Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
 
  10#include <linux/hardirq.h>
  11#include <linux/init.h>
  12#include <linux/highmem.h>
  13#include <linux/kernel.h>
  14#include <linux/linkage.h>
 
  15#include <linux/sched.h>
  16#include <linux/smp.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/bitops.h>
 
  20
  21#include <asm/bcache.h>
  22#include <asm/bootinfo.h>
  23#include <asm/cache.h>
  24#include <asm/cacheops.h>
  25#include <asm/cpu.h>
  26#include <asm/cpu-features.h>
 
  27#include <asm/io.h>
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/r4kcache.h>
  31#include <asm/sections.h>
  32#include <asm/system.h>
  33#include <asm/mmu_context.h>
  34#include <asm/war.h>
  35#include <asm/cacheflush.h> /* for run_uncached() */
 
 
  36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/*
  39 * Special Variant of smp_call_function for use by cache functions:
  40 *
  41 *  o No return value
  42 *  o collapses to normal function call on UP kernels
  43 *  o collapses to normal function call on systems with a single shared
  44 *    primary cache.
  45 *  o doesn't disable interrupts on the local CPU
  46 */
  47static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
 
  48{
  49	preempt_disable();
  50
  51#if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
  52	smp_call_function(func, info, 1);
  53#endif
  54	func(info);
  55	preempt_enable();
  56}
  57
  58#if defined(CONFIG_MIPS_CMP)
  59#define cpu_has_safe_index_cacheops 0
  60#else
  61#define cpu_has_safe_index_cacheops 1
  62#endif
  63
  64/*
  65 * Must die.
  66 */
  67static unsigned long icache_size __read_mostly;
  68static unsigned long dcache_size __read_mostly;
 
  69static unsigned long scache_size __read_mostly;
  70
  71/*
  72 * Dummy cache handling routines for machines without boardcaches
  73 */
  74static void cache_noop(void) {}
  75
  76static struct bcache_ops no_sc_ops = {
  77	.bc_enable = (void *)cache_noop,
  78	.bc_disable = (void *)cache_noop,
  79	.bc_wback_inv = (void *)cache_noop,
  80	.bc_inv = (void *)cache_noop
  81};
  82
  83struct bcache_ops *bcops = &no_sc_ops;
  84
  85#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
  86#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
  87
  88#define R4600_HIT_CACHEOP_WAR_IMPL					\
  89do {									\
  90	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
 
  91		*(volatile unsigned long *)CKSEG1;			\
  92	if (R4600_V1_HIT_CACHEOP_WAR)					\
  93		__asm__ __volatile__("nop;nop;nop;nop");		\
  94} while (0)
  95
  96static void (*r4k_blast_dcache_page)(unsigned long addr);
  97
  98static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
  99{
 100	R4600_HIT_CACHEOP_WAR_IMPL;
 101	blast_dcache32_page(addr);
 102}
 103
 104static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 105{
 106	R4600_HIT_CACHEOP_WAR_IMPL;
 107	blast_dcache64_page(addr);
 108}
 109
 110static void __cpuinit r4k_blast_dcache_page_setup(void)
 
 
 
 
 
 111{
 112	unsigned long  dc_lsize = cpu_dcache_line_size();
 113
 114	if (dc_lsize == 0)
 
 115		r4k_blast_dcache_page = (void *)cache_noop;
 116	else if (dc_lsize == 16)
 
 117		r4k_blast_dcache_page = blast_dcache16_page;
 118	else if (dc_lsize == 32)
 
 119		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 120	else if (dc_lsize == 64)
 
 121		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122}
 123
 
 
 124static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 125
 126static void __cpuinit r4k_blast_dcache_page_indexed_setup(void)
 127{
 128	unsigned long dc_lsize = cpu_dcache_line_size();
 129
 130	if (dc_lsize == 0)
 131		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 132	else if (dc_lsize == 16)
 133		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 134	else if (dc_lsize == 32)
 135		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 136	else if (dc_lsize == 64)
 137		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 
 
 138}
 139
 140static void (* r4k_blast_dcache)(void);
 
 141
 142static void __cpuinit r4k_blast_dcache_setup(void)
 143{
 144	unsigned long dc_lsize = cpu_dcache_line_size();
 145
 146	if (dc_lsize == 0)
 147		r4k_blast_dcache = (void *)cache_noop;
 148	else if (dc_lsize == 16)
 149		r4k_blast_dcache = blast_dcache16;
 150	else if (dc_lsize == 32)
 151		r4k_blast_dcache = blast_dcache32;
 152	else if (dc_lsize == 64)
 153		r4k_blast_dcache = blast_dcache64;
 
 
 154}
 155
 156/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
 157#define JUMP_TO_ALIGN(order) \
 158	__asm__ __volatile__( \
 159		"b\t1f\n\t" \
 160		".align\t" #order "\n\t" \
 161		"1:\n\t" \
 162		)
 163#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 164#define CACHE32_UNROLL32_ALIGN2	JUMP_TO_ALIGN(11)
 165
 166static inline void blast_r4600_v1_icache32(void)
 167{
 168	unsigned long flags;
 169
 170	local_irq_save(flags);
 171	blast_icache32();
 172	local_irq_restore(flags);
 173}
 174
 175static inline void tx49_blast_icache32(void)
 176{
 177	unsigned long start = INDEX_BASE;
 178	unsigned long end = start + current_cpu_data.icache.waysize;
 179	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 180	unsigned long ws_end = current_cpu_data.icache.ways <<
 181	                       current_cpu_data.icache.waybit;
 182	unsigned long ws, addr;
 183
 184	CACHE32_UNROLL32_ALIGN2;
 185	/* I'm in even chunk.  blast odd chunks */
 186	for (ws = 0; ws < ws_end; ws += ws_inc)
 187		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 188			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 189	CACHE32_UNROLL32_ALIGN;
 190	/* I'm in odd chunk.  blast even chunks */
 191	for (ws = 0; ws < ws_end; ws += ws_inc)
 192		for (addr = start; addr < end; addr += 0x400 * 2)
 193			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 194}
 195
 196static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 197{
 198	unsigned long flags;
 199
 200	local_irq_save(flags);
 201	blast_icache32_page_indexed(page);
 202	local_irq_restore(flags);
 203}
 204
 205static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 206{
 207	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 208	unsigned long start = INDEX_BASE + (page & indexmask);
 209	unsigned long end = start + PAGE_SIZE;
 210	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 211	unsigned long ws_end = current_cpu_data.icache.ways <<
 212	                       current_cpu_data.icache.waybit;
 213	unsigned long ws, addr;
 214
 215	CACHE32_UNROLL32_ALIGN2;
 216	/* I'm in even chunk.  blast odd chunks */
 217	for (ws = 0; ws < ws_end; ws += ws_inc)
 218		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 219			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 220	CACHE32_UNROLL32_ALIGN;
 221	/* I'm in odd chunk.  blast even chunks */
 222	for (ws = 0; ws < ws_end; ws += ws_inc)
 223		for (addr = start; addr < end; addr += 0x400 * 2)
 224			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 225}
 226
 227static void (* r4k_blast_icache_page)(unsigned long addr);
 228
 229static void __cpuinit r4k_blast_icache_page_setup(void)
 230{
 231	unsigned long ic_lsize = cpu_icache_line_size();
 232
 233	if (ic_lsize == 0)
 234		r4k_blast_icache_page = (void *)cache_noop;
 235	else if (ic_lsize == 16)
 236		r4k_blast_icache_page = blast_icache16_page;
 
 
 237	else if (ic_lsize == 32)
 238		r4k_blast_icache_page = blast_icache32_page;
 239	else if (ic_lsize == 64)
 240		r4k_blast_icache_page = blast_icache64_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242
 
 243
 244static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 245
 246static void __cpuinit r4k_blast_icache_page_indexed_setup(void)
 247{
 248	unsigned long ic_lsize = cpu_icache_line_size();
 249
 250	if (ic_lsize == 0)
 251		r4k_blast_icache_page_indexed = (void *)cache_noop;
 252	else if (ic_lsize == 16)
 253		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 254	else if (ic_lsize == 32) {
 255		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 
 256			r4k_blast_icache_page_indexed =
 257				blast_icache32_r4600_v1_page_indexed;
 258		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 259			r4k_blast_icache_page_indexed =
 260				tx49_blast_icache32_page_indexed;
 
 
 
 261		else
 262			r4k_blast_icache_page_indexed =
 263				blast_icache32_page_indexed;
 264	} else if (ic_lsize == 64)
 265		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 266}
 267
 268static void (* r4k_blast_icache)(void);
 
 269
 270static void __cpuinit r4k_blast_icache_setup(void)
 271{
 272	unsigned long ic_lsize = cpu_icache_line_size();
 273
 274	if (ic_lsize == 0)
 275		r4k_blast_icache = (void *)cache_noop;
 276	else if (ic_lsize == 16)
 277		r4k_blast_icache = blast_icache16;
 278	else if (ic_lsize == 32) {
 279		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 
 280			r4k_blast_icache = blast_r4600_v1_icache32;
 281		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 282			r4k_blast_icache = tx49_blast_icache32;
 
 
 283		else
 284			r4k_blast_icache = blast_icache32;
 285	} else if (ic_lsize == 64)
 286		r4k_blast_icache = blast_icache64;
 
 
 287}
 288
 289static void (* r4k_blast_scache_page)(unsigned long addr);
 290
 291static void __cpuinit r4k_blast_scache_page_setup(void)
 292{
 293	unsigned long sc_lsize = cpu_scache_line_size();
 294
 295	if (scache_size == 0)
 296		r4k_blast_scache_page = (void *)cache_noop;
 297	else if (sc_lsize == 16)
 298		r4k_blast_scache_page = blast_scache16_page;
 299	else if (sc_lsize == 32)
 300		r4k_blast_scache_page = blast_scache32_page;
 301	else if (sc_lsize == 64)
 302		r4k_blast_scache_page = blast_scache64_page;
 303	else if (sc_lsize == 128)
 304		r4k_blast_scache_page = blast_scache128_page;
 305}
 306
 307static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 308
 309static void __cpuinit r4k_blast_scache_page_indexed_setup(void)
 310{
 311	unsigned long sc_lsize = cpu_scache_line_size();
 312
 313	if (scache_size == 0)
 314		r4k_blast_scache_page_indexed = (void *)cache_noop;
 315	else if (sc_lsize == 16)
 316		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 317	else if (sc_lsize == 32)
 318		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 319	else if (sc_lsize == 64)
 320		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 321	else if (sc_lsize == 128)
 322		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 323}
 324
 325static void (* r4k_blast_scache)(void);
 326
 327static void __cpuinit r4k_blast_scache_setup(void)
 328{
 329	unsigned long sc_lsize = cpu_scache_line_size();
 330
 331	if (scache_size == 0)
 332		r4k_blast_scache = (void *)cache_noop;
 333	else if (sc_lsize == 16)
 334		r4k_blast_scache = blast_scache16;
 335	else if (sc_lsize == 32)
 336		r4k_blast_scache = blast_scache32;
 337	else if (sc_lsize == 64)
 338		r4k_blast_scache = blast_scache64;
 339	else if (sc_lsize == 128)
 340		r4k_blast_scache = blast_scache128;
 341}
 342
 343static inline void local_r4k___flush_cache_all(void * args)
 
 
 344{
 345#if defined(CONFIG_CPU_LOONGSON2)
 346	r4k_blast_scache();
 347	return;
 348#endif
 349	r4k_blast_dcache();
 350	r4k_blast_icache();
 351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352	switch (current_cpu_type()) {
 
 353	case CPU_R4000SC:
 354	case CPU_R4000MC:
 355	case CPU_R4400SC:
 356	case CPU_R4400MC:
 357	case CPU_R10000:
 358	case CPU_R12000:
 359	case CPU_R14000:
 
 
 
 
 
 
 360		r4k_blast_scache();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	}
 362}
 363
 364static void r4k___flush_cache_all(void)
 365{
 366	r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
 367}
 368
 369static inline int has_valid_asid(const struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370{
 371#if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
 372	int i;
 
 
 
 373
 374	for_each_online_cpu(i)
 
 
 
 
 
 
 
 
 
 
 375		if (cpu_context(i, mm))
 376			return 1;
 377
 378	return 0;
 379#else
 380	return cpu_context(smp_processor_id(), mm);
 381#endif
 382}
 383
 384static void r4k__flush_cache_vmap(void)
 385{
 386	r4k_blast_dcache();
 387}
 388
 389static void r4k__flush_cache_vunmap(void)
 390{
 391	r4k_blast_dcache();
 392}
 393
 
 
 
 
 394static inline void local_r4k_flush_cache_range(void * args)
 395{
 396	struct vm_area_struct *vma = args;
 397	int exec = vma->vm_flags & VM_EXEC;
 398
 399	if (!(has_valid_asid(vma->vm_mm)))
 400		return;
 401
 402	r4k_blast_dcache();
 
 
 
 
 
 
 
