.
1843 *
1844 * Return: Data format of the NVMe command (PRP/SGL etc)
1845 */
1846static unsigned int mpi3mr_get_nvme_data_fmt(
1847	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
1848{
1849	u8 format = 0;
1850
1851	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
1852	return format;
1853
1854}
1855
1856/**
1857 * mpi3mr_build_nvme_sgl - SGL constructor for NVME
1858 *				   encapsulated request
1859 * @mrioc: Adapter instance reference
1860 * @nvme_encap_request: NVMe encapsulated MPI request
1861 * @drv_bufs: DMA address of the buffers to be placed in sgl
1862 * @bufcnt: Number of DMA buffers
1863 *
1864 * This function places the DMA address of the given buffers in
1865 * proper format as SGEs in the given NVMe encapsulated request.
1866 *
1867 * Return: 0 on success, -1 on failure
1868 */
1869static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
1870	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1871	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1872{
1873	struct mpi3mr_nvme_pt_sge *nvme_sgl;
1874	__le64 sgl_dma;
1875	u8 count;
1876	size_t length = 0;
1877	u16 available_sges = 0, i;
1878	u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
1879	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1880	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1881			    mrioc->facts.sge_mod_shift) << 32);
1882	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1883			  mrioc->facts.sge_mod_shift) << 32;
1884	u32 size;
1885
1886	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
1887	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
1888
1889	/*
1890	 * Not all commands require a data transfer. If no data, just return
1891	 * without constructing any sgl.
1892	 */
1893	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1894		if (drv_buf_iter->data_dir == DMA_NONE)
1895			continue;
1896		length = drv_buf_iter->kern_buf_len;
1897		break;
1898	}
1899	if (!length || !drv_buf_iter->num_dma_desc)
1900		return 0;
1901
1902	if (drv_buf_iter->num_dma_desc == 1) {
1903		available_sges = 1;
1904		goto build_sges;
1905	}
1906
1907	sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
1908	if (sgl_dma & sgemod_mask) {
1909		dprint_bsg_err(mrioc,
1910		    "%s: SGL chain address collides with SGE modifier\n",
1911		    __func__);
1912		return -1;
1913	}
1914
1915	sgl_dma &= ~sgemod_mask;
1916	sgl_dma |= sgemod_val;
1917
1918	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1919	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1920	if (available_sges < drv_buf_iter->num_dma_desc)
1921		return -1;
1922	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
1923	nvme_sgl->base_addr = sgl_dma;
1924	size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
1925	nvme_sgl->length = cpu_to_le32(size);
1926	nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
1927	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
1928
1929build_sges:
1930	for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
1931		sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
1932		if (sgl_dma & sgemod_mask) {
1933			dprint_bsg_err(mrioc,
1934				       "%s: SGL address collides with SGE modifier\n",
1935				       __func__);
1936		return -1;
1937		}
1938
1939		sgl_dma &= ~sgemod_mask;
1940		sgl_dma |= sgemod_val;
1941
1942		nvme_sgl->base_addr = sgl_dma;
1943		nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
1944		nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
1945		nvme_sgl++;
1946		available_sges--;
1947	}
1948
1949	return 0;
1950}
1951
1952/**
1953 * mpi3mr_build_nvme_prp - PRP constructor for NVME
1954 *			       encapsulated request
1955 * @mrioc: Adapter instance reference
1956 * @nvme_encap_request: NVMe encapsulated MPI request
1957 * @drv_bufs: DMA address of the buffers to be placed in SGL
1958 * @bufcnt: Number of DMA buffers
1959 *
1960 * This function places the DMA address of the given buffers in
1961 * proper format as PRP entries in the given NVMe encapsulated
1962 * request.
1963 *
1964 * Return: 0 on success, -1 on failure
1965 */
1966static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
1967	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1968	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1969{
1970	int prp_size = MPI3MR_NVME_PRP_SIZE;
1971	__le64 *prp_entry, *prp1_entry, *prp2_entry;
1972	__le64 *prp_page;
1973	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1974	u32 offset, entry_len, dev_pgsz;
1975	u32 page_mask_result, page_mask;
1976	size_t length = 0, desc_len;
1977	u8 count;
1978	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1979	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1980			    mrioc->facts.sge_mod_shift) << 32);
1981	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1982			  mrioc->facts.sge_mod_shift) << 32;
1983	u16 dev_handle = nvme_encap_request->dev_handle;
1984	struct mpi3mr_tgt_dev *tgtdev;
1985	u16 desc_count = 0;
1986
1987	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1988	if (!tgtdev) {
1989		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
1990			__func__, dev_handle);
1991		return -1;
1992	}
1993
1994	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
1995		dprint_bsg_err(mrioc,
1996		    "%s: NVMe device page size is zero for handle 0x%04x\n",
1997		    __func__, dev_handle);
1998		mpi3mr_tgtdev_put(tgtdev);
1999		return -1;
2000	}
2001
2002	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
2003	mpi3mr_tgtdev_put(tgtdev);
2004	page_mask = dev_pgsz - 1;
2005
2006	if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
2007		dprint_bsg_err(mrioc,
2008			       "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
2009			       __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
2010		return -1;
2011	}
2012
2013	if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
2014		dprint_bsg_err(mrioc,
2015			       "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
2016			       __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
2017		return -1;
2018	}
2019
2020	/*
2021	 * Not all commands require a data transfer. If no data, just return
2022	 * without constructing any PRP.
2023	 */
2024	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2025		if (drv_buf_iter->data_dir == DMA_NONE)
2026			continue;
2027		length = drv_buf_iter->kern_buf_len;
2028		break;
2029	}
2030
2031	if (!length || !drv_buf_iter->num_dma_desc)
2032		return 0;
2033
2034	for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
2035		dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
2036		if (dma_addr & page_mask) {
2037			dprint_bsg_err(mrioc,
2038				       "%s:dma_addr %pad is not aligned with page size 0x%x\n",
2039				       __func__,  &dma_addr, dev_pgsz);
2040			return -1;
2041		}
2042	}
2043
2044	dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
2045	desc_len = drv_buf_iter->dma_desc[0].size;
2046
2047	mrioc->prp_sz = 0;
2048	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
2049	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
2050
2051	if (!mrioc->prp_list_virt)
2052		return -1;
2053	mrioc->prp_sz = dev_pgsz;
2054
2055	/*
2056	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
2057	 * PRP1 is located at a 24 byte offset from the start of the NVMe
2058	 * command.  Then set the current PRP entry pointer to PRP1.
