Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * The USB Monitor, inspired by Dave Harding's USBMon.
   3 *
   4 * This is a binary format reader.
   5 *
   6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
   7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
   8 */
   9
  10#include <linux/kernel.h>
 
  11#include <linux/types.h>
  12#include <linux/fs.h>
  13#include <linux/cdev.h>
 
  14#include <linux/usb.h>
  15#include <linux/poll.h>
  16#include <linux/compat.h>
  17#include <linux/mm.h>
  18#include <linux/scatterlist.h>
  19#include <linux/slab.h>
 
  20
  21#include <asm/uaccess.h>
  22
  23#include "usb_mon.h"
  24
  25/*
  26 * Defined by USB 2.0 clause 9.3, table 9.2.
  27 */
  28#define SETUP_LEN  8
  29
  30/* ioctl macros */
  31#define MON_IOC_MAGIC 0x92
  32
  33#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
  34/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
  35#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
  36#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
  37#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
  38#define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
  39#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
  40#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
  41/* #9 was MON_IOCT_SETAPI */
  42#define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
  43
  44#ifdef CONFIG_COMPAT
  45#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
  46#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
  47#define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
  48#endif
  49
  50/*
  51 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
  52 * But it's all right. Just use a simple way to make sure the chunk is never
  53 * smaller than a page.
  54 *
  55 * N.B. An application does not know our chunk size.
  56 *
  57 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
  58 * page-sized chunks for the time being.
  59 */
  60#define CHUNK_SIZE   PAGE_SIZE
  61#define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
  62
  63/*
  64 * The magic limit was calculated so that it allows the monitoring
  65 * application to pick data once in two ticks. This way, another application,
  66 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
  67 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
  68 * enormous overhead built into the bus protocol, so we need about 1000 KB.
  69 *
  70 * This is still too much for most cases, where we just snoop a few
  71 * descriptor fetches for enumeration. So, the default is a "reasonable"
  72 * amount for systems with HZ=250 and incomplete bus saturation.
  73 *
  74 * XXX What about multi-megabyte URBs which take minutes to transfer?
  75 */
  76#define BUFF_MAX  CHUNK_ALIGN(1200*1024)
  77#define BUFF_DFL   CHUNK_ALIGN(300*1024)
  78#define BUFF_MIN     CHUNK_ALIGN(8*1024)
  79
  80/*
  81 * The per-event API header (2 per URB).
  82 *
  83 * This structure is seen in userland as defined by the documentation.
  84 */
  85struct mon_bin_hdr {
  86	u64 id;			/* URB ID - from submission to callback */
  87	unsigned char type;	/* Same as in text API; extensible. */
  88	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
  89	unsigned char epnum;	/* Endpoint number and transfer direction */
  90	unsigned char devnum;	/* Device address */
  91	unsigned short busnum;	/* Bus number */
  92	char flag_setup;
  93	char flag_data;
  94	s64 ts_sec;		/* gettimeofday */
  95	s32 ts_usec;		/* gettimeofday */
  96	int status;
  97	unsigned int len_urb;	/* Length of data (submitted or actual) */
  98	unsigned int len_cap;	/* Delivered length */
  99	union {
 100		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
 101		struct iso_rec {
 102			int error_count;
 103			int numdesc;
 104		} iso;
 105	} s;
 106	int interval;
 107	int start_frame;
 108	unsigned int xfer_flags;
 109	unsigned int ndesc;	/* Actual number of ISO descriptors */
 110};
 111
 112/*
 113 * ISO vector, packed into the head of data stream.
 114 * This has to take 16 bytes to make sure that the end of buffer
 115 * wrap is not happening in the middle of a descriptor.
 116 */
 117struct mon_bin_isodesc {
 118	int          iso_status;
 119	unsigned int iso_off;
 120	unsigned int iso_len;
 121	u32 _pad;
 122};
 123
 124/* per file statistic */
 125struct mon_bin_stats {
 126	u32 queued;
 127	u32 dropped;
 128};
 129
 130struct mon_bin_get {
 131	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
 132	void __user *data;
 133	size_t alloc;		/* Length of data (can be zero) */
 134};
 135
 136struct mon_bin_mfetch {
 137	u32 __user *offvec;	/* Vector of events fetched */
 138	u32 nfetch;		/* Number of events to fetch (out: fetched) */
 139	u32 nflush;		/* Number of events to flush */
 140};
 141
 142#ifdef CONFIG_COMPAT
 143struct mon_bin_get32 {
 144	u32 hdr32;
 145	u32 data32;
 146	u32 alloc32;
 147};
 148
 149struct mon_bin_mfetch32 {
 150        u32 offvec32;
 151        u32 nfetch32;
 152        u32 nflush32;
 153};
 154#endif
 155
 156/* Having these two values same prevents wrapping of the mon_bin_hdr */
 157#define PKT_ALIGN   64
 158#define PKT_SIZE    64
 159
 160#define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
 161#define PKT_SZ_API1 64	/* API 1 size: extra fields */
 162
 163#define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
 164
 165/* max number of USB bus supported */
 166#define MON_BIN_MAX_MINOR 128
 167
 168/*
 169 * The buffer: map of used pages.
 170 */
 171struct mon_pgmap {
 172	struct page *pg;
 173	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
 174};
 175
 176/*
 177 * This gets associated with an open file struct.
 178 */
 179struct mon_reader_bin {
 180	/* The buffer: one per open. */
 181	spinlock_t b_lock;		/* Protect b_cnt, b_in */
 182	unsigned int b_size;		/* Current size of the buffer - bytes */
 183	unsigned int b_cnt;		/* Bytes used */
 184	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
 185	unsigned int b_read;		/* Amount of read data in curr. pkt. */
 186	struct mon_pgmap *b_vec;	/* The map array */
 187	wait_queue_head_t b_wait;	/* Wait for data here */
 188
 189	struct mutex fetch_lock;	/* Protect b_read, b_out */
 190	int mmap_active;
 191
 192	/* A list of these is needed for "bus 0". Some time later. */
 193	struct mon_reader r;
 194
 195	/* Stats */
 196	unsigned int cnt_lost;
 197};
 198
 199static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
 200    unsigned int offset)
 201{
 202	return (struct mon_bin_hdr *)
 203	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 204}
 205
 206#define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
 207
 208static unsigned char xfer_to_pipe[4] = {
 209	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
 210};
 211
 212static struct class *mon_bin_class;
 
 
 