 403	if (exec)
 404		r4k_blast_icache();
 405}
 406
 407static void r4k_flush_cache_range(struct vm_area_struct *vma,
 408	unsigned long start, unsigned long end)
 409{
 410	int exec = vma->vm_flags & VM_EXEC;
 411
 412	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 413		r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
 414}
 415
 416static inline void local_r4k_flush_cache_mm(void * args)
 417{
 418	struct mm_struct *mm = args;
 419
 420	if (!has_valid_asid(mm))
 421		return;
 422
 423	/*
 424	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 425	 * only flush the primary caches but R10000 and R12000 behave sane ...
 426	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 427	 * caches, so we can bail out early.
 428	 */
 429	if (current_cpu_type() == CPU_R4000SC ||
 430	    current_cpu_type() == CPU_R4000MC ||
 431	    current_cpu_type() == CPU_R4400SC ||
 432	    current_cpu_type() == CPU_R4400MC) {
 433		r4k_blast_scache();
 434		return;
 435	}
 436
 437	r4k_blast_dcache();
 438}
 439
 440static void r4k_flush_cache_mm(struct mm_struct *mm)
 441{
 442	if (!cpu_has_dc_aliases)
 443		return;
 444
 445	r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
 446}
 447
 448struct flush_cache_page_args {
 449	struct vm_area_struct *vma;
 450	unsigned long addr;
 451	unsigned long pfn;
 452};
 453
 454static inline void local_r4k_flush_cache_page(void *args)
 455{
 456	struct flush_cache_page_args *fcp_args = args;
 457	struct vm_area_struct *vma = fcp_args->vma;
 458	unsigned long addr = fcp_args->addr;
 459	struct page *page = pfn_to_page(fcp_args->pfn);
 460	int exec = vma->vm_flags & VM_EXEC;
 461	struct mm_struct *mm = vma->vm_mm;
 462	int map_coherent = 0;
 463	pgd_t *pgdp;
 464	pud_t *pudp;
 465	pmd_t *pmdp;
 466	pte_t *ptep;
 467	void *vaddr;
 468
 469	/*
 470	 * If ownes no valid ASID yet, cannot possibly have gotten
 471	 * this page into the cache.
 472	 */
 473	if (!has_valid_asid(mm))
 474		return;
 475
 476	addr &= PAGE_MASK;
 477	pgdp = pgd_offset(mm, addr);
 478	pudp = pud_offset(pgdp, addr);
 479	pmdp = pmd_offset(pudp, addr);
 480	ptep = pte_offset(pmdp, addr);
 481
 482	/*
 483	 * If the page isn't marked valid, the page cannot possibly be
 484	 * in the cache.
 485	 */
 486	if (!(pte_present(*ptep)))
 487		return;
 488
 489	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 490		vaddr = NULL;
 491	else {
 492		/*
 493		 * Use kmap_coherent or kmap_atomic to do flushes for
 494		 * another ASID than the current one.
 495		 */
 496		map_coherent = (cpu_has_dc_aliases &&
 497				page_mapped(page) && !Page_dcache_dirty(page));
 
 498		if (map_coherent)
 499			vaddr = kmap_coherent(page, addr);
 500		else
 501			vaddr = kmap_atomic(page, KM_USER0);
 502		addr = (unsigned long)vaddr;
 503	}
 504
 505	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 506		r4k_blast_dcache_page(addr);
 
 507		if (exec && !cpu_icache_snoops_remote_store)
 508			r4k_blast_scache_page(addr);
 509	}
 510	if (exec) {
 511		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 512			int cpu = smp_processor_id();
 513
 514			if (cpu_context(cpu, mm) != 0)
 515				drop_mmu_context(mm, cpu);
 516		} else
 517			r4k_blast_icache_page(addr);
 
 518	}
 519
 520	if (vaddr) {
 521		if (map_coherent)
 522			kunmap_coherent();
 523		else
 524			kunmap_atomic(vaddr, KM_USER0);
 525	}
 526}
 527
 528static void r4k_flush_cache_page(struct vm_area_struct *vma,
 529	unsigned long addr, unsigned long pfn)
 530{
 531	struct flush_cache_page_args args;
 532
 533	args.vma = vma;
 534	args.addr = addr;
 535	args.pfn = pfn;
 536
 537	r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
 538}
 539
 540static inline void local_r4k_flush_data_cache_page(void * addr)
 541{
 542	r4k_blast_dcache_page((unsigned long) addr);
 543}
 544
 545static void r4k_flush_data_cache_page(unsigned long addr)
 546{
 547	if (in_atomic())
 548		local_r4k_flush_data_cache_page((void *)addr);
 549	else
 550		r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
 
 551}
 552
 553struct flush_icache_range_args {
 554	unsigned long start;
 555	unsigned long end;
 
 
 556};
 557
 558static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
 
 
 
 559{
 560	if (!cpu_has_ic_fills_f_dc) {
 561		if (end - start >= dcache_size) {
 
 562			r4k_blast_dcache();
 563		} else {
 564			R4600_HIT_CACHEOP_WAR_IMPL;
 565			protected_blast_dcache_range(start, end);
 
 
 
 566		}
 567	}
 568
 569	if (end - start > icache_size)
 
 570		r4k_blast_icache();
 571	else
 572		protected_blast_icache_range(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 574
 575static inline void local_r4k_flush_icache_range_ipi(void *args)
 576{
 577	struct flush_icache_range_args *fir_args = args;
 578	unsigned long start = fir_args->start;
 579	unsigned long end = fir_args->end;
 
 
 580
 581	local_r4k_flush_icache_range(start, end);
 582}
 583
 584static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 
 585{
 586	struct flush_icache_range_args args;
 
 587
 588	args.start = start;
 589	args.end = end;
 
 
 590
 591	r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	instruction_hazard();
 593}
 594
 
 
 
 
 
 
 
 
 
 
 595#ifdef CONFIG_DMA_NONCOHERENT
 596
 597static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 598{
 599	/* Catch bad driver code */
 600	BUG_ON(size == 0);
 
 601
 
 602	if (cpu_has_inclusive_pcaches) {
 603		if (size >= scache_size)
 604			r4k_blast_scache();
 605		else
 
 
 
 606			blast_scache_range(addr, addr + size);
 
 
 607		__sync();
 608		return;
 609	}
 610
 611	/*
 612	 * Either no secondary cache or the available caches don't have the
 613	 * subset property so we have to flush the primary caches
 614	 * explicitly
 
 
 
 615	 */
 616	if (cpu_has_safe_index_cacheops && size >= dcache_size) {
 617		r4k_blast_dcache();
 618	} else {
 619		R4600_HIT_CACHEOP_WAR_IMPL;
 620		blast_dcache_range(addr, addr + size);
 621	}
 
 622
 623	bc_wback_inv(addr, size);
 624	__sync();
 625}
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 628{
 629	/* Catch bad driver code */
 630	BUG_ON(size == 0);
 
 631
 632	if (cpu_has_inclusive_pcaches) {
 633		if (size >= scache_size)
 634			r4k_blast_scache();
 635		else {
 636			unsigned long lsize = cpu_scache_line_size();
 637			unsigned long almask = ~(lsize - 1);
 638
 
 
 
 
 
 
 
 
 
 
 639			/*
 640			 * There is no clearly documented alignment requirement
 641			 * for the cache instruction on MIPS processors and
 642			 * some processors, among them the RM5200 and RM7000
 643			 * QED processors will throw an address error for cache
 644			 * hit ops with insufficient alignment.  Solved by
 645			 * aligning the address to cache line size.
 646			 */
 647			cache_op(Hit_Writeback_Inv_SD, addr & almask);
 648			cache_op(Hit_Writeback_Inv_SD,
 649				 (addr + size - 1) & almask);
 650			blast_inv_scache_range(addr, addr + size);
 651		}
 
 652		__sync();
 653		return;
 654	}
 655
 656	if (cpu_has_safe_index_cacheops && size >= dcache_size) {
 657		r4k_blast_dcache();
 658	} else {
 659		unsigned long lsize = cpu_dcache_line_size();
 660		unsigned long almask = ~(lsize - 1);
 661
 662		R4600_HIT_CACHEOP_WAR_IMPL;
 663		cache_op(Hit_Writeback_Inv_D, addr & almask);
 664		cache_op(Hit_Writeback_Inv_D, (addr + size - 1)  & almask);
 665		blast_inv_dcache_range(addr, addr + size);
 666	}
 
 667
 668	bc_inv(addr, size);
 669	__sync();
 670}
 671#endif /* CONFIG_DMA_NONCOHERENT */
 672
 673/*
 674 * While we're protected against bad userland addresses we don't care
 675 * very much about what happens in that case.  Usually a segmentation
 676 * fault will dump the process later on anyway ...
 677 */
 678static void local_r4k_flush_cache_sigtramp(void * arg)
 679{
 680	unsigned long ic_lsize = cpu_icache_line_size();
 681	unsigned long dc_lsize = cpu_dcache_line_size();
 682	unsigned long sc_lsize = cpu_scache_line_size();
 683	unsigned long addr = (unsigned long) arg;
 684
 685	R4600_HIT_CACHEOP_WAR_IMPL;
 686	if (dc_lsize)
 687		protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
 688	if (!cpu_icache_snoops_remote_store && scache_size)
 689		protected_writeback_scache_line(addr & ~(sc_lsize - 1));
 690	if (ic_lsize)
 691		protected_flush_icache_line(addr & ~(ic_lsize - 1));
 692	if (MIPS4K_ICACHE_REFILL_WAR) {
 693		__asm__ __volatile__ (
 694			".set push\n\t"
 695			".set noat\n\t"
 696			".set mips3\n\t"
 697#ifdef CONFIG_32BIT
 698			"la	$at,1f\n\t"
 699#endif
 700#ifdef CONFIG_64BIT
 701			"dla	$at,1f\n\t"
 702#endif
 703			"cache	%0,($at)\n\t"
 704			"nop; nop; nop\n"
 705			"1:\n\t"
 706			".set pop"
 707			:
 708			: "i" (Hit_Invalidate_I));
 709	}
 710	if (MIPS_CACHE_SYNC_WAR)
 711		__asm__ __volatile__ ("sync");
 712}
 713
 714static void r4k_flush_cache_sigtramp(unsigned long addr)
 715{
 716	r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
 
 
 
 
 
 
 
 
 
 717}
 718
 719static void r4k_flush_icache_all(void)
 720{
 721	if (cpu_has_vtag_icache)
 722		r4k_blast_icache();
 
 
 
 
 
 
 
 
 
 723}
 724
 725static inline void rm7k_erratum31(void)
 726{
 727	const unsigned long ic_lsize = 32;
 728	unsigned long addr;
 729
 730	/* RM7000 erratum #31. The icache is screwed at startup. */
 731	write_c0_taglo(0);
 732	write_c0_taghi(0);
 733
 734	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
 735		__asm__ __volatile__ (
 736			".set push\n\t"
 737			".set noreorder\n\t"
 738			".set mips3\n\t"
 739			"cache\t%1, 0(%0)\n\t"
 740			"cache\t%1, 0x1000(%0)\n\t"
 741			"cache\t%1, 0x2000(%0)\n\t"
 742			"cache\t%1, 0x3000(%0)\n\t"
 743			"cache\t%2, 0(%0)\n\t"
 744			"cache\t%2, 0x1000(%0)\n\t"
 745			"cache\t%2, 0x2000(%0)\n\t"
 746			"cache\t%2, 0x3000(%0)\n\t"
 747			"cache\t%1, 0(%0)\n\t"
 748			"cache\t%1, 0x1000(%0)\n\t"
 749			"cache\t%1, 0x2000(%0)\n\t"
 750			"cache\t%1, 0x3000(%0)\n\t"
 751			".set pop\n"
 752			:
 753			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755}
 756
 757static char *way_string[] __cpuinitdata = { NULL, "direct mapped", "2-way",
 758	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
 
 
 759};
 760
 761static void __cpuinit probe_pcache(void)
 762{
 763	struct cpuinfo_mips *c = &current_cpu_data;
 764	unsigned int config = read_c0_config();
 765	unsigned int prid = read_c0_prid();
 
 766	unsigned long config1;
 767	unsigned int lsize;
 768
 769	switch (c->cputype) {
 770	case CPU_R4600:			/* QED style two way caches? */
 771	case CPU_R4700:
 772	case CPU_R5000:
 773	case CPU_NEVADA:
 774		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 775		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 776		c->icache.ways = 2;
 777		c->icache.waybit = __ffs(icache_size/2);
 778
 779		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 780		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 781		c->dcache.ways = 2;
 782		c->dcache.waybit= __ffs(dcache_size/2);
 783
 784		c->options |= MIPS_CPU_CACHE_CDEX_P;
 785		break;
 786
 787	case CPU_R5432:
 788	case CPU_R5500:
 789		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 790		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 791		c->icache.ways = 2;
 792		c->icache.waybit= 0;
 793
 794		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 795		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 796		c->dcache.ways = 2;
 797		c->dcache.waybit = 0;
 798
 799		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
 800		break;
 801
 802	case CPU_TX49XX:
 803		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 804		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 805		c->icache.ways = 4;
 806		c->icache.waybit= 0;
 807
 808		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 809		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 810		c->dcache.ways = 4;
 811		c->dcache.waybit = 0;
 812
 813		c->options |= MIPS_CPU_CACHE_CDEX_P;
 814		c->options |= MIPS_CPU_PREFETCH;
 815		break;
 816
 817	case CPU_R4000PC:
 818	case CPU_R4000SC:
 819	case CPU_R4000MC:
 820	case CPU_R4400PC:
 821	case CPU_R4400SC:
 822	case CPU_R4400MC:
 823	case CPU_R4300:
 824		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 825		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 826		c->icache.ways = 1;
 827		c->icache.waybit = 0; 	/* doesn't matter */
 828
 829		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 830		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 831		c->dcache.ways = 1;
 832		c->dcache.waybit = 0;	/* does not matter */
 833
 834		c->options |= MIPS_CPU_CACHE_CDEX_P;
 835		break;
 836
 837	case CPU_R10000:
 838	case CPU_R12000:
 839	case CPU_R14000:
 