2059	 */
2060	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2061	    MPI3MR_NVME_CMD_PRP1_OFFSET);
2062	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2063	    MPI3MR_NVME_CMD_PRP2_OFFSET);
2064	prp_entry = prp1_entry;
2065	/*
2066	 * For the PRP entries, use the specially allocated buffer of
2067	 * contiguous memory.
2068	 */
2069	prp_page = (__le64 *)mrioc->prp_list_virt;
2070	prp_page_dma = mrioc->prp_list_dma;
2071
2072	/*
2073	 * Check if we are within 1 entry of a page boundary we don't
2074	 * want our first entry to be a PRP List entry.
2075	 */
2076	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2077	if (!page_mask_result) {
2078		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
2079		    __func__);
2080		goto err_out;
2081	}
2082
2083	/*
2084	 * Set PRP physical pointer, which initially points to the current PRP
2085	 * DMA memory page.
2086	 */
2087	prp_entry_dma = prp_page_dma;
2088
2089
2090	/* Loop while the length is not zero. */
2091	while (length) {
2092		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2093		if (!page_mask_result && (length >  dev_pgsz)) {
2094			dprint_bsg_err(mrioc,
2095			    "%s: single PRP page is not sufficient\n",
2096			    __func__);
2097			goto err_out;
2098		}
2099
2100		/* Need to handle if entry will be part of a page. */
2101		offset = dma_addr & page_mask;
2102		entry_len = dev_pgsz - offset;
2103
2104		if (prp_entry == prp1_entry) {
2105			/*
2106			 * Must fill in the first PRP pointer (PRP1) before
2107			 * moving on.
2108			 */
2109			*prp1_entry = cpu_to_le64(dma_addr);
2110			if (*prp1_entry & sgemod_mask) {
2111				dprint_bsg_err(mrioc,
2112				    "%s: PRP1 address collides with SGE modifier\n",
2113				    __func__);
2114				goto err_out;
2115			}
2116			*prp1_entry &= ~sgemod_mask;
2117			*prp1_entry |= sgemod_val;
2118
2119			/*
2120			 * Now point to the second PRP entry within the
2121			 * command (PRP2).
2122			 */
2123			prp_entry = prp2_entry;
2124		} else if (prp_entry == prp2_entry) {
2125			/*
2126			 * Should the PRP2 entry be a PRP List pointer or just
2127			 * a regular PRP pointer?  If there is more than one
2128			 * more page of data, must use a PRP List pointer.
2129			 */
2130			if (length > dev_pgsz) {
2131				/*
2132				 * PRP2 will contain a PRP List pointer because
2133				 * more PRP's are needed with this command. The
2134				 * list will start at the beginning of the
2135				 * contiguous buffer.
2136				 */
2137				*prp2_entry = cpu_to_le64(prp_entry_dma);
2138				if (*prp2_entry & sgemod_mask) {
2139					dprint_bsg_err(mrioc,
2140					    "%s: PRP list address collides with SGE modifier\n",
2141					    __func__);
2142					goto err_out;
2143				}
2144				*prp2_entry &= ~sgemod_mask;
2145				*prp2_entry |= sgemod_val;
2146
2147				/*
2148				 * The next PRP Entry will be the start of the
2149				 * first PRP List.
2150				 */
2151				prp_entry = prp_page;
2152				continue;
2153			} else {
2154				/*
2155				 * After this, the PRP Entries are complete.
2156				 * This command uses 2 PRP's and no PRP list.
2157				 */
2158				*prp2_entry = cpu_to_le64(dma_addr);
2159				if (*prp2_entry & sgemod_mask) {
2160					dprint_bsg_err(mrioc,
2161					    "%s: PRP2 collides with SGE modifier\n",
2162					    __func__);
2163					goto err_out;
2164				}
2165				*prp2_entry &= ~sgemod_mask;
2166				*prp2_entry |= sgemod_val;
2167			}
2168		} else {
2169			/*
2170			 * Put entry in list and bump the addresses.
2171			 *
2172			 * After PRP1 and PRP2 are filled in, this will fill in
2173			 * all remaining PRP entries in a PRP List, one per
2174			 * each time through the loop.
2175			 */
2176			*prp_entry = cpu_to_le64(dma_addr);
2177			if (*prp_entry & sgemod_mask) {
2178				dprint_bsg_err(mrioc,
2179				    "%s: PRP address collides with SGE modifier\n",
2180				    __func__);
2181				goto err_out;
2182			}
2183			*prp_entry &= ~sgemod_mask;
2184			*prp_entry |= sgemod_val;
2185			prp_entry++;
2186			prp_entry_dma += prp_size;
2187		}
2188
2189		/* decrement length accounting for last partial page. */
2190		if (entry_len >= length) {
2191			length = 0;
2192		} else {
2193			if (entry_len <= desc_len) {
2194				dma_addr += entry_len;
2195				desc_len -= entry_len;
2196			}
2197			if (!desc_len) {
2198				if ((++desc_count) >=
2199				   drv_buf_iter->num_dma_desc) {
2200					dprint_bsg_err(mrioc,
2201						       "%s: Invalid len %zd while building PRP\n",
2202						       __func__, length);
2203					goto err_out;
2204				}
2205				dma_addr =
2206				    drv_buf_iter->dma_desc[desc_count].dma_addr;
2207				desc_len =
2208				    drv_buf_iter->dma_desc[desc_count].size;
2209			}
2210			length -= entry_len;
2211		}
2212	}
2213
2214	return 0;
2215err_out:
2216	if (mrioc->prp_list_virt) {
2217		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2218		    mrioc->prp_list_virt, mrioc->prp_list_dma);
2219		mrioc->prp_list_virt = NULL;
2220	}
2221	return -1;
2222}
2223
2224/**
2225 * mpi3mr_map_data_buffer_dma - build dma descriptors for data
2226 *                              buffers
2227 * @mrioc: Adapter instance reference
2228 * @drv_buf: buffer map descriptor
2229 * @desc_count: Number of already consumed dma descriptors
2230 *
2231 * This function computes how many pre-allocated DMA descriptors
2232 * are required for the given data buffer and if those number of
2233 * descriptors are free, then setup the mapping of the scattered
2234 * DMA address to the given data buffer, if the data direction
2235 * of the buffer is DMA_TO_DEVICE then the actual data is copied to
2236 * the DMA buffers
2237 *
2238 * Return: 0 on success, -1 on failure
2239 */
2240static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
2241				      struct mpi3mr_buf_map *drv_buf,
2242				      u16 desc_count)
2243{
