Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom MPI3 Storage Controllers
   4 *
   5 * Copyright (C) 2017-2022 Broadcom Inc.
   6 *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
   7 *
   8 */
   9
  10#include "mpi3mr.h"
  11#include <linux/bsg-lib.h>
  12#include <uapi/scsi/scsi_bsg_mpi3mr.h>
  13
  14/**
  15 * mpi3mr_bsg_pel_abort - sends PEL abort request
  16 * @mrioc: Adapter instance reference
  17 *
  18 * This function sends PEL abort request to the firmware through
  19 * admin request queue.
  20 *
  21 * Return: 0 on success, -1 on failure
  22 */
  23static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
  24{
  25	struct mpi3_pel_req_action_abort pel_abort_req;
  26	struct mpi3_pel_reply *pel_reply;
  27	int retval = 0;
  28	u16 pe_log_status;
  29
  30	if (mrioc->reset_in_progress) {
  31		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
  32		return -1;
  33	}
  34	if (mrioc->stop_bsgs) {
  35		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
  36		return -1;
  37	}
  38
  39	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
  40	mutex_lock(&mrioc->pel_abort_cmd.mutex);
  41	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
  42		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
  43		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
  44		return -1;
  45	}
  46	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
  47	mrioc->pel_abort_cmd.is_waiting = 1;
  48	mrioc->pel_abort_cmd.callback = NULL;
  49	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
  50	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
  51	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
  52	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
  53
  54	mrioc->pel_abort_requested = 1;
  55	init_completion(&mrioc->pel_abort_cmd.done);
  56	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
  57	    sizeof(pel_abort_req), 0);
  58	if (retval) {
  59		retval = -1;
  60		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
  61		    __func__);
  62		mrioc->pel_abort_requested = 0;
  63		goto out_unlock;
  64	}
  65
  66	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
  67	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
  68	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
  69		mrioc->pel_abort_cmd.is_waiting = 0;
  70		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
  71		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
  72			mpi3mr_soft_reset_handler(mrioc,
  73			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
  74		retval = -1;
  75		goto out_unlock;
  76	}
  77	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
  78	     != MPI3_IOCSTATUS_SUCCESS) {
  79		dprint_bsg_err(mrioc,
  80		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
  81		    __func__, (mrioc->pel_abort_cmd.ioc_status &
  82		    MPI3_IOCSTATUS_STATUS_MASK),
  83		    mrioc->pel_abort_cmd.ioc_loginfo);
  84		retval = -1;
  85		goto out_unlock;
  86	}
  87	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
  88		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
  89		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
  90		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
  91			dprint_bsg_err(mrioc,
  92			    "%s: command failed, pel_status(0x%04x)\n",
  93			    __func__, pe_log_status);
  94			retval = -1;
  95		}
  96	}
  97
  98out_unlock:
  99	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
 100	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
 101	return retval;
 102}
 103/**
 104 * mpi3mr_bsg_verify_adapter - verify adapter number is valid
 105 * @ioc_number: Adapter number
 106 *
 107 * This function returns the adapter instance pointer of given
 108 * adapter number. If adapter number does not match with the
 109 * driver's adapter list, driver returns NULL.
 110 *
 111 * Return: adapter instance reference
 112 */
 113static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
 114{
 115	struct mpi3mr_ioc *mrioc = NULL;
 116
 117	spin_lock(&mrioc_list_lock);
 118	list_for_each_entry(mrioc, &mrioc_list, list) {
 119		if (mrioc->id == ioc_number) {
 120			spin_unlock(&mrioc_list_lock);
 121			return mrioc;
 122		}
 123	}
 124	spin_unlock(&mrioc_list_lock);
 125	return NULL;
 126}
 127
 128/**
 129 * mpi3mr_enable_logdata - Handler for log data enable
 130 * @mrioc: Adapter instance reference
 131 * @job: BSG job reference
 132 *
 133 * This function enables log data caching in the driver if not
 134 * already enabled and return the maximum number of log data
 135 * entries that can be cached in the driver.
 136 *
 137 * Return: 0 on success and proper error codes on failure
 138 */
 139static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
 140	struct bsg_job *job)
 141{
 142	struct mpi3mr_logdata_enable logdata_enable;
 143
 144	if (!mrioc->logdata_buf) {
 145		mrioc->logdata_entry_sz =
 146		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
 147		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
 148		mrioc->logdata_buf_idx = 0;
 149		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
 150		    mrioc->logdata_entry_sz, GFP_KERNEL);
 151
 152		if (!mrioc->logdata_buf)
 153			return -ENOMEM;
 154	}
 155
 156	memset(&logdata_enable, 0, sizeof(logdata_enable));
 157	logdata_enable.max_entries =
 158	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
 159	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
 160		sg_copy_from_buffer(job->request_payload.sg_list,
 161				    job->request_payload.sg_cnt,
 162				    &logdata_enable, sizeof(logdata_enable));
 163		return 0;
 164	}
 165
 166	return -EINVAL;
 167}
 168/**
 169 * mpi3mr_get_logdata - Handler for get log data
 170 * @mrioc: Adapter instance reference
 171 * @job: BSG job pointer
 172 * This function copies the log data entries to the user buffer
 173 * when log caching is enabled in the driver.
 174 *
 175 * Return: 0 on success and proper error codes on failure
 176 */
 177static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
 178	struct bsg_job *job)
 179{
 180	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
 181
 182	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
 183		return -EINVAL;
 184
 185	num_entries = job->request_payload.payload_len / entry_sz;
 186	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
 187		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
 188	sz = num_entries * entry_sz;
 189
 190	if (job->request_payload.payload_len >= sz) {
 191		sg_copy_from_buffer(job->request_payload.sg_list,
 192				    job->request_payload.sg_cnt,
 193				    mrioc->logdata_buf, sz);
 194		return 0;
 195	}
 196	return -EINVAL;
 197}
 198
 199/**
 200 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
 201 * @mrioc: Adapter instance reference
 202 * @job: BSG job pointer
 203 *
 204 * This function is the handler for PEL enable driver.
 205 * Validates the application given class and locale and if
 206 * requires aborts the existing PEL wait request and/or issues
 207 * new PEL wait request to the firmware and returns.
 208 *
 209 * Return: 0 on success and proper error codes on failure.