 840		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
 841		c->icache.linesz = 64;
 842		c->icache.ways = 2;
 843		c->icache.waybit = 0;
 844
 845		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
 846		c->dcache.linesz = 32;
 847		c->dcache.ways = 2;
 848		c->dcache.waybit = 0;
 849
 850		c->options |= MIPS_CPU_PREFETCH;
 851		break;
 852
 853	case CPU_VR4133:
 854		write_c0_config(config & ~VR41_CONF_P4K);
 855	case CPU_VR4131:
 856		/* Workaround for cache instruction bug of VR4131 */
 857		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
 858		    c->processor_id == 0x0c82U) {
 859			config |= 0x00400000U;
 860			if (c->processor_id == 0x0c80U)
 861				config |= VR41_CONF_BP;
 862			write_c0_config(config);
 863		} else
 864			c->options |= MIPS_CPU_CACHE_CDEX_P;
 865
 866		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
 867		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 868		c->icache.ways = 2;
 869		c->icache.waybit = __ffs(icache_size/2);
 870
 871		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
 872		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 873		c->dcache.ways = 2;
 874		c->dcache.waybit = __ffs(dcache_size/2);
 875		break;
 876
 877	case CPU_VR41XX:
 878	case CPU_VR4111:
 879	case CPU_VR4121:
 880	case CPU_VR4122:
 881	case CPU_VR4181:
 882	case CPU_VR4181A:
 883		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
 884		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 885		c->icache.ways = 1;
 886		c->icache.waybit = 0; 	/* doesn't matter */
 887
 888		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
 889		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 890		c->dcache.ways = 1;
 891		c->dcache.waybit = 0;	/* does not matter */
 892
 893		c->options |= MIPS_CPU_CACHE_CDEX_P;
 894		break;
 895
 896	case CPU_RM7000:
 897		rm7k_erratum31();
 898
 899	case CPU_RM9000:
 900		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 901		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 902		c->icache.ways = 4;
 903		c->icache.waybit = __ffs(icache_size / c->icache.ways);
 904
 905		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 906		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 907		c->dcache.ways = 4;
 908		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
 909
 910#if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
 911		c->options |= MIPS_CPU_CACHE_CDEX_P;
 912#endif
 913		c->options |= MIPS_CPU_PREFETCH;
 914		break;
 915
 916	case CPU_LOONGSON2:
 917		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
 918		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
 919		if (prid & 0x3)
 920			c->icache.ways = 4;
 921		else
 922			c->icache.ways = 2;
 923		c->icache.waybit = 0;
 924
 925		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
 926		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
 927		if (prid & 0x3)
 928			c->dcache.ways = 4;
 929		else
 930			c->dcache.ways = 2;
 931		c->dcache.waybit = 0;
 932		break;
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	default:
 935		if (!(config & MIPS_CONF_M))
 936			panic("Don't know how to probe P-caches on this cpu.");
 937
 938		/*
 939		 * So we seem to be a MIPS32 or MIPS64 CPU
 940		 * So let's probe the I-cache ...
 941		 */
 942		config1 = read_c0_config1();
 943
 944		if ((lsize = ((config1 >> 19) & 7)))
 945			c->icache.linesz = 2 << lsize;
 946		else
 947			c->icache.linesz = lsize;
 948		c->icache.sets = 64 << ((config1 >> 22) & 7);
 
 
 
 
 949		c->icache.ways = 1 + ((config1 >> 16) & 7);
 950
 951		icache_size = c->icache.sets *
 952		              c->icache.ways *
 953		              c->icache.linesz;
 954		c->icache.waybit = __ffs(icache_size/c->icache.ways);
 955
 956		if (config & 0x8)		/* VI bit */
 957			c->icache.flags |= MIPS_CACHE_VTAG;
 958
 959		/*
 960		 * Now probe the MIPS32 / MIPS64 data cache.
 961		 */
 962		c->dcache.flags = 0;
 963
 964		if ((lsize = ((config1 >> 10) & 7)))
 965			c->dcache.linesz = 2 << lsize;
 966		else
 967			c->dcache.linesz= lsize;
 968		c->dcache.sets = 64 << ((config1 >> 13) & 7);
 
 
 
 
 969		c->dcache.ways = 1 + ((config1 >> 7) & 7);
 970
 971		dcache_size = c->dcache.sets *
 972		              c->dcache.ways *
 973		              c->dcache.linesz;
 974		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
 975
 976		c->options |= MIPS_CPU_PREFETCH;
 977		break;
 978	}
 979
 980	/*
 981	 * Processor configuration sanity check for the R4000SC erratum
 982	 * #5.  With page sizes larger than 32kB there is no possibility
 983	 * to get a VCE exception anymore so we don't care about this
 984	 * misconfiguration.  The case is rather theoretical anyway;
 985	 * presumably no vendor is shipping his hardware in the "bad"
 986	 * configuration.
 987	 */
 988	if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
 
 989	    !(config & CONF_SC) && c->icache.linesz != 16 &&
 990	    PAGE_SIZE <= 0x8000)
 991		panic("Improper R4000SC processor configuration detected");
 992
 993	/* compute a couple of other cache variables */
 994	c->icache.waysize = icache_size / c->icache.ways;
 995	c->dcache.waysize = dcache_size / c->dcache.ways;
 996
 997	c->icache.sets = c->icache.linesz ?
 998		icache_size / (c->icache.linesz * c->icache.ways) : 0;
 999	c->dcache.sets = c->dcache.linesz ?
1000		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1001
1002	/*
1003	 * R10000 and R12000 P-caches are odd in a positive way.  They're 32kB
1004	 * 2-way virtually indexed so normally would suffer from aliases.  So
1005	 * normally they'd suffer from aliases but magic in the hardware deals
1006	 * with that for us so we don't need to take care ourselves.
1007	 */
1008	switch (c->cputype) {
1009	case CPU_20KC:
1010	case CPU_25KF:
 
 
1011	case CPU_SB1:
1012	case CPU_SB1A:
1013	case CPU_XLR:
1014		c->dcache.flags |= MIPS_CACHE_PINDEX;
1015		break;
1016
1017	case CPU_R10000:
1018	case CPU_R12000:
1019	case CPU_R14000:
 
1020		break;
1021
 
 
 
 
 
 
1022	case CPU_24K:
1023	case CPU_34K:
1024	case CPU_74K:
1025	case CPU_1004K:
1026		if ((read_c0_config7() & (1 << 16))) {
1027			/* effectively physically indexed dcache,
1028			   thus no virtual aliases. */
 
 
 
 
 
 
 
 
 
 
 
 
1029			c->dcache.flags |= MIPS_CACHE_PINDEX;
1030			break;
1031		}
 
1032	default:
1033		if (c->dcache.waysize > PAGE_SIZE)
1034			c->dcache.flags |= MIPS_CACHE_ALIASES;
1035	}
1036
1037	switch (c->cputype) {
 
 
 
 
 
 
 
 
 
 
 
 
1038	case CPU_20KC:
1039		/*
1040		 * Some older 20Kc chips doesn't have the 'VI' bit in
1041		 * the config register.
1042		 */
1043		c->icache.flags |= MIPS_CACHE_VTAG;
1044		break;
1045
1046	case CPU_ALCHEMY:
 
 
1047		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1048		break;
1049	}
1050
1051#ifdef  CONFIG_CPU_LOONGSON2
1052	/*
1053	 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1054	 * one op will act on all 4 ways
1055	 */
1056	c->icache.ways = 1;
1057#endif
1058
1059	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1060	       icache_size >> 10,
1061	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1062	       way_string[c->icache.ways], c->icache.linesz);
1063
1064	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1065	       dcache_size >> 10, way_string[c->dcache.ways],
1066	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1067	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
 
 
 
 
 
 
 
 
1068			"cache aliases" : "no aliases",
1069	       c->dcache.linesz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072/*
1073 * If you even _breathe_ on this function, look at the gcc output and make sure
1074 * it does not pop things on and off the stack for the cache sizing loop that
1075 * executes in KSEG1 space or else you will crash and burn badly.  You have
1076 * been warned.
1077 */
1078static int __cpuinit probe_scache(void)
1079{
1080	unsigned long flags, addr, begin, end, pow2;
1081	unsigned int config = read_c0_config();
1082	struct cpuinfo_mips *c = &current_cpu_data;
1083
1084	if (config & CONF_SC)
1085		return 0;
1086
1087	begin = (unsigned long) &_stext;
1088	begin &= ~((4 * 1024 * 1024) - 1);
1089	end = begin + (4 * 1024 * 1024);
1090
1091	/*
1092	 * This is such a bitch, you'd think they would make it easy to do
1093	 * this.  Away you daemons of stupidity!
1094	 */
1095	local_irq_save(flags);
1096
1097	/* Fill each size-multiple cache line with a valid tag. */
1098	pow2 = (64 * 1024);
1099	for (addr = begin; addr < end; addr = (begin + pow2)) {
1100		unsigned long *p = (unsigned long *) addr;
1101		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1102		pow2 <<= 1;
1103	}
1104
1105	/* Load first line with zero (therefore invalid) tag. */
1106	write_c0_taglo(0);
1107	write_c0_taghi(0);
1108	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1109	cache_op(Index_Store_Tag_I, begin);
1110	cache_op(Index_Store_Tag_D, begin);
1111	cache_op(Index_Store_Tag_SD, begin);
1112
1113	/* Now search for the wrap around point. */
1114	pow2 = (128 * 1024);
1115	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1116		cache_op(Index_Load_Tag_SD, addr);
1117		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1118		if (!read_c0_taglo())
1119			break;
1120		pow2 <<= 1;
1121	}
1122	local_irq_restore(flags);
1123	addr -= begin;
1124
1125	scache_size = addr;
1126	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1127	c->scache.ways = 1;
1128	c->dcache.waybit = 0;		/* does not matter */
1129
1130	return 1;
1131}
1132
1133#if defined(CONFIG_CPU_LOONGSON2)
1134static void __init loongson2_sc_init(void)
1135{
1136	struct cpuinfo_mips *c = &current_cpu_data;
1137
1138	scache_size = 512*1024;
1139	c->scache.linesz = 32;
1140	c->scache.ways = 4;
1141	c->scache.waybit = 0;
1142	c->scache.waysize = scache_size / (c->scache.ways);
1143	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1144	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1145	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1146
1147	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1148}
1149#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151extern int r5k_sc_init(void);
1152extern int rm7k_sc_init(void);
1153extern int mips_sc_init(void);
1154
1155static void __cpuinit setup_scache(void)
1156{
1157	struct cpuinfo_mips *c = &current_cpu_data;
1158	unsigned int config = read_c0_config();
1159	int sc_present = 0;
1160
1161	/*
1162	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1163	 * processors don't have a S-cache that would be relevant to the
1164	 * Linux memory management.
1165	 */
1166	switch (c->cputype) {
1167	case CPU_R4000SC:
1168	case CPU_R4000MC:
1169	case CPU_R4400SC:
1170	case CPU_R4400MC:
1171		sc_present = run_uncached(probe_scache);
1172		if (sc_present)
1173			c->options |= MIPS_CPU_CACHE_CDEX_S;
1174		break;
1175
1176	case CPU_R10000:
1177	case CPU_R12000:
1178	case CPU_R14000:
 
1179		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1180		c->scache.linesz = 64 << ((config >> 13) & 1);
1181		c->scache.ways = 2;
1182		c->scache.waybit= 0;
1183		sc_present = 1;
1184		break;
1185
1186	case CPU_R5000:
1187	case CPU_NEVADA:
1188#ifdef CONFIG_R5000_CPU_SCACHE
1189		r5k_sc_init();
1190#endif
1191                return;
1192
1193	case CPU_RM7000:
1194	case CPU_RM9000:
1195#ifdef CONFIG_RM7000_CPU_SCACHE
1196		rm7k_sc_init();
1197#endif
1198		return;
1199
1200#if defined(CONFIG_CPU_LOONGSON2)
1201	case CPU_LOONGSON2:
1202		loongson2_sc_init();
1203		return;
1204#endif
 
 
 
 
 
 
 
1205
1206	default:
1207		if (c->isa_level == MIPS_CPU_ISA_M32R1 ||
1208		    c->isa_level == MIPS_CPU_ISA_M32R2 ||
1209		    c->isa_level == MIPS_CPU_ISA_M64R1 ||
1210		    c->isa_level == MIPS_CPU_ISA_M64R2) {
1211#ifdef CONFIG_MIPS_CPU_SCACHE
1212			if (mips_sc_init ()) {
1213				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1214				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1215				       scache_size >> 10,
1216				       way_string[c->scache.ways], c->scache.linesz);
 
 
 
