Loading...
1/* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8#include <linux/module.h>
9#include <linux/sched.h>
10#include <linux/linkage.h>
11#include <linux/ptrace.h>
12#include <linux/errno.h>
13#include <linux/kernel_stat.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/random.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/ftrace.h>
24#include <linux/irq.h>
25#include <linux/kmemleak.h>
26
27#include <asm/ptrace.h>
28#include <asm/processor.h>
29#include <linux/atomic.h>
30#include <asm/system.h>
31#include <asm/irq.h>
32#include <asm/io.h>
33#include <asm/iommu.h>
34#include <asm/upa.h>
35#include <asm/oplib.h>
36#include <asm/prom.h>
37#include <asm/timer.h>
38#include <asm/smp.h>
39#include <asm/starfire.h>
40#include <asm/uaccess.h>
41#include <asm/cache.h>
42#include <asm/cpudata.h>
43#include <asm/auxio.h>
44#include <asm/head.h>
45#include <asm/hypervisor.h>
46#include <asm/cacheflush.h>
47
48#include "entry.h"
49#include "cpumap.h"
50#include "kstack.h"
51
52#define NUM_IVECS (IMAP_INR + 1)
53
54struct ino_bucket *ivector_table;
55unsigned long ivector_table_pa;
56
57/* On several sun4u processors, it is illegal to mix bypass and
58 * non-bypass accesses. Therefore we access all INO buckets
59 * using bypass accesses only.
60 */
61static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
62{
63 unsigned long ret;
64
65 __asm__ __volatile__("ldxa [%1] %2, %0"
66 : "=&r" (ret)
67 : "r" (bucket_pa +
68 offsetof(struct ino_bucket,
69 __irq_chain_pa)),
70 "i" (ASI_PHYS_USE_EC));
71
72 return ret;
73}
74
75static void bucket_clear_chain_pa(unsigned long bucket_pa)
76{
77 __asm__ __volatile__("stxa %%g0, [%0] %1"
78 : /* no outputs */
79 : "r" (bucket_pa +
80 offsetof(struct ino_bucket,
81 __irq_chain_pa)),
82 "i" (ASI_PHYS_USE_EC));
83}
84
85static unsigned int bucket_get_irq(unsigned long bucket_pa)
86{
87 unsigned int ret;
88
89 __asm__ __volatile__("lduwa [%1] %2, %0"
90 : "=&r" (ret)
91 : "r" (bucket_pa +
92 offsetof(struct ino_bucket,
93 __irq)),
94 "i" (ASI_PHYS_USE_EC));
95
96 return ret;
97}
98
99static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
100{
101 __asm__ __volatile__("stwa %0, [%1] %2"
102 : /* no outputs */
103 : "r" (irq),
104 "r" (bucket_pa +
105 offsetof(struct ino_bucket,
106 __irq)),
107 "i" (ASI_PHYS_USE_EC));
108}
109
110#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
111
112static struct {
113 unsigned int dev_handle;
114 unsigned int dev_ino;
115 unsigned int in_use;
116} irq_table[NR_IRQS];
117static DEFINE_SPINLOCK(irq_alloc_lock);
118
119unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
120{
121 unsigned long flags;
122 unsigned char ent;
123
124 BUILD_BUG_ON(NR_IRQS >= 256);
125
126 spin_lock_irqsave(&irq_alloc_lock, flags);
127
128 for (ent = 1; ent < NR_IRQS; ent++) {
129 if (!irq_table[ent].in_use)
130 break;
131 }
132 if (ent >= NR_IRQS) {
133 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
134 ent = 0;
135 } else {
136 irq_table[ent].dev_handle = dev_handle;
137 irq_table[ent].dev_ino = dev_ino;
138 irq_table[ent].in_use = 1;
139 }
140
141 spin_unlock_irqrestore(&irq_alloc_lock, flags);
142
143 return ent;
144}
145
146#ifdef CONFIG_PCI_MSI
147void irq_free(unsigned int irq)
148{
149 unsigned long flags;
150
151 if (irq >= NR_IRQS)
152 return;
153
154 spin_lock_irqsave(&irq_alloc_lock, flags);
155
156 irq_table[irq].in_use = 0;
157
158 spin_unlock_irqrestore(&irq_alloc_lock, flags);
159}
160#endif
161
162/*
163 * /proc/interrupts printing:
164 */
165int arch_show_interrupts(struct seq_file *p, int prec)
166{
167 int j;
168
169 seq_printf(p, "NMI: ");
170 for_each_online_cpu(j)
171 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
172 seq_printf(p, " Non-maskable interrupts\n");
173 return 0;
174}
175
176static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
177{
178 unsigned int tid;
179
180 if (this_is_starfire) {
181 tid = starfire_translate(imap, cpuid);
182 tid <<= IMAP_TID_SHIFT;
183 tid &= IMAP_TID_UPA;
184 } else {
185 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
186 unsigned long ver;
187
188 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
189 if ((ver >> 32UL) == __JALAPENO_ID ||
190 (ver >> 32UL) == __SERRANO_ID) {
191 tid = cpuid << IMAP_TID_SHIFT;
192 tid &= IMAP_TID_JBUS;
193 } else {
194 unsigned int a = cpuid & 0x1f;
195 unsigned int n = (cpuid >> 5) & 0x1f;
196
197 tid = ((a << IMAP_AID_SHIFT) |
198 (n << IMAP_NID_SHIFT));
199 tid &= (IMAP_AID_SAFARI |
200 IMAP_NID_SAFARI);
201 }
202 } else {
203 tid = cpuid << IMAP_TID_SHIFT;
204 tid &= IMAP_TID_UPA;
205 }
206 }
207
208 return tid;
209}
210
211struct irq_handler_data {
212 unsigned long iclr;
213 unsigned long imap;
214
215 void (*pre_handler)(unsigned int, void *, void *);
216 void *arg1;
217 void *arg2;
218};
219
220#ifdef CONFIG_SMP
221static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
222{
223 cpumask_t mask;
224 int cpuid;
225
226 cpumask_copy(&mask, affinity);
227 if (cpumask_equal(&mask, cpu_online_mask)) {
228 cpuid = map_to_cpu(irq);
229 } else {
230 cpumask_t tmp;
231
232 cpumask_and(&tmp, cpu_online_mask, &mask);
233 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
234 }
235
236 return cpuid;
237}
238#else
239#define irq_choose_cpu(irq, affinity) \
240 real_hard_smp_processor_id()
241#endif
242
243static void sun4u_irq_enable(struct irq_data *data)
244{
245 struct irq_handler_data *handler_data = data->handler_data;
246
247 if (likely(handler_data)) {
248 unsigned long cpuid, imap, val;
249 unsigned int tid;
250
251 cpuid = irq_choose_cpu(data->irq, data->affinity);
252 imap = handler_data->imap;
253
254 tid = sun4u_compute_tid(imap, cpuid);
255
256 val = upa_readq(imap);
257 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
258 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
259 val |= tid | IMAP_VALID;
260 upa_writeq(val, imap);
261 upa_writeq(ICLR_IDLE, handler_data->iclr);
262 }
263}
264
265static int sun4u_set_affinity(struct irq_data *data,
266 const struct cpumask *mask, bool force)
267{
268 struct irq_handler_data *handler_data = data->handler_data;
269
270 if (likely(handler_data)) {
271 unsigned long cpuid, imap, val;
272 unsigned int tid;
273
274 cpuid = irq_choose_cpu(data->irq, mask);
275 imap = handler_data->imap;
276
277 tid = sun4u_compute_tid(imap, cpuid);
278
279 val = upa_readq(imap);
280 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
281 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
282 val |= tid | IMAP_VALID;
283 upa_writeq(val, imap);
284 upa_writeq(ICLR_IDLE, handler_data->iclr);
285 }
286
287 return 0;
288}
289
290/* Don't do anything. The desc->status check for IRQ_DISABLED in
291 * handler_irq() will skip the handler call and that will leave the
292 * interrupt in the sent state. The next ->enable() call will hit the
293 * ICLR register to reset the state machine.