 210 */
 211static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
 212				  struct bsg_job *job)
 213{
 214	long rval = -EINVAL;
 215	struct mpi3mr_bsg_out_pel_enable pel_enable;
 216	u8 issue_pel_wait;
 217	u8 tmp_class;
 218	u16 tmp_locale;
 219
 220	if (job->request_payload.payload_len != sizeof(pel_enable)) {
 221		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
 222		    __func__);
 223		return rval;
 224	}
 225
 226	sg_copy_to_buffer(job->request_payload.sg_list,
 227			  job->request_payload.sg_cnt,
 228			  &pel_enable, sizeof(pel_enable));
 229
 230	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
 231		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
 232			__func__, pel_enable.pel_class);
 233		rval = 0;
 234		goto out;
 235	}
 236	if (!mrioc->pel_enabled)
 237		issue_pel_wait = 1;
 238	else {
 239		if ((mrioc->pel_class <= pel_enable.pel_class) &&
 240		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
 241		      pel_enable.pel_locale)) {
 242			issue_pel_wait = 0;
 243			rval = 0;
 244		} else {
 245			pel_enable.pel_locale |= mrioc->pel_locale;
 246
 247			if (mrioc->pel_class < pel_enable.pel_class)
 248				pel_enable.pel_class = mrioc->pel_class;
 249
 250			rval = mpi3mr_bsg_pel_abort(mrioc);
 251			if (rval) {
 252				dprint_bsg_err(mrioc,
 253				    "%s: pel_abort failed, status(%ld)\n",
 254				    __func__, rval);
 255				goto out;
 256			}
 257			issue_pel_wait = 1;
 258		}
 259	}
 260	if (issue_pel_wait) {
 261		tmp_class = mrioc->pel_class;
 262		tmp_locale = mrioc->pel_locale;
 263		mrioc->pel_class = pel_enable.pel_class;
 264		mrioc->pel_locale = pel_enable.pel_locale;
 265		mrioc->pel_enabled = 1;
 266		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
 267		if (rval) {
 268			mrioc->pel_class = tmp_class;
 269			mrioc->pel_locale = tmp_locale;
 270			mrioc->pel_enabled = 0;
 271			dprint_bsg_err(mrioc,
 272			    "%s: pel get sequence number failed, status(%ld)\n",
 273			    __func__, rval);
 274		}
 275	}
 276
 277out:
 278	return rval;
 279}
 280/**
 281 * mpi3mr_get_all_tgt_info - Get all target information
 282 * @mrioc: Adapter instance reference
 283 * @job: BSG job reference
 284 *
 285 * This function copies the driver managed target devices device
 286 * handle, persistent ID, bus ID and taret ID to the user
 287 * provided buffer for the specific controller. This function
 288 * also provides the number of devices managed by the driver for
 289 * the specific controller.
 290 *
 291 * Return: 0 on success and proper error codes on failure
 292 */
 293static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
 294	struct bsg_job *job)
 295{
 296	long rval = -EINVAL;
 297	u16 num_devices = 0, i = 0, size;
 298	unsigned long flags;
 299	struct mpi3mr_tgt_dev *tgtdev;
 300	struct mpi3mr_device_map_info *devmap_info = NULL;
 301	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
 302	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
 303
 304	if (job->request_payload.payload_len < sizeof(u32)) {
 305		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
 306		    __func__);
 307		return rval;
 308	}
 309
 310	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
 311	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
 312		num_devices++;
 313	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
 314
 315	if ((job->request_payload.payload_len == sizeof(u32)) ||
 316		list_empty(&mrioc->tgtdev_list)) {
 317		sg_copy_from_buffer(job->request_payload.sg_list,
 318				    job->request_payload.sg_cnt,
 319				    &num_devices, sizeof(num_devices));
 320		return 0;
 321	}
 322
 323	kern_entrylen = (num_devices - 1) * sizeof(*devmap_info);
 324	size = sizeof(*alltgt_info) + kern_entrylen;
 325	alltgt_info = kzalloc(size, GFP_KERNEL);
 326	if (!alltgt_info)
 327		return -ENOMEM;
 328
 329	devmap_info = alltgt_info->dmi;
 330	memset((u8 *)devmap_info, 0xFF, (kern_entrylen + sizeof(*devmap_info)));
 331	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
 332	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
 333		if (i < num_devices) {
 334			devmap_info[i].handle = tgtdev->dev_handle;
 335			devmap_info[i].perst_id = tgtdev->perst_id;
 336			if (tgtdev->host_exposed && tgtdev->starget) {
 337				devmap_info[i].target_id = tgtdev->starget->id;
 338				devmap_info[i].bus_id =
 339				    tgtdev->starget->channel;
 340			}
 341			i++;
 342		}
 343	}
 344	num_devices = i;
 345	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
 346
 347	memcpy(&alltgt_info->num_devices, &num_devices, sizeof(num_devices));
 348
 349	usr_entrylen = (job->request_payload.payload_len - sizeof(u32)) / sizeof(*devmap_info);
 350	usr_entrylen *= sizeof(*devmap_info);
 351	min_entrylen = min(usr_entrylen, kern_entrylen);
 352	if (min_entrylen && (!memcpy(&alltgt_info->dmi, devmap_info, min_entrylen))) {
 353		dprint_bsg_err(mrioc, "%s:%d: device map info copy failed\n",
 354		    __func__, __LINE__);
 355		rval = -EFAULT;
 356		goto out;
 357	}
 358
 359	sg_copy_from_buffer(job->request_payload.sg_list,
 360			    job->request_payload.sg_cnt,
 361			    alltgt_info, job->request_payload.payload_len);
 362	rval = 0;
 363out:
 364	kfree(alltgt_info);
 365	return rval;
 366}
 367/**
 368 * mpi3mr_get_change_count - Get topology change count
 369 * @mrioc: Adapter instance reference
 370 * @job: BSG job reference
 371 *
 372 * This function copies the toplogy change count provided by the
 373 * driver in events and cached in the driver to the user
 374 * provided buffer for the specific controller.
 375 *
 376 * Return: 0 on success and proper error codes on failure
 377 */
 378static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
 379	struct bsg_job *job)
 380{
 381	struct mpi3mr_change_count chgcnt;
 382
 383	memset(&chgcnt, 0, sizeof(chgcnt));
 384	chgcnt.change_count = mrioc->change_count;
 385	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
 386		sg_copy_from_buffer(job->request_payload.sg_list,
 387				    job->request_payload.sg_cnt,
 388				    &chgcnt, sizeof(chgcnt));
 389		return 0;
 390	}
 391	return -EINVAL;
 392}
 393
 394/**
 395 * mpi3mr_bsg_adp_reset - Issue controller reset
 396 * @mrioc: Adapter instance reference
 397 * @job: BSG job reference
 398 *
 399 * This function identifies the user provided reset type and
 400 * issues approporiate reset to the controller and wait for that
 401 * to complete and reinitialize the controller and then returns
 402 *
 403 * Return: 0 on success and proper error codes on failure
 404 */
 405static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
 406	struct bsg_job *job)
 407{
 408	long rval = -EINVAL;
 409	u8 save_snapdump;
 410	struct mpi3mr_bsg_adp_reset adpreset;
 411
 412	if (job->request_payload.payload_len !=
 413			sizeof(adpreset)) {
 414		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
 415		    __func__);
 416		goto out;
 417	}
 418
 419	sg_copy_to_buffer(job->request_payload.sg_list,
 420			  job->request_payload.sg_cnt,
 421			  &adpreset, sizeof(adpreset));
 422
 423	switch (adpreset.reset_type) {
 424	case MPI3MR_BSG_ADPRESET_SOFT:
 425		save_snapdump = 0;
 426		break;
 427	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
 428		save_snapdump = 1;
 429		break;
 430	default:
 431		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
 432		    __func__, adpreset.reset_type);
 433		goto out;
 434	}
 435
 436	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
 437	    save_snapdump);
 438
 439	if (rval)
 440		dprint_bsg_err(mrioc,
 441		    "%s: reset handler returned error(%ld) for reset type %d\n",
 442		    __func__, rval, adpreset.reset_type);
 443out:
 444	return rval;
 445}
 446
 447/**
 448 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
 449 * @mrioc: Adapter instance reference
 450 * @job: BSG job reference
 451 *
 452 * This function provides adapter information for the given
 453 * controller
 454 *
 455 * Return: 0 on success and proper error codes on failure
 456 */
 457static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
 458	struct bsg_job *job)
 459{
 460	enum mpi3mr_iocstate ioc_state;
 461	struct mpi3mr_bsg_in_adpinfo adpinfo;
 462
 463	memset(&adpinfo, 0, sizeof(adpinfo));
 464	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
 465	adpinfo.pci_dev_id = mrioc->pdev->device;
 466	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
 467	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
 468	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
 469	adpinfo.pci_bus = mrioc->pdev->bus->number;
 470	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
 471	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
 472	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
 473	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
 474
 475	ioc_state = mpi3mr_get_iocstate(mrioc);
 476	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
 477		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
 478	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
 479		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
 480	else if (ioc_state == MRIOC_STATE_FAULT)
 481		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
 482	else
 483		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
 484
 485	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
 486	    sizeof(adpinfo.driver_info));
 487
 488	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
 489		sg_copy_from_buffer(job->request_payload.sg_list,
 490				    job->request_payload.sg_cnt,
 491				    &adpinfo, sizeof(adpinfo));
 492		return 0;
 493	}
 494	return -EINVAL;
 495}
 496
 497/**
 498 * mpi3mr_bsg_process_drv_cmds - Driver Command handler
 499 * @job: BSG job reference
 500 *
 501 * This function is the top level handler for driver commands,
 502 * this does basic validation of the buffer and identifies the
 503 * opcode and switches to correct sub handler.
