Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <linux/debugobjects.h>
   8
   9#include "gt/intel_context.h"
  10#include "gt/intel_engine_heartbeat.h"
  11#include "gt/intel_engine_pm.h"
  12#include "gt/intel_ring.h"
  13
  14#include "i915_drv.h"
  15#include "i915_active.h"
  16#include "i915_globals.h"
  17
  18/*
  19 * Active refs memory management
  20 *
  21 * To be more economical with memory, we reap all the i915_active trees as
  22 * they idle (when we know the active requests are inactive) and allocate the
  23 * nodes from a local slab cache to hopefully reduce the fragmentation.
  24 */
  25static struct i915_global_active {
  26	struct i915_global base;
  27	struct kmem_cache *slab_cache;
  28} global;
  29
  30struct active_node {
  31	struct rb_node node;
  32	struct i915_active_fence base;
  33	struct i915_active *ref;
  34	u64 timeline;
  35};
  36
  37#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
  38
  39static inline struct active_node *
  40node_from_active(struct i915_active_fence *active)
  41{
  42	return container_of(active, struct active_node, base);
  43}
  44
  45#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
  46
  47static inline bool is_barrier(const struct i915_active_fence *active)
  48{
  49	return IS_ERR(rcu_access_pointer(active->fence));
  50}
  51
  52static inline struct llist_node *barrier_to_ll(struct active_node *node)
  53{
  54	GEM_BUG_ON(!is_barrier(&node->base));
  55	return (struct llist_node *)&node->base.cb.node;
  56}
  57
  58static inline struct intel_engine_cs *
  59__barrier_to_engine(struct active_node *node)
  60{
  61	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
  62}
  63
  64static inline struct intel_engine_cs *
  65barrier_to_engine(struct active_node *node)
  66{
  67	GEM_BUG_ON(!is_barrier(&node->base));
  68	return __barrier_to_engine(node);
  69}
  70
  71static inline struct active_node *barrier_from_ll(struct llist_node *x)
  72{
  73	return container_of((struct list_head *)x,
  74			    struct active_node, base.cb.node);
  75}
  76
  77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
  78
  79static void *active_debug_hint(void *addr)
  80{
  81	struct i915_active *ref = addr;
  82
  83	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
  84}
  85
  86static const struct debug_obj_descr active_debug_desc = {
  87	.name = "i915_active",
  88	.debug_hint = active_debug_hint,
  89};
  90
  91static void debug_active_init(struct i915_active *ref)
  92{
  93	debug_object_init(ref, &active_debug_desc);
  94}
  95
  96static void debug_active_activate(struct i915_active *ref)
  97{
  98	lockdep_assert_held(&ref->tree_lock);
  99	if (!atomic_read(&ref->count)) /* before the first inc */
 100		debug_object_activate(ref, &active_debug_desc);
 101}
 102
 103static void debug_active_deactivate(struct i915_active *ref)
 104{
 105	lockdep_assert_held(&ref->tree_lock);
 106	if (!atomic_read(&ref->count)) /* after the last dec */
 107		debug_object_deactivate(ref, &active_debug_desc);
 108}
 109
 110static void debug_active_fini(struct i915_active *ref)
 111{
 112	debug_object_free(ref, &active_debug_desc);
 113}
 114
 115static void debug_active_assert(struct i915_active *ref)
 116{
 117	debug_object_assert_init(ref, &active_debug_desc);
 118}
 119
 120#else
 121
 122static inline void debug_active_init(struct i915_active *ref) { }
 123static inline void debug_active_activate(struct i915_active *ref) { }
 124static inline void debug_active_deactivate(struct i915_active *ref) { }
 125static inline void debug_active_fini(struct i915_active *ref) { }
 126static inline void debug_active_assert(struct i915_active *ref) { }
 127
 128#endif
 129
 130static void
 131__active_retire(struct i915_active *ref)
 132{
 133	struct rb_root root = RB_ROOT;
 134	struct active_node *it, *n;
 135	unsigned long flags;
 136
 137	GEM_BUG_ON(i915_active_is_idle(ref));
 138
 139	/* return the unused nodes to our slabcache -- flushing the allocator */
