Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <linux/debugobjects.h>
   8
   9#include "gt/intel_context.h"
  10#include "gt/intel_engine_heartbeat.h"
  11#include "gt/intel_engine_pm.h"
  12#include "gt/intel_ring.h"
  13
  14#include "i915_drv.h"
  15#include "i915_active.h"
  16
  17/*
  18 * Active refs memory management
  19 *
  20 * To be more economical with memory, we reap all the i915_active trees as
  21 * they idle (when we know the active requests are inactive) and allocate the
  22 * nodes from a local slab cache to hopefully reduce the fragmentation.
  23 */
  24static struct kmem_cache *slab_cache;
  25
  26struct active_node {
  27	struct rb_node node;
  28	struct i915_active_fence base;
  29	struct i915_active *ref;
  30	u64 timeline;
  31};
  32
  33#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
  34
  35static inline struct active_node *
  36node_from_active(struct i915_active_fence *active)
  37{
  38	return container_of(active, struct active_node, base);
  39}
  40
  41#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
  42
  43static inline bool is_barrier(const struct i915_active_fence *active)
  44{
  45	return IS_ERR(rcu_access_pointer(active->fence));
  46}
  47
  48static inline struct llist_node *barrier_to_ll(struct active_node *node)
  49{
  50	GEM_BUG_ON(!is_barrier(&node->base));
  51	return (struct llist_node *)&node->base.cb.node;
  52}
  53
  54static inline struct intel_engine_cs *
  55__barrier_to_engine(struct active_node *node)
  56{
  57	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
  58}
  59
  60static inline struct intel_engine_cs *
  61barrier_to_engine(struct active_node *node)
  62{
  63	GEM_BUG_ON(!is_barrier(&node->base));
  64	return __barrier_to_engine(node);
  65}
  66
  67static inline struct active_node *barrier_from_ll(struct llist_node *x)
  68{
  69	return container_of((struct list_head *)x,
  70			    struct active_node, base.cb.node);
  71}
  72
  73#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
  74
  75static void *active_debug_hint(void *addr)
  76{
  77	struct i915_active *ref = addr;
  78
  79	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
  80}
  81
  82static const struct debug_obj_descr active_debug_desc = {
  83	.name = "i915_active",
  84	.debug_hint = active_debug_hint,
  85};
  86
  87static void debug_active_init(struct i915_active *ref)
  88{
  89	debug_object_init(ref, &active_debug_desc);
  90}
  91
  92static void debug_active_activate(struct i915_active *ref)
  93{
  94	lockdep_assert_held(&ref->tree_lock);
  95	debug_object_activate(ref, &active_debug_desc);
  96}
  97
  98static void debug_active_deactivate(struct i915_active *ref)
  99{
 100	lockdep_assert_held(&ref->tree_lock);
 101	if (!atomic_read(&ref->count)) /* after the last dec */
 102		debug_object_deactivate(ref, &active_debug_desc);
 103}
 104
 105static void debug_active_fini(struct i915_active *ref)
 106{
 107	debug_object_free(ref, &active_debug_desc);
 108}
 109
 110static void debug_active_assert(struct i915_active *ref)
 111{
 112	debug_object_assert_init(ref, &active_debug_desc);
 113}
 114
 115#else
 116
 117static inline void debug_active_init(struct i915_active *ref) { }
 118static inline void debug_active_activate(struct i915_active *ref) { }
 119static inline void debug_active_deactivate(struct i915_active *ref) { }
 120static inline void debug_active_fini(struct i915_active *ref) { }
 121static inline void debug_active_assert(struct i915_active *ref) { }
 122
 123#endif
 124
 125static void
 126__active_retire(struct i915_active *ref)
 127{
 128	struct rb_root root = RB_ROOT;
 129	struct active_node *it, *n;
 130	unsigned long flags;
 131
 132	GEM_BUG_ON(i915_active_is_idle(ref));
 133
 134	/* return the unused nodes to our slabcache -- flushing the allocator */
 135	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
 136		return;
 137