294 *
295 * This scheme is necessary, instead of clearing the Valid bit in the
296 * IMAP register, to handle the case of IMAP registers being shared by
297 * multiple INOs (and thus ICLR registers). Since we use a different
298 * virtual IRQ for each shared IMAP instance, the generic code thinks
299 * there is only one user so it prematurely calls ->disable() on
300 * free_irq().
301 *
302 * We have to provide an explicit ->disable() method instead of using
303 * NULL to get the default. The reason is that if the generic code
304 * sees that, it also hooks up a default ->shutdown method which
305 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
306 */
307static void sun4u_irq_disable(struct irq_data *data)
308{
309}
310
311static void sun4u_irq_eoi(struct irq_data *data)
312{
313 struct irq_handler_data *handler_data = data->handler_data;
314
315 if (likely(handler_data))
316 upa_writeq(ICLR_IDLE, handler_data->iclr);
317}
318
319static void sun4v_irq_enable(struct irq_data *data)
320{
321 unsigned int ino = irq_table[data->irq].dev_ino;
322 unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
323 int err;
324
325 err = sun4v_intr_settarget(ino, cpuid);
326 if (err != HV_EOK)
327 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
328 "err(%d)\n", ino, cpuid, err);
329 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
330 if (err != HV_EOK)
331 printk(KERN_ERR "sun4v_intr_setstate(%x): "
332 "err(%d)\n", ino, err);
333 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
334 if (err != HV_EOK)
335 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
336 ino, err);
337}
338
339static int sun4v_set_affinity(struct irq_data *data,
340 const struct cpumask *mask, bool force)
341{
342 unsigned int ino = irq_table[data->irq].dev_ino;
343 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
344 int err;
345
346 err = sun4v_intr_settarget(ino, cpuid);
347 if (err != HV_EOK)
348 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349 "err(%d)\n", ino, cpuid, err);
350
351 return 0;
352}
353
354static void sun4v_irq_disable(struct irq_data *data)
355{
356 unsigned int ino = irq_table[data->irq].dev_ino;
357 int err;
358
359 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
360 if (err != HV_EOK)
361 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
362 "err(%d)\n", ino, err);
363}
364
365static void sun4v_irq_eoi(struct irq_data *data)
366{
367 unsigned int ino = irq_table[data->irq].dev_ino;
368 int err;
369
370 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
371 if (err != HV_EOK)
372 printk(KERN_ERR "sun4v_intr_setstate(%x): "
373 "err(%d)\n", ino, err);
374}
375
376static void sun4v_virq_enable(struct irq_data *data)
377{
378 unsigned long cpuid, dev_handle, dev_ino;
379 int err;
380
381 cpuid = irq_choose_cpu(data->irq, data->affinity);
382
383 dev_handle = irq_table[data->irq].dev_handle;
384 dev_ino = irq_table[data->irq].dev_ino;
385
386 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
387 if (err != HV_EOK)
388 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
389 "err(%d)\n",
390 dev_handle, dev_ino, cpuid, err);
391 err = sun4v_vintr_set_state(dev_handle, dev_ino,
392 HV_INTR_STATE_IDLE);
393 if (err != HV_EOK)
394 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
395 "HV_INTR_STATE_IDLE): err(%d)\n",
396 dev_handle, dev_ino, err);
397 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
398 HV_INTR_ENABLED);
399 if (err != HV_EOK)
400 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
401 "HV_INTR_ENABLED): err(%d)\n",
402 dev_handle, dev_ino, err);
403}
404
405static int sun4v_virt_set_affinity(struct irq_data *data,
406 const struct cpumask *mask, bool force)
407{
408 unsigned long cpuid, dev_handle, dev_ino;
409 int err;
410
411 cpuid = irq_choose_cpu(data->irq, mask);
412
413 dev_handle = irq_table[data->irq].dev_handle;
414 dev_ino = irq_table[data->irq].dev_ino;
415
416 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
417 if (err != HV_EOK)
418 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
419 "err(%d)\n",
420 dev_handle, dev_ino, cpuid, err);
421
422 return 0;
423}
424
425static void sun4v_virq_disable(struct irq_data *data)
426{
427 unsigned long dev_handle, dev_ino;
428 int err;
429
430 dev_handle = irq_table[data->irq].dev_handle;
431 dev_ino = irq_table[data->irq].dev_ino;
432
433 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
434 HV_INTR_DISABLED);
435 if (err != HV_EOK)
436 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
437 "HV_INTR_DISABLED): err(%d)\n",
438 dev_handle, dev_ino, err);
439}
440
441static void sun4v_virq_eoi(struct irq_data *data)
442{
443 unsigned long dev_handle, dev_ino;
444 int err;
445
446 dev_handle = irq_table[data->irq].dev_handle;
447 dev_ino = irq_table[data->irq].dev_ino;
448
449 err = sun4v_vintr_set_state(dev_handle, dev_ino,
450 HV_INTR_STATE_IDLE);
451 if (err != HV_EOK)
452 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
453 "HV_INTR_STATE_IDLE): err(%d)\n",
454 dev_handle, dev_ino, err);
455}
456
457static struct irq_chip sun4u_irq = {
458 .name = "sun4u",
459 .irq_enable = sun4u_irq_enable,
460 .irq_disable = sun4u_irq_disable,
461 .irq_eoi = sun4u_irq_eoi,
462 .irq_set_affinity = sun4u_set_affinity,
463 .flags = IRQCHIP_EOI_IF_HANDLED,
464};
465
466static struct irq_chip sun4v_irq = {
467 .name = "sun4v",
468 .irq_enable = sun4v_irq_enable,
469 .irq_disable = sun4v_irq_disable,
470 .irq_eoi = sun4v_irq_eoi,
471 .irq_set_affinity = sun4v_set_affinity,
472 .flags = IRQCHIP_EOI_IF_HANDLED,
473};
474
475static struct irq_chip sun4v_virq = {
476 .name = "vsun4v",
477 .irq_enable = sun4v_virq_enable,
478 .irq_disable = sun4v_virq_disable,
479 .irq_eoi = sun4v_virq_eoi,
480 .irq_set_affinity = sun4v_virt_set_affinity,
481 .flags = IRQCHIP_EOI_IF_HANDLED,
482};
483
484static void pre_flow_handler(struct irq_data *d)
485{
486 struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
487 unsigned int ino = irq_table[d->irq].dev_ino;
488
489 handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
490}
491
492void irq_install_pre_handler(int irq,
493 void (*func)(unsigned int, void *, void *),
494 void *arg1, void *arg2)
495{
496 struct irq_handler_data *handler_data = irq_get_handler_data(irq);
497
498 handler_data->pre_handler = func;
499 handler_data->arg1 = arg1;
500 handler_data->arg2 = arg2;
501
502 __irq_set_preflow_handler(irq, pre_flow_handler);
503}
504
505unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
506{
507 struct ino_bucket *bucket;
508 struct irq_handler_data *handler_data;
509 unsigned int irq;
510 int ino;
511
512 BUG_ON(tlb_type == hypervisor);
513
514 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
515 bucket = &ivector_table[ino];
516 irq = bucket_get_irq(__pa(bucket));
517 if (!irq) {
518 irq = irq_alloc(0, ino);
519 bucket_set_irq(__pa(bucket), irq);
520 irq_set_chip_and_handler_name(irq, &sun4u_irq,
521 handle_fasteoi_irq, "IVEC");
522 }
523
524 handler_data = irq_get_handler_data(irq);
525 if (unlikely(handler_data))
526 goto out;
527
528 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
529 if (unlikely(!handler_data)) {
530 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
531 prom_halt();
532 }
533 irq_set_handler_data(irq, handler_data);
534
535 handler_data->imap = imap;
536 handler_data->iclr = iclr;
537
538out:
539 return irq;
540}
541
542static unsigned int sun4v_build_common(unsigned long sysino,
543 struct irq_chip *chip)
544{
545 struct ino_bucket *bucket;
546 struct irq_handler_data *handler_data;
547 unsigned int irq;
548
549 BUG_ON(tlb_type != hypervisor);
550
551 bucket = &ivector_table[sysino];
552 irq = bucket_get_irq(__pa(bucket));
553 if (!irq) {
554 irq = irq_alloc(0, sysino);
555 bucket_set_irq(__pa(bucket), irq);
556 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
557 "IVEC");
558 }
559
560 handler_data = irq_get_handler_data(irq);
561 if (unlikely(handler_data))
562 goto out;
563
564 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
565 if (unlikely(!handler_data)) {
566 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
567 prom_halt();
568 }
569 irq_set_handler_data(irq, handler_data);
570
571 /* Catch accidental accesses to these things. IMAP/ICLR handling
572 * is done by hypervisor calls on sun4v platforms, not by direct
573 * register accesses.