 213static dev_t mon_bin_dev0;
 214static struct cdev mon_bin_cdev;
 215
 216static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 217    unsigned int offset, unsigned int size);
 218static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
 219static int mon_alloc_buff(struct mon_pgmap *map, int npages);
 220static void mon_free_buff(struct mon_pgmap *map, int npages);
 221
 222/*
 223 * This is a "chunked memcpy". It does not manipulate any counters.
 224 */
 225static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
 226    unsigned int off, const unsigned char *from, unsigned int length)
 227{
 228	unsigned int step_len;
 229	unsigned char *buf;
 230	unsigned int in_page;
 231
 232	while (length) {
 233		/*
 234		 * Determine step_len.
 235		 */
 236		step_len = length;
 237		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 238		if (in_page < step_len)
 239			step_len = in_page;
 240
 241		/*
 242		 * Copy data and advance pointers.
 243		 */
 244		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 245		memcpy(buf, from, step_len);
 246		if ((off += step_len) >= this->b_size) off = 0;
 247		from += step_len;
 248		length -= step_len;
 249	}
 250	return off;
 251}
 252
 253/*
 254 * This is a little worse than the above because it's "chunked copy_to_user".
 255 * The return value is an error code, not an offset.
 256 */
 257static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
 258    char __user *to, int length)
 259{
 260	unsigned int step_len;
 261	unsigned char *buf;
 262	unsigned int in_page;
 263
 264	while (length) {
 265		/*
 266		 * Determine step_len.
 267		 */
 268		step_len = length;
 269		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 270		if (in_page < step_len)
 271			step_len = in_page;
 272
 273		/*
 274		 * Copy data and advance pointers.
 275		 */
 276		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 277		if (copy_to_user(to, buf, step_len))
 278			return -EINVAL;
 279		if ((off += step_len) >= this->b_size) off = 0;
 280		to += step_len;
 281		length -= step_len;
 282	}
 283	return 0;
 284}
 285
 286/*
 287 * Allocate an (aligned) area in the buffer.
 288 * This is called under b_lock.
 289 * Returns ~0 on failure.
 290 */
 291static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
 292    unsigned int size)
 293{
 294	unsigned int offset;
 295
 296	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 297	if (rp->b_cnt + size > rp->b_size)
 298		return ~0;
 299	offset = rp->b_in;
 300	rp->b_cnt += size;
 301	if ((rp->b_in += size) >= rp->b_size)
 302		rp->b_in -= rp->b_size;
 303	return offset;
 304}
 305
 306/*
 307 * This is the same thing as mon_buff_area_alloc, only it does not allow
 308 * buffers to wrap. This is needed by applications which pass references
 309 * into mmap-ed buffers up their stacks (libpcap can do that).
 310 *
 311 * Currently, we always have the header stuck with the data, although
 312 * it is not strictly speaking necessary.
 313 *
 314 * When a buffer would wrap, we place a filler packet to mark the space.
 315 */
 316static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
 317    unsigned int size)
 318{
 319	unsigned int offset;
 320	unsigned int fill_size;
 321
 322	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 323	if (rp->b_cnt + size > rp->b_size)
 324		return ~0;
 325	if (rp->b_in + size > rp->b_size) {
 326		/*
 327		 * This would wrap. Find if we still have space after
 328		 * skipping to the end of the buffer. If we do, place
 329		 * a filler packet and allocate a new packet.
 330		 */
 331		fill_size = rp->b_size - rp->b_in;
 332		if (rp->b_cnt + size + fill_size > rp->b_size)
 333			return ~0;
 334		mon_buff_area_fill(rp, rp->b_in, fill_size);
 335
 336		offset = 0;
 337		rp->b_in = size;
 338		rp->b_cnt += size + fill_size;
 339	} else if (rp->b_in + size == rp->b_size) {
 340		offset = rp->b_in;
 341		rp->b_in = 0;
 342		rp->b_cnt += size;
 343	} else {
 344		offset = rp->b_in;
 345		rp->b_in += size;
 346		rp->b_cnt += size;
 347	}
 348	return offset;
 349}
 350
 351/*
 352 * Return a few (kilo-)bytes to the head of the buffer.
 353 * This is used if a data fetch fails.
 354 */
 355static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
 356{
 357
 358	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
 359	rp->b_cnt -= size;
 360	if (rp->b_in < size)
 361		rp->b_in += rp->b_size;
 362	rp->b_in -= size;
 363}
 364
 365/*
 366 * This has to be called under both b_lock and fetch_lock, because
 367 * it accesses both b_cnt and b_out.
 368 */
 369static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
 370{
 371
 372	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 373	rp->b_cnt -= size;
 374	if ((rp->b_out += size) >= rp->b_size)
 375		rp->b_out -= rp->b_size;
 376}
 377
 378static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 379    unsigned int offset, unsigned int size)
 380{
 381	struct mon_bin_hdr *ep;
 382
 383	ep = MON_OFF2HDR(rp, offset);
 384	memset(ep, 0, PKT_SIZE);
 385	ep->type = '@';
 386	ep->len_cap = size - PKT_SIZE;
 387}
 388
 389static inline char mon_bin_get_setup(unsigned char *setupb,
 390    const struct urb *urb, char ev_type)
 391{
 392
 393	if (urb->setup_packet == NULL)
 394		return 'Z';
 395	memcpy(setupb, urb->setup_packet, SETUP_LEN);
 396	return 0;
 397}
 398
 399static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
 400    unsigned int offset, struct urb *urb, unsigned int length,
 401    char *flag)
 402{
 403	int i;
 404	struct scatterlist *sg;
 405	unsigned int this_len;
 406
 407	*flag = 0;
 408	if (urb->num_sgs == 0) {
 409		if (urb->transfer_buffer == NULL) {
 410			*flag = 'Z';
 411			return length;
 412		}
 413		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
 414		length = 0;
 415
 416	} else {
 417		/* If IOMMU coalescing occurred, we cannot trust sg_page */
 418		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
 419			*flag = 'D';
 420			return length;
 421		}
 422
 423		/* Copy up to the first non-addressable segment */
 424		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
 425			if (length == 0 || PageHighMem(sg_page(sg)))
 426				break;
 427			this_len = min_t(unsigned int, sg->length, length);
 428			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
 429					this_len);
 430			length -= this_len;
 431		}
 432		if (i == 0)
 433			*flag = 'D';
 434	}
 435
 436	return length;
 437}
 438
 439/*
 440 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
 441 * be used to determine the length of the whole contiguous buffer.
 442 */
 443static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
 444    struct urb *urb, unsigned int ndesc)
 445{
 446	struct usb_iso_packet_descriptor *fp;
 447	unsigned int length;
 448
 449	length = 0;
 450	fp = urb->iso_frame_desc;
 451	while (ndesc-- != 0) {
 452		if (fp->actual_length != 0) {
 453			if (fp->offset + fp->actual_length > length)
 454				length = fp->offset + fp->actual_length;
 455		}
 456		fp++;
 457	}
 458	return length;
 459}
 460
 461static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
 462    unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
 463{
 464	struct mon_bin_isodesc *dp;
 465	struct usb_iso_packet_descriptor *fp;
 466
 467	fp = urb->iso_frame_desc;
 468	while (ndesc-- != 0) {
 469		dp = (struct mon_bin_isodesc *)
 470		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 471		dp->iso_status = fp->status;
 472		dp->iso_off = fp->offset;
 473		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
 474		dp->_pad = 0;
 475		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
 476			offset = 0;
 477		fp++;
 478	}
 479}
 480
 481static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
 482    char ev_type, int status)
 483{
 484	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
 485	struct timeval ts;
 486	unsigned long flags;
 487	unsigned int urb_length;
 488	unsigned int offset;
 489	unsigned int length;
 490	unsigned int delta;
 491	unsigned int ndesc, lendesc;
 492	unsigned char dir;
 493	struct mon_bin_hdr *ep;
 494	char data_tag = 0;
 495
 496	do_gettimeofday(&ts);
 497
 498	spin_lock_irqsave(&rp->b_lock, flags);
 499
 500	/*
 501	 * Find the maximum allowable length, then allocate space.
 502	 */
 503	urb_length = (ev_type == 'S') ?
 504	    urb->transfer_buffer_length : urb->actual_length;
 505	length = urb_length;
 506
 507	if (usb_endpoint_xfer_isoc(epd)) {
 508		if (urb->number_of_packets < 0) {
 509			ndesc = 0;
 510		} else if (urb->number_of_packets >= ISODESC_MAX) {
 511			ndesc = ISODESC_MAX;
 512		} else {
 513			ndesc = urb->number_of_packets;
 514		}
 515		if (ev_type == 'C' && usb_urb_dir_in(urb))
 516			length = mon_bin_collate_isodesc(rp, urb, ndesc);
 517	} else {
 518		ndesc = 0;
 519	}
 520	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
 521
 522	/* not an issue unless there's a subtle bug in a HCD somewhere */
 523	if (length >= urb->transfer_buffer_length)
 524		length = urb->transfer_buffer_length;
 525
 526	if (length >= rp->b_size/5)
 527		length = rp->b_size/5;
 528
 529	if (usb_urb_dir_in(urb)) {
 530		if (ev_type == 'S') {
 531			length = 0;
 532			data_tag = '<';
 533		}
 534		/* Cannot rely on endpoint number in case of control ep.0 */
 535		dir = USB_DIR_IN;
 536	} else {
 537		if (ev_type == 'C') {
 538			length = 0;
 539			data_tag = '>';
 540		}
 541		dir = 0;
 542	}
 543
 544	if (rp->mmap_active) {
 545		offset = mon_buff_area_alloc_contiguous(rp,
 546						 length + PKT_SIZE + lendesc);
 547	} else {
 548		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
 549	}
 550	if (offset == ~0) {
 551		rp->cnt_lost++;
 552		spin_unlock_irqrestore(&rp->b_lock, flags);
 553		return;
 554	}
 555
 556	ep = MON_OFF2HDR(rp, offset);
 557	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
 558
 559	/*
 560	 * Fill the allocated area.
 561	 */
 562	memset(ep, 0, PKT_SIZE);
 563	ep->type = ev_type;
 564	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
 565	ep->epnum = dir | usb_endpoint_num(epd);
 566	ep->devnum = urb->dev->devnum;
 567	ep->busnum = urb->dev->bus->busnum;
 568	ep->id = (unsigned long) urb;
 569	ep->ts_sec = ts.tv_sec;
 570	ep->ts_usec = ts.tv_usec;
 571	ep->status = status;
 572	ep->len_urb = urb_length;
 573	ep->len_cap = length + lendesc;
 574	ep->xfer_flags = urb->transfer_flags;
 575
 576	if (usb_endpoint_xfer_int(epd)) {
 577		ep->interval = urb->interval;
 578	} else if (usb_endpoint_xfer_isoc(epd)) {
 579		ep->interval = urb->interval;
 580		ep->start_frame = urb->start_frame;
 581		ep->s.iso.error_count = urb->error_count;
 582		ep->s.iso.numdesc = urb->number_of_packets;
 583	}
 584
 585	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
 586		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
 587	} else {
 588		ep->flag_setup = '-';
 589	}
 590
 591	if (ndesc != 0) {
 592		ep->ndesc = ndesc;
 593		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
 594		if ((offset += lendesc) >= rp->b_size)
 595			offset -= rp->b_size;
 596	}
 597
 598	if (length != 0) {
 599		length = mon_bin_get_data(rp, offset, urb, length,
 600				&ep->flag_data);
 601		if (length > 0) {
 602			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 603			ep->len_cap -= length;
 604			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 605			mon_buff_area_shrink(rp, delta);
 606		}
 607	} else {
 608		ep->flag_data = data_tag;
 609	}
 610
 611	spin_unlock_irqrestore(&rp->b_lock, flags);
 612
 613	wake_up(&rp->b_wait);
 614}
 615
 616static void mon_bin_submit(void *data, struct urb *urb)
 617{
 618	struct mon_reader_bin *rp = data;
 619	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
 620}
 621
 622static void mon_bin_complete(void *data, struct urb *urb, int status)
 623{
 624	struct mon_reader_bin *rp = data;
 625	mon_bin_event(rp, urb, 'C', status);
 626}
 627
 628static void mon_bin_error(void *data, struct urb *urb, int error)
 629{
 630	struct mon_reader_bin *rp = data;
 631	struct timeval ts;
 632	unsigned long flags;
 633	unsigned int offset;
 634	struct mon_bin_hdr *ep;
 635
 636	do_gettimeofday(&ts);
 637
 638	spin_lock_irqsave(&rp->b_lock, flags);
 639
 640	offset = mon_buff_area_alloc(rp, PKT_SIZE);
 641	if (offset == ~0) {
 642		/* Not incrementing cnt_lost. Just because. */
 643		spin_unlock_irqrestore(&rp->b_lock, flags);
 644		return;
 645	}
 646
 647	ep = MON_OFF2HDR(rp, offset);
 648
 649	memset(ep, 0, PKT_SIZE);
 650	ep->type = 'E';
 651	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
 652	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
 653	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
 654	ep->devnum = urb->dev->devnum;
 655	ep->busnum = urb->dev->bus->busnum;
 656	ep->id = (unsigned long) urb;
 657	ep->ts_sec = ts.tv_sec;
 658	ep->ts_usec = ts.tv_usec;
 659	ep->status = error;
 660
 661	ep->flag_setup = '-';
 662	ep->flag_data = 'E';
 663
 664	spin_unlock_irqrestore(&rp->b_lock, flags);
 665
 666	wake_up(&rp->b_wait);
 667}
 668
 669static int mon_bin_open(struct inode *inode, struct file *file)
 670{
 671	struct mon_bus *mbus;
 672	struct mon_reader_bin *rp;
 673	size_t size;
 674	int rc;
 675
 676	mutex_lock(&mon_lock);
 677	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
 