 504 *
 505 * Return: 0 on success and proper error codes on failure
 506 */
 507static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
 508{
 509	long rval = -EINVAL;
 510	struct mpi3mr_ioc *mrioc = NULL;
 511	struct mpi3mr_bsg_packet *bsg_req = NULL;
 512	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
 513
 514	bsg_req = job->request;
 515	drvrcmd = &bsg_req->cmd.drvrcmd;
 516
 517	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
 518	if (!mrioc)
 519		return -ENODEV;
 520
 521	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
 522		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
 523		return rval;
 524	}
 525
 526	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
 527		return -ERESTARTSYS;
 528
 529	switch (drvrcmd->opcode) {
 530	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
 531		rval = mpi3mr_bsg_adp_reset(mrioc, job);
 532		break;
 533	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
 534		rval = mpi3mr_get_all_tgt_info(mrioc, job);
 535		break;
 536	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
 537		rval = mpi3mr_get_change_count(mrioc, job);
 538		break;
 539	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
 540		rval = mpi3mr_enable_logdata(mrioc, job);
 541		break;
 542	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
 543		rval = mpi3mr_get_logdata(mrioc, job);
 544		break;
 545	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
 546		rval = mpi3mr_bsg_pel_enable(mrioc, job);
 547		break;
 548	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
 549	default:
 550		pr_err("%s: unsupported driver command opcode %d\n",
 551		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
 552		break;
 553	}
 554	mutex_unlock(&mrioc->bsg_cmds.mutex);
 555	return rval;
 556}
 557
 558/**
 559 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
 560 * @mpi_req: MPI request
 561 * @sgl_offset: offset to start sgl in the MPI request
 562 * @drv_bufs: DMA address of the buffers to be placed in sgl
 563 * @bufcnt: Number of DMA buffers
 564 * @is_rmc: Does the buffer list has management command buffer
 565 * @is_rmr: Does the buffer list has management response buffer
 566 * @num_datasges: Number of data buffers in the list
 567 *
 568 * This function places the DMA address of the given buffers in
 569 * proper format as SGEs in the given MPI request.
 570 *
 571 * Return: Nothing
 572 */
 573static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset,
 574	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc,
 575	u8 is_rmr, u8 num_datasges)
 576{
 577	u8 *sgl = (mpi_req + sgl_offset), count = 0;
 578	struct mpi3_mgmt_passthrough_request *rmgmt_req =
 579	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
 580	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
 581	u8 sgl_flags, sgl_flags_last;
 582
 583	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
 584		MPI3_SGE_FLAGS_DLAS_SYSTEM | MPI3_SGE_FLAGS_END_OF_BUFFER;
 585	sgl_flags_last = sgl_flags | MPI3_SGE_FLAGS_END_OF_LIST;
 586
 587	if (is_rmc) {
 588		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
 589		    sgl_flags_last, drv_buf_iter->kern_buf_len,
 590		    drv_buf_iter->kern_buf_dma);
 591		sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len;
 592		drv_buf_iter++;
 593		count++;
 594		if (is_rmr) {
 595			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
 596			    sgl_flags_last, drv_buf_iter->kern_buf_len,
 597			    drv_buf_iter->kern_buf_dma);
 598			drv_buf_iter++;
 599			count++;
 600		} else
 601			mpi3mr_build_zero_len_sge(
 602			    &rmgmt_req->response_sgl);
 603	}
 604	if (!num_datasges) {
 605		mpi3mr_build_zero_len_sge(sgl);
 606		return;
 607	}
 608	for (; count < bufcnt; count++, drv_buf_iter++) {
 609		if (drv_buf_iter->data_dir == DMA_NONE)
 610			continue;
 611		if (num_datasges == 1 || !is_rmc)
 612			mpi3mr_add_sg_single(sgl, sgl_flags_last,
 613			    drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
 614		else
 615			mpi3mr_add_sg_single(sgl, sgl_flags,
 616			    drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
 617		sgl += sizeof(struct mpi3_sge_common);
 618		num_datasges--;
 619	}
 620}
 621
 622/**
 623 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
 624 * @nvme_encap_request: NVMe encapsulated MPI request
 625 *
 626 * This function returns the type of the data format specified
 627 * in user provided NVMe command in NVMe encapsulated request.
 628 *
 629 * Return: Data format of the NVMe command (PRP/SGL etc)
 630 */
 631static unsigned int mpi3mr_get_nvme_data_fmt(
 632	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
 633{
 634	u8 format = 0;
 635
 636	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
 637	return format;
 638
 639}
 640
 641/**
 642 * mpi3mr_build_nvme_sgl - SGL constructor for NVME
 643 *				   encapsulated request
 644 * @mrioc: Adapter instance reference
 645 * @nvme_encap_request: NVMe encapsulated MPI request
 646 * @drv_bufs: DMA address of the buffers to be placed in sgl
 647 * @bufcnt: Number of DMA buffers
 648 *
 649 * This function places the DMA address of the given buffers in
 650 * proper format as SGEs in the given NVMe encapsulated request.
 651 *
 652 * Return: 0 on success, -1 on failure
 653 */
 654static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
 655	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
 656	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
 657{
 658	struct mpi3mr_nvme_pt_sge *nvme_sgl;
 659	u64 sgl_ptr;
 660	u8 count;
 661	size_t length = 0;
 662	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
 663	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
 664			    mrioc->facts.sge_mod_shift) << 32);
 665	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
 666			  mrioc->facts.sge_mod_shift) << 32;
 667
 668	/*
 669	 * Not all commands require a data transfer. If no data, just return
 670	 * without constructing any sgl.
 671	 */
 672	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
 673		if (drv_buf_iter->data_dir == DMA_NONE)
 674			continue;
 675		sgl_ptr = (u64)drv_buf_iter->kern_buf_dma;
 676		length = drv_buf_iter->kern_buf_len;
 677		break;
 678	}
 679	if (!length)
 680		return 0;
 681
 682	if (sgl_ptr & sgemod_mask) {
 683		dprint_bsg_err(mrioc,
 684		    "%s: SGL address collides with SGE modifier\n",
 685		    __func__);
 686		return -1;
 687	}
 688
 689	sgl_ptr &= ~sgemod_mask;
 690	sgl_ptr |= sgemod_val;
 691	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
 692	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
 693	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
 694	nvme_sgl->base_addr = sgl_ptr;
 695	nvme_sgl->length = length;
 696	return 0;
 697}
 698
 699/**
 700 * mpi3mr_build_nvme_prp - PRP constructor for NVME
 701 *			       encapsulated request
 702 * @mrioc: Adapter instance reference
 703 * @nvme_encap_request: NVMe encapsulated MPI request
 704 * @drv_bufs: DMA address of the buffers to be placed in SGL
 705 * @bufcnt: Number of DMA buffers
 706 *
 707 * This function places the DMA address of the given buffers in
 708 * proper format as PRP entries in the given NVMe encapsulated
 709 * request.
