Loading...
1/*
2 * linux/drivers/mmc/core/mmc_ops.h
3 *
4 * Copyright 2006-2007 Pierre Ossman
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
10 */
11
12#include <linux/slab.h>
13#include <linux/types.h>
14#include <linux/scatterlist.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19
20#include "core.h"
21#include "mmc_ops.h"
22
23static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
24{
25 int err;
26 struct mmc_command cmd = {0};
27
28 BUG_ON(!host);
29
30 cmd.opcode = MMC_SELECT_CARD;
31
32 if (card) {
33 cmd.arg = card->rca << 16;
34 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
35 } else {
36 cmd.arg = 0;
37 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
38 }
39
40 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
41 if (err)
42 return err;
43
44 return 0;
45}
46
47int mmc_select_card(struct mmc_card *card)
48{
49 BUG_ON(!card);
50
51 return _mmc_select_card(card->host, card);
52}
53
54int mmc_deselect_cards(struct mmc_host *host)
55{
56 return _mmc_select_card(host, NULL);
57}
58
59int mmc_card_sleepawake(struct mmc_host *host, int sleep)
60{
61 struct mmc_command cmd = {0};
62 struct mmc_card *card = host->card;
63 int err;
64
65 if (sleep)
66 mmc_deselect_cards(host);
67
68 cmd.opcode = MMC_SLEEP_AWAKE;
69 cmd.arg = card->rca << 16;
70 if (sleep)
71 cmd.arg |= 1 << 15;
72
73 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
74 err = mmc_wait_for_cmd(host, &cmd, 0);
75 if (err)
76 return err;
77
78 /*
79 * If the host does not wait while the card signals busy, then we will
80 * will have to wait the sleep/awake timeout. Note, we cannot use the
81 * SEND_STATUS command to poll the status because that command (and most
82 * others) is invalid while the card sleeps.
83 */
84 if (!(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
85 mmc_delay(DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000));
86
87 if (!sleep)
88 err = mmc_select_card(card);
89
90 return err;
91}
92
93int mmc_go_idle(struct mmc_host *host)
94{
95 int err;
96 struct mmc_command cmd = {0};
97
98 /*
99 * Non-SPI hosts need to prevent chipselect going active during
100 * GO_IDLE; that would put chips into SPI mode. Remind them of
101 * that in case of hardware that won't pull up DAT3/nCS otherwise.
102 *
103 * SPI hosts ignore ios.chip_select; it's managed according to
104 * rules that must accommodate non-MMC slaves which this layer
105 * won't even know about.
106 */
107 if (!mmc_host_is_spi(host)) {
108 mmc_set_chip_select(host, MMC_CS_HIGH);
109 mmc_delay(1);
110 }
111
112 cmd.opcode = MMC_GO_IDLE_STATE;
113 cmd.arg = 0;
114 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
115
116 err = mmc_wait_for_cmd(host, &cmd, 0);
117
118 mmc_delay(1);
119
120 if (!mmc_host_is_spi(host)) {
121 mmc_set_chip_select(host, MMC_CS_DONTCARE);
122 mmc_delay(1);
123 }
124
125 host->use_spi_crc = 0;
126
127 return err;
128}
129
130int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
131{
132 struct mmc_command cmd = {0};
133 int i, err = 0;
134
135 BUG_ON(!host);
136
137 cmd.opcode = MMC_SEND_OP_COND;
138 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
139 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
140
141 for (i = 100; i; i--) {
142 err = mmc_wait_for_cmd(host, &cmd, 0);
143 if (err)
144 break;
145
146 /* if we're just probing, do a single pass */
147 if (ocr == 0)
148 break;
149
150 /* otherwise wait until reset completes */
151 if (mmc_host_is_spi(host)) {
152 if (!(cmd.resp[0] & R1_SPI_IDLE))
153 break;
154 } else {
155 if (cmd.resp[0] & MMC_CARD_BUSY)
156 break;
157 }
158
159 err = -ETIMEDOUT;
160
161 mmc_delay(10);
162 }
163
164 if (rocr && !mmc_host_is_spi(host))
165 *rocr = cmd.resp[0];
166
167 return err;
168}
169
170int mmc_all_send_cid(struct mmc_host *host, u32 *cid)
171{
172 int err;
173 struct mmc_command cmd = {0};
174
175 BUG_ON(!host);
176 BUG_ON(!cid);
177
178 cmd.opcode = MMC_ALL_SEND_CID;
179 cmd.arg = 0;
180 cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
181
182 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
183 if (err)
184 return err;
185
186 memcpy(cid, cmd.resp, sizeof(u32) * 4);
187
188 return 0;
189}
190
191int mmc_set_relative_addr(struct mmc_card *card)
192{
193 int err;
194 struct mmc_command cmd = {0};
195
196 BUG_ON(!card);
197 BUG_ON(!card->host);
198
199 cmd.opcode = MMC_SET_RELATIVE_ADDR;
200 cmd.arg = card->rca << 16;
201 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
202
203 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
204 if (err)
205 return err;
206
207 return 0;
208}
209
210static int
211mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
212{
213 int err;
214 struct mmc_command cmd = {0};
215
216 BUG_ON(!host);
217 BUG_ON(!cxd);
218
219 cmd.opcode = opcode;
220 cmd.arg = arg;
221 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
222
223 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
224 if (err)
225 return err;
226
227 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
228
229 return 0;
230}
231
232static int
233mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
234 u32 opcode, void *buf, unsigned len)
235{
236 struct mmc_request mrq = {0};
237 struct mmc_command cmd = {0};
238 struct mmc_data data = {0};
239 struct scatterlist sg;
240 void *data_buf;
241
242 /* dma onto stack is unsafe/nonportable, but callers to this
243 * routine normally provide temporary on-stack buffers ...
