Linux Audio

Check our new training course

Loading...
  1/*
  2 *  linux/arch/m32r/mm/fault.c
  3 *
  4 *  Copyright (c) 2001, 2002  Hitoshi Yamamoto, and H. Kondo
  5 *  Copyright (c) 2004  Naoto Sugai, NIIBE Yutaka
  6 *
  7 *  Some code taken from i386 version.
  8 *    Copyright (C) 1995  Linus Torvalds
  9 */
 10
 11#include <linux/signal.h>
 12#include <linux/sched.h>
 13#include <linux/kernel.h>
 14#include <linux/errno.h>
 15#include <linux/string.h>
 16#include <linux/types.h>
 17#include <linux/ptrace.h>
 18#include <linux/mman.h>
 19#include <linux/mm.h>
 20#include <linux/smp.h>
 21#include <linux/interrupt.h>
 22#include <linux/init.h>
 23#include <linux/tty.h>
 24#include <linux/vt_kern.h>		/* For unblank_screen() */
 25#include <linux/highmem.h>
 26#include <linux/module.h>
 27
 28#include <asm/m32r.h>
 29#include <asm/uaccess.h>
 30#include <asm/hardirq.h>
 31#include <asm/mmu_context.h>
 32#include <asm/tlbflush.h>
 33
 34extern void die(const char *, struct pt_regs *, long);
 35
 36#ifndef CONFIG_SMP
 37asmlinkage unsigned int tlb_entry_i_dat;
 38asmlinkage unsigned int tlb_entry_d_dat;
 39#define tlb_entry_i tlb_entry_i_dat
 40#define tlb_entry_d tlb_entry_d_dat
 41#else
 42unsigned int tlb_entry_i_dat[NR_CPUS];
 43unsigned int tlb_entry_d_dat[NR_CPUS];
 44#define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
 45#define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
 46#endif
 47
 48extern void init_tlb(void);
 49
 50/*======================================================================*
 51 * do_page_fault()
 52 *======================================================================*
 53 * This routine handles page faults.  It determines the address,
 54 * and the problem, and then passes it off to one of the appropriate
 55 * routines.
 56 *
 57 * ARGUMENT:
 58 *  regs       : M32R SP reg.
 59 *  error_code : See below
 60 *  address    : M32R MMU MDEVA reg. (Operand ACE)
 61 *             : M32R BPC reg. (Instruction ACE)
 62 *
 63 * error_code :
 64 *  bit 0 == 0 means no page found, 1 means protection fault
 65 *  bit 1 == 0 means read, 1 means write
 66 *  bit 2 == 0 means kernel, 1 means user-mode
 67 *  bit 3 == 0 means data, 1 means instruction
 68 *======================================================================*/
 69#define ACE_PROTECTION		1
 70#define ACE_WRITE		2
 71#define ACE_USERMODE		4
 72#define ACE_INSTRUCTION		8
 73
 74asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
 75  unsigned long address)
 76{
 77	struct task_struct *tsk;
 78	struct mm_struct *mm;
 79	struct vm_area_struct * vma;
 80	unsigned long page, addr;
 81	int write;
 82	int fault;
 83	siginfo_t info;
 84
 85	/*
 86	 * If BPSW IE bit enable --> set PSW IE bit
 87	 */
 88	if (regs->psw & M32R_PSW_BIE)
 89		local_irq_enable();
 90
 91	tsk = current;
 92
 93	info.si_code = SEGV_MAPERR;
 94
 95	/*
 96	 * We fault-in kernel-space virtual memory on-demand. The
 97	 * 'reference' page table is init_mm.pgd.
 98	 *
 99	 * NOTE! We MUST NOT take any locks for this case. We may
100	 * be in an interrupt or a critical region, and should
101	 * only copy the information from the master page table,
102	 * nothing more.
103	 *
104	 * This verifies that the fault happens in kernel space
105	 * (error_code & ACE_USERMODE) == 0, and that the fault was not a
106	 * protection error (error_code & ACE_PROTECTION) == 0.
107	 */
108	if (address >= TASK_SIZE && !(error_code & ACE_USERMODE))
109		goto vmalloc_fault;
110
111	mm = tsk->mm;
112
113	/*
114	 * If we're in an interrupt or have no user context or are running in an
115	 * atomic region then we must not take the fault..