 138	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
 139	debug_active_deactivate(ref);
 140
 141	/* Even if we have not used the cache, we may still have a barrier */
 142	if (!ref->cache)
 143		ref->cache = fetch_node(ref->tree.rb_node);
 144
 145	/* Keep the MRU cached node for reuse */
 146	if (ref->cache) {
 147		/* Discard all other nodes in the tree */
 148		rb_erase(&ref->cache->node, &ref->tree);
 149		root = ref->tree;
 150
 151		/* Rebuild the tree with only the cached node */
 152		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
 153		rb_insert_color(&ref->cache->node, &ref->tree);
 154		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
 155
 156		/* Make the cached node available for reuse with any timeline */
 157		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
 158	}
 159
 160	spin_unlock_irqrestore(&ref->tree_lock, flags);
 161
 162	/* After the final retire, the entire struct may be freed */
 163	if (ref->retire)
 164		ref->retire(ref);
 165
 166	/* ... except if you wait on it, you must manage your own references! */
 167	wake_up_var(ref);
 168
 169	/* Finally free the discarded timeline tree  */
 170	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
 171		GEM_BUG_ON(i915_active_fence_isset(&it->base));
 172		kmem_cache_free(slab_cache, it);
 173	}
 174}
 175
 176static void
 177active_work(struct work_struct *wrk)
 178{
 179	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
 180
 181	GEM_BUG_ON(!atomic_read(&ref->count));
 182	if (atomic_add_unless(&ref->count, -1, 1))
 183		return;
 184
 185	__active_retire(ref);
 186}
 187
 188static void
 189active_retire(struct i915_active *ref)
 190{
 191	GEM_BUG_ON(!atomic_read(&ref->count));
 192	if (atomic_add_unless(&ref->count, -1, 1))
 193		return;
 194
 195	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
 196		queue_work(system_unbound_wq, &ref->work);
 197		return;
 198	}
 199
 200	__active_retire(ref);
 201}
 202
 203static inline struct dma_fence **
 204__active_fence_slot(struct i915_active_fence *active)
 205{
 206	return (struct dma_fence ** __force)&active->fence;
 207}
 208
 209static inline bool
 210active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 211{
 212	struct i915_active_fence *active =
 213		container_of(cb, typeof(*active), cb);
 214
 215	return try_cmpxchg(__active_fence_slot(active), &fence, NULL);
 216}
 217
 218static void
 219node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 220{
 221	if (active_fence_cb(fence, cb))
 222		active_retire(container_of(cb, struct active_node, base.cb)->ref);
 223}
 224
 225static void
 226excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 227{
 228	if (active_fence_cb(fence, cb))
 229		active_retire(container_of(cb, struct i915_active, excl.cb));
 230}
 231
 232static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
 233{
 234	struct active_node *it;
 235
 236	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
 237
 238	/*
 239	 * We track the most recently used timeline to skip a rbtree search
 240	 * for the common case, under typical loads we never need the rbtree
 241	 * at all. We can reuse the last slot if it is empty, that is
 242	 * after the previous activity has been retired, or if it matches the
 243	 * current timeline.
 244	 */
 245	it = READ_ONCE(ref->cache);
 246	if (it) {
 247		u64 cached = READ_ONCE(it->timeline);
 248
 249		/* Once claimed, this slot will only belong to this idx */
 250		if (cached == idx)
 251			return it;
 252
 253		/*
 254		 * An unclaimed cache [.timeline=0] can only be claimed once.
 255		 *
 256		 * If the value is already non-zero, some other thread has
 257		 * claimed the cache and we know that is does not match our
 258		 * idx. If, and only if, the timeline is currently zero is it
 259		 * worth competing to claim it atomically for ourselves (for
 260		 * only the winner of that race will cmpxchg return the old
 261		 * value of 0).