244 */
245 data_buf = kmalloc(len, GFP_KERNEL);
246 if (data_buf == NULL)
247 return -ENOMEM;
248
249 mrq.cmd = &cmd;
250 mrq.data = &data;
251
252 cmd.opcode = opcode;
253 cmd.arg = 0;
254
255 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
256 * rely on callers to never use this with "native" calls for reading
257 * CSD or CID. Native versions of those commands use the R2 type,
258 * not R1 plus a data block.
259 */
260 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
261
262 data.blksz = len;
263 data.blocks = 1;
264 data.flags = MMC_DATA_READ;
265 data.sg = &sg;
266 data.sg_len = 1;
267
268 sg_init_one(&sg, data_buf, len);
269
270 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
271 /*
272 * The spec states that CSR and CID accesses have a timeout
273 * of 64 clock cycles.
274 */
275 data.timeout_ns = 0;
276 data.timeout_clks = 64;
277 } else
278 mmc_set_data_timeout(&data, card);
279
280 mmc_wait_for_req(host, &mrq);
281
282 memcpy(buf, data_buf, len);
283 kfree(data_buf);
284
285 if (cmd.error)
286 return cmd.error;
287 if (data.error)
288 return data.error;
289
290 return 0;
291}
292
293int mmc_send_csd(struct mmc_card *card, u32 *csd)
294{
295 int ret, i;
296
297 if (!mmc_host_is_spi(card->host))
298 return mmc_send_cxd_native(card->host, card->rca << 16,
299 csd, MMC_SEND_CSD);
300
301 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd, 16);
302 if (ret)
303 return ret;
304
305 for (i = 0;i < 4;i++)
306 csd[i] = be32_to_cpu(csd[i]);
307
308 return 0;
309}
310
311int mmc_send_cid(struct mmc_host *host, u32 *cid)
312{
313 int ret, i;
314
315 if (!mmc_host_is_spi(host)) {
316 if (!host->card)
317 return -EINVAL;
318 return mmc_send_cxd_native(host, host->card->rca << 16,
319 cid, MMC_SEND_CID);
320 }
321
322 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid, 16);
323 if (ret)
324 return ret;
325
326 for (i = 0;i < 4;i++)
327 cid[i] = be32_to_cpu(cid[i]);
328
329 return 0;
330}
331
332int mmc_send_ext_csd(struct mmc_card *card, u8 *ext_csd)
333{
334 return mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD,
335 ext_csd, 512);
336}
337
338int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
339{
340 struct mmc_command cmd = {0};
341 int err;
342
343 cmd.opcode = MMC_SPI_READ_OCR;
344 cmd.arg = highcap ? (1 << 30) : 0;
345 cmd.flags = MMC_RSP_SPI_R3;
346
347 err = mmc_wait_for_cmd(host, &cmd, 0);
348
349 *ocrp = cmd.resp[1];
350 return err;
351}
352
353int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
354{
355 struct mmc_command cmd = {0};
356 int err;
357
358 cmd.opcode = MMC_SPI_CRC_ON_OFF;
359 cmd.flags = MMC_RSP_SPI_R1;
360 cmd.arg = use_crc;
361
362 err = mmc_wait_for_cmd(host, &cmd, 0);
363 if (!err)
364 host->use_spi_crc = use_crc;
365 return err;
366}
367
368/**
369 * mmc_switch - modify EXT_CSD register
370 * @card: the MMC card associated with the data transfer
371 * @set: cmd set values
372 * @index: EXT_CSD register index
373 * @value: value to program into EXT_CSD register
374 * @timeout_ms: timeout (ms) for operation performed by register write,
375 * timeout of zero implies maximum possible timeout
376 *
377 * Modifies the EXT_CSD register for selected card.
