Loading...
1/*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/fs.h>
13#include <linux/cdev.h>
14#include <linux/usb.h>
15#include <linux/poll.h>
16#include <linux/compat.h>
17#include <linux/mm.h>
18#include <linux/scatterlist.h>
19#include <linux/slab.h>
20
21#include <asm/uaccess.h>
22
23#include "usb_mon.h"
24
25/*
26 * Defined by USB 2.0 clause 9.3, table 9.2.
27 */
28#define SETUP_LEN 8
29
30/* ioctl macros */
31#define MON_IOC_MAGIC 0x92
32
33#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
34/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
35#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
36#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
37#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
38#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
39#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
40#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
41/* #9 was MON_IOCT_SETAPI */
42#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
43
44#ifdef CONFIG_COMPAT
45#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
46#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
47#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
48#endif
49
50/*
51 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
52 * But it's all right. Just use a simple way to make sure the chunk is never
53 * smaller than a page.
54 *
55 * N.B. An application does not know our chunk size.
56 *
57 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
58 * page-sized chunks for the time being.
59 */
60#define CHUNK_SIZE PAGE_SIZE
61#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
62
63/*
64 * The magic limit was calculated so that it allows the monitoring
65 * application to pick data once in two ticks. This way, another application,
66 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
67 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
68 * enormous overhead built into the bus protocol, so we need about 1000 KB.
69 *
70 * This is still too much for most cases, where we just snoop a few
71 * descriptor fetches for enumeration. So, the default is a "reasonable"
72 * amount for systems with HZ=250 and incomplete bus saturation.
73 *
74 * XXX What about multi-megabyte URBs which take minutes to transfer?
75 */
76#define BUFF_MAX CHUNK_ALIGN(1200*1024)
77#define BUFF_DFL CHUNK_ALIGN(300*1024)
78#define BUFF_MIN CHUNK_ALIGN(8*1024)
79
80/*
81 * The per-event API header (2 per URB).
82 *
83 * This structure is seen in userland as defined by the documentation.
84 */
85struct mon_bin_hdr {
86 u64 id; /* URB ID - from submission to callback */
87 unsigned char type; /* Same as in text API; extensible. */
88 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
89 unsigned char epnum; /* Endpoint number and transfer direction */
90 unsigned char devnum; /* Device address */
91 unsigned short busnum; /* Bus number */
92 char flag_setup;
93 char flag_data;
94 s64 ts_sec; /* gettimeofday */
95 s32 ts_usec; /* gettimeofday */
96 int status;
97 unsigned int len_urb; /* Length of data (submitted or actual) */
98 unsigned int len_cap; /* Delivered length */
99 union {
100 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
101 struct iso_rec {
102 int error_count;
103 int numdesc;
104 } iso;
105 } s;
106 int interval;
107 int start_frame;
108 unsigned int xfer_flags;
109 unsigned int ndesc; /* Actual number of ISO descriptors */
110};
111
112/*
113 * ISO vector, packed into the head of data stream.
114 * This has to take 16 bytes to make sure that the end of buffer
115 * wrap is not happening in the middle of a descriptor.
116 */
117struct mon_bin_isodesc {
118 int iso_status;
119 unsigned int iso_off;
120 unsigned int iso_len;
121 u32 _pad;
122};
123
124/* per file statistic */
125struct mon_bin_stats {
126 u32 queued;
127 u32 dropped;
128};
129
130struct mon_bin_get {
131 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
132 void __user *data;
133 size_t alloc; /* Length of data (can be zero) */
134};
135
136struct mon_bin_mfetch {
137 u32 __user *offvec; /* Vector of events fetched */
138 u32 nfetch; /* Number of events to fetch (out: fetched) */
139 u32 nflush; /* Number of events to flush */
140};
141
142#ifdef CONFIG_COMPAT
143struct mon_bin_get32 {
144 u32 hdr32;
145 u32 data32;
146 u32 alloc32;
147};
148
149struct mon_bin_mfetch32 {
150 u32 offvec32;
151 u32 nfetch32;
152 u32 nflush32;
153};
154#endif
155
156/* Having these two values same prevents wrapping of the mon_bin_hdr */
157#define PKT_ALIGN 64
158#define PKT_SIZE 64
159
160#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
161#define PKT_SZ_API1 64 /* API 1 size: extra fields */
162
163#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
164
165/* max number of USB bus supported */
166#define MON_BIN_MAX_MINOR 128
167
168/*
169 * The buffer: map of used pages.