 262		 */
 263		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
 264			return it;
 265	}
 266
 267	BUILD_BUG_ON(offsetof(typeof(*it), node));
 268
 269	/* While active, the tree can only be built; not destroyed */
 270	GEM_BUG_ON(i915_active_is_idle(ref));
 271
 272	it = fetch_node(ref->tree.rb_node);
 273	while (it) {
 274		if (it->timeline < idx) {
 275			it = fetch_node(it->node.rb_right);
 276		} else if (it->timeline > idx) {
 277			it = fetch_node(it->node.rb_left);
 278		} else {
 279			WRITE_ONCE(ref->cache, it);
 280			break;
 281		}
 282	}
 283
 284	/* NB: If the tree rotated beneath us, we may miss our target. */
 285	return it;
 286}
 287
 288static struct i915_active_fence *
 289active_instance(struct i915_active *ref, u64 idx)
 290{
 291	struct active_node *node;
 292	struct rb_node **p, *parent;
 293
 294	node = __active_lookup(ref, idx);
 295	if (likely(node))
 296		return &node->base;
 297
 298	spin_lock_irq(&ref->tree_lock);
 299	GEM_BUG_ON(i915_active_is_idle(ref));
 300
 301	parent = NULL;
 302	p = &ref->tree.rb_node;
 303	while (*p) {
 304		parent = *p;
 305
 306		node = rb_entry(parent, struct active_node, node);
 307		if (node->timeline == idx)
 308			goto out;
 309
 310		if (node->timeline < idx)
 311			p = &parent->rb_right;
 312		else
 313			p = &parent->rb_left;
 314	}
 315
 316	/*
 317	 * XXX: We should preallocate this before i915_active_ref() is ever
 318	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
 319	 */
 320	node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
 321	if (!node)
 322		goto out;
 323
 324	__i915_active_fence_init(&node->base, NULL, node_retire);
 325	node->ref = ref;
 326	node->timeline = idx;
 327
 328	rb_link_node(&node->node, parent, p);
 329	rb_insert_color(&node->node, &ref->tree);
 330
 331out:
 332	WRITE_ONCE(ref->cache, node);
 333	spin_unlock_irq(&ref->tree_lock);
 334
 335	return &node->base;
 336}
 337
 338void __i915_active_init(struct i915_active *ref,
 339			int (*active)(struct i915_active *ref),
 340			void (*retire)(struct i915_active *ref),
 341			unsigned long flags,
 342			struct lock_class_key *mkey,
 343			struct lock_class_key *wkey)
 344{
 345	debug_active_init(ref);
 346
 347	ref->flags = flags;
 348	ref->active = active;
 349	ref->retire = retire;
 350
 351	spin_lock_init(&ref->tree_lock);
 352	ref->tree = RB_ROOT;
 353	ref->cache = NULL;
 354
 355	init_llist_head(&ref->preallocated_barriers);
 356	atomic_set(&ref->count, 0);
 357	__mutex_init(&ref->mutex, "i915_active", mkey);
 358	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
 359	INIT_WORK(&ref->work, active_work);
 360#if IS_ENABLED(CONFIG_LOCKDEP)
 361	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
 362#endif
 363}
 364
 365static bool ____active_del_barrier(struct i915_active *ref,
 366				   struct active_node *node,
 367				   struct intel_engine_cs *engine)
 368
 369{
 370	struct llist_node *head = NULL, *tail = NULL;
 371	struct llist_node *pos, *next;
 372
 373	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
 374
 375	/*
 376	 * Rebuild the llist excluding our node. We may perform this
 377	 * outside of the kernel_context timeline mutex and so someone
 378	 * else may be manipulating the engine->barrier_tasks, in
 379	 * which case either we or they will be upset :)
 380	 *
 381	 * A second __active_del_barrier() will report failure to claim
 382	 * the active_node and the caller will just shrug and know not to
 383	 * claim ownership of its node.
 384	 *
 385	 * A concurrent i915_request_add_active_barriers() will miss adding
 386	 * any of the tasks, but we will try again on the next -- and since
 387	 * we are actively using the barrier, we know that there will be
 388	 * at least another opportunity when we idle.
 389	 */
 390	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
 391		if (node == barrier_from_ll(pos)) {
 392			node = NULL;
 393			continue;
 394		}
 395
 396		pos->next = head;
 397		head = pos;
 398		if (!tail)
 399			tail = pos;
 400	}
 401	if (head)
 402		llist_add_batch(head, tail, &engine->barrier_tasks);
 403
 404	return !node;
 405}
 406
 407static bool
 408__active_del_barrier(struct i915_active *ref, struct active_node *node)
 409{
 410	return ____active_del_barrier(ref, node, barrier_to_engine(node));
 411}
 412
 413static bool
 414replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
 415{
 416	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
 417		return false;
 418
 419	/*
 420	 * This request is on the kernel_context timeline, and so
 421	 * we can use it to substitute for the pending idle-barrer
 422	 * request that we want to emit on the kernel_context.