378 */
379int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
380 unsigned int timeout_ms)
381{
382 int err;
383 struct mmc_command cmd = {0};
384 u32 status;
385
386 BUG_ON(!card);
387 BUG_ON(!card->host);
388
389 cmd.opcode = MMC_SWITCH;
390 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
391 (index << 16) |
392 (value << 8) |
393 set;
394 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
395 cmd.cmd_timeout_ms = timeout_ms;
396
397 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
398 if (err)
399 return err;
400
401 /* Must check status to be sure of no errors */
402 do {
403 err = mmc_send_status(card, &status);
404 if (err)
405 return err;
406 if (card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
407 break;
408 if (mmc_host_is_spi(card->host))
409 break;
410 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
411
412 if (mmc_host_is_spi(card->host)) {
413 if (status & R1_SPI_ILLEGAL_COMMAND)
414 return -EBADMSG;
415 } else {
416 if (status & 0xFDFFA000)
417 printk(KERN_WARNING "%s: unexpected status %#x after "
418 "switch", mmc_hostname(card->host), status);
419 if (status & R1_SWITCH_ERROR)
420 return -EBADMSG;
421 }
422
423 return 0;
424}
425EXPORT_SYMBOL_GPL(mmc_switch);
426
427int mmc_send_status(struct mmc_card *card, u32 *status)
428{
429 int err;
430 struct mmc_command cmd = {0};
431
432 BUG_ON(!card);
433 BUG_ON(!card->host);
434
435 cmd.opcode = MMC_SEND_STATUS;
436 if (!mmc_host_is_spi(card->host))
437 cmd.arg = card->rca << 16;
438 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
439
440 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
441 if (err)
442 return err;
443
444 /* NOTE: callers are required to understand the difference
445 * between "native" and SPI format status words!
446 */
447 if (status)
448 *status = cmd.resp[0];
449
450 return 0;
451}
452
453static int
454mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
455 u8 len)
456{
457 struct mmc_request mrq = {0};
458 struct mmc_command cmd = {0};
459 struct mmc_data data = {0};
460 struct scatterlist sg;
461 u8 *data_buf;
462 u8 *test_buf;
463 int i, err;
464 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
465 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
466
467 /* dma onto stack is unsafe/nonportable, but callers to this
468 * routine normally provide temporary on-stack buffers ...
469 */
470 data_buf = kmalloc(len, GFP_KERNEL);
471 if (!data_buf)
472 return -ENOMEM;
473
474 if (len == 8)
475 test_buf = testdata_8bit;
476 else if (len == 4)
477 test_buf = testdata_4bit;
478 else {
479 printk(KERN_ERR "%s: Invalid bus_width %d\n",
480 mmc_hostname(host), len);
481 kfree(data_buf);
482 return -EINVAL;
483 }
484
485 if (opcode == MMC_BUS_TEST_W)
486 memcpy(data_buf, test_buf, len);
487
488 mrq.cmd = &cmd;
489 mrq.data = &data;
490 cmd.opcode = opcode;
491 cmd.arg = 0;
492
493 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
494 * rely on callers to never use this with "native" calls for reading
495 * CSD or CID. Native versions of those commands use the R2 type,
496 * not R1 plus a data block.
497 */
498 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
499
500 data.blksz = len;
501 data.blocks = 1;
502 if (opcode == MMC_BUS_TEST_R)
503 data.flags = MMC_DATA_READ;
504 else
505 data.flags = MMC_DATA_WRITE;
506
507 data.sg = &sg;
508 data.sg_len = 1;
509 sg_init_one(&sg, data_buf, len);
510 mmc_wait_for_req(host, &mrq);
511 err = 0;
512 if (opcode == MMC_BUS_TEST_R) {
513 for (i = 0; i < len / 4; i++)
514 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
515 err = -EIO;
516 break;
517 }
518 }
519 kfree(data_buf);
520
521 if (cmd.error)
522 return cmd.error;
523 if (data.error)
524 return data.error;
525
526 return err;
527}
528
529int mmc_bus_test(struct mmc_card *card, u8 bus_width)
530{
531 int err, width;
532
533 if (bus_width == MMC_BUS_WIDTH_8)
534 width = 8;
535 else if (bus_width == MMC_BUS_WIDTH_4)
536 width = 4;
537 else if (bus_width == MMC_BUS_WIDTH_1)
538 return 0; /* no need for test */
539 else
540 return -EINVAL;
541
542 /*
543 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
544 * is a problem. This improves chances that the test will work.
545 */
546 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
547 err = mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
548 return err;
549}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/types.h>
11#include <linux/scatterlist.h>
12
13#include <linux/mmc/host.h>
14#include <linux/mmc/card.h>
15#include <linux/mmc/mmc.h>
16
17#include "core.h"
18#include "card.h"
19#include "host.h"
20#include "mmc_ops.h"
21
22#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24#define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */
25#define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */
26
27static const u8 tuning_blk_pattern_4bit[] = {
28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36};
37
38static const u8 tuning_blk_pattern_8bit[] = {
39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55};
56
57struct mmc_busy_data {
58 struct mmc_card *card;
59 bool retry_crc_err;
60 enum mmc_busy_cmd busy_cmd;
61};
62
63struct mmc_op_cond_busy_data {
64 struct mmc_host *host;
65 u32 ocr;
66 struct mmc_command *cmd;
67};
68
69int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70{
71 int err;
72 struct mmc_command cmd = {};
73
74 cmd.opcode = MMC_SEND_STATUS;
75 if (!mmc_host_is_spi(card->host))
76 cmd.arg = card->rca << 16;
77 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78
79 err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 if (err)
81 return err;
82
83 /* NOTE: callers are required to understand the difference
84 * between "native" and SPI format status words!