 678		mutex_unlock(&mon_lock);
 679		return -ENODEV;
 680	}
 681	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
 682		printk(KERN_ERR TAG ": consistency error on open\n");
 683		mutex_unlock(&mon_lock);
 684		return -ENODEV;
 685	}
 686
 687	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
 688	if (rp == NULL) {
 689		rc = -ENOMEM;
 690		goto err_alloc;
 691	}
 692	spin_lock_init(&rp->b_lock);
 693	init_waitqueue_head(&rp->b_wait);
 694	mutex_init(&rp->fetch_lock);
 695	rp->b_size = BUFF_DFL;
 696
 697	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
 698	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
 699		rc = -ENOMEM;
 700		goto err_allocvec;
 701	}
 702
 703	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
 704		goto err_allocbuff;
 705
 706	rp->r.m_bus = mbus;
 707	rp->r.r_data = rp;
 708	rp->r.rnf_submit = mon_bin_submit;
 709	rp->r.rnf_error = mon_bin_error;
 710	rp->r.rnf_complete = mon_bin_complete;
 711
 712	mon_reader_add(mbus, &rp->r);
 713
 714	file->private_data = rp;
 715	mutex_unlock(&mon_lock);
 716	return 0;
 717
 718err_allocbuff:
 719	kfree(rp->b_vec);
 720err_allocvec:
 721	kfree(rp);
 722err_alloc:
 723	mutex_unlock(&mon_lock);
 724	return rc;
 725}
 726
 727/*
 728 * Extract an event from buffer and copy it to user space.
 729 * Wait if there is no event ready.
 730 * Returns zero or error.
 731 */
 732static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
 733    struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
 734    void __user *data, unsigned int nbytes)
 735{
 736	unsigned long flags;
 737	struct mon_bin_hdr *ep;
 738	size_t step_len;
 739	unsigned int offset;
 740	int rc;
 741
 742	mutex_lock(&rp->fetch_lock);
 743
 744	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 745		mutex_unlock(&rp->fetch_lock);
 746		return rc;
 747	}
 748
 749	ep = MON_OFF2HDR(rp, rp->b_out);
 750
 751	if (copy_to_user(hdr, ep, hdrbytes)) {
 752		mutex_unlock(&rp->fetch_lock);
 753		return -EFAULT;
 754	}
 755
 756	step_len = min(ep->len_cap, nbytes);
 757	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
 758
 759	if (copy_from_buf(rp, offset, data, step_len)) {
 760		mutex_unlock(&rp->fetch_lock);
 761		return -EFAULT;
 762	}
 763
 764	spin_lock_irqsave(&rp->b_lock, flags);
 765	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 766	spin_unlock_irqrestore(&rp->b_lock, flags);
 767	rp->b_read = 0;
 768
 769	mutex_unlock(&rp->fetch_lock);
 770	return 0;
 771}
 772
 773static int mon_bin_release(struct inode *inode, struct file *file)
 774{
 775	struct mon_reader_bin *rp = file->private_data;
 776	struct mon_bus* mbus = rp->r.m_bus;
 777
 778	mutex_lock(&mon_lock);
 779
 780	if (mbus->nreaders <= 0) {
 781		printk(KERN_ERR TAG ": consistency error on close\n");
 782		mutex_unlock(&mon_lock);
 783		return 0;
 784	}
 785	mon_reader_del(mbus, &rp->r);
 786
 787	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
 788	kfree(rp->b_vec);
 789	kfree(rp);
 790
 791	mutex_unlock(&mon_lock);
 792	return 0;
 793}
 794
 795static ssize_t mon_bin_read(struct file *file, char __user *buf,
 796    size_t nbytes, loff_t *ppos)
 797{
 798	struct mon_reader_bin *rp = file->private_data;
 799	unsigned int hdrbytes = PKT_SZ_API0;
 800	unsigned long flags;
 801	struct mon_bin_hdr *ep;
 802	unsigned int offset;
 803	size_t step_len;
 804	char *ptr;
 805	ssize_t done = 0;
 806	int rc;
 807
 808	mutex_lock(&rp->fetch_lock);
 809
 810	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 811		mutex_unlock(&rp->fetch_lock);
 812		return rc;
 813	}
 814
 815	ep = MON_OFF2HDR(rp, rp->b_out);
 816
 817	if (rp->b_read < hdrbytes) {
 818		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
 819		ptr = ((char *)ep) + rp->b_read;
 820		if (step_len && copy_to_user(buf, ptr, step_len)) {
 821			mutex_unlock(&rp->fetch_lock);
 822			return -EFAULT;
 823		}
 824		nbytes -= step_len;
 825		buf += step_len;
 826		rp->b_read += step_len;
 827		done += step_len;
 828	}
 829
 830	if (rp->b_read >= hdrbytes) {
 831		step_len = ep->len_cap;
 832		step_len -= rp->b_read - hdrbytes;
 833		if (step_len > nbytes)
 834			step_len = nbytes;
 835		offset = rp->b_out + PKT_SIZE;
 836		offset += rp->b_read - hdrbytes;
 837		if (offset >= rp->b_size)
 838			offset -= rp->b_size;
 839		if (copy_from_buf(rp, offset, buf, step_len)) {
 840			mutex_unlock(&rp->fetch_lock);
 841			return -EFAULT;
 842		}
 843		nbytes -= step_len;
 844		buf += step_len;
 845		rp->b_read += step_len;
 846		done += step_len;
 847	}
 848
 849	/*
 850	 * Check if whole packet was read, and if so, jump to the next one.
 851	 */
 852	if (rp->b_read >= hdrbytes + ep->len_cap) {
 853		spin_lock_irqsave(&rp->b_lock, flags);
 854		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 855		spin_unlock_irqrestore(&rp->b_lock, flags);
 856		rp->b_read = 0;
 857	}
 858
 859	mutex_unlock(&rp->fetch_lock);
 860	return done;
 861}
 862
 863/*
 864 * Remove at most nevents from chunked buffer.
 865 * Returns the number of removed events.
 866 */
 867static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
 868{
 869	unsigned long flags;
 870	struct mon_bin_hdr *ep;
 871	int i;
 872
 873	mutex_lock(&rp->fetch_lock);
 874	spin_lock_irqsave(&rp->b_lock, flags);
 875	for (i = 0; i < nevents; ++i) {
 876		if (MON_RING_EMPTY(rp))
 877			break;
 878
 879		ep = MON_OFF2HDR(rp, rp->b_out);
 880		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 881	}
 882	spin_unlock_irqrestore(&rp->b_lock, flags);
 883	rp->b_read = 0;
 884	mutex_unlock(&rp->fetch_lock);
 885	return i;
 886}
 887
 888/*
 889 * Fetch at most max event offsets into the buffer and put them into vec.
 890 * The events are usually freed later with mon_bin_flush.
 891 * Return the effective number of events fetched.
 892 */
 893static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
 894    u32 __user *vec, unsigned int max)
 895{
 896	unsigned int cur_out;
 897	unsigned int bytes, avail;
 898	unsigned int size;
 899	unsigned int nevents;
 900	struct mon_bin_hdr *ep;
 901	unsigned long flags;
 902	int rc;
 903
 904	mutex_lock(&rp->fetch_lock);
 905
 906	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 907		mutex_unlock(&rp->fetch_lock);
 908		return rc;
 909	}
 910
 911	spin_lock_irqsave(&rp->b_lock, flags);
 912	avail = rp->b_cnt;
 913	spin_unlock_irqrestore(&rp->b_lock, flags);
 914
 915	cur_out = rp->b_out;
 916	nevents = 0;
 917	bytes = 0;
 918	while (bytes < avail) {
 919		if (nevents >= max)
 920			break;
 921
 922		ep = MON_OFF2HDR(rp, cur_out);
 923		if (put_user(cur_out, &vec[nevents])) {
 924			mutex_unlock(&rp->fetch_lock);
 925			return -EFAULT;
 926		}
 927
 928		nevents++;
 929		size = ep->len_cap + PKT_SIZE;
 930		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 931		if ((cur_out += size) >= rp->b_size)
 932			cur_out -= rp->b_size;
 933		bytes += size;
 934	}
 935
 936	mutex_unlock(&rp->fetch_lock);
 937	return nevents;
 938}
 939
 940/*
 941 * Count events. This is almost the same as the above mon_bin_fetch,
 942 * only we do not store offsets into user vector, and we have no limit.
 943 */
 944static int mon_bin_queued(struct mon_reader_bin *rp)
 945{
 946	unsigned int cur_out;
 947	unsigned int bytes, avail;
 948	unsigned int size;
 949	unsigned int nevents;
 950	struct mon_bin_hdr *ep;
 951	unsigned long flags;
 952
 953	mutex_lock(&rp->fetch_lock);
 954
 955	spin_lock_irqsave(&rp->b_lock, flags);
 956	avail = rp->b_cnt;
 957	spin_unlock_irqrestore(&rp->b_lock, flags);
 958
 959	cur_out = rp->b_out;
 960	nevents = 0;
 961	bytes = 0;
 962	while (bytes < avail) {
 963		ep = MON_OFF2HDR(rp, cur_out);
 964
 965		nevents++;
 966		size = ep->len_cap + PKT_SIZE;
 967		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 968		if ((cur_out += size) >= rp->b_size)
 969			cur_out -= rp->b_size;
 970		bytes += size;
 971	}
 972
 973	mutex_unlock(&rp->fetch_lock);
 974	return nevents;
 975}
 976
 977/*
 978 */
 979static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 980{
 981	struct mon_reader_bin *rp = file->private_data;
 982	// struct mon_bus* mbus = rp->r.m_bus;
 983	int ret = 0;
 984	struct mon_bin_hdr *ep;
 985	unsigned long flags;
 986
 987	switch (cmd) {
 988
 989	case MON_IOCQ_URB_LEN:
 990		/*
 991		 * N.B. This only returns the size of data, without the header.
 992		 */
 993		spin_lock_irqsave(&rp->b_lock, flags);
 994		if (!MON_RING_EMPTY(rp)) {
 995			ep = MON_OFF2HDR(rp, rp->b_out);
 996			ret = ep->len_cap;
 997		}
 998		spin_unlock_irqrestore(&rp->b_lock, flags);
 999		break;
1000
1001	case MON_IOCQ_RING_SIZE:
 
1002		ret = rp->b_size;
 
1003		break;
1004
1005	case MON_IOCT_RING_SIZE:
1006		/*
1007		 * Changing the buffer size will flush it's contents; the new
1008		 * buffer is allocated before releasing the old one to be sure
1009		 * the device will stay functional also in case of memory
1010		 * pressure.
1011		 */
1012		{
1013		int size;
1014		struct mon_pgmap *vec;
1015
1016		if (arg < BUFF_MIN || arg > BUFF_MAX)
1017			return -EINVAL;
1018
1019		size = CHUNK_ALIGN(arg);
1020		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1021		    GFP_KERNEL)) == NULL) {
 
1022			ret = -ENOMEM;
1023			break;
1024		}
1025
1026		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1027		if (ret < 0) {
1028			kfree(vec);
1029			break;
1030		}
1031
1032		mutex_lock(&rp->fetch_lock);
1033		spin_lock_irqsave(&rp->b_lock, flags);
1034		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1035		kfree(rp->b_vec);
1036		rp->b_vec  = vec;
1037		rp->b_size = size;
1038		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1039		rp->cnt_lost = 0;
 
 
 
 
 
