Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2014-2016 Intel Corporation
  5 */
  6
  7#include <linux/pagevec.h>
  8#include <linux/shmem_fs.h>
  9#include <linux/swap.h>
 10
 11#include <drm/drm_cache.h>
 12
 13#include "gem/i915_gem_region.h"
 14#include "i915_drv.h"
 15#include "i915_gem_object.h"
 16#include "i915_gem_tiling.h"
 17#include "i915_gemfs.h"
 18#include "i915_scatterlist.h"
 19#include "i915_trace.h"
 20
 21/*
 22 * Move folios to appropriate lru and release the batch, decrementing the
 23 * ref count of those folios.
 24 */
 25static void check_release_folio_batch(struct folio_batch *fbatch)
 26{
 27	check_move_unevictable_folios(fbatch);
 28	__folio_batch_release(fbatch);
 29	cond_resched();
 30}
 31
 32void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
 33			 bool dirty, bool backup)
 34{
 35	struct sgt_iter sgt_iter;
 36	struct folio_batch fbatch;
 37	struct folio *last = NULL;
 38	struct page *page;
 39
 40	mapping_clear_unevictable(mapping);
 41
 42	folio_batch_init(&fbatch);
 43	for_each_sgt_page(page, sgt_iter, st) {
 44		struct folio *folio = page_folio(page);
 45
 46		if (folio == last)
 47			continue;
 48		last = folio;
 49		if (dirty)
 50			folio_mark_dirty(folio);
 51		if (backup)
 52			folio_mark_accessed(folio);
 53
 54		if (!folio_batch_add(&fbatch, folio))
 55			check_release_folio_batch(&fbatch);
 56	}
 57	if (fbatch.nr)
 58		check_release_folio_batch(&fbatch);
 59
 60	sg_free_table(st);
 61}
 62
 63int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
 64			 size_t size, struct intel_memory_region *mr,
 65			 struct address_space *mapping,
 66			 unsigned int max_segment)
 67{
 68	unsigned int page_count; /* restricted by sg_alloc_table */
 69	unsigned long i;
 70	struct scatterlist *sg;
 71	unsigned long next_pfn = 0;	/* suppress gcc warning */
 72	gfp_t noreclaim;
 73	int ret;
 74
 75	if (overflows_type(size / PAGE_SIZE, page_count))
 76		return -E2BIG;
 77
 78	page_count = size / PAGE_SIZE;
 79	/*
 80	 * If there's no chance of allocating enough pages for the whole
 81	 * object, bail early.
 82	 */
 83	if (size > resource_size(&mr->region))
 84		return -ENOMEM;
 85
 86	if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
 87		return -ENOMEM;
 88
 89	/*
 90	 * Get the list of pages out of our struct file.  They'll be pinned
 91	 * at this point until we release them.
 92	 *
 93	 * Fail silently without starting the shrinker
 94	 */
 95	mapping_set_unevictable(mapping);
 96	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
 97	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
 98
 99	sg = st->sgl;
100	st->nents = 0;
101	for (i = 0; i < page_count; i++) {
102		struct folio *folio;
103		unsigned long nr_pages;
104		const unsigned int shrink[] = {
105			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
106			0,
107		}, *s = shrink;
108		gfp_t gfp = noreclaim;
109
110		do {
111			cond_resched();
112			folio = shmem_read_folio_gfp(mapping, i, gfp);
113			if (!IS_ERR(folio))
114				break;
115
116			if (!*s) {
117				ret = PTR_ERR(folio);
118				goto err_sg;
119			}
120
121			i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
122
123			/*
124			 * We've tried hard to allocate the memory by reaping
125			 * our own buffer, now let the real VM do its job and
126			 * go down in flames if truly OOM.
127			 *
128			 * However, since graphics tend to be disposable,
129			 * defer the oom here by reporting the ENOMEM back
130			 * to userspace.
131			 */
132			if (!*s) {
133				/* reclaim and warn, but no oom */
134				gfp = mapping_gfp_mask(mapping);
135
136				/*
137				 * Our bo are always dirty and so we require
138				 * kswapd to reclaim our pages (direct reclaim
139				 * does not effectively begin pageout of our
140				 * buffers on its own). However, direct reclaim
141				 * only waits for kswapd when under allocation
142				 * congestion. So as a result __GFP_RECLAIM is
143				 * unreliable and fails to actually reclaim our
144				 * dirty pages -- unless you try over and over
145				 * again with !__GFP_NORETRY. However, we still
146				 * want to fail this allocation rather than
147				 * trigger the out-of-memory killer and for
148				 * this we want __GFP_RETRY_MAYFAIL.