574 */
575 handler_data->imap = ~0UL;
576 handler_data->iclr = ~0UL;
577
578out:
579 return irq;
580}
581
582unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
583{
584 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
585
586 return sun4v_build_common(sysino, &sun4v_irq);
587}
588
589unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
590{
591 struct irq_handler_data *handler_data;
592 unsigned long hv_err, cookie;
593 struct ino_bucket *bucket;
594 unsigned int irq;
595
596 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
597 if (unlikely(!bucket))
598 return 0;
599
600 /* The only reference we store to the IRQ bucket is
601 * by physical address which kmemleak can't see, tell
602 * it that this object explicitly is not a leak and
603 * should be scanned.
604 */
605 kmemleak_not_leak(bucket);
606
607 __flush_dcache_range((unsigned long) bucket,
608 ((unsigned long) bucket +
609 sizeof(struct ino_bucket)));
610
611 irq = irq_alloc(devhandle, devino);
612 bucket_set_irq(__pa(bucket), irq);
613
614 irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
615 "IVEC");
616
617 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
618 if (unlikely(!handler_data))
619 return 0;
620
621 /* In order to make the LDC channel startup sequence easier,
622 * especially wrt. locking, we do not let request_irq() enable
623 * the interrupt.
624 */
625 irq_set_status_flags(irq, IRQ_NOAUTOEN);
626 irq_set_handler_data(irq, handler_data);
627
628 /* Catch accidental accesses to these things. IMAP/ICLR handling
629 * is done by hypervisor calls on sun4v platforms, not by direct
630 * register accesses.
631 */
632 handler_data->imap = ~0UL;
633 handler_data->iclr = ~0UL;
634
635 cookie = ~__pa(bucket);
636 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
637 if (hv_err) {
638 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
639 "err=%lu\n", devhandle, devino, hv_err);
640 prom_halt();
641 }
642
643 return irq;
644}
645
646void ack_bad_irq(unsigned int irq)
647{
648 unsigned int ino = irq_table[irq].dev_ino;
649
650 if (!ino)
651 ino = 0xdeadbeef;
652
653 printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
654 ino, irq);
655}
656
657void *hardirq_stack[NR_CPUS];
658void *softirq_stack[NR_CPUS];
659
660void __irq_entry handler_irq(int pil, struct pt_regs *regs)
661{
662 unsigned long pstate, bucket_pa;
663 struct pt_regs *old_regs;
664 void *orig_sp;
665
666 clear_softint(1 << pil);
667
668 old_regs = set_irq_regs(regs);
669 irq_enter();
670
671 /* Grab an atomic snapshot of the pending IVECs. */
672 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
673 "wrpr %0, %3, %%pstate\n\t"
674 "ldx [%2], %1\n\t"
675 "stx %%g0, [%2]\n\t"
676 "wrpr %0, 0x0, %%pstate\n\t"
677 : "=&r" (pstate), "=&r" (bucket_pa)
678 : "r" (irq_work_pa(smp_processor_id())),
679 "i" (PSTATE_IE)
680 : "memory");
681
682 orig_sp = set_hardirq_stack();
683
684 while (bucket_pa) {
685 unsigned long next_pa;
686 unsigned int irq;
687
688 next_pa = bucket_get_chain_pa(bucket_pa);
689 irq = bucket_get_irq(bucket_pa);
690 bucket_clear_chain_pa(bucket_pa);
691
692 generic_handle_irq(irq);
693
694 bucket_pa = next_pa;
695 }
696
697 restore_hardirq_stack(orig_sp);
698
699 irq_exit();
700 set_irq_regs(old_regs);
701}
702
703void do_softirq(void)
704{
705 unsigned long flags;
706
707 if (in_interrupt())
708 return;
709
710 local_irq_save(flags);
711
712 if (local_softirq_pending()) {
713 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
714
715 sp += THREAD_SIZE - 192 - STACK_BIAS;
716
717 __asm__ __volatile__("mov %%sp, %0\n\t"
718 "mov %1, %%sp"
719 : "=&r" (orig_sp)
720 : "r" (sp));
721 __do_softirq();
722 __asm__ __volatile__("mov %0, %%sp"
723 : : "r" (orig_sp));
724 }
725
726 local_irq_restore(flags);
727}
728
729#ifdef CONFIG_HOTPLUG_CPU
730void fixup_irqs(void)
731{
732 unsigned int irq;
733
734 for (irq = 0; irq < NR_IRQS; irq++) {
735 struct irq_desc *desc = irq_to_desc(irq);
736 struct irq_data *data = irq_desc_get_irq_data(desc);
737 unsigned long flags;
738
739 raw_spin_lock_irqsave(&desc->lock, flags);
740 if (desc->action && !irqd_is_per_cpu(data)) {
741 if (data->chip->irq_set_affinity)
742 data->chip->irq_set_affinity(data,
743 data->affinity,
744 false);
745 }
746 raw_spin_unlock_irqrestore(&desc->lock, flags);
747 }
748
749 tick_ops->disable_irq();
750}
751#endif
752
753struct sun5_timer {
754 u64 count0;
755 u64 limit0;
756 u64 count1;
757 u64 limit1;
758};
759
760static struct sun5_timer *prom_timers;
761static u64 prom_limit0, prom_limit1;
762
763static void map_prom_timers(void)
764{
765 struct device_node *dp;
766 const unsigned int *addr;
767
768 /* PROM timer node hangs out in the top level of device siblings... */
769 dp = of_find_node_by_path("/");
770 dp = dp->child;
771 while (dp) {
772 if (!strcmp(dp->name, "counter-timer"))
773 break;
774 dp = dp->sibling;
775 }
776
777 /* Assume if node is not present, PROM uses different tick mechanism
778 * which we should not care about.