 140	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
 141		return;
 142
 143	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
 144	debug_active_deactivate(ref);
 145
 146	/* Even if we have not used the cache, we may still have a barrier */
 147	if (!ref->cache)
 148		ref->cache = fetch_node(ref->tree.rb_node);
 149
 150	/* Keep the MRU cached node for reuse */
 151	if (ref->cache) {
 152		/* Discard all other nodes in the tree */
 153		rb_erase(&ref->cache->node, &ref->tree);
 154		root = ref->tree;
 155
 156		/* Rebuild the tree with only the cached node */
 157		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
 158		rb_insert_color(&ref->cache->node, &ref->tree);
 159		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
 160
 161		/* Make the cached node available for reuse with any timeline */
 162		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
 163	}
 164
 165	spin_unlock_irqrestore(&ref->tree_lock, flags);
 166
 167	/* After the final retire, the entire struct may be freed */
 168	if (ref->retire)
 169		ref->retire(ref);
 170
 171	/* ... except if you wait on it, you must manage your own references! */
 172	wake_up_var(ref);
 173
 174	/* Finally free the discarded timeline tree  */
 175	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
 176		GEM_BUG_ON(i915_active_fence_isset(&it->base));
 177		kmem_cache_free(global.slab_cache, it);
 178	}
 179}
 180
 181static void
 182active_work(struct work_struct *wrk)
 183{
 184	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
 185
 186	GEM_BUG_ON(!atomic_read(&ref->count));
 187	if (atomic_add_unless(&ref->count, -1, 1))
 188		return;
 189
 190	__active_retire(ref);
 191}
 192
 193static void
 194active_retire(struct i915_active *ref)
 195{
 196	GEM_BUG_ON(!atomic_read(&ref->count));
 197	if (atomic_add_unless(&ref->count, -1, 1))
 198		return;
 199
 200	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
 201		queue_work(system_unbound_wq, &ref->work);
 202		return;
 203	}
 204
 205	__active_retire(ref);
 206}
 207
 208static inline struct dma_fence **
 209__active_fence_slot(struct i915_active_fence *active)
 210{
 211	return (struct dma_fence ** __force)&active->fence;
 212}
 213
 214static inline bool
 215active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 216{
 217	struct i915_active_fence *active =
 218		container_of(cb, typeof(*active), cb);
 219
 220	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
 221}
 222
 223static void
 224node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 225{
 226	if (active_fence_cb(fence, cb))
 227		active_retire(container_of(cb, struct active_node, base.cb)->ref);
 228}
 229
 230static void
 231excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 232{
 233	if (active_fence_cb(fence, cb))
 234		active_retire(container_of(cb, struct i915_active, excl.cb));
 235}
 236
 237static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
 238{
 239	struct active_node *it;
 240
 241	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
 242
 243	/*
 244	 * We track the most recently used timeline to skip a rbtree search
 245	 * for the common case, under typical loads we never need the rbtree
 246	 * at all. We can reuse the last slot if it is empty, that is
 247	 * after the previous activity has been retired, or if it matches the
 248	 * current timeline.
 249	 */
 250	it = READ_ONCE(ref->cache);
 251	if (it) {
 252		u64 cached = READ_ONCE(it->timeline);
 253
 254		/* Once claimed, this slot will only belong to this idx */
 255		if (cached == idx)
 256			return it;
 257
 258		/*
 259		 * An unclaimed cache [.timeline=0] can only be claimed once.
 260		 *
 261		 * If the value is already non-zero, some other thread has
 262		 * claimed the cache and we know that is does not match our
 263		 * idx. If, and only if, the timeline is currently zero is it
 264		 * worth competing to claim it atomically for ourselves (for
 265		 * only the winner of that race will cmpxchg return the old
 266		 * value of 0).
