Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 *  linux/arch/m32r/mm/fault.c
  3 *
  4 *  Copyright (c) 2001, 2002  Hitoshi Yamamoto, and H. Kondo
  5 *  Copyright (c) 2004  Naoto Sugai, NIIBE Yutaka
  6 *
  7 *  Some code taken from i386 version.
  8 *    Copyright (C) 1995  Linus Torvalds
  9 */
 10
 11#include <linux/signal.h>
 12#include <linux/sched.h>
 13#include <linux/kernel.h>
 14#include <linux/errno.h>
 15#include <linux/string.h>
 16#include <linux/types.h>
 17#include <linux/ptrace.h>
 18#include <linux/mman.h>
 19#include <linux/mm.h>
 20#include <linux/smp.h>
 21#include <linux/interrupt.h>
 22#include <linux/init.h>
 23#include <linux/tty.h>
 24#include <linux/vt_kern.h>		/* For unblank_screen() */
 25#include <linux/highmem.h>
 26#include <linux/module.h>
 27
 28#include <asm/m32r.h>
 29#include <asm/system.h>
 30#include <asm/uaccess.h>
 31#include <asm/hardirq.h>
 32#include <asm/mmu_context.h>
 33#include <asm/tlbflush.h>
 34
 35extern void die(const char *, struct pt_regs *, long);
 36
 37#ifndef CONFIG_SMP
 38asmlinkage unsigned int tlb_entry_i_dat;
 39asmlinkage unsigned int tlb_entry_d_dat;
 40#define tlb_entry_i tlb_entry_i_dat
 41#define tlb_entry_d tlb_entry_d_dat
 42#else
 43unsigned int tlb_entry_i_dat[NR_CPUS];
 44unsigned int tlb_entry_d_dat[NR_CPUS];
 45#define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
 46#define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
 47#endif
 48
 49extern void init_tlb(void);
 50
 51/*======================================================================*
 52 * do_page_fault()
 53 *======================================================================*
 54 * This routine handles page faults.  It determines the address,
 55 * and the problem, and then passes it off to one of the appropriate
 56 * routines.
 57 *
 58 * ARGUMENT:
 59 *  regs       : M32R SP reg.
 60 *  error_code : See below
 61 *  address    : M32R MMU MDEVA reg. (Operand ACE)
 62 *             : M32R BPC reg. (Instruction ACE)
 63 *
 64 * error_code :
 65 *  bit 0 == 0 means no page found, 1 means protection fault
 66 *  bit 1 == 0 means read, 1 means write
 67 *  bit 2 == 0 means kernel, 1 means user-mode
 68 *  bit 3 == 0 means data, 1 means instruction
 69 *======================================================================*/
 70#define ACE_PROTECTION		1
 71#define ACE_WRITE		2
 72#define ACE_USERMODE		4
 73#define ACE_INSTRUCTION		8
 74
 75asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
 76  unsigned long address)
 77{
 78	struct task_struct *tsk;
 79	struct mm_struct *mm;
 80	struct vm_area_struct * vma;
 81	unsigned long page, addr;
 82	int write;
 83	int fault;
 84	siginfo_t info;
 85
 86	/*
 87	 * If BPSW IE bit enable --> set PSW IE bit
 88	 */
 89	if (regs->psw & M32R_PSW_BIE)
 90		local_irq_enable();
 91
 92	tsk = current;
 93
 94	info.si_code = SEGV_MAPERR;
 95
 96	/*
 97	 * We fault-in kernel-space virtual memory on-demand. The
 98	 * 'reference' page table is init_mm.pgd.
 99	 *
100	 * NOTE! We MUST NOT take any locks for this case. We may
101	 * be in an interrupt or a critical region, and should
102	 * only copy the information from the master page table,
103	 * nothing more.
104	 *
105	 * This verifies that the fault happens in kernel space
106	 * (error_code & ACE_USERMODE) == 0, and that the fault was not a
107	 * protection error (error_code & ACE_PROTECTION) == 0.
108	 */
109	if (address >= TASK_SIZE && !(error_code & ACE_USERMODE))
110		goto vmalloc_fault;
111
112	mm = tsk->mm;
113
114	/*
115	 * If we're in an interrupt or have no user context or are running in an
116	 * atomic region then we must not take the fault..
117	 */
118	if (in_atomic() || !mm)
119		goto bad_area_nosemaphore;
120
121	/* When running in the kernel we expect faults to occur only to
122	 * addresses in user space.  All other faults represent errors in the
123	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
124	 * erroneous fault occurring in a code path which already holds mmap_sem
125	 * we will deadlock attempting to validate the fault against the
126	 * address space.  Luckily the kernel only validly references user
127	 * space from well defined areas of code, which are listed in the
128	 * exceptions table.