85 */
86 if (status)
87 *status = cmd.resp[0];
88
89 return 0;
90}
91EXPORT_SYMBOL_GPL(__mmc_send_status);
92
93int mmc_send_status(struct mmc_card *card, u32 *status)
94{
95 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96}
97EXPORT_SYMBOL_GPL(mmc_send_status);
98
99static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100{
101 struct mmc_command cmd = {};
102
103 cmd.opcode = MMC_SELECT_CARD;
104
105 if (card) {
106 cmd.arg = card->rca << 16;
107 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 } else {
109 cmd.arg = 0;
110 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 }
112
113 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114}
115
116int mmc_select_card(struct mmc_card *card)
117{
118
119 return _mmc_select_card(card->host, card);
120}
121
122int mmc_deselect_cards(struct mmc_host *host)
123{
124 return _mmc_select_card(host, NULL);
125}
126
127/*
128 * Write the value specified in the device tree or board code into the optional
129 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130 * drive strength of the DAT and CMD outputs. The actual meaning of a given
131 * value is hardware dependant.
132 * The presence of the DSR register can be determined from the CSD register,
133 * bit 76.
134 */
135int mmc_set_dsr(struct mmc_host *host)
136{
137 struct mmc_command cmd = {};
138
139 cmd.opcode = MMC_SET_DSR;
140
141 cmd.arg = (host->dsr << 16) | 0xffff;
142 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143
144 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
145}
146
147int __mmc_go_idle(struct mmc_host *host)
148{
149 struct mmc_command cmd = {};
150 int err;
151
152 cmd.opcode = MMC_GO_IDLE_STATE;
153 cmd.arg = 0;
154 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
155
156 err = mmc_wait_for_cmd(host, &cmd, 0);
157 mmc_delay(1);
158
159 return err;
160}
161
162int mmc_go_idle(struct mmc_host *host)
163{
164 int err;
165
166 /*
167 * Non-SPI hosts need to prevent chipselect going active during
168 * GO_IDLE; that would put chips into SPI mode. Remind them of
169 * that in case of hardware that won't pull up DAT3/nCS otherwise.
170 *
171 * SPI hosts ignore ios.chip_select; it's managed according to
172 * rules that must accommodate non-MMC slaves which this layer
173 * won't even know about.
174 */
175 if (!mmc_host_is_spi(host)) {
176 mmc_set_chip_select(host, MMC_CS_HIGH);
177 mmc_delay(1);
178 }
179
180 err = __mmc_go_idle(host);
181
182 if (!mmc_host_is_spi(host)) {
183 mmc_set_chip_select(host, MMC_CS_DONTCARE);
184 mmc_delay(1);
185 }
186
187 host->use_spi_crc = 0;
188
189 return err;
190}
191
192static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
193{
194 struct mmc_op_cond_busy_data *data = cb_data;
195 struct mmc_host *host = data->host;
196 struct mmc_command *cmd = data->cmd;
197 u32 ocr = data->ocr;
198 int err = 0;
199
200 err = mmc_wait_for_cmd(host, cmd, 0);
201 if (err)
202 return err;
203
204 if (mmc_host_is_spi(host)) {
205 if (!(cmd->resp[0] & R1_SPI_IDLE)) {
206 *busy = false;
207 return 0;
208 }
209 } else {
210 if (cmd->resp[0] & MMC_CARD_BUSY) {
211 *busy = false;
212 return 0;
213 }
214 }
215
216 *busy = true;
217
218 /*
219 * According to eMMC specification v5.1 section 6.4.3, we
220 * should issue CMD1 repeatedly in the idle state until
221 * the eMMC is ready. Otherwise some eMMC devices seem to enter
222 * the inactive mode after mmc_init_card() issued CMD0 when
223 * the eMMC device is busy.
224 */
225 if (!ocr && !mmc_host_is_spi(host))
226 cmd->arg = cmd->resp[0] | BIT(30);
227
228 return 0;
229}
230
231int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
232{
233 struct mmc_command cmd = {};
234 int err = 0;
235 struct mmc_op_cond_busy_data cb_data = {
236 .host = host,
237 .ocr = ocr,
238 .cmd = &cmd
239 };
240
241 cmd.opcode = MMC_SEND_OP_COND;
242 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
243 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
244
245 err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
246 MMC_OP_COND_TIMEOUT_MS,
247 &__mmc_send_op_cond_cb, &cb_data);
248 if (err)
249 return err;
250
251 if (rocr && !mmc_host_is_spi(host))
252 *rocr = cmd.resp[0];
253
254 return err;
255}
256
257int mmc_set_relative_addr(struct mmc_card *card)
258{
259 struct mmc_command cmd = {};
260
261 cmd.opcode = MMC_SET_RELATIVE_ADDR;
262 cmd.arg = card->rca << 16;
263 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
264
265 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
266}
267
268static int
269mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
270{
271 int err;
272 struct mmc_command cmd = {};
273
274 cmd.opcode = opcode;
275 cmd.arg = arg;
276 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
277
278 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
279 if (err)
280 return err;
281
282 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
283
284 return 0;
285}
286
287/*
288 * NOTE: void *buf, caller for the buf is required to use DMA-capable
289 * buffer or on-stack buffer (with some overhead in callee).