779 */
780 if (!dp) {
781 prom_timers = (struct sun5_timer *) 0;
782 return;
783 }
784
785 /* If PROM is really using this, it must be mapped by him. */
786 addr = of_get_property(dp, "address", NULL);
787 if (!addr) {
788 prom_printf("PROM does not have timer mapped, trying to continue.\n");
789 prom_timers = (struct sun5_timer *) 0;
790 return;
791 }
792 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
793}
794
795static void kill_prom_timer(void)
796{
797 if (!prom_timers)
798 return;
799
800 /* Save them away for later. */
801 prom_limit0 = prom_timers->limit0;
802 prom_limit1 = prom_timers->limit1;
803
804 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
805 * We turn both off here just to be paranoid.
806 */
807 prom_timers->limit0 = 0;
808 prom_timers->limit1 = 0;
809
810 /* Wheee, eat the interrupt packet too... */
811 __asm__ __volatile__(
812" mov 0x40, %%g2\n"
813" ldxa [%%g0] %0, %%g1\n"
814" ldxa [%%g2] %1, %%g1\n"
815" stxa %%g0, [%%g0] %0\n"
816" membar #Sync\n"
817 : /* no outputs */
818 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
819 : "g1", "g2");
820}
821
822void notrace init_irqwork_curcpu(void)
823{
824 int cpu = hard_smp_processor_id();
825
826 trap_block[cpu].irq_worklist_pa = 0UL;
827}
828
829/* Please be very careful with register_one_mondo() and
830 * sun4v_register_mondo_queues().
831 *
832 * On SMP this gets invoked from the CPU trampoline before
833 * the cpu has fully taken over the trap table from OBP,
834 * and it's kernel stack + %g6 thread register state is
835 * not fully cooked yet.
836 *
837 * Therefore you cannot make any OBP calls, not even prom_printf,
838 * from these two routines.
839 */
840static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
841{
842 unsigned long num_entries = (qmask + 1) / 64;
843 unsigned long status;
844
845 status = sun4v_cpu_qconf(type, paddr, num_entries);
846 if (status != HV_EOK) {
847 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
848 "err %lu\n", type, paddr, num_entries, status);
849 prom_halt();
850 }
851}
852
853void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
854{
855 struct trap_per_cpu *tb = &trap_block[this_cpu];
856
857 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
858 tb->cpu_mondo_qmask);
859 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
860 tb->dev_mondo_qmask);
861 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
862 tb->resum_qmask);
863 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
864 tb->nonresum_qmask);
865}
866
867/* Each queue region must be a power of 2 multiple of 64 bytes in
868 * size. The base real address must be aligned to the size of the
869 * region. Thus, an 8KB queue must be 8KB aligned, for example.
870 */
871static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
872{
873 unsigned long size = PAGE_ALIGN(qmask + 1);
874 unsigned long order = get_order(size);
875 unsigned long p;
876
877 p = __get_free_pages(GFP_KERNEL, order);
878 if (!p) {
879 prom_printf("SUN4V: Error, cannot allocate queue.\n");
880 prom_halt();
881 }
882
883 *pa_ptr = __pa(p);
884}
885
886static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
887{
888#ifdef CONFIG_SMP
889 unsigned long page;
890
891 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
892
893 page = get_zeroed_page(GFP_KERNEL);
894 if (!page) {
895 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
896 prom_halt();
897 }
898
899 tb->cpu_mondo_block_pa = __pa(page);
900 tb->cpu_list_pa = __pa(page + 64);
901#endif
902}
903
904/* Allocate mondo and error queues for all possible cpus. */
905static void __init sun4v_init_mondo_queues(void)
906{
907 int cpu;
908
909 for_each_possible_cpu(cpu) {
910 struct trap_per_cpu *tb = &trap_block[cpu];
911
912 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
913 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
914 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
915 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
916 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
917 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
918 tb->nonresum_qmask);
919 }
920}
921
922static void __init init_send_mondo_info(void)
923{
924 int cpu;
925
926 for_each_possible_cpu(cpu) {
927 struct trap_per_cpu *tb = &trap_block[cpu];
928
929 init_cpu_send_mondo_info(tb);
930 }
931}
932
933static struct irqaction timer_irq_action = {
934 .name = "timer",
935};
936
937/* Only invoked on boot processor. */
938void __init init_IRQ(void)
939{
940 unsigned long size;
941
942 map_prom_timers();
943 kill_prom_timer();
944
945 size = sizeof(struct ino_bucket) * NUM_IVECS;
946 ivector_table = kzalloc(size, GFP_KERNEL);
947 if (!ivector_table) {
948 prom_printf("Fatal error, cannot allocate ivector_table\n");
949 prom_halt();
950 }
951 __flush_dcache_range((unsigned long) ivector_table,
952 ((unsigned long) ivector_table) + size);
953
954 ivector_table_pa = __pa(ivector_table);
955
956 if (tlb_type == hypervisor)
957 sun4v_init_mondo_queues();
958
959 init_send_mondo_info();
960
961 if (tlb_type == hypervisor) {
962 /* Load up the boot cpu's entries. */
963 sun4v_register_mondo_queues(hard_smp_processor_id());
964 }
965
966 /* We need to clear any IRQ's pending in the soft interrupt
967 * registers, a spurious one could be left around from the
968 * PROM timer which we just disabled.
969 */
970 clear_softint(get_softint());
971
972 /* Now that ivector table is initialized, it is safe
973 * to receive IRQ vector traps. We will normally take
974 * one or two right now, in case some device PROM used
975 * to boot us wants to speak to us. We just ignore them.
976 */
977 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
978 "or %%g1, %0, %%g1\n\t"
979 "wrpr %%g1, 0x0, %%pstate"
980 : /* No outputs */
981 : "i" (PSTATE_IE)
982 : "g1");
983
984 irq_to_desc(0)->action = &timer_irq_action;
985}
1// SPDX-License-Identifier: GPL-2.0
2/* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9#include <linux/sched.h>
10#include <linux/linkage.h>
11#include <linux/ptrace.h>
12#include <linux/errno.h>
13#include <linux/kernel_stat.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/random.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/ftrace.h>
24#include <linux/irq.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <linux/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45#include <asm/softirq_stack.h>
46
47#include "entry.h"
48#include "cpumap.h"
49#include "kstack.h"
50
51struct ino_bucket *ivector_table;
52unsigned long ivector_table_pa;
53
54/* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
58static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59{
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70}
71
72static void bucket_clear_chain_pa(unsigned long bucket_pa)
73{
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80}
81
82static unsigned int bucket_get_irq(unsigned long bucket_pa)
83{
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94}
95
96static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
97{
98 __asm__ __volatile__("stwa %0, [%1] %2"
99 : /* no outputs */
100 : "r" (irq),
101 "r" (bucket_pa +
102 offsetof(struct ino_bucket,
103 __irq)),
104 "i" (ASI_PHYS_USE_EC));
105}
106
107#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
108
109static unsigned long hvirq_major __initdata;
110static int __init early_hvirq_major(char *p)
111{
112 int rc = kstrtoul(p, 10, &hvirq_major);
113
114 return rc;
115}
116early_param("hvirq", early_hvirq_major);
117
118static int hv_irq_version;
119
120/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121 * based interfaces, but:
122 *
123 * 1) Several OSs, Solaris and Linux included, use them even when only
124 * negotiating version 1.0 (or failing to negotiate at all). So the
125 * hypervisor has a workaround that provides the VIRQ interfaces even
126 * when only verion 1.0 of the API is in use.
