Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
 
  1/* irq.c: UltraSparc IRQ handling/init/registry.
  2 *
  3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
  5 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
  6 */
  7
  8#include <linux/module.h>
  9#include <linux/sched.h>
 10#include <linux/linkage.h>
 11#include <linux/ptrace.h>
 12#include <linux/errno.h>
 13#include <linux/kernel_stat.h>
 14#include <linux/signal.h>
 15#include <linux/mm.h>
 16#include <linux/interrupt.h>
 17#include <linux/slab.h>
 18#include <linux/random.h>
 19#include <linux/init.h>
 20#include <linux/delay.h>
 21#include <linux/proc_fs.h>
 22#include <linux/seq_file.h>
 23#include <linux/ftrace.h>
 24#include <linux/irq.h>
 25#include <linux/kmemleak.h>
 26
 27#include <asm/ptrace.h>
 28#include <asm/processor.h>
 29#include <linux/atomic.h>
 30#include <asm/system.h>
 31#include <asm/irq.h>
 32#include <asm/io.h>
 33#include <asm/iommu.h>
 34#include <asm/upa.h>
 35#include <asm/oplib.h>
 36#include <asm/prom.h>
 37#include <asm/timer.h>
 38#include <asm/smp.h>
 39#include <asm/starfire.h>
 40#include <asm/uaccess.h>
 41#include <asm/cache.h>
 42#include <asm/cpudata.h>
 43#include <asm/auxio.h>
 44#include <asm/head.h>
 45#include <asm/hypervisor.h>
 46#include <asm/cacheflush.h>
 
 47
 48#include "entry.h"
 49#include "cpumap.h"
 50#include "kstack.h"
 51
 52#define NUM_IVECS	(IMAP_INR + 1)
 53
 54struct ino_bucket *ivector_table;
 55unsigned long ivector_table_pa;
 56
 57/* On several sun4u processors, it is illegal to mix bypass and
 58 * non-bypass accesses.  Therefore we access all INO buckets
 59 * using bypass accesses only.
 60 */
 61static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
 62{
 63	unsigned long ret;
 64
 65	__asm__ __volatile__("ldxa	[%1] %2, %0"
 66			     : "=&r" (ret)
 67			     : "r" (bucket_pa +
 68				    offsetof(struct ino_bucket,
 69					     __irq_chain_pa)),
 70			       "i" (ASI_PHYS_USE_EC));
 71
 72	return ret;
 73}
 74
 75static void bucket_clear_chain_pa(unsigned long bucket_pa)
 76{
 77	__asm__ __volatile__("stxa	%%g0, [%0] %1"
 78			     : /* no outputs */
 79			     : "r" (bucket_pa +
 80				    offsetof(struct ino_bucket,
 81					     __irq_chain_pa)),
 82			       "i" (ASI_PHYS_USE_EC));
 83}
 84
 85static unsigned int bucket_get_irq(unsigned long bucket_pa)
 86{
 87	unsigned int ret;
 88
 89	__asm__ __volatile__("lduwa	[%1] %2, %0"
 90			     : "=&r" (ret)
 91			     : "r" (bucket_pa +
 92				    offsetof(struct ino_bucket,
 93					     __irq)),
 94			       "i" (ASI_PHYS_USE_EC));
 95
 96	return ret;
 97}
 98
 99static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
100{
101	__asm__ __volatile__("stwa	%0, [%1] %2"
102			     : /* no outputs */
103			     : "r" (irq),
104			       "r" (bucket_pa +
105				    offsetof(struct ino_bucket,
106					     __irq)),
107			       "i" (ASI_PHYS_USE_EC));
108}
109
110#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
111
112static struct {
113	unsigned int dev_handle;
114	unsigned int dev_ino;
115	unsigned int in_use;
116} irq_table[NR_IRQS];
117static DEFINE_SPINLOCK(irq_alloc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
120{
121	unsigned long flags;
122	unsigned char ent;
123
124	BUILD_BUG_ON(NR_IRQS >= 256);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
126	spin_lock_irqsave(&irq_alloc_lock, flags);
 
 
127
128	for (ent = 1; ent < NR_IRQS; ent++) {
129		if (!irq_table[ent].in_use)
 
 
 
 
 
130			break;
 
131	}
132	if (ent >= NR_IRQS) {
133		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
134		ent = 0;
135	} else {
136		irq_table[ent].dev_handle = dev_handle;
137		irq_table[ent].dev_ino = dev_ino;
138		irq_table[ent].in_use = 1;
139	}
140
141	spin_unlock_irqrestore(&irq_alloc_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
143	return ent;
 
 
 
 
 
 
 
 
 
 
 
144}
145
146#ifdef CONFIG_PCI_MSI
147void irq_free(unsigned int irq)
148{
149	unsigned long flags;
150
151	if (irq >= NR_IRQS)
152		return;
 
 
153
154	spin_lock_irqsave(&irq_alloc_lock, flags);
 
 
155
156	irq_table[irq].in_use = 0;
 
 
157
158	spin_unlock_irqrestore(&irq_alloc_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159}
160#endif
161
162/*
163 * /proc/interrupts printing:
164 */
165int arch_show_interrupts(struct seq_file *p, int prec)
166{
167	int j;
168
169	seq_printf(p, "NMI: ");
170	for_each_online_cpu(j)
171		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
172	seq_printf(p, "     Non-maskable interrupts\n");
173	return 0;
174}
175
176static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
177{
178	unsigned int tid;
179
180	if (this_is_starfire) {
181		tid = starfire_translate(imap, cpuid);
182		tid <<= IMAP_TID_SHIFT;
183		tid &= IMAP_TID_UPA;
184	} else {
185		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
186			unsigned long ver;
187
188			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
189			if ((ver >> 32UL) == __JALAPENO_ID ||
190			    (ver >> 32UL) == __SERRANO_ID) {
191				tid = cpuid << IMAP_TID_SHIFT;
192				tid &= IMAP_TID_JBUS;
193			} else {
194				unsigned int a = cpuid & 0x1f;
195				unsigned int n = (cpuid >> 5) & 0x1f;
196
197				tid = ((a << IMAP_AID_SHIFT) |
198				       (n << IMAP_NID_SHIFT));
199				tid &= (IMAP_AID_SAFARI |
200					IMAP_NID_SAFARI);
201			}
202		} else {
203			tid = cpuid << IMAP_TID_SHIFT;
204			tid &= IMAP_TID_UPA;
205		}
206	}
207
208	return tid;
209}
210
211struct irq_handler_data {
212	unsigned long	iclr;
213	unsigned long	imap;
214
215	void		(*pre_handler)(unsigned int, void *, void *);
216	void		*arg1;
217	void		*arg2;
218};
219
220#ifdef CONFIG_SMP
221static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
222{
223	cpumask_t mask;
224	int cpuid;
225
226	cpumask_copy(&mask, affinity);
227	if (cpumask_equal(&mask, cpu_online_mask)) {
228		cpuid = map_to_cpu(irq);
229	} else {
230		cpumask_t tmp;
231
232		cpumask_and(&tmp, cpu_online_mask, &mask);
233		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
234	}
235
236	return cpuid;
237}
238#else
239#define irq_choose_cpu(irq, affinity)	\
240	real_hard_smp_processor_id()
241#endif
242
243static void sun4u_irq_enable(struct irq_data *data)
244{
245	struct irq_handler_data *handler_data = data->handler_data;
246
 
247	if (likely(handler_data)) {
248		unsigned long cpuid, imap, val;
249		unsigned int tid;
250
251		cpuid = irq_choose_cpu(data->irq, data->affinity);
 
252		imap = handler_data->imap;
253
254		tid = sun4u_compute_tid(imap, cpuid);
255
256		val = upa_readq(imap);
257		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
258			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
259		val |= tid | IMAP_VALID;
260		upa_writeq(val, imap);
261		upa_writeq(ICLR_IDLE, handler_data->iclr);
262	}
263}
264
265static int sun4u_set_affinity(struct irq_data *data,
266			       const struct cpumask *mask, bool force)
267{
268	struct irq_handler_data *handler_data = data->handler_data;
269
 