1217			}
 
1218#else
1219			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1220				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1221#endif
1222			return;
1223		}
1224		sc_present = 0;
1225	}
1226
1227	if (!sc_present)
1228		return;
1229
1230	/* compute a couple of other cache variables */
1231	c->scache.waysize = scache_size / c->scache.ways;
1232
1233	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1234
1235	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1236	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1237
1238	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1239}
1240
1241void au1x00_fixup_config_od(void)
1242{
1243	/*
1244	 * c0_config.od (bit 19) was write only (and read as 0)
1245	 * on the early revisions of Alchemy SOCs.  It disables the bus
1246	 * transaction overlapping and needs to be set to fix various errata.
1247	 */
1248	switch (read_c0_prid()) {
1249	case 0x00030100: /* Au1000 DA */
1250	case 0x00030201: /* Au1000 HA */
1251	case 0x00030202: /* Au1000 HB */
1252	case 0x01030200: /* Au1500 AB */
1253	/*
1254	 * Au1100 errata actually keeps silence about this bit, so we set it
1255	 * just in case for those revisions that require it to be set according
1256	 * to the (now gone) cpu table.
1257	 */
1258	case 0x02030200: /* Au1100 AB */
1259	case 0x02030201: /* Au1100 BA */
1260	case 0x02030202: /* Au1100 BC */
1261		set_c0_config(1 << 19);
1262		break;
1263	}
1264}
1265
1266/* CP0 hazard avoidance. */
1267#define NXP_BARRIER()							\
1268	 __asm__ __volatile__(						\
1269	".set noreorder\n\t"						\
1270	"nop; nop; nop; nop; nop; nop;\n\t"				\
1271	".set reorder\n\t")
1272
1273static void nxp_pr4450_fixup_config(void)
1274{
1275	unsigned long config0;
1276
1277	config0 = read_c0_config();
1278
1279	/* clear all three cache coherency fields */
1280	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1281	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1282		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1283		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1284	write_c0_config(config0);
1285	NXP_BARRIER();
1286}
1287
1288static int __cpuinitdata cca = -1;
1289
1290static int __init cca_setup(char *str)
1291{
1292	get_option(&str, &cca);
1293
1294	return 1;
1295}
1296
1297__setup("cca=", cca_setup);
1298
1299static void __cpuinit coherency_setup(void)
1300{
1301	if (cca < 0 || cca > 7)
1302		cca = read_c0_config() & CONF_CM_CMASK;
1303	_page_cachable_default = cca << _CACHE_SHIFT;
1304
1305	pr_debug("Using cache attribute %d\n", cca);
1306	change_c0_config(CONF_CM_CMASK, cca);
1307
1308	/*
1309	 * c0_status.cu=0 specifies that updates by the sc instruction use
1310	 * the coherency mode specified by the TLB; 1 means cachable
1311	 * coherent update on write will be used.  Not all processors have
1312	 * this bit and; some wire it to zero, others like Toshiba had the
1313	 * silly idea of putting something else there ...
1314	 */
1315	switch (current_cpu_type()) {
1316	case CPU_R4000PC:
1317	case CPU_R4000SC:
1318	case CPU_R4000MC:
1319	case CPU_R4400PC:
1320	case CPU_R4400SC:
1321	case CPU_R4400MC:
1322		clear_c0_config(CONF_CU);
1323		break;
1324	/*
1325	 * We need to catch the early Alchemy SOCs with
1326	 * the write-only co_config.od bit and set it back to one on:
1327	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1328	 */
1329	case CPU_ALCHEMY:
1330		au1x00_fixup_config_od();
1331		break;
1332
1333	case PRID_IMP_PR4450:
1334		nxp_pr4450_fixup_config();
1335		break;
1336	}
1337}
1338
1339#if defined(CONFIG_DMA_NONCOHERENT)
1340
1341static int __cpuinitdata coherentio;
1342
1343static int __init setcoherentio(char *str)
1344{
1345	coherentio = 1;
1346
1347	return 1;
1348}
1349
1350__setup("coherentio", setcoherentio);
1351#endif
1352
1353void __cpuinit r4k_cache_init(void)
1354{
1355	extern void build_clear_page(void);
1356	extern void build_copy_page(void);
1357	extern char __weak except_vec2_generic;
1358	extern char __weak except_vec2_sb1;
1359	struct cpuinfo_mips *c = &current_cpu_data;
1360
1361	switch (c->cputype) {
1362	case CPU_SB1:
1363	case CPU_SB1A:
1364		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1365		break;
1366
1367	default:
1368		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1369		break;
1370	}
 
 
 
 
 
 
 
1371
1372	probe_pcache();
 
1373	setup_scache();
1374
1375	r4k_blast_dcache_page_setup();
1376	r4k_blast_dcache_page_indexed_setup();
1377	r4k_blast_dcache_setup();
1378	r4k_blast_icache_page_setup();
1379	r4k_blast_icache_page_indexed_setup();
1380	r4k_blast_icache_setup();
1381	r4k_blast_scache_page_setup();
1382	r4k_blast_scache_page_indexed_setup();
1383	r4k_blast_scache_setup();
 
 
 
 
 
1384
1385	/*
1386	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1387	 * This code supports virtually indexed processors and will be
1388	 * unnecessarily inefficient on physically indexed processors.
1389	 */
1390	if (c->dcache.linesz)
1391		shm_align_mask = max_t( unsigned long,
1392					c->dcache.sets * c->dcache.linesz - 1,
1393					PAGE_SIZE - 1);
1394	else
1395		shm_align_mask = PAGE_SIZE-1;
1396
1397	__flush_cache_vmap	= r4k__flush_cache_vmap;
1398	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1399
1400	flush_cache_all		= cache_noop;
1401	__flush_cache_all	= r4k___flush_cache_all;
1402	flush_cache_mm		= r4k_flush_cache_mm;
1403	flush_cache_page	= r4k_flush_cache_page;
1404	flush_cache_range	= r4k_flush_cache_range;
1405
1406	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
 
1407	flush_icache_all	= r4k_flush_icache_all;
1408	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1409	flush_data_cache_page	= r4k_flush_data_cache_page;
1410	flush_icache_range	= r4k_flush_icache_range;
1411	local_flush_icache_range	= local_r4k_flush_icache_range;
 
 
1412
1413#if defined(CONFIG_DMA_NONCOHERENT)
1414	if (coherentio) {
1415		_dma_cache_wback_inv	= (void *)cache_noop;
1416		_dma_cache_wback	= (void *)cache_noop;
1417		_dma_cache_inv		= (void *)cache_noop;
1418	} else {
1419		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1420		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1421		_dma_cache_inv		= r4k_dma_cache_inv;
1422	}
1423#endif
1424
1425	build_clear_page();
1426	build_copy_page();
1427#if !defined(CONFIG_MIPS_CMP)
 
 
 
 
 
1428	local_r4k___flush_cache_all(NULL);
1429#endif
1430	coherency_setup();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431}
v6.2
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
  10#include <linux/cpu_pm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/highmem.h>
  14#include <linux/kernel.h>
  15#include <linux/linkage.h>
  16#include <linux/preempt.h>
  17#include <linux/sched.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/export.h>
  21#include <linux/bitops.h>
  22#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  23
  24#include <asm/bcache.h>
  25#include <asm/bootinfo.h>
  26#include <asm/cache.h>
  27#include <asm/cacheops.h>
  28#include <asm/cpu.h>
  29#include <asm/cpu-features.h>
  30#include <asm/cpu-type.h>
  31#include <asm/io.h>
  32#include <asm/page.h>
 
  33#include <asm/r4kcache.h>
  34#include <asm/sections.h>
 
  35#include <asm/mmu_context.h>
 
  36#include <asm/cacheflush.h> /* for run_uncached() */
  37#include <asm/traps.h>
  38#include <asm/mips-cps.h>
  39
  40/*
  41 * Bits describing what cache ops an SMP callback function may perform.
  42 *
  43 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
  44 *		active_mm must be checked before using user addresses, falling
  45 *		back to kmap.
  46 * R4K_INDEX -	Index based cache operations.
  47 */
  48
  49#define R4K_HIT		BIT(0)
  50#define R4K_INDEX	BIT(1)
  51
  52/**
  53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
  54 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
  55 *
  56 * Decides whether a cache op needs to be performed on every core in the system.
  57 * This may change depending on the @type of cache operation, as well as the set
  58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
  59 * hotplug from changing the result.
  60 *
  61 * Returns:	1 if the cache operation @type should be done on every core in
  62 *		the system.
  63 *		0 if the cache operation @type is globalized and only needs to
  64 *		be performed on a simple CPU.
  65 */
  66static inline bool r4k_op_needs_ipi(unsigned int type)
  67{
  68	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
  69	if (type == R4K_HIT && mips_cm_present())
  70		return false;
  71
  72	/*
  73	 * Hardware doesn't globalize the required cache ops, so SMP calls may
  74	 * be needed, but only if there are foreign CPUs (non-siblings with
  75	 * separate caches).
  76	 */
  77	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
  78#ifdef CONFIG_SMP
  79	return !cpumask_empty(&cpu_foreign_map[0]);
  80#else
  81	return false;
  82#endif
  83}
  84
  85/*
  86 * Special Variant of smp_call_function for use by cache functions:
  87 *
  88 *  o No return value
  89 *  o collapses to normal function call on UP kernels
  90 *  o collapses to normal function call on systems with a single shared
  91 *    primary cache.
  92 *  o doesn't disable interrupts on the local CPU
  93 */
  94static inline void r4k_on_each_cpu(unsigned int type,
  95				   void (*func)(void *info), void *info)
  96{
  97	preempt_disable();
  98	if (r4k_op_needs_ipi(type))
  99		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
 100				       func, info, 1);
 
 101	func(info);
 102	preempt_enable();
 103}
 104
 
 
 
 
 
 
 105/*
 106 * Must die.
 107 */
 108static unsigned long icache_size __read_mostly;
 109static unsigned long dcache_size __read_mostly;
 110static unsigned long vcache_size __read_mostly;
 111static unsigned long scache_size __read_mostly;
 112
 113/*
 114 * Dummy cache handling routines for machines without boardcaches
 115 */
 116static void cache_noop(void) {}
 117
 118static struct bcache_ops no_sc_ops = {
 119	.bc_enable = (void *)cache_noop,
 120	.bc_disable = (void *)cache_noop,
 121	.bc_wback_inv = (void *)cache_noop,
 122	.bc_inv = (void *)cache_noop
 123};
 124
 125struct bcache_ops *bcops = &no_sc_ops;
 126
 127#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
 128#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
 129
 130#define R4600_HIT_CACHEOP_WAR_IMPL					\
 131do {									\
 132	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
 133	    cpu_is_r4600_v2_x())					\
 134		*(volatile unsigned long *)CKSEG1;			\
 135	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
 136		__asm__ __volatile__("nop;nop;nop;nop");		\
 137} while (0)
 138
 139static void (*r4k_blast_dcache_page)(unsigned long addr);
 140
 141static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
 142{
 143	R4600_HIT_CACHEOP_WAR_IMPL;
 144	blast_dcache32_page(addr);
 145}
 146
 147static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 148{
 
