Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
 
  10#include <linux/hardirq.h>
  11#include <linux/init.h>
  12#include <linux/highmem.h>
  13#include <linux/kernel.h>
  14#include <linux/linkage.h>
 
  15#include <linux/sched.h>
  16#include <linux/smp.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/bitops.h>
 
  20
  21#include <asm/bcache.h>
  22#include <asm/bootinfo.h>
  23#include <asm/cache.h>
  24#include <asm/cacheops.h>
  25#include <asm/cpu.h>
  26#include <asm/cpu-features.h>
 
  27#include <asm/io.h>
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/r4kcache.h>
  31#include <asm/sections.h>
  32#include <asm/system.h>
  33#include <asm/mmu_context.h>
  34#include <asm/war.h>
  35#include <asm/cacheflush.h> /* for run_uncached() */
 
 
  36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/*
  39 * Special Variant of smp_call_function for use by cache functions:
  40 *
  41 *  o No return value
  42 *  o collapses to normal function call on UP kernels
  43 *  o collapses to normal function call on systems with a single shared
  44 *    primary cache.
  45 *  o doesn't disable interrupts on the local CPU
  46 */
  47static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
 
  48{
  49	preempt_disable();
  50
  51#if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
  52	smp_call_function(func, info, 1);
  53#endif
  54	func(info);
  55	preempt_enable();
  56}
  57
  58#if defined(CONFIG_MIPS_CMP)
  59#define cpu_has_safe_index_cacheops 0
  60#else
  61#define cpu_has_safe_index_cacheops 1
  62#endif
  63
  64/*
  65 * Must die.
  66 */
  67static unsigned long icache_size __read_mostly;
  68static unsigned long dcache_size __read_mostly;
 
  69static unsigned long scache_size __read_mostly;
  70
  71/*
  72 * Dummy cache handling routines for machines without boardcaches
  73 */
  74static void cache_noop(void) {}
  75
  76static struct bcache_ops no_sc_ops = {
  77	.bc_enable = (void *)cache_noop,
  78	.bc_disable = (void *)cache_noop,
  79	.bc_wback_inv = (void *)cache_noop,
  80	.bc_inv = (void *)cache_noop
  81};
  82
  83struct bcache_ops *bcops = &no_sc_ops;
  84
  85#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
  86#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
  87
  88#define R4600_HIT_CACHEOP_WAR_IMPL					\
  89do {									\
  90	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
 
  91		*(volatile unsigned long *)CKSEG1;			\
  92	if (R4600_V1_HIT_CACHEOP_WAR)					\
  93		__asm__ __volatile__("nop;nop;nop;nop");		\
  94} while (0)
  95
  96static void (*r4k_blast_dcache_page)(unsigned long addr);
  97
  98static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
  99{
 100	R4600_HIT_CACHEOP_WAR_IMPL;
 101	blast_dcache32_page(addr);
 102}
 103
 104static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 105{
 106	R4600_HIT_CACHEOP_WAR_IMPL;
 107	blast_dcache64_page(addr);
 108}
 109
 110static void __cpuinit r4k_blast_dcache_page_setup(void)
 
 
 
 
 
 111{
 112	unsigned long  dc_lsize = cpu_dcache_line_size();
 113
 114	if (dc_lsize == 0)
 
 115		r4k_blast_dcache_page = (void *)cache_noop;
 116	else if (dc_lsize == 16)
 
 117		r4k_blast_dcache_page = blast_dcache16_page;
 118	else if (dc_lsize == 32)
 
 119		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 120	else if (dc_lsize == 64)
 
 121		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 
 
 
 
 
 
 
 122}
 123
 124static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 
 
 
 
 125
 126static void __cpuinit r4k_blast_dcache_page_indexed_setup(void)
 127{
 128	unsigned long dc_lsize = cpu_dcache_line_size();
 129
 130	if (dc_lsize == 0)
 131		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 132	else if (dc_lsize == 16)
 133		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 134	else if (dc_lsize == 32)
 135		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 136	else if (dc_lsize == 64)
 137		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 138}
 139
 140static void (* r4k_blast_dcache)(void);
 
 
 
 141
 142static void __cpuinit r4k_blast_dcache_setup(void)
 143{
 144	unsigned long dc_lsize = cpu_dcache_line_size();
 145
 146	if (dc_lsize == 0)
 147		r4k_blast_dcache = (void *)cache_noop;
 148	else if (dc_lsize == 16)
 149		r4k_blast_dcache = blast_dcache16;
 150	else if (dc_lsize == 32)
 151		r4k_blast_dcache = blast_dcache32;
 152	else if (dc_lsize == 64)
 153		r4k_blast_dcache = blast_dcache64;
 
 
 154}
 155
 156/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
 157#define JUMP_TO_ALIGN(order) \
 158	__asm__ __volatile__( \
 159		"b\t1f\n\t" \
 160		".align\t" #order "\n\t" \
 161		"1:\n\t" \
 162		)
 163#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 164#define CACHE32_UNROLL32_ALIGN2	JUMP_TO_ALIGN(11)
 165
 166static inline void blast_r4600_v1_icache32(void)
 167{
 168	unsigned long flags;
 169
 170	local_irq_save(flags);
 171	blast_icache32();
 172	local_irq_restore(flags);
 173}
 174
 175static inline void tx49_blast_icache32(void)
 176{
 177	unsigned long start = INDEX_BASE;
 178	unsigned long end = start + current_cpu_data.icache.waysize;
 179	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 180	unsigned long ws_end = current_cpu_data.icache.ways <<
 181	                       current_cpu_data.icache.waybit;
 182	unsigned long ws, addr;
 183
 184	CACHE32_UNROLL32_ALIGN2;
 185	/* I'm in even chunk.  blast odd chunks */
 186	for (ws = 0; ws < ws_end; ws += ws_inc)
 187		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 188			cache32_unroll32(addr|ws, Index_Invalidate_I);
 189	CACHE32_UNROLL32_ALIGN;
 190	/* I'm in odd chunk.  blast even chunks */
 191	for (ws = 0; ws < ws_end; ws += ws_inc)
 192		for (addr = start; addr < end; addr += 0x400 * 2)
 193			cache32_unroll32(addr|ws, Index_Invalidate_I);
 194}
 195
 196static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 197{
 198	unsigned long flags;
 199
 200	local_irq_save(flags);
 201	blast_icache32_page_indexed(page);
 202	local_irq_restore(flags);
 203}
 204
 205static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 206{
 207	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 208	unsigned long start = INDEX_BASE + (page & indexmask);
 209	unsigned long end = start + PAGE_SIZE;
 210	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 211	unsigned long ws_end = current_cpu_data.icache.ways <<
 212	                       current_cpu_data.icache.waybit;
 213	unsigned long ws, addr;
 214
 215	CACHE32_UNROLL32_ALIGN2;
 216	/* I'm in even chunk.  blast odd chunks */
 217	for (ws = 0; ws < ws_end; ws += ws_inc)
 218		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 219			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 220	CACHE32_UNROLL32_ALIGN;
 221	/* I'm in odd chunk.  blast even chunks */
 222	for (ws = 0; ws < ws_end; ws += ws_inc)
 223		for (addr = start; addr < end; addr += 0x400 * 2)
 224			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 225}
 226
 227static void (* r4k_blast_icache_page)(unsigned long addr);
 228
 229static void __cpuinit r4k_blast_icache_page_setup(void)
 230{
 231	unsigned long ic_lsize = cpu_icache_line_size();
 232
 233	if (ic_lsize == 0)
 234		r4k_blast_icache_page = (void *)cache_noop;
 235	else if (ic_lsize == 16)
 236		r4k_blast_icache_page = blast_icache16_page;
 
 
 237	else if (ic_lsize == 32)
 238		r4k_blast_icache_page = blast_icache32_page;
 239	else if (ic_lsize == 64)
 240		r4k_blast_icache_page = blast_icache64_page;
 
 
 241}
 242
 
 
 
 243
 244static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 245
 246static void __cpuinit r4k_blast_icache_page_indexed_setup(void)
 247{
 248	unsigned long ic_lsize = cpu_icache_line_size();
 249
 250	if (ic_lsize == 0)
 251		r4k_blast_icache_page_indexed = (void *)cache_noop;
 252	else if (ic_lsize == 16)
 253		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 254	else if (ic_lsize == 32) {
 255		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 256			r4k_blast_icache_page_indexed =
 257				blast_icache32_r4600_v1_page_indexed;
 258		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 259			r4k_blast_icache_page_indexed =
 260				tx49_blast_icache32_page_indexed;
 261		else
 262			r4k_blast_icache_page_indexed =
 263				blast_icache32_page_indexed;
 264	} else if (ic_lsize == 64)
 265		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 266}
 267
 268static void (* r4k_blast_icache)(void);
 
 
 
 269
 270static void __cpuinit r4k_blast_icache_setup(void)
 271{
 272	unsigned long ic_lsize = cpu_icache_line_size();
 273
 274	if (ic_lsize == 0)
 275		r4k_blast_icache = (void *)cache_noop;
 276	else if (ic_lsize == 16)
 277		r4k_blast_icache = blast_icache16;
 278	else if (ic_lsize == 32) {
 279		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 
 280			r4k_blast_icache = blast_r4600_v1_icache32;
 281		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 282			r4k_blast_icache = tx49_blast_icache32;
 
 
 283		else
 284			r4k_blast_icache = blast_icache32;
 285	} else if (ic_lsize == 64)
 286		r4k_blast_icache = blast_icache64;
 
 
 287}
 288
 289static void (* r4k_blast_scache_page)(unsigned long addr);
 290
 291static void __cpuinit r4k_blast_scache_page_setup(void)
 292{
 293	unsigned long sc_lsize = cpu_scache_line_size();
 294
 295	if (scache_size == 0)
 296		r4k_blast_scache_page = (void *)cache_noop;
 297	else if (sc_lsize == 16)
 298		r4k_blast_scache_page = blast_scache16_page;
 299	else if (sc_lsize == 32)
 300		r4k_blast_scache_page = blast_scache32_page;
 301	else if (sc_lsize == 64)
 302		r4k_blast_scache_page = blast_scache64_page;
 303	else if (sc_lsize == 128)
 304		r4k_blast_scache_page = blast_scache128_page;
 305}
 306
 307static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 308
 309static void __cpuinit r4k_blast_scache_page_indexed_setup(void)
 310{
 311	unsigned long sc_lsize = cpu_scache_line_size();
 312
 313	if (scache_size == 0)
 314		r4k_blast_scache_page_indexed = (void *)cache_noop;
 315	else if (sc_lsize == 16)
 316		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 317	else if (sc_lsize == 32)
 318		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 319	else if (sc_lsize == 64)
 320		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 321	else if (sc_lsize == 128)
 322		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 323}
 324
 325static void (* r4k_blast_scache)(void);
 326
 327static void __cpuinit r4k_blast_scache_setup(void)
 328{
 329	unsigned long sc_lsize = cpu_scache_line_size();
 330
 331	if (scache_size == 0)
 332		r4k_blast_scache = (void *)cache_noop;
 333	else if (sc_lsize == 16)
 334		r4k_blast_scache = blast_scache16;
 335	else if (sc_lsize == 32)
 336		r4k_blast_scache = blast_scache32;
 337	else if (sc_lsize == 64)
 338		r4k_blast_scache = blast_scache64;
 339	else if (sc_lsize == 128)
 340		r4k_blast_scache = blast_scache128;
 341}
 342
 343static inline void local_r4k___flush_cache_all(void * args)
 344{
 345#if defined(CONFIG_CPU_LOONGSON2)
 346	r4k_blast_scache();
 347	return;
 348#endif
 349	r4k_blast_dcache();
 350	r4k_blast_icache();
 351
 352	switch (current_cpu_type()) {
 
 353	case CPU_R4000SC:
 354	case CPU_R4000MC:
 355	case CPU_R4400SC:
 356	case CPU_R4400MC:
 357	case CPU_R10000:
 358	case CPU_R12000:
 359	case CPU_R14000:
 
 
 
 
 
 
 360		r4k_blast_scache();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	}
 362}
 363
 364static void r4k___flush_cache_all(void)
 365{
 366	r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
 367}
 368
 369static inline int has_valid_asid(const struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370{
 371#if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
 372	int i;
 373
 374	for_each_online_cpu(i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 375		if (cpu_context(i, mm))
 376			return 1;
 377
 378	return 0;
 379#else
 380	return cpu_context(smp_processor_id(), mm);
 381#endif
 382}
 383
 384static void r4k__flush_cache_vmap(void)
 385{
 386	r4k_blast_dcache();
 387}
 388
 389static void r4k__flush_cache_vunmap(void)
 390{
 391	r4k_blast_dcache();
 392}
 393
 
 
 
 
 394static inline void local_r4k_flush_cache_range(void * args)
 395{
 396	struct vm_area_struct *vma = args;
 397	int exec = vma->vm_flags & VM_EXEC;
 398
 399	if (!(has_valid_asid(vma->vm_mm)))
 400		return;
 401
 402	r4k_blast_dcache();
 