 
1040		spin_unlock_irqrestore(&rp->b_lock, flags);
1041		mutex_unlock(&rp->fetch_lock);
1042		}
1043		break;
1044
1045	case MON_IOCH_MFLUSH:
1046		ret = mon_bin_flush(rp, arg);
1047		break;
1048
1049	case MON_IOCX_GET:
1050	case MON_IOCX_GETX:
1051		{
1052		struct mon_bin_get getb;
1053
1054		if (copy_from_user(&getb, (void __user *)arg,
1055					    sizeof(struct mon_bin_get)))
1056			return -EFAULT;
1057
1058		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1059			return -EINVAL;
1060		ret = mon_bin_get_event(file, rp, getb.hdr,
1061		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1062		    getb.data, (unsigned int)getb.alloc);
1063		}
1064		break;
1065
1066	case MON_IOCX_MFETCH:
1067		{
1068		struct mon_bin_mfetch mfetch;
1069		struct mon_bin_mfetch __user *uptr;
1070
1071		uptr = (struct mon_bin_mfetch __user *)arg;
1072
1073		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1074			return -EFAULT;
1075
1076		if (mfetch.nflush) {
1077			ret = mon_bin_flush(rp, mfetch.nflush);
1078			if (ret < 0)
1079				return ret;
1080			if (put_user(ret, &uptr->nflush))
1081				return -EFAULT;
1082		}
1083		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1084		if (ret < 0)
1085			return ret;
1086		if (put_user(ret, &uptr->nfetch))
1087			return -EFAULT;
1088		ret = 0;
1089		}
1090		break;
1091
1092	case MON_IOCG_STATS: {
1093		struct mon_bin_stats __user *sp;
1094		unsigned int nevents;
1095		unsigned int ndropped;
1096
1097		spin_lock_irqsave(&rp->b_lock, flags);
1098		ndropped = rp->cnt_lost;
1099		rp->cnt_lost = 0;
1100		spin_unlock_irqrestore(&rp->b_lock, flags);
1101		nevents = mon_bin_queued(rp);
1102
1103		sp = (struct mon_bin_stats __user *)arg;
1104		if (put_user(rp->cnt_lost, &sp->dropped))
1105			return -EFAULT;
1106		if (put_user(nevents, &sp->queued))
1107			return -EFAULT;
1108
1109		}
1110		break;
1111
1112	default:
1113		return -ENOTTY;
1114	}
1115
1116	return ret;
1117}
1118
1119#ifdef CONFIG_COMPAT
1120static long mon_bin_compat_ioctl(struct file *file,
1121    unsigned int cmd, unsigned long arg)
1122{
1123	struct mon_reader_bin *rp = file->private_data;
1124	int ret;
1125
1126	switch (cmd) {
1127
1128	case MON_IOCX_GET32:
1129	case MON_IOCX_GETX32:
1130		{
1131		struct mon_bin_get32 getb;
1132
1133		if (copy_from_user(&getb, (void __user *)arg,
1134					    sizeof(struct mon_bin_get32)))
1135			return -EFAULT;
1136
1137		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1138		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1139		    compat_ptr(getb.data32), getb.alloc32);
1140		if (ret < 0)
1141			return ret;
1142		}
1143		return 0;
1144
1145	case MON_IOCX_MFETCH32:
1146		{
1147		struct mon_bin_mfetch32 mfetch;
1148		struct mon_bin_mfetch32 __user *uptr;
1149
1150		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1151
1152		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1153			return -EFAULT;
1154
1155		if (mfetch.nflush32) {
1156			ret = mon_bin_flush(rp, mfetch.nflush32);
1157			if (ret < 0)
1158				return ret;
1159			if (put_user(ret, &uptr->nflush32))
1160				return -EFAULT;
1161		}
1162		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1163		    mfetch.nfetch32);
1164		if (ret < 0)
1165			return ret;
1166		if (put_user(ret, &uptr->nfetch32))
1167			return -EFAULT;
1168		}
1169		return 0;
1170
1171	case MON_IOCG_STATS:
1172		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1173
1174	case MON_IOCQ_URB_LEN:
1175	case MON_IOCQ_RING_SIZE:
1176	case MON_IOCT_RING_SIZE:
1177	case MON_IOCH_MFLUSH:
1178		return mon_bin_ioctl(file, cmd, arg);
1179
1180	default:
1181		;
1182	}
1183	return -ENOTTY;
1184}
1185#endif /* CONFIG_COMPAT */
1186
1187static unsigned int
1188mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1189{
1190	struct mon_reader_bin *rp = file->private_data;
1191	unsigned int mask = 0;
1192	unsigned long flags;
1193
1194	if (file->f_mode & FMODE_READ)
1195		poll_wait(file, &rp->b_wait, wait);
1196
1197	spin_lock_irqsave(&rp->b_lock, flags);
1198	if (!MON_RING_EMPTY(rp))
1199		mask |= POLLIN | POLLRDNORM;    /* readable */
1200	spin_unlock_irqrestore(&rp->b_lock, flags);
1201	return mask;
1202}
1203
1204/*
1205 * open and close: just keep track of how many times the device is
1206 * mapped, to use the proper memory allocation function.
1207 */
1208static void mon_bin_vma_open(struct vm_area_struct *vma)
1209{
1210	struct mon_reader_bin *rp = vma->vm_private_data;
 
 
 
1211	rp->mmap_active++;
 
1212}
1213
1214static void mon_bin_vma_close(struct vm_area_struct *vma)
1215{
 
 
1216	struct mon_reader_bin *rp = vma->vm_private_data;
 
1217	rp->mmap_active--;
 
1218}
1219
1220/*
1221 * Map ring pages to user space.
1222 */
1223static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224{
1225	struct mon_reader_bin *rp = vma->vm_private_data;
1226	unsigned long offset, chunk_idx;
1227	struct page *pageptr;
 
1228
 
1229	offset = vmf->pgoff << PAGE_SHIFT;
1230	if (offset >= rp->b_size)
 
1231		return VM_FAULT_SIGBUS;
 
1232	chunk_idx = offset / CHUNK_SIZE;
1233	pageptr = rp->b_vec[chunk_idx].pg;
1234	get_page(pageptr);
1235	vmf->page = pageptr;
 
1236	return 0;
1237}
1238
1239static const struct vm_operations_struct mon_bin_vm_ops = {
1240	.open =     mon_bin_vma_open,
1241	.close =    mon_bin_vma_close,
1242	.fault =    mon_bin_vma_fault,
1243};
1244
1245static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1246{
1247	/* don't do anything here: "fault" will set up page table entries */
1248	vma->vm_ops = &mon_bin_vm_ops;
1249	vma->vm_flags |= VM_RESERVED;
 
 
 