149				 */
150				gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
151			}
152		} while (1);
153
154		nr_pages = min_t(unsigned long,
155				folio_nr_pages(folio), page_count - i);
156		if (!i ||
157		    sg->length >= max_segment ||
158		    folio_pfn(folio) != next_pfn) {
159			if (i)
160				sg = sg_next(sg);
161
162			st->nents++;
163			sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0);
164		} else {
165			/* XXX: could overflow? */
166			sg->length += nr_pages * PAGE_SIZE;
167		}
168		next_pfn = folio_pfn(folio) + nr_pages;
169		i += nr_pages - 1;
170
171		/* Check that the i965g/gm workaround works. */
172		GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL);
173	}
174	if (sg) /* loop terminated early; short sg table */
175		sg_mark_end(sg);
176
177	/* Trim unused sg entries to avoid wasting memory. */
178	i915_sg_trim(st);
179
180	return 0;
181err_sg:
182	sg_mark_end(sg);
183	if (sg != st->sgl) {
184		shmem_sg_free_table(st, mapping, false, false);
185	} else {
186		mapping_clear_unevictable(mapping);
187		sg_free_table(st);
188	}
189
190	/*
191	 * shmemfs first checks if there is enough memory to allocate the page
192	 * and reports ENOSPC should there be insufficient, along with the usual
193	 * ENOMEM for a genuine allocation failure.
194	 *
195	 * We use ENOSPC in our driver to mean that we have run out of aperture
196	 * space and so want to translate the error from shmemfs back to our
197	 * usual understanding of ENOMEM.
198	 */
199	if (ret == -ENOSPC)
200		ret = -ENOMEM;
201
202	return ret;
203}
204
205static int shmem_get_pages(struct drm_i915_gem_object *obj)
206{
207	struct drm_i915_private *i915 = to_i915(obj->base.dev);
208	struct intel_memory_region *mem = obj->mm.region;
209	struct address_space *mapping = obj->base.filp->f_mapping;
210	unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
211	struct sg_table *st;
212	int ret;
213
214	/*
215	 * Assert that the object is not currently in any GPU domain. As it
216	 * wasn't in the GTT, there shouldn't be any way it could have been in
217	 * a GPU cache
218	 */
219	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
220	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
221
222rebuild_st:
223	st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
224	if (!st)
225		return -ENOMEM;
226
227	ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
228				   max_segment);
229	if (ret)
230		goto err_st;
231
232	ret = i915_gem_gtt_prepare_pages(obj, st);
233	if (ret) {
234		/*
235		 * DMA remapping failed? One possible cause is that
236		 * it could not reserve enough large entries, asking
237		 * for PAGE_SIZE chunks instead may be helpful.
238		 */
239		if (max_segment > PAGE_SIZE) {
240			shmem_sg_free_table(st, mapping, false, false);
241			kfree(st);
242
243			max_segment = PAGE_SIZE;
244			goto rebuild_st;
245		} else {
246			dev_warn(i915->drm.dev,
247				 "Failed to DMA remap %zu pages\n",
248				 obj->base.size >> PAGE_SHIFT);
249			goto err_pages;
250		}
251	}
252
253	if (i915_gem_object_needs_bit17_swizzle(obj))
254		i915_gem_object_do_bit_17_swizzle(obj, st);
255
256	if (i915_gem_object_can_bypass_llc(obj))
257		obj->cache_dirty = true;
258
259	__i915_gem_object_set_pages(obj, st);
260
261	return 0;
262
263err_pages:
264	shmem_sg_free_table(st, mapping, false, false);
265	/*
266	 * shmemfs first checks if there is enough memory to allocate the page
267	 * and reports ENOSPC should there be insufficient, along with the usual
268	 * ENOMEM for a genuine allocation failure.
269	 *
270	 * We use ENOSPC in our driver to mean that we have run out of aperture
271	 * space and so want to translate the error from shmemfs back to our
272	 * usual understanding of ENOMEM.
273	 */
274err_st:
275	if (ret == -ENOSPC)
276		ret = -ENOMEM;
277
278	kfree(st);
279
280	return ret;
281}
282
283static int
284shmem_truncate(struct drm_i915_gem_object *obj)
285{
286	/*
287	 * Our goal here is to return as much of the memory as
288	 * is possible back to the system as we are called from OOM.