 
 
 
 
 
 
 403	if (exec)
 404		r4k_blast_icache();
 405}
 406
 407static void r4k_flush_cache_range(struct vm_area_struct *vma,
 408	unsigned long start, unsigned long end)
 409{
 410	int exec = vma->vm_flags & VM_EXEC;
 411
 412	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 413		r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
 414}
 415
 416static inline void local_r4k_flush_cache_mm(void * args)
 417{
 418	struct mm_struct *mm = args;
 419
 420	if (!has_valid_asid(mm))
 421		return;
 422
 423	/*
 424	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 425	 * only flush the primary caches but R10000 and R12000 behave sane ...
 426	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 427	 * caches, so we can bail out early.
 428	 */
 429	if (current_cpu_type() == CPU_R4000SC ||
 430	    current_cpu_type() == CPU_R4000MC ||
 431	    current_cpu_type() == CPU_R4400SC ||
 432	    current_cpu_type() == CPU_R4400MC) {
 433		r4k_blast_scache();
 434		return;
 435	}
 436
 437	r4k_blast_dcache();
 438}
 439
 440static void r4k_flush_cache_mm(struct mm_struct *mm)
 441{
 442	if (!cpu_has_dc_aliases)
 443		return;
 444
 445	r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
 446}
 447
 448struct flush_cache_page_args {
 449	struct vm_area_struct *vma;
 450	unsigned long addr;
 451	unsigned long pfn;
 452};
 453
 454static inline void local_r4k_flush_cache_page(void *args)
 455{
 456	struct flush_cache_page_args *fcp_args = args;
 457	struct vm_area_struct *vma = fcp_args->vma;
 458	unsigned long addr = fcp_args->addr;
 459	struct page *page = pfn_to_page(fcp_args->pfn);
 460	int exec = vma->vm_flags & VM_EXEC;
 461	struct mm_struct *mm = vma->vm_mm;
 462	int map_coherent = 0;
 463	pgd_t *pgdp;
 464	pud_t *pudp;
 465	pmd_t *pmdp;
 466	pte_t *ptep;
 467	void *vaddr;
 468
 469	/*
 470	 * If ownes no valid ASID yet, cannot possibly have gotten
 471	 * this page into the cache.
 472	 */
 473	if (!has_valid_asid(mm))
 474		return;
 475
 476	addr &= PAGE_MASK;
 477	pgdp = pgd_offset(mm, addr);
 478	pudp = pud_offset(pgdp, addr);
 479	pmdp = pmd_offset(pudp, addr);
 480	ptep = pte_offset(pmdp, addr);
 481
 482	/*
 483	 * If the page isn't marked valid, the page cannot possibly be
 484	 * in the cache.
 485	 */
 486	if (!(pte_present(*ptep)))
 487		return;
 488
 489	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 490		vaddr = NULL;
 491	else {
 
 492		/*
 493		 * Use kmap_coherent or kmap_atomic to do flushes for
 494		 * another ASID than the current one.
 495		 */
 496		map_coherent = (cpu_has_dc_aliases &&
 497				page_mapped(page) && !Page_dcache_dirty(page));
 
 498		if (map_coherent)
 499			vaddr = kmap_coherent(page, addr);
 500		else
 501			vaddr = kmap_atomic(page, KM_USER0);
 502		addr = (unsigned long)vaddr;
 503	}
 504
 505	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 506		r4k_blast_dcache_page(addr);
 
 507		if (exec && !cpu_icache_snoops_remote_store)
 508			r4k_blast_scache_page(addr);
 509	}
 510	if (exec) {
 511		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 512			int cpu = smp_processor_id();
 513
 514			if (cpu_context(cpu, mm) != 0)
 515				drop_mmu_context(mm, cpu);
 516		} else
 517			r4k_blast_icache_page(addr);
 
 518	}
 519
 520	if (vaddr) {
 521		if (map_coherent)
 522			kunmap_coherent();
 523		else
 524			kunmap_atomic(vaddr, KM_USER0);
 525	}
 526}
 527
 528static void r4k_flush_cache_page(struct vm_area_struct *vma,
 529	unsigned long addr, unsigned long pfn)
 530{
 531	struct flush_cache_page_args args;
 532
 533	args.vma = vma;
 534	args.addr = addr;
 535	args.pfn = pfn;
 536
 537	r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
 538}
 539
 540static inline void local_r4k_flush_data_cache_page(void * addr)
 541{
 542	r4k_blast_dcache_page((unsigned long) addr);
 543}
 544
 545static void r4k_flush_data_cache_page(unsigned long addr)
 546{
 547	if (in_atomic())
 548		local_r4k_flush_data_cache_page((void *)addr);
 549	else
 550		r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
 
 551}
 552
 553struct flush_icache_range_args {
 554	unsigned long start;
 555	unsigned long end;
 
 
 556};
 557
 558static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
 
 
 
 559{
 560	if (!cpu_has_ic_fills_f_dc) {
 561		if (end - start >= dcache_size) {
 
 562			r4k_blast_dcache();
 563		} else {
 564			R4600_HIT_CACHEOP_WAR_IMPL;
 565			protected_blast_dcache_range(start, end);
 
 
 
 566		}
 567	}
 568
 569	if (end - start > icache_size)
 
 570		r4k_blast_icache();
 571	else
 572		protected_blast_icache_range(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 574
 575static inline void local_r4k_flush_icache_range_ipi(void *args)
 576{
 577	struct flush_icache_range_args *fir_args = args;
 578	unsigned long start = fir_args->start;
 579	unsigned long end = fir_args->end;
 
 
 580
 581	local_r4k_flush_icache_range(start, end);
 582}
 583
 584static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 
 585{
 586	struct flush_icache_range_args args;
 
 587
 588	args.start = start;
 589	args.end = end;
 
 
 590
 591	r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	instruction_hazard();
 593}
 594
 
 
 
 
 
 
 
 
 
 
 595#ifdef CONFIG_DMA_NONCOHERENT
 596
 597static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 598{
 599	/* Catch bad driver code */
 600	BUG_ON(size == 0);
 
 601
 
 602	if (cpu_has_inclusive_pcaches) {
 603		if (size >= scache_size)
 604			r4k_blast_scache();
 605		else
 
 
 
 606			blast_scache_range(addr, addr + size);
 
 
 607		__sync();
 608		return;
 609	}
 610
 611	/*
 612	 * Either no secondary cache or the available caches don't have the
 613	 * subset property so we have to flush the primary caches
 614	 * explicitly
 
 
 
 615	 */
 616	if (cpu_has_safe_index_cacheops && size >= dcache_size) {
 617		r4k_blast_dcache();
 618	} else {
 619		R4600_HIT_CACHEOP_WAR_IMPL;
 620		blast_dcache_range(addr, addr + size);
 621	}
 
 622
 623	bc_wback_inv(addr, size);
 624	__sync();
 625}
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 628{
 629	/* Catch bad driver code */
 630	BUG_ON(size == 0);
 
 631
 632	if (cpu_has_inclusive_pcaches) {
 633		if (size >= scache_size)
 634			r4k_blast_scache();
 635		else {
 636			unsigned long lsize = cpu_scache_line_size();
 637			unsigned long almask = ~(lsize - 1);
 638
 
 
 
 
 
 
 
 
 
 
 639			/*
 640			 * There is no clearly documented alignment requirement
 641			 * for the cache instruction on MIPS processors and
 642			 * some processors, among them the RM5200 and RM7000
 643			 * QED processors will throw an address error for cache
 644			 * hit ops with insufficient alignment.  Solved by
 645			 * aligning the address to cache line size.
 646			 */
 647			cache_op(Hit_Writeback_Inv_SD, addr & almask);
 648			cache_op(Hit_Writeback_Inv_SD,
 649				 (addr + size - 1) & almask);
 650			blast_inv_scache_range(addr, addr + size);
 651		}
 
 652		__sync();
 653		return;
 654	}
 655
 656	if (cpu_has_safe_index_cacheops && size >= dcache_size) {
 657		r4k_blast_dcache();
 658	} else {
 659		unsigned long lsize = cpu_dcache_line_size();
 660		unsigned long almask = ~(lsize - 1);
 661
 662		R4600_HIT_CACHEOP_WAR_IMPL;
 663		cache_op(Hit_Writeback_Inv_D, addr & almask);
 664		cache_op(Hit_Writeback_Inv_D, (addr + size - 1)  & almask);
 665		blast_inv_dcache_range(addr, addr + size);
 666	}
 
 667
 668	bc_inv(addr, size);
 669	__sync();
 670}
 671#endif /* CONFIG_DMA_NONCOHERENT */
 672
 673/*
 674 * While we're protected against bad userland addresses we don't care
 675 * very much about what happens in that case.  Usually a segmentation
 676 * fault will dump the process later on anyway ...
 677 */
 678static void local_r4k_flush_cache_sigtramp(void * arg)
 679{
 680	unsigned long ic_lsize = cpu_icache_line_size();
 681	unsigned long dc_lsize = cpu_dcache_line_size();
 682	unsigned long sc_lsize = cpu_scache_line_size();
 683	unsigned long addr = (unsigned long) arg;
 684
 685	R4600_HIT_CACHEOP_WAR_IMPL;
 686	if (dc_lsize)
 687		protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
 688	if (!cpu_icache_snoops_remote_store && scache_size)
 689		protected_writeback_scache_line(addr & ~(sc_lsize - 1));
 690	if (ic_lsize)
 691		protected_flush_icache_line(addr & ~(ic_lsize - 1));
 692	if (MIPS4K_ICACHE_REFILL_WAR) {
 693		__asm__ __volatile__ (
 694			".set push\n\t"
 695			".set noat\n\t"
 696			".set mips3\n\t"
 697#ifdef CONFIG_32BIT
 698			"la	$at,1f\n\t"
 699#endif
 700#ifdef CONFIG_64BIT
 701			"dla	$at,1f\n\t"
 702#endif
 703			"cache	%0,($at)\n\t"
 704			"nop; nop; nop\n"
 705			"1:\n\t"
 706			".set pop"
 707			:
 708			: "i" (Hit_Invalidate_I));
 709	}
 710	if (MIPS_CACHE_SYNC_WAR)
 711		__asm__ __volatile__ ("sync");
 712}
 713
 714static void r4k_flush_cache_sigtramp(unsigned long addr)
 715{
 716	r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
 
 
 
 
 
 
 
 
 
 717}
 718
 719static void r4k_flush_icache_all(void)
 720{
 721	if (cpu_has_vtag_icache)
 722		r4k_blast_icache();
 
 
 
 
 
 
 
 
 
 723}
 724
 725static inline void rm7k_erratum31(void)
 726{
 727	const unsigned long ic_lsize = 32;
 728	unsigned long addr;
 729
 730	/* RM7000 erratum #31. The icache is screwed at startup. */
 731	write_c0_taglo(0);
 732	write_c0_taghi(0);
 733
 734	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
 735		__asm__ __volatile__ (
 736			".set push\n\t"
 737			".set noreorder\n\t"
 738			".set mips3\n\t"
 739			"cache\t%1, 0(%0)\n\t"
 740			"cache\t%1, 0x1000(%0)\n\t"
 741			"cache\t%1, 0x2000(%0)\n\t"
 742			"cache\t%1, 0x3000(%0)\n\t"
 743			"cache\t%2, 0(%0)\n\t"
 744			"cache\t%2, 0x1000(%0)\n\t"
 745			"cache\t%2, 0x2000(%0)\n\t"
 746			"cache\t%2, 0x3000(%0)\n\t"
 747			"cache\t%1, 0(%0)\n\t"
 748			"cache\t%1, 0x1000(%0)\n\t"
 749			"cache\t%1, 0x2000(%0)\n\t"
 750			"cache\t%1, 0x3000(%0)\n\t"
 751			".set pop\n"
 752			:
 753			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754	}
 
 
 755}
 756
 757static char *way_string[] __cpuinitdata = { NULL, "direct mapped", "2-way",
 758	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759};
 760
 761static void __cpuinit probe_pcache(void)
 762{
 763	struct cpuinfo_mips *c = &current_cpu_data;
 764	unsigned int config = read_c0_config();
 765	unsigned int prid = read_c0_prid();
 