290 */
291int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
292 u32 args, void *buf, unsigned len)
293{
294 struct mmc_request mrq = {};
295 struct mmc_command cmd = {};
296 struct mmc_data data = {};
297 struct scatterlist sg;
298
299 mrq.cmd = &cmd;
300 mrq.data = &data;
301
302 cmd.opcode = opcode;
303 cmd.arg = args;
304
305 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
306 * rely on callers to never use this with "native" calls for reading
307 * CSD or CID. Native versions of those commands use the R2 type,
308 * not R1 plus a data block.
309 */
310 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
311
312 data.blksz = len;
313 data.blocks = 1;
314 data.flags = MMC_DATA_READ;
315 data.sg = &sg;
316 data.sg_len = 1;
317
318 sg_init_one(&sg, buf, len);
319
320 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
321 /*
322 * The spec states that CSR and CID accesses have a timeout
323 * of 64 clock cycles.
324 */
325 data.timeout_ns = 0;
326 data.timeout_clks = 64;
327 } else
328 mmc_set_data_timeout(&data, card);
329
330 mmc_wait_for_req(host, &mrq);
331
332 if (cmd.error)
333 return cmd.error;
334 if (data.error)
335 return data.error;
336
337 return 0;
338}
339
340static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
341{
342 int ret, i;
343 __be32 *cxd_tmp;
344
345 cxd_tmp = kzalloc(16, GFP_KERNEL);
346 if (!cxd_tmp)
347 return -ENOMEM;
348
349 ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
350 if (ret)
351 goto err;
352
353 for (i = 0; i < 4; i++)
354 cxd[i] = be32_to_cpu(cxd_tmp[i]);
355
356err:
357 kfree(cxd_tmp);
358 return ret;
359}
360
361int mmc_send_csd(struct mmc_card *card, u32 *csd)
362{
363 if (mmc_host_is_spi(card->host))
364 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
365
366 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
367 MMC_SEND_CSD);
368}
369
370int mmc_send_cid(struct mmc_host *host, u32 *cid)
371{
372 if (mmc_host_is_spi(host))
373 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
374
375 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
376}
377
378int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
379{
380 int err;
381 u8 *ext_csd;
382
383 if (!card || !new_ext_csd)
384 return -EINVAL;
385
386 if (!mmc_can_ext_csd(card))
387 return -EOPNOTSUPP;
388
389 /*
390 * As the ext_csd is so large and mostly unused, we don't store the
391 * raw block in mmc_card.
392 */
393 ext_csd = kzalloc(512, GFP_KERNEL);
394 if (!ext_csd)
395 return -ENOMEM;
396
397 err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
398 512);
399 if (err)
400 kfree(ext_csd);
401 else
402 *new_ext_csd = ext_csd;
403
404 return err;
405}
406EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
407
408int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
409{
410 struct mmc_command cmd = {};
411 int err;
412
413 cmd.opcode = MMC_SPI_READ_OCR;
414 cmd.arg = highcap ? (1 << 30) : 0;
415 cmd.flags = MMC_RSP_SPI_R3;
416
417 err = mmc_wait_for_cmd(host, &cmd, 0);
418
419 *ocrp = cmd.resp[1];
420 return err;
421}
422
423int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
424{
425 struct mmc_command cmd = {};
426 int err;
427
428 cmd.opcode = MMC_SPI_CRC_ON_OFF;
429 cmd.flags = MMC_RSP_SPI_R1;
430 cmd.arg = use_crc;
431
432 err = mmc_wait_for_cmd(host, &cmd, 0);
433 if (!err)
434 host->use_spi_crc = use_crc;
435 return err;
436}
437
438static int mmc_switch_status_error(struct mmc_host *host, u32 status)
439{
440 if (mmc_host_is_spi(host)) {
441 if (status & R1_SPI_ILLEGAL_COMMAND)
442 return -EBADMSG;
443 } else {
444 if (R1_STATUS(status))
445 pr_warn("%s: unexpected status %#x after switch\n",
446 mmc_hostname(host), status);
447 if (status & R1_SWITCH_ERROR)
448 return -EBADMSG;
449 }
450 return 0;
451}
452
453/* Caller must hold re-tuning */
454int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
455{
456 u32 status;
457 int err;
458
459 err = mmc_send_status(card, &status);
460 if (!crc_err_fatal && err == -EILSEQ)
461 return 0;
462 if (err)
463 return err;
464
465 return mmc_switch_status_error(card->host, status);
466}
467
468static int mmc_busy_cb(void *cb_data, bool *busy)
469{
470 struct mmc_busy_data *data = cb_data;
471 struct mmc_host *host = data->card->host;
472 u32 status = 0;
473 int err;
474
475 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
476 *busy = host->ops->card_busy(host);
477 return 0;
478 }
479
480 err = mmc_send_status(data->card, &status);
481 if (data->retry_crc_err && err == -EILSEQ) {
482 *busy = true;
483 return 0;
484 }
485 if (err)
486 return err;
487
488 switch (data->busy_cmd) {
489 case MMC_BUSY_CMD6:
490 err = mmc_switch_status_error(host, status);
491 break;
492 case MMC_BUSY_ERASE:
493 err = R1_STATUS(status) ? -EIO : 0;
494 break;
495 case MMC_BUSY_HPI:
496 case MMC_BUSY_EXTR_SINGLE:
497 case MMC_BUSY_IO:
498 break;
499 default:
500 err = -EINVAL;
501 }
502
503 if (err)
504 return err;
505
506 *busy = !mmc_ready_for_data(status);
507 return 0;
508}
509
510int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
511 unsigned int timeout_ms,
512 int (*busy_cb)(void *cb_data, bool *busy),
513 void *cb_data)
514{
515 int err;
516 unsigned long timeout;
517 unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
518 bool expired = false;
519 bool busy = false;
520
521 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
522 do {
523 /*
524 * Due to the possibility of being preempted while polling,
525 * check the expiration time first.