2244	u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
2245	u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
2246
2247	if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
2248		needed_desc++;
2249	if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
2250		dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
2251			       __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
2252		return -1;
2253	}
2254	drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
2255				    GFP_KERNEL);
2256	if (!drv_buf->dma_desc)
2257		return -1;
2258	for (i = 0; i < needed_desc; i++, desc_count++) {
2259		drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
2260		drv_buf->dma_desc[i].dma_addr =
2261		    mrioc->ioctl_sge[desc_count].dma_addr;
2262		if (buf_len < mrioc->ioctl_sge[desc_count].size)
2263			drv_buf->dma_desc[i].size = buf_len;
2264		else
2265			drv_buf->dma_desc[i].size =
2266			    mrioc->ioctl_sge[desc_count].size;
2267		buf_len -= drv_buf->dma_desc[i].size;
2268		memset(drv_buf->dma_desc[i].addr, 0,
2269		       mrioc->ioctl_sge[desc_count].size);
2270		if (drv_buf->data_dir == DMA_TO_DEVICE) {
2271			memcpy(drv_buf->dma_desc[i].addr,
2272			       drv_buf->bsg_buf + copied_len,
2273			       drv_buf->dma_desc[i].size);
2274			copied_len += drv_buf->dma_desc[i].size;
2275		}
2276	}
2277	drv_buf->num_dma_desc = needed_desc;
2278	return 0;
2279}
2280/**
2281 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
2282 * @job: BSG job reference
2283 *
2284 * This function is the top level handler for MPI Pass through
2285 * command, this does basic validation of the input data buffers,
2286 * identifies the given buffer types and MPI command, allocates
2287 * DMAable memory for user given buffers, construstcs SGL
2288 * properly and passes the command to the firmware.
2289 *
2290 * Once the MPI command is completed the driver copies the data
2291 * if any and reply, sense information to user provided buffers.
2292 * If the command is timed out then issues controller reset
2293 * prior to returning.
2294 *
2295 * Return: 0 on success and proper error codes on failure
2296 */
2297
2298static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
2299{
2300	long rval = -EINVAL;
2301	struct mpi3mr_ioc *mrioc = NULL;
2302	u8 *mpi_req = NULL, *sense_buff_k = NULL;
2303	u8 mpi_msg_size = 0;
2304	struct mpi3mr_bsg_packet *bsg_req = NULL;
2305	struct mpi3mr_bsg_mptcmd *karg;
2306	struct mpi3mr_buf_entry *buf_entries = NULL;
2307	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
2308	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
2309	u8 din_cnt = 0, dout_cnt = 0;
2310	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
2311	u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
2312	struct mpi3_request_header *mpi_header = NULL;
2313	struct mpi3_status_reply_descriptor *status_desc;
2314	struct mpi3_scsi_task_mgmt_request *tm_req;
2315	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
2316	u16 dev_handle;
2317	struct mpi3mr_tgt_dev *tgtdev;
2318	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
2319	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
2320	u32 din_size = 0, dout_size = 0;
2321	u8 *din_buf = NULL, *dout_buf = NULL;
2322	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
2323	u16 rmc_size  = 0, desc_count = 0;
2324
2325	bsg_req = job->request;
2326	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
2327
2328	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
2329	if (!mrioc)
2330		return -ENODEV;
2331
2332	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
2333		return -ERESTARTSYS;
2334
2335	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
2336		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
2337		mutex_unlock(&mrioc->bsg_cmds.mutex);
2338		return -EAGAIN;
2339	}
2340
2341	if (!mrioc->ioctl_sges_allocated) {
2342		dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
2343			       __func__);
2344		return -ENOMEM;
2345	}
2346
2347	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
2348		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
2349
2350	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
2351	if (!mpi_req) {
2352		mutex_unlock(&mrioc->bsg_cmds.mutex);
2353		return -ENOMEM;
2354	}
2355	mpi_header = (struct mpi3_request_header *)mpi_req;
2356
2357	bufcnt = karg->buf_entry_list.num_of_entries;
2358	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
2359	if (!drv_bufs) {
2360		mutex_unlock(&mrioc->bsg_cmds.mutex);
2361		rval = -ENOMEM;
2362		goto out;
2363	}
2364
2365	dout_buf = kzalloc(job->request_payload.payload_len,
2366				      GFP_KERNEL);
2367	if (!dout_buf) {
2368		mutex_unlock(&mrioc->bsg_cmds.mutex);
2369		rval = -ENOMEM;
2370		goto out;
2371	}
2372
2373	din_buf = kzalloc(job->reply_payload.payload_len,
2374				     GFP_KERNEL);
2375	if (!din_buf) {
2376		mutex_unlock(&mrioc->bsg_cmds.mutex);
2377		rval = -ENOMEM;
2378		goto out;
2379	}
2380
2381	sg_copy_to_buffer(job->request_payload.sg_list,
2382			  job->request_payload.sg_cnt,
2383			  dout_buf, job->request_payload.payload_len);
2384
2385	buf_entries = karg->buf_entry_list.buf_entry;
2386	sgl_din_iter = din_buf;
2387	sgl_dout_iter = dout_buf;
2388	drv_buf_iter = drv_bufs;
2389
2390	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
2391
2392		switch (buf_entries->buf_type) {
2393		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
2394			sgl_iter = sgl_dout_iter;
2395			sgl_dout_iter += buf_entries->buf_len;
2396			drv_buf_iter->data_dir = DMA_TO_DEVICE;
2397			is_rmcb = 1;
2398			if ((count != 0) || !buf_entries->buf_len)
2399				invalid_be = 1;
2400			break;
2401		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
2402			sgl_iter = sgl_din_iter;
2403			sgl_din_iter += buf_entries->buf_len;
2404			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2405			is_rmrb = 1;