 766	unsigned long config1;
 767	unsigned int lsize;
 768
 769	switch (c->cputype) {
 770	case CPU_R4600:			/* QED style two way caches? */
 771	case CPU_R4700:
 772	case CPU_R5000:
 773	case CPU_NEVADA:
 774		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 775		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 776		c->icache.ways = 2;
 777		c->icache.waybit = __ffs(icache_size/2);
 778
 779		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 780		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 781		c->dcache.ways = 2;
 782		c->dcache.waybit= __ffs(dcache_size/2);
 783
 784		c->options |= MIPS_CPU_CACHE_CDEX_P;
 785		break;
 786
 787	case CPU_R5432:
 788	case CPU_R5500:
 789		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 790		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 791		c->icache.ways = 2;
 792		c->icache.waybit= 0;
 793
 794		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 795		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 796		c->dcache.ways = 2;
 797		c->dcache.waybit = 0;
 798
 799		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
 800		break;
 801
 802	case CPU_TX49XX:
 803		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 804		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 805		c->icache.ways = 4;
 806		c->icache.waybit= 0;
 807
 808		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 809		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 810		c->dcache.ways = 4;
 811		c->dcache.waybit = 0;
 812
 813		c->options |= MIPS_CPU_CACHE_CDEX_P;
 814		c->options |= MIPS_CPU_PREFETCH;
 815		break;
 816
 817	case CPU_R4000PC:
 818	case CPU_R4000SC:
 819	case CPU_R4000MC:
 820	case CPU_R4400PC:
 821	case CPU_R4400SC:
 822	case CPU_R4400MC:
 823	case CPU_R4300:
 824		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 825		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 826		c->icache.ways = 1;
 827		c->icache.waybit = 0; 	/* doesn't matter */
 828
 829		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 830		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 831		c->dcache.ways = 1;
 832		c->dcache.waybit = 0;	/* does not matter */
 833
 834		c->options |= MIPS_CPU_CACHE_CDEX_P;
 835		break;
 836
 837	case CPU_R10000:
 838	case CPU_R12000:
 839	case CPU_R14000:
 
 840		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
 841		c->icache.linesz = 64;
 842		c->icache.ways = 2;
 843		c->icache.waybit = 0;
 844
 845		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
 846		c->dcache.linesz = 32;
 847		c->dcache.ways = 2;
 848		c->dcache.waybit = 0;
 849
 850		c->options |= MIPS_CPU_PREFETCH;
 851		break;
 852
 853	case CPU_VR4133:
 854		write_c0_config(config & ~VR41_CONF_P4K);
 855	case CPU_VR4131:
 856		/* Workaround for cache instruction bug of VR4131 */
 857		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
 858		    c->processor_id == 0x0c82U) {
 859			config |= 0x00400000U;
 860			if (c->processor_id == 0x0c80U)
 861				config |= VR41_CONF_BP;
 862			write_c0_config(config);
 863		} else
 864			c->options |= MIPS_CPU_CACHE_CDEX_P;
 865
 866		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
 867		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 868		c->icache.ways = 2;
 869		c->icache.waybit = __ffs(icache_size/2);
 870
 871		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
 872		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 873		c->dcache.ways = 2;
 874		c->dcache.waybit = __ffs(dcache_size/2);
 875		break;
 876
 877	case CPU_VR41XX:
 878	case CPU_VR4111:
 879	case CPU_VR4121:
 880	case CPU_VR4122:
 881	case CPU_VR4181:
 882	case CPU_VR4181A:
 883		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
 884		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 885		c->icache.ways = 1;
 886		c->icache.waybit = 0; 	/* doesn't matter */
 887
 888		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
 889		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 890		c->dcache.ways = 1;
 891		c->dcache.waybit = 0;	/* does not matter */
 892
 893		c->options |= MIPS_CPU_CACHE_CDEX_P;
 894		break;
 895
 896	case CPU_RM7000:
 897		rm7k_erratum31();
 898
 899	case CPU_RM9000:
 900		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 901		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 902		c->icache.ways = 4;
 903		c->icache.waybit = __ffs(icache_size / c->icache.ways);
 904
 905		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 906		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 907		c->dcache.ways = 4;
 908		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
 909
 910#if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
 911		c->options |= MIPS_CPU_CACHE_CDEX_P;
 912#endif
 913		c->options |= MIPS_CPU_PREFETCH;
 914		break;
 915
 916	case CPU_LOONGSON2:
 917		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 918		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 919		if (prid & 0x3)
 920			c->icache.ways = 4;
 921		else
 922			c->icache.ways = 2;
 923		c->icache.waybit = 0;
 924
 925		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 926		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 927		if (prid & 0x3)
 928			c->dcache.ways = 4;
 929		else
 930			c->dcache.ways = 2;
 931		c->dcache.waybit = 0;
 932		break;
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	default:
 935		if (!(config & MIPS_CONF_M))
 936			panic("Don't know how to probe P-caches on this cpu.");
 937
 938		/*
 939		 * So we seem to be a MIPS32 or MIPS64 CPU
 940		 * So let's probe the I-cache ...
 941		 */
 942		config1 = read_c0_config1();
 943
 944		if ((lsize = ((config1 >> 19) & 7)))
 945			c->icache.linesz = 2 << lsize;
 946		else
 947			c->icache.linesz = lsize;
 948		c->icache.sets = 64 << ((config1 >> 22) & 7);
 
 
 
 
 949		c->icache.ways = 1 + ((config1 >> 16) & 7);
 950
 951		icache_size = c->icache.sets *
 952		              c->icache.ways *
 953		              c->icache.linesz;
 954		c->icache.waybit = __ffs(icache_size/c->icache.ways);
 955
 956		if (config & 0x8)		/* VI bit */
 957			c->icache.flags |= MIPS_CACHE_VTAG;
 958
 959		/*
 960		 * Now probe the MIPS32 / MIPS64 data cache.
 961		 */
 962		c->dcache.flags = 0;
 963
 964		if ((lsize = ((config1 >> 10) & 7)))
 965			c->dcache.linesz = 2 << lsize;
 966		else
 967			c->dcache.linesz= lsize;
 968		c->dcache.sets = 64 << ((config1 >> 13) & 7);
 
 
 
 
 969		c->dcache.ways = 1 + ((config1 >> 7) & 7);
 970
 971		dcache_size = c->dcache.sets *
 972		              c->dcache.ways *
 973		              c->dcache.linesz;
 974		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
 975
 976		c->options |= MIPS_CPU_PREFETCH;
 977		break;
 978	}
 979
 980	/*
 981	 * Processor configuration sanity check for the R4000SC erratum
 982	 * #5.  With page sizes larger than 32kB there is no possibility
 983	 * to get a VCE exception anymore so we don't care about this
 984	 * misconfiguration.  The case is rather theoretical anyway;
 985	 * presumably no vendor is shipping his hardware in the "bad"
 986	 * configuration.
 987	 */
 988	if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
 
 989	    !(config & CONF_SC) && c->icache.linesz != 16 &&
 990	    PAGE_SIZE <= 0x8000)
 991		panic("Improper R4000SC processor configuration detected");
 992
 993	/* compute a couple of other cache variables */
 994	c->icache.waysize = icache_size / c->icache.ways;
 995	c->dcache.waysize = dcache_size / c->dcache.ways;
 996
 997	c->icache.sets = c->icache.linesz ?
 998		icache_size / (c->icache.linesz * c->icache.ways) : 0;
 999	c->dcache.sets = c->dcache.linesz ?
1000		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1001
1002	/*
1003	 * R10000 and R12000 P-caches are odd in a positive way.  They're 32kB
1004	 * 2-way virtually indexed so normally would suffer from aliases.  So
1005	 * normally they'd suffer from aliases but magic in the hardware deals
1006	 * with that for us so we don't need to take care ourselves.
1007	 */
1008	switch (c->cputype) {
1009	case CPU_20KC:
1010	case CPU_25KF:
 
 
1011	case CPU_SB1:
1012	case CPU_SB1A:
1013	case CPU_XLR:
1014		c->dcache.flags |= MIPS_CACHE_PINDEX;
1015		break;
1016
1017	case CPU_R10000:
1018	case CPU_R12000:
1019	case CPU_R14000:
 
1020		break;
1021
 
 
 
 
 
 
1022	case CPU_24K:
1023	case CPU_34K:
1024	case CPU_74K:
1025	case CPU_1004K:
1026		if ((read_c0_config7() & (1 << 16))) {
1027			/* effectively physically indexed dcache,
1028			   thus no virtual aliases. */
 
 
 
 
 
 
 
 
 
 
 
 
1029			c->dcache.flags |= MIPS_CACHE_PINDEX;
1030			break;
1031		}
 
1032	default:
1033		if (c->dcache.waysize > PAGE_SIZE)
1034			c->dcache.flags |= MIPS_CACHE_ALIASES;
1035	}
1036
1037	switch (c->cputype) {
 
 
 
 
 
 
 
 
 
 
 
 
1038	case CPU_20KC:
1039		/*
1040		 * Some older 20Kc chips doesn't have the 'VI' bit in
1041		 * the config register.
1042		 */
1043		c->icache.flags |= MIPS_CACHE_VTAG;
1044		break;
1045
1046	case CPU_ALCHEMY:
 
 
1047		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1048		break;
1049	}
1050
1051#ifdef  CONFIG_CPU_LOONGSON2
1052	/*
1053	 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1054	 * one op will act on all 4 ways
1055	 */
1056	c->icache.ways = 1;
1057#endif
1058
1059	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1060	       icache_size >> 10,
1061	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1062	       way_string[c->icache.ways], c->icache.linesz);
1063
1064	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1065	       dcache_size >> 10, way_string[c->dcache.ways],
1066	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1067	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
 
 
 
 
 
 
 
 
1068			"cache aliases" : "no aliases",
1069	       c->dcache.linesz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072/*
1073 * If you even _breathe_ on this function, look at the gcc output and make sure
1074 * it does not pop things on and off the stack for the cache sizing loop that
1075 * executes in KSEG1 space or else you will crash and burn badly.  You have
1076 * been warned.
1077 */
1078static int __cpuinit probe_scache(void)
1079{
1080	unsigned long flags, addr, begin, end, pow2;
1081	unsigned int config = read_c0_config();
1082	struct cpuinfo_mips *c = &current_cpu_data;
1083
1084	if (config & CONF_SC)
1085		return 0;
1086
1087	begin = (unsigned long) &_stext;
1088	begin &= ~((4 * 1024 * 1024) - 1);
1089	end = begin + (4 * 1024 * 1024);
1090
1091	/*
1092	 * This is such a bitch, you'd think they would make it easy to do
1093	 * this.  Away you daemons of stupidity!
1094	 */
1095	local_irq_save(flags);
1096
1097	/* Fill each size-multiple cache line with a valid tag. */
1098	pow2 = (64 * 1024);
1099	for (addr = begin; addr < end; addr = (begin + pow2)) {
1100		unsigned long *p = (unsigned long *) addr;
1101		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1102		pow2 <<= 1;
1103	}
1104
1105	/* Load first line with zero (therefore invalid) tag. */
1106	write_c0_taglo(0);
1107	write_c0_taghi(0);
1108	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1109	cache_op(Index_Store_Tag_I, begin);
1110	cache_op(Index_Store_Tag_D, begin);
1111	cache_op(Index_Store_Tag_SD, begin);
1112
1113	/* Now search for the wrap around point. */
1114	pow2 = (128 * 1024);
1115	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1116		cache_op(Index_Load_Tag_SD, addr);
1117		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1118		if (!read_c0_taglo())
1119			break;
1120		pow2 <<= 1;
1121	}
1122	local_irq_restore(flags);
1123	addr -= begin;
1124
1125	scache_size = addr;
1126	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1127	c->scache.ways = 1;
1128	c->dcache.waybit = 0;		/* does not matter */
1129
1130	return 1;
1131}
1132
1133#if defined(CONFIG_CPU_LOONGSON2)
1134static void __init loongson2_sc_init(void)
1135{
1136	struct cpuinfo_mips *c = &current_cpu_data;
1137
1138	scache_size = 512*1024;
1139	c->scache.linesz = 32;
1140	c->scache.ways = 4;
1141	c->scache.waybit = 0;
1142	c->scache.waysize = scache_size / (c->scache.ways);
1143	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1144	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1145	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1146
1147	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1148}
1149#endif
1150
1151extern int r5k_sc_init(void);
1152extern int rm7k_sc_init(void);
1153extern int mips_sc_init(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154
1155static void __cpuinit setup_scache(void)
 
 
 
 
 
 
 
 
 
 
 
1156{
1157	struct cpuinfo_mips *c = &current_cpu_data;
1158	unsigned int config = read_c0_config();
1159	int sc_present = 0;
1160
1161	/*
1162	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1163	 * processors don't have a S-cache that would be relevant to the
1164	 * Linux memory management.
1165	 */
1166	switch (c->cputype) {
1167	case CPU_R4000SC:
1168	case CPU_R4000MC:
1169	case CPU_R4400SC:
1170	case CPU_R4400MC:
1171		sc_present = run_uncached(probe_scache);
1172		if (sc_present)
1173			c->options |= MIPS_CPU_CACHE_CDEX_S;
1174		break;
1175
1176	case CPU_R10000:
1177	case CPU_R12000:
1178	case CPU_R14000:
 