 710 *
 711 * Return: 0 on success, -1 on failure
 712 */
 713static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
 714	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
 715	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
 716{
 717	int prp_size = MPI3MR_NVME_PRP_SIZE;
 718	__le64 *prp_entry, *prp1_entry, *prp2_entry;
 719	__le64 *prp_page;
 720	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
 721	u32 offset, entry_len, dev_pgsz;
 722	u32 page_mask_result, page_mask;
 723	size_t length = 0;
 724	u8 count;
 725	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
 726	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
 727			    mrioc->facts.sge_mod_shift) << 32);
 728	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
 729			  mrioc->facts.sge_mod_shift) << 32;
 730	u16 dev_handle = nvme_encap_request->dev_handle;
 731	struct mpi3mr_tgt_dev *tgtdev;
 732
 733	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
 734	if (!tgtdev) {
 735		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
 736			__func__, dev_handle);
 737		return -1;
 738	}
 739
 740	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
 741		dprint_bsg_err(mrioc,
 742		    "%s: NVMe device page size is zero for handle 0x%04x\n",
 743		    __func__, dev_handle);
 744		mpi3mr_tgtdev_put(tgtdev);
 745		return -1;
 746	}
 747
 748	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
 749	mpi3mr_tgtdev_put(tgtdev);
 750
 751	/*
 752	 * Not all commands require a data transfer. If no data, just return
 753	 * without constructing any PRP.
 754	 */
 755	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
 756		if (drv_buf_iter->data_dir == DMA_NONE)
 757			continue;
 758		dma_addr = drv_buf_iter->kern_buf_dma;
 759		length = drv_buf_iter->kern_buf_len;
 760		break;
 761	}
 762
 763	if (!length)
 764		return 0;
 765
 766	mrioc->prp_sz = 0;
 767	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
 768	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
 769
 770	if (!mrioc->prp_list_virt)
 771		return -1;
 772	mrioc->prp_sz = dev_pgsz;
 773
 774	/*
 775	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
 776	 * PRP1 is located at a 24 byte offset from the start of the NVMe
 777	 * command.  Then set the current PRP entry pointer to PRP1.
 778	 */
 779	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
 780	    MPI3MR_NVME_CMD_PRP1_OFFSET);
 781	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
 782	    MPI3MR_NVME_CMD_PRP2_OFFSET);
 783	prp_entry = prp1_entry;
 784	/*
 785	 * For the PRP entries, use the specially allocated buffer of
 786	 * contiguous memory.
 787	 */
 788	prp_page = (__le64 *)mrioc->prp_list_virt;
 789	prp_page_dma = mrioc->prp_list_dma;
 790
 791	/*
 792	 * Check if we are within 1 entry of a page boundary we don't
 793	 * want our first entry to be a PRP List entry.
 794	 */
 795	page_mask = dev_pgsz - 1;
 796	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
 797	if (!page_mask_result) {
 798		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
 799		    __func__);
 800		goto err_out;
 801	}
 802
 803	/*
 804	 * Set PRP physical pointer, which initially points to the current PRP
 805	 * DMA memory page.
 806	 */
 807	prp_entry_dma = prp_page_dma;
 808
 809
 810	/* Loop while the length is not zero. */
 811	while (length) {
 812		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
 813		if (!page_mask_result && (length >  dev_pgsz)) {
 814			dprint_bsg_err(mrioc,
 815			    "%s: single PRP page is not sufficient\n",
 816			    __func__);
 817			goto err_out;
 818		}
 819
 820		/* Need to handle if entry will be part of a page. */
 821		offset = dma_addr & page_mask;
 822		entry_len = dev_pgsz - offset;
 823
 824		if (prp_entry == prp1_entry) {
 825			/*
 826			 * Must fill in the first PRP pointer (PRP1) before
 827			 * moving on.
 828			 */
 829			*prp1_entry = cpu_to_le64(dma_addr);
 830			if (*prp1_entry & sgemod_mask) {
 831				dprint_bsg_err(mrioc,
 832				    "%s: PRP1 address collides with SGE modifier\n",
 833				    __func__);
 834				goto err_out;
 835			}
 836			*prp1_entry &= ~sgemod_mask;
 837			*prp1_entry |= sgemod_val;
 838
 839			/*
 840			 * Now point to the second PRP entry within the
 841			 * command (PRP2).
 842			 */
 843			prp_entry = prp2_entry;
 844		} else if (prp_entry == prp2_entry) {
 845			/*
 846			 * Should the PRP2 entry be a PRP List pointer or just
 847			 * a regular PRP pointer?  If there is more than one
 848			 * more page of data, must use a PRP List pointer.
 849			 */
 850			if (length > dev_pgsz) {
 851				/*
 852				 * PRP2 will contain a PRP List pointer because
 853				 * more PRP's are needed with this command. The
 854				 * list will start at the beginning of the
 855				 * contiguous buffer.
 856				 */
 857				*prp2_entry = cpu_to_le64(prp_entry_dma);
 858				if (*prp2_entry & sgemod_mask) {
 859					dprint_bsg_err(mrioc,
 860					    "%s: PRP list address collides with SGE modifier\n",
 861					    __func__);
 862					goto err_out;
 863				}
 864				*prp2_entry &= ~sgemod_mask;
 865				*prp2_entry |= sgemod_val;
 866
 867				/*
 868				 * The next PRP Entry will be the start of the
 869				 * first PRP List.
 870				 */
 871				prp_entry = prp_page;
 872				continue;
 873			} else {
 874				/*
 875				 * After this, the PRP Entries are complete.
 876				 * This command uses 2 PRP's and no PRP list.
 877				 */
 878				*prp2_entry = cpu_to_le64(dma_addr);
 879				if (*prp2_entry & sgemod_mask) {
 880					dprint_bsg_err(mrioc,
 881					    "%s: PRP2 collides with SGE modifier\n",
 882					    __func__);
 883					goto err_out;
 884				}
 885				*prp2_entry &= ~sgemod_mask;
 886				*prp2_entry |= sgemod_val;
 887			}
 888		} else {
 889			/*
 890			 * Put entry in list and bump the addresses.
 891			 *
 892			 * After PRP1 and PRP2 are filled in, this will fill in
 893			 * all remaining PRP entries in a PRP List, one per
 894			 * each time through the loop.
 895			 */
 896			*prp_entry = cpu_to_le64(dma_addr);
 897			if (*prp1_entry & sgemod_mask) {
 898				dprint_bsg_err(mrioc,
 899				    "%s: PRP address collides with SGE modifier\n",
 900				    __func__);
 901				goto err_out;
 902			}
 903			*prp_entry &= ~sgemod_mask;
 904			*prp_entry |= sgemod_val;
 905			prp_entry++;
 906			prp_entry_dma++;
 907		}
 908
 909		/*
 910		 * Bump the phys address of the command's data buffer by the
 911		 * entry_len.