170 */
171struct mon_pgmap {
172 struct page *pg;
173 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
174};
175
176/*
177 * This gets associated with an open file struct.
178 */
179struct mon_reader_bin {
180 /* The buffer: one per open. */
181 spinlock_t b_lock; /* Protect b_cnt, b_in */
182 unsigned int b_size; /* Current size of the buffer - bytes */
183 unsigned int b_cnt; /* Bytes used */
184 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
185 unsigned int b_read; /* Amount of read data in curr. pkt. */
186 struct mon_pgmap *b_vec; /* The map array */
187 wait_queue_head_t b_wait; /* Wait for data here */
188
189 struct mutex fetch_lock; /* Protect b_read, b_out */
190 int mmap_active;
191
192 /* A list of these is needed for "bus 0". Some time later. */
193 struct mon_reader r;
194
195 /* Stats */
196 unsigned int cnt_lost;
197};
198
199static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
200 unsigned int offset)
201{
202 return (struct mon_bin_hdr *)
203 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
204}
205
206#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
207
208static unsigned char xfer_to_pipe[4] = {
209 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
210};
211
212static struct class *mon_bin_class;
213static dev_t mon_bin_dev0;
214static struct cdev mon_bin_cdev;
215
216static void mon_buff_area_fill(const struct mon_reader_bin *rp,
217 unsigned int offset, unsigned int size);
218static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
219static int mon_alloc_buff(struct mon_pgmap *map, int npages);
220static void mon_free_buff(struct mon_pgmap *map, int npages);
221
222/*
223 * This is a "chunked memcpy". It does not manipulate any counters.
224 */
225static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
226 unsigned int off, const unsigned char *from, unsigned int length)
227{
228 unsigned int step_len;
229 unsigned char *buf;
230 unsigned int in_page;
231
232 while (length) {
233 /*
234 * Determine step_len.
235 */
236 step_len = length;
237 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
238 if (in_page < step_len)
239 step_len = in_page;
240
241 /*
242 * Copy data and advance pointers.
243 */
244 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
245 memcpy(buf, from, step_len);
246 if ((off += step_len) >= this->b_size) off = 0;
247 from += step_len;
248 length -= step_len;
249 }
250 return off;
251}
252
253/*
254 * This is a little worse than the above because it's "chunked copy_to_user".
255 * The return value is an error code, not an offset.
256 */
257static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
258 char __user *to, int length)
259{
260 unsigned int step_len;
261 unsigned char *buf;
262 unsigned int in_page;
263
264 while (length) {
265 /*
266 * Determine step_len.
267 */
268 step_len = length;
269 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
270 if (in_page < step_len)
271 step_len = in_page;
272
273 /*
274 * Copy data and advance pointers.
275 */
276 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
277 if (copy_to_user(to, buf, step_len))
278 return -EINVAL;
279 if ((off += step_len) >= this->b_size) off = 0;
280 to += step_len;
281 length -= step_len;
282 }
283 return 0;
284}
285
286/*
287 * Allocate an (aligned) area in the buffer.
288 * This is called under b_lock.
289 * Returns ~0 on failure.
290 */
291static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
292 unsigned int size)
293{
294 unsigned int offset;
295
296 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
297 if (rp->b_cnt + size > rp->b_size)
298 return ~0;
299 offset = rp->b_in;
300 rp->b_cnt += size;
301 if ((rp->b_in += size) >= rp->b_size)
302 rp->b_in -= rp->b_size;
303 return offset;
304}
305
306/*
307 * This is the same thing as mon_buff_area_alloc, only it does not allow
308 * buffers to wrap. This is needed by applications which pass references
309 * into mmap-ed buffers up their stacks (libpcap can do that).
310 *
311 * Currently, we always have the header stuck with the data, although
312 * it is not strictly speaking necessary.
313 *
314 * When a buffer would wrap, we place a filler packet to mark the space.
315 */
316static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
317 unsigned int size)
318{
319 unsigned int offset;
320 unsigned int fill_size;
321
322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
323 if (rp->b_cnt + size > rp->b_size)
324 return ~0;
325 if (rp->b_in + size > rp->b_size) {
326 /*
327 * This would wrap. Find if we still have space after
328 * skipping to the end of the buffer. If we do, place
329 * a filler packet and allocate a new packet.