116	 */
117	if (in_atomic() || !mm)
118		goto bad_area_nosemaphore;
119
120	/* When running in the kernel we expect faults to occur only to
121	 * addresses in user space.  All other faults represent errors in the
122	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
123	 * erroneous fault occurring in a code path which already holds mmap_sem
124	 * we will deadlock attempting to validate the fault against the
125	 * address space.  Luckily the kernel only validly references user
126	 * space from well defined areas of code, which are listed in the
127	 * exceptions table.
128	 *
129	 * As the vast majority of faults will be valid we will only perform
130	 * the source reference check when there is a possibility of a deadlock.
131	 * Attempt to lock the address space, if we cannot we then validate the
132	 * source.  If this is invalid we can skip the address space check,
133	 * thus avoiding the deadlock.
134	 */
135	if (!down_read_trylock(&mm->mmap_sem)) {
136		if ((error_code & ACE_USERMODE) == 0 &&
137		    !search_exception_tables(regs->psw))
138			goto bad_area_nosemaphore;
139		down_read(&mm->mmap_sem);
140	}
141
142	vma = find_vma(mm, address);
143	if (!vma)
144		goto bad_area;
145	if (vma->vm_start <= address)
146		goto good_area;
147	if (!(vma->vm_flags & VM_GROWSDOWN))
148		goto bad_area;
149
150	if (error_code & ACE_USERMODE) {
151		/*
152		 * accessing the stack below "spu" is always a bug.
153		 * The "+ 4" is there due to the push instruction
154		 * doing pre-decrement on the stack and that
155		 * doesn't show up until later..
156		 */
157		if (address + 4 < regs->spu)
158			goto bad_area;
159	}
160
161	if (expand_stack(vma, address))
162		goto bad_area;
163/*
164 * Ok, we have a good vm_area for this memory access, so
165 * we can handle it..
166 */
167good_area:
168	info.si_code = SEGV_ACCERR;
169	write = 0;
170	switch (error_code & (ACE_WRITE|ACE_PROTECTION)) {
171		default:	/* 3: write, present */
172			/* fall through */
173		case ACE_WRITE:	/* write, not present */
174			if (!(vma->vm_flags & VM_WRITE))
175				goto bad_area;
176			write++;
177			break;
178		case ACE_PROTECTION:	/* read, present */
179		case 0:		/* read, not present */
180			if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
181				goto bad_area;
182	}
183
184	/*
185	 * For instruction access exception, check if the area is executable
186	 */
187	if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC))
188	  goto bad_area;
189
190	/*
191	 * If for any reason at all we couldn't handle the fault,
192	 * make sure we exit gracefully rather than endlessly redo
193	 * the fault.
194	 */
195	addr = (address & PAGE_MASK);
196	set_thread_fault_code(error_code);
197	fault = handle_mm_fault(mm, vma, addr, write ? FAULT_FLAG_WRITE : 0);
198	if (unlikely(fault & VM_FAULT_ERROR)) {
199		if (fault & VM_FAULT_OOM)
200			goto out_of_memory;
201		else if (fault & VM_FAULT_SIGBUS)
202			goto do_sigbus;
203		BUG();
204	}
205	if (fault & VM_FAULT_MAJOR)
206		tsk->maj_flt++;
207	else
208		tsk->min_flt++;
209	set_thread_fault_code(0);
210	up_read(&mm->mmap_sem);
211	return;
212
213/*
214 * Something tried to access memory that isn't in our memory map..
215 * Fix it, but check if it's kernel or user first..
216 */
217bad_area:
218	up_read(&mm->mmap_sem);
219
220bad_area_nosemaphore:
221	/* User mode accesses just cause a SIGSEGV */
222	if (error_code & ACE_USERMODE) {
223		tsk->thread.address = address;
224		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
225		tsk->thread.trap_no = 14;
226		info.si_signo = SIGSEGV;
227		info.si_errno = 0;
228		/* info.si_code has been set above */
229		info.si_addr = (void __user *)address;
230		force_sig_info(SIGSEGV, &info, tsk);
231		return;
232	}
233
234no_context:
235	/* Are we prepared to handle this kernel fault?  */
236	if (fixup_exception(regs))
237		return;
238
239/*
240 * Oops. The kernel tried to access some bad page. We'll have to
241 * terminate things with extreme prejudice.