2406			if (count != 1 || !is_rmcb || !buf_entries->buf_len)
2407				invalid_be = 1;
2408			break;
2409		case MPI3MR_BSG_BUFTYPE_DATA_IN:
2410			sgl_iter = sgl_din_iter;
2411			sgl_din_iter += buf_entries->buf_len;
2412			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2413			din_cnt++;
2414			din_size += buf_entries->buf_len;
2415			if ((din_cnt > 1) && !is_rmcb)
2416				invalid_be = 1;
2417			break;
2418		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
2419			sgl_iter = sgl_dout_iter;
2420			sgl_dout_iter += buf_entries->buf_len;
2421			drv_buf_iter->data_dir = DMA_TO_DEVICE;
2422			dout_cnt++;
2423			dout_size += buf_entries->buf_len;
2424			if ((dout_cnt > 1) && !is_rmcb)
2425				invalid_be = 1;
2426			break;
2427		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
2428			sgl_iter = sgl_din_iter;
2429			sgl_din_iter += buf_entries->buf_len;
2430			drv_buf_iter->data_dir = DMA_NONE;
2431			mpirep_offset = count;
2432			if (!buf_entries->buf_len)
2433				invalid_be = 1;
2434			break;
2435		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
2436			sgl_iter = sgl_din_iter;
2437			sgl_din_iter += buf_entries->buf_len;
2438			drv_buf_iter->data_dir = DMA_NONE;
2439			erb_offset = count;
2440			if (!buf_entries->buf_len)
2441				invalid_be = 1;
2442			break;
2443		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
2444			sgl_iter = sgl_dout_iter;
2445			sgl_dout_iter += buf_entries->buf_len;
2446			drv_buf_iter->data_dir = DMA_NONE;
2447			mpi_msg_size = buf_entries->buf_len;
2448			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
2449					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
2450				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
2451					__func__);
2452				mutex_unlock(&mrioc->bsg_cmds.mutex);
2453				rval = -EINVAL;
2454				goto out;
2455			}
2456			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
2457			break;
2458		default:
2459			invalid_be = 1;
2460			break;
2461		}
2462		if (invalid_be) {
2463			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
2464				__func__);
2465			mutex_unlock(&mrioc->bsg_cmds.mutex);
2466			rval = -EINVAL;
2467			goto out;
2468		}
2469
2470		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
2471			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
2472				       __func__);
2473			mutex_unlock(&mrioc->bsg_cmds.mutex);
2474			rval = -EINVAL;
2475			goto out;
2476		}
2477		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
2478			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
2479				       __func__);
2480			mutex_unlock(&mrioc->bsg_cmds.mutex);
2481			rval = -EINVAL;
2482			goto out;
2483		}
2484
2485		drv_buf_iter->bsg_buf = sgl_iter;
2486		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
2487	}
2488
2489	if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
2490		dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
2491			       __func__, __LINE__, mpi_header->function, din_size,
2492			       dout_size);
2493		mutex_unlock(&mrioc->bsg_cmds.mutex);
2494		rval = -EINVAL;
2495		goto out;
2496	}
2497
2498	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
2499		dprint_bsg_err(mrioc,
2500		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
2501		    __func__, __LINE__, mpi_header->function, din_size);
2502		mutex_unlock(&mrioc->bsg_cmds.mutex);
2503		rval = -EINVAL;
2504		goto out;
2505	}
2506	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
2507		dprint_bsg_err(mrioc,
2508		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
2509		    __func__, __LINE__, mpi_header->function, dout_size);
2510		mutex_unlock(&mrioc->bsg_cmds.mutex);
2511		rval = -EINVAL;
2512		goto out;
2513	}
2514
2515	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
2516		if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
2517		    dout_size > MPI3MR_IOCTL_SGE_SIZE) {
2518			dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
2519				       __func__, __LINE__, din_cnt, dout_cnt, din_size,
2520			    dout_size);
2521			mutex_unlock(&mrioc->bsg_cmds.mutex);
2522			rval = -EINVAL;
2523			goto out;
2524		}
2525	}
2526
2527	drv_buf_iter = drv_bufs;
2528	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2529		if (drv_buf_iter->data_dir == DMA_NONE)
2530			continue;
2531
2532		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
2533		if (is_rmcb && !count) {
2534			drv_buf_iter->kern_buf_len =
2535			    mrioc->ioctl_chain_sge.size;
2536			drv_buf_iter->kern_buf =
2537			    mrioc->ioctl_chain_sge.addr;
2538			drv_buf_iter->kern_buf_dma =
2539			    mrioc->ioctl_chain_sge.dma_addr;
2540			drv_buf_iter->dma_desc = NULL;
2541			drv_buf_iter->num_dma_desc = 0;
2542			memset(drv_buf_iter->kern_buf, 0,
2543			       drv_buf_iter->kern_buf_len);
2544			tmplen = min(drv_buf_iter->kern_buf_len,
2545				     drv_buf_iter->bsg_buf_len);
2546			rmc_size = tmplen;
2547			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
2548		} else if (is_rmrb && (count == 1)) {
2549			drv_buf_iter->kern_buf_len =
2550			    mrioc->ioctl_resp_sge.size;
2551			drv_buf_iter->kern_buf =
2552			    mrioc->ioctl_resp_sge.addr;
2553			drv_buf_iter->kern_buf_dma =
2554			    mrioc->ioctl_resp_sge.dma_addr;
2555			drv_buf_iter->dma_desc = NULL;
2556			drv_buf_iter->num_dma_desc = 0;
2557			memset(drv_buf_iter->kern_buf, 0,
2558			       drv_buf_iter->kern_buf_len);
2559			tmplen = min(drv_buf_iter->kern_buf_len,
2560				     drv_buf_iter->bsg_buf_len);
2561			drv_buf_iter->kern_buf_len = tmplen;
2562			memset(drv_buf_iter->bsg_buf, 0,
2563			       drv_buf_iter->bsg_buf_len);
2564		} else {
2565			if (!drv_buf_iter->kern_buf_len)
2566				continue;
2567			if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
2568				rval = -ENOMEM;
2569				mutex_unlock(&mrioc->bsg_cmds.mutex);
2570				dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