 149	blast_dcache64_page(addr);
 150}
 151
 152static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
 153{
 154	blast_dcache128_page(addr);
 155}
 156
 157static void r4k_blast_dcache_page_setup(void)
 158{
 159	unsigned long  dc_lsize = cpu_dcache_line_size();
 160
 161	switch (dc_lsize) {
 162	case 0:
 163		r4k_blast_dcache_page = (void *)cache_noop;
 164		break;
 165	case 16:
 166		r4k_blast_dcache_page = blast_dcache16_page;
 167		break;
 168	case 32:
 169		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 170		break;
 171	case 64:
 172		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 173		break;
 174	case 128:
 175		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
 176		break;
 177	default:
 178		break;
 179	}
 180}
 181
 182#ifndef CONFIG_EVA
 183#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
 184#else
 185
 186static void (*r4k_blast_dcache_user_page)(unsigned long addr);
 187
 188static void r4k_blast_dcache_user_page_setup(void)
 189{
 190	unsigned long  dc_lsize = cpu_dcache_line_size();
 191
 192	if (dc_lsize == 0)
 193		r4k_blast_dcache_user_page = (void *)cache_noop;
 194	else if (dc_lsize == 16)
 195		r4k_blast_dcache_user_page = blast_dcache16_user_page;
 196	else if (dc_lsize == 32)
 197		r4k_blast_dcache_user_page = blast_dcache32_user_page;
 198	else if (dc_lsize == 64)
 199		r4k_blast_dcache_user_page = blast_dcache64_user_page;
 200}
 201
 202#endif
 203
 204static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 205
 206static void r4k_blast_dcache_page_indexed_setup(void)
 207{
 208	unsigned long dc_lsize = cpu_dcache_line_size();
 209
 210	if (dc_lsize == 0)
 211		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 212	else if (dc_lsize == 16)
 213		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 214	else if (dc_lsize == 32)
 215		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 216	else if (dc_lsize == 64)
 217		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 218	else if (dc_lsize == 128)
 219		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
 220}
 221
 222void (* r4k_blast_dcache)(void);
 223EXPORT_SYMBOL(r4k_blast_dcache);
 224
 225static void r4k_blast_dcache_setup(void)
 226{
 227	unsigned long dc_lsize = cpu_dcache_line_size();
 228
 229	if (dc_lsize == 0)
 230		r4k_blast_dcache = (void *)cache_noop;
 231	else if (dc_lsize == 16)
 232		r4k_blast_dcache = blast_dcache16;
 233	else if (dc_lsize == 32)
 234		r4k_blast_dcache = blast_dcache32;
 235	else if (dc_lsize == 64)
 236		r4k_blast_dcache = blast_dcache64;
 237	else if (dc_lsize == 128)
 238		r4k_blast_dcache = blast_dcache128;
 239}
 240
 241/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
 242#define JUMP_TO_ALIGN(order) \
 243	__asm__ __volatile__( \
 244		"b\t1f\n\t" \
 245		".align\t" #order "\n\t" \
 246		"1:\n\t" \
 247		)
 248#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 249#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
 250
 251static inline void blast_r4600_v1_icache32(void)
 252{
 253	unsigned long flags;
 254
 255	local_irq_save(flags);
 256	blast_icache32();
 257	local_irq_restore(flags);
 258}
 259
 260static inline void tx49_blast_icache32(void)
 261{
 262	unsigned long start = INDEX_BASE;
 263	unsigned long end = start + current_cpu_data.icache.waysize;
 264	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 265	unsigned long ws_end = current_cpu_data.icache.ways <<
 266			       current_cpu_data.icache.waybit;
 267	unsigned long ws, addr;
 268
 269	CACHE32_UNROLL32_ALIGN2;
 270	/* I'm in even chunk.  blast odd chunks */
 271	for (ws = 0; ws < ws_end; ws += ws_inc)
 272		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 273			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 274				     addr | ws, 32);
 275	CACHE32_UNROLL32_ALIGN;
 276	/* I'm in odd chunk.  blast even chunks */
 277	for (ws = 0; ws < ws_end; ws += ws_inc)
 278		for (addr = start; addr < end; addr += 0x400 * 2)
 279			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 280				     addr | ws, 32);
 281}
 282
 283static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 284{
 285	unsigned long flags;
 286
 287	local_irq_save(flags);
 288	blast_icache32_page_indexed(page);
 289	local_irq_restore(flags);
 290}
 291
 292static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 293{
 294	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 295	unsigned long start = INDEX_BASE + (page & indexmask);
 296	unsigned long end = start + PAGE_SIZE;
 297	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 298	unsigned long ws_end = current_cpu_data.icache.ways <<
 299			       current_cpu_data.icache.waybit;
 300	unsigned long ws, addr;
 301
 302	CACHE32_UNROLL32_ALIGN2;
 303	/* I'm in even chunk.  blast odd chunks */
 304	for (ws = 0; ws < ws_end; ws += ws_inc)
 305		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 306			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 307				     addr | ws, 32);
 308	CACHE32_UNROLL32_ALIGN;
 309	/* I'm in odd chunk.  blast even chunks */
 310	for (ws = 0; ws < ws_end; ws += ws_inc)
 311		for (addr = start; addr < end; addr += 0x400 * 2)
 312			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 313				     addr | ws, 32);
 314}
 315
 316static void (* r4k_blast_icache_page)(unsigned long addr);
 317
 318static void r4k_blast_icache_page_setup(void)
 319{
 320	unsigned long ic_lsize = cpu_icache_line_size();
 321
 322	if (ic_lsize == 0)
 323		r4k_blast_icache_page = (void *)cache_noop;
 324	else if (ic_lsize == 16)
 325		r4k_blast_icache_page = blast_icache16_page;
 326	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
 327		r4k_blast_icache_page = loongson2_blast_icache32_page;
 328	else if (ic_lsize == 32)
 329		r4k_blast_icache_page = blast_icache32_page;
 330	else if (ic_lsize == 64)
 331		r4k_blast_icache_page = blast_icache64_page;
 332	else if (ic_lsize == 128)
 333		r4k_blast_icache_page = blast_icache128_page;
 334}
 335
 336#ifndef CONFIG_EVA
 337#define r4k_blast_icache_user_page  r4k_blast_icache_page
 338#else
 339
 340static void (*r4k_blast_icache_user_page)(unsigned long addr);
 341
 342static void r4k_blast_icache_user_page_setup(void)
 343{
 344	unsigned long ic_lsize = cpu_icache_line_size();
 345
 346	if (ic_lsize == 0)
 347		r4k_blast_icache_user_page = (void *)cache_noop;
 348	else if (ic_lsize == 16)
 349		r4k_blast_icache_user_page = blast_icache16_user_page;
 350	else if (ic_lsize == 32)
 351		r4k_blast_icache_user_page = blast_icache32_user_page;
 352	else if (ic_lsize == 64)
 353		r4k_blast_icache_user_page = blast_icache64_user_page;
 354}
 355
 356#endif
 357
 358static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 359
 360static void r4k_blast_icache_page_indexed_setup(void)
 361{
 362	unsigned long ic_lsize = cpu_icache_line_size();
 363
 364	if (ic_lsize == 0)
 365		r4k_blast_icache_page_indexed = (void *)cache_noop;
 366	else if (ic_lsize == 16)
 367		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 368	else if (ic_lsize == 32) {
 369		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
 370		    cpu_is_r4600_v1_x())
 371			r4k_blast_icache_page_indexed =
 372				blast_icache32_r4600_v1_page_indexed;
 373		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
 374			r4k_blast_icache_page_indexed =
 375				tx49_blast_icache32_page_indexed;
 376		else if (current_cpu_type() == CPU_LOONGSON2EF)
 377			r4k_blast_icache_page_indexed =
 378				loongson2_blast_icache32_page_indexed;
 379		else
 380			r4k_blast_icache_page_indexed =
 381				blast_icache32_page_indexed;
 382	} else if (ic_lsize == 64)
 383		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 384}
 385
 386void (* r4k_blast_icache)(void);
 387EXPORT_SYMBOL(r4k_blast_icache);
 388
 389static void r4k_blast_icache_setup(void)
 390{
 391	unsigned long ic_lsize = cpu_icache_line_size();
 392
 393	if (ic_lsize == 0)
 394		r4k_blast_icache = (void *)cache_noop;
 395	else if (ic_lsize == 16)
 396		r4k_blast_icache = blast_icache16;
 397	else if (ic_lsize == 32) {
 398		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
 399		    cpu_is_r4600_v1_x())
 400			r4k_blast_icache = blast_r4600_v1_icache32;
 401		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
 402			r4k_blast_icache = tx49_blast_icache32;
 403		else if (current_cpu_type() == CPU_LOONGSON2EF)
 404			r4k_blast_icache = loongson2_blast_icache32;
 405		else
 406			r4k_blast_icache = blast_icache32;
 407	} else if (ic_lsize == 64)
 408		r4k_blast_icache = blast_icache64;
 409	else if (ic_lsize == 128)
 410		r4k_blast_icache = blast_icache128;
 411}
 412
 413static void (* r4k_blast_scache_page)(unsigned long addr);
 414
 415static void r4k_blast_scache_page_setup(void)
 416{
 417	unsigned long sc_lsize = cpu_scache_line_size();
 418
 419	if (scache_size == 0)
 420		r4k_blast_scache_page = (void *)cache_noop;
 421	else if (sc_lsize == 16)
 422		r4k_blast_scache_page = blast_scache16_page;
 423	else if (sc_lsize == 32)
 424		r4k_blast_scache_page = blast_scache32_page;
 425	else if (sc_lsize == 64)
 426		r4k_blast_scache_page = blast_scache64_page;
 427	else if (sc_lsize == 128)
 428		r4k_blast_scache_page = blast_scache128_page;
 429}
 430
 431static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 432
 433static void r4k_blast_scache_page_indexed_setup(void)
 434{
 435	unsigned long sc_lsize = cpu_scache_line_size();
 436
 437	if (scache_size == 0)
 438		r4k_blast_scache_page_indexed = (void *)cache_noop;
 439	else if (sc_lsize == 16)
 440		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 441	else if (sc_lsize == 32)
 442		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 443	else if (sc_lsize == 64)
 444		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 445	else if (sc_lsize == 128)
 446		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 447}
 448
 449static void (* r4k_blast_scache)(void);
 450
 451static void r4k_blast_scache_setup(void)
 452{
 453	unsigned long sc_lsize = cpu_scache_line_size();
 454
 455	if (scache_size == 0)
 456		r4k_blast_scache = (void *)cache_noop;
 457	else if (sc_lsize == 16)
 458		r4k_blast_scache = blast_scache16;
 459	else if (sc_lsize == 32)
 460		r4k_blast_scache = blast_scache32;
 461	else if (sc_lsize == 64)
 462		r4k_blast_scache = blast_scache64;
 463	else if (sc_lsize == 128)
 464		r4k_blast_scache = blast_scache128;
 465}
 466
 467static void (*r4k_blast_scache_node)(long node);
 468
 469static void r4k_blast_scache_node_setup(void)
 470{
 471	unsigned long sc_lsize = cpu_scache_line_size();
 
 
 
 
 
 472
 473	if (current_cpu_type() != CPU_LOONGSON64)
 474		r4k_blast_scache_node = (void *)cache_noop;
 475	else if (sc_lsize == 16)
 476		r4k_blast_scache_node = blast_scache16_node;
 477	else if (sc_lsize == 32)
 478		r4k_blast_scache_node = blast_scache32_node;
 479	else if (sc_lsize == 64)
 480		r4k_blast_scache_node = blast_scache64_node;
 481	else if (sc_lsize == 128)
 482		r4k_blast_scache_node = blast_scache128_node;
 483}
 484
 485static inline void local_r4k___flush_cache_all(void * args)
 486{
 487	switch (current_cpu_type()) {
 488	case CPU_LOONGSON2EF:
 489	case CPU_R4000SC:
 490	case CPU_R4000MC:
 491	case CPU_R4400SC:
 492	case CPU_R4400MC:
 493	case CPU_R10000:
 494	case CPU_R12000:
 495	case CPU_R14000:
 496	case CPU_R16000:
 497		/*
 498		 * These caches are inclusive caches, that is, if something
 499		 * is not cached in the S-cache, we know it also won't be
 500		 * in one of the primary caches.
 501		 */
 502		r4k_blast_scache();
 503		break;
 504
 505	case CPU_LOONGSON64:
 506		/* Use get_ebase_cpunum() for both NUMA=y/n */
 507		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
 508		break;
 509
 510	case CPU_BMIPS5000:
 511		r4k_blast_scache();
 512		__sync();
 513		break;
 514
 515	default:
 516		r4k_blast_dcache();
 517		r4k_blast_icache();
 518		break;
 519	}
 520}
 521
 522static void r4k___flush_cache_all(void)
 523{
 524	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
 525}
 526
 527/**
 528 * has_valid_asid() - Determine if an mm already has an ASID.
 529 * @mm:		Memory map.
 530 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
 531 *
 532 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
 533 * of type @type within an r4k_on_each_cpu() call will affect. If
 534 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
 535 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
 536 * will need to be checked.
 537 *
 538 * Must be called in non-preemptive context.
 539 *
 540 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
 541 *		0 otherwise.
 542 */
 543static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
 544{
 545	unsigned int i;
 546	const cpumask_t *mask = cpu_present_mask;
 547
 548	if (cpu_has_mmid)
 549		return cpu_context(0, mm) != 0;
 550
 551	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
 552#ifdef CONFIG_SMP
 553	/*
 554	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
 555	 * each foreign core, so we only need to worry about siblings.
 556	 * Otherwise we need to worry about all present CPUs.
 557	 */
 558	if (r4k_op_needs_ipi(type))
 559		mask = &cpu_sibling_map[smp_processor_id()];
 560#endif
 561	for_each_cpu(i, mask)
 562		if (cpu_context(i, mm))
 563			return 1;
 
 564	return 0;
 
 
 
 565}
 566
 567static void r4k__flush_cache_vmap(void)
 568{
 569	r4k_blast_dcache();
 570}
 571
 572static void r4k__flush_cache_vunmap(void)
 573{
 574	r4k_blast_dcache();
 575}
 576
 577/*
 578 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
 579 * whole caches when vma is executable.
 580 */
 581static inline void local_r4k_flush_cache_range(void * args)
 582{
 583	struct vm_area_struct *vma = args;
 584	int exec = vma->vm_flags & VM_EXEC;
 585
 586	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
 587		return;
 588
 589	/*
 590	 * If dcache can alias, we must blast it since mapping is changing.
 591	 * If executable, we must ensure any dirty lines are written back far
 592	 * enough to be visible to icache.
 593	 */
 594	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 595		r4k_blast_dcache();
 596	/* If executable, blast stale lines from icache */
 597	if (exec)
 598		r4k_blast_icache();
 599}
 600
 601static void r4k_flush_cache_range(struct vm_area_struct *vma,
 602	unsigned long start, unsigned long end)
 603{
 604	int exec = vma->vm_flags & VM_EXEC;
 605
 606	if (cpu_has_dc_aliases || exec)
 607		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
 608}
 609
 610static inline void local_r4k_flush_cache_mm(void * args)
 611{
 612	struct mm_struct *mm = args;
 613
 614	if (!has_valid_asid(mm, R4K_INDEX))
 615		return;
 616
 617	/*
 618	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 619	 * only flush the primary caches but R1x000 behave sane ...
 620	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 621	 * caches, so we can bail out early.
 622	 */
 623	if (current_cpu_type() == CPU_R4000SC ||
 624	    current_cpu_type() == CPU_R4000MC ||
 625	    current_cpu_type() == CPU_R4400SC ||
 626	    current_cpu_type() == CPU_R4400MC) {
 627		r4k_blast_scache();
 628		return;
 629	}
 630
 631	r4k_blast_dcache();
 632}
 633
 634static void r4k_flush_cache_mm(struct mm_struct *mm)
 635{
 636	if (!cpu_has_dc_aliases)
 637		return;
 638
 639	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
 640}
 641
 642struct flush_cache_page_args {
 643	struct vm_area_struct *vma;
 644	unsigned long addr;
 645	unsigned long pfn;
 646};
 647
 648static inline void local_r4k_flush_cache_page(void *args)
 649{
 650	struct flush_cache_page_args *fcp_args = args;
 651	struct vm_area_struct *vma = fcp_args->vma;
 652	unsigned long addr = fcp_args->addr;
 653	struct page *page = pfn_to_page(fcp_args->pfn);
 654	int exec = vma->vm_flags & VM_EXEC;
 655	struct mm_struct *mm = vma->vm_mm;
 656	int map_coherent = 0;
 