 
1250	vma->vm_private_data = filp->private_data;
1251	mon_bin_vma_open(vma);
1252	return 0;
1253}
1254
1255static const struct file_operations mon_fops_binary = {
1256	.owner =	THIS_MODULE,
1257	.open =		mon_bin_open,
1258	.llseek =	no_llseek,
1259	.read =		mon_bin_read,
1260	/* .write =	mon_text_write, */
1261	.poll =		mon_bin_poll,
1262	.unlocked_ioctl = mon_bin_ioctl,
1263#ifdef CONFIG_COMPAT
1264	.compat_ioctl =	mon_bin_compat_ioctl,
1265#endif
1266	.release =	mon_bin_release,
1267	.mmap =		mon_bin_mmap,
1268};
1269
1270static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1271{
1272	DECLARE_WAITQUEUE(waita, current);
1273	unsigned long flags;
1274
1275	add_wait_queue(&rp->b_wait, &waita);
1276	set_current_state(TASK_INTERRUPTIBLE);
1277
1278	spin_lock_irqsave(&rp->b_lock, flags);
1279	while (MON_RING_EMPTY(rp)) {
1280		spin_unlock_irqrestore(&rp->b_lock, flags);
1281
1282		if (file->f_flags & O_NONBLOCK) {
1283			set_current_state(TASK_RUNNING);
1284			remove_wait_queue(&rp->b_wait, &waita);
1285			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1286		}
1287		schedule();
1288		if (signal_pending(current)) {
1289			remove_wait_queue(&rp->b_wait, &waita);
1290			return -EINTR;
1291		}
1292		set_current_state(TASK_INTERRUPTIBLE);
1293
1294		spin_lock_irqsave(&rp->b_lock, flags);
1295	}
1296	spin_unlock_irqrestore(&rp->b_lock, flags);
1297
1298	set_current_state(TASK_RUNNING);
1299	remove_wait_queue(&rp->b_wait, &waita);
1300	return 0;
1301}
1302
1303static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1304{
1305	int n;
1306	unsigned long vaddr;
1307
1308	for (n = 0; n < npages; n++) {
1309		vaddr = get_zeroed_page(GFP_KERNEL);
1310		if (vaddr == 0) {
1311			while (n-- != 0)
1312				free_page((unsigned long) map[n].ptr);
1313			return -ENOMEM;
1314		}
1315		map[n].ptr = (unsigned char *) vaddr;
1316		map[n].pg = virt_to_page((void *) vaddr);
1317	}
1318	return 0;
1319}
1320
1321static void mon_free_buff(struct mon_pgmap *map, int npages)
1322{
1323	int n;
1324
1325	for (n = 0; n < npages; n++)
1326		free_page((unsigned long) map[n].ptr);
1327}
1328
1329int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1330{
1331	struct device *dev;
1332	unsigned minor = ubus? ubus->busnum: 0;
1333
1334	if (minor >= MON_BIN_MAX_MINOR)
1335		return 0;
1336
1337	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1338			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1339			    "usbmon%d", minor);
1340	if (IS_ERR(dev))
1341		return 0;
1342
1343	mbus->classdev = dev;
1344	return 1;
1345}
1346
1347void mon_bin_del(struct mon_bus *mbus)
1348{
1349	device_destroy(mon_bin_class, mbus->classdev->devt);
1350}
1351
1352int __init mon_bin_init(void)
1353{
1354	int rc;
1355
1356	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1357	if (IS_ERR(mon_bin_class)) {
1358		rc = PTR_ERR(mon_bin_class);
1359		goto err_class;
1360	}
1361
1362	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1363	if (rc < 0)
1364		goto err_dev;
1365
1366	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1367	mon_bin_cdev.owner = THIS_MODULE;
1368
1369	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1370	if (rc < 0)
1371		goto err_add;
1372
1373	return 0;
1374
1375err_add:
1376	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1377err_dev:
1378	class_destroy(mon_bin_class);
1379err_class:
1380	return rc;
1381}
1382
1383void mon_bin_exit(void)
1384{
1385	cdev_del(&mon_bin_cdev);
1386	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1387	class_destroy(mon_bin_class);
1388}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The USB Monitor, inspired by Dave Harding's USBMon.
   4 *
   5 * This is a binary format reader.
   6 *
   7 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
   8 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/sched/signal.h>
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/cdev.h>
  16#include <linux/export.h>
  17#include <linux/usb.h>
  18#include <linux/poll.h>
  19#include <linux/compat.h>
  20#include <linux/mm.h>
  21#include <linux/scatterlist.h>
  22#include <linux/slab.h>
  23#include <linux/time64.h>
  24
  25#include <linux/uaccess.h>
  26
  27#include "usb_mon.h"
  28
  29/*
  30 * Defined by USB 2.0 clause 9.3, table 9.2.
  31 */
  32#define SETUP_LEN  8
  33
  34/* ioctl macros */
  35#define MON_IOC_MAGIC 0x92
  36
  37#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
  38/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
  39#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
  40#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
  41#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
  42#define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
  43#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
  44#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
  45/* #9 was MON_IOCT_SETAPI */
  46#define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
  47
  48#ifdef CONFIG_COMPAT
  49#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
  50#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
  51#define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
  52#endif
  53
  54/*
  55 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
  56 * But it's all right. Just use a simple way to make sure the chunk is never
  57 * smaller than a page.
  58 *
  59 * N.B. An application does not know our chunk size.
  60 *
  61 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
  62 * page-sized chunks for the time being.
  63 */
  64#define CHUNK_SIZE   PAGE_SIZE
  65#define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
  66
  67/*
  68 * The magic limit was calculated so that it allows the monitoring
  69 * application to pick data once in two ticks. This way, another application,
  70 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
  71 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
  72 * enormous overhead built into the bus protocol, so we need about 1000 KB.
  73 *
  74 * This is still too much for most cases, where we just snoop a few
  75 * descriptor fetches for enumeration. So, the default is a "reasonable"
  76 * amount for systems with HZ=250 and incomplete bus saturation.
  77 *
  78 * XXX What about multi-megabyte URBs which take minutes to transfer?
  79 */
  80#define BUFF_MAX  CHUNK_ALIGN(1200*1024)
  81#define BUFF_DFL   CHUNK_ALIGN(300*1024)
  82#define BUFF_MIN     CHUNK_ALIGN(8*1024)
  83
  84/*
  85 * The per-event API header (2 per URB).
  86 *
  87 * This structure is seen in userland as defined by the documentation.
  88 */
  89struct mon_bin_hdr {
  90	u64 id;			/* URB ID - from submission to callback */
  91	unsigned char type;	/* Same as in text API; extensible. */
  92	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
  93	unsigned char epnum;	/* Endpoint number and transfer direction */
  94	unsigned char devnum;	/* Device address */
  95	unsigned short busnum;	/* Bus number */
  96	char flag_setup;
  97	char flag_data;
  98	s64 ts_sec;		/* ktime_get_real_ts64 */
  99	s32 ts_usec;		/* ktime_get_real_ts64 */
 100	int status;
 101	unsigned int len_urb;	/* Length of data (submitted or actual) */
 102	unsigned int len_cap;	/* Delivered length */
 103	union {
 104		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
 105		struct iso_rec {
 106			int error_count;
 107			int numdesc;
 108		} iso;
 109	} s;
 110	int interval;
 111	int start_frame;
 112	unsigned int xfer_flags;
 113	unsigned int ndesc;	/* Actual number of ISO descriptors */
 114};
 115
 116/*
 117 * ISO vector, packed into the head of data stream.
 118 * This has to take 16 bytes to make sure that the end of buffer
 119 * wrap is not happening in the middle of a descriptor.
 120 */
 121struct mon_bin_isodesc {
 122	int          iso_status;
 123	unsigned int iso_off;
 124	unsigned int iso_len;
 125	u32 _pad;
 126};
 127
 128/* per file statistic */
 129struct mon_bin_stats {
 130	u32 queued;
 131	u32 dropped;
 132};
 133
 134struct mon_bin_get {
 135	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
 136	void __user *data;
 137	size_t alloc;		/* Length of data (can be zero) */
 138};
 139
 140struct mon_bin_mfetch {
 141	u32 __user *offvec;	/* Vector of events fetched */
 142	u32 nfetch;		/* Number of events to fetch (out: fetched) */
 143	u32 nflush;		/* Number of events to flush */
 144};
 145
 146#ifdef CONFIG_COMPAT
 147struct mon_bin_get32 {
 148	u32 hdr32;
 149	u32 data32;
 150	u32 alloc32;
 151};
 152
 153struct mon_bin_mfetch32 {
 154        u32 offvec32;
 155        u32 nfetch32;
 156        u32 nflush32;
 157};
 158#endif
 159
 160/* Having these two values same prevents wrapping of the mon_bin_hdr */
 161#define PKT_ALIGN   64
 162#define PKT_SIZE    64
 163
 164#define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
 165#define PKT_SZ_API1 64	/* API 1 size: extra fields */
 166
 167#define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
 168
 169/* max number of USB bus supported */
 170#define MON_BIN_MAX_MINOR 128
 171
 172/*
 173 * The buffer: map of used pages.
 174 */
 175struct mon_pgmap {
 176	struct page *pg;
 177	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
 178};
 179
 180/*
 181 * This gets associated with an open file struct.
 182 */
 183struct mon_reader_bin {
 184	/* The buffer: one per open. */
 185	spinlock_t b_lock;		/* Protect b_cnt, b_in */
 186	unsigned int b_size;		/* Current size of the buffer - bytes */
 187	unsigned int b_cnt;		/* Bytes used */
 188	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
 189	unsigned int b_read;		/* Amount of read data in curr. pkt. */
 190	struct mon_pgmap *b_vec;	/* The map array */
 191	wait_queue_head_t b_wait;	/* Wait for data here */
 192
 193	struct mutex fetch_lock;	/* Protect b_read, b_out */
 194	int mmap_active;
 195
 196	/* A list of these is needed for "bus 0". Some time later. */
 197	struct mon_reader r;
 198
 199	/* Stats */
 200	unsigned int cnt_lost;
 201};
 202
 203static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
 204    unsigned int offset)
 205{
 206	return (struct mon_bin_hdr *)
 207	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 208}
 209
 210#define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
 211
 212static unsigned char xfer_to_pipe[4] = {
 213	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
 214};
 215
 216static const struct class mon_bin_class = {
 217	.name = "usbmon",
 218};
 219
 220static dev_t mon_bin_dev0;
 221static struct cdev mon_bin_cdev;
 222
 223static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 224    unsigned int offset, unsigned int size);
 225static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
 226static int mon_alloc_buff(struct mon_pgmap *map, int npages);
 227static void mon_free_buff(struct mon_pgmap *map, int npages);
 228
 229/*
 230 * This is a "chunked memcpy". It does not manipulate any counters.
 231 */
 232static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
 233    unsigned int off, const unsigned char *from, unsigned int length)
 234{
 235	unsigned int step_len;
 236	unsigned char *buf;
 237	unsigned int in_page;
 238
 239	while (length) {
 240		/*
 241		 * Determine step_len.
 242		 */
 243		step_len = length;
 244		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 245		if (in_page < step_len)
 246			step_len = in_page;
 247
 248		/*
 249		 * Copy data and advance pointers.
 250		 */
 251		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 252		memcpy(buf, from, step_len);
 253		if ((off += step_len) >= this->b_size) off = 0;
 254		from += step_len;
 255		length -= step_len;
 256	}
 257	return off;
 258}
 259
 260/*
 261 * This is a little worse than the above because it's "chunked copy_to_user".
 262 * The return value is an error code, not an offset.
 263 */
 264static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
 265    char __user *to, int length)
 266{
 267	unsigned int step_len;
 268	unsigned char *buf;
 269	unsigned int in_page;
 270
 271	while (length) {
 272		/*
 273		 * Determine step_len.
 274		 */
 275		step_len = length;
 276		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 277		if (in_page < step_len)
 278			step_len = in_page;
 279
 280		/*
 281		 * Copy data and advance pointers.
 282		 */
 283		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 284		if (copy_to_user(to, buf, step_len))
 285			return -EINVAL;
 286		if ((off += step_len) >= this->b_size) off = 0;
 287		to += step_len;
 288		length -= step_len;
 289	}
 290	return 0;
 291}
 292
 293/*
 294 * Allocate an (aligned) area in the buffer.
 295 * This is called under b_lock.
 296 * Returns ~0 on failure.
 297 */
 298static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
 299    unsigned int size)
 300{
 301	unsigned int offset;
 302
 303	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 304	if (rp->b_cnt + size > rp->b_size)
 305		return ~0;
 306	offset = rp->b_in;
 307	rp->b_cnt += size;
 308	if ((rp->b_in += size) >= rp->b_size)
 309		rp->b_in -= rp->b_size;
 310	return offset;
 311}
 312
 313/*
 314 * This is the same thing as mon_buff_area_alloc, only it does not allow
 315 * buffers to wrap. This is needed by applications which pass references
 316 * into mmap-ed buffers up their stacks (libpcap can do that).