289	 * To do this we must instruct the shmfs to drop all of its
290	 * backing pages, *now*.
291	 */
292	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
293	obj->mm.madv = __I915_MADV_PURGED;
294	obj->mm.pages = ERR_PTR(-EFAULT);
295
296	return 0;
297}
298
299void __shmem_writeback(size_t size, struct address_space *mapping)
300{
301	struct writeback_control wbc = {
302		.sync_mode = WB_SYNC_NONE,
303		.nr_to_write = SWAP_CLUSTER_MAX,
304		.range_start = 0,
305		.range_end = LLONG_MAX,
306		.for_reclaim = 1,
307	};
308	unsigned long i;
309
310	/*
311	 * Leave mmapings intact (GTT will have been revoked on unbinding,
312	 * leaving only CPU mmapings around) and add those pages to the LRU
313	 * instead of invoking writeback so they are aged and paged out
314	 * as normal.
315	 */
316
317	/* Begin writeback on each dirty page */
318	for (i = 0; i < size >> PAGE_SHIFT; i++) {
319		struct page *page;
320
321		page = find_lock_page(mapping, i);
322		if (!page)
323			continue;
324
325		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
326			int ret;
327
328			SetPageReclaim(page);
329			ret = mapping->a_ops->writepage(page, &wbc);
330			if (!PageWriteback(page))
331				ClearPageReclaim(page);
332			if (!ret)
333				goto put;
334		}
335		unlock_page(page);
336put:
337		put_page(page);
338	}
339}
340
341static void
342shmem_writeback(struct drm_i915_gem_object *obj)
343{
344	__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
345}
346
347static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
348{
349	switch (obj->mm.madv) {
350	case I915_MADV_DONTNEED:
351		return i915_gem_object_truncate(obj);
352	case __I915_MADV_PURGED:
353		return 0;
354	}
355
356	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
357		shmem_writeback(obj);
358
359	return 0;
360}
361
362void
363__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
364				struct sg_table *pages,
365				bool needs_clflush)
366{
367	struct drm_i915_private *i915 = to_i915(obj->base.dev);
368
369	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
370
371	if (obj->mm.madv == I915_MADV_DONTNEED)
372		obj->mm.dirty = false;
373
374	if (needs_clflush &&
375	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
376	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
377		drm_clflush_sg(pages);
378
379	__start_cpu_write(obj);
380	/*
381	 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
382	 * swapped-in. Our async flush path is not trust worthy enough yet(and
383	 * happens in the wrong order), and with some tricks it's conceivable
384	 * for userspace to change the cache-level to I915_CACHE_NONE after the
385	 * pages are swapped-in, and since execbuf binds the object before doing
386	 * the async flush, we have a race window.
387	 */
388	if (!HAS_LLC(i915) && !IS_DGFX(i915))
389		obj->cache_dirty = true;
390}
391
392void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
393{
394	__i915_gem_object_release_shmem(obj, pages, true);
395
396	i915_gem_gtt_finish_pages(obj, pages);
397
398	if (i915_gem_object_needs_bit17_swizzle(obj))
399		i915_gem_object_save_bit_17_swizzle(obj, pages);
400
401	shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
402			    obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
403	kfree(pages);
404	obj->mm.dirty = false;
405}
406
407static void
408shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
409{
410	if (likely(i915_gem_object_has_struct_page(obj)))
411		i915_gem_object_put_pages_shmem(obj, pages);
412	else
413		i915_gem_object_put_pages_phys(obj, pages);
414}
415
416static int
417shmem_pwrite(struct drm_i915_gem_object *obj,
418	     const struct drm_i915_gem_pwrite *arg)
419{
420	struct address_space *mapping = obj->base.filp->f_mapping;
421	const struct address_space_operations *aops = mapping->a_ops;
422	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
423	u64 remain;
424	loff_t pos;
425	unsigned int pg;
426
427	/* Caller already validated user args */
428	GEM_BUG_ON(!access_ok(user_data, arg->size));
429
430	if (!i915_gem_object_has_struct_page(obj))
431		return i915_gem_object_pwrite_phys(obj, arg);
432
433	/*
434	 * Before we instantiate/pin the backing store for our use, we
435	 * can prepopulate the shmemfs filp efficiently using a write into
436	 * the pagecache. We avoid the penalty of instantiating all the
437	 * pages, important if the user is just writing to a few and never
438	 * uses the object on the GPU, and using a direct write into shmemfs
439	 * allows it to avoid the cost of retrieving a page (either swapin
440	 * or clearing-before-use) before it is overwritten.