 423	 */
 424	return __active_del_barrier(ref, node_from_active(active));
 425}
 426
 427int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
 428{
 429	u64 idx = i915_request_timeline(rq)->fence_context;
 430	struct dma_fence *fence = &rq->fence;
 431	struct i915_active_fence *active;
 432	int err;
 433
 434	/* Prevent reaping in case we malloc/wait while building the tree */
 435	err = i915_active_acquire(ref);
 436	if (err)
 437		return err;
 438
 439	do {
 440		active = active_instance(ref, idx);
 441		if (!active) {
 442			err = -ENOMEM;
 443			goto out;
 444		}
 445
 446		if (replace_barrier(ref, active)) {
 447			RCU_INIT_POINTER(active->fence, NULL);
 448			atomic_dec(&ref->count);
 449		}
 450	} while (unlikely(is_barrier(active)));
 451
 452	fence = __i915_active_fence_set(active, fence);
 453	if (!fence)
 454		__i915_active_acquire(ref);
 455	else
 456		dma_fence_put(fence);
 457
 458out:
 459	i915_active_release(ref);
 460	return err;
 461}
 462
 463static struct dma_fence *
 464__i915_active_set_fence(struct i915_active *ref,
 465			struct i915_active_fence *active,
 466			struct dma_fence *fence)
 467{
 468	struct dma_fence *prev;
 469
 470	if (replace_barrier(ref, active)) {
 471		RCU_INIT_POINTER(active->fence, fence);
 472		return NULL;
 473	}
 474
 475	prev = __i915_active_fence_set(active, fence);
 476	if (!prev)
 477		__i915_active_acquire(ref);
 478
 479	return prev;
 480}
 481
 482struct dma_fence *
 483i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
 484{
 485	/* We expect the caller to manage the exclusive timeline ordering */
 486	return __i915_active_set_fence(ref, &ref->excl, f);
 487}
 488
 489bool i915_active_acquire_if_busy(struct i915_active *ref)
 490{
 491	debug_active_assert(ref);
 492	return atomic_add_unless(&ref->count, 1, 0);
 493}
 494
 495static void __i915_active_activate(struct i915_active *ref)
 496{
 497	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
 498	if (!atomic_fetch_inc(&ref->count))
 499		debug_active_activate(ref);
 500	spin_unlock_irq(&ref->tree_lock);
 501}
 502
 503int i915_active_acquire(struct i915_active *ref)
 504{
 505	int err;
 506
 507	if (i915_active_acquire_if_busy(ref))
 508		return 0;
 509
 510	if (!ref->active) {
 511		__i915_active_activate(ref);
 512		return 0;
 513	}
 514
 515	err = mutex_lock_interruptible(&ref->mutex);
 516	if (err)
 517		return err;
 518
 519	if (likely(!i915_active_acquire_if_busy(ref))) {
 520		err = ref->active(ref);
 521		if (!err)
 522			__i915_active_activate(ref);
 523	}
 524
 525	mutex_unlock(&ref->mutex);
 526
 527	return err;
 528}
 529
 530int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
 531{
 532	struct i915_active_fence *active;
 533	int err;
 534
 535	err = i915_active_acquire(ref);
 536	if (err)
 537		return err;
 538
 539	active = active_instance(ref, idx);
 540	if (!active) {
 541		i915_active_release(ref);
 542		return -ENOMEM;
 543	}
 544
 545	return 0; /* return with active ref */
 546}
 547
 548void i915_active_release(struct i915_active *ref)
 549{
 550	debug_active_assert(ref);
 551	active_retire(ref);
 552}
 553
 554static void enable_signaling(struct i915_active_fence *active)
 555{
 556	struct dma_fence *fence;
 557
 558	if (unlikely(is_barrier(active)))
 559		return;
 560
 561	fence = i915_active_fence_get(active);
 562	if (!fence)
 563		return;
 564
 565	dma_fence_enable_sw_signaling(fence);
 566	dma_fence_put(fence);
 567}
 568
 569static int flush_barrier(struct active_node *it)
 570{
 571	struct intel_engine_cs *engine;
 572
 573	if (likely(!is_barrier(&it->base)))
 574		return 0;
 575
 576	engine = __barrier_to_engine(it);
 577	smp_rmb(); /* serialise with add_active_barriers */
 578	if (!is_barrier(&it->base))
 579		return 0;
 580
 581	return intel_engine_flush_barriers(engine);
 582}
 583
 584static int flush_lazy_signals(struct i915_active *ref)
 585{
 586	struct active_node *it, *n;
 587	int err = 0;
 588
 589	enable_signaling(&ref->excl);
 590	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 591		err = flush_barrier(it); /* unconnected idle barrier? */
 592		if (err)
 593			break;
 594
 595		enable_signaling(&it->base);
 596	}
 597
 598	return err;
 599}
 600
 601int __i915_active_wait(struct i915_active *ref, int state)
 602{
 603	might_sleep();
 604
 605	/* Any fence added after the wait begins will not be auto-signaled */
 606	if (i915_active_acquire_if_busy(ref)) {
 607		int err;
 608
 609		err = flush_lazy_signals(ref);
 610		i915_active_release(ref);
 611		if (err)
 612			return err;
 613
 614		if (___wait_var_event(ref, i915_active_is_idle(ref),
 615				      state, 0, 0, schedule()))
 616			return -EINTR;
 617	}
 618
 619	/*
 620	 * After the wait is complete, the caller may free the active.