2571					       __func__, __LINE__);
2572			goto out;
2573		}
2574			desc_count += drv_buf_iter->num_dma_desc;
2575		}
2576	}
2577
2578	if (erb_offset != 0xFF) {
2579		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
2580		if (!sense_buff_k) {
2581			rval = -ENOMEM;
2582			mutex_unlock(&mrioc->bsg_cmds.mutex);
2583			goto out;
2584		}
2585	}
2586
2587	if (mrioc->unrecoverable) {
2588		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
2589		    __func__);
2590		rval = -EFAULT;
2591		mutex_unlock(&mrioc->bsg_cmds.mutex);
2592		goto out;
2593	}
2594	if (mrioc->reset_in_progress) {
2595		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
2596		rval = -EAGAIN;
2597		mutex_unlock(&mrioc->bsg_cmds.mutex);
2598		goto out;
2599	}
2600	if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
2601		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
2602		rval = -EAGAIN;
2603		mutex_unlock(&mrioc->bsg_cmds.mutex);
2604		goto out;
2605	}
2606
2607	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
2608		nvme_fmt = mpi3mr_get_nvme_data_fmt(
2609			(struct mpi3_nvme_encapsulated_request *)mpi_req);
2610		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
2611			if (mpi3mr_build_nvme_prp(mrioc,
2612			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
2613			    drv_bufs, bufcnt)) {
2614				rval = -ENOMEM;
2615				mutex_unlock(&mrioc->bsg_cmds.mutex);
2616				goto out;
2617			}
2618		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
2619			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
2620			if (mpi3mr_build_nvme_sgl(mrioc,
2621			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
2622			    drv_bufs, bufcnt)) {
2623				rval = -EINVAL;
2624				mutex_unlock(&mrioc->bsg_cmds.mutex);
2625				goto out;
2626			}
2627		} else {
2628			dprint_bsg_err(mrioc,
2629			    "%s:invalid NVMe command format\n", __func__);
2630			rval = -EINVAL;
2631			mutex_unlock(&mrioc->bsg_cmds.mutex);
2632			goto out;
2633		}
2634	} else {
2635		if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
2636					 drv_bufs, bufcnt, is_rmcb, is_rmrb,
2637					 (dout_cnt + din_cnt))) {
2638			dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
2639			rval = -EAGAIN;
2640			mutex_unlock(&mrioc->bsg_cmds.mutex);
2641			goto out;
2642		}
2643	}
2644
2645	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
2646		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
2647		if (tm_req->task_type !=
2648		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
2649			dev_handle = tm_req->dev_handle;
2650			block_io = 1;
2651		}
2652	}
2653	if (block_io) {
2654		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
2655		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
2656			stgt_priv = (struct mpi3mr_stgt_priv_data *)
2657			    tgtdev->starget->hostdata;
2658			atomic_inc(&stgt_priv->block_io);
2659			mpi3mr_tgtdev_put(tgtdev);
2660		}
2661	}
2662
2663	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
2664	mrioc->bsg_cmds.is_waiting = 1;
2665	mrioc->bsg_cmds.callback = NULL;
2666	mrioc->bsg_cmds.is_sense = 0;
2667	mrioc->bsg_cmds.sensebuf = sense_buff_k;
2668	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
2669	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
2670	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
2671		dprint_bsg_info(mrioc,
2672		    "%s: posting bsg request to the controller\n", __func__);
2673		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2674		    "bsg_mpi3_req");
2675		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
2676			drv_buf_iter = &drv_bufs[0];
2677			dprint_dump(drv_buf_iter->kern_buf,
2678			    rmc_size, "mpi3_mgmt_req");
2679		}
2680	}
2681
2682	init_completion(&mrioc->bsg_cmds.done);
2683	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
2684	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
2685
2686
2687	if (rval) {
2688		mrioc->bsg_cmds.is_waiting = 0;
2689		dprint_bsg_err(mrioc,
2690		    "%s: posting bsg request is failed\n", __func__);
2691		rval = -EAGAIN;
2692		goto out_unlock;
2693	}
2694	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
2695	    (karg->timeout * HZ));
2696	if (block_io && stgt_priv)
2697		atomic_dec(&stgt_priv->block_io);
2698	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
2699		mrioc->bsg_cmds.is_waiting = 0;
2700		rval = -EAGAIN;
2701		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
2702			goto out_unlock;
2703		if (((mpi_header->function != MPI3_FUNCTION_SCSI_IO) &&
2704		    (mpi_header->function != MPI3_FUNCTION_NVME_ENCAPSULATED))
2705		    || (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR)) {
2706			ioc_info(mrioc, "%s: bsg request timedout after %d seconds\n",
2707			    __func__, karg->timeout);
2708			if (!(mrioc->logging_level & MPI3_DEBUG_BSG_INFO)) {
2709				dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2710			    "bsg_mpi3_req");
2711			if (mpi_header->function ==
2712			    MPI3_FUNCTION_MGMT_PASSTHROUGH) {
2713				drv_buf_iter = &drv_bufs[0];
2714				dprint_dump(drv_buf_iter->kern_buf,
2715				    rmc_size, "mpi3_mgmt_req");
2716				}
2717			}
2718		}
2719		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
2720			(mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) {
2721			dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds,\n"
2722				"issuing target reset to (0x%04x)\n", __func__,
2723				karg->timeout, mpi_header->function_dependent);
2724			mpi3mr_issue_tm(mrioc,
2725			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
2726			    mpi_header->function_dependent, 0,
2727			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
2728			    &mrioc->host_tm_cmds, &resp_code, NULL);
2729		}
2730		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
2731		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
2732			mpi3mr_soft_reset_handler(mrioc,