 267		 */
 268		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
 269			return it;
 270	}
 271
 272	BUILD_BUG_ON(offsetof(typeof(*it), node));
 273
 274	/* While active, the tree can only be built; not destroyed */
 275	GEM_BUG_ON(i915_active_is_idle(ref));
 276
 277	it = fetch_node(ref->tree.rb_node);
 278	while (it) {
 279		if (it->timeline < idx) {
 280			it = fetch_node(it->node.rb_right);
 281		} else if (it->timeline > idx) {
 282			it = fetch_node(it->node.rb_left);
 283		} else {
 284			WRITE_ONCE(ref->cache, it);
 285			break;
 286		}
 287	}
 288
 289	/* NB: If the tree rotated beneath us, we may miss our target. */
 290	return it;
 291}
 292
 293static struct i915_active_fence *
 294active_instance(struct i915_active *ref, u64 idx)
 295{
 296	struct active_node *node;
 297	struct rb_node **p, *parent;
 298
 299	node = __active_lookup(ref, idx);
 300	if (likely(node))
 301		return &node->base;
 302
 303	spin_lock_irq(&ref->tree_lock);
 304	GEM_BUG_ON(i915_active_is_idle(ref));
 305
 306	parent = NULL;
 307	p = &ref->tree.rb_node;
 308	while (*p) {
 309		parent = *p;
 310
 311		node = rb_entry(parent, struct active_node, node);
 312		if (node->timeline == idx)
 313			goto out;
 314
 315		if (node->timeline < idx)
 316			p = &parent->rb_right;
 317		else
 318			p = &parent->rb_left;
 319	}
 320
 321	/*
 322	 * XXX: We should preallocate this before i915_active_ref() is ever
 323	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
 324	 */
 325	node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC);
 326	if (!node)
 327		goto out;
 328
 329	__i915_active_fence_init(&node->base, NULL, node_retire);
 330	node->ref = ref;
 331	node->timeline = idx;
 332
 333	rb_link_node(&node->node, parent, p);
 334	rb_insert_color(&node->node, &ref->tree);
 335
 336out:
 337	WRITE_ONCE(ref->cache, node);
 338	spin_unlock_irq(&ref->tree_lock);
 339
 340	return &node->base;
 341}
 342
 343void __i915_active_init(struct i915_active *ref,
 344			int (*active)(struct i915_active *ref),
 345			void (*retire)(struct i915_active *ref),
 346			unsigned long flags,
 347			struct lock_class_key *mkey,
 348			struct lock_class_key *wkey)
 349{
 350	debug_active_init(ref);
 351
 352	ref->flags = flags;
 353	ref->active = active;
 354	ref->retire = retire;
 355
 356	spin_lock_init(&ref->tree_lock);
 357	ref->tree = RB_ROOT;
 358	ref->cache = NULL;
 359
 360	init_llist_head(&ref->preallocated_barriers);
 361	atomic_set(&ref->count, 0);
 362	__mutex_init(&ref->mutex, "i915_active", mkey);
 363	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
 364	INIT_WORK(&ref->work, active_work);
 365#if IS_ENABLED(CONFIG_LOCKDEP)
 366	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
 367#endif
 368}
 369
 370static bool ____active_del_barrier(struct i915_active *ref,
 371				   struct active_node *node,
 372				   struct intel_engine_cs *engine)
 373
 374{
 375	struct llist_node *head = NULL, *tail = NULL;
 376	struct llist_node *pos, *next;
 377
 378	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
 379
 380	/*
 381	 * Rebuild the llist excluding our node. We may perform this
 382	 * outside of the kernel_context timeline mutex and so someone
 383	 * else may be manipulating the engine->barrier_tasks, in
 384	 * which case either we or they will be upset :)
 385	 *
 386	 * A second __active_del_barrier() will report failure to claim
 387	 * the active_node and the caller will just shrug and know not to
 388	 * claim ownership of its node.
 389	 *
 390	 * A concurrent i915_request_add_active_barriers() will miss adding
 391	 * any of the tasks, but we will try again on the next -- and since
 392	 * we are actively using the barrier, we know that there will be
 393	 * at least another opportunity when we idle.
 394	 */
 395	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
 396		if (node == barrier_from_ll(pos)) {
 397			node = NULL;
 398			continue;
 399		}
 400
 401		pos->next = head;
 402		head = pos;
 403		if (!tail)
 404			tail = pos;
 405	}
 406	if (head)
 407		llist_add_batch(head, tail, &engine->barrier_tasks);
 408
 409	return !node;
 410}
 411
 412static bool
 413__active_del_barrier(struct i915_active *ref, struct active_node *node)
 414{
 415	return ____active_del_barrier(ref, node, barrier_to_engine(node));
 416}
 417
 418static bool
 419replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
 420{
 421	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
 422		return false;
 423
 424	/*
 425	 * This request is on the kernel_context timeline, and so
 426	 * we can use it to substitute for the pending idle-barrer
 427	 * request that we want to emit on the kernel_context.