 621	 * We have to flush any concurrent retirement before returning.
 622	 */
 623	flush_work(&ref->work);
 624	return 0;
 625}
 626
 627static int __await_active(struct i915_active_fence *active,
 628			  int (*fn)(void *arg, struct dma_fence *fence),
 629			  void *arg)
 630{
 631	struct dma_fence *fence;
 632
 633	if (is_barrier(active)) /* XXX flush the barrier? */
 634		return 0;
 635
 636	fence = i915_active_fence_get(active);
 637	if (fence) {
 638		int err;
 639
 640		err = fn(arg, fence);
 641		dma_fence_put(fence);
 642		if (err < 0)
 643			return err;
 644	}
 645
 646	return 0;
 647}
 648
 649struct wait_barrier {
 650	struct wait_queue_entry base;
 651	struct i915_active *ref;
 652};
 653
 654static int
 655barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
 656{
 657	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
 658
 659	if (i915_active_is_idle(wb->ref)) {
 660		list_del(&wq->entry);
 661		i915_sw_fence_complete(wq->private);
 662		kfree(wq);
 663	}
 664
 665	return 0;
 666}
 667
 668static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
 669{
 670	struct wait_barrier *wb;
 671
 672	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
 673	if (unlikely(!wb))
 674		return -ENOMEM;
 675
 676	GEM_BUG_ON(i915_active_is_idle(ref));
 677	if (!i915_sw_fence_await(fence)) {
 678		kfree(wb);
 679		return -EINVAL;
 680	}
 681
 682	wb->base.flags = 0;
 683	wb->base.func = barrier_wake;
 684	wb->base.private = fence;
 685	wb->ref = ref;
 686
 687	add_wait_queue(__var_waitqueue(ref), &wb->base);
 688	return 0;
 689}
 690
 691static int await_active(struct i915_active *ref,
 692			unsigned int flags,
 693			int (*fn)(void *arg, struct dma_fence *fence),
 694			void *arg, struct i915_sw_fence *barrier)
 695{
 696	int err = 0;
 697
 698	if (!i915_active_acquire_if_busy(ref))
 699		return 0;
 700
 701	if (flags & I915_ACTIVE_AWAIT_EXCL &&
 702	    rcu_access_pointer(ref->excl.fence)) {
 703		err = __await_active(&ref->excl, fn, arg);
 704		if (err)
 705			goto out;
 706	}
 707
 708	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
 709		struct active_node *it, *n;
 710
 711		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 712			err = __await_active(&it->base, fn, arg);
 713			if (err)
 714				goto out;
 715		}
 716	}
 717
 718	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
 719		err = flush_lazy_signals(ref);
 720		if (err)
 721			goto out;
 722
 723		err = __await_barrier(ref, barrier);
 724		if (err)
 725			goto out;
 726	}
 727
 728out:
 729	i915_active_release(ref);
 730	return err;
 731}
 732
 733static int rq_await_fence(void *arg, struct dma_fence *fence)
 734{
 735	return i915_request_await_dma_fence(arg, fence);
 736}
 737
 738int i915_request_await_active(struct i915_request *rq,
 739			      struct i915_active *ref,
 740			      unsigned int flags)
 741{
 742	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
 743}
 744
 745static int sw_await_fence(void *arg, struct dma_fence *fence)
 746{
 747	return i915_sw_fence_await_dma_fence(arg, fence, 0,
 748					     GFP_NOWAIT | __GFP_NOWARN);
 749}
 750
 751int i915_sw_fence_await_active(struct i915_sw_fence *fence,
 752			       struct i915_active *ref,
 753			       unsigned int flags)
 754{
 755	return await_active(ref, flags, sw_await_fence, fence, fence);
 756}
 757
 758void i915_active_fini(struct i915_active *ref)
 759{
 760	debug_active_fini(ref);
 761	GEM_BUG_ON(atomic_read(&ref->count));
 762	GEM_BUG_ON(work_pending(&ref->work));
 763	mutex_destroy(&ref->mutex);
 764
 765	if (ref->cache)
 766		kmem_cache_free(slab_cache, ref->cache);
 767}
 768
 769static inline bool is_idle_barrier(struct active_node *node, u64 idx)
 770{
 771	return node->timeline == idx && !i915_active_fence_isset(&node->base);
 772}
 773
 774static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
 775{
 776	struct rb_node *prev, *p;
 777
 778	if (RB_EMPTY_ROOT(&ref->tree))
 779		return NULL;
 780
 781	GEM_BUG_ON(i915_active_is_idle(ref));
 782
 783	/*
 784	 * Try to reuse any existing barrier nodes already allocated for this
 785	 * i915_active, due to overlapping active phases there is likely a
 786	 * node kept alive (as we reuse before parking). We prefer to reuse
 787	 * completely idle barriers (less hassle in manipulating the llists),
 788	 * but otherwise any will do.