127 *
128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
129 * interfaces only were actually hooked up for LDC interrupts, even
130 * though the Hypervisor specification clearly stated:
131 *
132 * The new interrupt API functions will be available to a guest
133 * when it negotiates version 2.0 in the interrupt API group 0x2. When
134 * a guest negotiates version 2.0, all interrupt sources will only
135 * support using the cookie interface, and any attempt to use the
136 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137 * ENOTSUPPORTED error being returned.
138 *
139 * with an emphasis on "all interrupt sources".
140 *
141 * To correct this, major version 3.0 was created which does actually
142 * support VIRQs for all interrupt sources (not just LDC devices). So
143 * if we want to move completely over the cookie based VIRQs we must
144 * negotiate major version 3.0 or later of HV_GRP_INTR.
145 */
146static bool sun4v_cookie_only_virqs(void)
147{
148 if (hv_irq_version >= 3)
149 return true;
150 return false;
151}
152
153static void __init irq_init_hv(void)
154{
155 unsigned long hv_error, major, minor = 0;
156
157 if (tlb_type != hypervisor)
158 return;
159
160 if (hvirq_major)
161 major = hvirq_major;
162 else
163 major = 3;
164
165 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
166 if (!hv_error)
167 hv_irq_version = major;
168 else
169 hv_irq_version = 1;
170
171 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
172 hv_irq_version,
173 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
174}
175
176/* This function is for the timer interrupt.*/
177int __init arch_probe_nr_irqs(void)
178{
179 return 1;
180}
181
182#define DEFAULT_NUM_IVECS (0xfffU)
183static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
184#define NUM_IVECS (nr_ivec)
185
186static unsigned int __init size_nr_ivec(void)
187{
188 if (tlb_type == hypervisor) {
189 switch (sun4v_chip_type) {
190 /* Athena's devhandle|devino is large.*/
191 case SUN4V_CHIP_SPARC64X:
192 nr_ivec = 0xffff;
193 break;
194 }
195 }
196 return nr_ivec;
197}
198
199struct irq_handler_data {
200 union {
201 struct {
202 unsigned int dev_handle;
203 unsigned int dev_ino;
204 };
205 unsigned long sysino;
206 };
207 struct ino_bucket bucket;
208 unsigned long iclr;
209 unsigned long imap;
210};
211
212static inline unsigned int irq_data_to_handle(struct irq_data *data)
213{
214 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
215
216 return ihd->dev_handle;
217}
218
219static inline unsigned int irq_data_to_ino(struct irq_data *data)
220{
221 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
222
223 return ihd->dev_ino;
224}
225
226static inline unsigned long irq_data_to_sysino(struct irq_data *data)
227{
228 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
229
230 return ihd->sysino;
231}
232
233void irq_free(unsigned int irq)
234{
235 void *data = irq_get_handler_data(irq);
236
237 kfree(data);
238 irq_set_handler_data(irq, NULL);
239 irq_free_descs(irq, 1);
240}
241
242unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
243{
244 int irq;
245
246 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
247 if (irq <= 0)
248 goto out;
249
250 return irq;
251out:
252 return 0;
253}
254
255static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
256{
257 unsigned long hv_err, cookie;
258 struct ino_bucket *bucket;
259 unsigned int irq = 0U;
260
261 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
262 if (hv_err) {
263 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
264 goto out;
265 }
266
267 if (cookie & ((1UL << 63UL))) {
268 cookie = ~cookie;
269 bucket = (struct ino_bucket *) __va(cookie);
270 irq = bucket->__irq;
271 }
272out:
273 return irq;
274}
275
276static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
277{
278 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
279 struct ino_bucket *bucket;
280 unsigned int irq;
281
282 bucket = &ivector_table[sysino];
283 irq = bucket_get_irq(__pa(bucket));
284
285 return irq;
286}
287
288void ack_bad_irq(unsigned int irq)
289{
290 pr_crit("BAD IRQ ack %d\n", irq);
291}
292
293void irq_install_pre_handler(int irq,
294 void (*func)(unsigned int, void *, void *),
295 void *arg1, void *arg2)
296{
297 pr_warn("IRQ pre handler NOT supported.\n");
298}
299
300/*
301 * /proc/interrupts printing:
302 */
303int arch_show_interrupts(struct seq_file *p, int prec)
304{
305 int j;
306
307 seq_printf(p, "NMI: ");
308 for_each_online_cpu(j)
309 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
310 seq_printf(p, " Non-maskable interrupts\n");
311 return 0;
312}
313
314static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
315{
316 unsigned int tid;
317
318 if (this_is_starfire) {
319 tid = starfire_translate(imap, cpuid);
320 tid <<= IMAP_TID_SHIFT;
321 tid &= IMAP_TID_UPA;
322 } else {
323 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
324 unsigned long ver;
325
326 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
327 if ((ver >> 32UL) == __JALAPENO_ID ||
328 (ver >> 32UL) == __SERRANO_ID) {
329 tid = cpuid << IMAP_TID_SHIFT;
330 tid &= IMAP_TID_JBUS;
331 } else {
332 unsigned int a = cpuid & 0x1f;
333 unsigned int n = (cpuid >> 5) & 0x1f;
334
335 tid = ((a << IMAP_AID_SHIFT) |
336 (n << IMAP_NID_SHIFT));
337 tid &= (IMAP_AID_SAFARI |
338 IMAP_NID_SAFARI);
339 }
340 } else {
341 tid = cpuid << IMAP_TID_SHIFT;
342 tid &= IMAP_TID_UPA;
343 }
344 }
345
346 return tid;
347}
348
349#ifdef CONFIG_SMP
350static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
351{
352 int cpuid;
353
354 if (cpumask_equal(affinity, cpu_online_mask)) {
355 cpuid = map_to_cpu(irq);
356 } else {
357 cpuid = cpumask_first_and(affinity, cpu_online_mask);
358 cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
359 }
360
361 return cpuid;
362}
363#else
364#define irq_choose_cpu(irq, affinity) \
365 real_hard_smp_processor_id()
366#endif
367
368static void sun4u_irq_enable(struct irq_data *data)
369{
370 struct irq_handler_data *handler_data;
371
372 handler_data = irq_data_get_irq_handler_data(data);
373 if (likely(handler_data)) {
374 unsigned long cpuid, imap, val;
375 unsigned int tid;
376
377 cpuid = irq_choose_cpu(data->irq,
378 irq_data_get_affinity_mask(data));
379 imap = handler_data->imap;
380
381 tid = sun4u_compute_tid(imap, cpuid);
382
383 val = upa_readq(imap);
384 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
385 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
386 val |= tid | IMAP_VALID;
387 upa_writeq(val, imap);
388 upa_writeq(ICLR_IDLE, handler_data->iclr);
389 }
390}
391
392static int sun4u_set_affinity(struct irq_data *data,
393 const struct cpumask *mask, bool force)
394{
395 struct irq_handler_data *handler_data;
396
397 handler_data = irq_data_get_irq_handler_data(data);
398 if (likely(handler_data)) {
399 unsigned long cpuid, imap, val;
400 unsigned int tid;
401
402 cpuid = irq_choose_cpu(data->irq, mask);
403 imap = handler_data->imap;
404
405 tid = sun4u_compute_tid(imap, cpuid);
406
407 val = upa_readq(imap);
408 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
409 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
410 val |= tid | IMAP_VALID;
411 upa_writeq(val, imap);
412 upa_writeq(ICLR_IDLE, handler_data->iclr);
413 }
414
415 return 0;
416}
417
418/* Don't do anything. The desc->status check for IRQ_DISABLED in
419 * handler_irq() will skip the handler call and that will leave the
420 * interrupt in the sent state. The next ->enable() call will hit the
421 * ICLR register to reset the state machine.