 428	 */
 429	__active_del_barrier(ref, node_from_active(active));
 430	return true;
 431}
 432
 433int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 434{
 435	struct i915_active_fence *active;
 436	int err;
 437
 438	/* Prevent reaping in case we malloc/wait while building the tree */
 439	err = i915_active_acquire(ref);
 440	if (err)
 441		return err;
 442
 443	active = active_instance(ref, idx);
 444	if (!active) {
 445		err = -ENOMEM;
 446		goto out;
 447	}
 448
 449	if (replace_barrier(ref, active)) {
 450		RCU_INIT_POINTER(active->fence, NULL);
 451		atomic_dec(&ref->count);
 452	}
 453	if (!__i915_active_fence_set(active, fence))
 454		__i915_active_acquire(ref);
 455
 456out:
 457	i915_active_release(ref);
 458	return err;
 459}
 460
 461static struct dma_fence *
 462__i915_active_set_fence(struct i915_active *ref,
 463			struct i915_active_fence *active,
 464			struct dma_fence *fence)
 465{
 466	struct dma_fence *prev;
 467
 468	if (replace_barrier(ref, active)) {
 469		RCU_INIT_POINTER(active->fence, fence);
 470		return NULL;
 471	}
 472
 473	rcu_read_lock();
 474	prev = __i915_active_fence_set(active, fence);
 475	if (prev)
 476		prev = dma_fence_get_rcu(prev);
 477	else
 478		__i915_active_acquire(ref);
 479	rcu_read_unlock();
 480
 481	return prev;
 482}
 483
 484static struct i915_active_fence *
 485__active_fence(struct i915_active *ref, u64 idx)
 486{
 487	struct active_node *it;
 488
 489	it = __active_lookup(ref, idx);
 490	if (unlikely(!it)) { /* Contention with parallel tree builders! */
 491		spin_lock_irq(&ref->tree_lock);
 492		it = __active_lookup(ref, idx);
 493		spin_unlock_irq(&ref->tree_lock);
 494	}
 495	GEM_BUG_ON(!it); /* slot must be preallocated */
 496
 497	return &it->base;
 498}
 499
 500struct dma_fence *
 501__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 502{
 503	/* Only valid while active, see i915_active_acquire_for_context() */
 504	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
 505}
 506
 507struct dma_fence *
 508i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
 509{
 510	/* We expect the caller to manage the exclusive timeline ordering */
 511	return __i915_active_set_fence(ref, &ref->excl, f);
 512}
 513
 514bool i915_active_acquire_if_busy(struct i915_active *ref)
 515{
 516	debug_active_assert(ref);
 517	return atomic_add_unless(&ref->count, 1, 0);
 518}
 519
 520static void __i915_active_activate(struct i915_active *ref)
 521{
 522	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
 523	if (!atomic_fetch_inc(&ref->count))
 524		debug_active_activate(ref);
 525	spin_unlock_irq(&ref->tree_lock);
 526}
 527
 528int i915_active_acquire(struct i915_active *ref)
 529{
 530	int err;
 531
 532	if (i915_active_acquire_if_busy(ref))
 533		return 0;
 534
 535	if (!ref->active) {
 536		__i915_active_activate(ref);
 537		return 0;
 538	}
 539
 540	err = mutex_lock_interruptible(&ref->mutex);
 541	if (err)
 542		return err;
 543
 544	if (likely(!i915_active_acquire_if_busy(ref))) {
 545		err = ref->active(ref);
 546		if (!err)
 547			__i915_active_activate(ref);
 548	}
 549
 550	mutex_unlock(&ref->mutex);
 551
 552	return err;
 553}
 554
 555int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
 556{
 557	struct i915_active_fence *active;
 558	int err;
 559
 560	err = i915_active_acquire(ref);
 561	if (err)
 562		return err;
 563
 564	active = active_instance(ref, idx);
 565	if (!active) {
 566		i915_active_release(ref);
 567		return -ENOMEM;
 568	}
 569
 570	return 0; /* return with active ref */
 571}
 572
 573void i915_active_release(struct i915_active *ref)
 574{
 575	debug_active_assert(ref);
 576	active_retire(ref);
 577}
 578
 579static void enable_signaling(struct i915_active_fence *active)
 580{
 581	struct dma_fence *fence;
 582
 583	if (unlikely(is_barrier(active)))
 584		return;
 585
 586	fence = i915_active_fence_get(active);
 587	if (!fence)
 588		return;
 589
 590	dma_fence_enable_sw_signaling(fence);
 591	dma_fence_put(fence);
 592}
 593
 594static int flush_barrier(struct active_node *it)
 595{
 596	struct intel_engine_cs *engine;
 597
 598	if (likely(!is_barrier(&it->base)))
 599		return 0;
 600
 601	engine = __barrier_to_engine(it);
 602	smp_rmb(); /* serialise with add_active_barriers */
 603	if (!is_barrier(&it->base))
 604		return 0;
 605
 606	return intel_engine_flush_barriers(engine);
 607}
 608
 609static int flush_lazy_signals(struct i915_active *ref)
 610{
 611	struct active_node *it, *n;
 612	int err = 0;
 613
 614	enable_signaling(&ref->excl);
 615	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 616		err = flush_barrier(it); /* unconnected idle barrier? */
 617		if (err)
 618			break;
 619
 620		enable_signaling(&it->base);
 621	}
 622
 623	return err;
 624}
 625
 626int __i915_active_wait(struct i915_active *ref, int state)
 627{
 628	might_sleep();
 629
 630	/* Any fence added after the wait begins will not be auto-signaled */
 631	if (i915_active_acquire_if_busy(ref)) {
 632		int err;
 633
 634		err = flush_lazy_signals(ref);
 635		i915_active_release(ref);
 636		if (err)
 637			return err;
 638
 639		if (___wait_var_event(ref, i915_active_is_idle(ref),
 640				      state, 0, 0, schedule()))
 641			return -EINTR;
 642	}
 643
 644	/*
 645	 * After the wait is complete, the caller may free the active.