 912		 */
 913		dma_addr += entry_len;
 914
 915		/* decrement length accounting for last partial page. */
 916		if (entry_len > length)
 917			length = 0;
 918		else
 919			length -= entry_len;
 920	}
 921	return 0;
 922err_out:
 923	if (mrioc->prp_list_virt) {
 924		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
 925		    mrioc->prp_list_virt, mrioc->prp_list_dma);
 926		mrioc->prp_list_virt = NULL;
 927	}
 928	return -1;
 929}
 930/**
 931 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
 932 * @job: BSG job reference
 933 *
 934 * This function is the top level handler for MPI Pass through
 935 * command, this does basic validation of the input data buffers,
 936 * identifies the given buffer types and MPI command, allocates
 937 * DMAable memory for user given buffers, construstcs SGL
 938 * properly and passes the command to the firmware.
 939 *
 940 * Once the MPI command is completed the driver copies the data
 941 * if any and reply, sense information to user provided buffers.
 942 * If the command is timed out then issues controller reset
 943 * prior to returning.
 944 *
 945 * Return: 0 on success and proper error codes on failure
 946 */
 947
 948static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply_payload_rcv_len)
 949{
 950	long rval = -EINVAL;
 951
 952	struct mpi3mr_ioc *mrioc = NULL;
 953	u8 *mpi_req = NULL, *sense_buff_k = NULL;
 954	u8 mpi_msg_size = 0;
 955	struct mpi3mr_bsg_packet *bsg_req = NULL;
 956	struct mpi3mr_bsg_mptcmd *karg;
 957	struct mpi3mr_buf_entry *buf_entries = NULL;
 958	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
 959	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0;
 960	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0;
 961	u8 block_io = 0, resp_code = 0, nvme_fmt = 0;
 962	struct mpi3_request_header *mpi_header = NULL;
 963	struct mpi3_status_reply_descriptor *status_desc;
 964	struct mpi3_scsi_task_mgmt_request *tm_req;
 965	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
 966	u16 dev_handle;
 967	struct mpi3mr_tgt_dev *tgtdev;
 968	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
 969	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
 970	u32 din_size = 0, dout_size = 0;
 971	u8 *din_buf = NULL, *dout_buf = NULL;
 972	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
 973
 974	bsg_req = job->request;
 975	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
 976
 977	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
 978	if (!mrioc)
 979		return -ENODEV;
 980
 981	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
 982		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
 983
 984	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
 985	if (!mpi_req)
 986		return -ENOMEM;
 987	mpi_header = (struct mpi3_request_header *)mpi_req;
 988
 989	bufcnt = karg->buf_entry_list.num_of_entries;
 990	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
 991	if (!drv_bufs) {
 992		rval = -ENOMEM;
 993		goto out;
 994	}
 995
 996	dout_buf = kzalloc(job->request_payload.payload_len,
 997				      GFP_KERNEL);
 998	if (!dout_buf) {
 999		rval = -ENOMEM;
1000		goto out;
1001	}
1002
1003	din_buf = kzalloc(job->reply_payload.payload_len,
1004				     GFP_KERNEL);
1005	if (!din_buf) {
1006		rval = -ENOMEM;
1007		goto out;
1008	}
1009
1010	sg_copy_to_buffer(job->request_payload.sg_list,
1011			  job->request_payload.sg_cnt,
1012			  dout_buf, job->request_payload.payload_len);
1013
1014	buf_entries = karg->buf_entry_list.buf_entry;
1015	sgl_din_iter = din_buf;
1016	sgl_dout_iter = dout_buf;
1017	drv_buf_iter = drv_bufs;
1018
1019	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1020
1021		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1022			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1023				__func__);
1024			rval = -EINVAL;
1025			goto out;
1026		}
1027		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1028			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1029				__func__);
1030			rval = -EINVAL;
1031			goto out;
1032		}
1033
1034		switch (buf_entries->buf_type) {
1035		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1036			sgl_iter = sgl_dout_iter;
1037			sgl_dout_iter += buf_entries->buf_len;
1038			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1039			is_rmcb = 1;
1040			if (count != 0)
1041				invalid_be = 1;
1042			break;
1043		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1044			sgl_iter = sgl_din_iter;
1045			sgl_din_iter += buf_entries->buf_len;
1046			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1047			is_rmrb = 1;
1048			if (count != 1 || !is_rmcb)
1049				invalid_be = 1;
1050			break;
1051		case MPI3MR_BSG_BUFTYPE_DATA_IN:
1052			sgl_iter = sgl_din_iter;
1053			sgl_din_iter += buf_entries->buf_len;
1054			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1055			din_cnt++;
1056			din_size += drv_buf_iter->bsg_buf_len;
1057			if ((din_cnt > 1) && !is_rmcb)
1058				invalid_be = 1;
1059			break;
1060		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1061			sgl_iter = sgl_dout_iter;
1062			sgl_dout_iter += buf_entries->buf_len;
1063			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1064			dout_cnt++;
1065			dout_size += drv_buf_iter->bsg_buf_len;
1066			if ((dout_cnt > 1) && !is_rmcb)
1067				invalid_be = 1;
1068			break;
1069		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1070			sgl_iter = sgl_din_iter;
1071			sgl_din_iter += buf_entries->buf_len;
1072			drv_buf_iter->data_dir = DMA_NONE;
1073			mpirep_offset = count;
1074			break;
1075		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1076			sgl_iter = sgl_din_iter;
1077			sgl_din_iter += buf_entries->buf_len;
1078			drv_buf_iter->data_dir = DMA_NONE;
1079			erb_offset = count;
1080			break;
1081		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1082			sgl_iter = sgl_dout_iter;
1083			sgl_dout_iter += buf_entries->buf_len;
1084			drv_buf_iter->data_dir = DMA_NONE;
1085			mpi_msg_size = buf_entries->buf_len;
1086			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1087					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1088				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1089					__func__);
1090				rval = -EINVAL;
1091				goto out;
1092			}
1093			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1094			break;
1095		default:
1096			invalid_be = 1;
1097			break;
1098		}
1099		if (invalid_be) {
1100			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1101				__func__);
1102			rval = -EINVAL;
1103			goto out;
1104		}
1105
1106		drv_buf_iter->bsg_buf = sgl_iter;
1107		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1108
1109	}
1110	if (!is_rmcb && (dout_cnt || din_cnt)) {
1111		sg_entries = dout_cnt + din_cnt;
1112		if (((mpi_msg_size) + (sg_entries *
1113		      sizeof(struct mpi3_sge_common))) > MPI3MR_ADMIN_REQ_FRAME_SZ) {
1114			dprint_bsg_err(mrioc,
1115			    "%s:%d: invalid message size passed\n",
1116			    __func__, __LINE__);
1117			rval = -EINVAL;
1118			goto out;
1119		}
1120	}
1121	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1122		dprint_bsg_err(mrioc,
1123		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1124		    __func__, __LINE__, mpi_header->function, din_size);
1125		rval = -EINVAL;
1126		goto out;
1127	}
1128	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1129		dprint_bsg_err(mrioc,
1130		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1131		    __func__, __LINE__, mpi_header->function, dout_size);
1132		rval = -EINVAL;
1133		goto out;
1134	}
1135
1136	drv_buf_iter = drv_bufs;
1137	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1138		if (drv_buf_iter->data_dir == DMA_NONE)
1139			continue;
1140
1141		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1142		if (is_rmcb && !count)
1143			drv_buf_iter->kern_buf_len += ((dout_cnt + din_cnt) *
1144			    sizeof(struct mpi3_sge_common));
1145
1146		if (!drv_buf_iter->kern_buf_len)
1147			continue;
1148
1149		drv_buf_iter->kern_buf = dma_alloc_coherent(&mrioc->pdev->dev,
1150		    drv_buf_iter->kern_buf_len, &drv_buf_iter->kern_buf_dma,
1151		    GFP_KERNEL);
1152		if (!drv_buf_iter->kern_buf) {
1153			rval = -ENOMEM;
1154			goto out;
1155		}
1156		if (drv_buf_iter->data_dir == DMA_TO_DEVICE) {
1157			tmplen = min(drv_buf_iter->kern_buf_len,
1158			    drv_buf_iter->bsg_buf_len);
1159			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1160		}
1161	}
1162
1163	if (erb_offset != 0xFF) {
1164		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1165		if (!sense_buff_k) {
1166			rval = -ENOMEM;
1167			goto out;
1168		}
1169	}
1170
1171	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1172		rval = -ERESTARTSYS;
1173		goto out;
1174	}
1175	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1176		rval = -EAGAIN;
1177		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1178		mutex_unlock(&mrioc->bsg_cmds.mutex);