 
 657	pmd_t *pmdp;
 658	pte_t *ptep;
 659	void *vaddr;
 660
 661	/*
 662	 * If owns no valid ASID yet, cannot possibly have gotten
 663	 * this page into the cache.
 664	 */
 665	if (!has_valid_asid(mm, R4K_HIT))
 666		return;
 667
 668	addr &= PAGE_MASK;
 669	pmdp = pmd_off(mm, addr);
 670	ptep = pte_offset_kernel(pmdp, addr);
 
 
 671
 672	/*
 673	 * If the page isn't marked valid, the page cannot possibly be
 674	 * in the cache.
 675	 */
 676	if (!(pte_present(*ptep)))
 677		return;
 678
 679	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 680		vaddr = NULL;
 681	else {
 682		/*
 683		 * Use kmap_coherent or kmap_atomic to do flushes for
 684		 * another ASID than the current one.
 685		 */
 686		map_coherent = (cpu_has_dc_aliases &&
 687				page_mapcount(page) &&
 688				!Page_dcache_dirty(page));
 689		if (map_coherent)
 690			vaddr = kmap_coherent(page, addr);
 691		else
 692			vaddr = kmap_atomic(page);
 693		addr = (unsigned long)vaddr;
 694	}
 695
 696	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 697		vaddr ? r4k_blast_dcache_page(addr) :
 698			r4k_blast_dcache_user_page(addr);
 699		if (exec && !cpu_icache_snoops_remote_store)
 700			r4k_blast_scache_page(addr);
 701	}
 702	if (exec) {
 703		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 704			drop_mmu_context(mm);
 
 
 
 705		} else
 706			vaddr ? r4k_blast_icache_page(addr) :
 707				r4k_blast_icache_user_page(addr);
 708	}
 709
 710	if (vaddr) {
 711		if (map_coherent)
 712			kunmap_coherent();
 713		else
 714			kunmap_atomic(vaddr);
 715	}
 716}
 717
 718static void r4k_flush_cache_page(struct vm_area_struct *vma,
 719	unsigned long addr, unsigned long pfn)
 720{
 721	struct flush_cache_page_args args;
 722
 723	args.vma = vma;
 724	args.addr = addr;
 725	args.pfn = pfn;
 726
 727	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
 728}
 729
 730static inline void local_r4k_flush_data_cache_page(void * addr)
 731{
 732	r4k_blast_dcache_page((unsigned long) addr);
 733}
 734
 735static void r4k_flush_data_cache_page(unsigned long addr)
 736{
 737	if (in_atomic())
 738		local_r4k_flush_data_cache_page((void *)addr);
 739	else
 740		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
 741				(void *) addr);
 742}
 743
 744struct flush_icache_range_args {
 745	unsigned long start;
 746	unsigned long end;
 747	unsigned int type;
 748	bool user;
 749};
 750
 751static inline void __local_r4k_flush_icache_range(unsigned long start,
 752						  unsigned long end,
 753						  unsigned int type,
 754						  bool user)
 755{
 756	if (!cpu_has_ic_fills_f_dc) {
 757		if (type == R4K_INDEX ||
 758		    (type & R4K_INDEX && end - start >= dcache_size)) {
 759			r4k_blast_dcache();
 760		} else {
 761			R4600_HIT_CACHEOP_WAR_IMPL;
 762			if (user)
 763				protected_blast_dcache_range(start, end);
 764			else
 765				blast_dcache_range(start, end);
 766		}
 767	}
 768
 769	if (type == R4K_INDEX ||
 770	    (type & R4K_INDEX && end - start > icache_size))
 771		r4k_blast_icache();
 772	else {
 773		switch (boot_cpu_type()) {
 774		case CPU_LOONGSON2EF:
 775			protected_loongson2_blast_icache_range(start, end);
 776			break;
 777
 778		default:
 779			if (user)
 780				protected_blast_icache_range(start, end);
 781			else
 782				blast_icache_range(start, end);
 783			break;
 784		}
 785	}
 786}
 787
 788static inline void local_r4k_flush_icache_range(unsigned long start,
 789						unsigned long end)
 790{
 791	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
 792}
 793
 794static inline void local_r4k_flush_icache_user_range(unsigned long start,
 795						     unsigned long end)
 796{
 797	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
 798}
 799
 800static inline void local_r4k_flush_icache_range_ipi(void *args)
 801{
 802	struct flush_icache_range_args *fir_args = args;
 803	unsigned long start = fir_args->start;
 804	unsigned long end = fir_args->end;
 805	unsigned int type = fir_args->type;
 806	bool user = fir_args->user;
 807
 808	__local_r4k_flush_icache_range(start, end, type, user);
 809}
 810
 811static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
 812				     bool user)
 813{
 814	struct flush_icache_range_args args;
 815	unsigned long size, cache_size;
 816
 817	args.start = start;
 818	args.end = end;
 819	args.type = R4K_HIT | R4K_INDEX;
 820	args.user = user;
 821
 822	/*
 823	 * Indexed cache ops require an SMP call.
 824	 * Consider if that can or should be avoided.
 825	 */
 826	preempt_disable();
 827	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
 828		/*
 829		 * If address-based cache ops don't require an SMP call, then
 830		 * use them exclusively for small flushes.
 831		 */
 832		size = end - start;
 833		cache_size = icache_size;
 834		if (!cpu_has_ic_fills_f_dc) {
 835			size *= 2;
 836			cache_size += dcache_size;
 837		}
 838		if (size <= cache_size)
 839			args.type &= ~R4K_INDEX;
 840	}
 841	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
 842	preempt_enable();
 843	instruction_hazard();
 844}
 845
 846static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 847{
 848	return __r4k_flush_icache_range(start, end, false);
 849}
 850
 851static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
 852{
 853	return __r4k_flush_icache_range(start, end, true);
 854}
 855
 856#ifdef CONFIG_DMA_NONCOHERENT
 857
 858static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 859{
 860	/* Catch bad driver code */
 861	if (WARN_ON(size == 0))
 862		return;
 863
 864	preempt_disable();
 865	if (cpu_has_inclusive_pcaches) {
 866		if (size >= scache_size) {
 867			if (current_cpu_type() != CPU_LOONGSON64)
 868				r4k_blast_scache();
 869			else
 870				r4k_blast_scache_node(pa_to_nid(addr));
 871		} else {
 872			blast_scache_range(addr, addr + size);
 873		}
 874		preempt_enable();
 875		__sync();
 876		return;
 877	}
 878
 879	/*
 880	 * Either no secondary cache or the available caches don't have the
 881	 * subset property so we have to flush the primary caches
 882	 * explicitly.
 883	 * If we would need IPI to perform an INDEX-type operation, then
 884	 * we have to use the HIT-type alternative as IPI cannot be used
 885	 * here due to interrupts possibly being disabled.
 886	 */
 887	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 888		r4k_blast_dcache();
 889	} else {
 890		R4600_HIT_CACHEOP_WAR_IMPL;
 891		blast_dcache_range(addr, addr + size);
 892	}
 893	preempt_enable();
 894
 895	bc_wback_inv(addr, size);
 896	__sync();
 897}
 898
 899static void prefetch_cache_inv(unsigned long addr, unsigned long size)
 900{
 901	unsigned int linesz = cpu_scache_line_size();
 902	unsigned long addr0 = addr, addr1;
 903
 904	addr0 &= ~(linesz - 1);
 905	addr1 = (addr0 + size - 1) & ~(linesz - 1);
 906
 907	protected_writeback_scache_line(addr0);
 908	if (likely(addr1 != addr0))
 909		protected_writeback_scache_line(addr1);
 910	else
 911		return;
 912
 913	addr0 += linesz;
 914	if (likely(addr1 != addr0))
 915		protected_writeback_scache_line(addr0);
 916	else
 917		return;
 918
 919	addr1 -= linesz;
 920	if (likely(addr1 > addr0))
 921		protected_writeback_scache_line(addr0);
 922}
 923
 924static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 925{
 926	/* Catch bad driver code */
 927	if (WARN_ON(size == 0))
 928		return;
 929
 930	preempt_disable();
 
 
 
 
 
 931
 932	if (current_cpu_type() == CPU_BMIPS5000)
 933		prefetch_cache_inv(addr, size);
 934
 935	if (cpu_has_inclusive_pcaches) {
 936		if (size >= scache_size) {
 937			if (current_cpu_type() != CPU_LOONGSON64)
 938				r4k_blast_scache();
 939			else
 940				r4k_blast_scache_node(pa_to_nid(addr));
 941		} else {
 942			/*
 943			 * There is no clearly documented alignment requirement
 944			 * for the cache instruction on MIPS processors and
 945			 * some processors, among them the RM5200 and RM7000
 946			 * QED processors will throw an address error for cache
 947			 * hit ops with insufficient alignment.	 Solved by
 948			 * aligning the address to cache line size.
 949			 */
 
 
 
 950			blast_inv_scache_range(addr, addr + size);
 951		}
 952		preempt_enable();
 953		__sync();
 954		return;
 955	}
 956
 957	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 958		r4k_blast_dcache();
 959	} else {
 
 
 
 960		R4600_HIT_CACHEOP_WAR_IMPL;
 
 
 961		blast_inv_dcache_range(addr, addr + size);
 962	}
 963	preempt_enable();
 964
 965	bc_inv(addr, size);
 966	__sync();
 967}
 968#endif /* CONFIG_DMA_NONCOHERENT */
 969
 970static void r4k_flush_icache_all(void)
 
 
 
 
 
 971{
 972	if (cpu_has_vtag_icache)
 973		r4k_blast_icache();
 974}
 
 975
 976struct flush_kernel_vmap_range_args {
 977	unsigned long	vaddr;
 978	int		size;
 979};
 980
 981static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
 982{
 983	/*
 984	 * Aliases only affect the primary caches so don't bother with
 985	 * S-caches or T-caches.
 986	 */
 987	r4k_blast_dcache();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988}
 989
 990static inline void local_r4k_flush_kernel_vmap_range(void *args)
 991{
 992	struct flush_kernel_vmap_range_args *vmra = args;
 993	unsigned long vaddr = vmra->vaddr;
 994	int size = vmra->size;
 995
 996	/*
 997	 * Aliases only affect the primary caches so don't bother with
 998	 * S-caches or T-caches.
 999	 */
1000	R4600_HIT_CACHEOP_WAR_IMPL;
1001	blast_dcache_range(vaddr, vaddr + size);
1002}
1003
1004static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1005{
1006	struct flush_kernel_vmap_range_args args;
1007
1008	args.vaddr = (unsigned long) vaddr;
1009	args.size = size;
1010
1011	if (size >= dcache_size)
1012		r4k_on_each_cpu(R4K_INDEX,
1013				local_r4k_flush_kernel_vmap_range_index, NULL);
1014	else
1015		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1016				&args);
1017}
1018
1019static inline void rm7k_erratum31(void)
1020{
1021	const unsigned long ic_lsize = 32;
1022	unsigned long addr;
1023
1024	/* RM7000 erratum #31. The icache is screwed at startup. */
1025	write_c0_taglo(0);
1026	write_c0_taghi(0);
1027
1028	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1029		__asm__ __volatile__ (
1030			".set push\n\t"
1031			".set noreorder\n\t"
1032			".set mips3\n\t"
1033			"cache\t%1, 0(%0)\n\t"
1034			"cache\t%1, 0x1000(%0)\n\t"
1035			"cache\t%1, 0x2000(%0)\n\t"
1036			"cache\t%1, 0x3000(%0)\n\t"
1037			"cache\t%2, 0(%0)\n\t"
1038			"cache\t%2, 0x1000(%0)\n\t"
1039			"cache\t%2, 0x2000(%0)\n\t"
1040			"cache\t%2, 0x3000(%0)\n\t"
1041			"cache\t%1, 0(%0)\n\t"
1042			"cache\t%1, 0x1000(%0)\n\t"
1043			"cache\t%1, 0x2000(%0)\n\t"
1044			"cache\t%1, 0x3000(%0)\n\t"
1045			".set pop\n"
1046			:
1047			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1048	}
1049}
1050
1051static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1052{
1053	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1054	unsigned int rev = c->processor_id & PRID_REV_MASK;
1055	int present = 0;
1056
1057	/*
1058	 * Early versions of the 74K do not update the cache tags on a
1059	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1060	 * aliases.  In this case it is better to treat the cache as always
1061	 * having aliases.  Also disable the synonym tag update feature
1062	 * where available.  In this case no opportunistic tag update will
1063	 * happen where a load causes a virtual address miss but a physical
1064	 * address hit during a D-cache look-up.
1065	 */
1066	switch (imp) {
1067	case PRID_IMP_74K:
1068		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1069			present = 1;
1070		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1071			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1072		break;
1073	case PRID_IMP_1074K:
1074		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1075			present = 1;
1076			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1077		}
1078		break;
1079	default:
1080		BUG();
1081	}
1082
1083	return present;
1084}
1085
1086static void b5k_instruction_hazard(void)
1087{
1088	__sync();
1089	__sync();
1090	__asm__ __volatile__(
1091	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1092	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1094	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1095	: : : "memory");
1096}
1097
1098static char *way_string[] = { NULL, "direct mapped", "2-way",
1099	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1100	"9-way", "10-way", "11-way", "12-way",
1101	"13-way", "14-way", "15-way", "16-way",
1102};
1103
1104static void probe_pcache(void)
1105{
1106	struct cpuinfo_mips *c = &current_cpu_data;
1107	unsigned int config = read_c0_config();
1108	unsigned int prid = read_c0_prid();
1109	int has_74k_erratum = 0;
1110	unsigned long config1;
1111	unsigned int lsize;
1112
1113	switch (current_cpu_type()) {
1114	case CPU_R4600:			/* QED style two way caches? */
1115	case CPU_R4700:
1116	case CPU_R5000:
1117	case CPU_NEVADA:
1118		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1119		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1120		c->icache.ways = 2;
1121		c->icache.waybit = __ffs(icache_size/2);
1122
1123		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1124		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1125		c->dcache.ways = 2;
1126		c->dcache.waybit= __ffs(dcache_size/2);
1127
1128		c->options |= MIPS_CPU_CACHE_CDEX_P;
1129		break;
1130
 