526 */
527 expired = time_after(jiffies, timeout);
528
529 err = (*busy_cb)(cb_data, &busy);
530 if (err)
531 return err;
532
533 /* Timeout if the device still remains busy. */
534 if (expired && busy) {
535 pr_err("%s: Card stuck being busy! %s\n",
536 mmc_hostname(host), __func__);
537 return -ETIMEDOUT;
538 }
539
540 /* Throttle the polling rate to avoid hogging the CPU. */
541 if (busy) {
542 usleep_range(udelay, udelay * 2);
543 if (udelay < udelay_max)
544 udelay *= 2;
545 }
546 } while (busy);
547
548 return 0;
549}
550EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
551
552int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
553 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
554{
555 struct mmc_host *host = card->host;
556 struct mmc_busy_data cb_data;
557
558 cb_data.card = card;
559 cb_data.retry_crc_err = retry_crc_err;
560 cb_data.busy_cmd = busy_cmd;
561
562 return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
563}
564EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
565
566bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
567 unsigned int timeout_ms)
568{
569 /*
570 * If the max_busy_timeout of the host is specified, make sure it's
571 * enough to fit the used timeout_ms. In case it's not, let's instruct
572 * the host to avoid HW busy detection, by converting to a R1 response
573 * instead of a R1B. Note, some hosts requires R1B, which also means
574 * they are on their own when it comes to deal with the busy timeout.
575 */
576 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
577 (timeout_ms > host->max_busy_timeout)) {
578 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
579 return false;
580 }
581
582 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
583 cmd->busy_timeout = timeout_ms;
584 return true;
585}
586EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
587
588/**
589 * __mmc_switch - modify EXT_CSD register
590 * @card: the MMC card associated with the data transfer
591 * @set: cmd set values
592 * @index: EXT_CSD register index
593 * @value: value to program into EXT_CSD register
594 * @timeout_ms: timeout (ms) for operation performed by register write,
595 * timeout of zero implies maximum possible timeout
596 * @timing: new timing to change to
597 * @send_status: send status cmd to poll for busy
598 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
599 * @retries: number of retries
600 *
601 * Modifies the EXT_CSD register for selected card.
602 */
603int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
604 unsigned int timeout_ms, unsigned char timing,
605 bool send_status, bool retry_crc_err, unsigned int retries)
606{
607 struct mmc_host *host = card->host;
608 int err;
609 struct mmc_command cmd = {};
610 bool use_r1b_resp;
611 unsigned char old_timing = host->ios.timing;
612
613 mmc_retune_hold(host);
614
615 if (!timeout_ms) {
616 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
617 mmc_hostname(host));
618 timeout_ms = card->ext_csd.generic_cmd6_time;
619 }
620
621 cmd.opcode = MMC_SWITCH;
622 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
623 (index << 16) |
624 (value << 8) |
625 set;
626 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
627
628 err = mmc_wait_for_cmd(host, &cmd, retries);
629 if (err)
630 goto out;
631
632 /*If SPI or used HW busy detection above, then we don't need to poll. */
633 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
634 mmc_host_is_spi(host))
635 goto out_tim;
636
637 /*
638 * If the host doesn't support HW polling via the ->card_busy() ops and
639 * when it's not allowed to poll by using CMD13, then we need to rely on
640 * waiting the stated timeout to be sufficient.