242 */
243
244	bust_spinlocks(1);
245
246	if (address < PAGE_SIZE)
247		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
248	else
249		printk(KERN_ALERT "Unable to handle kernel paging request");
250	printk(" at virtual address %08lx\n",address);
251	printk(KERN_ALERT " printing bpc:\n");
252	printk("%08lx\n", regs->bpc);
253	page = *(unsigned long *)MPTB;
254	page = ((unsigned long *) page)[address >> PGDIR_SHIFT];
255	printk(KERN_ALERT "*pde = %08lx\n", page);
256	if (page & _PAGE_PRESENT) {
257		page &= PAGE_MASK;
258		address &= 0x003ff000;
259		page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
260		printk(KERN_ALERT "*pte = %08lx\n", page);
261	}
262	die("Oops", regs, error_code);
263	bust_spinlocks(0);
264	do_exit(SIGKILL);
265
266/*
267 * We ran out of memory, or some other thing happened to us that made
268 * us unable to handle the page fault gracefully.
269 */
270out_of_memory:
271	up_read(&mm->mmap_sem);
272	if (!(error_code & ACE_USERMODE))
273		goto no_context;
274	pagefault_out_of_memory();
275	return;
276
277do_sigbus:
278	up_read(&mm->mmap_sem);
279
280	/* Kernel mode? Handle exception or die */
281	if (!(error_code & ACE_USERMODE))
282		goto no_context;
283
284	tsk->thread.address = address;
285	tsk->thread.error_code = error_code;
286	tsk->thread.trap_no = 14;
287	info.si_signo = SIGBUS;
288	info.si_errno = 0;
289	info.si_code = BUS_ADRERR;
290	info.si_addr = (void __user *)address;
291	force_sig_info(SIGBUS, &info, tsk);
292	return;
293
294vmalloc_fault:
295	{
296		/*
297		 * Synchronize this task's top level page-table
298		 * with the 'reference' page table.
299		 *
300		 * Do _not_ use "tsk" here. We might be inside
301		 * an interrupt in the middle of a task switch..
302		 */
303		int offset = pgd_index(address);
304		pgd_t *pgd, *pgd_k;
305		pmd_t *pmd, *pmd_k;
306		pte_t *pte_k;
307
308		pgd = (pgd_t *)*(unsigned long *)MPTB;
309		pgd = offset + (pgd_t *)pgd;
310		pgd_k = init_mm.pgd + offset;
311
312		if (!pgd_present(*pgd_k))
313			goto no_context;
314
315		/*
316		 * set_pgd(pgd, *pgd_k); here would be useless on PAE
317		 * and redundant with the set_pmd() on non-PAE.
318		 */
319
320		pmd = pmd_offset(pgd, address);
321		pmd_k = pmd_offset(pgd_k, address);
322		if (!pmd_present(*pmd_k))
323			goto no_context;
324		set_pmd(pmd, *pmd_k);
325
326		pte_k = pte_offset_kernel(pmd_k, address);
327		if (!pte_present(*pte_k))
328			goto no_context;
329
330		addr = (address & PAGE_MASK);
331		set_thread_fault_code(error_code);
332		update_mmu_cache(NULL, addr, pte_k);
333		set_thread_fault_code(0);
334		return;
335	}
336}
337
338/*======================================================================*
339 * update_mmu_cache()
340 *======================================================================*/
341#define TLB_MASK	(NR_TLB_ENTRIES - 1)
342#define ITLB_END	(unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
343#define DTLB_END	(unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
344void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr,
345	pte_t *ptep)
346{
347	volatile unsigned long *entry1, *entry2;
348	unsigned long pte_data, flags;
349	unsigned int *entry_dat;
350	int inst = get_thread_fault_code() & ACE_INSTRUCTION;
351	int i;
352
353	/* Ptrace may call this routine. */
354	if (vma && current->active_mm != vma->vm_mm)
355		return;
356
357	local_irq_save(flags);
358
359	vaddr = (vaddr & PAGE_MASK) | get_asid();
360
361	pte_data = pte_val(*ptep);
362
363#ifdef CONFIG_CHIP_OPSP
364	entry1 = (unsigned long *)ITLB_BASE;
365	for (i = 0; i < NR_TLB_ENTRIES; i++) {
366		if (*entry1++ == vaddr) {
367			set_tlb_data(entry1, pte_data);
368			break;
369		}
370		entry1++;
371	}
372	entry2 = (unsigned long *)DTLB_BASE;
373	for (i = 0; i < NR_TLB_ENTRIES; i++) {
374		if (*entry2++ == vaddr) {
375			set_tlb_data(entry2, pte_data);
376			break;
377		}
378		entry2++;
379	}
380#else
381	/*
382	 * Update TLB entries
383	 *  entry1: ITLB entry address
384	 *  entry2: DTLB entry address
385	 */
386	__asm__ __volatile__ (
387		"seth	%0, #high(%4)	\n\t"
388		"st	%2, @(%5, %0)	\n\t"
389		"ldi	%1, #1		\n\t"
390		"st	%1, @(%6, %0)	\n\t"
391		"add3	r4, %0, %7	\n\t"
392		".fillinsn		\n"
393		"1:			\n\t"
394		"ld	%1, @(%6, %0)	\n\t"
395		"bnez	%1, 1b		\n\t"
396		"ld	%0, @r4+	\n\t"
397		"ld	%1, @r4		\n\t"