1131	case CPU_R5500:
1132		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1133		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1134		c->icache.ways = 2;
1135		c->icache.waybit= 0;
1136
1137		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1138		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1139		c->dcache.ways = 2;
1140		c->dcache.waybit = 0;
1141
1142		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1143		break;
1144
1145	case CPU_TX49XX:
1146		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1147		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1148		c->icache.ways = 4;
1149		c->icache.waybit= 0;
1150
1151		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1152		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1153		c->dcache.ways = 4;
1154		c->dcache.waybit = 0;
1155
1156		c->options |= MIPS_CPU_CACHE_CDEX_P;
1157		c->options |= MIPS_CPU_PREFETCH;
1158		break;
1159
1160	case CPU_R4000PC:
1161	case CPU_R4000SC:
1162	case CPU_R4000MC:
1163	case CPU_R4400PC:
1164	case CPU_R4400SC:
1165	case CPU_R4400MC:
1166	case CPU_R4300:
1167		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169		c->icache.ways = 1;
1170		c->icache.waybit = 0;	/* doesn't matter */
1171
1172		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174		c->dcache.ways = 1;
1175		c->dcache.waybit = 0;	/* does not matter */
1176
1177		c->options |= MIPS_CPU_CACHE_CDEX_P;
1178		break;
1179
1180	case CPU_R10000:
1181	case CPU_R12000:
1182	case CPU_R14000:
1183	case CPU_R16000:
1184		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185		c->icache.linesz = 64;
1186		c->icache.ways = 2;
1187		c->icache.waybit = 0;
1188
1189		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190		c->dcache.linesz = 32;
1191		c->dcache.ways = 2;
1192		c->dcache.waybit = 0;
1193
1194		c->options |= MIPS_CPU_PREFETCH;
1195		break;
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197	case CPU_RM7000:
1198		rm7k_erratum31();
1199
 
1200		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1201		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1202		c->icache.ways = 4;
1203		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1204
1205		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1206		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1207		c->dcache.ways = 4;
1208		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1209
 
1210		c->options |= MIPS_CPU_CACHE_CDEX_P;
 
1211		c->options |= MIPS_CPU_PREFETCH;
1212		break;
1213
1214	case CPU_LOONGSON2EF:
1215		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1216		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1217		if (prid & 0x3)
1218			c->icache.ways = 4;
1219		else
1220			c->icache.ways = 2;
1221		c->icache.waybit = 0;
1222
1223		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1224		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1225		if (prid & 0x3)
1226			c->dcache.ways = 4;
1227		else
1228			c->dcache.ways = 2;
1229		c->dcache.waybit = 0;
1230		break;
1231
1232	case CPU_LOONGSON64:
1233		config1 = read_c0_config1();
1234		lsize = (config1 >> 19) & 7;
1235		if (lsize)
1236			c->icache.linesz = 2 << lsize;
1237		else
1238			c->icache.linesz = 0;
1239		c->icache.sets = 64 << ((config1 >> 22) & 7);
1240		c->icache.ways = 1 + ((config1 >> 16) & 7);
1241		icache_size = c->icache.sets *
1242					  c->icache.ways *
1243					  c->icache.linesz;
1244		c->icache.waybit = 0;
1245
1246		lsize = (config1 >> 10) & 7;
1247		if (lsize)
1248			c->dcache.linesz = 2 << lsize;
1249		else
1250			c->dcache.linesz = 0;
1251		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1252		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1253		dcache_size = c->dcache.sets *
1254					  c->dcache.ways *
1255					  c->dcache.linesz;
1256		c->dcache.waybit = 0;
1257		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1258				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1259				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1260			c->options |= MIPS_CPU_PREFETCH;
1261		break;
1262
1263	case CPU_CAVIUM_OCTEON3:
1264		/* For now lie about the number of ways. */
1265		c->icache.linesz = 128;
1266		c->icache.sets = 16;
1267		c->icache.ways = 8;
1268		c->icache.flags |= MIPS_CACHE_VTAG;
1269		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1270
1271		c->dcache.linesz = 128;
1272		c->dcache.ways = 8;
1273		c->dcache.sets = 8;
1274		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1275		c->options |= MIPS_CPU_PREFETCH;
1276		break;
1277
1278	default:
1279		if (!(config & MIPS_CONF_M))
1280			panic("Don't know how to probe P-caches on this cpu.");
1281
1282		/*
1283		 * So we seem to be a MIPS32 or MIPS64 CPU
1284		 * So let's probe the I-cache ...
1285		 */
1286		config1 = read_c0_config1();
1287
1288		lsize = (config1 >> 19) & 7;
1289
1290		/* IL == 7 is reserved */
1291		if (lsize == 7)
1292			panic("Invalid icache line size");
1293
1294		c->icache.linesz = lsize ? 2 << lsize : 0;
1295
1296		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1297		c->icache.ways = 1 + ((config1 >> 16) & 7);
1298
1299		icache_size = c->icache.sets *
1300			      c->icache.ways *
1301			      c->icache.linesz;
1302		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1303
1304		if (config & MIPS_CONF_VI)
1305			c->icache.flags |= MIPS_CACHE_VTAG;
1306
1307		/*
1308		 * Now probe the MIPS32 / MIPS64 data cache.
1309		 */
1310		c->dcache.flags = 0;
1311
1312		lsize = (config1 >> 10) & 7;
1313
1314		/* DL == 7 is reserved */
1315		if (lsize == 7)
1316			panic("Invalid dcache line size");
1317
1318		c->dcache.linesz = lsize ? 2 << lsize : 0;
1319
1320		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1321		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1322
1323		dcache_size = c->dcache.sets *
1324			      c->dcache.ways *
1325			      c->dcache.linesz;
1326		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1327
1328		c->options |= MIPS_CPU_PREFETCH;
1329		break;
1330	}
1331
1332	/*
1333	 * Processor configuration sanity check for the R4000SC erratum
1334	 * #5.	With page sizes larger than 32kB there is no possibility
1335	 * to get a VCE exception anymore so we don't care about this
1336	 * misconfiguration.  The case is rather theoretical anyway;
1337	 * presumably no vendor is shipping his hardware in the "bad"
1338	 * configuration.
1339	 */
1340	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1341	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1342	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1343	    PAGE_SIZE <= 0x8000)
1344		panic("Improper R4000SC processor configuration detected");
1345
1346	/* compute a couple of other cache variables */
1347	c->icache.waysize = icache_size / c->icache.ways;
1348	c->dcache.waysize = dcache_size / c->dcache.ways;
1349
1350	c->icache.sets = c->icache.linesz ?
1351		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1352	c->dcache.sets = c->dcache.linesz ?
1353		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1354
1355	/*
1356	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1357	 * virtually indexed so normally would suffer from aliases.  So
1358	 * normally they'd suffer from aliases but magic in the hardware deals
1359	 * with that for us so we don't need to take care ourselves.
1360	 */
1361	switch (current_cpu_type()) {
1362	case CPU_20KC:
1363	case CPU_25KF:
1364	case CPU_I6400:
1365	case CPU_I6500:
1366	case CPU_SB1:
1367	case CPU_SB1A:
 
1368		c->dcache.flags |= MIPS_CACHE_PINDEX;
1369		break;
1370
1371	case CPU_R10000:
1372	case CPU_R12000:
1373	case CPU_R14000:
1374	case CPU_R16000:
1375		break;
1376
1377	case CPU_74K:
1378	case CPU_1074K:
1379		has_74k_erratum = alias_74k_erratum(c);
1380		fallthrough;
1381	case CPU_M14KC:
1382	case CPU_M14KEC:
1383	case CPU_24K:
1384	case CPU_34K:
 
1385	case CPU_1004K:
1386	case CPU_INTERAPTIV:
1387	case CPU_P5600:
1388	case CPU_PROAPTIV:
1389	case CPU_M5150:
1390	case CPU_QEMU_GENERIC:
1391	case CPU_P6600:
1392	case CPU_M6250:
1393		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1394		    (c->icache.waysize > PAGE_SIZE))
1395			c->icache.flags |= MIPS_CACHE_ALIASES;
1396		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1397			/*
1398			 * Effectively physically indexed dcache,
1399			 * thus no virtual aliases.
1400			*/
1401			c->dcache.flags |= MIPS_CACHE_PINDEX;
1402			break;
1403		}
1404		fallthrough;
1405	default:
1406		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1407			c->dcache.flags |= MIPS_CACHE_ALIASES;
1408	}
1409
1410	/* Physically indexed caches don't suffer from virtual aliasing */
1411	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1412		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1413
1414	/*
1415	 * In systems with CM the icache fills from L2 or closer caches, and
1416	 * thus sees remote stores without needing to write them back any
1417	 * further than that.
1418	 */
1419	if (mips_cm_present())
1420		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1421
1422	switch (current_cpu_type()) {
1423	case CPU_20KC:
1424		/*
1425		 * Some older 20Kc chips doesn't have the 'VI' bit in
1426		 * the config register.
1427		 */
1428		c->icache.flags |= MIPS_CACHE_VTAG;
1429		break;
1430
1431	case CPU_ALCHEMY:
1432	case CPU_I6400:
1433	case CPU_I6500:
1434		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1435		break;
 
1436
1437	case CPU_BMIPS5000:
1438		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1439		/* Cache aliases are handled in hardware; allow HIGHMEM */
1440		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1441		break;
 
 
1442
1443	case CPU_LOONGSON2EF:
1444		/*
1445		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1446		 * one op will act on all 4 ways
1447		 */
1448		c->icache.ways = 1;
1449	}
1450
1451	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1452		icache_size >> 10,
1453		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1454		way_string[c->icache.ways], c->icache.linesz);
1455
1456	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1457		dcache_size >> 10, way_string[c->dcache.ways],
1458		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1459		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1460			"cache aliases" : "no aliases",
1461		c->dcache.linesz);
1462}
1463
1464static void probe_vcache(void)
1465{
1466	struct cpuinfo_mips *c = &current_cpu_data;
1467	unsigned int config2, lsize;
1468
1469	if (current_cpu_type() != CPU_LOONGSON64)
1470		return;
1471
1472	config2 = read_c0_config2();
1473	if ((lsize = ((config2 >> 20) & 15)))
1474		c->vcache.linesz = 2 << lsize;
1475	else
1476		c->vcache.linesz = lsize;
1477
1478	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1479	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1480
1481	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1482
1483	c->vcache.waybit = 0;
1484	c->vcache.waysize = vcache_size / c->vcache.ways;
1485
1486	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1487		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1488}
1489
1490/*
1491 * If you even _breathe_ on this function, look at the gcc output and make sure
1492 * it does not pop things on and off the stack for the cache sizing loop that
1493 * executes in KSEG1 space or else you will crash and burn badly.  You have
1494 * been warned.
1495 */
1496static int probe_scache(void)
1497{
1498	unsigned long flags, addr, begin, end, pow2;
1499	unsigned int config = read_c0_config();
1500	struct cpuinfo_mips *c = &current_cpu_data;
1501
1502	if (config & CONF_SC)
1503		return 0;
1504
1505	begin = (unsigned long) &_stext;
1506	begin &= ~((4 * 1024 * 1024) - 1);
1507	end = begin + (4 * 1024 * 1024);
1508
1509	/*
1510	 * This is such a bitch, you'd think they would make it easy to do
1511	 * this.  Away you daemons of stupidity!
1512	 */
1513	local_irq_save(flags);
1514
1515	/* Fill each size-multiple cache line with a valid tag. */
1516	pow2 = (64 * 1024);
1517	for (addr = begin; addr < end; addr = (begin + pow2)) {
1518		unsigned long *p = (unsigned long *) addr;
1519		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1520		pow2 <<= 1;
1521	}
1522
1523	/* Load first line with zero (therefore invalid) tag. */
1524	write_c0_taglo(0);
1525	write_c0_taghi(0);
1526	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1527	cache_op(Index_Store_Tag_I, begin);
1528	cache_op(Index_Store_Tag_D, begin);
1529	cache_op(Index_Store_Tag_SD, begin);
1530
1531	/* Now search for the wrap around point. */
1532	pow2 = (128 * 1024);
1533	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1534		cache_op(Index_Load_Tag_SD, addr);
1535		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1536		if (!read_c0_taglo())
1537			break;
1538		pow2 <<= 1;
1539	}
1540	local_irq_restore(flags);
1541	addr -= begin;
1542
1543	scache_size = addr;
1544	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1545	c->scache.ways = 1;
1546	c->scache.waybit = 0;		/* does not matter */
1547
1548	return 1;
1549}
1550
1551static void loongson2_sc_init(void)
 