1179		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1180		c->scache.linesz = 64 << ((config >> 13) & 1);
1181		c->scache.ways = 2;
1182		c->scache.waybit= 0;
1183		sc_present = 1;
1184		break;
1185
1186	case CPU_R5000:
1187	case CPU_NEVADA:
1188#ifdef CONFIG_R5000_CPU_SCACHE
1189		r5k_sc_init();
1190#endif
1191                return;
1192
1193	case CPU_RM7000:
1194	case CPU_RM9000:
1195#ifdef CONFIG_RM7000_CPU_SCACHE
1196		rm7k_sc_init();
1197#endif
1198		return;
1199
1200#if defined(CONFIG_CPU_LOONGSON2)
1201	case CPU_LOONGSON2:
1202		loongson2_sc_init();
1203		return;
1204#endif
 
 
 
 
 
 
 
1205
1206	default:
1207		if (c->isa_level == MIPS_CPU_ISA_M32R1 ||
1208		    c->isa_level == MIPS_CPU_ISA_M32R2 ||
1209		    c->isa_level == MIPS_CPU_ISA_M64R1 ||
1210		    c->isa_level == MIPS_CPU_ISA_M64R2) {
1211#ifdef CONFIG_MIPS_CPU_SCACHE
1212			if (mips_sc_init ()) {
1213				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1214				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1215				       scache_size >> 10,
1216				       way_string[c->scache.ways], c->scache.linesz);
 
 
 
1217			}
 
1218#else
1219			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1220				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1221#endif
1222			return;
1223		}
1224		sc_present = 0;
1225	}
1226
1227	if (!sc_present)
1228		return;
1229
1230	/* compute a couple of other cache variables */
1231	c->scache.waysize = scache_size / c->scache.ways;
1232
1233	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1234
1235	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1236	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1237
1238	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1239}
1240
1241void au1x00_fixup_config_od(void)
1242{
1243	/*
1244	 * c0_config.od (bit 19) was write only (and read as 0)
1245	 * on the early revisions of Alchemy SOCs.  It disables the bus
1246	 * transaction overlapping and needs to be set to fix various errata.
1247	 */
1248	switch (read_c0_prid()) {
1249	case 0x00030100: /* Au1000 DA */
1250	case 0x00030201: /* Au1000 HA */
1251	case 0x00030202: /* Au1000 HB */
1252	case 0x01030200: /* Au1500 AB */
1253	/*
1254	 * Au1100 errata actually keeps silence about this bit, so we set it
1255	 * just in case for those revisions that require it to be set according
1256	 * to the (now gone) cpu table.
1257	 */
1258	case 0x02030200: /* Au1100 AB */
1259	case 0x02030201: /* Au1100 BA */
1260	case 0x02030202: /* Au1100 BC */
1261		set_c0_config(1 << 19);
1262		break;
1263	}
1264}
1265
1266/* CP0 hazard avoidance. */
1267#define NXP_BARRIER()							\
1268	 __asm__ __volatile__(						\
1269	".set noreorder\n\t"						\
1270	"nop; nop; nop; nop; nop; nop;\n\t"				\
1271	".set reorder\n\t")
1272
1273static void nxp_pr4450_fixup_config(void)
1274{
1275	unsigned long config0;
1276
1277	config0 = read_c0_config();
1278
1279	/* clear all three cache coherency fields */
1280	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1281	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1282		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1283		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1284	write_c0_config(config0);
1285	NXP_BARRIER();
1286}
1287
1288static int __cpuinitdata cca = -1;
1289
1290static int __init cca_setup(char *str)
1291{
1292	get_option(&str, &cca);
1293
1294	return 1;
1295}
1296
1297__setup("cca=", cca_setup);
1298
1299static void __cpuinit coherency_setup(void)
1300{
1301	if (cca < 0 || cca > 7)
1302		cca = read_c0_config() & CONF_CM_CMASK;
1303	_page_cachable_default = cca << _CACHE_SHIFT;
1304
1305	pr_debug("Using cache attribute %d\n", cca);
1306	change_c0_config(CONF_CM_CMASK, cca);
1307
1308	/*
1309	 * c0_status.cu=0 specifies that updates by the sc instruction use
1310	 * the coherency mode specified by the TLB; 1 means cachable
1311	 * coherent update on write will be used.  Not all processors have
1312	 * this bit and; some wire it to zero, others like Toshiba had the
1313	 * silly idea of putting something else there ...
1314	 */
1315	switch (current_cpu_type()) {
1316	case CPU_R4000PC:
1317	case CPU_R4000SC:
1318	case CPU_R4000MC:
1319	case CPU_R4400PC:
1320	case CPU_R4400SC:
1321	case CPU_R4400MC:
1322		clear_c0_config(CONF_CU);
1323		break;
1324	/*
1325	 * We need to catch the early Alchemy SOCs with
1326	 * the write-only co_config.od bit and set it back to one on:
1327	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1328	 */
1329	case CPU_ALCHEMY:
1330		au1x00_fixup_config_od();
1331		break;
1332
1333	case PRID_IMP_PR4450:
1334		nxp_pr4450_fixup_config();
1335		break;
1336	}
1337}
1338
1339#if defined(CONFIG_DMA_NONCOHERENT)
1340
1341static int __cpuinitdata coherentio;
1342
1343static int __init setcoherentio(char *str)
1344{
1345	coherentio = 1;
1346
1347	return 1;
1348}
1349
1350__setup("coherentio", setcoherentio);
1351#endif
1352
1353void __cpuinit r4k_cache_init(void)
1354{
1355	extern void build_clear_page(void);
1356	extern void build_copy_page(void);
1357	extern char __weak except_vec2_generic;
1358	extern char __weak except_vec2_sb1;
1359	struct cpuinfo_mips *c = &current_cpu_data;
1360
1361	switch (c->cputype) {
1362	case CPU_SB1:
1363	case CPU_SB1A:
1364		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1365		break;
1366
1367	default:
1368		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1369		break;
1370	}
 
 
 
 
 
 
 
1371
1372	probe_pcache();
 
1373	setup_scache();
1374
1375	r4k_blast_dcache_page_setup();
1376	r4k_blast_dcache_page_indexed_setup();
1377	r4k_blast_dcache_setup();
1378	r4k_blast_icache_page_setup();
1379	r4k_blast_icache_page_indexed_setup();
1380	r4k_blast_icache_setup();
1381	r4k_blast_scache_page_setup();
1382	r4k_blast_scache_page_indexed_setup();
1383	r4k_blast_scache_setup();
 
 
 
 
 
1384
1385	/*
1386	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1387	 * This code supports virtually indexed processors and will be
1388	 * unnecessarily inefficient on physically indexed processors.
1389	 */
1390	if (c->dcache.linesz)
1391		shm_align_mask = max_t( unsigned long,
1392					c->dcache.sets * c->dcache.linesz - 1,
1393					PAGE_SIZE - 1);
1394	else
1395		shm_align_mask = PAGE_SIZE-1;
1396
1397	__flush_cache_vmap	= r4k__flush_cache_vmap;
1398	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1399
1400	flush_cache_all		= cache_noop;
1401	__flush_cache_all	= r4k___flush_cache_all;
1402	flush_cache_mm		= r4k_flush_cache_mm;
1403	flush_cache_page	= r4k_flush_cache_page;
1404	flush_cache_range	= r4k_flush_cache_range;
1405
1406	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
 
1407	flush_icache_all	= r4k_flush_icache_all;
1408	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1409	flush_data_cache_page	= r4k_flush_data_cache_page;
1410	flush_icache_range	= r4k_flush_icache_range;
1411	local_flush_icache_range	= local_r4k_flush_icache_range;
 
 
1412
1413#if defined(CONFIG_DMA_NONCOHERENT)
1414	if (coherentio) {
1415		_dma_cache_wback_inv	= (void *)cache_noop;
1416		_dma_cache_wback	= (void *)cache_noop;
1417		_dma_cache_inv		= (void *)cache_noop;
1418	} else {
1419		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1420		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1421		_dma_cache_inv		= r4k_dma_cache_inv;
1422	}
1423#endif
1424
1425	build_clear_page();
1426	build_copy_page();
1427#if !defined(CONFIG_MIPS_CMP)
 
 
 
 
 
1428	local_r4k___flush_cache_all(NULL);
1429#endif
1430	coherency_setup();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431}
v6.13.7
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
  10#include <linux/cpu_pm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/highmem.h>
  14#include <linux/kernel.h>
  15#include <linux/linkage.h>
  16#include <linux/preempt.h>
  17#include <linux/sched.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/export.h>
  21#include <linux/bitops.h>
  22#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  23
  24#include <asm/bcache.h>
  25#include <asm/bootinfo.h>
  26#include <asm/cache.h>
  27#include <asm/cacheops.h>
  28#include <asm/cpu.h>
  29#include <asm/cpu-features.h>
  30#include <asm/cpu-type.h>
  31#include <asm/io.h>
  32#include <asm/page.h>
 
  33#include <asm/r4kcache.h>
  34#include <asm/sections.h>
 
  35#include <asm/mmu_context.h>
 
  36#include <asm/cacheflush.h> /* for run_uncached() */
  37#include <asm/traps.h>
  38#include <asm/mips-cps.h>
  39
  40/*
  41 * Bits describing what cache ops an SMP callback function may perform.
  42 *
  43 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
  44 *		active_mm must be checked before using user addresses, falling
  45 *		back to kmap.
  46 * R4K_INDEX -	Index based cache operations.
  47 */
  48
  49#define R4K_HIT		BIT(0)
  50#define R4K_INDEX	BIT(1)
  51
  52/**
  53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
  54 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
  55 *
  56 * Decides whether a cache op needs to be performed on every core in the system.
  57 * This may change depending on the @type of cache operation, as well as the set
  58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
  59 * hotplug from changing the result.
  60 *
  61 * Returns:	1 if the cache operation @type should be done on every core in
  62 *		the system.
  63 *		0 if the cache operation @type is globalized and only needs to
  64 *		be performed on a simple CPU.
  65 */
  66static inline bool r4k_op_needs_ipi(unsigned int type)
  67{
  68	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
  69	if (type == R4K_HIT && mips_cm_present())
  70		return false;
  71
  72	/*
  73	 * Hardware doesn't globalize the required cache ops, so SMP calls may
  74	 * be needed, but only if there are foreign CPUs (non-siblings with
  75	 * separate caches).
  76	 */
  77	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
  78#ifdef CONFIG_SMP
  79	return !cpumask_empty(&cpu_foreign_map[0]);
  80#else
  81	return false;
  82#endif
  83}
  84
  85/*
  86 * Special Variant of smp_call_function for use by cache functions:
  87 *
  88 *  o No return value
  89 *  o collapses to normal function call on UP kernels
  90 *  o collapses to normal function call on systems with a single shared
  91 *    primary cache.
  92 *  o doesn't disable interrupts on the local CPU
  93 */
  94static inline void r4k_on_each_cpu(unsigned int type,
  95				   void (*func)(void *info), void *info)
  96{
  97	preempt_disable();
  98	if (r4k_op_needs_ipi(type))
  99		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
 100				       func, info, 1);
 
 101	func(info);
 102	preempt_enable();
 103}
 104
 
 
 
 
 
 
 105/*
 106 * Must die.
 107 */
 108static unsigned long icache_size __read_mostly;
 109static unsigned long dcache_size __read_mostly;
 110static unsigned long vcache_size __read_mostly;
 111static unsigned long scache_size __read_mostly;
 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
 114#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
 115
 116#define R4600_HIT_CACHEOP_WAR_IMPL					\
 117do {									\
 118	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
 119	    cpu_is_r4600_v2_x())					\
 120		*(volatile unsigned long *)CKSEG1;			\
 121	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
 122		__asm__ __volatile__("nop;nop;nop;nop");		\
 123} while (0)
 124
 125static void (*r4k_blast_dcache_page)(unsigned long addr);
 126
 127static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
 128{
 129	R4600_HIT_CACHEOP_WAR_IMPL;
 130	blast_dcache32_page(addr);
 131}
 132
 133static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 134{
 