641 */
642 if (!send_status && !host->ops->card_busy) {
643 mmc_delay(timeout_ms);
644 goto out_tim;
645 }
646
647 /* Let's try to poll to find out when the command is completed. */
648 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
649 if (err)
650 goto out;
651
652out_tim:
653 /* Switch to new timing before check switch status. */
654 if (timing)
655 mmc_set_timing(host, timing);
656
657 if (send_status) {
658 err = mmc_switch_status(card, true);
659 if (err && timing)
660 mmc_set_timing(host, old_timing);
661 }
662out:
663 mmc_retune_release(host);
664
665 return err;
666}
667
668int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
669 unsigned int timeout_ms)
670{
671 return __mmc_switch(card, set, index, value, timeout_ms, 0,
672 true, false, MMC_CMD_RETRIES);
673}
674EXPORT_SYMBOL_GPL(mmc_switch);
675
676int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
677{
678 struct mmc_request mrq = {};
679 struct mmc_command cmd = {};
680 struct mmc_data data = {};
681 struct scatterlist sg;
682 struct mmc_ios *ios = &host->ios;
683 const u8 *tuning_block_pattern;
684 int size, err = 0;
685 u8 *data_buf;
686
687 if (ios->bus_width == MMC_BUS_WIDTH_8) {
688 tuning_block_pattern = tuning_blk_pattern_8bit;
689 size = sizeof(tuning_blk_pattern_8bit);
690 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
691 tuning_block_pattern = tuning_blk_pattern_4bit;
692 size = sizeof(tuning_blk_pattern_4bit);
693 } else
694 return -EINVAL;
695
696 data_buf = kzalloc(size, GFP_KERNEL);
697 if (!data_buf)
698 return -ENOMEM;
699
700 mrq.cmd = &cmd;
701 mrq.data = &data;
702
703 cmd.opcode = opcode;
704 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
705
706 data.blksz = size;
707 data.blocks = 1;
708 data.flags = MMC_DATA_READ;
709
710 /*
711 * According to the tuning specs, Tuning process
712 * is normally shorter 40 executions of CMD19,
713 * and timeout value should be shorter than 150 ms
714 */
715 data.timeout_ns = 150 * NSEC_PER_MSEC;
716
717 data.sg = &sg;
718 data.sg_len = 1;
719 sg_init_one(&sg, data_buf, size);
720
721 mmc_wait_for_req(host, &mrq);
722
723 if (cmd_error)
724 *cmd_error = cmd.error;
725
726 if (cmd.error) {
727 err = cmd.error;
728 goto out;
729 }
730
731 if (data.error) {
732 err = data.error;
733 goto out;
734 }
735
736 if (memcmp(data_buf, tuning_block_pattern, size))
737 err = -EIO;
738
739out:
740 kfree(data_buf);
741 return err;
742}
743EXPORT_SYMBOL_GPL(mmc_send_tuning);
744
745int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
746{
747 struct mmc_command cmd = {};
748
749 /*
750 * eMMC specification specifies that CMD12 can be used to stop a tuning
751 * command, but SD specification does not, so do nothing unless it is
752 * eMMC.
753 */
754 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
755 return 0;
756
757 cmd.opcode = MMC_STOP_TRANSMISSION;
758 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
759
760 /*
761 * For drivers that override R1 to R1b, set an arbitrary timeout based
762 * on the tuning timeout i.e. 150ms.
763 */
764 cmd.busy_timeout = 150;
765
766 return mmc_wait_for_cmd(host, &cmd, 0);
767}
768EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
769
770static int
771mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
772 u8 len)
773{
774 struct mmc_request mrq = {};
775 struct mmc_command cmd = {};
776 struct mmc_data data = {};
777 struct scatterlist sg;
778 u8 *data_buf;
779 u8 *test_buf;
780 int i, err;
781 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
782 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
783
784 /* dma onto stack is unsafe/nonportable, but callers to this
785 * routine normally provide temporary on-stack buffers ...
786 */
787 data_buf = kmalloc(len, GFP_KERNEL);
788 if (!data_buf)
789 return -ENOMEM;
790
791 if (len == 8)
792 test_buf = testdata_8bit;
793 else if (len == 4)
794 test_buf = testdata_4bit;
795 else {
796 pr_err("%s: Invalid bus_width %d\n",
797 mmc_hostname(host), len);
798 kfree(data_buf);
799 return -EINVAL;
800 }
801
802 if (opcode == MMC_BUS_TEST_W)
803 memcpy(data_buf, test_buf, len);
804
805 mrq.cmd = &cmd;
806 mrq.data = &data;
807 cmd.opcode = opcode;
808 cmd.arg = 0;
809
810 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
811 * rely on callers to never use this with "native" calls for reading
812 * CSD or CID. Native versions of those commands use the R2 type,
813 * not R1 plus a data block.
814 */
815 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
816
817 data.blksz = len;
818 data.blocks = 1;
819 if (opcode == MMC_BUS_TEST_R)
820 data.flags = MMC_DATA_READ;
821 else
822 data.flags = MMC_DATA_WRITE;
823
824 data.sg = &sg;
825 data.sg_len = 1;
826 mmc_set_data_timeout(&data, card);
827 sg_init_one(&sg, data_buf, len);
828 mmc_wait_for_req(host, &mrq);
829 err = 0;
830 if (opcode == MMC_BUS_TEST_R) {
831 for (i = 0; i < len / 4; i++)
832 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
833 err = -EIO;
834 break;
835 }
836 }
837 kfree(data_buf);
838
839 if (cmd.error)
840 return cmd.error;
841 if (data.error)
842 return data.error;
843
844 return err;
845}
846
847int mmc_bus_test(struct mmc_card *card, u8 bus_width)
848{
849 int width;
850
851 if (bus_width == MMC_BUS_WIDTH_8)
852 width = 8;
853 else if (bus_width == MMC_BUS_WIDTH_4)
854 width = 4;
855 else if (bus_width == MMC_BUS_WIDTH_1)
856 return 0; /* no need for test */
857 else
858 return -EINVAL;
859
860 /*
861 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
862 * is a problem. This improves chances that the test will work.