1552{
1553	struct cpuinfo_mips *c = &current_cpu_data;
1554
1555	scache_size = 512*1024;
1556	c->scache.linesz = 32;
1557	c->scache.ways = 4;
1558	c->scache.waybit = 0;
1559	c->scache.waysize = scache_size / (c->scache.ways);
1560	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1561	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1562	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1563
1564	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1565}
1566
1567static void loongson3_sc_init(void)
1568{
1569	struct cpuinfo_mips *c = &current_cpu_data;
1570	unsigned int config2, lsize;
1571
1572	config2 = read_c0_config2();
1573	lsize = (config2 >> 4) & 15;
1574	if (lsize)
1575		c->scache.linesz = 2 << lsize;
1576	else
1577		c->scache.linesz = 0;
1578	c->scache.sets = 64 << ((config2 >> 8) & 15);
1579	c->scache.ways = 1 + (config2 & 15);
1580
1581	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1582	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1583		c->scache.sets *= 2;
1584	else
1585		c->scache.sets *= 4;
1586
1587	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1588
1589	c->scache.waybit = 0;
1590	c->scache.waysize = scache_size / c->scache.ways;
1591	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1592	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1593	if (scache_size)
1594		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1595	return;
1596}
1597
1598extern int r5k_sc_init(void);
1599extern int rm7k_sc_init(void);
1600extern int mips_sc_init(void);
1601
1602static void setup_scache(void)
1603{
1604	struct cpuinfo_mips *c = &current_cpu_data;
1605	unsigned int config = read_c0_config();
1606	int sc_present = 0;
1607
1608	/*
1609	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1610	 * processors don't have a S-cache that would be relevant to the
1611	 * Linux memory management.
1612	 */
1613	switch (current_cpu_type()) {
1614	case CPU_R4000SC:
1615	case CPU_R4000MC:
1616	case CPU_R4400SC:
1617	case CPU_R4400MC:
1618		sc_present = run_uncached(probe_scache);
1619		if (sc_present)
1620			c->options |= MIPS_CPU_CACHE_CDEX_S;
1621		break;
1622
1623	case CPU_R10000:
1624	case CPU_R12000:
1625	case CPU_R14000:
1626	case CPU_R16000:
1627		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1628		c->scache.linesz = 64 << ((config >> 13) & 1);
1629		c->scache.ways = 2;
1630		c->scache.waybit= 0;
1631		sc_present = 1;
1632		break;
1633
1634	case CPU_R5000:
1635	case CPU_NEVADA:
1636#ifdef CONFIG_R5000_CPU_SCACHE
1637		r5k_sc_init();
1638#endif
1639		return;
1640
1641	case CPU_RM7000:
 
1642#ifdef CONFIG_RM7000_CPU_SCACHE
1643		rm7k_sc_init();
1644#endif
1645		return;
1646
1647	case CPU_LOONGSON2EF:
 
1648		loongson2_sc_init();
1649		return;
1650
1651	case CPU_LOONGSON64:
1652		loongson3_sc_init();
1653		return;
1654
1655	case CPU_CAVIUM_OCTEON3:
1656		/* don't need to worry about L2, fully coherent */
1657		return;
1658
1659	default:
1660		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1661				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1662				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1663				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1664#ifdef CONFIG_MIPS_CPU_SCACHE
1665			if (mips_sc_init ()) {
1666				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1667				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1668				       scache_size >> 10,
1669				       way_string[c->scache.ways], c->scache.linesz);
1670
1671				if (current_cpu_type() == CPU_BMIPS5000)
1672					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1673			}
1674
1675#else
1676			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1677				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1678#endif
1679			return;
1680		}
1681		sc_present = 0;
1682	}
1683
1684	if (!sc_present)
1685		return;
1686
1687	/* compute a couple of other cache variables */
1688	c->scache.waysize = scache_size / c->scache.ways;
1689
1690	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1691
1692	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1693	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1694
1695	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1696}
1697
1698void au1x00_fixup_config_od(void)
1699{
1700	/*
1701	 * c0_config.od (bit 19) was write only (and read as 0)
1702	 * on the early revisions of Alchemy SOCs.  It disables the bus
1703	 * transaction overlapping and needs to be set to fix various errata.
1704	 */
1705	switch (read_c0_prid()) {
1706	case 0x00030100: /* Au1000 DA */
1707	case 0x00030201: /* Au1000 HA */
1708	case 0x00030202: /* Au1000 HB */
1709	case 0x01030200: /* Au1500 AB */
1710	/*
1711	 * Au1100 errata actually keeps silence about this bit, so we set it
1712	 * just in case for those revisions that require it to be set according
1713	 * to the (now gone) cpu table.
1714	 */
1715	case 0x02030200: /* Au1100 AB */
1716	case 0x02030201: /* Au1100 BA */
1717	case 0x02030202: /* Au1100 BC */
1718		set_c0_config(1 << 19);
1719		break;
1720	}
1721}
1722
1723/* CP0 hazard avoidance. */
1724#define NXP_BARRIER()							\
1725	 __asm__ __volatile__(						\
1726	".set noreorder\n\t"						\
1727	"nop; nop; nop; nop; nop; nop;\n\t"				\
1728	".set reorder\n\t")
1729
1730static void nxp_pr4450_fixup_config(void)
1731{
1732	unsigned long config0;
1733
1734	config0 = read_c0_config();
1735
1736	/* clear all three cache coherency fields */
1737	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1738	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1739		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1740		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1741	write_c0_config(config0);
1742	NXP_BARRIER();
1743}
1744
1745static int cca = -1;
1746
1747static int __init cca_setup(char *str)
1748{
1749	get_option(&str, &cca);
1750
1751	return 0;
1752}
1753
1754early_param("cca", cca_setup);
1755
1756static void coherency_setup(void)
1757{
1758	if (cca < 0 || cca > 7)
1759		cca = read_c0_config() & CONF_CM_CMASK;
1760	_page_cachable_default = cca << _CACHE_SHIFT;
1761
1762	pr_debug("Using cache attribute %d\n", cca);
1763	change_c0_config(CONF_CM_CMASK, cca);
1764
1765	/*
1766	 * c0_status.cu=0 specifies that updates by the sc instruction use
1767	 * the coherency mode specified by the TLB; 1 means cachable
1768	 * coherent update on write will be used.  Not all processors have
1769	 * this bit and; some wire it to zero, others like Toshiba had the
1770	 * silly idea of putting something else there ...
1771	 */
1772	switch (current_cpu_type()) {
1773	case CPU_R4000PC:
1774	case CPU_R4000SC:
1775	case CPU_R4000MC:
1776	case CPU_R4400PC:
1777	case CPU_R4400SC:
1778	case CPU_R4400MC:
1779		clear_c0_config(CONF_CU);
1780		break;
1781	/*
1782	 * We need to catch the early Alchemy SOCs with
1783	 * the write-only co_config.od bit and set it back to one on:
1784	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1785	 */
1786	case CPU_ALCHEMY:
1787		au1x00_fixup_config_od();
1788		break;
1789
1790	case PRID_IMP_PR4450:
1791		nxp_pr4450_fixup_config();
1792		break;
1793	}
1794}
1795
1796static void r4k_cache_error_setup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797{
 
 
1798	extern char __weak except_vec2_generic;
1799	extern char __weak except_vec2_sb1;
 
1800
1801	switch (current_cpu_type()) {
1802	case CPU_SB1:
1803	case CPU_SB1A:
1804		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1805		break;
1806
1807	default:
1808		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1809		break;
1810	}
1811}
1812
1813void r4k_cache_init(void)
1814{
1815	extern void build_clear_page(void);
1816	extern void build_copy_page(void);
1817	struct cpuinfo_mips *c = &current_cpu_data;
1818
1819	probe_pcache();
1820	probe_vcache();
1821	setup_scache();
1822
1823	r4k_blast_dcache_page_setup();
1824	r4k_blast_dcache_page_indexed_setup();
1825	r4k_blast_dcache_setup();
1826	r4k_blast_icache_page_setup();
1827	r4k_blast_icache_page_indexed_setup();
1828	r4k_blast_icache_setup();
1829	r4k_blast_scache_page_setup();
1830	r4k_blast_scache_page_indexed_setup();
1831	r4k_blast_scache_setup();
1832	r4k_blast_scache_node_setup();
1833#ifdef CONFIG_EVA
1834	r4k_blast_dcache_user_page_setup();
1835	r4k_blast_icache_user_page_setup();
1836#endif
1837
1838	/*
1839	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1840	 * This code supports virtually indexed processors and will be
1841	 * unnecessarily inefficient on physically indexed processors.
1842	 */
1843	if (c->dcache.linesz && cpu_has_dc_aliases)
1844		shm_align_mask = max_t( unsigned long,
1845					c->dcache.sets * c->dcache.linesz - 1,
1846					PAGE_SIZE - 1);
1847	else
1848		shm_align_mask = PAGE_SIZE-1;
1849
1850	__flush_cache_vmap	= r4k__flush_cache_vmap;
1851	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1852
1853	flush_cache_all		= cache_noop;
1854	__flush_cache_all	= r4k___flush_cache_all;
1855	flush_cache_mm		= r4k_flush_cache_mm;
1856	flush_cache_page	= r4k_flush_cache_page;
1857	flush_cache_range	= r4k_flush_cache_range;
1858
1859	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1860
1861	flush_icache_all	= r4k_flush_icache_all;
1862	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1863	flush_data_cache_page	= r4k_flush_data_cache_page;
1864	flush_icache_range	= r4k_flush_icache_range;
1865	local_flush_icache_range	= local_r4k_flush_icache_range;
1866	__flush_icache_user_range	= r4k_flush_icache_user_range;
1867	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1868
1869#ifdef CONFIG_DMA_NONCOHERENT
1870	if (dma_default_coherent) {
1871		_dma_cache_wback_inv	= (void *)cache_noop;
1872		_dma_cache_wback	= (void *)cache_noop;
1873		_dma_cache_inv		= (void *)cache_noop;
1874	} else {
1875		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1876		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1877		_dma_cache_inv		= r4k_dma_cache_inv;
1878	}
1879#endif /* CONFIG_DMA_NONCOHERENT */
1880
1881	build_clear_page();
1882	build_copy_page();
1883
1884	/*
1885	 * We want to run CMP kernels on core with and without coherent
1886	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1887	 * or not to flush caches.
1888	 */
1889	local_r4k___flush_cache_all(NULL);
1890
1891	coherency_setup();
1892	board_cache_error_setup = r4k_cache_error_setup;
1893
1894	/*
1895	 * Per-CPU overrides
1896	 */
1897	switch (current_cpu_type()) {
1898	case CPU_BMIPS4350:
1899	case CPU_BMIPS4380:
1900		/* No IPI is needed because all CPUs share the same D$ */
1901		flush_data_cache_page = r4k_blast_dcache_page;
1902		break;
1903	case CPU_BMIPS5000:
1904		/* We lose our superpowers if L2 is disabled */
1905		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1906			break;
1907
1908		/* I$ fills from D$ just by emptying the write buffers */
1909		flush_cache_page = (void *)b5k_instruction_hazard;
1910		flush_cache_range = (void *)b5k_instruction_hazard;
1911		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1912		flush_data_cache_page = (void *)b5k_instruction_hazard;
1913		flush_icache_range = (void *)b5k_instruction_hazard;
1914		local_flush_icache_range = (void *)b5k_instruction_hazard;
1915
1916
1917		/* Optimization: an L2 flush implicitly flushes the L1 */
1918		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1919		break;
1920	case CPU_LOONGSON64:
1921		/* Loongson-3 maintains cache coherency by hardware */
1922		__flush_cache_all	= cache_noop;
1923		__flush_cache_vmap	= cache_noop;
1924		__flush_cache_vunmap	= cache_noop;
1925		__flush_kernel_vmap_range = (void *)cache_noop;
1926		flush_cache_mm		= (void *)cache_noop;
1927		flush_cache_page	= (void *)cache_noop;
1928		flush_cache_range	= (void *)cache_noop;
1929		flush_icache_all	= (void *)cache_noop;
1930		flush_data_cache_page	= (void *)cache_noop;
1931		local_flush_data_cache_page	= (void *)cache_noop;
1932		break;
1933	}
1934}
1935
1936static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1937			       void *v)
1938{
1939	switch (cmd) {
1940	case CPU_PM_ENTER_FAILED:
1941	case CPU_PM_EXIT:
1942		coherency_setup();
1943		break;
1944	}
1945
1946	return NOTIFY_OK;
1947}
1948
1949static struct notifier_block r4k_cache_pm_notifier_block = {
1950	.notifier_call = r4k_cache_pm_notifier,
1951};
1952
1953int __init r4k_cache_init_pm(void)
1954{
1955	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1956}
1957arch_initcall(r4k_cache_init_pm);