270	if (likely(handler_data)) {
271		unsigned long cpuid, imap, val;
272		unsigned int tid;
273
274		cpuid = irq_choose_cpu(data->irq, mask);
275		imap = handler_data->imap;
276
277		tid = sun4u_compute_tid(imap, cpuid);
278
279		val = upa_readq(imap);
280		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
281			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
282		val |= tid | IMAP_VALID;
283		upa_writeq(val, imap);
284		upa_writeq(ICLR_IDLE, handler_data->iclr);
285	}
286
287	return 0;
288}
289
290/* Don't do anything.  The desc->status check for IRQ_DISABLED in
291 * handler_irq() will skip the handler call and that will leave the
292 * interrupt in the sent state.  The next ->enable() call will hit the
293 * ICLR register to reset the state machine.
294 *
295 * This scheme is necessary, instead of clearing the Valid bit in the
296 * IMAP register, to handle the case of IMAP registers being shared by
297 * multiple INOs (and thus ICLR registers).  Since we use a different
298 * virtual IRQ for each shared IMAP instance, the generic code thinks
299 * there is only one user so it prematurely calls ->disable() on
300 * free_irq().
301 *
302 * We have to provide an explicit ->disable() method instead of using
303 * NULL to get the default.  The reason is that if the generic code
304 * sees that, it also hooks up a default ->shutdown method which
305 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
306 */
307static void sun4u_irq_disable(struct irq_data *data)
308{
309}
310
311static void sun4u_irq_eoi(struct irq_data *data)
312{
313	struct irq_handler_data *handler_data = data->handler_data;
314
 
315	if (likely(handler_data))
316		upa_writeq(ICLR_IDLE, handler_data->iclr);
317}
318
319static void sun4v_irq_enable(struct irq_data *data)
320{
321	unsigned int ino = irq_table[data->irq].dev_ino;
322	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
 
323	int err;
324
325	err = sun4v_intr_settarget(ino, cpuid);
326	if (err != HV_EOK)
327		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
328		       "err(%d)\n", ino, cpuid, err);
329	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
330	if (err != HV_EOK)
331		printk(KERN_ERR "sun4v_intr_setstate(%x): "
332		       "err(%d)\n", ino, err);
333	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
334	if (err != HV_EOK)
335		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
336		       ino, err);
337}
338
339static int sun4v_set_affinity(struct irq_data *data,
340			       const struct cpumask *mask, bool force)
341{
342	unsigned int ino = irq_table[data->irq].dev_ino;
343	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
 
344	int err;
345
346	err = sun4v_intr_settarget(ino, cpuid);
347	if (err != HV_EOK)
348		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349		       "err(%d)\n", ino, cpuid, err);
350
351	return 0;
352}
353
354static void sun4v_irq_disable(struct irq_data *data)
355{
356	unsigned int ino = irq_table[data->irq].dev_ino;
357	int err;
358
359	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
360	if (err != HV_EOK)
361		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
362		       "err(%d)\n", ino, err);
363}
364
365static void sun4v_irq_eoi(struct irq_data *data)
366{
367	unsigned int ino = irq_table[data->irq].dev_ino;
368	int err;
369
370	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
371	if (err != HV_EOK)
372		printk(KERN_ERR "sun4v_intr_setstate(%x): "
373		       "err(%d)\n", ino, err);
374}
375
376static void sun4v_virq_enable(struct irq_data *data)
377{
378	unsigned long cpuid, dev_handle, dev_ino;
 
 
379	int err;
380
381	cpuid = irq_choose_cpu(data->irq, data->affinity);
382
383	dev_handle = irq_table[data->irq].dev_handle;
384	dev_ino = irq_table[data->irq].dev_ino;
385
386	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
387	if (err != HV_EOK)
388		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
389		       "err(%d)\n",
390		       dev_handle, dev_ino, cpuid, err);
391	err = sun4v_vintr_set_state(dev_handle, dev_ino,
392				    HV_INTR_STATE_IDLE);
393	if (err != HV_EOK)
394		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
395		       "HV_INTR_STATE_IDLE): err(%d)\n",
396		       dev_handle, dev_ino, err);
397	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
398				    HV_INTR_ENABLED);
399	if (err != HV_EOK)
400		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
401		       "HV_INTR_ENABLED): err(%d)\n",
402		       dev_handle, dev_ino, err);
403}
404
405static int sun4v_virt_set_affinity(struct irq_data *data,
406				    const struct cpumask *mask, bool force)
407{
408	unsigned long cpuid, dev_handle, dev_ino;
 
 
409	int err;
410
411	cpuid = irq_choose_cpu(data->irq, mask);
412
413	dev_handle = irq_table[data->irq].dev_handle;
414	dev_ino = irq_table[data->irq].dev_ino;
415
416	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
417	if (err != HV_EOK)
418		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
419		       "err(%d)\n",
420		       dev_handle, dev_ino, cpuid, err);
421
422	return 0;
423}
424
425static void sun4v_virq_disable(struct irq_data *data)
426{
427	unsigned long dev_handle, dev_ino;
 
428	int err;
429
430	dev_handle = irq_table[data->irq].dev_handle;
431	dev_ino = irq_table[data->irq].dev_ino;
432
433	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
434				    HV_INTR_DISABLED);
435	if (err != HV_EOK)
436		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
437		       "HV_INTR_DISABLED): err(%d)\n",
438		       dev_handle, dev_ino, err);
439}
440
441static void sun4v_virq_eoi(struct irq_data *data)
442{
443	unsigned long dev_handle, dev_ino;
 
444	int err;
445
446	dev_handle = irq_table[data->irq].dev_handle;
447	dev_ino = irq_table[data->irq].dev_ino;
448
449	err = sun4v_vintr_set_state(dev_handle, dev_ino,
450				    HV_INTR_STATE_IDLE);
451	if (err != HV_EOK)
452		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
453		       "HV_INTR_STATE_IDLE): err(%d)\n",
454		       dev_handle, dev_ino, err);
455}
456
457static struct irq_chip sun4u_irq = {
458	.name			= "sun4u",
459	.irq_enable		= sun4u_irq_enable,
460	.irq_disable		= sun4u_irq_disable,
461	.irq_eoi		= sun4u_irq_eoi,
462	.irq_set_affinity	= sun4u_set_affinity,
463	.flags			= IRQCHIP_EOI_IF_HANDLED,
464};
465
466static struct irq_chip sun4v_irq = {
467	.name			= "sun4v",
468	.irq_enable		= sun4v_irq_enable,
469	.irq_disable		= sun4v_irq_disable,
470	.irq_eoi		= sun4v_irq_eoi,
471	.irq_set_affinity	= sun4v_set_affinity,
472	.flags			= IRQCHIP_EOI_IF_HANDLED,
473};
474
475static struct irq_chip sun4v_virq = {
476	.name			= "vsun4v",
477	.irq_enable		= sun4v_virq_enable,
478	.irq_disable		= sun4v_virq_disable,
479	.irq_eoi		= sun4v_virq_eoi,
480	.irq_set_affinity	= sun4v_virt_set_affinity,
481	.flags			= IRQCHIP_EOI_IF_HANDLED,
482};
483
484static void pre_flow_handler(struct irq_data *d)
485{
486	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
487	unsigned int ino = irq_table[d->irq].dev_ino;
488
489	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
490}
491
492void irq_install_pre_handler(int irq,
493			     void (*func)(unsigned int, void *, void *),
494			     void *arg1, void *arg2)
495{
496	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
497
498	handler_data->pre_handler = func;
499	handler_data->arg1 = arg1;
500	handler_data->arg2 = arg2;
501
502	__irq_set_preflow_handler(irq, pre_flow_handler);
503}
504
505unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
506{
507	struct ino_bucket *bucket;
508	struct irq_handler_data *handler_data;
 