 789	 */
 790	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
 791		p = &ref->cache->node;
 792		goto match;
 793	}
 794
 795	prev = NULL;
 796	p = ref->tree.rb_node;
 797	while (p) {
 798		struct active_node *node =
 799			rb_entry(p, struct active_node, node);
 800
 801		if (is_idle_barrier(node, idx))
 802			goto match;
 803
 804		prev = p;
 805		if (node->timeline < idx)
 806			p = READ_ONCE(p->rb_right);
 807		else
 808			p = READ_ONCE(p->rb_left);
 809	}
 810
 811	/*
 812	 * No quick match, but we did find the leftmost rb_node for the
 813	 * kernel_context. Walk the rb_tree in-order to see if there were
 814	 * any idle-barriers on this timeline that we missed, or just use
 815	 * the first pending barrier.
 816	 */
 817	for (p = prev; p; p = rb_next(p)) {
 818		struct active_node *node =
 819			rb_entry(p, struct active_node, node);
 820		struct intel_engine_cs *engine;
 821
 822		if (node->timeline > idx)
 823			break;
 824
 825		if (node->timeline < idx)
 826			continue;
 827
 828		if (is_idle_barrier(node, idx))
 829			goto match;
 830
 831		/*
 832		 * The list of pending barriers is protected by the
 833		 * kernel_context timeline, which notably we do not hold
 834		 * here. i915_request_add_active_barriers() may consume
 835		 * the barrier before we claim it, so we have to check
 836		 * for success.
 837		 */
 838		engine = __barrier_to_engine(node);
 839		smp_rmb(); /* serialise with add_active_barriers */
 840		if (is_barrier(&node->base) &&
 841		    ____active_del_barrier(ref, node, engine))
 842			goto match;
 843	}
 844
 845	return NULL;
 846
 847match:
 848	spin_lock_irq(&ref->tree_lock);
 849	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
 850	if (p == &ref->cache->node)
 851		WRITE_ONCE(ref->cache, NULL);
 852	spin_unlock_irq(&ref->tree_lock);
 853
 854	return rb_entry(p, struct active_node, node);
 855}
 856
 857int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
 858					    struct intel_engine_cs *engine)
 859{
 860	intel_engine_mask_t tmp, mask = engine->mask;
 861	struct llist_node *first = NULL, *last = NULL;
 862	struct intel_gt *gt = engine->gt;
 863
 864	GEM_BUG_ON(i915_active_is_idle(ref));
 865
 866	/* Wait until the previous preallocation is completed */
 867	while (!llist_empty(&ref->preallocated_barriers))
 868		cond_resched();
 869
 870	/*
 871	 * Preallocate a node for each physical engine supporting the target
 872	 * engine (remember virtual engines have more than one sibling).
 873	 * We can then use the preallocated nodes in
 874	 * i915_active_acquire_barrier()
 875	 */
 876	GEM_BUG_ON(!mask);
 877	for_each_engine_masked(engine, gt, mask, tmp) {
 878		u64 idx = engine->kernel_context->timeline->fence_context;
 879		struct llist_node *prev = first;
 880		struct active_node *node;
 881
 882		rcu_read_lock();
 883		node = reuse_idle_barrier(ref, idx);
 884		rcu_read_unlock();
 885		if (!node) {
 886			node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
 887			if (!node)
 888				goto unwind;
 889
 890			RCU_INIT_POINTER(node->base.fence, NULL);
 891			node->base.cb.func = node_retire;
 892			node->timeline = idx;
 893			node->ref = ref;
 894		}
 895
 896		if (!i915_active_fence_isset(&node->base)) {
 897			/*
 898			 * Mark this as being *our* unconnected proto-node.
 899			 *
 900			 * Since this node is not in any list, and we have
 901			 * decoupled it from the rbtree, we can reuse the
 902			 * request to indicate this is an idle-barrier node
 903			 * and then we can use the rb_node and list pointers
 904			 * for our tracking of the pending barrier.