 135	blast_dcache64_page(addr);
 136}
 137
 138static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
 139{
 140	blast_dcache128_page(addr);
 141}
 142
 143static void r4k_blast_dcache_page_setup(void)
 144{
 145	unsigned long  dc_lsize = cpu_dcache_line_size();
 146
 147	switch (dc_lsize) {
 148	case 0:
 149		r4k_blast_dcache_page = (void *)cache_noop;
 150		break;
 151	case 16:
 152		r4k_blast_dcache_page = blast_dcache16_page;
 153		break;
 154	case 32:
 155		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 156		break;
 157	case 64:
 158		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 159		break;
 160	case 128:
 161		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
 162		break;
 163	default:
 164		break;
 165	}
 166}
 167
 168#ifndef CONFIG_EVA
 169#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
 170#else
 171
 172static void (*r4k_blast_dcache_user_page)(unsigned long addr);
 173
 174static void r4k_blast_dcache_user_page_setup(void)
 175{
 176	unsigned long  dc_lsize = cpu_dcache_line_size();
 177
 178	if (dc_lsize == 0)
 179		r4k_blast_dcache_user_page = (void *)cache_noop;
 180	else if (dc_lsize == 16)
 181		r4k_blast_dcache_user_page = blast_dcache16_user_page;
 182	else if (dc_lsize == 32)
 183		r4k_blast_dcache_user_page = blast_dcache32_user_page;
 184	else if (dc_lsize == 64)
 185		r4k_blast_dcache_user_page = blast_dcache64_user_page;
 186}
 187
 188#endif
 189
 190void (* r4k_blast_dcache)(void);
 191EXPORT_SYMBOL(r4k_blast_dcache);
 192
 193static void r4k_blast_dcache_setup(void)
 194{
 195	unsigned long dc_lsize = cpu_dcache_line_size();
 196
 197	if (dc_lsize == 0)
 198		r4k_blast_dcache = (void *)cache_noop;
 199	else if (dc_lsize == 16)
 200		r4k_blast_dcache = blast_dcache16;
 201	else if (dc_lsize == 32)
 202		r4k_blast_dcache = blast_dcache32;
 203	else if (dc_lsize == 64)
 204		r4k_blast_dcache = blast_dcache64;
 205	else if (dc_lsize == 128)
 206		r4k_blast_dcache = blast_dcache128;
 207}
 208
 209/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
 210#define JUMP_TO_ALIGN(order) \
 211	__asm__ __volatile__( \
 212		"b\t1f\n\t" \
 213		".align\t" #order "\n\t" \
 214		"1:\n\t" \
 215		)
 216#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 217#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
 218
 219static inline void blast_r4600_v1_icache32(void)
 220{
 221	unsigned long flags;
 222
 223	local_irq_save(flags);
 224	blast_icache32();
 225	local_irq_restore(flags);
 226}
 227
 228static inline void tx49_blast_icache32(void)
 229{
 230	unsigned long start = INDEX_BASE;
 231	unsigned long end = start + current_cpu_data.icache.waysize;
 232	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 233	unsigned long ws_end = current_cpu_data.icache.ways <<
 234			       current_cpu_data.icache.waybit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235	unsigned long ws, addr;
 236
 237	CACHE32_UNROLL32_ALIGN2;
 238	/* I'm in even chunk.  blast odd chunks */
 239	for (ws = 0; ws < ws_end; ws += ws_inc)
 240		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 241			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 242				     addr | ws, 32);
 243	CACHE32_UNROLL32_ALIGN;
 244	/* I'm in odd chunk.  blast even chunks */
 245	for (ws = 0; ws < ws_end; ws += ws_inc)
 246		for (addr = start; addr < end; addr += 0x400 * 2)
 247			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 248				     addr | ws, 32);
 249}
 250
 251static void (* r4k_blast_icache_page)(unsigned long addr);
 252
 253static void r4k_blast_icache_page_setup(void)
 254{
 255	unsigned long ic_lsize = cpu_icache_line_size();
 256
 257	if (ic_lsize == 0)
 258		r4k_blast_icache_page = (void *)cache_noop;
 259	else if (ic_lsize == 16)
 260		r4k_blast_icache_page = blast_icache16_page;
 261	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
 262		r4k_blast_icache_page = loongson2_blast_icache32_page;
 263	else if (ic_lsize == 32)
 264		r4k_blast_icache_page = blast_icache32_page;
 265	else if (ic_lsize == 64)
 266		r4k_blast_icache_page = blast_icache64_page;
 267	else if (ic_lsize == 128)
 268		r4k_blast_icache_page = blast_icache128_page;
 269}
 270
 271#ifndef CONFIG_EVA
 272#define r4k_blast_icache_user_page  r4k_blast_icache_page
 273#else
 274
 275static void (*r4k_blast_icache_user_page)(unsigned long addr);
 276
 277static void r4k_blast_icache_user_page_setup(void)
 278{
 279	unsigned long ic_lsize = cpu_icache_line_size();
 280
 281	if (ic_lsize == 0)
 282		r4k_blast_icache_user_page = (void *)cache_noop;
 283	else if (ic_lsize == 16)
 284		r4k_blast_icache_user_page = blast_icache16_user_page;
 285	else if (ic_lsize == 32)
 286		r4k_blast_icache_user_page = blast_icache32_user_page;
 287	else if (ic_lsize == 64)
 288		r4k_blast_icache_user_page = blast_icache64_user_page;
 
 
 
 
 
 
 
 
 289}
 290
 291#endif
 292
 293void (* r4k_blast_icache)(void);
 294EXPORT_SYMBOL(r4k_blast_icache);
 295
 296static void r4k_blast_icache_setup(void)
 297{
 298	unsigned long ic_lsize = cpu_icache_line_size();
 299
 300	if (ic_lsize == 0)
 301		r4k_blast_icache = (void *)cache_noop;
 302	else if (ic_lsize == 16)
 303		r4k_blast_icache = blast_icache16;
 304	else if (ic_lsize == 32) {
 305		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
 306		    cpu_is_r4600_v1_x())
 307			r4k_blast_icache = blast_r4600_v1_icache32;
 308		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
 309			r4k_blast_icache = tx49_blast_icache32;
 310		else if (current_cpu_type() == CPU_LOONGSON2EF)
 311			r4k_blast_icache = loongson2_blast_icache32;
 312		else
 313			r4k_blast_icache = blast_icache32;
 314	} else if (ic_lsize == 64)
 315		r4k_blast_icache = blast_icache64;
 316	else if (ic_lsize == 128)
 317		r4k_blast_icache = blast_icache128;
 318}
 319
 320static void (* r4k_blast_scache_page)(unsigned long addr);
 321
 322static void r4k_blast_scache_page_setup(void)
 323{
 324	unsigned long sc_lsize = cpu_scache_line_size();
 325
 326	if (scache_size == 0)
 327		r4k_blast_scache_page = (void *)cache_noop;
 328	else if (sc_lsize == 16)
 329		r4k_blast_scache_page = blast_scache16_page;
 330	else if (sc_lsize == 32)
 331		r4k_blast_scache_page = blast_scache32_page;
 332	else if (sc_lsize == 64)
 333		r4k_blast_scache_page = blast_scache64_page;
 334	else if (sc_lsize == 128)
 335		r4k_blast_scache_page = blast_scache128_page;
 336}
 337
 338static void (* r4k_blast_scache)(void);
 339
 340static void r4k_blast_scache_setup(void)
 341{
 342	unsigned long sc_lsize = cpu_scache_line_size();
 343
 344	if (scache_size == 0)
 345		r4k_blast_scache = (void *)cache_noop;
 346	else if (sc_lsize == 16)
 347		r4k_blast_scache = blast_scache16;
 348	else if (sc_lsize == 32)
 349		r4k_blast_scache = blast_scache32;
 350	else if (sc_lsize == 64)
 351		r4k_blast_scache = blast_scache64;
 352	else if (sc_lsize == 128)
 353		r4k_blast_scache = blast_scache128;
 354}
 355
 356static void (*r4k_blast_scache_node)(long node);
 357
 358static void r4k_blast_scache_node_setup(void)
 359{
 360	unsigned long sc_lsize = cpu_scache_line_size();
 361
 362	if (current_cpu_type() != CPU_LOONGSON64)
 363		r4k_blast_scache_node = (void *)cache_noop;
 364	else if (sc_lsize == 16)
 365		r4k_blast_scache_node = blast_scache16_node;
 366	else if (sc_lsize == 32)
 367		r4k_blast_scache_node = blast_scache32_node;
 368	else if (sc_lsize == 64)
 369		r4k_blast_scache_node = blast_scache64_node;
 370	else if (sc_lsize == 128)
 371		r4k_blast_scache_node = blast_scache128_node;
 372}
 373
 374static inline void local_r4k___flush_cache_all(void * args)
 375{
 
 
 
 
 
 
 
 376	switch (current_cpu_type()) {
 377	case CPU_LOONGSON2EF:
 378	case CPU_R4000SC:
 379	case CPU_R4000MC:
 380	case CPU_R4400SC:
 381	case CPU_R4400MC:
 382	case CPU_R10000:
 383	case CPU_R12000:
 384	case CPU_R14000:
 385	case CPU_R16000:
 386		/*
 387		 * These caches are inclusive caches, that is, if something
 388		 * is not cached in the S-cache, we know it also won't be
 389		 * in one of the primary caches.
 390		 */
 391		r4k_blast_scache();
 392		break;
 393
 394	case CPU_LOONGSON64:
 395		/* Use get_ebase_cpunum() for both NUMA=y/n */
 396		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
 397		break;
 398
 399	case CPU_BMIPS5000:
 400		r4k_blast_scache();
 401		__sync();
 402		break;
 403
 404	default:
 405		r4k_blast_dcache();
 406		r4k_blast_icache();
 407		break;
 408	}
 409}
 410
 411static void r4k___flush_cache_all(void)
 412{
 413	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
 414}
 415
 416/**
 417 * has_valid_asid() - Determine if an mm already has an ASID.
 418 * @mm:		Memory map.
 419 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
 420 *
 421 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
 422 * of type @type within an r4k_on_each_cpu() call will affect. If
 423 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
 424 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
 425 * will need to be checked.
 426 *
 427 * Must be called in non-preemptive context.
 428 *
 429 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
 430 *		0 otherwise.
 431 */
 432static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
 433{
 434	unsigned int i;
 435	const cpumask_t *mask = cpu_present_mask;
 436
 437	if (cpu_has_mmid)
 438		return cpu_context(0, mm) != 0;
 439
 440	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
 441#ifdef CONFIG_SMP
 442	/*
 443	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
 444	 * each foreign core, so we only need to worry about siblings.
 445	 * Otherwise we need to worry about all present CPUs.
 446	 */
 447	if (r4k_op_needs_ipi(type))
 448		mask = &cpu_sibling_map[smp_processor_id()];
 449#endif
 450	for_each_cpu(i, mask)
 451		if (cpu_context(i, mm))
 452			return 1;
 
 453	return 0;
 
 
 
 454}
 455
 456static void r4k__flush_cache_vmap(void)
 457{
 458	r4k_blast_dcache();
 459}
 460
 461static void r4k__flush_cache_vunmap(void)
 462{
 463	r4k_blast_dcache();
 464}
 465
 466/*
 467 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
 468 * whole caches when vma is executable.
 469 */
 470static inline void local_r4k_flush_cache_range(void * args)
 471{
 472	struct vm_area_struct *vma = args;
 473	int exec = vma->vm_flags & VM_EXEC;
 474
 475	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
 476		return;
 477
 478	/*
 479	 * If dcache can alias, we must blast it since mapping is changing.
 480	 * If executable, we must ensure any dirty lines are written back far
 481	 * enough to be visible to icache.
 482	 */
 483	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 484		r4k_blast_dcache();
 485	/* If executable, blast stale lines from icache */
 486	if (exec)
 487		r4k_blast_icache();
 488}
 489
 490static void r4k_flush_cache_range(struct vm_area_struct *vma,
 491	unsigned long start, unsigned long end)
 492{
 493	int exec = vma->vm_flags & VM_EXEC;
 494
 495	if (cpu_has_dc_aliases || exec)
 496		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
 497}
 498
 499static inline void local_r4k_flush_cache_mm(void * args)
 500{
 501	struct mm_struct *mm = args;
 502
 503	if (!has_valid_asid(mm, R4K_INDEX))
 504		return;
 505
 506	/*
 507	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 508	 * only flush the primary caches but R1x000 behave sane ...
 509	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 510	 * caches, so we can bail out early.
 511	 */
 512	if (current_cpu_type() == CPU_R4000SC ||
 513	    current_cpu_type() == CPU_R4000MC ||
 514	    current_cpu_type() == CPU_R4400SC ||
 515	    current_cpu_type() == CPU_R4400MC) {
 516		r4k_blast_scache();
 517		return;
 518	}
 519
 520	r4k_blast_dcache();
 521}
 522
 523static void r4k_flush_cache_mm(struct mm_struct *mm)
 524{
 525	if (!cpu_has_dc_aliases)
 526		return;
 527
 528	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
 529}
 530
 531struct flush_cache_page_args {
 532	struct vm_area_struct *vma;
 533	unsigned long addr;
 534	unsigned long pfn;
 535};
 536
 537static inline void local_r4k_flush_cache_page(void *args)
 538{
 539	struct flush_cache_page_args *fcp_args = args;
 540	struct vm_area_struct *vma = fcp_args->vma;
 541	unsigned long addr = fcp_args->addr;
 542	struct page *page = pfn_to_page(fcp_args->pfn);
 543	int exec = vma->vm_flags & VM_EXEC;
 544	struct mm_struct *mm = vma->vm_mm;
 545	int map_coherent = 0;
 
 
 546	pmd_t *pmdp;
 547	pte_t *ptep;
 548	void *vaddr;
 549
 550	/*
 551	 * If owns no valid ASID yet, cannot possibly have gotten
 552	 * this page into the cache.
 553	 */
 554	if (!has_valid_asid(mm, R4K_HIT))
 555		return;
 556
 557	addr &= PAGE_MASK;
 558	pmdp = pmd_off(mm, addr);
 559	ptep = pte_offset_kernel(pmdp, addr);
 