 646	 * We have to flush any concurrent retirement before returning.
 647	 */
 648	flush_work(&ref->work);
 649	return 0;
 650}
 651
 652static int __await_active(struct i915_active_fence *active,
 653			  int (*fn)(void *arg, struct dma_fence *fence),
 654			  void *arg)
 655{
 656	struct dma_fence *fence;
 657
 658	if (is_barrier(active)) /* XXX flush the barrier? */
 659		return 0;
 660
 661	fence = i915_active_fence_get(active);
 662	if (fence) {
 663		int err;
 664
 665		err = fn(arg, fence);
 666		dma_fence_put(fence);
 667		if (err < 0)
 668			return err;
 669	}
 670
 671	return 0;
 672}
 673
 674struct wait_barrier {
 675	struct wait_queue_entry base;
 676	struct i915_active *ref;
 677};
 678
 679static int
 680barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
 681{
 682	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
 683
 684	if (i915_active_is_idle(wb->ref)) {
 685		list_del(&wq->entry);
 686		i915_sw_fence_complete(wq->private);
 687		kfree(wq);
 688	}
 689
 690	return 0;
 691}
 692
 693static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
 694{
 695	struct wait_barrier *wb;
 696
 697	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
 698	if (unlikely(!wb))
 699		return -ENOMEM;
 700
 701	GEM_BUG_ON(i915_active_is_idle(ref));
 702	if (!i915_sw_fence_await(fence)) {
 703		kfree(wb);
 704		return -EINVAL;
 705	}
 706
 707	wb->base.flags = 0;
 708	wb->base.func = barrier_wake;
 709	wb->base.private = fence;
 710	wb->ref = ref;
 711
 712	add_wait_queue(__var_waitqueue(ref), &wb->base);
 713	return 0;
 714}
 715
 716static int await_active(struct i915_active *ref,
 717			unsigned int flags,
 718			int (*fn)(void *arg, struct dma_fence *fence),
 719			void *arg, struct i915_sw_fence *barrier)
 720{
 721	int err = 0;
 722
 723	if (!i915_active_acquire_if_busy(ref))
 724		return 0;
 725
 726	if (flags & I915_ACTIVE_AWAIT_EXCL &&
 727	    rcu_access_pointer(ref->excl.fence)) {
 728		err = __await_active(&ref->excl, fn, arg);
 729		if (err)
 730			goto out;
 731	}
 732
 733	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
 734		struct active_node *it, *n;
 735
 736		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 737			err = __await_active(&it->base, fn, arg);
 738			if (err)
 739				goto out;
 740		}
 741	}
 742
 743	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
 744		err = flush_lazy_signals(ref);
 745		if (err)
 746			goto out;
 747
 748		err = __await_barrier(ref, barrier);
 749		if (err)
 750			goto out;
 751	}
 752
 753out:
 754	i915_active_release(ref);
 755	return err;
 756}
 757
 758static int rq_await_fence(void *arg, struct dma_fence *fence)
 759{
 760	return i915_request_await_dma_fence(arg, fence);
 761}
 762
 763int i915_request_await_active(struct i915_request *rq,
 764			      struct i915_active *ref,
 765			      unsigned int flags)
 766{
 767	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
 768}
 769
 770static int sw_await_fence(void *arg, struct dma_fence *fence)
 771{
 772	return i915_sw_fence_await_dma_fence(arg, fence, 0,
 773					     GFP_NOWAIT | __GFP_NOWARN);
 774}
 775
 776int i915_sw_fence_await_active(struct i915_sw_fence *fence,
 777			       struct i915_active *ref,
 778			       unsigned int flags)
 779{
 780	return await_active(ref, flags, sw_await_fence, fence, fence);
 781}
 782
 783void i915_active_fini(struct i915_active *ref)
 784{
 785	debug_active_fini(ref);
 786	GEM_BUG_ON(atomic_read(&ref->count));
 787	GEM_BUG_ON(work_pending(&ref->work));
 788	mutex_destroy(&ref->mutex);
 789
 790	if (ref->cache)
 791		kmem_cache_free(global.slab_cache, ref->cache);
 792}
 793
 794static inline bool is_idle_barrier(struct active_node *node, u64 idx)
 795{
 796	return node->timeline == idx && !i915_active_fence_isset(&node->base);
 797}
 798
 799static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
 800{
 801	struct rb_node *prev, *p;
 802
 803	if (RB_EMPTY_ROOT(&ref->tree))
 804		return NULL;
 805
 806	GEM_BUG_ON(i915_active_is_idle(ref));
 807
 808	/*
 809	 * Try to reuse any existing barrier nodes already allocated for this
 810	 * i915_active, due to overlapping active phases there is likely a
 811	 * node kept alive (as we reuse before parking). We prefer to reuse
 812	 * completely idle barriers (less hassle in manipulating the llists),
 813	 * but otherwise any will do.