1179		goto out;
1180	}
1181	if (mrioc->unrecoverable) {
1182		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1183		    __func__);
1184		rval = -EFAULT;
1185		mutex_unlock(&mrioc->bsg_cmds.mutex);
1186		goto out;
1187	}
1188	if (mrioc->reset_in_progress) {
1189		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1190		rval = -EAGAIN;
1191		mutex_unlock(&mrioc->bsg_cmds.mutex);
1192		goto out;
1193	}
1194	if (mrioc->stop_bsgs) {
1195		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1196		rval = -EAGAIN;
1197		mutex_unlock(&mrioc->bsg_cmds.mutex);
1198		goto out;
1199	}
1200
1201	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1202		nvme_fmt = mpi3mr_get_nvme_data_fmt(
1203			(struct mpi3_nvme_encapsulated_request *)mpi_req);
1204		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1205			if (mpi3mr_build_nvme_prp(mrioc,
1206			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1207			    drv_bufs, bufcnt)) {
1208				rval = -ENOMEM;
1209				mutex_unlock(&mrioc->bsg_cmds.mutex);
1210				goto out;
1211			}
1212		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1213			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1214			if (mpi3mr_build_nvme_sgl(mrioc,
1215			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1216			    drv_bufs, bufcnt)) {
1217				rval = -EINVAL;
1218				mutex_unlock(&mrioc->bsg_cmds.mutex);
1219				goto out;
1220			}
1221		} else {
1222			dprint_bsg_err(mrioc,
1223			    "%s:invalid NVMe command format\n", __func__);
1224			rval = -EINVAL;
1225			mutex_unlock(&mrioc->bsg_cmds.mutex);
1226			goto out;
1227		}
1228	} else {
1229		mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size),
1230		    drv_bufs, bufcnt, is_rmcb, is_rmrb,
1231		    (dout_cnt + din_cnt));
1232	}
1233
1234	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1235		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1236		if (tm_req->task_type !=
1237		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1238			dev_handle = tm_req->dev_handle;
1239			block_io = 1;
1240		}
1241	}
1242	if (block_io) {
1243		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1244		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1245			stgt_priv = (struct mpi3mr_stgt_priv_data *)
1246			    tgtdev->starget->hostdata;
1247			atomic_inc(&stgt_priv->block_io);
1248			mpi3mr_tgtdev_put(tgtdev);
1249		}
1250	}
1251
1252	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1253	mrioc->bsg_cmds.is_waiting = 1;
1254	mrioc->bsg_cmds.callback = NULL;
1255	mrioc->bsg_cmds.is_sense = 0;
1256	mrioc->bsg_cmds.sensebuf = sense_buff_k;
1257	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1258	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1259	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1260		dprint_bsg_info(mrioc,
1261		    "%s: posting bsg request to the controller\n", __func__);
1262		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1263		    "bsg_mpi3_req");
1264		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1265			drv_buf_iter = &drv_bufs[0];
1266			dprint_dump(drv_buf_iter->kern_buf,
1267			    drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1268		}
1269	}
1270
1271	init_completion(&mrioc->bsg_cmds.done);
1272	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1273	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1274
1275
1276	if (rval) {
1277		mrioc->bsg_cmds.is_waiting = 0;
1278		dprint_bsg_err(mrioc,
1279		    "%s: posting bsg request is failed\n", __func__);
1280		rval = -EAGAIN;
1281		goto out_unlock;
1282	}
1283	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1284	    (karg->timeout * HZ));
1285	if (block_io && stgt_priv)
1286		atomic_dec(&stgt_priv->block_io);
1287	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1288		mrioc->bsg_cmds.is_waiting = 0;
1289		rval = -EAGAIN;
1290		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1291			goto out_unlock;
1292		dprint_bsg_err(mrioc,
1293		    "%s: bsg request timedout after %d seconds\n", __func__,
1294		    karg->timeout);
1295		if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1296			dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1297			    "bsg_mpi3_req");
1298			if (mpi_header->function ==
1299			    MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1300				drv_buf_iter = &drv_bufs[0];
1301				dprint_dump(drv_buf_iter->kern_buf,
1302				    drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1303			}
1304		}
1305
1306		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1307		    (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1308			mpi3mr_issue_tm(mrioc,
1309			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1310			    mpi_header->function_dependent, 0,
1311			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1312			    &mrioc->host_tm_cmds, &resp_code, NULL);
1313		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1314		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1315			mpi3mr_soft_reset_handler(mrioc,
1316			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1317		goto out_unlock;
1318	}
1319	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1320
1321	if (mrioc->prp_list_virt) {
1322		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1323		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1324		mrioc->prp_list_virt = NULL;
1325	}
1326
1327	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1328	     != MPI3_IOCSTATUS_SUCCESS) {
1329		dprint_bsg_info(mrioc,
1330		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1331		    __func__,
1332		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1333		    mrioc->bsg_cmds.ioc_loginfo);
1334	}
1335
1336	if ((mpirep_offset != 0xFF) &&
1337	    drv_bufs[mpirep_offset].bsg_buf_len) {
1338		drv_buf_iter = &drv_bufs[mpirep_offset];
1339		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 +
1340					   mrioc->reply_sz);
1341		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1342
1343		if (!bsg_reply_buf) {
1344			rval = -ENOMEM;
1345			goto out_unlock;
1346		}
1347		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1348			bsg_reply_buf->mpi_reply_type =
1349				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1350			memcpy(bsg_reply_buf->reply_buf,
1351			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
1352		} else {
1353			bsg_reply_buf->mpi_reply_type =
1354				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1355			status_desc = (struct mpi3_status_reply_descriptor *)
1356			    bsg_reply_buf->reply_buf;
1357			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1358			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1359		}
1360		tmplen = min(drv_buf_iter->kern_buf_len,
1361			drv_buf_iter->bsg_buf_len);
1362		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1363	}
1364
1365	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1366	    mrioc->bsg_cmds.is_sense) {
1367		drv_buf_iter = &drv_bufs[erb_offset];
1368		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1369		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1370	}
1371
1372	drv_buf_iter = drv_bufs;
1373	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1374		if (drv_buf_iter->data_dir == DMA_NONE)
1375			continue;
1376		if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1377			tmplen = min(drv_buf_iter->kern_buf_len,
1378				     drv_buf_iter->bsg_buf_len);
1379			memcpy(drv_buf_iter->bsg_buf,
1380			       drv_buf_iter->kern_buf, tmplen);
1381		}
1382	}
1383
1384out_unlock:
1385	if (din_buf) {
1386		*reply_payload_rcv_len =
1387			sg_copy_from_buffer(job->reply_payload.sg_list,
1388					    job->reply_payload.sg_cnt,
1389					    din_buf, job->reply_payload.payload_len);
1390	}
1391	mrioc->bsg_cmds.is_sense = 0;
1392	mrioc->bsg_cmds.sensebuf = NULL;
1393	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1394	mutex_unlock(&mrioc->bsg_cmds.mutex);
1395out:
1396	kfree(sense_buff_k);
1397	kfree(dout_buf);
1398	kfree(din_buf);
1399	kfree(mpi_req);
1400	if (drv_bufs) {
1401		drv_buf_iter = drv_bufs;
1402		for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1403			if (drv_buf_iter->kern_buf && drv_buf_iter->kern_buf_dma)
1404				dma_free_coherent(&mrioc->pdev->dev,
1405				    drv_buf_iter->kern_buf_len,
1406				    drv_buf_iter->kern_buf,
1407				    drv_buf_iter->kern_buf_dma);
1408		}
1409		kfree(drv_bufs);
1410	}
1411	kfree(bsg_reply_buf);
1412	return rval;
1413}
1414
1415/**
1416 * mpi3mr_app_save_logdata - Save Log Data events
1417 * @mrioc: Adapter instance reference
1418 * @event_data: event data associated with log data event
1419 * @event_data_size: event data size to copy
1420 *
1421 * If log data event caching is enabled by the applicatiobns,
1422 * then this function saves the log data in the circular queue
1423 * and Sends async signal SIGIO to indicate there is an async
1424 * event from the firmware to the event monitoring applications.