 
 560
 561	/*
 562	 * If the page isn't marked valid, the page cannot possibly be
 563	 * in the cache.
 564	 */
 565	if (!(pte_present(*ptep)))
 566		return;
 567
 568	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 569		vaddr = NULL;
 570	else {
 571		struct folio *folio = page_folio(page);
 572		/*
 573		 * Use kmap_coherent or kmap_atomic to do flushes for
 574		 * another ASID than the current one.
 575		 */
 576		map_coherent = (cpu_has_dc_aliases &&
 577				folio_mapped(folio) &&
 578				!folio_test_dcache_dirty(folio));
 579		if (map_coherent)
 580			vaddr = kmap_coherent(page, addr);
 581		else
 582			vaddr = kmap_atomic(page);
 583		addr = (unsigned long)vaddr;
 584	}
 585
 586	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 587		vaddr ? r4k_blast_dcache_page(addr) :
 588			r4k_blast_dcache_user_page(addr);
 589		if (exec && !cpu_icache_snoops_remote_store)
 590			r4k_blast_scache_page(addr);
 591	}
 592	if (exec) {
 593		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 594			drop_mmu_context(mm);
 
 
 
 595		} else
 596			vaddr ? r4k_blast_icache_page(addr) :
 597				r4k_blast_icache_user_page(addr);
 598	}
 599
 600	if (vaddr) {
 601		if (map_coherent)
 602			kunmap_coherent();
 603		else
 604			kunmap_atomic(vaddr);
 605	}
 606}
 607
 608static void r4k_flush_cache_page(struct vm_area_struct *vma,
 609	unsigned long addr, unsigned long pfn)
 610{
 611	struct flush_cache_page_args args;
 612
 613	args.vma = vma;
 614	args.addr = addr;
 615	args.pfn = pfn;
 616
 617	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
 618}
 619
 620static inline void local_r4k_flush_data_cache_page(void * addr)
 621{
 622	r4k_blast_dcache_page((unsigned long) addr);
 623}
 624
 625static void r4k_flush_data_cache_page(unsigned long addr)
 626{
 627	if (in_atomic())
 628		local_r4k_flush_data_cache_page((void *)addr);
 629	else
 630		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
 631				(void *) addr);
 632}
 633
 634struct flush_icache_range_args {
 635	unsigned long start;
 636	unsigned long end;
 637	unsigned int type;
 638	bool user;
 639};
 640
 641static inline void __local_r4k_flush_icache_range(unsigned long start,
 642						  unsigned long end,
 643						  unsigned int type,
 644						  bool user)
 645{
 646	if (!cpu_has_ic_fills_f_dc) {
 647		if (type == R4K_INDEX ||
 648		    (type & R4K_INDEX && end - start >= dcache_size)) {
 649			r4k_blast_dcache();
 650		} else {
 651			R4600_HIT_CACHEOP_WAR_IMPL;
 652			if (user)
 653				protected_blast_dcache_range(start, end);
 654			else
 655				blast_dcache_range(start, end);
 656		}
 657	}
 658
 659	if (type == R4K_INDEX ||
 660	    (type & R4K_INDEX && end - start > icache_size))
 661		r4k_blast_icache();
 662	else {
 663		switch (boot_cpu_type()) {
 664		case CPU_LOONGSON2EF:
 665			protected_loongson2_blast_icache_range(start, end);
 666			break;
 667
 668		default:
 669			if (user)
 670				protected_blast_icache_range(start, end);
 671			else
 672				blast_icache_range(start, end);
 673			break;
 674		}
 675	}
 676}
 677
 678static inline void local_r4k_flush_icache_range(unsigned long start,
 679						unsigned long end)
 680{
 681	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
 682}
 683
 684static inline void local_r4k_flush_icache_user_range(unsigned long start,
 685						     unsigned long end)
 686{
 687	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
 688}
 689
 690static inline void local_r4k_flush_icache_range_ipi(void *args)
 691{
 692	struct flush_icache_range_args *fir_args = args;
 693	unsigned long start = fir_args->start;
 694	unsigned long end = fir_args->end;
 695	unsigned int type = fir_args->type;
 696	bool user = fir_args->user;
 697
 698	__local_r4k_flush_icache_range(start, end, type, user);
 699}
 700
 701static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
 702				     bool user)
 703{
 704	struct flush_icache_range_args args;
 705	unsigned long size, cache_size;
 706
 707	args.start = start;
 708	args.end = end;
 709	args.type = R4K_HIT | R4K_INDEX;
 710	args.user = user;
 711
 712	/*
 713	 * Indexed cache ops require an SMP call.
 714	 * Consider if that can or should be avoided.
 715	 */
 716	preempt_disable();
 717	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
 718		/*
 719		 * If address-based cache ops don't require an SMP call, then
 720		 * use them exclusively for small flushes.
 721		 */
 722		size = end - start;
 723		cache_size = icache_size;
 724		if (!cpu_has_ic_fills_f_dc) {
 725			size *= 2;
 726			cache_size += dcache_size;
 727		}
 728		if (size <= cache_size)
 729			args.type &= ~R4K_INDEX;
 730	}
 731	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
 732	preempt_enable();
 733	instruction_hazard();
 734}
 735
 736static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 737{
 738	return __r4k_flush_icache_range(start, end, false);
 739}
 740
 741static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
 742{
 743	return __r4k_flush_icache_range(start, end, true);
 744}
 745
 746#ifdef CONFIG_DMA_NONCOHERENT
 747
 748static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 749{
 750	/* Catch bad driver code */
 751	if (WARN_ON(size == 0))
 752		return;
 753
 754	preempt_disable();
 755	if (cpu_has_inclusive_pcaches) {
 756		if (size >= scache_size) {
 757			if (current_cpu_type() != CPU_LOONGSON64)
 758				r4k_blast_scache();
 759			else
 760				r4k_blast_scache_node(pa_to_nid(addr));
 761		} else {
 762			blast_scache_range(addr, addr + size);
 763		}
 764		preempt_enable();
 765		__sync();
 766		return;
 767	}
 768
 769	/*
 770	 * Either no secondary cache or the available caches don't have the
 771	 * subset property so we have to flush the primary caches
 772	 * explicitly.
 773	 * If we would need IPI to perform an INDEX-type operation, then
 774	 * we have to use the HIT-type alternative as IPI cannot be used
 775	 * here due to interrupts possibly being disabled.
 776	 */
 777	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 778		r4k_blast_dcache();
 779	} else {
 780		R4600_HIT_CACHEOP_WAR_IMPL;
 781		blast_dcache_range(addr, addr + size);
 782	}
 783	preempt_enable();
 784
 785	bc_wback_inv(addr, size);
 786	__sync();
 787}
 788
 789static void prefetch_cache_inv(unsigned long addr, unsigned long size)
 790{
 791	unsigned int linesz = cpu_scache_line_size();
 792	unsigned long addr0 = addr, addr1;
 793
 794	addr0 &= ~(linesz - 1);
 795	addr1 = (addr0 + size - 1) & ~(linesz - 1);
 796
 797	protected_writeback_scache_line(addr0);
 798	if (likely(addr1 != addr0))
 799		protected_writeback_scache_line(addr1);
 800	else
 801		return;
 802
 803	addr0 += linesz;
 804	if (likely(addr1 != addr0))
 805		protected_writeback_scache_line(addr0);
 806	else
 807		return;
 808
 809	addr1 -= linesz;
 810	if (likely(addr1 > addr0))
 811		protected_writeback_scache_line(addr0);
 812}
 813
 814static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 815{
 816	/* Catch bad driver code */
 817	if (WARN_ON(size == 0))
 818		return;
 819
 820	preempt_disable();
 
 
 
 
 
 821
 822	if (current_cpu_type() == CPU_BMIPS5000)
 823		prefetch_cache_inv(addr, size);
 824
 825	if (cpu_has_inclusive_pcaches) {
 826		if (size >= scache_size) {
 827			if (current_cpu_type() != CPU_LOONGSON64)
 828				r4k_blast_scache();
 829			else
 830				r4k_blast_scache_node(pa_to_nid(addr));
 831		} else {
 832			/*
 833			 * There is no clearly documented alignment requirement
 834			 * for the cache instruction on MIPS processors and
 835			 * some processors, among them the RM5200 and RM7000
 836			 * QED processors will throw an address error for cache
 837			 * hit ops with insufficient alignment.	 Solved by
 838			 * aligning the address to cache line size.
 839			 */
 
 
 
 840			blast_inv_scache_range(addr, addr + size);
 841		}
 842		preempt_enable();
 843		__sync();
 844		return;
 845	}
 846
 847	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 848		r4k_blast_dcache();
 849	} else {
 
 
 
 850		R4600_HIT_CACHEOP_WAR_IMPL;
 
 
 851		blast_inv_dcache_range(addr, addr + size);
 852	}
 853	preempt_enable();
 854
 855	bc_inv(addr, size);
 856	__sync();
 857}
 858#endif /* CONFIG_DMA_NONCOHERENT */
 859
 860static void r4k_flush_icache_all(void)
 
 
 
 
 
 861{
 862	if (cpu_has_vtag_icache)
 863		r4k_blast_icache();
 864}
 
 865
 866struct flush_kernel_vmap_range_args {
 867	unsigned long	vaddr;
 868	int		size;
 869};
 870
 871static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
 872{
 873	/*
 874	 * Aliases only affect the primary caches so don't bother with
 875	 * S-caches or T-caches.
 876	 */
 877	r4k_blast_dcache();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878}
 879
 880static inline void local_r4k_flush_kernel_vmap_range(void *args)
 881{
 882	struct flush_kernel_vmap_range_args *vmra = args;
 883	unsigned long vaddr = vmra->vaddr;
 884	int size = vmra->size;
 885
 886	/*
 887	 * Aliases only affect the primary caches so don't bother with
 888	 * S-caches or T-caches.
 889	 */
 890	R4600_HIT_CACHEOP_WAR_IMPL;
 891	blast_dcache_range(vaddr, vaddr + size);
 892}
 893
 894static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
 895{
 896	struct flush_kernel_vmap_range_args args;
 897
 898	args.vaddr = (unsigned long) vaddr;
 899	args.size = size;
 900
 901	if (size >= dcache_size)
 902		r4k_on_each_cpu(R4K_INDEX,
 903				local_r4k_flush_kernel_vmap_range_index, NULL);
 904	else
 905		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
 906				&args);
 907}
 908
 909static inline void rm7k_erratum31(void)
 910{
 911	const unsigned long ic_lsize = 32;
 912	unsigned long addr;
 913
 914	/* RM7000 erratum #31. The icache is screwed at startup. */
 915	write_c0_taglo(0);
 916	write_c0_taghi(0);
 917
 918	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
 919		__asm__ __volatile__ (
 920			".set push\n\t"
 921			".set noreorder\n\t"
 922			".set mips3\n\t"
 923			"cache\t%1, 0(%0)\n\t"
 924			"cache\t%1, 0x1000(%0)\n\t"
 925			"cache\t%1, 0x2000(%0)\n\t"
 926			"cache\t%1, 0x3000(%0)\n\t"
 927			"cache\t%2, 0(%0)\n\t"
 928			"cache\t%2, 0x1000(%0)\n\t"
 929			"cache\t%2, 0x2000(%0)\n\t"
 930			"cache\t%2, 0x3000(%0)\n\t"
 931			"cache\t%1, 0(%0)\n\t"
 932			"cache\t%1, 0x1000(%0)\n\t"
 933			"cache\t%1, 0x2000(%0)\n\t"
 934			"cache\t%1, 0x3000(%0)\n\t"
 935			".set pop\n"
 936			:
 937			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
 938	}
 939}
 940
 941static inline int alias_74k_erratum(struct cpuinfo_mips *c)
 942{
 943	unsigned int imp = c->processor_id & PRID_IMP_MASK;
 944	unsigned int rev = c->processor_id & PRID_REV_MASK;
 945	int present = 0;
 946
 947	/*
 948	 * Early versions of the 74K do not update the cache tags on a
 949	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
 950	 * aliases.  In this case it is better to treat the cache as always
 951	 * having aliases.  Also disable the synonym tag update feature
 952	 * where available.  In this case no opportunistic tag update will
 953	 * happen where a load causes a virtual address miss but a physical
 954	 * address hit during a D-cache look-up.
 955	 */
 956	switch (imp) {
 957	case PRID_IMP_74K:
 958		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
 959			present = 1;
 960		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
 961			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
 962		break;
 963	case PRID_IMP_1074K:
 964		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
 965			present = 1;
 966			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
 967		}
 968		break;
 969	default:
 970		BUG();
 971	}
 972
 973	return present;
 974}
 975
 976static void b5k_instruction_hazard(void)
 977{
 978	__sync();
 979	__sync();
 980	__asm__ __volatile__(
 981	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
 982	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
 983	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
 984	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
 985	: : : "memory");
 986}
 987
 988static char *way_string[] = { NULL, "direct mapped", "2-way",
 989	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
 990	"9-way", "10-way", "11-way", "12-way",
 991	"13-way", "14-way", "15-way", "16-way",
 992};
 993
 994static void probe_pcache(void)
 995{
 996	struct cpuinfo_mips *c = &current_cpu_data;
 997	unsigned int config = read_c0_config();
 998	unsigned int prid = read_c0_prid();
 999	int has_74k_erratum = 0;
1000	unsigned long config1;
1001	unsigned int lsize;
1002
1003	switch (current_cpu_type()) {
1004	case CPU_R4600:			/* QED style two way caches? */
1005	case CPU_R4700:
1006	case CPU_R5000:
1007	case CPU_NEVADA:
1008		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1009		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1010		c->icache.ways = 2;
1011		c->icache.waybit = __ffs(icache_size/2);
1012
1013		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1014		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1015		c->dcache.ways = 2;
1016		c->dcache.waybit= __ffs(dcache_size/2);
1017
1018		c->options |= MIPS_CPU_CACHE_CDEX_P;
1019		break;
1020
 