 814	 */
 815	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
 816		p = &ref->cache->node;
 817		goto match;
 818	}
 819
 820	prev = NULL;
 821	p = ref->tree.rb_node;
 822	while (p) {
 823		struct active_node *node =
 824			rb_entry(p, struct active_node, node);
 825
 826		if (is_idle_barrier(node, idx))
 827			goto match;
 828
 829		prev = p;
 830		if (node->timeline < idx)
 831			p = READ_ONCE(p->rb_right);
 832		else
 833			p = READ_ONCE(p->rb_left);
 834	}
 835
 836	/*
 837	 * No quick match, but we did find the leftmost rb_node for the
 838	 * kernel_context. Walk the rb_tree in-order to see if there were
 839	 * any idle-barriers on this timeline that we missed, or just use
 840	 * the first pending barrier.
 841	 */
 842	for (p = prev; p; p = rb_next(p)) {
 843		struct active_node *node =
 844			rb_entry(p, struct active_node, node);
 845		struct intel_engine_cs *engine;
 846
 847		if (node->timeline > idx)
 848			break;
 849
 850		if (node->timeline < idx)
 851			continue;
 852
 853		if (is_idle_barrier(node, idx))
 854			goto match;
 855
 856		/*
 857		 * The list of pending barriers is protected by the
 858		 * kernel_context timeline, which notably we do not hold
 859		 * here. i915_request_add_active_barriers() may consume
 860		 * the barrier before we claim it, so we have to check
 861		 * for success.
 862		 */
 863		engine = __barrier_to_engine(node);
 864		smp_rmb(); /* serialise with add_active_barriers */
 865		if (is_barrier(&node->base) &&
 866		    ____active_del_barrier(ref, node, engine))
 867			goto match;
 868	}
 869
 870	return NULL;
 871
 872match:
 873	spin_lock_irq(&ref->tree_lock);
 874	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
 875	if (p == &ref->cache->node)
 876		WRITE_ONCE(ref->cache, NULL);
 877	spin_unlock_irq(&ref->tree_lock);
 878
 879	return rb_entry(p, struct active_node, node);
 880}
 881
 882int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
 883					    struct intel_engine_cs *engine)
 884{
 885	intel_engine_mask_t tmp, mask = engine->mask;
 886	struct llist_node *first = NULL, *last = NULL;
 887	struct intel_gt *gt = engine->gt;
 888
 889	GEM_BUG_ON(i915_active_is_idle(ref));
 890
 891	/* Wait until the previous preallocation is completed */
 892	while (!llist_empty(&ref->preallocated_barriers))
 893		cond_resched();
 894
 895	/*
 896	 * Preallocate a node for each physical engine supporting the target
 897	 * engine (remember virtual engines have more than one sibling).