2733			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
2734		goto out_unlock;
2735	}
2736	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
2737
2738	if (mrioc->prp_list_virt) {
2739		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2740		    mrioc->prp_list_virt, mrioc->prp_list_dma);
2741		mrioc->prp_list_virt = NULL;
2742	}
2743
2744	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
2745	     != MPI3_IOCSTATUS_SUCCESS) {
2746		dprint_bsg_info(mrioc,
2747		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
2748		    __func__,
2749		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
2750		    mrioc->bsg_cmds.ioc_loginfo);
2751	}
2752
2753	if ((mpirep_offset != 0xFF) &&
2754	    drv_bufs[mpirep_offset].bsg_buf_len) {
2755		drv_buf_iter = &drv_bufs[mpirep_offset];
2756		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
2757					   mrioc->reply_sz);
2758		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
2759
2760		if (!bsg_reply_buf) {
2761			rval = -ENOMEM;
2762			goto out_unlock;
2763		}
2764		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
2765			bsg_reply_buf->mpi_reply_type =
2766				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
2767			memcpy(bsg_reply_buf->reply_buf,
2768			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
2769		} else {
2770			bsg_reply_buf->mpi_reply_type =
2771				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
2772			status_desc = (struct mpi3_status_reply_descriptor *)
2773			    bsg_reply_buf->reply_buf;
2774			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
2775			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
2776		}
2777		tmplen = min(drv_buf_iter->kern_buf_len,
2778			drv_buf_iter->bsg_buf_len);
2779		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
2780	}
2781
2782	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
2783	    mrioc->bsg_cmds.is_sense) {
2784		drv_buf_iter = &drv_bufs[erb_offset];
2785		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
2786		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
2787	}
2788
2789	drv_buf_iter = drv_bufs;
2790	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2791		if (drv_buf_iter->data_dir == DMA_NONE)
2792			continue;
2793		if ((count == 1) && is_rmrb) {
2794			memcpy(drv_buf_iter->bsg_buf,
2795			    drv_buf_iter->kern_buf,
2796			    drv_buf_iter->kern_buf_len);
2797		} else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
2798			tmplen = 0;
2799			for (desc_count = 0;
2800			    desc_count < drv_buf_iter->num_dma_desc;
2801			    desc_count++) {
2802				memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
2803				       drv_buf_iter->dma_desc[desc_count].addr,
2804				       drv_buf_iter->dma_desc[desc_count].size);
2805				tmplen +=
2806				    drv_buf_iter->dma_desc[desc_count].size;
2807		}
2808	}
2809	}
2810
2811out_unlock:
2812	if (din_buf) {
2813		job->reply_payload_rcv_len =
2814			sg_copy_from_buffer(job->reply_payload.sg_list,
2815					    job->reply_payload.sg_cnt,
2816					    din_buf, job->reply_payload.payload_len);
2817	}
2818	mrioc->bsg_cmds.is_sense = 0;
2819	mrioc->bsg_cmds.sensebuf = NULL;
2820	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
2821	mutex_unlock(&mrioc->bsg_cmds.mutex);
2822out:
2823	kfree(sense_buff_k);
2824	kfree(dout_buf);
2825	kfree(din_buf);
2826	kfree(mpi_req);
2827	if (drv_bufs) {
2828		drv_buf_iter = drv_bufs;
2829		for (count = 0; count < bufcnt; count++, drv_buf_iter++)
2830			kfree(drv_buf_iter->dma_desc);
2831		kfree(drv_bufs);
2832	}
2833	kfree(bsg_reply_buf);
2834	return rval;
2835}
2836
2837/**
2838 * mpi3mr_app_save_logdata - Save Log Data events
2839 * @mrioc: Adapter instance reference
2840 * @event_data: event data associated with log data event
2841 * @event_data_size: event data size to copy
2842 *
2843 * If log data event caching is enabled by the applicatiobns,
2844 * then this function saves the log data in the circular queue
2845 * and Sends async signal SIGIO to indicate there is an async
2846 * event from the firmware to the event monitoring applications.
2847 *
2848 * Return:Nothing
2849 */
2850void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
2851	u16 event_data_size)
2852{
2853	u32 index = mrioc->logdata_buf_idx, sz;
2854	struct mpi3mr_logdata_entry *entry;
2855
2856	if (!(mrioc->logdata_buf))
2857		return;
2858
2859	entry = (struct mpi3mr_logdata_entry *)
2860		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
2861	entry->valid_entry = 1;
2862	sz = min(mrioc->logdata_entry_sz, event_data_size);
2863	memcpy(entry->data, event_data, sz);
2864	mrioc->logdata_buf_idx =
2865		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
2866	atomic64_inc(&event_counter);
2867}
2868
2869/**
2870 * mpi3mr_bsg_request - bsg request entry point
2871 * @job: BSG job reference
2872 *
2873 * This is driver's entry point for bsg requests
2874 *
2875 * Return: 0 on success and proper error codes on failure
2876 */
2877static int mpi3mr_bsg_request(struct bsg_job *job)
2878{
2879	long rval = -EINVAL;
2880	unsigned int reply_payload_rcv_len = 0;
2881
2882	struct mpi3mr_bsg_packet *bsg_req = job->request;
2883
2884	switch (bsg_req->cmd_type) {
2885	case MPI3MR_DRV_CMD:
2886		rval = mpi3mr_bsg_process_drv_cmds(job);
2887		break;
2888	case MPI3MR_MPT_CMD:
2889		rval = mpi3mr_bsg_process_mpt_cmds(job);
2890		break;
2891	default:
2892		pr_err("%s: unsupported BSG command(0x%08x)\n",
2893		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
2894		break;
2895	}
2896
2897	bsg_job_done(job, rval, reply_payload_rcv_len);
2898
2899	return 0;
2900}
2901
2902/**
2903 * mpi3mr_bsg_exit - de-registration from bsg layer
2904 * @mrioc: Adapter instance reference
2905 *
2906 * This will be called during driver unload and all
2907 * bsg resources allocated during load will be freed.