509	unsigned int irq;
510	int ino;
511
512	BUG_ON(tlb_type == hypervisor);
513
514	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
515	bucket = &ivector_table[ino];
516	irq = bucket_get_irq(__pa(bucket));
517	if (!irq) {
518		irq = irq_alloc(0, ino);
519		bucket_set_irq(__pa(bucket), irq);
520		irq_set_chip_and_handler_name(irq, &sun4u_irq,
521					      handle_fasteoi_irq, "IVEC");
522	}
523
524	handler_data = irq_get_handler_data(irq);
525	if (unlikely(handler_data))
526		goto out;
527
528	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
529	if (unlikely(!handler_data)) {
530		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
531		prom_halt();
532	}
533	irq_set_handler_data(irq, handler_data);
534
535	handler_data->imap  = imap;
536	handler_data->iclr  = iclr;
537
538out:
539	return irq;
540}
541
542static unsigned int sun4v_build_common(unsigned long sysino,
543				       struct irq_chip *chip)
 
 
544{
545	struct ino_bucket *bucket;
546	struct irq_handler_data *handler_data;
547	unsigned int irq;
548
549	BUG_ON(tlb_type != hypervisor);
 
 
550
551	bucket = &ivector_table[sysino];
552	irq = bucket_get_irq(__pa(bucket));
553	if (!irq) {
554		irq = irq_alloc(0, sysino);
555		bucket_set_irq(__pa(bucket), irq);
556		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
557					      "IVEC");
558	}
559
560	handler_data = irq_get_handler_data(irq);
561	if (unlikely(handler_data))
562		goto out;
 
 
 
 
 
563
564	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
565	if (unlikely(!handler_data)) {
566		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
567		prom_halt();
568	}
569	irq_set_handler_data(irq, handler_data);
570
571	/* Catch accidental accesses to these things.  IMAP/ICLR handling
572	 * is done by hypervisor calls on sun4v platforms, not by direct
573	 * register accesses.
574	 */
575	handler_data->imap = ~0UL;
576	handler_data->iclr = ~0UL;
577
578out:
579	return irq;
 
 
 
580}
581
582unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
 
583{
584	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
 
 
585
586	return sun4v_build_common(sysino, &sun4v_irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587}
588
589unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
590{
591	struct irq_handler_data *handler_data;
592	unsigned long hv_err, cookie;
593	struct ino_bucket *bucket;
594	unsigned int irq;
595
596	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
597	if (unlikely(!bucket))
598		return 0;
599
600	/* The only reference we store to the IRQ bucket is
601	 * by physical address which kmemleak can't see, tell
602	 * it that this object explicitly is not a leak and
603	 * should be scanned.
604	 */
605	kmemleak_not_leak(bucket);
606
607	__flush_dcache_range((unsigned long) bucket,
608			     ((unsigned long) bucket +
609			      sizeof(struct ino_bucket)));
610
611	irq = irq_alloc(devhandle, devino);
 
 
 
 
 
 
 
 
 
 
 
 
612	bucket_set_irq(__pa(bucket), irq);
 
613
614	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
615				      "IVEC");
 
 
616
617	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
618	if (unlikely(!handler_data))
619		return 0;
620
621	/* In order to make the LDC channel startup sequence easier,
622	 * especially wrt. locking, we do not let request_irq() enable
623	 * the interrupt.
624	 */
625	irq_set_status_flags(irq, IRQ_NOAUTOEN);
626	irq_set_handler_data(irq, handler_data);
627
628	/* Catch accidental accesses to these things.  IMAP/ICLR handling
629	 * is done by hypervisor calls on sun4v platforms, not by direct
630	 * register accesses.
631	 */
632	handler_data->imap = ~0UL;
633	handler_data->iclr = ~0UL;
634
635	cookie = ~__pa(bucket);
636	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
637	if (hv_err) {
638		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
639			    "err=%lu\n", devhandle, devino, hv_err);
640		prom_halt();
641	}
 
642
 
 
 
 
 
 
643	return irq;
644}
645
646void ack_bad_irq(unsigned int irq)
647{
648	unsigned int ino = irq_table[irq].dev_ino;
649
650	if (!ino)
651		ino = 0xdeadbeef;
 
 
652
653	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
654	       ino, irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655}
656
657void *hardirq_stack[NR_CPUS];
658void *softirq_stack[NR_CPUS];
659
660void __irq_entry handler_irq(int pil, struct pt_regs *regs)
661{
662	unsigned long pstate, bucket_pa;
663	struct pt_regs *old_regs;
664	void *orig_sp;
665
666	clear_softint(1 << pil);
667
668	old_regs = set_irq_regs(regs);
669	irq_enter();
670
671	/* Grab an atomic snapshot of the pending IVECs.  */
672	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
673			     "wrpr	%0, %3, %%pstate\n\t"
674			     "ldx	[%2], %1\n\t"
675			     "stx	%%g0, [%2]\n\t"
676			     "wrpr	%0, 0x0, %%pstate\n\t"
677			     : "=&r" (pstate), "=&r" (bucket_pa)
678			     : "r" (irq_work_pa(smp_processor_id())),
679			       "i" (PSTATE_IE)
680			     : "memory");
681
682	orig_sp = set_hardirq_stack();
683
684	while (bucket_pa) {
685		unsigned long next_pa;
686		unsigned int irq;
687
688		next_pa = bucket_get_chain_pa(bucket_pa);
689		irq = bucket_get_irq(bucket_pa);
690		bucket_clear_chain_pa(bucket_pa);
691
692		generic_handle_irq(irq);
693
694		bucket_pa = next_pa;
695	}
696
697	restore_hardirq_stack(orig_sp);
698
699	irq_exit();
700	set_irq_regs(old_regs);
701}
702
703void do_softirq(void)
 
704{
705	unsigned long flags;
706
707	if (in_interrupt())
708		return;
709
710	local_irq_save(flags);
711
712	if (local_softirq_pending()) {
713		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
714
715		sp += THREAD_SIZE - 192 - STACK_BIAS;
716
717		__asm__ __volatile__("mov %%sp, %0\n\t"
718				     "mov %1, %%sp"
719				     : "=&r" (orig_sp)
720				     : "r" (sp));
721		__do_softirq();
722		__asm__ __volatile__("mov %0, %%sp"
723				     : : "r" (orig_sp));
724	}
725
726	local_irq_restore(flags);
727}
 
728
729#ifdef CONFIG_HOTPLUG_CPU
730void fixup_irqs(void)
731{
732	unsigned int irq;
733
734	for (irq = 0; irq < NR_IRQS; irq++) {
735		struct irq_desc *desc = irq_to_desc(irq);
736		struct irq_data *data = irq_desc_get_irq_data(desc);
737		unsigned long flags;
738
 
 
 
739		raw_spin_lock_irqsave(&desc->lock, flags);
740		if (desc->action && !irqd_is_per_cpu(data)) {
741			if (data->chip->irq_set_affinity)
742				data->chip->irq_set_affinity(data,
743							     data->affinity,
744							     false);
745		}
746		raw_spin_unlock_irqrestore(&desc->lock, flags);
747	}
748
749	tick_ops->disable_irq();
750}
751#endif
752
753struct sun5_timer {
754	u64	count0;
755	u64	limit0;
756	u64	count1;
757	u64	limit1;
758};
759
760static struct sun5_timer *prom_timers;
761static u64 prom_limit0, prom_limit1;
762
763static void map_prom_timers(void)
764{
765	struct device_node *dp;
766	const unsigned int *addr;
767
768	/* PROM timer node hangs out in the top level of device siblings... */
769	dp = of_find_node_by_path("/");
770	dp = dp->child;
771	while (dp) {
772		if (!strcmp(dp->name, "counter-timer"))
773			break;
774		dp = dp->sibling;
775	}
776
777	/* Assume if node is not present, PROM uses different tick mechanism
778	 * which we should not care about.
779	 */
780	if (!dp) {
781		prom_timers = (struct sun5_timer *) 0;
782		return;
783	}
784
785	/* If PROM is really using this, it must be mapped by him. */
786	addr = of_get_property(dp, "address", NULL);
787	if (!addr) {
788		prom_printf("PROM does not have timer mapped, trying to continue.\n");
789		prom_timers = (struct sun5_timer *) 0;
790		return;
791	}
792	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
793}
794
795static void kill_prom_timer(void)
796{
797	if (!prom_timers)
798		return;
799
800	/* Save them away for later. */
801	prom_limit0 = prom_timers->limit0;
802	prom_limit1 = prom_timers->limit1;
803
804	/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
805	 * We turn both off here just to be paranoid.
806	 */
807	prom_timers->limit0 = 0;
808	prom_timers->limit1 = 0;
809
810	/* Wheee, eat the interrupt packet too... */
811	__asm__ __volatile__(
812"	mov	0x40, %%g2\n"
813"	ldxa	[%%g0] %0, %%g1\n"
814"	ldxa	[%%g2] %1, %%g1\n"
815"	stxa	%%g0, [%%g0] %0\n"
816"	membar	#Sync\n"
817	: /* no outputs */
818	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
819	: "g1", "g2");
820}
821
822void notrace init_irqwork_curcpu(void)
823{
824	int cpu = hard_smp_processor_id();
825
826	trap_block[cpu].irq_worklist_pa = 0UL;
827}
828
829/* Please be very careful with register_one_mondo() and
830 * sun4v_register_mondo_queues().
831 *
832 * On SMP this gets invoked from the CPU trampoline before
833 * the cpu has fully taken over the trap table from OBP,
834 * and it's kernel stack + %g6 thread register state is
835 * not fully cooked yet.
836 *
837 * Therefore you cannot make any OBP calls, not even prom_printf,
838 * from these two routines.
839 */
840static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
 