 905			 */
 906			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
 907			node->base.cb.node.prev = (void *)engine;
 908			__i915_active_acquire(ref);
 909		}
 910		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
 911
 912		GEM_BUG_ON(barrier_to_engine(node) != engine);
 913		first = barrier_to_ll(node);
 914		first->next = prev;
 915		if (!last)
 916			last = first;
 917		intel_engine_pm_get(engine);
 918	}
 919
 920	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
 921	llist_add_batch(first, last, &ref->preallocated_barriers);
 922
 923	return 0;
 924
 925unwind:
 926	while (first) {
 927		struct active_node *node = barrier_from_ll(first);
 928
 929		first = first->next;
 930
 931		atomic_dec(&ref->count);
 932		intel_engine_pm_put(barrier_to_engine(node));
 933
 934		kmem_cache_free(slab_cache, node);
 935	}
 936	return -ENOMEM;
 937}
 938
 939void i915_active_acquire_barrier(struct i915_active *ref)
 940{
 941	struct llist_node *pos, *next;
 942	unsigned long flags;
 943
 944	GEM_BUG_ON(i915_active_is_idle(ref));
 945
 946	/*
 947	 * Transfer the list of preallocated barriers into the
 948	 * i915_active rbtree, but only as proto-nodes. They will be
 949	 * populated by i915_request_add_active_barriers() to point to the
 950	 * request that will eventually release them.
 951	 */
 952	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
 953		struct active_node *node = barrier_from_ll(pos);
 954		struct intel_engine_cs *engine = barrier_to_engine(node);
 955		struct rb_node **p, *parent;
 956
 957		spin_lock_irqsave_nested(&ref->tree_lock, flags,
 958					 SINGLE_DEPTH_NESTING);
 959		parent = NULL;
 960		p = &ref->tree.rb_node;
 961		while (*p) {
 962			struct active_node *it;
 963
 964			parent = *p;
 965
 966			it = rb_entry(parent, struct active_node, node);
 967			if (it->timeline < node->timeline)
 968				p = &parent->rb_right;
 969			else
 970				p = &parent->rb_left;
 971		}
 972		rb_link_node(&node->node, parent, p);
 973		rb_insert_color(&node->node, &ref->tree);
 974		spin_unlock_irqrestore(&ref->tree_lock, flags);
 975
 976		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
 977		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
 978		intel_engine_pm_put_delay(engine, 2);
 979	}
 980}
 981
 982static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
 983{
 984	return __active_fence_slot(&barrier_from_ll(node)->base);
 985}
 986
 987void i915_request_add_active_barriers(struct i915_request *rq)
 988{
 989	struct intel_engine_cs *engine = rq->engine;
 990	struct llist_node *node, *next;
 991	unsigned long flags;
 992
 993	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
 994	GEM_BUG_ON(intel_engine_is_virtual(engine));
 995	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
 996
 997	node = llist_del_all(&engine->barrier_tasks);
 998	if (!node)
 999		return;
1000	/*
1001	 * Attach the list of proto-fences to the in-flight request such
1002	 * that the parent i915_active will be released when this request
1003	 * is retired.
1004	 */
1005	spin_lock_irqsave(&rq->lock, flags);
1006	llist_for_each_safe(node, next, node) {
1007		/* serialise with reuse_idle_barrier */
1008		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1009		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1010	}
1011	spin_unlock_irqrestore(&rq->lock, flags);
1012}
1013
1014/*
1015 * __i915_active_fence_set: Update the last active fence along its timeline
1016 * @active: the active tracker
1017 * @fence: the new fence (under construction)
1018 *
1019 * Records the new @fence as the last active fence along its timeline in
1020 * this active tracker, moving the tracking callbacks from the previous
1021 * fence onto this one. Gets and returns a reference to the previous fence
1022 * (if not already completed), which the caller must put after making sure
1023 * that it is executed before the new fence. To ensure that the order of
1024 * fences within the timeline of the i915_active_fence is understood, it
1025 * should be locked by the caller.
1026 */
1027struct dma_fence *
1028__i915_active_fence_set(struct i915_active_fence *active,
1029			struct dma_fence *fence)
1030{
1031	struct dma_fence *prev;
1032	unsigned long flags;
1033
1034	/*
1035	 * In case of fences embedded in i915_requests, their memory is
1036	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1037	 * by new requests.  Then, there is a risk of passing back a pointer
1038	 * to a new, completely unrelated fence that reuses the same memory
1039	 * while tracked under a different active tracker.  Combined with i915
1040	 * perf open/close operations that build await dependencies between
1041	 * engine kernel context requests and user requests from different
1042	 * timelines, this can lead to dependency loops and infinite waits.
1043	 *
1044	 * As a countermeasure, we try to get a reference to the active->fence
1045	 * first, so if we succeed and pass it back to our user then it is not
1046	 * released and potentially reused by an unrelated request before the
1047	 * user has a chance to set up an await dependency on it.