1425 *
1426 * Return:Nothing
1427 */
1428void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1429	u16 event_data_size)
1430{
1431	u32 index = mrioc->logdata_buf_idx, sz;
1432	struct mpi3mr_logdata_entry *entry;
1433
1434	if (!(mrioc->logdata_buf))
1435		return;
1436
1437	entry = (struct mpi3mr_logdata_entry *)
1438		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1439	entry->valid_entry = 1;
1440	sz = min(mrioc->logdata_entry_sz, event_data_size);
1441	memcpy(entry->data, event_data, sz);
1442	mrioc->logdata_buf_idx =
1443		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1444	atomic64_inc(&event_counter);
1445}
1446
1447/**
1448 * mpi3mr_bsg_request - bsg request entry point
1449 * @job: BSG job reference
1450 *
1451 * This is driver's entry point for bsg requests
1452 *
1453 * Return: 0 on success and proper error codes on failure
1454 */
1455static int mpi3mr_bsg_request(struct bsg_job *job)
1456{
1457	long rval = -EINVAL;
1458	unsigned int reply_payload_rcv_len = 0;
1459
1460	struct mpi3mr_bsg_packet *bsg_req = job->request;
1461
1462	switch (bsg_req->cmd_type) {
1463	case MPI3MR_DRV_CMD:
1464		rval = mpi3mr_bsg_process_drv_cmds(job);
1465		break;
1466	case MPI3MR_MPT_CMD:
1467		rval = mpi3mr_bsg_process_mpt_cmds(job, &reply_payload_rcv_len);
1468		break;
1469	default:
1470		pr_err("%s: unsupported BSG command(0x%08x)\n",
1471		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1472		break;
1473	}
1474
1475	bsg_job_done(job, rval, reply_payload_rcv_len);
1476
1477	return 0;
1478}
1479
1480/**
1481 * mpi3mr_bsg_exit - de-registration from bsg layer
1482 *
1483 * This will be called during driver unload and all
1484 * bsg resources allocated during load will be freed.
1485 *
1486 * Return:Nothing
1487 */
1488void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1489{
1490	struct device *bsg_dev = &mrioc->bsg_dev;
1491	if (!mrioc->bsg_queue)
1492		return;
1493
1494	bsg_remove_queue(mrioc->bsg_queue);
1495	mrioc->bsg_queue = NULL;
1496
1497	device_del(bsg_dev);
1498	put_device(bsg_dev);
1499}
1500
1501/**
1502 * mpi3mr_bsg_node_release -release bsg device node
1503 * @dev: bsg device node
1504 *
1505 * decrements bsg dev parent reference count
1506 *
1507 * Return:Nothing
1508 */
1509static void mpi3mr_bsg_node_release(struct device *dev)
1510{
1511	put_device(dev->parent);
1512}
1513
1514/**
1515 * mpi3mr_bsg_init -  registration with bsg layer
1516 *
1517 * This will be called during driver load and it will
1518 * register driver with bsg layer
1519 *
1520 * Return:Nothing
1521 */
1522void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1523{
1524	struct device *bsg_dev = &mrioc->bsg_dev;
1525	struct device *parent = &mrioc->shost->shost_gendev;
1526
1527	device_initialize(bsg_dev);
1528
1529	bsg_dev->parent = get_device(parent);
1530	bsg_dev->release = mpi3mr_bsg_node_release;
1531
1532	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1533
1534	if (device_add(bsg_dev)) {
1535		ioc_err(mrioc, "%s: bsg device add failed\n",
1536		    dev_name(bsg_dev));
1537		put_device(bsg_dev);
1538		return;
1539	}
1540
1541	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1542			mpi3mr_bsg_request, NULL, 0);
1543	if (IS_ERR(mrioc->bsg_queue)) {
1544		ioc_err(mrioc, "%s: bsg registration failed\n",
1545		    dev_name(bsg_dev));
1546		device_del(bsg_dev);
1547		put_device(bsg_dev);
1548		return;
1549	}
1550
1551	blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1552	blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1553
1554	return;
1555}
1556
1557/**
1558 * version_fw_show - SysFS callback for firmware version read
1559 * @dev: class device
1560 * @attr: Device attributes
1561 * @buf: Buffer to copy
1562 *
1563 * Return: sysfs_emit() return after copying firmware version
1564 */
1565static ssize_t
1566version_fw_show(struct device *dev, struct device_attribute *attr,
1567	char *buf)
1568{
1569	struct Scsi_Host *shost = class_to_shost(dev);
1570	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1571	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1572
1573	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1574	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1575	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
1576}
1577static DEVICE_ATTR_RO(version_fw);
1578
1579/**
1580 * fw_queue_depth_show - SysFS callback for firmware max cmds
1581 * @dev: class device
1582 * @attr: Device attributes
1583 * @buf: Buffer to copy
1584 *
1585 * Return: sysfs_emit() return after copying firmware max commands
1586 */
1587static ssize_t
1588fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1589			char *buf)
1590{
1591	struct Scsi_Host *shost = class_to_shost(dev);
1592	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1593
1594	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1595}
1596static DEVICE_ATTR_RO(fw_queue_depth);
1597
1598/**
1599 * op_req_q_count_show - SysFS callback for request queue count
1600 * @dev: class device
1601 * @attr: Device attributes
1602 * @buf: Buffer to copy
1603 *
1604 * Return: sysfs_emit() return after copying request queue count
1605 */
1606static ssize_t
1607op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1608			char *buf)
1609{
1610	struct Scsi_Host *shost = class_to_shost(dev);
1611	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1612
1613	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1614}
1615static DEVICE_ATTR_RO(op_req_q_count);
1616
1617/**
1618 * reply_queue_count_show - SysFS callback for reply queue count
1619 * @dev: class device
1620 * @attr: Device attributes
1621 * @buf: Buffer to copy
1622 *
1623 * Return: sysfs_emit() return after copying reply queue count
1624 */
1625static ssize_t
1626reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1627			char *buf)
1628{
1629	struct Scsi_Host *shost = class_to_shost(dev);
1630	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1631
1632	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1633}
1634
1635static DEVICE_ATTR_RO(reply_queue_count);
1636
1637/**
1638 * logging_level_show - Show controller debug level
1639 * @dev: class device
1640 * @attr: Device attributes
1641 * @buf: Buffer to copy
1642 *
1643 * A sysfs 'read/write' shost attribute, to show the current
1644 * debug log level used by the driver for the specific
1645 * controller.