 317 *
 318 * Currently, we always have the header stuck with the data, although
 319 * it is not strictly speaking necessary.
 320 *
 321 * When a buffer would wrap, we place a filler packet to mark the space.
 322 */
 323static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
 324    unsigned int size)
 325{
 326	unsigned int offset;
 327	unsigned int fill_size;
 328
 329	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 330	if (rp->b_cnt + size > rp->b_size)
 331		return ~0;
 332	if (rp->b_in + size > rp->b_size) {
 333		/*
 334		 * This would wrap. Find if we still have space after
 335		 * skipping to the end of the buffer. If we do, place
 336		 * a filler packet and allocate a new packet.
 337		 */
 338		fill_size = rp->b_size - rp->b_in;
 339		if (rp->b_cnt + size + fill_size > rp->b_size)
 340			return ~0;
 341		mon_buff_area_fill(rp, rp->b_in, fill_size);
 342
 343		offset = 0;
 344		rp->b_in = size;
 345		rp->b_cnt += size + fill_size;
 346	} else if (rp->b_in + size == rp->b_size) {
 347		offset = rp->b_in;
 348		rp->b_in = 0;
 349		rp->b_cnt += size;
 350	} else {
 351		offset = rp->b_in;
 352		rp->b_in += size;
 353		rp->b_cnt += size;
 354	}
 355	return offset;
 356}
 357
 358/*
 359 * Return a few (kilo-)bytes to the head of the buffer.
 360 * This is used if a data fetch fails.
 361 */
 362static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
 363{
 364
 365	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
 366	rp->b_cnt -= size;
 367	if (rp->b_in < size)
 368		rp->b_in += rp->b_size;
 369	rp->b_in -= size;
 370}
 371
 372/*
 373 * This has to be called under both b_lock and fetch_lock, because
 374 * it accesses both b_cnt and b_out.
 375 */
 376static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
 377{
 378
 379	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 380	rp->b_cnt -= size;
 381	if ((rp->b_out += size) >= rp->b_size)
 382		rp->b_out -= rp->b_size;
 383}
 384
 385static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 386    unsigned int offset, unsigned int size)
 387{
 388	struct mon_bin_hdr *ep;
 389
 390	ep = MON_OFF2HDR(rp, offset);
 391	memset(ep, 0, PKT_SIZE);
 392	ep->type = '@';
 393	ep->len_cap = size - PKT_SIZE;
 394}
 395
 396static inline char mon_bin_get_setup(unsigned char *setupb,
 397    const struct urb *urb, char ev_type)
 398{
 399
 400	if (urb->setup_packet == NULL)
 401		return 'Z';
 402	memcpy(setupb, urb->setup_packet, SETUP_LEN);
 403	return 0;
 404}
 405
 406static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
 407    unsigned int offset, struct urb *urb, unsigned int length,
 408    char *flag)
 409{
 410	int i;
 411	struct scatterlist *sg;
 412	unsigned int this_len;
 413
 414	*flag = 0;
 415	if (urb->num_sgs == 0) {
 416		if (urb->transfer_buffer == NULL) {
 417			*flag = 'Z';
 418			return length;
 419		}
 420		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
 421		length = 0;
 422
 423	} else {
 424		/* If IOMMU coalescing occurred, we cannot trust sg_page */
 425		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
 426			*flag = 'D';
 427			return length;
 428		}
 429
 430		/* Copy up to the first non-addressable segment */
 431		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
 432			if (length == 0 || PageHighMem(sg_page(sg)))
 433				break;
 434			this_len = min_t(unsigned int, sg->length, length);
 435			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
 436					this_len);
 437			length -= this_len;
 438		}
 439		if (i == 0)
 440			*flag = 'D';
 441	}
 442
 443	return length;
 444}
 445
 446/*
 447 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
 448 * be used to determine the length of the whole contiguous buffer.
 449 */
 450static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
 451    struct urb *urb, unsigned int ndesc)
 452{
 453	struct usb_iso_packet_descriptor *fp;
 454	unsigned int length;
 455
 456	length = 0;
 457	fp = urb->iso_frame_desc;
 458	while (ndesc-- != 0) {
 459		if (fp->actual_length != 0) {
 460			if (fp->offset + fp->actual_length > length)
 461				length = fp->offset + fp->actual_length;
 462		}
 463		fp++;
 464	}
 465	return length;
 466}
 467
 468static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
 469    unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
 470{
 471	struct mon_bin_isodesc *dp;
 472	struct usb_iso_packet_descriptor *fp;
 473
 474	fp = urb->iso_frame_desc;
 475	while (ndesc-- != 0) {
 476		dp = (struct mon_bin_isodesc *)
 477		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 478		dp->iso_status = fp->status;
 479		dp->iso_off = fp->offset;
 480		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
 481		dp->_pad = 0;
 482		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
 483			offset = 0;
 484		fp++;
 485	}
 486}
 487
 488static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
 489    char ev_type, int status)
 490{
 491	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
 492	struct timespec64 ts;
 493	unsigned long flags;
 494	unsigned int urb_length;
 495	unsigned int offset;
 496	unsigned int length;
 497	unsigned int delta;
 498	unsigned int ndesc, lendesc;
 499	unsigned char dir;
 500	struct mon_bin_hdr *ep;
 501	char data_tag = 0;
 502
 503	ktime_get_real_ts64(&ts);
 504
 505	spin_lock_irqsave(&rp->b_lock, flags);
 506
 507	/*
 508	 * Find the maximum allowable length, then allocate space.
 509	 */
 510	urb_length = (ev_type == 'S') ?
 511	    urb->transfer_buffer_length : urb->actual_length;
 512	length = urb_length;
 513
 514	if (usb_endpoint_xfer_isoc(epd)) {
 515		if (urb->number_of_packets < 0) {
 516			ndesc = 0;
 517		} else if (urb->number_of_packets >= ISODESC_MAX) {
 518			ndesc = ISODESC_MAX;
 519		} else {
 520			ndesc = urb->number_of_packets;
 521		}
 522		if (ev_type == 'C' && usb_urb_dir_in(urb))
 523			length = mon_bin_collate_isodesc(rp, urb, ndesc);
 524	} else {
 525		ndesc = 0;
 526	}
 527	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
 528
 529	/* not an issue unless there's a subtle bug in a HCD somewhere */
 530	if (length >= urb->transfer_buffer_length)
 531		length = urb->transfer_buffer_length;
 532
 533	if (length >= rp->b_size/5)
 534		length = rp->b_size/5;
 535
 536	if (usb_urb_dir_in(urb)) {
 537		if (ev_type == 'S') {
 538			length = 0;
 539			data_tag = '<';
 540		}
 541		/* Cannot rely on endpoint number in case of control ep.0 */
 542		dir = USB_DIR_IN;
 543	} else {
 544		if (ev_type == 'C') {
 545			length = 0;
 546			data_tag = '>';
 547		}
 548		dir = 0;
 549	}
 550
 551	if (rp->mmap_active) {
 552		offset = mon_buff_area_alloc_contiguous(rp,
 553						 length + PKT_SIZE + lendesc);
 554	} else {
 555		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
 556	}
 557	if (offset == ~0) {
 558		rp->cnt_lost++;
 559		spin_unlock_irqrestore(&rp->b_lock, flags);
 560		return;
 561	}
 562
 563	ep = MON_OFF2HDR(rp, offset);
 564	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
 565
 566	/*
 567	 * Fill the allocated area.
 568	 */
 569	memset(ep, 0, PKT_SIZE);
 570	ep->type = ev_type;
 571	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
 572	ep->epnum = dir | usb_endpoint_num(epd);
 573	ep->devnum = urb->dev->devnum;
 574	ep->busnum = urb->dev->bus->busnum;
 575	ep->id = (unsigned long) urb;
 576	ep->ts_sec = ts.tv_sec;
 577	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
 578	ep->status = status;
 579	ep->len_urb = urb_length;
 580	ep->len_cap = length + lendesc;
 581	ep->xfer_flags = urb->transfer_flags;
 582
 583	if (usb_endpoint_xfer_int(epd)) {
 584		ep->interval = urb->interval;
 585	} else if (usb_endpoint_xfer_isoc(epd)) {
 586		ep->interval = urb->interval;
 587		ep->start_frame = urb->start_frame;
 588		ep->s.iso.error_count = urb->error_count;
 589		ep->s.iso.numdesc = urb->number_of_packets;
 590	}
 591
 592	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
 593		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
 594	} else {
 595		ep->flag_setup = '-';
 596	}
 597
 598	if (ndesc != 0) {
 599		ep->ndesc = ndesc;
 600		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
 601		if ((offset += lendesc) >= rp->b_size)
 602			offset -= rp->b_size;
 603	}
 604
 605	if (length != 0) {
 606		length = mon_bin_get_data(rp, offset, urb, length,
 607				&ep->flag_data);
 608		if (length > 0) {
 609			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 610			ep->len_cap -= length;
 611			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 612			mon_buff_area_shrink(rp, delta);
 613		}
 614	} else {
 615		ep->flag_data = data_tag;
 616	}
 617
 618	spin_unlock_irqrestore(&rp->b_lock, flags);
 619
 620	wake_up(&rp->b_wait);
 621}
 622
 623static void mon_bin_submit(void *data, struct urb *urb)
 624{
 625	struct mon_reader_bin *rp = data;
 626	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
 627}
 628
 629static void mon_bin_complete(void *data, struct urb *urb, int status)
 630{
 631	struct mon_reader_bin *rp = data;
 632	mon_bin_event(rp, urb, 'C', status);
 633}
 634
 635static void mon_bin_error(void *data, struct urb *urb, int error)
 636{
 637	struct mon_reader_bin *rp = data;
 638	struct timespec64 ts;
 639	unsigned long flags;
 640	unsigned int offset;
 641	struct mon_bin_hdr *ep;
 642
 643	ktime_get_real_ts64(&ts);
 644
 645	spin_lock_irqsave(&rp->b_lock, flags);
 646
 647	offset = mon_buff_area_alloc(rp, PKT_SIZE);
 648	if (offset == ~0) {
 649		/* Not incrementing cnt_lost. Just because. */
 650		spin_unlock_irqrestore(&rp->b_lock, flags);
 651		return;
 652	}
 653
 654	ep = MON_OFF2HDR(rp, offset);
 655
 656	memset(ep, 0, PKT_SIZE);
 657	ep->type = 'E';
 658	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
 659	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
 660	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
 661	ep->devnum = urb->dev->devnum;
 662	ep->busnum = urb->dev->bus->busnum;
 663	ep->id = (unsigned long) urb;
 664	ep->ts_sec = ts.tv_sec;
 665	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
 666	ep->status = error;
 667
 668	ep->flag_setup = '-';
 669	ep->flag_data = 'E';
 670
 671	spin_unlock_irqrestore(&rp->b_lock, flags);
 672
 673	wake_up(&rp->b_wait);
 674}
 675
 676static int mon_bin_open(struct inode *inode, struct file *file)
 677{
 678	struct mon_bus *mbus;
 679	struct mon_reader_bin *rp;
 680	size_t size;
 681	int rc;
 682
 683	mutex_lock(&mon_lock);
 684	mbus = mon_bus_lookup(iminor(inode));
 685	if (mbus == NULL) {
 686		mutex_unlock(&mon_lock);
 687		return -ENODEV;
 688	}
 689	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
 690		printk(KERN_ERR TAG ": consistency error on open\n");
 691		mutex_unlock(&mon_lock);
 692		return -ENODEV;
 693	}
 694
 695	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
 696	if (rp == NULL) {
 697		rc = -ENOMEM;
 698		goto err_alloc;
 699	}
 700	spin_lock_init(&rp->b_lock);
 701	init_waitqueue_head(&rp->b_wait);
 702	mutex_init(&rp->fetch_lock);
 703	rp->b_size = BUFF_DFL;
 704
 705	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
 706	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
 707		rc = -ENOMEM;
 708		goto err_allocvec;
 709	}
 710
 711	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
 712		goto err_allocbuff;
 713
 714	rp->r.m_bus = mbus;
 715	rp->r.r_data = rp;
 716	rp->r.rnf_submit = mon_bin_submit;
 717	rp->r.rnf_error = mon_bin_error;
 718	rp->r.rnf_complete = mon_bin_complete;
 719
 720	mon_reader_add(mbus, &rp->r);
 721
 722	file->private_data = rp;
 723	mutex_unlock(&mon_lock);
 724	return 0;
 725
 726err_allocbuff:
 727	kfree(rp->b_vec);
 728err_allocvec:
 729	kfree(rp);
 730err_alloc:
 731	mutex_unlock(&mon_lock);
 732	return rc;
 733}
 734
 735/*
 736 * Extract an event from buffer and copy it to user space.
 737 * Wait if there is no event ready.
 738 * Returns zero or error.
 739 */
 740static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
 741    struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
 742    void __user *data, unsigned int nbytes)
 743{
 744	unsigned long flags;
 745	struct mon_bin_hdr *ep;
 746	size_t step_len;
 747	unsigned int offset;
 748	int rc;
 749
 750	mutex_lock(&rp->fetch_lock);
 751
 752	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 753		mutex_unlock(&rp->fetch_lock);
 754		return rc;
 755	}
 756
 757	ep = MON_OFF2HDR(rp, rp->b_out);
 758
 759	if (copy_to_user(hdr, ep, hdrbytes)) {
 760		mutex_unlock(&rp->fetch_lock);
 761		return -EFAULT;
 762	}
 763
 764	step_len = min(ep->len_cap, nbytes);
 765	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
 766
 767	if (copy_from_buf(rp, offset, data, step_len)) {
 768		mutex_unlock(&rp->fetch_lock);
 769		return -EFAULT;
 770	}
 771
 772	spin_lock_irqsave(&rp->b_lock, flags);
 773	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 774	spin_unlock_irqrestore(&rp->b_lock, flags);
 775	rp->b_read = 0;
 776
 777	mutex_unlock(&rp->fetch_lock);
 778	return 0;
 779}
 780
 781static int mon_bin_release(struct inode *inode, struct file *file)
 782{
 783	struct mon_reader_bin *rp = file->private_data;
 784	struct mon_bus* mbus = rp->r.m_bus;
 785
 786	mutex_lock(&mon_lock);
 787
 788	if (mbus->nreaders <= 0) {
 789		printk(KERN_ERR TAG ": consistency error on close\n");
 790		mutex_unlock(&mon_lock);