841{
842	unsigned long num_entries = (qmask + 1) / 64;
843	unsigned long status;
844
845	status = sun4v_cpu_qconf(type, paddr, num_entries);
846	if (status != HV_EOK) {
847		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
848			    "err %lu\n", type, paddr, num_entries, status);
849		prom_halt();
850	}
851}
852
853void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
854{
855	struct trap_per_cpu *tb = &trap_block[this_cpu];
856
857	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
858			   tb->cpu_mondo_qmask);
859	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
860			   tb->dev_mondo_qmask);
861	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
862			   tb->resum_qmask);
863	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
864			   tb->nonresum_qmask);
865}
866
867/* Each queue region must be a power of 2 multiple of 64 bytes in
868 * size.  The base real address must be aligned to the size of the
869 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
870 */
871static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
872{
873	unsigned long size = PAGE_ALIGN(qmask + 1);
874	unsigned long order = get_order(size);
875	unsigned long p;
876
877	p = __get_free_pages(GFP_KERNEL, order);
878	if (!p) {
879		prom_printf("SUN4V: Error, cannot allocate queue.\n");
880		prom_halt();
881	}
882
883	*pa_ptr = __pa(p);
884}
885
886static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
887{
888#ifdef CONFIG_SMP
889	unsigned long page;
 
890
891	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
 
 
 
 
 
 
 
 
 
892
893	page = get_zeroed_page(GFP_KERNEL);
894	if (!page) {
895		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
896		prom_halt();
897	}
898
899	tb->cpu_mondo_block_pa = __pa(page);
900	tb->cpu_list_pa = __pa(page + 64);
901#endif
902}
903
904/* Allocate mondo and error queues for all possible cpus.  */
905static void __init sun4v_init_mondo_queues(void)
906{
907	int cpu;
908
909	for_each_possible_cpu(cpu) {
910		struct trap_per_cpu *tb = &trap_block[cpu];
911
912		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
913		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
914		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
915		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
916		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
917		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
918				tb->nonresum_qmask);
919	}
920}
921
922static void __init init_send_mondo_info(void)
923{
924	int cpu;
925
926	for_each_possible_cpu(cpu) {
927		struct trap_per_cpu *tb = &trap_block[cpu];
928
929		init_cpu_send_mondo_info(tb);
930	}
931}
932
933static struct irqaction timer_irq_action = {
934	.name = "timer",
935};
936
937/* Only invoked on boot processor. */
938void __init init_IRQ(void)
939{
940	unsigned long size;
 
941
942	map_prom_timers();
943	kill_prom_timer();
 
 
 
944
945	size = sizeof(struct ino_bucket) * NUM_IVECS;
946	ivector_table = kzalloc(size, GFP_KERNEL);
 
 
 
947	if (!ivector_table) {
948		prom_printf("Fatal error, cannot allocate ivector_table\n");
949		prom_halt();
950	}
951	__flush_dcache_range((unsigned long) ivector_table,
952			     ((unsigned long) ivector_table) + size);
953
954	ivector_table_pa = __pa(ivector_table);
 
 
 
 
 
 
 
 
 
955
956	if (tlb_type == hypervisor)
957		sun4v_init_mondo_queues();
958
959	init_send_mondo_info();
960
961	if (tlb_type == hypervisor) {
962		/* Load up the boot cpu's entries.  */
963		sun4v_register_mondo_queues(hard_smp_processor_id());
964	}
965
966	/* We need to clear any IRQ's pending in the soft interrupt
967	 * registers, a spurious one could be left around from the
968	 * PROM timer which we just disabled.
969	 */
970	clear_softint(get_softint());
971
972	/* Now that ivector table is initialized, it is safe
973	 * to receive IRQ vector traps.  We will normally take
974	 * one or two right now, in case some device PROM used
975	 * to boot us wants to speak to us.  We just ignore them.
976	 */
977	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
978			     "or	%%g1, %0, %%g1\n\t"
979			     "wrpr	%%g1, 0x0, %%pstate"
980			     : /* No outputs */
981			     : "i" (PSTATE_IE)
982			     : "g1");
983
984	irq_to_desc(0)->action = &timer_irq_action;
985}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* irq.c: UltraSparc IRQ handling/init/registry.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
   6 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
   7 */
   8
 
   9#include <linux/sched.h>
  10#include <linux/linkage.h>
  11#include <linux/ptrace.h>
  12#include <linux/errno.h>
  13#include <linux/kernel_stat.h>
  14#include <linux/signal.h>
  15#include <linux/mm.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/random.h>
  19#include <linux/init.h>
  20#include <linux/delay.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/ftrace.h>
  24#include <linux/irq.h>
 
  25
  26#include <asm/ptrace.h>
  27#include <asm/processor.h>
  28#include <linux/atomic.h>
 
  29#include <asm/irq.h>
  30#include <asm/io.h>
  31#include <asm/iommu.h>
  32#include <asm/upa.h>
  33#include <asm/oplib.h>
  34#include <asm/prom.h>
  35#include <asm/timer.h>
  36#include <asm/smp.h>
  37#include <asm/starfire.h>
  38#include <linux/uaccess.h>
  39#include <asm/cache.h>
  40#include <asm/cpudata.h>
  41#include <asm/auxio.h>
  42#include <asm/head.h>
  43#include <asm/hypervisor.h>
  44#include <asm/cacheflush.h>
  45#include <asm/softirq_stack.h>
  46
  47#include "entry.h"
  48#include "cpumap.h"
  49#include "kstack.h"
  50
 