2908 *
2909 * Return:Nothing
2910 */
2911void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
2912{
2913	struct device *bsg_dev = &mrioc->bsg_dev;
2914	if (!mrioc->bsg_queue)
2915		return;
2916
2917	bsg_remove_queue(mrioc->bsg_queue);
2918	mrioc->bsg_queue = NULL;
2919
2920	device_del(bsg_dev);
2921	put_device(bsg_dev);
2922}
2923
2924/**
2925 * mpi3mr_bsg_node_release -release bsg device node
2926 * @dev: bsg device node
2927 *
2928 * decrements bsg dev parent reference count
2929 *
2930 * Return:Nothing
2931 */
2932static void mpi3mr_bsg_node_release(struct device *dev)
2933{
2934	put_device(dev->parent);
2935}
2936
2937/**
2938 * mpi3mr_bsg_init -  registration with bsg layer
2939 * @mrioc: Adapter instance reference
2940 *
2941 * This will be called during driver load and it will
2942 * register driver with bsg layer
2943 *
2944 * Return:Nothing
2945 */
2946void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
2947{
2948	struct device *bsg_dev = &mrioc->bsg_dev;
2949	struct device *parent = &mrioc->shost->shost_gendev;
2950	struct queue_limits lim = {
2951		.max_hw_sectors		= MPI3MR_MAX_APP_XFER_SECTORS,
2952		.max_segments		= MPI3MR_MAX_APP_XFER_SEGMENTS,
2953	};
2954	struct request_queue *q;
2955
2956	device_initialize(bsg_dev);
2957
2958	bsg_dev->parent = get_device(parent);
2959	bsg_dev->release = mpi3mr_bsg_node_release;
2960
2961	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
2962
2963	if (device_add(bsg_dev)) {
2964		ioc_err(mrioc, "%s: bsg device add failed\n",
2965		    dev_name(bsg_dev));
2966		put_device(bsg_dev);
2967		return;
2968	}
2969
2970	q = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), &lim,
2971			mpi3mr_bsg_request, NULL, 0);
2972	if (IS_ERR(q)) {
2973		ioc_err(mrioc, "%s: bsg registration failed\n",
2974		    dev_name(bsg_dev));
2975		device_del(bsg_dev);
2976		put_device(bsg_dev);
2977		return;
2978	}
2979
2980	mrioc->bsg_queue = q;
2981}
2982
2983/**
2984 * version_fw_show - SysFS callback for firmware version read
2985 * @dev: class device
2986 * @attr: Device attributes
2987 * @buf: Buffer to copy
2988 *
2989 * Return: sysfs_emit() return after copying firmware version
2990 */
2991static ssize_t
2992version_fw_show(struct device *dev, struct device_attribute *attr,
2993	char *buf)
2994{
2995	struct Scsi_Host *shost = class_to_shost(dev);
2996	struct mpi3mr_ioc *mrioc = shost_priv(shost);
2997	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
2998
2999	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
3000	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
3001	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
3002}
3003static DEVICE_ATTR_RO(version_fw);
3004
3005/**
3006 * fw_queue_depth_show - SysFS callback for firmware max cmds
3007 * @dev: class device
3008 * @attr: Device attributes
3009 * @buf: Buffer to copy
3010 *
3011 * Return: sysfs_emit() return after copying firmware max commands
3012 */
3013static ssize_t
3014fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
3015			char *buf)
3016{
3017	struct Scsi_Host *shost = class_to_shost(dev);
3018	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3019
3020	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
3021}
3022static DEVICE_ATTR_RO(fw_queue_depth);
3023
3024/**
3025 * op_req_q_count_show - SysFS callback for request queue count
3026 * @dev: class device
3027 * @attr: Device attributes
3028 * @buf: Buffer to copy
3029 *
3030 * Return: sysfs_emit() return after copying request queue count
3031 */
3032static ssize_t
3033op_req_q_count_show(struct device *dev, struct device_attribute *attr,
3034			char *buf)
3035{
3036	struct Scsi_Host *shost = class_to_shost(dev);
3037	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3038
3039	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
3040}
3041static DEVICE_ATTR_RO(op_req_q_count);
3042
3043/**
3044 * reply_queue_count_show - SysFS callback for reply queue count
3045 * @dev: class device
3046 * @attr: Device attributes
3047 * @buf: Buffer to copy
3048 *
3049 * Return: sysfs_emit() return after copying reply queue count
3050 */
3051static ssize_t
3052reply_queue_count_show(struct device *dev, struct device_attribute *attr,
3053			char *buf)
3054{
3055	struct Scsi_Host *shost = class_to_shost(dev);
3056	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3057
3058	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
3059}
3060
3061static DEVICE_ATTR_RO(reply_queue_count);
3062
3063/**
3064 * logging_level_show - Show controller debug level
3065 * @dev: class device
3066 * @attr: Device attributes
3067 * @buf: Buffer to copy
3068 *
3069 * A sysfs 'read/write' shost attribute, to show the current
3070 * debug log level used by the driver for the specific
3071 * controller.
3072 *
3073 * Return: sysfs_emit() return
3074 */
3075static ssize_t
3076logging_level_show(struct device *dev,
3077	struct device_attribute *attr, char *buf)
3078
3079{
3080	struct Scsi_Host *shost = class_to_shost(dev);
3081	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3082
3083	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
3084}
3085
3086/**
3087 * logging_level_store- Change controller debug level
3088 * @dev: class device
3089 * @attr: Device attributes
3090 * @buf: Buffer to copy
3091 * @count: size of the buffer
3092 *
3093 * A sysfs 'read/write' shost attribute, to change the current
3094 * debug log level used by the driver for the specific
3095 * controller.
3096 *
3097 * Return: strlen() return
3098 */
3099static ssize_t
3100logging_level_store(struct device *dev,
3101	struct device_attribute *attr,
3102	const char *buf, size_t count)
3103{
3104	struct Scsi_Host *shost = class_to_shost(dev);
3105	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3106	int val = 0;
3107
3108	if (kstrtoint(buf, 0, &val) != 0)
3109		return -EINVAL;
3110
3111	mrioc->logging_level = val;
3112	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
3113	return strlen(buf);
3114}
3115static DEVICE_ATTR_RW(logging_level);
3116
3117/**
3118 * adp_state_show() - SysFS callback for adapter state show
3119 * @dev: class device
3120 * @attr: Device attributes
3121 * @buf: Buffer to copy
3122 *
3123 * Return: sysfs_emit() return after copying adapter state
3124 */
3125static ssize_t
3126adp_state_show(struct device *dev, struct device_attribute *attr,
3127	char *buf)
3128{
3129	struct Scsi_Host *shost = class_to_shost(dev);
3130	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3131	enum mpi3mr_iocstate ioc_state;
3132	uint8_t adp_state;
3133
3134	ioc_state = mpi3mr_get_iocstate(mrioc);
3135	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
3136		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
3137	else if (mrioc->reset_in_progress || mrioc->stop_bsgs ||
3138		 mrioc->block_on_pci_err)
3139		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
3140	else if (ioc_state == MRIOC_STATE_FAULT)
3141		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
3142	else
3143		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
3144
3145	return sysfs_emit(buf, "%u\n", adp_state);
3146}
3147
3148static DEVICE_ATTR_RO(adp_state);
3149
3150static struct attribute *mpi3mr_host_attrs[] = {
3151	&dev_attr_version_fw.attr,
3152	&dev_attr_fw_queue_depth.attr,
3153	&dev_attr_op_req_q_count.attr,
3154	&dev_attr_reply_queue_count.attr,
3155	&dev_attr_logging_level.attr,
3156	&dev_attr_adp_state.attr,
3157	NULL,
3158};
3159
3160static const struct attribute_group mpi3mr_host_attr_group = {
3161	.attrs = mpi3mr_host_attrs
3162};
3163
3164const struct attribute_group *mpi3mr_host_groups[] = {
3165	&mpi3mr_host_attr_group,
3166	NULL,
3167};
3168
3169
3170/*
3171 * SCSI Device attributes under sysfs
3172 */
3173
3174/**
3175 * sas_address_show - SysFS callback for dev SASaddress display
3176 * @dev: class device
3177 * @attr: Device attributes
3178 * @buf: Buffer to copy
3179 *
3180 * Return: sysfs_emit() return after copying SAS address of the
3181 * specific SAS/SATA end device.