441	 */
442	if (i915_gem_object_has_pages(obj))
443		return -ENODEV;
444
445	if (obj->mm.madv != I915_MADV_WILLNEED)
446		return -EFAULT;
447
448	/*
449	 * Before the pages are instantiated the object is treated as being
450	 * in the CPU domain. The pages will be clflushed as required before
451	 * use, and we can freely write into the pages directly. If userspace
452	 * races pwrite with any other operation; corruption will ensue -
453	 * that is userspace's prerogative!
454	 */
455
456	remain = arg->size;
457	pos = arg->offset;
458	pg = offset_in_page(pos);
459
460	do {
461		unsigned int len, unwritten;
462		struct folio *folio;
463		void *data, *vaddr;
464		int err;
465		char __maybe_unused c;
466
467		len = PAGE_SIZE - pg;
468		if (len > remain)
469			len = remain;
470
471		/* Prefault the user page to reduce potential recursion */
472		err = __get_user(c, user_data);
473		if (err)
474			return err;
475
476		err = __get_user(c, user_data + len - 1);
477		if (err)
478			return err;
479
480		err = aops->write_begin(obj->base.filp, mapping, pos, len,
481					&folio, &data);
482		if (err < 0)
483			return err;
484
485		vaddr = kmap_local_folio(folio, offset_in_folio(folio, pos));
486		pagefault_disable();
487		unwritten = __copy_from_user_inatomic(vaddr, user_data, len);
488		pagefault_enable();
489		kunmap_local(vaddr);
490
491		err = aops->write_end(obj->base.filp, mapping, pos, len,
492				      len - unwritten, folio, data);
493		if (err < 0)
494			return err;
495
496		/* We don't handle -EFAULT, leave it to the caller to check */
497		if (unwritten)
498			return -ENODEV;
499
500		remain -= len;
501		user_data += len;
502		pos += len;
503		pg = 0;
504	} while (remain);
505
506	return 0;
507}
508
509static int
510shmem_pread(struct drm_i915_gem_object *obj,
511	    const struct drm_i915_gem_pread *arg)
512{
513	if (!i915_gem_object_has_struct_page(obj))
514		return i915_gem_object_pread_phys(obj, arg);
515
516	return -ENODEV;
517}
518
519static void shmem_release(struct drm_i915_gem_object *obj)
520{
521	if (i915_gem_object_has_struct_page(obj))
522		i915_gem_object_release_memory_region(obj);
523
524	fput(obj->base.filp);
525}
526
527const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
528	.name = "i915_gem_object_shmem",
529	.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
530
531	.get_pages = shmem_get_pages,
532	.put_pages = shmem_put_pages,
533	.truncate = shmem_truncate,
534	.shrink = shmem_shrink,
535
536	.pwrite = shmem_pwrite,
537	.pread = shmem_pread,
538
539	.release = shmem_release,
540};
541
542static int __create_shmem(struct drm_i915_private *i915,
543			  struct drm_gem_object *obj,
544			  resource_size_t size)
545{
546	unsigned long flags = VM_NORESERVE;
547	struct file *filp;
548
549	drm_gem_private_object_init(&i915->drm, obj, size);
550
551	/* XXX: The __shmem_file_setup() function returns -EINVAL if size is
552	 * greater than MAX_LFS_FILESIZE.
553	 * To handle the same error as other code that returns -E2BIG when
554	 * the size is too large, we add a code that returns -E2BIG when the
555	 * size is larger than the size that can be handled.
556	 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
557	 * so we only needs to check when BITS_PER_LONG is 64.
558	 * If BITS_PER_LONG is 32, E2BIG checks are processed when
559	 * i915_gem_object_size_2big() is called before init_object() callback
560	 * is called.