422 *
423 * This scheme is necessary, instead of clearing the Valid bit in the
424 * IMAP register, to handle the case of IMAP registers being shared by
425 * multiple INOs (and thus ICLR registers). Since we use a different
426 * virtual IRQ for each shared IMAP instance, the generic code thinks
427 * there is only one user so it prematurely calls ->disable() on
428 * free_irq().
429 *
430 * We have to provide an explicit ->disable() method instead of using
431 * NULL to get the default. The reason is that if the generic code
432 * sees that, it also hooks up a default ->shutdown method which
433 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
434 */
435static void sun4u_irq_disable(struct irq_data *data)
436{
437}
438
439static void sun4u_irq_eoi(struct irq_data *data)
440{
441 struct irq_handler_data *handler_data;
442
443 handler_data = irq_data_get_irq_handler_data(data);
444 if (likely(handler_data))
445 upa_writeq(ICLR_IDLE, handler_data->iclr);
446}
447
448static void sun4v_irq_enable(struct irq_data *data)
449{
450 unsigned long cpuid = irq_choose_cpu(data->irq,
451 irq_data_get_affinity_mask(data));
452 unsigned int ino = irq_data_to_sysino(data);
453 int err;
454
455 err = sun4v_intr_settarget(ino, cpuid);
456 if (err != HV_EOK)
457 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
458 "err(%d)\n", ino, cpuid, err);
459 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
460 if (err != HV_EOK)
461 printk(KERN_ERR "sun4v_intr_setstate(%x): "
462 "err(%d)\n", ino, err);
463 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
464 if (err != HV_EOK)
465 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
466 ino, err);
467}
468
469static int sun4v_set_affinity(struct irq_data *data,
470 const struct cpumask *mask, bool force)
471{
472 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
473 unsigned int ino = irq_data_to_sysino(data);
474 int err;
475
476 err = sun4v_intr_settarget(ino, cpuid);
477 if (err != HV_EOK)
478 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
479 "err(%d)\n", ino, cpuid, err);
480
481 return 0;
482}
483
484static void sun4v_irq_disable(struct irq_data *data)
485{
486 unsigned int ino = irq_data_to_sysino(data);
487 int err;
488
489 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
490 if (err != HV_EOK)
491 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
492 "err(%d)\n", ino, err);
493}
494
495static void sun4v_irq_eoi(struct irq_data *data)
496{
497 unsigned int ino = irq_data_to_sysino(data);
498 int err;
499
500 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
501 if (err != HV_EOK)
502 printk(KERN_ERR "sun4v_intr_setstate(%x): "
503 "err(%d)\n", ino, err);
504}
505
506static void sun4v_virq_enable(struct irq_data *data)
507{
508 unsigned long dev_handle = irq_data_to_handle(data);
509 unsigned long dev_ino = irq_data_to_ino(data);
510 unsigned long cpuid;
511 int err;
512
513 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
514
515 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
516 if (err != HV_EOK)
517 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
518 "err(%d)\n",
519 dev_handle, dev_ino, cpuid, err);
520 err = sun4v_vintr_set_state(dev_handle, dev_ino,
521 HV_INTR_STATE_IDLE);
522 if (err != HV_EOK)
523 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
524 "HV_INTR_STATE_IDLE): err(%d)\n",
525 dev_handle, dev_ino, err);
526 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
527 HV_INTR_ENABLED);
528 if (err != HV_EOK)
529 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
530 "HV_INTR_ENABLED): err(%d)\n",
531 dev_handle, dev_ino, err);
532}
533
534static int sun4v_virt_set_affinity(struct irq_data *data,
535 const struct cpumask *mask, bool force)
536{
537 unsigned long dev_handle = irq_data_to_handle(data);
538 unsigned long dev_ino = irq_data_to_ino(data);
539 unsigned long cpuid;
540 int err;
541
542 cpuid = irq_choose_cpu(data->irq, mask);
543
544 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
545 if (err != HV_EOK)
546 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
547 "err(%d)\n",
548 dev_handle, dev_ino, cpuid, err);
549
550 return 0;
551}
552
553static void sun4v_virq_disable(struct irq_data *data)
554{
555 unsigned long dev_handle = irq_data_to_handle(data);
556 unsigned long dev_ino = irq_data_to_ino(data);
557 int err;
558
559
560 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
561 HV_INTR_DISABLED);
562 if (err != HV_EOK)
563 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
564 "HV_INTR_DISABLED): err(%d)\n",
565 dev_handle, dev_ino, err);
566}
567
568static void sun4v_virq_eoi(struct irq_data *data)
569{
570 unsigned long dev_handle = irq_data_to_handle(data);
571 unsigned long dev_ino = irq_data_to_ino(data);
572 int err;
573
574 err = sun4v_vintr_set_state(dev_handle, dev_ino,
575 HV_INTR_STATE_IDLE);
576 if (err != HV_EOK)
577 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
578 "HV_INTR_STATE_IDLE): err(%d)\n",
579 dev_handle, dev_ino, err);
580}
581
582static struct irq_chip sun4u_irq = {
583 .name = "sun4u",
584 .irq_enable = sun4u_irq_enable,
585 .irq_disable = sun4u_irq_disable,
586 .irq_eoi = sun4u_irq_eoi,
587 .irq_set_affinity = sun4u_set_affinity,
588 .flags = IRQCHIP_EOI_IF_HANDLED,
589};
590
591static struct irq_chip sun4v_irq = {
592 .name = "sun4v",
593 .irq_enable = sun4v_irq_enable,
594 .irq_disable = sun4v_irq_disable,
595 .irq_eoi = sun4v_irq_eoi,
596 .irq_set_affinity = sun4v_set_affinity,
597 .flags = IRQCHIP_EOI_IF_HANDLED,
598};
599
600static struct irq_chip sun4v_virq = {
601 .name = "vsun4v",
602 .irq_enable = sun4v_virq_enable,
603 .irq_disable = sun4v_virq_disable,
604 .irq_eoi = sun4v_virq_eoi,
605 .irq_set_affinity = sun4v_virt_set_affinity,
606 .flags = IRQCHIP_EOI_IF_HANDLED,
607};
608
609unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
610{
611 struct irq_handler_data *handler_data;
612 struct ino_bucket *bucket;
613 unsigned int irq;
614 int ino;
615
616 BUG_ON(tlb_type == hypervisor);
617
618 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
619 bucket = &ivector_table[ino];
620 irq = bucket_get_irq(__pa(bucket));
621 if (!irq) {
622 irq = irq_alloc(0, ino);
623 bucket_set_irq(__pa(bucket), irq);
624 irq_set_chip_and_handler_name(irq, &sun4u_irq,
625 handle_fasteoi_irq, "IVEC");
626 }
627
628 handler_data = irq_get_handler_data(irq);
629 if (unlikely(handler_data))
630 goto out;
631
632 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
633 if (unlikely(!handler_data)) {
634 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
635 prom_halt();
636 }
637 irq_set_handler_data(irq, handler_data);
638
639 handler_data->imap = imap;
640 handler_data->iclr = iclr;
641
642out:
643 return irq;
644}
645
646static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
647 void (*handler_data_init)(struct irq_handler_data *data,
648 u32 devhandle, unsigned int devino),
649 struct irq_chip *chip)
650{
651 struct irq_handler_data *data;
652 unsigned int irq;
653
654 irq = irq_alloc(devhandle, devino);
655 if (!irq)
656 goto out;
657
658 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
659 if (unlikely(!data)) {
660 pr_err("IRQ handler data allocation failed.\n");
661 irq_free(irq);
662 irq = 0;
663 goto out;
664 }
665
666 irq_set_handler_data(irq, data);
667 handler_data_init(data, devhandle, devino);
668 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
669 data->imap = ~0UL;
670 data->iclr = ~0UL;
671out:
672 return irq;
673}
674
675static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
676 unsigned int devino)
677{
678 struct irq_handler_data *ihd = irq_get_handler_data(irq);
679 unsigned long hv_error, cookie;
680
681 /* handler_irq needs to find the irq. cookie is seen signed in
682 * sun4v_dev_mondo and treated as a non ivector_table delivery.