863 */
864 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
865 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
866}
867
868static int mmc_send_hpi_cmd(struct mmc_card *card)
869{
870 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
871 struct mmc_host *host = card->host;
872 bool use_r1b_resp = false;
873 struct mmc_command cmd = {};
874 int err;
875
876 cmd.opcode = card->ext_csd.hpi_cmd;
877 cmd.arg = card->rca << 16 | 1;
878 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
879
880 if (cmd.opcode == MMC_STOP_TRANSMISSION)
881 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
882 busy_timeout_ms);
883
884 err = mmc_wait_for_cmd(host, &cmd, 0);
885 if (err) {
886 pr_warn("%s: HPI error %d. Command response %#x\n",
887 mmc_hostname(host), err, cmd.resp[0]);
888 return err;
889 }
890
891 /* No need to poll when using HW busy detection. */
892 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
893 return 0;
894
895 /* Let's poll to find out when the HPI request completes. */
896 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
897}
898
899/**
900 * mmc_interrupt_hpi - Issue for High priority Interrupt
901 * @card: the MMC card associated with the HPI transfer
902 *
903 * Issued High Priority Interrupt, and check for card status
904 * until out-of prg-state.
905 */
906static int mmc_interrupt_hpi(struct mmc_card *card)
907{
908 int err;
909 u32 status;
910
911 if (!card->ext_csd.hpi_en) {
912 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
913 return 1;
914 }
915
916 err = mmc_send_status(card, &status);
917 if (err) {
918 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
919 goto out;
920 }
921
922 switch (R1_CURRENT_STATE(status)) {
923 case R1_STATE_IDLE:
924 case R1_STATE_READY:
925 case R1_STATE_STBY:
926 case R1_STATE_TRAN:
927 /*
928 * In idle and transfer states, HPI is not needed and the caller
929 * can issue the next intended command immediately
930 */
931 goto out;
932 case R1_STATE_PRG:
933 break;
934 default:
935 /* In all other states, it's illegal to issue HPI */
936 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
937 mmc_hostname(card->host), R1_CURRENT_STATE(status));
938 err = -EINVAL;
939 goto out;
940 }
941
942 err = mmc_send_hpi_cmd(card);
943out:
944 return err;
945}
946
947int mmc_can_ext_csd(struct mmc_card *card)
948{
949 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
950}
951
952static int mmc_read_bkops_status(struct mmc_card *card)
953{
954 int err;
955 u8 *ext_csd;
956
957 err = mmc_get_ext_csd(card, &ext_csd);
958 if (err)
959 return err;
960
961 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
962 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
963 kfree(ext_csd);
964 return 0;
965}
966
967/**
968 * mmc_run_bkops - Run BKOPS for supported cards
969 * @card: MMC card to run BKOPS for
970 *
971 * Run background operations synchronously for cards having manual BKOPS
972 * enabled and in case it reports urgent BKOPS level.
973*/
974void mmc_run_bkops(struct mmc_card *card)
975{
976 int err;
977
978 if (!card->ext_csd.man_bkops_en)
979 return;
980
981 err = mmc_read_bkops_status(card);
982 if (err) {
983 pr_err("%s: Failed to read bkops status: %d\n",
984 mmc_hostname(card->host), err);
985 return;
986 }
987
988 if (!card->ext_csd.raw_bkops_status ||
989 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
990 return;
991
992 mmc_retune_hold(card->host);
993
994 /*
995 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
996 * synchronously. Future wise, we may consider to start BKOPS, for less
997 * urgent levels by using an asynchronous background task, when idle.
998 */
999 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1000 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
1001 /*
1002 * If the BKOPS timed out, the card is probably still busy in the
1003 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
1004 * it with a HPI command to get back into R1_STATE_TRAN.
1005 */
1006 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1007 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1008 else if (err)
1009 pr_warn("%s: Error %d running bkops\n",
1010 mmc_hostname(card->host), err);
1011
1012 mmc_retune_release(card->host);
1013}
1014EXPORT_SYMBOL(mmc_run_bkops);
1015
1016static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1017{
1018 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1019 int err;
1020
1021 if (!card->ext_csd.cmdq_support)
1022 return -EOPNOTSUPP;
1023
1024 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1025 val, card->ext_csd.generic_cmd6_time);
1026 if (!err)
1027 card->ext_csd.cmdq_en = enable;
1028
1029 return err;
1030}
1031
1032int mmc_cmdq_enable(struct mmc_card *card)
1033{
1034 return mmc_cmdq_switch(card, true);
1035}
1036EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1037
1038int mmc_cmdq_disable(struct mmc_card *card)
1039{
1040 return mmc_cmdq_switch(card, false);
1041}
1042EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1043
1044int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1045{
1046 struct mmc_host *host = card->host;
1047 int err;
1048
1049 if (!mmc_can_sanitize(card)) {
1050 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1051 return -EOPNOTSUPP;
1052 }
1053
1054 if (!timeout_ms)
1055 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1056
1057 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1058
1059 mmc_retune_hold(host);
1060
1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1062 1, timeout_ms, 0, true, false, 0);
1063 if (err)
1064 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1065
1066 /*
1067 * If the sanitize operation timed out, the card is probably still busy
1068 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1069 * it with a HPI command to get back into R1_STATE_TRAN.
1070 */
1071 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1072 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1073
1074 mmc_retune_release(host);
1075
1076 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1077 return err;
1078}
1079EXPORT_SYMBOL_GPL(mmc_sanitize);