129	 *
130	 * As the vast majority of faults will be valid we will only perform
131	 * the source reference check when there is a possibility of a deadlock.
132	 * Attempt to lock the address space, if we cannot we then validate the
133	 * source.  If this is invalid we can skip the address space check,
134	 * thus avoiding the deadlock.
135	 */
136	if (!down_read_trylock(&mm->mmap_sem)) {
137		if ((error_code & ACE_USERMODE) == 0 &&
138		    !search_exception_tables(regs->psw))
139			goto bad_area_nosemaphore;
140		down_read(&mm->mmap_sem);
141	}
142
143	vma = find_vma(mm, address);
144	if (!vma)
145		goto bad_area;
146	if (vma->vm_start <= address)
147		goto good_area;
148	if (!(vma->vm_flags & VM_GROWSDOWN))
149		goto bad_area;
150
151	if (error_code & ACE_USERMODE) {
152		/*
153		 * accessing the stack below "spu" is always a bug.
154		 * The "+ 4" is there due to the push instruction
155		 * doing pre-decrement on the stack and that
156		 * doesn't show up until later..
157		 */
158		if (address + 4 < regs->spu)
159			goto bad_area;
160	}
161
162	if (expand_stack(vma, address))
163		goto bad_area;
164/*
165 * Ok, we have a good vm_area for this memory access, so
166 * we can handle it..
167 */
168good_area:
169	info.si_code = SEGV_ACCERR;
170	write = 0;
171	switch (error_code & (ACE_WRITE|ACE_PROTECTION)) {
172		default:	/* 3: write, present */
173			/* fall through */
174		case ACE_WRITE:	/* write, not present */
175			if (!(vma->vm_flags & VM_WRITE))
176				goto bad_area;
177			write++;
178			break;
179		case ACE_PROTECTION:	/* read, present */
180		case 0:		/* read, not present */
181			if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
182				goto bad_area;
183	}
184
185	/*
186	 * For instruction access exception, check if the area is executable
187	 */
188	if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC))
189	  goto bad_area;
190
191	/*
192	 * If for any reason at all we couldn't handle the fault,
193	 * make sure we exit gracefully rather than endlessly redo
194	 * the fault.
195	 */
196	addr = (address & PAGE_MASK);
197	set_thread_fault_code(error_code);
198	fault = handle_mm_fault(mm, vma, addr, write ? FAULT_FLAG_WRITE : 0);
199	if (unlikely(fault & VM_FAULT_ERROR)) {
200		if (fault & VM_FAULT_OOM)
201			goto out_of_memory;
202		else if (fault & VM_FAULT_SIGBUS)
203			goto do_sigbus;
204		BUG();
205	}
206	if (fault & VM_FAULT_MAJOR)
207		tsk->maj_flt++;
208	else
209		tsk->min_flt++;
210	set_thread_fault_code(0);
211	up_read(&mm->mmap_sem);
212	return;
213
214/*
215 * Something tried to access memory that isn't in our memory map..
216 * Fix it, but check if it's kernel or user first..
217 */
218bad_area:
219	up_read(&mm->mmap_sem);
220
221bad_area_nosemaphore:
222	/* User mode accesses just cause a SIGSEGV */
223	if (error_code & ACE_USERMODE) {
224		tsk->thread.address = address;
225		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
226		tsk->thread.trap_no = 14;
227		info.si_signo = SIGSEGV;
228		info.si_errno = 0;
229		/* info.si_code has been set above */
230		info.si_addr = (void __user *)address;
231		force_sig_info(SIGSEGV, &info, tsk);
232		return;
233	}
234
235no_context:
236	/* Are we prepared to handle this kernel fault?  */
237	if (fixup_exception(regs))
238		return;
239
240/*
241 * Oops. The kernel tried to access some bad page. We'll have to
242 * terminate things with extreme prejudice.