1048	 */
1049	prev = i915_active_fence_get(active);
1050	if (fence == prev)
1051		return fence;
1052
1053	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1054
1055	/*
1056	 * Consider that we have two threads arriving (A and B), with
1057	 * C already resident as the active->fence.
1058	 *
1059	 * Both A and B have got a reference to C or NULL, depending on the
1060	 * timing of the interrupt handler.  Let's assume that if A has got C
1061	 * then it has locked C first (before B).
1062	 *
1063	 * Note the strong ordering of the timeline also provides consistent
1064	 * nesting rules for the fence->lock; the inner lock is always the
1065	 * older lock.
1066	 */
1067	spin_lock_irqsave(fence->lock, flags);
1068	if (prev)
1069		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1070
1071	/*
1072	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
1073	 * something else, depending on the timing of other threads and/or
1074	 * interrupt handler.  If not the same as before then A unlocks C if
1075	 * applicable and retries, starting from an attempt to get a new
1076	 * active->fence.  Meanwhile, B follows the same path as A.
1077	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
1078	 * active->fence, locks it as soon as A completes, and possibly
1079	 * succeeds with cmpxchg.
1080	 */
1081	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1082		if (prev) {
1083			spin_unlock(prev->lock);
1084			dma_fence_put(prev);
1085		}
1086		spin_unlock_irqrestore(fence->lock, flags);
1087
1088		prev = i915_active_fence_get(active);
1089		GEM_BUG_ON(prev == fence);
1090
1091		spin_lock_irqsave(fence->lock, flags);
1092		if (prev)
1093			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1094	}
1095
1096	/*
1097	 * If prev is NULL then the previous fence must have been signaled
1098	 * and we know that we are first on the timeline.  If it is still
1099	 * present then, having the lock on that fence already acquired, we
1100	 * serialise with the interrupt handler, in the process of removing it
1101	 * from any future interrupt callback.  A will then wait on C before
1102	 * executing (if present).
1103	 *
1104	 * As B is second, it sees A as the previous fence and so waits for
1105	 * it to complete its transition and takes over the occupancy for
1106	 * itself -- remembering that it needs to wait on A before executing.
1107	 */
1108	if (prev) {
1109		__list_del_entry(&active->cb.node);
1110		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1111	}
1112	list_add_tail(&active->cb.node, &fence->cb_list);
1113	spin_unlock_irqrestore(fence->lock, flags);
1114
1115	return prev;
1116}
1117
1118int i915_active_fence_set(struct i915_active_fence *active,
1119			  struct i915_request *rq)
1120{
1121	struct dma_fence *fence;
1122	int err = 0;
1123
1124	/* Must maintain timeline ordering wrt previous active requests */
1125	fence = __i915_active_fence_set(active, &rq->fence);
1126	if (fence) {
1127		err = i915_request_await_dma_fence(rq, fence);
1128		dma_fence_put(fence);
1129	}
1130
1131	return err;
1132}
1133
1134void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1135{
1136	active_fence_cb(fence, cb);
1137}
1138
1139struct auto_active {
1140	struct i915_active base;
1141	struct kref ref;
1142};
1143
1144struct i915_active *i915_active_get(struct i915_active *ref)
1145{
1146	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1147
1148	kref_get(&aa->ref);
1149	return &aa->base;
1150}
1151
1152static void auto_release(struct kref *ref)
1153{
1154	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1155
1156	i915_active_fini(&aa->base);
1157	kfree(aa);
1158}
1159
1160void i915_active_put(struct i915_active *ref)
1161{
1162	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1163
1164	kref_put(&aa->ref, auto_release);
1165}
1166
1167static int auto_active(struct i915_active *ref)
1168{
1169	i915_active_get(ref);
1170	return 0;
1171}
1172
1173static void auto_retire(struct i915_active *ref)
1174{
1175	i915_active_put(ref);
1176}
1177
1178struct i915_active *i915_active_create(void)
1179{
1180	struct auto_active *aa;
1181
1182	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1183	if (!aa)
1184		return NULL;
1185
1186	kref_init(&aa->ref);
1187	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1188
1189	return &aa->base;
1190}
1191
1192#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1193#include "selftests/i915_active.c"
1194#endif
1195
1196void i915_active_module_exit(void)
1197{
1198	kmem_cache_destroy(slab_cache);
1199}
1200
1201int __init i915_active_module_init(void)
1202{
1203	slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1204	if (!slab_cache)
1205		return -ENOMEM;
1206
1207	return 0;
1208}