330 */
331 fill_size = rp->b_size - rp->b_in;
332 if (rp->b_cnt + size + fill_size > rp->b_size)
333 return ~0;
334 mon_buff_area_fill(rp, rp->b_in, fill_size);
335
336 offset = 0;
337 rp->b_in = size;
338 rp->b_cnt += size + fill_size;
339 } else if (rp->b_in + size == rp->b_size) {
340 offset = rp->b_in;
341 rp->b_in = 0;
342 rp->b_cnt += size;
343 } else {
344 offset = rp->b_in;
345 rp->b_in += size;
346 rp->b_cnt += size;
347 }
348 return offset;
349}
350
351/*
352 * Return a few (kilo-)bytes to the head of the buffer.
353 * This is used if a data fetch fails.
354 */
355static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
356{
357
358 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
359 rp->b_cnt -= size;
360 if (rp->b_in < size)
361 rp->b_in += rp->b_size;
362 rp->b_in -= size;
363}
364
365/*
366 * This has to be called under both b_lock and fetch_lock, because
367 * it accesses both b_cnt and b_out.
368 */
369static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
370{
371
372 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
373 rp->b_cnt -= size;
374 if ((rp->b_out += size) >= rp->b_size)
375 rp->b_out -= rp->b_size;
376}
377
378static void mon_buff_area_fill(const struct mon_reader_bin *rp,
379 unsigned int offset, unsigned int size)
380{
381 struct mon_bin_hdr *ep;
382
383 ep = MON_OFF2HDR(rp, offset);
384 memset(ep, 0, PKT_SIZE);
385 ep->type = '@';
386 ep->len_cap = size - PKT_SIZE;
387}
388
389static inline char mon_bin_get_setup(unsigned char *setupb,
390 const struct urb *urb, char ev_type)
391{
392
393 if (urb->setup_packet == NULL)
394 return 'Z';
395 memcpy(setupb, urb->setup_packet, SETUP_LEN);
396 return 0;
397}
398
399static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
400 unsigned int offset, struct urb *urb, unsigned int length,
401 char *flag)
402{
403 int i;
404 struct scatterlist *sg;
405 unsigned int this_len;
406
407 *flag = 0;
408 if (urb->num_sgs == 0) {
409 if (urb->transfer_buffer == NULL) {
410 *flag = 'Z';
411 return length;
412 }
413 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
414 length = 0;
415
416 } else {
417 /* If IOMMU coalescing occurred, we cannot trust sg_page */
418 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
419 *flag = 'D';
420 return length;
421 }
422
423 /* Copy up to the first non-addressable segment */
424 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
425 if (length == 0 || PageHighMem(sg_page(sg)))
426 break;
427 this_len = min_t(unsigned int, sg->length, length);
428 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
429 this_len);
430 length -= this_len;
431 }
432 if (i == 0)
433 *flag = 'D';
434 }
435
436 return length;
437}
438
439/*
440 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
441 * be used to determine the length of the whole contiguous buffer.
442 */
443static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
444 struct urb *urb, unsigned int ndesc)
445{
446 struct usb_iso_packet_descriptor *fp;
447 unsigned int length;
448
449 length = 0;
450 fp = urb->iso_frame_desc;
451 while (ndesc-- != 0) {
452 if (fp->actual_length != 0) {
453 if (fp->offset + fp->actual_length > length)
454 length = fp->offset + fp->actual_length;
455 }
456 fp++;
457 }
458 return length;
459}
460
461static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
462 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
463{
464 struct mon_bin_isodesc *dp;
465 struct usb_iso_packet_descriptor *fp;
466
467 fp = urb->iso_frame_desc;
468 while (ndesc-- != 0) {
469 dp = (struct mon_bin_isodesc *)
470 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
471 dp->iso_status = fp->status;
472 dp->iso_off = fp->offset;
473 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
474 dp->_pad = 0;
475 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
476 offset = 0;
477 fp++;
478 }
479}
480
481static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
482 char ev_type, int status)
483{
484 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
485 struct timeval ts;
486 unsigned long flags;
487 unsigned int urb_length;
488 unsigned int offset;
489 unsigned int length;
490 unsigned int delta;
491 unsigned int ndesc, lendesc;
492 unsigned char dir;
493 struct mon_bin_hdr *ep;
494 char data_tag = 0;
495
496 do_gettimeofday(&ts);
497
498 spin_lock_irqsave(&rp->b_lock, flags);
499
500 /*
501 * Find the maximum allowable length, then allocate space.
502 */
503 urb_length = (ev_type == 'S') ?