243 */
244
245	bust_spinlocks(1);
246
247	if (address < PAGE_SIZE)
248		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
249	else
250		printk(KERN_ALERT "Unable to handle kernel paging request");
251	printk(" at virtual address %08lx\n",address);
252	printk(KERN_ALERT " printing bpc:\n");
253	printk("%08lx\n", regs->bpc);
254	page = *(unsigned long *)MPTB;
255	page = ((unsigned long *) page)[address >> PGDIR_SHIFT];
256	printk(KERN_ALERT "*pde = %08lx\n", page);
257	if (page & _PAGE_PRESENT) {
258		page &= PAGE_MASK;
259		address &= 0x003ff000;
260		page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
261		printk(KERN_ALERT "*pte = %08lx\n", page);
262	}
263	die("Oops", regs, error_code);
264	bust_spinlocks(0);
265	do_exit(SIGKILL);
266
267/*
268 * We ran out of memory, or some other thing happened to us that made
269 * us unable to handle the page fault gracefully.
270 */
271out_of_memory:
272	up_read(&mm->mmap_sem);
273	if (!(error_code & ACE_USERMODE))
274		goto no_context;
275	pagefault_out_of_memory();
276	return;
277
278do_sigbus:
279	up_read(&mm->mmap_sem);
280
281	/* Kernel mode? Handle exception or die */
282	if (!(error_code & ACE_USERMODE))
283		goto no_context;
284
285	tsk->thread.address = address;
286	tsk->thread.error_code = error_code;
287	tsk->thread.trap_no = 14;
288	info.si_signo = SIGBUS;
289	info.si_errno = 0;
290	info.si_code = BUS_ADRERR;
291	info.si_addr = (void __user *)address;
292	force_sig_info(SIGBUS, &info, tsk);
293	return;
294
295vmalloc_fault:
296	{
297		/*
298		 * Synchronize this task's top level page-table
299		 * with the 'reference' page table.
300		 *
301		 * Do _not_ use "tsk" here. We might be inside
302		 * an interrupt in the middle of a task switch..
303		 */
304		int offset = pgd_index(address);
305		pgd_t *pgd, *pgd_k;
306		pmd_t *pmd, *pmd_k;
307		pte_t *pte_k;
308
309		pgd = (pgd_t *)*(unsigned long *)MPTB;
310		pgd = offset + (pgd_t *)pgd;
311		pgd_k = init_mm.pgd + offset;
312
313		if (!pgd_present(*pgd_k))
314			goto no_context;
315
316		/*
317		 * set_pgd(pgd, *pgd_k); here would be useless on PAE
318		 * and redundant with the set_pmd() on non-PAE.
319		 */
320
321		pmd = pmd_offset(pgd, address);
322		pmd_k = pmd_offset(pgd_k, address);
323		if (!pmd_present(*pmd_k))
324			goto no_context;
325		set_pmd(pmd, *pmd_k);
326
327		pte_k = pte_offset_kernel(pmd_k, address);
328		if (!pte_present(*pte_k))
329			goto no_context;
330
331		addr = (address & PAGE_MASK);
332		set_thread_fault_code(error_code);
333		update_mmu_cache(NULL, addr, pte_k);
334		set_thread_fault_code(0);
335		return;
336	}
337}
338
339/*======================================================================*
340 * update_mmu_cache()
341 *======================================================================*/
342#define TLB_MASK	(NR_TLB_ENTRIES - 1)
343#define ITLB_END	(unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
344#define DTLB_END	(unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
345void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr,
346	pte_t *ptep)
347{
348	volatile unsigned long *entry1, *entry2;
349	unsigned long pte_data, flags;
350	unsigned int *entry_dat;
351	int inst = get_thread_fault_code() & ACE_INSTRUCTION;
352	int i;
353
354	/* Ptrace may call this routine. */
355	if (vma && current->active_mm != vma->vm_mm)
356		return;
357
358	local_irq_save(flags);
359
360	vaddr = (vaddr & PAGE_MASK) | get_asid();
361
362	pte_data = pte_val(*ptep);
363
364#ifdef CONFIG_CHIP_OPSP
365	entry1 = (unsigned long *)ITLB_BASE;
366	for (i = 0; i < NR_TLB_ENTRIES; i++) {
367		if (*entry1++ == vaddr) {
368			set_tlb_data(entry1, pte_data);
369			break;
370		}
371		entry1++;
372	}
373	entry2 = (unsigned long *)DTLB_BASE;
374	for (i = 0; i < NR_TLB_ENTRIES; i++) {
375		if (*entry2++ == vaddr) {
376			set_tlb_data(entry2, pte_data);
377			break;
378		}
379		entry2++;
380	}
381#else
382	/*
383	 * Update TLB entries
384	 *  entry1: ITLB entry address
385	 *  entry2: DTLB entry address
386	 */
387	__asm__ __volatile__ (
388		"seth	%0, #high(%4)	\n\t"
389		"st	%2, @(%5, %0)	\n\t"
390		"ldi	%1, #1		\n\t"
391		"st	%1, @(%6, %0)	\n\t"
392		"add3	r4, %0, %7	\n\t"
393		".fillinsn		\n"
394		"1:			\n\t"
395		"ld	%1, @(%6, %0)	\n\t"
396		"bnez	%1, 1b		\n\t"
397		"ld	%0, @r4+	\n\t"
398		"ld	%1, @r4		\n\t"