 
  51struct ino_bucket *ivector_table;
  52unsigned long ivector_table_pa;
  53
  54/* On several sun4u processors, it is illegal to mix bypass and
  55 * non-bypass accesses.  Therefore we access all INO buckets
  56 * using bypass accesses only.
  57 */
  58static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  59{
  60	unsigned long ret;
  61
  62	__asm__ __volatile__("ldxa	[%1] %2, %0"
  63			     : "=&r" (ret)
  64			     : "r" (bucket_pa +
  65				    offsetof(struct ino_bucket,
  66					     __irq_chain_pa)),
  67			       "i" (ASI_PHYS_USE_EC));
  68
  69	return ret;
  70}
  71
  72static void bucket_clear_chain_pa(unsigned long bucket_pa)
  73{
  74	__asm__ __volatile__("stxa	%%g0, [%0] %1"
  75			     : /* no outputs */
  76			     : "r" (bucket_pa +
  77				    offsetof(struct ino_bucket,
  78					     __irq_chain_pa)),
  79			       "i" (ASI_PHYS_USE_EC));
  80}
  81
  82static unsigned int bucket_get_irq(unsigned long bucket_pa)
  83{
  84	unsigned int ret;
  85
  86	__asm__ __volatile__("lduwa	[%1] %2, %0"
  87			     : "=&r" (ret)
  88			     : "r" (bucket_pa +
  89				    offsetof(struct ino_bucket,
  90					     __irq)),
  91			       "i" (ASI_PHYS_USE_EC));
  92
  93	return ret;
  94}
  95
  96static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
  97{
  98	__asm__ __volatile__("stwa	%0, [%1] %2"
  99			     : /* no outputs */
 100			     : "r" (irq),
 101			       "r" (bucket_pa +
 102				    offsetof(struct ino_bucket,
 103					     __irq)),
 104			       "i" (ASI_PHYS_USE_EC));
 105}
 106
 107#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
 108
 109static unsigned long hvirq_major __initdata;
 110static int __init early_hvirq_major(char *p)
 111{
 112	int rc = kstrtoul(p, 10, &hvirq_major);
 113
 114	return rc;
 115}
 116early_param("hvirq", early_hvirq_major);
 117
 118static int hv_irq_version;
 119
 120/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
 121 * based interfaces, but:
 122 *
 123 * 1) Several OSs, Solaris and Linux included, use them even when only
 124 *    negotiating version 1.0 (or failing to negotiate at all).  So the
 125 *    hypervisor has a workaround that provides the VIRQ interfaces even
 126 *    when only verion 1.0 of the API is in use.
 127 *
 128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
 129 *    interfaces only were actually hooked up for LDC interrupts, even
 130 *    though the Hypervisor specification clearly stated:
 131 *
 132 *	The new interrupt API functions will be available to a guest
 133 *	when it negotiates version 2.0 in the interrupt API group 0x2. When
 134 *	a guest negotiates version 2.0, all interrupt sources will only
 135 *	support using the cookie interface, and any attempt to use the
 136 *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
 137 *	ENOTSUPPORTED error being returned.
 138 *
 139 *   with an emphasis on "all interrupt sources".
 140 *
 141 * To correct this, major version 3.0 was created which does actually
 142 * support VIRQs for all interrupt sources (not just LDC devices).  So
 143 * if we want to move completely over the cookie based VIRQs we must
 144 * negotiate major version 3.0 or later of HV_GRP_INTR.
 145 */
 146static bool sun4v_cookie_only_virqs(void)
 147{
 148	if (hv_irq_version >= 3)
 149		return true;
 150	return false;
 151}
 152
 153static void __init irq_init_hv(void)
 154{
 155	unsigned long hv_error, major, minor = 0;
 
 156
 157	if (tlb_type != hypervisor)
 158		return;
 159
 160	if (hvirq_major)
 161		major = hvirq_major;
 162	else
 163		major = 3;
 164
 165	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
 166	if (!hv_error)
 167		hv_irq_version = major;
 168	else
 169		hv_irq_version = 1;
 170
 171	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
 172		hv_irq_version,
 173		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
 174}
 175
 176/* This function is for the timer interrupt.*/
 177int __init arch_probe_nr_irqs(void)
 178{
 179	return 1;
 180}
 181
 182#define DEFAULT_NUM_IVECS	(0xfffU)
 183static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
 184#define NUM_IVECS (nr_ivec)
 185
 186static unsigned int __init size_nr_ivec(void)
 187{
 188	if (tlb_type == hypervisor) {
 189		switch (sun4v_chip_type) {
 190		/* Athena's devhandle|devino is large.*/
 191		case SUN4V_CHIP_SPARC64X:
 192			nr_ivec = 0xffff;
 193			break;
 194		}
 195	}
 196	return nr_ivec;
 197}
 
 
 
 
 
 
 198
 199struct irq_handler_data {
 200	union {
 201		struct {
 202			unsigned int dev_handle;
 203			unsigned int dev_ino;
 204		};
 205		unsigned long sysino;
 206	};
 207	struct ino_bucket bucket;
 208	unsigned long	iclr;
 209	unsigned long	imap;
 210};
 211
 212static inline unsigned int irq_data_to_handle(struct irq_data *data)
 213{
 214	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 215
 216	return ihd->dev_handle;
 217}
 218
 219static inline unsigned int irq_data_to_ino(struct irq_data *data)
 220{
 221	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 222
 223	return ihd->dev_ino;
 224}
 225
 226static inline unsigned long irq_data_to_sysino(struct irq_data *data)
 227{
 228	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 229
 230	return ihd->sysino;
 231}
 232
 
 233void irq_free(unsigned int irq)
 234{
 235	void *data = irq_get_handler_data(irq);
 236
 237	kfree(data);
 238	irq_set_handler_data(irq, NULL);
 239	irq_free_descs(irq, 1);
 240}
 241
 242unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
 243{
 244	int irq;
 245
 246	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
 247	if (irq <= 0)
 248		goto out;
 249
 250	return irq;
 251out:
 252	return 0;
 253}
 254
 255static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
 256{
 257	unsigned long hv_err, cookie;
 258	struct ino_bucket *bucket;
 259	unsigned int irq = 0U;
 260
 261	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
 262	if (hv_err) {
 263		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
 264		goto out;
 265	}
 266
 267	if (cookie & ((1UL << 63UL))) {
 268		cookie = ~cookie;
 269		bucket = (struct ino_bucket *) __va(cookie);
 270		irq = bucket->__irq;
 271	}
 272out:
 273	return irq;
 274}
 275
 276static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
 277{
 278	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
 279	struct ino_bucket *bucket;
 280	unsigned int irq;
 281
 282	bucket = &ivector_table[sysino];
 283	irq = bucket_get_irq(__pa(bucket));
 284
 285	return irq;
 286}
 287
 288void ack_bad_irq(unsigned int irq)
 289{
 290	pr_crit("BAD IRQ ack %d\n", irq);
 291}
 292
 293void irq_install_pre_handler(int irq,
 294			     void (*func)(unsigned int, void *, void *),
 295			     void *arg1, void *arg2)
 296{
 297	pr_warn("IRQ pre handler NOT supported.\n");
 298}
 
 299
 300/*
 301 * /proc/interrupts printing:
 302 */
 303int arch_show_interrupts(struct seq_file *p, int prec)
 304{
 305	int j;
 306
 307	seq_printf(p, "NMI: ");
 308	for_each_online_cpu(j)
 309		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
 310	seq_printf(p, "     Non-maskable interrupts\n");
 311	return 0;
 312}
 313
 314static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
 315{
 316	unsigned int tid;
 317
 318	if (this_is_starfire) {
 319		tid = starfire_translate(imap, cpuid);
 320		tid <<= IMAP_TID_SHIFT;
 321		tid &= IMAP_TID_UPA;
 322	} else {
 323		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 324			unsigned long ver;
 325
 326			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 327			if ((ver >> 32UL) == __JALAPENO_ID ||
 328			    (ver >> 32UL) == __SERRANO_ID) {
 329				tid = cpuid << IMAP_TID_SHIFT;
 330				tid &= IMAP_TID_JBUS;
 331			} else {
 332				unsigned int a = cpuid & 0x1f;
 333				unsigned int n = (cpuid >> 5) & 0x1f;
 334
 335				tid = ((a << IMAP_AID_SHIFT) |
 336				       (n << IMAP_NID_SHIFT));
 337				tid &= (IMAP_AID_SAFARI |
 338					IMAP_NID_SAFARI);
 339			}
 340		} else {
 341			tid = cpuid << IMAP_TID_SHIFT;
 342			tid &= IMAP_TID_UPA;
 343		}
 344	}
 345
 346	return tid;
 347}
 348
 
 
 
 
 
 
 
 
 
 349#ifdef CONFIG_SMP
 350static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
 351{
 
 352	int cpuid;
 353
 354	if (cpumask_equal(affinity, cpu_online_mask)) {
 
 355		cpuid = map_to_cpu(irq);
 356	} else {
 357		cpuid = cpumask_first_and(affinity, cpu_online_mask);
 358		cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
 