504 urb->transfer_buffer_length : urb->actual_length;
505 length = urb_length;
506
507 if (usb_endpoint_xfer_isoc(epd)) {
508 if (urb->number_of_packets < 0) {
509 ndesc = 0;
510 } else if (urb->number_of_packets >= ISODESC_MAX) {
511 ndesc = ISODESC_MAX;
512 } else {
513 ndesc = urb->number_of_packets;
514 }
515 if (ev_type == 'C' && usb_urb_dir_in(urb))
516 length = mon_bin_collate_isodesc(rp, urb, ndesc);
517 } else {
518 ndesc = 0;
519 }
520 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
521
522 /* not an issue unless there's a subtle bug in a HCD somewhere */
523 if (length >= urb->transfer_buffer_length)
524 length = urb->transfer_buffer_length;
525
526 if (length >= rp->b_size/5)
527 length = rp->b_size/5;
528
529 if (usb_urb_dir_in(urb)) {
530 if (ev_type == 'S') {
531 length = 0;
532 data_tag = '<';
533 }
534 /* Cannot rely on endpoint number in case of control ep.0 */
535 dir = USB_DIR_IN;
536 } else {
537 if (ev_type == 'C') {
538 length = 0;
539 data_tag = '>';
540 }
541 dir = 0;
542 }
543
544 if (rp->mmap_active) {
545 offset = mon_buff_area_alloc_contiguous(rp,
546 length + PKT_SIZE + lendesc);
547 } else {
548 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
549 }
550 if (offset == ~0) {
551 rp->cnt_lost++;
552 spin_unlock_irqrestore(&rp->b_lock, flags);
553 return;
554 }
555
556 ep = MON_OFF2HDR(rp, offset);
557 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
558
559 /*
560 * Fill the allocated area.
561 */
562 memset(ep, 0, PKT_SIZE);
563 ep->type = ev_type;
564 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
565 ep->epnum = dir | usb_endpoint_num(epd);
566 ep->devnum = urb->dev->devnum;
567 ep->busnum = urb->dev->bus->busnum;
568 ep->id = (unsigned long) urb;
569 ep->ts_sec = ts.tv_sec;
570 ep->ts_usec = ts.tv_usec;
571 ep->status = status;
572 ep->len_urb = urb_length;
573 ep->len_cap = length + lendesc;
574 ep->xfer_flags = urb->transfer_flags;
575
576 if (usb_endpoint_xfer_int(epd)) {
577 ep->interval = urb->interval;
578 } else if (usb_endpoint_xfer_isoc(epd)) {
579 ep->interval = urb->interval;
580 ep->start_frame = urb->start_frame;
581 ep->s.iso.error_count = urb->error_count;
582 ep->s.iso.numdesc = urb->number_of_packets;
583 }
584
585 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
586 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
587 } else {
588 ep->flag_setup = '-';
589 }
590
591 if (ndesc != 0) {
592 ep->ndesc = ndesc;
593 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
594 if ((offset += lendesc) >= rp->b_size)
595 offset -= rp->b_size;
596 }
597
598 if (length != 0) {
599 length = mon_bin_get_data(rp, offset, urb, length,
600 &ep->flag_data);
601 if (length > 0) {
602 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
603 ep->len_cap -= length;
604 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
605 mon_buff_area_shrink(rp, delta);
606 }
607 } else {
608 ep->flag_data = data_tag;
609 }
610
611 spin_unlock_irqrestore(&rp->b_lock, flags);
612
613 wake_up(&rp->b_wait);
614}
615
616static void mon_bin_submit(void *data, struct urb *urb)
617{
618 struct mon_reader_bin *rp = data;
619 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
620}
621
622static void mon_bin_complete(void *data, struct urb *urb, int status)
623{
624 struct mon_reader_bin *rp = data;
625 mon_bin_event(rp, urb, 'C', status);
626}
627
628static void mon_bin_error(void *data, struct urb *urb, int error)
629{
630 struct mon_reader_bin *rp = data;
631 struct timeval ts;
632 unsigned long flags;
633 unsigned int offset;
634 struct mon_bin_hdr *ep;
635
636 do_gettimeofday(&ts);
637
638 spin_lock_irqsave(&rp->b_lock, flags);
639
640 offset = mon_buff_area_alloc(rp, PKT_SIZE);
641 if (offset == ~0) {
642 /* Not incrementing cnt_lost. Just because. */
643 spin_unlock_irqrestore(&rp->b_lock, flags);
644 return;
645 }
646
647 ep = MON_OFF2HDR(rp, offset);
648
649 memset(ep, 0, PKT_SIZE);
650 ep->type = 'E';