 791		return 0;
 792	}
 793	mon_reader_del(mbus, &rp->r);
 794
 795	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
 796	kfree(rp->b_vec);
 797	kfree(rp);
 798
 799	mutex_unlock(&mon_lock);
 800	return 0;
 801}
 802
 803static ssize_t mon_bin_read(struct file *file, char __user *buf,
 804    size_t nbytes, loff_t *ppos)
 805{
 806	struct mon_reader_bin *rp = file->private_data;
 807	unsigned int hdrbytes = PKT_SZ_API0;
 808	unsigned long flags;
 809	struct mon_bin_hdr *ep;
 810	unsigned int offset;
 811	size_t step_len;
 812	char *ptr;
 813	ssize_t done = 0;
 814	int rc;
 815
 816	mutex_lock(&rp->fetch_lock);
 817
 818	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 819		mutex_unlock(&rp->fetch_lock);
 820		return rc;
 821	}
 822
 823	ep = MON_OFF2HDR(rp, rp->b_out);
 824
 825	if (rp->b_read < hdrbytes) {
 826		step_len = min_t(size_t, nbytes, hdrbytes - rp->b_read);
 827		ptr = ((char *)ep) + rp->b_read;
 828		if (step_len && copy_to_user(buf, ptr, step_len)) {
 829			mutex_unlock(&rp->fetch_lock);
 830			return -EFAULT;
 831		}
 832		nbytes -= step_len;
 833		buf += step_len;
 834		rp->b_read += step_len;
 835		done += step_len;
 836	}
 837
 838	if (rp->b_read >= hdrbytes) {
 839		step_len = ep->len_cap;
 840		step_len -= rp->b_read - hdrbytes;
 841		if (step_len > nbytes)
 842			step_len = nbytes;
 843		offset = rp->b_out + PKT_SIZE;
 844		offset += rp->b_read - hdrbytes;
 845		if (offset >= rp->b_size)
 846			offset -= rp->b_size;
 847		if (copy_from_buf(rp, offset, buf, step_len)) {
 848			mutex_unlock(&rp->fetch_lock);
 849			return -EFAULT;
 850		}
 851		nbytes -= step_len;
 852		buf += step_len;
 853		rp->b_read += step_len;
 854		done += step_len;
 855	}
 856
 857	/*
 858	 * Check if whole packet was read, and if so, jump to the next one.
 859	 */
 860	if (rp->b_read >= hdrbytes + ep->len_cap) {
 861		spin_lock_irqsave(&rp->b_lock, flags);
 862		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 863		spin_unlock_irqrestore(&rp->b_lock, flags);
 864		rp->b_read = 0;
 865	}
 866
 867	mutex_unlock(&rp->fetch_lock);
 868	return done;
 869}
 870
 871/*
 872 * Remove at most nevents from chunked buffer.
 873 * Returns the number of removed events.
 874 */
 875static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
 876{
 877	unsigned long flags;
 878	struct mon_bin_hdr *ep;
 879	int i;
 880
 881	mutex_lock(&rp->fetch_lock);
 882	spin_lock_irqsave(&rp->b_lock, flags);
 883	for (i = 0; i < nevents; ++i) {
 884		if (MON_RING_EMPTY(rp))
 885			break;
 886
 887		ep = MON_OFF2HDR(rp, rp->b_out);
 888		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 889	}
 890	spin_unlock_irqrestore(&rp->b_lock, flags);
 891	rp->b_read = 0;
 892	mutex_unlock(&rp->fetch_lock);
 893	return i;
 894}
 895
 896/*
 897 * Fetch at most max event offsets into the buffer and put them into vec.
 898 * The events are usually freed later with mon_bin_flush.
 899 * Return the effective number of events fetched.
 900 */
 901static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
 902    u32 __user *vec, unsigned int max)
 903{
 904	unsigned int cur_out;
 905	unsigned int bytes, avail;
 906	unsigned int size;
 907	unsigned int nevents;
 908	struct mon_bin_hdr *ep;
 909	unsigned long flags;
 910	int rc;
 911
 912	mutex_lock(&rp->fetch_lock);
 913
 914	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 915		mutex_unlock(&rp->fetch_lock);
 916		return rc;
 917	}
 918
 919	spin_lock_irqsave(&rp->b_lock, flags);
 920	avail = rp->b_cnt;
 921	spin_unlock_irqrestore(&rp->b_lock, flags);
 922
 923	cur_out = rp->b_out;
 924	nevents = 0;
 925	bytes = 0;
 926	while (bytes < avail) {
 927		if (nevents >= max)
 928			break;
 929
 930		ep = MON_OFF2HDR(rp, cur_out);
 931		if (put_user(cur_out, &vec[nevents])) {
 932			mutex_unlock(&rp->fetch_lock);
 933			return -EFAULT;
 934		}
 935
 936		nevents++;
 937		size = ep->len_cap + PKT_SIZE;
 938		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 939		if ((cur_out += size) >= rp->b_size)
 940			cur_out -= rp->b_size;
 941		bytes += size;
 942	}
 943
 944	mutex_unlock(&rp->fetch_lock);
 945	return nevents;
 946}
 947
 948/*
 949 * Count events. This is almost the same as the above mon_bin_fetch,
 950 * only we do not store offsets into user vector, and we have no limit.
 951 */
 952static int mon_bin_queued(struct mon_reader_bin *rp)
 953{
 954	unsigned int cur_out;
 955	unsigned int bytes, avail;
 956	unsigned int size;
 957	unsigned int nevents;
 958	struct mon_bin_hdr *ep;
 959	unsigned long flags;
 960
 961	mutex_lock(&rp->fetch_lock);
 962
 963	spin_lock_irqsave(&rp->b_lock, flags);
 964	avail = rp->b_cnt;
 965	spin_unlock_irqrestore(&rp->b_lock, flags);
 966
 967	cur_out = rp->b_out;
 968	nevents = 0;
 969	bytes = 0;
 970	while (bytes < avail) {
 971		ep = MON_OFF2HDR(rp, cur_out);
 972
 973		nevents++;
 974		size = ep->len_cap + PKT_SIZE;
 975		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 976		if ((cur_out += size) >= rp->b_size)
 977			cur_out -= rp->b_size;
 978		bytes += size;
 979	}
 980
 981	mutex_unlock(&rp->fetch_lock);
 982	return nevents;
 983}
 984
 985/*
 986 */
 987static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 988{
 989	struct mon_reader_bin *rp = file->private_data;
 990	// struct mon_bus* mbus = rp->r.m_bus;
 991	int ret = 0;
 992	struct mon_bin_hdr *ep;
 993	unsigned long flags;
 994
 995	switch (cmd) {
 996
 997	case MON_IOCQ_URB_LEN:
 998		/*
 999		 * N.B. This only returns the size of data, without the header.
1000		 */
1001		spin_lock_irqsave(&rp->b_lock, flags);
1002		if (!MON_RING_EMPTY(rp)) {
1003			ep = MON_OFF2HDR(rp, rp->b_out);
1004			ret = ep->len_cap;
1005		}
1006		spin_unlock_irqrestore(&rp->b_lock, flags);
1007		break;
1008
1009	case MON_IOCQ_RING_SIZE:
1010		mutex_lock(&rp->fetch_lock);
1011		ret = rp->b_size;
1012		mutex_unlock(&rp->fetch_lock);
1013		break;
1014
1015	case MON_IOCT_RING_SIZE:
1016		/*
1017		 * Changing the buffer size will flush it's contents; the new
1018		 * buffer is allocated before releasing the old one to be sure
1019		 * the device will stay functional also in case of memory
1020		 * pressure.
1021		 */
1022		{
1023		int size;
1024		struct mon_pgmap *vec;
1025
1026		if (arg < BUFF_MIN || arg > BUFF_MAX)
1027			return -EINVAL;
1028
1029		size = CHUNK_ALIGN(arg);
1030		vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1031			      GFP_KERNEL);
1032		if (vec == NULL) {
1033			ret = -ENOMEM;
1034			break;
1035		}
1036
1037		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1038		if (ret < 0) {
1039			kfree(vec);
1040			break;
1041		}
1042
1043		mutex_lock(&rp->fetch_lock);
1044		spin_lock_irqsave(&rp->b_lock, flags);
1045		if (rp->mmap_active) {
1046			mon_free_buff(vec, size/CHUNK_SIZE);
1047			kfree(vec);
1048			ret = -EBUSY;
1049		} else {
1050			mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1051			kfree(rp->b_vec);
1052			rp->b_vec  = vec;
1053			rp->b_size = size;
1054			rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1055			rp->cnt_lost = 0;
1056		}
1057		spin_unlock_irqrestore(&rp->b_lock, flags);
1058		mutex_unlock(&rp->fetch_lock);
1059		}
1060		break;
1061
1062	case MON_IOCH_MFLUSH:
1063		ret = mon_bin_flush(rp, arg);
1064		break;
1065
1066	case MON_IOCX_GET:
1067	case MON_IOCX_GETX:
1068		{
1069		struct mon_bin_get getb;
1070
1071		if (copy_from_user(&getb, (void __user *)arg,
1072					    sizeof(struct mon_bin_get)))
1073			return -EFAULT;
1074
1075		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1076			return -EINVAL;
1077		ret = mon_bin_get_event(file, rp, getb.hdr,
1078		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1079		    getb.data, (unsigned int)getb.alloc);
1080		}
1081		break;
1082
1083	case MON_IOCX_MFETCH:
1084		{
1085		struct mon_bin_mfetch mfetch;
1086		struct mon_bin_mfetch __user *uptr;
1087
1088		uptr = (struct mon_bin_mfetch __user *)arg;
1089
1090		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1091			return -EFAULT;
1092
1093		if (mfetch.nflush) {
1094			ret = mon_bin_flush(rp, mfetch.nflush);
1095			if (ret < 0)
1096				return ret;
1097			if (put_user(ret, &uptr->nflush))
1098				return -EFAULT;
1099		}
1100		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1101		if (ret < 0)
1102			return ret;
1103		if (put_user(ret, &uptr->nfetch))
1104			return -EFAULT;
1105		ret = 0;
1106		}
1107		break;
1108
1109	case MON_IOCG_STATS: {
1110		struct mon_bin_stats __user *sp;
1111		unsigned int nevents;
1112		unsigned int ndropped;
1113
1114		spin_lock_irqsave(&rp->b_lock, flags);
1115		ndropped = rp->cnt_lost;
1116		rp->cnt_lost = 0;
1117		spin_unlock_irqrestore(&rp->b_lock, flags);
1118		nevents = mon_bin_queued(rp);
1119
1120		sp = (struct mon_bin_stats __user *)arg;
1121		if (put_user(ndropped, &sp->dropped))
1122			return -EFAULT;
1123		if (put_user(nevents, &sp->queued))
1124			return -EFAULT;
1125
1126		}
1127		break;
1128
1129	default:
1130		return -ENOTTY;
1131	}
1132
1133	return ret;
1134}
1135
1136#ifdef CONFIG_COMPAT
1137static long mon_bin_compat_ioctl(struct file *file,
1138    unsigned int cmd, unsigned long arg)
1139{
1140	struct mon_reader_bin *rp = file->private_data;
1141	int ret;
1142
1143	switch (cmd) {
1144
1145	case MON_IOCX_GET32:
1146	case MON_IOCX_GETX32:
1147		{
1148		struct mon_bin_get32 getb;
1149
1150		if (copy_from_user(&getb, (void __user *)arg,
1151					    sizeof(struct mon_bin_get32)))
1152			return -EFAULT;
1153
1154		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1155		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1156		    compat_ptr(getb.data32), getb.alloc32);
1157		if (ret < 0)
1158			return ret;
1159		}
1160		return 0;
1161
1162	case MON_IOCX_MFETCH32:
1163		{
1164		struct mon_bin_mfetch32 mfetch;
1165		struct mon_bin_mfetch32 __user *uptr;
1166
1167		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1168
1169		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1170			return -EFAULT;
1171
1172		if (mfetch.nflush32) {
1173			ret = mon_bin_flush(rp, mfetch.nflush32);
1174			if (ret < 0)
1175				return ret;
1176			if (put_user(ret, &uptr->nflush32))
1177				return -EFAULT;
1178		}
1179		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1180		    mfetch.nfetch32);
1181		if (ret < 0)
1182			return ret;
1183		if (put_user(ret, &uptr->nfetch32))
1184			return -EFAULT;
1185		}
1186		return 0;
1187
1188	case MON_IOCG_STATS:
1189		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1190
1191	case MON_IOCQ_URB_LEN:
1192	case MON_IOCQ_RING_SIZE:
1193	case MON_IOCT_RING_SIZE:
1194	case MON_IOCH_MFLUSH:
1195		return mon_bin_ioctl(file, cmd, arg);
1196
1197	default:
1198		;
1199	}
1200	return -ENOTTY;
1201}
1202#endif /* CONFIG_COMPAT */
1203
1204static __poll_t
1205mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1206{
1207	struct mon_reader_bin *rp = file->private_data;
1208	__poll_t mask = 0;
1209	unsigned long flags;
1210
1211	if (file->f_mode & FMODE_READ)
1212		poll_wait(file, &rp->b_wait, wait);
1213
1214	spin_lock_irqsave(&rp->b_lock, flags);
1215	if (!MON_RING_EMPTY(rp))
1216		mask |= EPOLLIN | EPOLLRDNORM;    /* readable */
1217	spin_unlock_irqrestore(&rp->b_lock, flags);
1218	return mask;
1219}
1220
1221/*
1222 * open and close: just keep track of how many times the device is
1223 * mapped, to use the proper memory allocation function.
1224 */
1225static void mon_bin_vma_open(struct vm_area_struct *vma)
1226{
1227	struct mon_reader_bin *rp = vma->vm_private_data;
1228	unsigned long flags;
1229
1230	spin_lock_irqsave(&rp->b_lock, flags);
1231	rp->mmap_active++;
1232	spin_unlock_irqrestore(&rp->b_lock, flags);
1233}
1234
1235static void mon_bin_vma_close(struct vm_area_struct *vma)
1236{
1237	unsigned long flags;
1238
1239	struct mon_reader_bin *rp = vma->vm_private_data;
1240	spin_lock_irqsave(&rp->b_lock, flags);
1241	rp->mmap_active--;
1242	spin_unlock_irqrestore(&rp->b_lock, flags);
1243}
1244
1245/*
1246 * Map ring pages to user space.
1247 */
1248static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1249{
1250	struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1251	unsigned long offset, chunk_idx;
1252	struct page *pageptr;
1253	unsigned long flags;
1254
1255	spin_lock_irqsave(&rp->b_lock, flags);
1256	offset = vmf->pgoff << PAGE_SHIFT;
1257	if (offset >= rp->b_size) {
1258		spin_unlock_irqrestore(&rp->b_lock, flags);
1259		return VM_FAULT_SIGBUS;
1260	}
1261	chunk_idx = offset / CHUNK_SIZE;
1262	pageptr = rp->b_vec[chunk_idx].pg;
1263	get_page(pageptr);
1264	vmf->page = pageptr;
1265	spin_unlock_irqrestore(&rp->b_lock, flags);
1266	return 0;
1267}
1268
1269static const struct vm_operations_struct mon_bin_vm_ops = {
1270	.open =     mon_bin_vma_open,
1271	.close =    mon_bin_vma_close,
1272	.fault =    mon_bin_vma_fault,
1273};
1274
1275static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1276{
1277	/* don't do anything here: "fault" will set up page table entries */
1278	vma->vm_ops = &mon_bin_vm_ops;
1279
1280	if (vma->vm_flags & VM_WRITE)
1281		return -EPERM;
1282
1283	vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE);
1284	vma->vm_private_data = filp->private_data;
1285	mon_bin_vma_open(vma);
1286	return 0;
1287}
1288
1289static const struct file_operations mon_fops_binary = {
1290	.owner =	THIS_MODULE,
1291	.open =		mon_bin_open,
 