 
 359	}
 360
 361	return cpuid;
 362}
 363#else
 364#define irq_choose_cpu(irq, affinity)	\
 365	real_hard_smp_processor_id()
 366#endif
 367
 368static void sun4u_irq_enable(struct irq_data *data)
 369{
 370	struct irq_handler_data *handler_data;
 371
 372	handler_data = irq_data_get_irq_handler_data(data);
 373	if (likely(handler_data)) {
 374		unsigned long cpuid, imap, val;
 375		unsigned int tid;
 376
 377		cpuid = irq_choose_cpu(data->irq,
 378				       irq_data_get_affinity_mask(data));
 379		imap = handler_data->imap;
 380
 381		tid = sun4u_compute_tid(imap, cpuid);
 382
 383		val = upa_readq(imap);
 384		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
 385			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
 386		val |= tid | IMAP_VALID;
 387		upa_writeq(val, imap);
 388		upa_writeq(ICLR_IDLE, handler_data->iclr);
 389	}
 390}
 391
 392static int sun4u_set_affinity(struct irq_data *data,
 393			       const struct cpumask *mask, bool force)
 394{
 395	struct irq_handler_data *handler_data;
 396
 397	handler_data = irq_data_get_irq_handler_data(data);
 398	if (likely(handler_data)) {
 399		unsigned long cpuid, imap, val;
 400		unsigned int tid;
 401
 402		cpuid = irq_choose_cpu(data->irq, mask);
 403		imap = handler_data->imap;
 404
 405		tid = sun4u_compute_tid(imap, cpuid);
 406
 407		val = upa_readq(imap);
 408		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
 409			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
 410		val |= tid | IMAP_VALID;
 411		upa_writeq(val, imap);
 412		upa_writeq(ICLR_IDLE, handler_data->iclr);
 413	}
 414
 415	return 0;
 416}
 417
 418/* Don't do anything.  The desc->status check for IRQ_DISABLED in
 419 * handler_irq() will skip the handler call and that will leave the
 420 * interrupt in the sent state.  The next ->enable() call will hit the
 421 * ICLR register to reset the state machine.
 422 *
 423 * This scheme is necessary, instead of clearing the Valid bit in the
 424 * IMAP register, to handle the case of IMAP registers being shared by
 425 * multiple INOs (and thus ICLR registers).  Since we use a different
 426 * virtual IRQ for each shared IMAP instance, the generic code thinks
 427 * there is only one user so it prematurely calls ->disable() on
 428 * free_irq().
 429 *
 430 * We have to provide an explicit ->disable() method instead of using
 431 * NULL to get the default.  The reason is that if the generic code
 432 * sees that, it also hooks up a default ->shutdown method which
 433 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
 434 */
 435static void sun4u_irq_disable(struct irq_data *data)
 436{
 437}
 438
 439static void sun4u_irq_eoi(struct irq_data *data)
 440{
 441	struct irq_handler_data *handler_data;
 442
 443	handler_data = irq_data_get_irq_handler_data(data);
 444	if (likely(handler_data))
 445		upa_writeq(ICLR_IDLE, handler_data->iclr);
 446}
 447
 448static void sun4v_irq_enable(struct irq_data *data)
 449{
 450	unsigned long cpuid = irq_choose_cpu(data->irq,
 451					     irq_data_get_affinity_mask(data));
 452	unsigned int ino = irq_data_to_sysino(data);
 453	int err;
 454
 455	err = sun4v_intr_settarget(ino, cpuid);
 456	if (err != HV_EOK)
 457		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
 458		       "err(%d)\n", ino, cpuid, err);
 459	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
 460	if (err != HV_EOK)
 461		printk(KERN_ERR "sun4v_intr_setstate(%x): "
 462		       "err(%d)\n", ino, err);
 463	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
 464	if (err != HV_EOK)
 465		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
 466		       ino, err);
 467}
 468
 469static int sun4v_set_affinity(struct irq_data *data,
 470			       const struct cpumask *mask, bool force)
 471{
 
 472	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
 473	unsigned int ino = irq_data_to_sysino(data);
 474	int err;
 475
 476	err = sun4v_intr_settarget(ino, cpuid);
 477	if (err != HV_EOK)
 478		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
 479		       "err(%d)\n", ino, cpuid, err);
 480
 481	return 0;
 482}
 483
 484static void sun4v_irq_disable(struct irq_data *data)
 485{
 486	unsigned int ino = irq_data_to_sysino(data);
 487	int err;
 488
 489	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
 490	if (err != HV_EOK)
 491		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
 492		       "err(%d)\n", ino, err);
 493}
 494
 495static void sun4v_irq_eoi(struct irq_data *data)
 496{
 497	unsigned int ino = irq_data_to_sysino(data);
 498	int err;
 499
 500	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
 501	if (err != HV_EOK)
 502		printk(KERN_ERR "sun4v_intr_setstate(%x): "
 503		       "err(%d)\n", ino, err);
 504}
 505
 506static void sun4v_virq_enable(struct irq_data *data)
 507{
 508	unsigned long dev_handle = irq_data_to_handle(data);
 509	unsigned long dev_ino = irq_data_to_ino(data);
 510	unsigned long cpuid;
 511	int err;
 512
 513	cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
 
 
 
 514
 515	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
 516	if (err != HV_EOK)
 517		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
 518		       "err(%d)\n",
 519		       dev_handle, dev_ino, cpuid, err);
 520	err = sun4v_vintr_set_state(dev_handle, dev_ino,
 521				    HV_INTR_STATE_IDLE);
 522	if (err != HV_EOK)
 523		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 524		       "HV_INTR_STATE_IDLE): err(%d)\n",
 525		       dev_handle, dev_ino, err);
 526	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
 527				    HV_INTR_ENABLED);
 528	if (err != HV_EOK)
 529		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 530		       "HV_INTR_ENABLED): err(%d)\n",
 531		       dev_handle, dev_ino, err);
 532}
 533
 534static int sun4v_virt_set_affinity(struct irq_data *data,
 535				    const struct cpumask *mask, bool force)
 536{
 537	unsigned long dev_handle = irq_data_to_handle(data);
 538	unsigned long dev_ino = irq_data_to_ino(data);
 539	unsigned long cpuid;
 540	int err;
 541
 542	cpuid = irq_choose_cpu(data->irq, mask);
 543
 
 
 
 544	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
 545	if (err != HV_EOK)
 546		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
 547		       "err(%d)\n",
 548		       dev_handle, dev_ino, cpuid, err);
 549
 550	return 0;
 551}
 552
 553static void sun4v_virq_disable(struct irq_data *data)
 554{
 555	unsigned long dev_handle = irq_data_to_handle(data);
 556	unsigned long dev_ino = irq_data_to_ino(data);
 557	int err;
 558
 
 
 559
 560	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
 561				    HV_INTR_DISABLED);
 562	if (err != HV_EOK)
 563		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 564		       "HV_INTR_DISABLED): err(%d)\n",
 565		       dev_handle, dev_ino, err);
 566}
 567
 568static void sun4v_virq_eoi(struct irq_data *data)
 569{
 570	unsigned long dev_handle = irq_data_to_handle(data);
 571	unsigned long dev_ino = irq_data_to_ino(data);
 572	int err;
 573
 
 
 
 574	err = sun4v_vintr_set_state(dev_handle, dev_ino,
 575				    HV_INTR_STATE_IDLE);
 576	if (err != HV_EOK)
 577		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 578		       "HV_INTR_STATE_IDLE): err(%d)\n",
 579		       dev_handle, dev_ino, err);
 580}
 581
 582static struct irq_chip sun4u_irq = {
 583	.name			= "sun4u",
 584	.irq_enable		= sun4u_irq_enable,
 585	.irq_disable		= sun4u_irq_disable,
 586	.irq_eoi		= sun4u_irq_eoi,
 587	.irq_set_affinity	= sun4u_set_affinity,
 588	.flags			= IRQCHIP_EOI_IF_HANDLED,
 589};
 590
 591static struct irq_chip sun4v_irq = {
 592	.name			= "sun4v",
 593	.irq_enable		= sun4v_irq_enable,
 594	.irq_disable		= sun4v_irq_disable,
 595	.irq_eoi		= sun4v_irq_eoi,
 596	.irq_set_affinity	= sun4v_set_affinity,
 597	.flags			= IRQCHIP_EOI_IF_HANDLED,
 598};
 599
 600static struct irq_chip sun4v_virq = {
 601	.name			= "vsun4v",
 602	.irq_enable		= sun4v_virq_enable,
 603	.irq_disable		= sun4v_virq_disable,
 604	.irq_eoi		= sun4v_virq_eoi,
 605	.irq_set_affinity	= sun4v_virt_set_affinity,
 606	.flags			= IRQCHIP_EOI_IF_HANDLED,
 607};
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
 610{
 