1021	case CPU_R5500:
1022		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1023		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1024		c->icache.ways = 2;
1025		c->icache.waybit= 0;
1026
1027		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1028		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1029		c->dcache.ways = 2;
1030		c->dcache.waybit = 0;
1031
1032		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1033		break;
1034
1035	case CPU_TX49XX:
1036		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1037		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1038		c->icache.ways = 4;
1039		c->icache.waybit= 0;
1040
1041		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1042		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1043		c->dcache.ways = 4;
1044		c->dcache.waybit = 0;
1045
1046		c->options |= MIPS_CPU_CACHE_CDEX_P;
1047		c->options |= MIPS_CPU_PREFETCH;
1048		break;
1049
1050	case CPU_R4000PC:
1051	case CPU_R4000SC:
1052	case CPU_R4000MC:
1053	case CPU_R4400PC:
1054	case CPU_R4400SC:
1055	case CPU_R4400MC:
1056	case CPU_R4300:
1057		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1058		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1059		c->icache.ways = 1;
1060		c->icache.waybit = 0;	/* doesn't matter */
1061
1062		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1063		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1064		c->dcache.ways = 1;
1065		c->dcache.waybit = 0;	/* does not matter */
1066
1067		c->options |= MIPS_CPU_CACHE_CDEX_P;
1068		break;
1069
1070	case CPU_R10000:
1071	case CPU_R12000:
1072	case CPU_R14000:
1073	case CPU_R16000:
1074		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1075		c->icache.linesz = 64;
1076		c->icache.ways = 2;
1077		c->icache.waybit = 0;
1078
1079		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1080		c->dcache.linesz = 32;
1081		c->dcache.ways = 2;
1082		c->dcache.waybit = 0;
1083
1084		c->options |= MIPS_CPU_PREFETCH;
1085		break;
1086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087	case CPU_RM7000:
1088		rm7k_erratum31();
1089
 
1090		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1091		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1092		c->icache.ways = 4;
1093		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1094
1095		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1096		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1097		c->dcache.ways = 4;
1098		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1099
 
1100		c->options |= MIPS_CPU_CACHE_CDEX_P;
 
1101		c->options |= MIPS_CPU_PREFETCH;
1102		break;
1103
1104	case CPU_LOONGSON2EF:
1105		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1106		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1107		if (prid & 0x3)
1108			c->icache.ways = 4;
1109		else
1110			c->icache.ways = 2;
1111		c->icache.waybit = 0;
1112
1113		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1114		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1115		if (prid & 0x3)
1116			c->dcache.ways = 4;
1117		else
1118			c->dcache.ways = 2;
1119		c->dcache.waybit = 0;
1120		break;
1121
1122	case CPU_LOONGSON64:
1123		config1 = read_c0_config1();
1124		lsize = (config1 >> 19) & 7;
1125		if (lsize)
1126			c->icache.linesz = 2 << lsize;
1127		else
1128			c->icache.linesz = 0;
1129		c->icache.sets = 64 << ((config1 >> 22) & 7);
1130		c->icache.ways = 1 + ((config1 >> 16) & 7);
1131		icache_size = c->icache.sets *
1132					  c->icache.ways *
1133					  c->icache.linesz;
1134		c->icache.waybit = 0;
1135
1136		lsize = (config1 >> 10) & 7;
1137		if (lsize)
1138			c->dcache.linesz = 2 << lsize;
1139		else
1140			c->dcache.linesz = 0;
1141		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1142		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1143		dcache_size = c->dcache.sets *
1144					  c->dcache.ways *
1145					  c->dcache.linesz;
1146		c->dcache.waybit = 0;
1147		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1148				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1149				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1150			c->options |= MIPS_CPU_PREFETCH;
1151		break;
1152
1153	case CPU_CAVIUM_OCTEON3:
1154		/* For now lie about the number of ways. */
1155		c->icache.linesz = 128;
1156		c->icache.sets = 16;
1157		c->icache.ways = 8;
1158		c->icache.flags |= MIPS_CACHE_VTAG;
1159		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1160
1161		c->dcache.linesz = 128;
1162		c->dcache.ways = 8;
1163		c->dcache.sets = 8;
1164		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1165		c->options |= MIPS_CPU_PREFETCH;
1166		break;
1167
1168	default:
1169		if (!(config & MIPS_CONF_M))
1170			panic("Don't know how to probe P-caches on this cpu.");
1171
1172		/*
1173		 * So we seem to be a MIPS32 or MIPS64 CPU
1174		 * So let's probe the I-cache ...
1175		 */
1176		config1 = read_c0_config1();
1177
1178		lsize = (config1 >> 19) & 7;
1179
1180		/* IL == 7 is reserved */
1181		if (lsize == 7)
1182			panic("Invalid icache line size");
1183
1184		c->icache.linesz = lsize ? 2 << lsize : 0;
1185
1186		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1187		c->icache.ways = 1 + ((config1 >> 16) & 7);
1188
1189		icache_size = c->icache.sets *
1190			      c->icache.ways *
1191			      c->icache.linesz;
1192		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1193
1194		if (config & MIPS_CONF_VI)
1195			c->icache.flags |= MIPS_CACHE_VTAG;
1196
1197		/*
1198		 * Now probe the MIPS32 / MIPS64 data cache.
1199		 */
1200		c->dcache.flags = 0;
1201
1202		lsize = (config1 >> 10) & 7;
1203
1204		/* DL == 7 is reserved */
1205		if (lsize == 7)
1206			panic("Invalid dcache line size");
1207
1208		c->dcache.linesz = lsize ? 2 << lsize : 0;
1209
1210		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1211		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1212
1213		dcache_size = c->dcache.sets *
1214			      c->dcache.ways *
1215			      c->dcache.linesz;
1216		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1217
1218		c->options |= MIPS_CPU_PREFETCH;
1219		break;
1220	}
1221
1222	/*
1223	 * Processor configuration sanity check for the R4000SC erratum
1224	 * #5.	With page sizes larger than 32kB there is no possibility
1225	 * to get a VCE exception anymore so we don't care about this
1226	 * misconfiguration.  The case is rather theoretical anyway;
1227	 * presumably no vendor is shipping his hardware in the "bad"
1228	 * configuration.
1229	 */
1230	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1231	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1232	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1233	    PAGE_SIZE <= 0x8000)
1234		panic("Improper R4000SC processor configuration detected");
1235
1236	/* compute a couple of other cache variables */
1237	c->icache.waysize = icache_size / c->icache.ways;
1238	c->dcache.waysize = dcache_size / c->dcache.ways;
1239
1240	c->icache.sets = c->icache.linesz ?
1241		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1242	c->dcache.sets = c->dcache.linesz ?
1243		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1244
1245	/*
1246	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1247	 * virtually indexed so normally would suffer from aliases.  So
1248	 * normally they'd suffer from aliases but magic in the hardware deals
1249	 * with that for us so we don't need to take care ourselves.
1250	 */
1251	switch (current_cpu_type()) {
1252	case CPU_20KC:
1253	case CPU_25KF:
1254	case CPU_I6400:
1255	case CPU_I6500:
1256	case CPU_SB1:
1257	case CPU_SB1A:
 
1258		c->dcache.flags |= MIPS_CACHE_PINDEX;
1259		break;
1260
1261	case CPU_R10000:
1262	case CPU_R12000:
1263	case CPU_R14000:
1264	case CPU_R16000:
1265		break;
1266
1267	case CPU_74K:
1268	case CPU_1074K:
1269		has_74k_erratum = alias_74k_erratum(c);
1270		fallthrough;
1271	case CPU_M14KC:
1272	case CPU_M14KEC:
1273	case CPU_24K:
1274	case CPU_34K:
 
1275	case CPU_1004K:
1276	case CPU_INTERAPTIV:
1277	case CPU_P5600:
1278	case CPU_PROAPTIV:
1279	case CPU_M5150:
1280	case CPU_QEMU_GENERIC:
1281	case CPU_P6600:
1282	case CPU_M6250:
1283		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1284		    (c->icache.waysize > PAGE_SIZE))
1285			c->icache.flags |= MIPS_CACHE_ALIASES;
1286		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1287			/*
1288			 * Effectively physically indexed dcache,
1289			 * thus no virtual aliases.
1290			*/
1291			c->dcache.flags |= MIPS_CACHE_PINDEX;
1292			break;
1293		}
1294		fallthrough;
1295	default:
1296		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1297			c->dcache.flags |= MIPS_CACHE_ALIASES;
1298	}
1299
1300	/* Physically indexed caches don't suffer from virtual aliasing */
1301	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1302		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1303
1304	/*
1305	 * In systems with CM the icache fills from L2 or closer caches, and
1306	 * thus sees remote stores without needing to write them back any
1307	 * further than that.
1308	 */
1309	if (mips_cm_present())
1310		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1311
1312	switch (current_cpu_type()) {
1313	case CPU_20KC:
1314		/*
1315		 * Some older 20Kc chips doesn't have the 'VI' bit in
1316		 * the config register.
1317		 */
1318		c->icache.flags |= MIPS_CACHE_VTAG;
1319		break;
1320
1321	case CPU_ALCHEMY:
1322	case CPU_I6400:
1323	case CPU_I6500:
1324		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1325		break;
 
1326
1327	case CPU_BMIPS5000:
1328		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1329		/* Cache aliases are handled in hardware; allow HIGHMEM */
1330		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1331		break;
 
 
1332
1333	case CPU_LOONGSON2EF:
1334		/*
1335		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1336		 * one op will act on all 4 ways
1337		 */
1338		c->icache.ways = 1;
1339	}
1340
1341	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1342		icache_size >> 10,
1343		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1344		way_string[c->icache.ways], c->icache.linesz);
1345
1346	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1347		dcache_size >> 10, way_string[c->dcache.ways],
1348		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1349		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1350			"cache aliases" : "no aliases",
1351		c->dcache.linesz);
1352}
1353
1354static void probe_vcache(void)
1355{
1356	struct cpuinfo_mips *c = &current_cpu_data;
1357	unsigned int config2, lsize;
1358
1359	if (current_cpu_type() != CPU_LOONGSON64)
1360		return;
1361
1362	config2 = read_c0_config2();
1363	if ((lsize = ((config2 >> 20) & 15)))
1364		c->vcache.linesz = 2 << lsize;
1365	else
1366		c->vcache.linesz = lsize;
1367
1368	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1369	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1370
1371	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1372
1373	c->vcache.waybit = 0;
1374	c->vcache.waysize = vcache_size / c->vcache.ways;
1375
1376	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1377		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1378}
1379
1380/*
1381 * If you even _breathe_ on this function, look at the gcc output and make sure
1382 * it does not pop things on and off the stack for the cache sizing loop that
1383 * executes in KSEG1 space or else you will crash and burn badly.  You have
1384 * been warned.
1385 */
1386static int probe_scache(void)
1387{
1388	unsigned long flags, addr, begin, end, pow2;
1389	unsigned int config = read_c0_config();
1390	struct cpuinfo_mips *c = &current_cpu_data;
1391
1392	if (config & CONF_SC)
1393		return 0;
1394
1395	begin = (unsigned long) &_stext;
1396	begin &= ~((4 * 1024 * 1024) - 1);
1397	end = begin + (4 * 1024 * 1024);
1398
1399	/*
1400	 * This is such a bitch, you'd think they would make it easy to do
1401	 * this.  Away you daemons of stupidity!
1402	 */
1403	local_irq_save(flags);
1404
1405	/* Fill each size-multiple cache line with a valid tag. */
1406	pow2 = (64 * 1024);
1407	for (addr = begin; addr < end; addr = (begin + pow2)) {
1408		unsigned long *p = (unsigned long *) addr;
1409		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1410		pow2 <<= 1;
1411	}
1412
1413	/* Load first line with zero (therefore invalid) tag. */
1414	write_c0_taglo(0);
1415	write_c0_taghi(0);
1416	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1417	cache_op(Index_Store_Tag_I, begin);
1418	cache_op(Index_Store_Tag_D, begin);
1419	cache_op(Index_Store_Tag_SD, begin);
1420
1421	/* Now search for the wrap around point. */
1422	pow2 = (128 * 1024);
1423	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1424		cache_op(Index_Load_Tag_SD, addr);
1425		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1426		if (!read_c0_taglo())
1427			break;
1428		pow2 <<= 1;
1429	}
1430	local_irq_restore(flags);
1431	addr -= begin;
1432
1433	scache_size = addr;
1434	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1435	c->scache.ways = 1;
1436	c->scache.waybit = 0;		/* does not matter */
1437
1438	return 1;
1439}
1440
1441static void loongson2_sc_init(void)
 