683 */
684 ihd->bucket.__irq = irq;
685 cookie = ~__pa(&ihd->bucket);
686
687 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
688 if (hv_error)
689 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
690
691 return hv_error;
692}
693
694static void cookie_handler_data(struct irq_handler_data *data,
695 u32 devhandle, unsigned int devino)
696{
697 data->dev_handle = devhandle;
698 data->dev_ino = devino;
699}
700
701static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
702 struct irq_chip *chip)
703{
704 unsigned long hv_error;
705 unsigned int irq;
706
707 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
708
709 hv_error = cookie_assign(irq, devhandle, devino);
710 if (hv_error) {
711 irq_free(irq);
712 irq = 0;
713 }
714
715 return irq;
716}
717
718static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
719{
720 unsigned int irq;
721
722 irq = cookie_exists(devhandle, devino);
723 if (irq)
724 goto out;
725
726 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
727
728out:
729 return irq;
730}
731
732static void sysino_set_bucket(unsigned int irq)
733{
734 struct irq_handler_data *ihd = irq_get_handler_data(irq);
735 struct ino_bucket *bucket;
736 unsigned long sysino;
737
738 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
739 BUG_ON(sysino >= nr_ivec);
740 bucket = &ivector_table[sysino];
741 bucket_set_irq(__pa(bucket), irq);
742}
743
744static void sysino_handler_data(struct irq_handler_data *data,
745 u32 devhandle, unsigned int devino)
746{
747 unsigned long sysino;
748
749 sysino = sun4v_devino_to_sysino(devhandle, devino);
750 data->sysino = sysino;
751}
752
753static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
754 struct irq_chip *chip)
755{
756 unsigned int irq;
757
758 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
759 if (!irq)
760 goto out;
761
762 sysino_set_bucket(irq);
763out:
764 return irq;
765}
766
767static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
768{
769 int irq;
770
771 irq = sysino_exists(devhandle, devino);
772 if (irq)
773 goto out;
774
775 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
776out:
777 return irq;
778}
779
780unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
781{
782 unsigned int irq;
783
784 if (sun4v_cookie_only_virqs())
785 irq = sun4v_build_cookie(devhandle, devino);
786 else
787 irq = sun4v_build_sysino(devhandle, devino);
788
789 return irq;
790}
791
792unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
793{
794 int irq;
795
796 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
797 if (!irq)
798 goto out;
799
800 /* This is borrowed from the original function.
801 */
802 irq_set_status_flags(irq, IRQ_NOAUTOEN);
803
804out:
805 return irq;
806}
807
808void *hardirq_stack[NR_CPUS];
809void *softirq_stack[NR_CPUS];
810
811void __irq_entry handler_irq(int pil, struct pt_regs *regs)
812{
813 unsigned long pstate, bucket_pa;
814 struct pt_regs *old_regs;
815 void *orig_sp;
816
817 clear_softint(1 << pil);
818
819 old_regs = set_irq_regs(regs);
820 irq_enter();
821
822 /* Grab an atomic snapshot of the pending IVECs. */
823 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
824 "wrpr %0, %3, %%pstate\n\t"
825 "ldx [%2], %1\n\t"
826 "stx %%g0, [%2]\n\t"
827 "wrpr %0, 0x0, %%pstate\n\t"
828 : "=&r" (pstate), "=&r" (bucket_pa)
829 : "r" (irq_work_pa(smp_processor_id())),
830 "i" (PSTATE_IE)
831 : "memory");
832
833 orig_sp = set_hardirq_stack();
834
835 while (bucket_pa) {
836 unsigned long next_pa;
837 unsigned int irq;
838
839 next_pa = bucket_get_chain_pa(bucket_pa);
840 irq = bucket_get_irq(bucket_pa);
841 bucket_clear_chain_pa(bucket_pa);
842
843 generic_handle_irq(irq);
844
845 bucket_pa = next_pa;
846 }
847
848 restore_hardirq_stack(orig_sp);
849
850 irq_exit();
851 set_irq_regs(old_regs);
852}
853
854#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
855void do_softirq_own_stack(void)
856{
857 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
858
859 sp += THREAD_SIZE - 192 - STACK_BIAS;
860
861 __asm__ __volatile__("mov %%sp, %0\n\t"
862 "mov %1, %%sp"
863 : "=&r" (orig_sp)
864 : "r" (sp));
865 __do_softirq();
866 __asm__ __volatile__("mov %0, %%sp"
867 : : "r" (orig_sp));
868}
869#endif
870
871#ifdef CONFIG_HOTPLUG_CPU
872void fixup_irqs(void)
873{
874 unsigned int irq;
875
876 for (irq = 0; irq < NR_IRQS; irq++) {
877 struct irq_desc *desc = irq_to_desc(irq);
878 struct irq_data *data;
879 unsigned long flags;
880
881 if (!desc)
882 continue;
883 data = irq_desc_get_irq_data(desc);
884 raw_spin_lock_irqsave(&desc->lock, flags);
885 if (desc->action && !irqd_is_per_cpu(data)) {
886 if (data->chip->irq_set_affinity)
887 data->chip->irq_set_affinity(data,
888 irq_data_get_affinity_mask(data),
889 false);
890 }
891 raw_spin_unlock_irqrestore(&desc->lock, flags);
892 }
893
894 tick_ops->disable_irq();
895}
896#endif
897
898struct sun5_timer {
899 u64 count0;
900 u64 limit0;
901 u64 count1;
902 u64 limit1;
903};
904
905static struct sun5_timer *prom_timers;
906static u64 prom_limit0, prom_limit1;
907
908static void map_prom_timers(void)
909{
910 struct device_node *dp;
911 const unsigned int *addr;
912
913 /* PROM timer node hangs out in the top level of device siblings... */
914 dp = of_find_node_by_path("/");
915 dp = dp->child;
916 while (dp) {
917 if (of_node_name_eq(dp, "counter-timer"))
918 break;
919 dp = dp->sibling;
920 }
921
922 /* Assume if node is not present, PROM uses different tick mechanism
923 * which we should not care about.