 898	 * We can then use the preallocated nodes in
 899	 * i915_active_acquire_barrier()
 900	 */
 901	GEM_BUG_ON(!mask);
 902	for_each_engine_masked(engine, gt, mask, tmp) {
 903		u64 idx = engine->kernel_context->timeline->fence_context;
 904		struct llist_node *prev = first;
 905		struct active_node *node;
 906
 907		rcu_read_lock();
 908		node = reuse_idle_barrier(ref, idx);
 909		rcu_read_unlock();
 910		if (!node) {
 911			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 912			if (!node)
 913				goto unwind;
 914
 915			RCU_INIT_POINTER(node->base.fence, NULL);
 916			node->base.cb.func = node_retire;
 917			node->timeline = idx;
 918			node->ref = ref;
 919		}
 920
 921		if (!i915_active_fence_isset(&node->base)) {
 922			/*
 923			 * Mark this as being *our* unconnected proto-node.
 924			 *
 925			 * Since this node is not in any list, and we have
 926			 * decoupled it from the rbtree, we can reuse the
 927			 * request to indicate this is an idle-barrier node
 928			 * and then we can use the rb_node and list pointers
 929			 * for our tracking of the pending barrier.
 930			 */
 931			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
 932			node->base.cb.node.prev = (void *)engine;
 933			__i915_active_acquire(ref);
 934		}
 935		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
 936
 937		GEM_BUG_ON(barrier_to_engine(node) != engine);
 938		first = barrier_to_ll(node);
 939		first->next = prev;
 940		if (!last)
 941			last = first;
 942		intel_engine_pm_get(engine);
 943	}
 944
 945	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
 946	llist_add_batch(first, last, &ref->preallocated_barriers);
 947
 948	return 0;
 949
 950unwind:
 951	while (first) {
 952		struct active_node *node = barrier_from_ll(first);
 953
 954		first = first->next;
 955
 956		atomic_dec(&ref->count);
 957		intel_engine_pm_put(barrier_to_engine(node));
 958
 959		kmem_cache_free(global.slab_cache, node);
 960	}
 961	return -ENOMEM;
 962}
 963
 964void i915_active_acquire_barrier(struct i915_active *ref)
 965{
 966	struct llist_node *pos, *next;
 967	unsigned long flags;
 968
 969	GEM_BUG_ON(i915_active_is_idle(ref));
 970
 971	/*
 972	 * Transfer the list of preallocated barriers into the
 973	 * i915_active rbtree, but only as proto-nodes. They will be
 974	 * populated by i915_request_add_active_barriers() to point to the
 975	 * request that will eventually release them.
 976	 */
 977	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
 978		struct active_node *node = barrier_from_ll(pos);
 979		struct intel_engine_cs *engine = barrier_to_engine(node);
 980		struct rb_node **p, *parent;
 981
 982		spin_lock_irqsave_nested(&ref->tree_lock, flags,
 983					 SINGLE_DEPTH_NESTING);
 984		parent = NULL;
 985		p = &ref->tree.rb_node;
 986		while (*p) {
 987			struct active_node *it;
 988
 989			parent = *p;
 990
 991			it = rb_entry(parent, struct active_node, node);
 992			if (it->timeline < node->timeline)
 993				p = &parent->rb_right;
 994			else
 995				p = &parent->rb_left;
 996		}
 997		rb_link_node(&node->node, parent, p);
 998		rb_insert_color(&node->node, &ref->tree);
 999		spin_unlock_irqrestore(&ref->tree_lock, flags);
1000
1001		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1002		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1003		intel_engine_pm_put_delay(engine, 1);
1004	}
1005}
1006
1007static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1008{
1009	return __active_fence_slot(&barrier_from_ll(node)->base);
1010}
1011
1012void i915_request_add_active_barriers(struct i915_request *rq)
1013{
1014	struct intel_engine_cs *engine = rq->engine;
1015	struct llist_node *node, *next;
1016	unsigned long flags;
1017
1018	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1019	GEM_BUG_ON(intel_engine_is_virtual(engine));
1020	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1021
1022	node = llist_del_all(&engine->barrier_tasks);
1023	if (!node)
1024		return;
1025	/*
1026	 * Attach the list of proto-fences to the in-flight request such
1027	 * that the parent i915_active will be released when this request
1028	 * is retired.
1029	 */
1030	spin_lock_irqsave(&rq->lock, flags);
1031	llist_for_each_safe(node, next, node) {
1032		/* serialise with reuse_idle_barrier */
1033		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1034		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1035	}
1036	spin_unlock_irqrestore(&rq->lock, flags);
1037}
1038
1039/*
1040 * __i915_active_fence_set: Update the last active fence along its timeline
1041 * @active: the active tracker
1042 * @fence: the new fence (under construction)
1043 *
1044 * Records the new @fence as the last active fence along its timeline in
1045 * this active tracker, moving the tracking callbacks from the previous
1046 * fence onto this one. Returns the previous fence (if not already completed),
1047 * which the caller must ensure is executed before the new fence. To ensure
1048 * that the order of fences within the timeline of the i915_active_fence is
1049 * understood, it should be locked by the caller.