 611	struct irq_handler_data *handler_data;
 612	struct ino_bucket *bucket;
 613	unsigned int irq;
 614	int ino;
 615
 616	BUG_ON(tlb_type == hypervisor);
 617
 618	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
 619	bucket = &ivector_table[ino];
 620	irq = bucket_get_irq(__pa(bucket));
 621	if (!irq) {
 622		irq = irq_alloc(0, ino);
 623		bucket_set_irq(__pa(bucket), irq);
 624		irq_set_chip_and_handler_name(irq, &sun4u_irq,
 625					      handle_fasteoi_irq, "IVEC");
 626	}
 627
 628	handler_data = irq_get_handler_data(irq);
 629	if (unlikely(handler_data))
 630		goto out;
 631
 632	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
 633	if (unlikely(!handler_data)) {
 634		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
 635		prom_halt();
 636	}
 637	irq_set_handler_data(irq, handler_data);
 638
 639	handler_data->imap  = imap;
 640	handler_data->iclr  = iclr;
 641
 642out:
 643	return irq;
 644}
 645
 646static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
 647		void (*handler_data_init)(struct irq_handler_data *data,
 648		u32 devhandle, unsigned int devino),
 649		struct irq_chip *chip)
 650{
 651	struct irq_handler_data *data;
 
 652	unsigned int irq;
 653
 654	irq = irq_alloc(devhandle, devino);
 655	if (!irq)
 656		goto out;
 657
 658	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
 659	if (unlikely(!data)) {
 660		pr_err("IRQ handler data allocation failed.\n");
 661		irq_free(irq);
 662		irq = 0;
 663		goto out;
 
 664	}
 665
 666	irq_set_handler_data(irq, data);
 667	handler_data_init(data, devhandle, devino);
 668	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
 669	data->imap = ~0UL;
 670	data->iclr = ~0UL;
 671out:
 672	return irq;
 673}
 674
 675static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
 676		unsigned int devino)
 677{
 678	struct irq_handler_data *ihd = irq_get_handler_data(irq);
 679	unsigned long hv_error, cookie;
 
 680
 681	/* handler_irq needs to find the irq. cookie is seen signed in
 682	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
 
 683	 */
 684	ihd->bucket.__irq = irq;
 685	cookie = ~__pa(&ihd->bucket);
 686
 687	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
 688	if (hv_error)
 689		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
 690
 691	return hv_error;
 692}
 693
 694static void cookie_handler_data(struct irq_handler_data *data,
 695				u32 devhandle, unsigned int devino)
 696{
 697	data->dev_handle = devhandle;
 698	data->dev_ino = devino;
 699}
 700
 701static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
 702				     struct irq_chip *chip)
 703{
 704	unsigned long hv_error;
 705	unsigned int irq;
 706
 707	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
 708
 709	hv_error = cookie_assign(irq, devhandle, devino);
 710	if (hv_error) {
 711		irq_free(irq);
 712		irq = 0;
 713	}
 714
 715	return irq;
 716}
 717
 718static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
 719{
 
 
 
 720	unsigned int irq;
 721
 722	irq = cookie_exists(devhandle, devino);
 723	if (irq)
 724		goto out;
 
 
 
 
 
 
 
 725
 726	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
 
 
 727
 728out:
 729	return irq;
 730}
 731
 732static void sysino_set_bucket(unsigned int irq)
 733{
 734	struct irq_handler_data *ihd = irq_get_handler_data(irq);
 735	struct ino_bucket *bucket;
 736	unsigned long sysino;
 737
 738	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
 739	BUG_ON(sysino >= nr_ivec);
 740	bucket = &ivector_table[sysino];
 741	bucket_set_irq(__pa(bucket), irq);
 742}
 743
 744static void sysino_handler_data(struct irq_handler_data *data,
 745				u32 devhandle, unsigned int devino)
 746{
 747	unsigned long sysino;
 748
 749	sysino = sun4v_devino_to_sysino(devhandle, devino);
 750	data->sysino = sysino;
 751}
 752
 753static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
 754				     struct irq_chip *chip)
 755{
 756	unsigned int irq;
 
 
 757
 758	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
 759	if (!irq)
 760		goto out;
 
 
 
 761
 762	sysino_set_bucket(irq);
 763out:
 764	return irq;
 765}
 766
 767static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
 768{
 769	int irq;
 770
 771	irq = sysino_exists(devhandle, devino);
 772	if (irq)
 773		goto out;
 774
 775	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
 776out:
 777	return irq;
 778}
 779
 780unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
 781{
 782	unsigned int irq;
 783
 784	if (sun4v_cookie_only_virqs())
 785		irq = sun4v_build_cookie(devhandle, devino);
 786	else
 787		irq = sun4v_build_sysino(devhandle, devino);
 788
 789	return irq;
 790}
 791
 792unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
 793{
 794	int irq;
 795
 796	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
 797	if (!irq)
 798		goto out;
 799
 800	/* This is borrowed from the original function.
 801	 */
 802	irq_set_status_flags(irq, IRQ_NOAUTOEN);
 803
 804out:
 805	return irq;
 806}
 807
 808void *hardirq_stack[NR_CPUS];
 809void *softirq_stack[NR_CPUS];
 810
 811void __irq_entry handler_irq(int pil, struct pt_regs *regs)
 812{
 813	unsigned long pstate, bucket_pa;
 814	struct pt_regs *old_regs;
 815	void *orig_sp;
 816
 817	clear_softint(1 << pil);
 818
 819	old_regs = set_irq_regs(regs);
 820	irq_enter();
 821
 822	/* Grab an atomic snapshot of the pending IVECs.  */
 823	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
 824			     "wrpr	%0, %3, %%pstate\n\t"
 825			     "ldx	[%2], %1\n\t"
 826			     "stx	%%g0, [%2]\n\t"
 827			     "wrpr	%0, 0x0, %%pstate\n\t"
 828			     : "=&r" (pstate), "=&r" (bucket_pa)
 829			     : "r" (irq_work_pa(smp_processor_id())),
 830			       "i" (PSTATE_IE)
 831			     : "memory");
 832
 833	orig_sp = set_hardirq_stack();
 834
 835	while (bucket_pa) {
 836		unsigned long next_pa;
 837		unsigned int irq;
 838
 839		next_pa = bucket_get_chain_pa(bucket_pa);
 840		irq = bucket_get_irq(bucket_pa);
 841		bucket_clear_chain_pa(bucket_pa);
 842
 843		generic_handle_irq(irq);
 844
 845		bucket_pa = next_pa;
 846	}
 847
 848	restore_hardirq_stack(orig_sp);
 849
 850	irq_exit();
 851	set_irq_regs(old_regs);
 852}
 853
 854#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
 855void do_softirq_own_stack(void)
 856{
 857	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
 
 
 
 858
 859	sp += THREAD_SIZE - 192 - STACK_BIAS;
 860
 861	__asm__ __volatile__("mov %%sp, %0\n\t"
 862			     "mov %1, %%sp"
 863			     : "=&r" (orig_sp)
 864			     : "r" (sp));
 865	__do_softirq();
 866	__asm__ __volatile__("mov %0, %%sp"
 867			     : : "r" (orig_sp));
 
 
 
 
 
 
 