1442{
1443	struct cpuinfo_mips *c = &current_cpu_data;
1444
1445	scache_size = 512*1024;
1446	c->scache.linesz = 32;
1447	c->scache.ways = 4;
1448	c->scache.waybit = 0;
1449	c->scache.waysize = scache_size / (c->scache.ways);
1450	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1451	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1452	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1453
1454	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1455}
 
1456
1457static void loongson3_sc_init(void)
1458{
1459	struct cpuinfo_mips *c = &current_cpu_data;
1460	unsigned int config2, lsize;
1461
1462	config2 = read_c0_config2();
1463	lsize = (config2 >> 4) & 15;
1464	if (lsize)
1465		c->scache.linesz = 2 << lsize;
1466	else
1467		c->scache.linesz = 0;
1468	c->scache.sets = 64 << ((config2 >> 8) & 15);
1469	c->scache.ways = 1 + (config2 & 15);
1470
1471	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1472	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1473		c->scache.sets *= 2;
1474	else
1475		c->scache.sets *= 4;
1476
1477	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1478
1479	c->scache.waybit = 0;
1480	c->scache.waysize = scache_size / c->scache.ways;
1481	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1482	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1483	if (scache_size)
1484		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1485	return;
1486}
1487
1488static void setup_scache(void)
1489{
1490	struct cpuinfo_mips *c = &current_cpu_data;
1491	unsigned int config = read_c0_config();
1492	int sc_present = 0;
1493
1494	/*
1495	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1496	 * processors don't have a S-cache that would be relevant to the
1497	 * Linux memory management.
1498	 */
1499	switch (current_cpu_type()) {
1500	case CPU_R4000SC:
1501	case CPU_R4000MC:
1502	case CPU_R4400SC:
1503	case CPU_R4400MC:
1504		sc_present = run_uncached(probe_scache);
1505		if (sc_present)
1506			c->options |= MIPS_CPU_CACHE_CDEX_S;
1507		break;
1508
1509	case CPU_R10000:
1510	case CPU_R12000:
1511	case CPU_R14000:
1512	case CPU_R16000:
1513		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1514		c->scache.linesz = 64 << ((config >> 13) & 1);
1515		c->scache.ways = 2;
1516		c->scache.waybit= 0;
1517		sc_present = 1;
1518		break;
1519
1520	case CPU_R5000:
1521	case CPU_NEVADA:
1522#ifdef CONFIG_R5000_CPU_SCACHE
1523		r5k_sc_init();
1524#endif
1525		return;
1526
1527	case CPU_RM7000:
 
1528#ifdef CONFIG_RM7000_CPU_SCACHE
1529		rm7k_sc_init();
1530#endif
1531		return;
1532
1533	case CPU_LOONGSON2EF:
 
1534		loongson2_sc_init();
1535		return;
1536
1537	case CPU_LOONGSON64:
1538		loongson3_sc_init();
1539		return;
1540
1541	case CPU_CAVIUM_OCTEON3:
1542		/* don't need to worry about L2, fully coherent */
1543		return;
1544
1545	default:
1546		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1547				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1548				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1549				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1550#ifdef CONFIG_MIPS_CPU_SCACHE
1551			if (mips_sc_init ()) {
1552				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1553				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1554				       scache_size >> 10,
1555				       way_string[c->scache.ways], c->scache.linesz);
1556
1557				if (current_cpu_type() == CPU_BMIPS5000)
1558					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1559			}
1560
1561#else
1562			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1563				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1564#endif
1565			return;
1566		}
1567		sc_present = 0;
1568	}
1569
1570	if (!sc_present)
1571		return;
1572
1573	/* compute a couple of other cache variables */
1574	c->scache.waysize = scache_size / c->scache.ways;
1575
1576	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1577
1578	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1579	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1580
1581	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1582}
1583
1584void au1x00_fixup_config_od(void)
1585{
1586	/*
1587	 * c0_config.od (bit 19) was write only (and read as 0)
1588	 * on the early revisions of Alchemy SOCs.  It disables the bus
1589	 * transaction overlapping and needs to be set to fix various errata.
1590	 */
1591	switch (read_c0_prid()) {
1592	case 0x00030100: /* Au1000 DA */
1593	case 0x00030201: /* Au1000 HA */
1594	case 0x00030202: /* Au1000 HB */
1595	case 0x01030200: /* Au1500 AB */
1596	/*
1597	 * Au1100 errata actually keeps silence about this bit, so we set it
1598	 * just in case for those revisions that require it to be set according
1599	 * to the (now gone) cpu table.
1600	 */
1601	case 0x02030200: /* Au1100 AB */
1602	case 0x02030201: /* Au1100 BA */
1603	case 0x02030202: /* Au1100 BC */
1604		set_c0_config(1 << 19);
1605		break;
1606	}
1607}
1608
1609/* CP0 hazard avoidance. */
1610#define NXP_BARRIER()							\
1611	 __asm__ __volatile__(						\
1612	".set noreorder\n\t"						\
1613	"nop; nop; nop; nop; nop; nop;\n\t"				\
1614	".set reorder\n\t")
1615
1616static void nxp_pr4450_fixup_config(void)
1617{
1618	unsigned long config0;
1619
1620	config0 = read_c0_config();
1621
1622	/* clear all three cache coherency fields */
1623	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1624	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1625		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1626		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1627	write_c0_config(config0);
1628	NXP_BARRIER();
1629}
1630
1631static int cca = -1;
1632
1633static int __init cca_setup(char *str)
1634{
1635	get_option(&str, &cca);
1636
1637	return 0;
1638}
1639
1640early_param("cca", cca_setup);
1641
1642static void coherency_setup(void)
1643{
1644	if (cca < 0 || cca > 7)
1645		cca = read_c0_config() & CONF_CM_CMASK;
1646	_page_cachable_default = cca << _CACHE_SHIFT;
1647
1648	pr_debug("Using cache attribute %d\n", cca);
1649	change_c0_config(CONF_CM_CMASK, cca);
1650
1651	/*
1652	 * c0_status.cu=0 specifies that updates by the sc instruction use
1653	 * the coherency mode specified by the TLB; 1 means cacheable
1654	 * coherent update on write will be used.  Not all processors have
1655	 * this bit and; some wire it to zero, others like Toshiba had the
1656	 * silly idea of putting something else there ...
1657	 */
1658	switch (current_cpu_type()) {
1659	case CPU_R4000PC:
1660	case CPU_R4000SC:
1661	case CPU_R4000MC:
1662	case CPU_R4400PC:
1663	case CPU_R4400SC:
1664	case CPU_R4400MC:
1665		clear_c0_config(CONF_CU);
1666		break;
1667	/*
1668	 * We need to catch the early Alchemy SOCs with
1669	 * the write-only co_config.od bit and set it back to one on:
1670	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1671	 */
1672	case CPU_ALCHEMY:
1673		au1x00_fixup_config_od();
1674		break;
1675
1676	case PRID_IMP_PR4450:
1677		nxp_pr4450_fixup_config();
1678		break;
1679	}
1680}
1681
1682static void r4k_cache_error_setup(void)
 
 
 
 
1683{
 
 
 
 
 
 
 
 
 
 
 
 
1684	extern char __weak except_vec2_generic;
1685	extern char __weak except_vec2_sb1;
 
1686
1687	switch (current_cpu_type()) {
1688	case CPU_SB1:
1689	case CPU_SB1A:
1690		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1691		break;
1692
1693	default:
1694		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1695		break;
1696	}
1697}
1698
1699void r4k_cache_init(void)
1700{
1701	extern void build_clear_page(void);
1702	extern void build_copy_page(void);
1703	struct cpuinfo_mips *c = &current_cpu_data;
1704
1705	probe_pcache();
1706	probe_vcache();
1707	setup_scache();
1708
1709	r4k_blast_dcache_page_setup();
 
1710	r4k_blast_dcache_setup();
1711	r4k_blast_icache_page_setup();
 
1712	r4k_blast_icache_setup();
1713	r4k_blast_scache_page_setup();
 
1714	r4k_blast_scache_setup();
1715	r4k_blast_scache_node_setup();
1716#ifdef CONFIG_EVA
1717	r4k_blast_dcache_user_page_setup();
1718	r4k_blast_icache_user_page_setup();
1719#endif
1720
1721	/*
1722	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1723	 * This code supports virtually indexed processors and will be
1724	 * unnecessarily inefficient on physically indexed processors.
1725	 */
1726	if (c->dcache.linesz && cpu_has_dc_aliases)
1727		shm_align_mask = max_t( unsigned long,
1728					c->dcache.sets * c->dcache.linesz - 1,
1729					PAGE_SIZE - 1);
1730	else
1731		shm_align_mask = PAGE_SIZE-1;
1732
1733	__flush_cache_vmap	= r4k__flush_cache_vmap;
1734	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1735
1736	flush_cache_all		= cache_noop;
1737	__flush_cache_all	= r4k___flush_cache_all;
1738	flush_cache_mm		= r4k_flush_cache_mm;
1739	flush_cache_page	= r4k_flush_cache_page;
1740	flush_cache_range	= r4k_flush_cache_range;
1741
1742	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1743
1744	flush_icache_all	= r4k_flush_icache_all;
 
1745	flush_data_cache_page	= r4k_flush_data_cache_page;
1746	flush_icache_range	= r4k_flush_icache_range;
1747	local_flush_icache_range	= local_r4k_flush_icache_range;
1748	__flush_icache_user_range	= r4k_flush_icache_user_range;
1749	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1750
1751#ifdef CONFIG_DMA_NONCOHERENT
1752	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1753	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1754	_dma_cache_inv		= r4k_dma_cache_inv;
1755#endif /* CONFIG_DMA_NONCOHERENT */
 
 
 
 
 
 
1756
1757	build_clear_page();
1758	build_copy_page();
1759
1760	/*
1761	 * We want to run CMP kernels on core with and without coherent
1762	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1763	 * or not to flush caches.
1764	 */
1765	local_r4k___flush_cache_all(NULL);
1766
1767	coherency_setup();
1768	board_cache_error_setup = r4k_cache_error_setup;
1769
1770	/*
1771	 * Per-CPU overrides
1772	 */
1773	switch (current_cpu_type()) {
1774	case CPU_BMIPS4350:
1775	case CPU_BMIPS4380:
1776		/* No IPI is needed because all CPUs share the same D$ */
1777		flush_data_cache_page = r4k_blast_dcache_page;
1778		break;
1779	case CPU_BMIPS5000:
1780		/* We lose our superpowers if L2 is disabled */
1781		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1782			break;
1783
1784		/* I$ fills from D$ just by emptying the write buffers */
1785		flush_cache_page = (void *)b5k_instruction_hazard;
1786		flush_cache_range = (void *)b5k_instruction_hazard;
1787		flush_data_cache_page = (void *)b5k_instruction_hazard;
1788		flush_icache_range = (void *)b5k_instruction_hazard;
1789		local_flush_icache_range = (void *)b5k_instruction_hazard;
1790
1791
1792		/* Optimization: an L2 flush implicitly flushes the L1 */
1793		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1794		break;
1795	case CPU_LOONGSON64:
1796		/* Loongson-3 maintains cache coherency by hardware */
1797		__flush_cache_all	= cache_noop;
1798		__flush_cache_vmap	= cache_noop;
1799		__flush_cache_vunmap	= cache_noop;
1800		__flush_kernel_vmap_range = (void *)cache_noop;
1801		flush_cache_mm		= (void *)cache_noop;
1802		flush_cache_page	= (void *)cache_noop;
1803		flush_cache_range	= (void *)cache_noop;
1804		flush_icache_all	= (void *)cache_noop;
1805		flush_data_cache_page	= (void *)cache_noop;
1806		break;
1807	}
1808}
1809
1810static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1811			       void *v)
1812{
1813	switch (cmd) {
1814	case CPU_PM_ENTER_FAILED:
1815	case CPU_PM_EXIT:
1816		coherency_setup();
1817		break;
1818	}
1819
1820	return NOTIFY_OK;
1821}
1822
1823static struct notifier_block r4k_cache_pm_notifier_block = {
1824	.notifier_call = r4k_cache_pm_notifier,
1825};
1826
1827static int __init r4k_cache_init_pm(void)
1828{
1829	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1830}
1831arch_initcall(r4k_cache_init_pm);