561	 */
562	if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
563		return -E2BIG;
564
565	if (i915->mm.gemfs)
566		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
567						 flags);
568	else
569		filp = shmem_file_setup("i915", size, flags);
570	if (IS_ERR(filp))
571		return PTR_ERR(filp);
572
573	obj->filp = filp;
574	return 0;
575}
576
577static int shmem_object_init(struct intel_memory_region *mem,
578			     struct drm_i915_gem_object *obj,
579			     resource_size_t offset,
580			     resource_size_t size,
581			     resource_size_t page_size,
582			     unsigned int flags)
583{
584	static struct lock_class_key lock_class;
585	struct drm_i915_private *i915 = mem->i915;
586	struct address_space *mapping;
587	unsigned int cache_level;
588	gfp_t mask;
589	int ret;
590
591	ret = __create_shmem(i915, &obj->base, size);
592	if (ret)
593		return ret;
594
595	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
596	if (IS_I965GM(i915) || IS_I965G(i915)) {
597		/* 965gm cannot relocate objects above 4GiB. */
598		mask &= ~__GFP_HIGHMEM;
599		mask |= __GFP_DMA32;
600	}
601
602	mapping = obj->base.filp->f_mapping;
603	mapping_set_gfp_mask(mapping, mask);
604	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
605
606	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
607	obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
608	obj->write_domain = I915_GEM_DOMAIN_CPU;
609	obj->read_domains = I915_GEM_DOMAIN_CPU;
610
611	/*
612	 * MTL doesn't snoop CPU cache by default for GPU access (namely
613	 * 1-way coherency). However some UMD's are currently depending on
614	 * that. Make 1-way coherent the default setting for MTL. A follow
615	 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify
616	 * caching mode at BO creation time
617	 */
618	if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)))
619		/* On some devices, we can have the GPU use the LLC (the CPU
620		 * cache) for about a 10% performance improvement
621		 * compared to uncached.  Graphics requests other than
622		 * display scanout are coherent with the CPU in
623		 * accessing this cache.  This means in this mode we
624		 * don't need to clflush on the CPU side, and on the
625		 * GPU side we only need to flush internal caches to
626		 * get data visible to the CPU.
627		 *
628		 * However, we maintain the display planes as UC, and so
629		 * need to rebind when first used as such.
630		 */
631		cache_level = I915_CACHE_LLC;
632	else
633		cache_level = I915_CACHE_NONE;
634
635	i915_gem_object_set_cache_coherency(obj, cache_level);
636
637	i915_gem_object_init_memory_region(obj, mem);
638
639	return 0;
640}
641
642struct drm_i915_gem_object *
643i915_gem_object_create_shmem(struct drm_i915_private *i915,
644			     resource_size_t size)
645{
646	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
647					     size, 0, 0);
648}
649
650/* Allocate a new GEM object and fill it with the supplied data */
651struct drm_i915_gem_object *
652i915_gem_object_create_shmem_from_data(struct drm_i915_private *i915,
653				       const void *data, resource_size_t size)
654{
655	struct drm_i915_gem_object *obj;
656	struct file *file;
657	const struct address_space_operations *aops;
658	loff_t pos;
659	int err;
660
661	GEM_WARN_ON(IS_DGFX(i915));
662	obj = i915_gem_object_create_shmem(i915, round_up(size, PAGE_SIZE));
663	if (IS_ERR(obj))
664		return obj;
665
666	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
667
668	file = obj->base.filp;
669	aops = file->f_mapping->a_ops;
670	pos = 0;
671	do {
672		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
673		struct folio *folio;
674		void *fsdata;
675
676		err = aops->write_begin(file, file->f_mapping, pos, len,
677					&folio, &fsdata);
678		if (err < 0)
679			goto fail;
680
681		memcpy_to_folio(folio, offset_in_folio(folio, pos), data, len);
682
683		err = aops->write_end(file, file->f_mapping, pos, len, len,
684				      folio, fsdata);
685		if (err < 0)
686			goto fail;
687
688		size -= len;
689		data += len;
690		pos += len;
691	} while (size);
692
693	return obj;
694
695fail:
696	i915_gem_object_put(obj);
697	return ERR_PTR(err);
698}
699
700static int init_shmem(struct intel_memory_region *mem)
701{
702	i915_gemfs_init(mem->i915);
703	intel_memory_region_set_name(mem, "system");
704
705	return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
706}
707
708static int release_shmem(struct intel_memory_region *mem)
709{
710	i915_gemfs_fini(mem->i915);
711	return 0;
712}
713
714static const struct intel_memory_region_ops shmem_region_ops = {
715	.init = init_shmem,
716	.release = release_shmem,
717	.init_object = shmem_object_init,
718};
719
720struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
721						 u16 type, u16 instance)
722{
723	return intel_memory_region_create(i915, 0,
724					  totalram_pages() << PAGE_SHIFT,
725					  PAGE_SIZE, 0, 0,
726					  type, instance,
727					  &shmem_region_ops);
728}
729
730bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
731{
732	return obj->ops == &i915_gem_shmem_ops;
733}