 
 868}
 869#endif
 870
 871#ifdef CONFIG_HOTPLUG_CPU
 872void fixup_irqs(void)
 873{
 874	unsigned int irq;
 875
 876	for (irq = 0; irq < NR_IRQS; irq++) {
 877		struct irq_desc *desc = irq_to_desc(irq);
 878		struct irq_data *data;
 879		unsigned long flags;
 880
 881		if (!desc)
 882			continue;
 883		data = irq_desc_get_irq_data(desc);
 884		raw_spin_lock_irqsave(&desc->lock, flags);
 885		if (desc->action && !irqd_is_per_cpu(data)) {
 886			if (data->chip->irq_set_affinity)
 887				data->chip->irq_set_affinity(data,
 888					irq_data_get_affinity_mask(data),
 889					false);
 890		}
 891		raw_spin_unlock_irqrestore(&desc->lock, flags);
 892	}
 893
 894	tick_ops->disable_irq();
 895}
 896#endif
 897
 898struct sun5_timer {
 899	u64	count0;
 900	u64	limit0;
 901	u64	count1;
 902	u64	limit1;
 903};
 904
 905static struct sun5_timer *prom_timers;
 906static u64 prom_limit0, prom_limit1;
 907
 908static void map_prom_timers(void)
 909{
 910	struct device_node *dp;
 911	const unsigned int *addr;
 912
 913	/* PROM timer node hangs out in the top level of device siblings... */
 914	dp = of_find_node_by_path("/");
 915	dp = dp->child;
 916	while (dp) {
 917		if (of_node_name_eq(dp, "counter-timer"))
 918			break;
 919		dp = dp->sibling;
 920	}
 921
 922	/* Assume if node is not present, PROM uses different tick mechanism
 923	 * which we should not care about.
 924	 */
 925	if (!dp) {
 926		prom_timers = (struct sun5_timer *) 0;
 927		return;
 928	}
 929
 930	/* If PROM is really using this, it must be mapped by him. */
 931	addr = of_get_property(dp, "address", NULL);
 932	if (!addr) {
 933		prom_printf("PROM does not have timer mapped, trying to continue.\n");
 934		prom_timers = (struct sun5_timer *) 0;
 935		return;
 936	}
 937	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
 938}
 939
 940static void kill_prom_timer(void)
 941{
 942	if (!prom_timers)
 943		return;
 944
 945	/* Save them away for later. */
 946	prom_limit0 = prom_timers->limit0;
 947	prom_limit1 = prom_timers->limit1;
 948
 949	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
 950	 * We turn both off here just to be paranoid.
 951	 */
 952	prom_timers->limit0 = 0;
 953	prom_timers->limit1 = 0;
 954
 955	/* Wheee, eat the interrupt packet too... */
 956	__asm__ __volatile__(
 957"	mov	0x40, %%g2\n"
 958"	ldxa	[%%g0] %0, %%g1\n"
 959"	ldxa	[%%g2] %1, %%g1\n"
 960"	stxa	%%g0, [%%g0] %0\n"
 961"	membar	#Sync\n"
 962	: /* no outputs */
 963	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
 964	: "g1", "g2");
 965}
 966
 967void notrace init_irqwork_curcpu(void)
 968{
 969	int cpu = hard_smp_processor_id();
 970
 971	trap_block[cpu].irq_worklist_pa = 0UL;
 972}
 973
 974/* Please be very careful with register_one_mondo() and
 975 * sun4v_register_mondo_queues().
 976 *
 977 * On SMP this gets invoked from the CPU trampoline before
 978 * the cpu has fully taken over the trap table from OBP,
 979 * and its kernel stack + %g6 thread register state is
 980 * not fully cooked yet.
 981 *
 982 * Therefore you cannot make any OBP calls, not even prom_printf,
 983 * from these two routines.
 984 */
 985static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
 986				       unsigned long qmask)
 987{
 988	unsigned long num_entries = (qmask + 1) / 64;
 989	unsigned long status;
 990
 991	status = sun4v_cpu_qconf(type, paddr, num_entries);
 992	if (status != HV_EOK) {
 993		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
 994			    "err %lu\n", type, paddr, num_entries, status);
 995		prom_halt();
 996	}
 997}
 998
 999void notrace sun4v_register_mondo_queues(int this_cpu)
1000{
1001	struct trap_per_cpu *tb = &trap_block[this_cpu];
1002
1003	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1004			   tb->cpu_mondo_qmask);
1005	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1006			   tb->dev_mondo_qmask);
1007	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1008			   tb->resum_qmask);
1009	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1010			   tb->nonresum_qmask);
1011}
1012
1013/* Each queue region must be a power of 2 multiple of 64 bytes in
1014 * size.  The base real address must be aligned to the size of the
1015 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1016 */
1017static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1018{
1019	unsigned long size = PAGE_ALIGN(qmask + 1);
1020	unsigned long order = get_order(size);
1021	unsigned long p;
1022
1023	p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1024	if (!p) {
1025		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1026		prom_halt();
1027	}
1028
1029	*pa_ptr = __pa(p);
1030}
1031
1032static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1033{
1034#ifdef CONFIG_SMP
1035	unsigned long page;
1036	void *mondo, *p;
1037
1038	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1039
1040	/* Make sure mondo block is 64byte aligned */
1041	p = kzalloc(127, GFP_KERNEL);
1042	if (!p) {
1043		prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1044		prom_halt();
1045	}
1046	mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1047	tb->cpu_mondo_block_pa = __pa(mondo);
1048
1049	page = get_zeroed_page(GFP_KERNEL);
1050	if (!page) {
1051		prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1052		prom_halt();
1053	}
1054
1055	tb->cpu_list_pa = __pa(page);
 
1056#endif
1057}
1058
1059/* Allocate mondo and error queues for all possible cpus.  */
1060static void __init sun4v_init_mondo_queues(void)
1061{
1062	int cpu;
1063
1064	for_each_possible_cpu(cpu) {
1065		struct trap_per_cpu *tb = &trap_block[cpu];
1066
1067		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1068		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1069		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1070		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1071		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1072		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1073				tb->nonresum_qmask);
1074	}
1075}
1076
1077static void __init init_send_mondo_info(void)
1078{
1079	int cpu;
1080
1081	for_each_possible_cpu(cpu) {
1082		struct trap_per_cpu *tb = &trap_block[cpu];
1083
1084		init_cpu_send_mondo_info(tb);
1085	}
1086}
1087
1088static struct irqaction timer_irq_action = {
1089	.name = "timer",
1090};
1091
1092static void __init irq_ivector_init(void)
 
1093{
1094	unsigned long size, order;
1095	unsigned int ivecs;
1096
1097	/* If we are doing cookie only VIRQs then we do not need the ivector
1098	 * table to process interrupts.
1099	 */
1100	if (sun4v_cookie_only_virqs())
1101		return;
1102
1103	ivecs = size_nr_ivec();
1104	size = sizeof(struct ino_bucket) * ivecs;
1105	order = get_order(size);
1106	ivector_table = (struct ino_bucket *)
1107		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1108	if (!ivector_table) {
1109		prom_printf("Fatal error, cannot allocate ivector_table\n");
1110		prom_halt();
1111	}
1112	__flush_dcache_range((unsigned long) ivector_table,
1113			     ((unsigned long) ivector_table) + size);
1114
1115	ivector_table_pa = __pa(ivector_table);
1116}
1117
1118/* Only invoked on boot processor.*/
1119void __init init_IRQ(void)
1120{
1121	irq_init_hv();
1122	irq_ivector_init();
1123	map_prom_timers();
1124	kill_prom_timer();
1125
1126	if (tlb_type == hypervisor)
1127		sun4v_init_mondo_queues();
1128
1129	init_send_mondo_info();
1130
1131	if (tlb_type == hypervisor) {
1132		/* Load up the boot cpu's entries.  */
1133		sun4v_register_mondo_queues(hard_smp_processor_id());
1134	}
1135
1136	/* We need to clear any IRQ's pending in the soft interrupt
1137	 * registers, a spurious one could be left around from the
1138	 * PROM timer which we just disabled.
1139	 */
1140	clear_softint(get_softint());
1141
1142	/* Now that ivector table is initialized, it is safe
1143	 * to receive IRQ vector traps.  We will normally take
1144	 * one or two right now, in case some device PROM used
1145	 * to boot us wants to speak to us.  We just ignore them.
1146	 */
1147	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1148			     "or	%%g1, %0, %%g1\n\t"
1149			     "wrpr	%%g1, 0x0, %%pstate"
1150			     : /* No outputs */
1151			     : "i" (PSTATE_IE)
1152			     : "g1");
1153
1154	irq_to_desc(0)->action = &timer_irq_action;
1155}