1050 */
1051struct dma_fence *
1052__i915_active_fence_set(struct i915_active_fence *active,
1053			struct dma_fence *fence)
1054{
1055	struct dma_fence *prev;
1056	unsigned long flags;
1057
1058	if (fence == rcu_access_pointer(active->fence))
1059		return fence;
1060
1061	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1062
1063	/*
1064	 * Consider that we have two threads arriving (A and B), with
1065	 * C already resident as the active->fence.
1066	 *
1067	 * A does the xchg first, and so it sees C or NULL depending
1068	 * on the timing of the interrupt handler. If it is NULL, the
1069	 * previous fence must have been signaled and we know that
1070	 * we are first on the timeline. If it is still present,
1071	 * we acquire the lock on that fence and serialise with the interrupt
1072	 * handler, in the process removing it from any future interrupt
1073	 * callback. A will then wait on C before executing (if present).
1074	 *
1075	 * As B is second, it sees A as the previous fence and so waits for
1076	 * it to complete its transition and takes over the occupancy for
1077	 * itself -- remembering that it needs to wait on A before executing.
1078	 *
1079	 * Note the strong ordering of the timeline also provides consistent
1080	 * nesting rules for the fence->lock; the inner lock is always the
1081	 * older lock.
1082	 */
1083	spin_lock_irqsave(fence->lock, flags);
1084	prev = xchg(__active_fence_slot(active), fence);
1085	if (prev) {
1086		GEM_BUG_ON(prev == fence);
1087		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1088		__list_del_entry(&active->cb.node);
1089		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1090	}
1091	list_add_tail(&active->cb.node, &fence->cb_list);
1092	spin_unlock_irqrestore(fence->lock, flags);
1093
1094	return prev;
1095}
1096
1097int i915_active_fence_set(struct i915_active_fence *active,
1098			  struct i915_request *rq)
1099{
1100	struct dma_fence *fence;
1101	int err = 0;
1102
1103	/* Must maintain timeline ordering wrt previous active requests */
1104	rcu_read_lock();
1105	fence = __i915_active_fence_set(active, &rq->fence);
1106	if (fence) /* but the previous fence may not belong to that timeline! */
1107		fence = dma_fence_get_rcu(fence);
1108	rcu_read_unlock();
1109	if (fence) {
1110		err = i915_request_await_dma_fence(rq, fence);
1111		dma_fence_put(fence);
1112	}
1113
1114	return err;
1115}
1116
1117void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1118{
1119	active_fence_cb(fence, cb);
1120}
1121
1122struct auto_active {
1123	struct i915_active base;
1124	struct kref ref;
1125};
1126
1127struct i915_active *i915_active_get(struct i915_active *ref)
1128{
1129	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1130
1131	kref_get(&aa->ref);
1132	return &aa->base;
1133}
1134
1135static void auto_release(struct kref *ref)
1136{
1137	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1138
1139	i915_active_fini(&aa->base);
1140	kfree(aa);
1141}
1142
1143void i915_active_put(struct i915_active *ref)
1144{
1145	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1146
1147	kref_put(&aa->ref, auto_release);
1148}
1149
1150static int auto_active(struct i915_active *ref)
1151{
1152	i915_active_get(ref);
1153	return 0;
1154}
1155
1156static void auto_retire(struct i915_active *ref)
1157{
1158	i915_active_put(ref);
1159}
1160
1161struct i915_active *i915_active_create(void)
1162{
1163	struct auto_active *aa;
1164
1165	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1166	if (!aa)
1167		return NULL;
1168
1169	kref_init(&aa->ref);
1170	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1171
1172	return &aa->base;
1173}
1174
1175#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1176#include "selftests/i915_active.c"
1177#endif
1178
1179static void i915_global_active_shrink(void)
1180{
1181	kmem_cache_shrink(global.slab_cache);
1182}
1183
1184static void i915_global_active_exit(void)
1185{
1186	kmem_cache_destroy(global.slab_cache);
1187}
1188
1189static struct i915_global_active global = { {
1190	.shrink = i915_global_active_shrink,
1191	.exit = i915_global_active_exit,
1192} };
1193
1194int __init i915_global_active_init(void)
1195{
1196	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1197	if (!global.slab_cache)
1198		return -ENOMEM;
1199
1200	i915_global_register(&global.base);
1201	return 0;
1202}