1292	.read =		mon_bin_read,
1293	/* .write =	mon_text_write, */
1294	.poll =		mon_bin_poll,
1295	.unlocked_ioctl = mon_bin_ioctl,
1296#ifdef CONFIG_COMPAT
1297	.compat_ioctl =	mon_bin_compat_ioctl,
1298#endif
1299	.release =	mon_bin_release,
1300	.mmap =		mon_bin_mmap,
1301};
1302
1303static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1304{
1305	DECLARE_WAITQUEUE(waita, current);
1306	unsigned long flags;
1307
1308	add_wait_queue(&rp->b_wait, &waita);
1309	set_current_state(TASK_INTERRUPTIBLE);
1310
1311	spin_lock_irqsave(&rp->b_lock, flags);
1312	while (MON_RING_EMPTY(rp)) {
1313		spin_unlock_irqrestore(&rp->b_lock, flags);
1314
1315		if (file->f_flags & O_NONBLOCK) {
1316			set_current_state(TASK_RUNNING);
1317			remove_wait_queue(&rp->b_wait, &waita);
1318			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1319		}
1320		schedule();
1321		if (signal_pending(current)) {
1322			remove_wait_queue(&rp->b_wait, &waita);
1323			return -EINTR;
1324		}
1325		set_current_state(TASK_INTERRUPTIBLE);
1326
1327		spin_lock_irqsave(&rp->b_lock, flags);
1328	}
1329	spin_unlock_irqrestore(&rp->b_lock, flags);
1330
1331	set_current_state(TASK_RUNNING);
1332	remove_wait_queue(&rp->b_wait, &waita);
1333	return 0;
1334}
1335
1336static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1337{
1338	int n;
1339	unsigned long vaddr;
1340
1341	for (n = 0; n < npages; n++) {
1342		vaddr = get_zeroed_page(GFP_KERNEL);
1343		if (vaddr == 0) {
1344			while (n-- != 0)
1345				free_page((unsigned long) map[n].ptr);
1346			return -ENOMEM;
1347		}
1348		map[n].ptr = (unsigned char *) vaddr;
1349		map[n].pg = virt_to_page((void *) vaddr);
1350	}
1351	return 0;
1352}
1353
1354static void mon_free_buff(struct mon_pgmap *map, int npages)
1355{
1356	int n;
1357
1358	for (n = 0; n < npages; n++)
1359		free_page((unsigned long) map[n].ptr);
1360}
1361
1362int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1363{
1364	struct device *dev;
1365	unsigned minor = ubus? ubus->busnum: 0;
1366
1367	if (minor >= MON_BIN_MAX_MINOR)
1368		return 0;
1369
1370	dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL,
1371			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1372			    "usbmon%d", minor);
1373	if (IS_ERR(dev))
1374		return 0;
1375
1376	mbus->classdev = dev;
1377	return 1;
1378}
1379
1380void mon_bin_del(struct mon_bus *mbus)
1381{
1382	device_destroy(&mon_bin_class, mbus->classdev->devt);
1383}
1384
1385int __init mon_bin_init(void)
1386{
1387	int rc;
1388
1389	rc = class_register(&mon_bin_class);
1390	if (rc)
 
1391		goto err_class;
 
1392
1393	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1394	if (rc < 0)
1395		goto err_dev;
1396
1397	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1398	mon_bin_cdev.owner = THIS_MODULE;
1399
1400	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1401	if (rc < 0)
1402		goto err_add;
1403
1404	return 0;
1405
1406err_add:
1407	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1408err_dev:
1409	class_unregister(&mon_bin_class);
1410err_class:
1411	return rc;
1412}
1413
1414void mon_bin_exit(void)
1415{
1416	cdev_del(&mon_bin_cdev);
1417	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1418	class_unregister(&mon_bin_class);
1419}