924 */
925 if (!dp) {
926 prom_timers = (struct sun5_timer *) 0;
927 return;
928 }
929
930 /* If PROM is really using this, it must be mapped by him. */
931 addr = of_get_property(dp, "address", NULL);
932 if (!addr) {
933 prom_printf("PROM does not have timer mapped, trying to continue.\n");
934 prom_timers = (struct sun5_timer *) 0;
935 return;
936 }
937 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
938}
939
940static void kill_prom_timer(void)
941{
942 if (!prom_timers)
943 return;
944
945 /* Save them away for later. */
946 prom_limit0 = prom_timers->limit0;
947 prom_limit1 = prom_timers->limit1;
948
949 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
950 * We turn both off here just to be paranoid.
951 */
952 prom_timers->limit0 = 0;
953 prom_timers->limit1 = 0;
954
955 /* Wheee, eat the interrupt packet too... */
956 __asm__ __volatile__(
957" mov 0x40, %%g2\n"
958" ldxa [%%g0] %0, %%g1\n"
959" ldxa [%%g2] %1, %%g1\n"
960" stxa %%g0, [%%g0] %0\n"
961" membar #Sync\n"
962 : /* no outputs */
963 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
964 : "g1", "g2");
965}
966
967void notrace init_irqwork_curcpu(void)
968{
969 int cpu = hard_smp_processor_id();
970
971 trap_block[cpu].irq_worklist_pa = 0UL;
972}
973
974/* Please be very careful with register_one_mondo() and
975 * sun4v_register_mondo_queues().
976 *
977 * On SMP this gets invoked from the CPU trampoline before
978 * the cpu has fully taken over the trap table from OBP,
979 * and its kernel stack + %g6 thread register state is
980 * not fully cooked yet.
981 *
982 * Therefore you cannot make any OBP calls, not even prom_printf,
983 * from these two routines.
984 */
985static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
986 unsigned long qmask)
987{
988 unsigned long num_entries = (qmask + 1) / 64;
989 unsigned long status;
990
991 status = sun4v_cpu_qconf(type, paddr, num_entries);
992 if (status != HV_EOK) {
993 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
994 "err %lu\n", type, paddr, num_entries, status);
995 prom_halt();
996 }
997}
998
999void notrace sun4v_register_mondo_queues(int this_cpu)
1000{
1001 struct trap_per_cpu *tb = &trap_block[this_cpu];
1002
1003 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1004 tb->cpu_mondo_qmask);
1005 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1006 tb->dev_mondo_qmask);
1007 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1008 tb->resum_qmask);
1009 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1010 tb->nonresum_qmask);
1011}
1012
1013/* Each queue region must be a power of 2 multiple of 64 bytes in
1014 * size. The base real address must be aligned to the size of the
1015 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1016 */
1017static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1018{
1019 unsigned long size = PAGE_ALIGN(qmask + 1);
1020 unsigned long order = get_order(size);
1021 unsigned long p;
1022
1023 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1024 if (!p) {
1025 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1026 prom_halt();
1027 }
1028
1029 *pa_ptr = __pa(p);
1030}
1031
1032static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1033{
1034#ifdef CONFIG_SMP
1035 unsigned long page;
1036 void *mondo, *p;
1037
1038 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1039
1040 /* Make sure mondo block is 64byte aligned */
1041 p = kzalloc(127, GFP_KERNEL);
1042 if (!p) {
1043 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1044 prom_halt();
1045 }
1046 mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1047 tb->cpu_mondo_block_pa = __pa(mondo);
1048
1049 page = get_zeroed_page(GFP_KERNEL);
1050 if (!page) {
1051 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1052 prom_halt();
1053 }
1054
1055 tb->cpu_list_pa = __pa(page);
1056#endif
1057}
1058
1059/* Allocate mondo and error queues for all possible cpus. */
1060static void __init sun4v_init_mondo_queues(void)
1061{
1062 int cpu;
1063
1064 for_each_possible_cpu(cpu) {
1065 struct trap_per_cpu *tb = &trap_block[cpu];
1066
1067 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1068 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1069 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1070 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1071 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1072 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1073 tb->nonresum_qmask);
1074 }
1075}
1076
1077static void __init init_send_mondo_info(void)
1078{
1079 int cpu;
1080
1081 for_each_possible_cpu(cpu) {
1082 struct trap_per_cpu *tb = &trap_block[cpu];
1083
1084 init_cpu_send_mondo_info(tb);
1085 }
1086}
1087
1088static struct irqaction timer_irq_action = {
1089 .name = "timer",
1090};
1091
1092static void __init irq_ivector_init(void)
1093{
1094 unsigned long size, order;
1095 unsigned int ivecs;
1096
1097 /* If we are doing cookie only VIRQs then we do not need the ivector
1098 * table to process interrupts.
1099 */
1100 if (sun4v_cookie_only_virqs())
1101 return;
1102
1103 ivecs = size_nr_ivec();
1104 size = sizeof(struct ino_bucket) * ivecs;
1105 order = get_order(size);
1106 ivector_table = (struct ino_bucket *)
1107 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1108 if (!ivector_table) {
1109 prom_printf("Fatal error, cannot allocate ivector_table\n");
1110 prom_halt();
1111 }
1112 __flush_dcache_range((unsigned long) ivector_table,
1113 ((unsigned long) ivector_table) + size);
1114
1115 ivector_table_pa = __pa(ivector_table);
1116}
1117
1118/* Only invoked on boot processor.*/
1119void __init init_IRQ(void)
1120{
1121 irq_init_hv();
1122 irq_ivector_init();
1123 map_prom_timers();
1124 kill_prom_timer();
1125
1126 if (tlb_type == hypervisor)
1127 sun4v_init_mondo_queues();
1128
1129 init_send_mondo_info();
1130
1131 if (tlb_type == hypervisor) {
1132 /* Load up the boot cpu's entries. */
1133 sun4v_register_mondo_queues(hard_smp_processor_id());
1134 }
1135
1136 /* We need to clear any IRQ's pending in the soft interrupt
1137 * registers, a spurious one could be left around from the
1138 * PROM timer which we just disabled.
1139 */
1140 clear_softint(get_softint());
1141
1142 /* Now that ivector table is initialized, it is safe
1143 * to receive IRQ vector traps. We will normally take
1144 * one or two right now, in case some device PROM used
1145 * to boot us wants to speak to us. We just ignore them.
1146 */
1147 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1148 "or %%g1, %0, %%g1\n\t"
1149 "wrpr %%g1, 0x0, %%pstate"
1150 : /* No outputs */
1151 : "i" (PSTATE_IE)
1152 : "g1");
1153
1154 irq_to_desc(0)->action = &timer_irq_action;
1155}