1646 *
1647 * Return: sysfs_emit() return
1648 */
1649static ssize_t
1650logging_level_show(struct device *dev,
1651	struct device_attribute *attr, char *buf)
1652
1653{
1654	struct Scsi_Host *shost = class_to_shost(dev);
1655	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1656
1657	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1658}
1659
1660/**
1661 * logging_level_store- Change controller debug level
1662 * @dev: class device
1663 * @attr: Device attributes
1664 * @buf: Buffer to copy
1665 * @count: size of the buffer
1666 *
1667 * A sysfs 'read/write' shost attribute, to change the current
1668 * debug log level used by the driver for the specific
1669 * controller.
1670 *
1671 * Return: strlen() return
1672 */
1673static ssize_t
1674logging_level_store(struct device *dev,
1675	struct device_attribute *attr,
1676	const char *buf, size_t count)
1677{
1678	struct Scsi_Host *shost = class_to_shost(dev);
1679	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1680	int val = 0;
1681
1682	if (kstrtoint(buf, 0, &val) != 0)
1683		return -EINVAL;
1684
1685	mrioc->logging_level = val;
1686	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
1687	return strlen(buf);
1688}
1689static DEVICE_ATTR_RW(logging_level);
1690
1691/**
1692 * adp_state_show() - SysFS callback for adapter state show
1693 * @dev: class device
1694 * @attr: Device attributes
1695 * @buf: Buffer to copy
1696 *
1697 * Return: sysfs_emit() return after copying adapter state
1698 */
1699static ssize_t
1700adp_state_show(struct device *dev, struct device_attribute *attr,
1701	char *buf)
1702{
1703	struct Scsi_Host *shost = class_to_shost(dev);
1704	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1705	enum mpi3mr_iocstate ioc_state;
1706	uint8_t adp_state;
1707
1708	ioc_state = mpi3mr_get_iocstate(mrioc);
1709	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1710		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1711	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1712		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1713	else if (ioc_state == MRIOC_STATE_FAULT)
1714		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1715	else
1716		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1717
1718	return sysfs_emit(buf, "%u\n", adp_state);
1719}
1720
1721static DEVICE_ATTR_RO(adp_state);
1722
1723static struct attribute *mpi3mr_host_attrs[] = {
1724	&dev_attr_version_fw.attr,
1725	&dev_attr_fw_queue_depth.attr,
1726	&dev_attr_op_req_q_count.attr,
1727	&dev_attr_reply_queue_count.attr,
1728	&dev_attr_logging_level.attr,
1729	&dev_attr_adp_state.attr,
1730	NULL,
1731};
1732
1733static const struct attribute_group mpi3mr_host_attr_group = {
1734	.attrs = mpi3mr_host_attrs
1735};
1736
1737const struct attribute_group *mpi3mr_host_groups[] = {
1738	&mpi3mr_host_attr_group,
1739	NULL,
1740};
1741
1742
1743/*
1744 * SCSI Device attributes under sysfs
1745 */
1746
1747/**
1748 * sas_address_show - SysFS callback for dev SASaddress display
1749 * @dev: class device
1750 * @attr: Device attributes
1751 * @buf: Buffer to copy
1752 *
1753 * Return: sysfs_emit() return after copying SAS address of the
1754 * specific SAS/SATA end device.
1755 */
1756static ssize_t
1757sas_address_show(struct device *dev, struct device_attribute *attr,
1758			char *buf)
1759{
1760	struct scsi_device *sdev = to_scsi_device(dev);
1761	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1762	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1763	struct mpi3mr_tgt_dev *tgtdev;
1764
1765	sdev_priv_data = sdev->hostdata;
1766	if (!sdev_priv_data)
1767		return 0;
1768
1769	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1770	if (!tgt_priv_data)
1771		return 0;
1772	tgtdev = tgt_priv_data->tgt_dev;
1773	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
1774		return 0;
1775	return sysfs_emit(buf, "0x%016llx\n",
1776	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
1777}
1778
1779static DEVICE_ATTR_RO(sas_address);
1780
1781/**
1782 * device_handle_show - SysFS callback for device handle display
1783 * @dev: class device
1784 * @attr: Device attributes
1785 * @buf: Buffer to copy
1786 *
1787 * Return: sysfs_emit() return after copying firmware internal
1788 * device handle of the specific device.
1789 */
1790static ssize_t
1791device_handle_show(struct device *dev, struct device_attribute *attr,
1792			char *buf)
1793{
1794	struct scsi_device *sdev = to_scsi_device(dev);
1795	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1796	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1797	struct mpi3mr_tgt_dev *tgtdev;
1798
1799	sdev_priv_data = sdev->hostdata;
1800	if (!sdev_priv_data)
1801		return 0;
1802
1803	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1804	if (!tgt_priv_data)
1805		return 0;
1806	tgtdev = tgt_priv_data->tgt_dev;
1807	if (!tgtdev)
1808		return 0;
1809	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
1810}
1811
1812static DEVICE_ATTR_RO(device_handle);
1813
1814/**
1815 * persistent_id_show - SysFS callback for persisten ID display
1816 * @dev: class device
1817 * @attr: Device attributes
1818 * @buf: Buffer to copy
1819 *
1820 * Return: sysfs_emit() return after copying persistent ID of the
1821 * of the specific device.
1822 */
1823static ssize_t
1824persistent_id_show(struct device *dev, struct device_attribute *attr,
1825			char *buf)
1826{
1827	struct scsi_device *sdev = to_scsi_device(dev);
1828	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1829	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1830	struct mpi3mr_tgt_dev *tgtdev;
1831
1832	sdev_priv_data = sdev->hostdata;
1833	if (!sdev_priv_data)
1834		return 0;
1835
1836	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1837	if (!tgt_priv_data)
1838		return 0;
1839	tgtdev = tgt_priv_data->tgt_dev;
1840	if (!tgtdev)
1841		return 0;
1842	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
1843}
1844static DEVICE_ATTR_RO(persistent_id);
1845
1846static struct attribute *mpi3mr_dev_attrs[] = {
1847	&dev_attr_sas_address.attr,
1848	&dev_attr_device_handle.attr,
1849	&dev_attr_persistent_id.attr,
1850	NULL,
1851};
1852
1853static const struct attribute_group mpi3mr_dev_attr_group = {
1854	.attrs = mpi3mr_dev_attrs
1855};
1856
1857const struct attribute_group *mpi3mr_dev_groups[] = {
1858	&mpi3mr_dev_attr_group,
1859	NULL,
1860};