3182 */
3183static ssize_t
3184sas_address_show(struct device *dev, struct device_attribute *attr,
3185			char *buf)
3186{
3187	struct scsi_device *sdev = to_scsi_device(dev);
3188	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3189	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3190	struct mpi3mr_tgt_dev *tgtdev;
3191
3192	sdev_priv_data = sdev->hostdata;
3193	if (!sdev_priv_data)
3194		return 0;
3195
3196	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3197	if (!tgt_priv_data)
3198		return 0;
3199	tgtdev = tgt_priv_data->tgt_dev;
3200	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
3201		return 0;
3202	return sysfs_emit(buf, "0x%016llx\n",
3203	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
3204}
3205
3206static DEVICE_ATTR_RO(sas_address);
3207
3208/**
3209 * device_handle_show - SysFS callback for device handle display
3210 * @dev: class device
3211 * @attr: Device attributes
3212 * @buf: Buffer to copy
3213 *
3214 * Return: sysfs_emit() return after copying firmware internal
3215 * device handle of the specific device.
3216 */
3217static ssize_t
3218device_handle_show(struct device *dev, struct device_attribute *attr,
3219			char *buf)
3220{
3221	struct scsi_device *sdev = to_scsi_device(dev);
3222	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3223	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3224	struct mpi3mr_tgt_dev *tgtdev;
3225
3226	sdev_priv_data = sdev->hostdata;
3227	if (!sdev_priv_data)
3228		return 0;
3229
3230	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3231	if (!tgt_priv_data)
3232		return 0;
3233	tgtdev = tgt_priv_data->tgt_dev;
3234	if (!tgtdev)
3235		return 0;
3236	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
3237}
3238
3239static DEVICE_ATTR_RO(device_handle);
3240
3241/**
3242 * persistent_id_show - SysFS callback for persisten ID display
3243 * @dev: class device
3244 * @attr: Device attributes
3245 * @buf: Buffer to copy
3246 *
3247 * Return: sysfs_emit() return after copying persistent ID of the
3248 * of the specific device.
3249 */
3250static ssize_t
3251persistent_id_show(struct device *dev, struct device_attribute *attr,
3252			char *buf)
3253{
3254	struct scsi_device *sdev = to_scsi_device(dev);
3255	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3256	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3257	struct mpi3mr_tgt_dev *tgtdev;
3258
3259	sdev_priv_data = sdev->hostdata;
3260	if (!sdev_priv_data)
3261		return 0;
3262
3263	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3264	if (!tgt_priv_data)
3265		return 0;
3266	tgtdev = tgt_priv_data->tgt_dev;
3267	if (!tgtdev)
3268		return 0;
3269	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
3270}
3271static DEVICE_ATTR_RO(persistent_id);
3272
3273/**
3274 * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority
3275 * @dev: pointer to embedded device
3276 * @attr: sas_ncq_prio_supported attribute descriptor
3277 * @buf: the buffer returned
3278 *
3279 * A sysfs 'read-only' sdev attribute, only works with SATA devices
3280 */
3281static ssize_t
3282sas_ncq_prio_supported_show(struct device *dev,
3283			    struct device_attribute *attr, char *buf)
3284{
3285	struct scsi_device *sdev = to_scsi_device(dev);
3286
3287	return sysfs_emit(buf, "%d\n", sas_ata_ncq_prio_supported(sdev));
3288}
3289static DEVICE_ATTR_RO(sas_ncq_prio_supported);
3290
3291/**
3292 * sas_ncq_prio_enable_show - send prioritized io commands to device
3293 * @dev: pointer to embedded device
3294 * @attr: sas_ncq_prio_enable attribute descriptor
3295 * @buf: the buffer returned
3296 *
3297 * A sysfs 'read/write' sdev attribute, only works with SATA devices
3298 */
3299static ssize_t
3300sas_ncq_prio_enable_show(struct device *dev,
3301				 struct device_attribute *attr, char *buf)
3302{
3303	struct scsi_device *sdev = to_scsi_device(dev);
3304	struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3305
3306	if (!sdev_priv_data)
3307		return 0;
3308
3309	return sysfs_emit(buf, "%d\n", sdev_priv_data->ncq_prio_enable);
3310}
3311
3312static ssize_t
3313sas_ncq_prio_enable_store(struct device *dev,
3314				  struct device_attribute *attr,
3315				  const char *buf, size_t count)
3316{
3317	struct scsi_device *sdev = to_scsi_device(dev);
3318	struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3319	bool ncq_prio_enable = 0;
3320
3321	if (kstrtobool(buf, &ncq_prio_enable))
3322		return -EINVAL;
3323
3324	if (!sas_ata_ncq_prio_supported(sdev))
3325		return -EINVAL;
3326
3327	sdev_priv_data->ncq_prio_enable = ncq_prio_enable;
3328
3329	return strlen(buf);
3330}
3331static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3332
3333static struct attribute *mpi3mr_dev_attrs[] = {
3334	&dev_attr_sas_address.attr,
3335	&dev_attr_device_handle.attr,
3336	&dev_attr_persistent_id.attr,
3337	&dev_attr_sas_ncq_prio_supported.attr,
3338	&dev_attr_sas_ncq_prio_enable.attr,
3339	NULL,
3340};
3341
3342static const struct attribute_group mpi3mr_dev_attr_group = {
3343	.attrs = mpi3mr_dev_attrs
3344};
3345
3346const struct attribute_group *mpi3mr_dev_groups[] = {
3347	&mpi3mr_dev_attr_group,
3348	NULL,
3349};