399		"st	%3, @+%0	\n\t"
400		"st	%3, @+%1	\n\t"
401		: "=&r" (entry1), "=&r" (entry2)
402		: "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE),
403		"i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset)
404		: "r4", "memory"
405	);
406#endif
407
408	if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END))
409		goto notfound;
410
411found:
412	local_irq_restore(flags);
413
414	return;
415
416	/* Valid entry not found */
417notfound:
418	/*
419	 * Update ITLB or DTLB entry
420	 *  entry1: TLB entry address
421	 *  entry2: TLB base address
422	 */
423	if (!inst) {
424		entry2 = (unsigned long *)DTLB_BASE;
425		entry_dat = &tlb_entry_d;
426	} else {
427		entry2 = (unsigned long *)ITLB_BASE;
428		entry_dat = &tlb_entry_i;
429	}
430	entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1);
431
432	for (i = 0 ; i < NR_TLB_ENTRIES ; i++) {
433		if (!(entry1[1] & 2))	/* Valid bit check */
434			break;
435
436		if (entry1 != entry2)
437			entry1 -= 2;
438		else
439			entry1 += TLB_MASK << 1;
440	}
441
442	if (i >= NR_TLB_ENTRIES) {	/* Empty entry not found */
443		entry1 = entry2 + (*entry_dat << 1);
444		*entry_dat = (*entry_dat + 1) & TLB_MASK;
445	}
446	*entry1++ = vaddr;	/* Set TLB tag */
447	set_tlb_data(entry1, pte_data);
448
449	goto found;
450}
451
452/*======================================================================*
453 * flush_tlb_page() : flushes one page
454 *======================================================================*/
455void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
456{
457	if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) {
458		unsigned long flags;
459
460		local_irq_save(flags);
461		page &= PAGE_MASK;
462		page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK);
463		__flush_tlb_page(page);
464		local_irq_restore(flags);
465	}
466}
467
468/*======================================================================*
469 * flush_tlb_range() : flushes a range of pages
470 *======================================================================*/
471void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
472	unsigned long end)
473{
474	struct mm_struct *mm;
475
476	mm = vma->vm_mm;
477	if (mm_context(mm) != NO_CONTEXT) {
478		unsigned long flags;
479		int size;
480
481		local_irq_save(flags);
482		size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
483		if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */
484			mm_context(mm) = NO_CONTEXT;
485			if (mm == current->mm)
486				activate_context(mm);
487		} else {
488			unsigned long asid;
489
490			asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK;
491			start &= PAGE_MASK;
492			end += (PAGE_SIZE - 1);
493			end &= PAGE_MASK;
494
495			start |= asid;
496			end   |= asid;
497			while (start < end) {
498				__flush_tlb_page(start);
499				start += PAGE_SIZE;
500			}
501		}
502		local_irq_restore(flags);
503	}
504}
505
506/*======================================================================*
507 * flush_tlb_mm() : flushes the specified mm context TLB's
508 *======================================================================*/
509void local_flush_tlb_mm(struct mm_struct *mm)
510{
511	/* Invalidate all TLB of this process. */
512	/* Instead of invalidating each TLB, we get new MMU context. */
513	if (mm_context(mm) != NO_CONTEXT) {
514		unsigned long flags;
515
516		local_irq_save(flags);
517		mm_context(mm) = NO_CONTEXT;
518		if (mm == current->mm)
519			activate_context(mm);
520		local_irq_restore(flags);
521	}
522}
523
524/*======================================================================*
525 * flush_tlb_all() : flushes all processes TLBs
526 *======================================================================*/
527void local_flush_tlb_all(void)
528{
529	unsigned long flags;
530
531	local_irq_save(flags);
532	__flush_tlb_all();
533	local_irq_restore(flags);
534}
535
536/*======================================================================*
537 * init_mmu()
538 *======================================================================*/
539void __init init_mmu(void)
540{
541	tlb_entry_i = 0;
542	tlb_entry_d = 0;
543	mmu_context_cache = MMU_CONTEXT_FIRST_VERSION;
544	set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK);
545	*(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir;
546}