398		"st	%3, @+%0	\n\t"
399		"st	%3, @+%1	\n\t"
400		: "=&r" (entry1), "=&r" (entry2)
401		: "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE),
402		"i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset)
403		: "r4", "memory"
404	);
405#endif
406
407	if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END))
408		goto notfound;
409
410found:
411	local_irq_restore(flags);
412
413	return;
414
415	/* Valid entry not found */
416notfound:
417	/*
418	 * Update ITLB or DTLB entry
419	 *  entry1: TLB entry address
420	 *  entry2: TLB base address
421	 */
422	if (!inst) {
423		entry2 = (unsigned long *)DTLB_BASE;
424		entry_dat = &tlb_entry_d;
425	} else {
426		entry2 = (unsigned long *)ITLB_BASE;
427		entry_dat = &tlb_entry_i;
428	}
429	entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1);
430
431	for (i = 0 ; i < NR_TLB_ENTRIES ; i++) {
432		if (!(entry1[1] & 2))	/* Valid bit check */
433			break;
434
435		if (entry1 != entry2)
436			entry1 -= 2;
437		else
438			entry1 += TLB_MASK << 1;
439	}
440
441	if (i >= NR_TLB_ENTRIES) {	/* Empty entry not found */
442		entry1 = entry2 + (*entry_dat << 1);
443		*entry_dat = (*entry_dat + 1) & TLB_MASK;
444	}
445	*entry1++ = vaddr;	/* Set TLB tag */
446	set_tlb_data(entry1, pte_data);
447
448	goto found;
449}
450
451/*======================================================================*
452 * flush_tlb_page() : flushes one page
453 *======================================================================*/
454void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
455{
456	if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) {
457		unsigned long flags;
458
459		local_irq_save(flags);
460		page &= PAGE_MASK;
461		page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK);
462		__flush_tlb_page(page);
463		local_irq_restore(flags);
464	}
465}
466
467/*======================================================================*
468 * flush_tlb_range() : flushes a range of pages
469 *======================================================================*/
470void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
471	unsigned long end)
472{
473	struct mm_struct *mm;
474
475	mm = vma->vm_mm;
476	if (mm_context(mm) != NO_CONTEXT) {
477		unsigned long flags;
478		int size;
479
480		local_irq_save(flags);
481		size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
482		if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */
483			mm_context(mm) = NO_CONTEXT;
484			if (mm == current->mm)
485				activate_context(mm);
486		} else {
487			unsigned long asid;
488
489			asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK;
490			start &= PAGE_MASK;
491			end += (PAGE_SIZE - 1);
492			end &= PAGE_MASK;
493
494			start |= asid;
495			end   |= asid;
496			while (start < end) {
497				__flush_tlb_page(start);
498				start += PAGE_SIZE;
499			}
500		}
501		local_irq_restore(flags);
502	}
503}
504
505/*======================================================================*
506 * flush_tlb_mm() : flushes the specified mm context TLB's
507 *======================================================================*/
508void local_flush_tlb_mm(struct mm_struct *mm)
509{
510	/* Invalidate all TLB of this process. */
511	/* Instead of invalidating each TLB, we get new MMU context. */
512	if (mm_context(mm) != NO_CONTEXT) {
513		unsigned long flags;
514
515		local_irq_save(flags);
516		mm_context(mm) = NO_CONTEXT;
517		if (mm == current->mm)
518			activate_context(mm);
519		local_irq_restore(flags);
520	}
521}
522
523/*======================================================================*
524 * flush_tlb_all() : flushes all processes TLBs
525 *======================================================================*/
526void local_flush_tlb_all(void)
527{
528	unsigned long flags;
529
530	local_irq_save(flags);
531	__flush_tlb_all();
532	local_irq_restore(flags);
533}
534
535/*======================================================================*
536 * init_mmu()
537 *======================================================================*/
538void __init init_mmu(void)
539{
540	tlb_entry_i = 0;
541	tlb_entry_d = 0;
542	mmu_context_cache = MMU_CONTEXT_FIRST_VERSION;
543	set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK);
544	*(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir;
545}