651 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
652 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
653 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
654 ep->devnum = urb->dev->devnum;
655 ep->busnum = urb->dev->bus->busnum;
656 ep->id = (unsigned long) urb;
657 ep->ts_sec = ts.tv_sec;
658 ep->ts_usec = ts.tv_usec;
659 ep->status = error;
660
661 ep->flag_setup = '-';
662 ep->flag_data = 'E';
663
664 spin_unlock_irqrestore(&rp->b_lock, flags);
665
666 wake_up(&rp->b_wait);
667}
668
669static int mon_bin_open(struct inode *inode, struct file *file)
670{
671 struct mon_bus *mbus;
672 struct mon_reader_bin *rp;
673 size_t size;
674 int rc;
675
676 mutex_lock(&mon_lock);
677 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
678 mutex_unlock(&mon_lock);
679 return -ENODEV;
680 }
681 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
682 printk(KERN_ERR TAG ": consistency error on open\n");
683 mutex_unlock(&mon_lock);
684 return -ENODEV;
685 }
686
687 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
688 if (rp == NULL) {
689 rc = -ENOMEM;
690 goto err_alloc;
691 }
692 spin_lock_init(&rp->b_lock);
693 init_waitqueue_head(&rp->b_wait);
694 mutex_init(&rp->fetch_lock);
695 rp->b_size = BUFF_DFL;
696
697 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
698 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
699 rc = -ENOMEM;
700 goto err_allocvec;
701 }
702
703 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
704 goto err_allocbuff;
705
706 rp->r.m_bus = mbus;
707 rp->r.r_data = rp;
708 rp->r.rnf_submit = mon_bin_submit;
709 rp->r.rnf_error = mon_bin_error;
710 rp->r.rnf_complete = mon_bin_complete;
711
712 mon_reader_add(mbus, &rp->r);
713
714 file->private_data = rp;
715 mutex_unlock(&mon_lock);
716 return 0;
717
718err_allocbuff:
719 kfree(rp->b_vec);
720err_allocvec:
721 kfree(rp);
722err_alloc:
723 mutex_unlock(&mon_lock);
724 return rc;
725}
726
727/*
728 * Extract an event from buffer and copy it to user space.
729 * Wait if there is no event ready.
730 * Returns zero or error.
731 */
732static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
733 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
734 void __user *data, unsigned int nbytes)
735{
736 unsigned long flags;
737 struct mon_bin_hdr *ep;
738 size_t step_len;
739 unsigned int offset;
740 int rc;
741
742 mutex_lock(&rp->fetch_lock);
743
744 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
745 mutex_unlock(&rp->fetch_lock);
746 return rc;
747 }
748
749 ep = MON_OFF2HDR(rp, rp->b_out);
750
751 if (copy_to_user(hdr, ep, hdrbytes)) {
752 mutex_unlock(&rp->fetch_lock);
753 return -EFAULT;
754 }
755
756 step_len = min(ep->len_cap, nbytes);
757 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
758
759 if (copy_from_buf(rp, offset, data, step_len)) {
760 mutex_unlock(&rp->fetch_lock);
761 return -EFAULT;
762 }
763
764 spin_lock_irqsave(&rp->b_lock, flags);
765 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
766 spin_unlock_irqrestore(&rp->b_lock, flags);
767 rp->b_read = 0;
768
769 mutex_unlock(&rp->fetch_lock);
770 return 0;
771}
772
773static int mon_bin_release(struct inode *inode, struct file *file)
774{
775 struct mon_reader_bin *rp = file->private_data;
776 struct mon_bus* mbus = rp->r.m_bus;
777
778 mutex_lock(&mon_lock);
779
780 if (mbus->nreaders <= 0) {
781 printk(KERN_ERR TAG ": consistency error on close\n");
782 mutex_unlock(&mon_lock);
783 return 0;
784 }
785 mon_reader_del(mbus, &rp->r);
786
787 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
788 kfree(rp->b_vec);
789 kfree(rp);
790
791 mutex_unlock(&mon_lock);
792 return 0;
793}
794
795static ssize_t mon_bin_read(struct file *file, char __user *buf,
796 size_t nbytes, loff_t *ppos)
797{
798 struct mon_reader_bin *rp = file->private_data;
799 unsigned int hdrbytes = PKT_SZ_API0;
800 unsigned long flags;
801 struct mon_bin_hdr *ep;
802 unsigned int offset;
803 size_t step_len;
804 char *ptr;
805 ssize_t done = 0;
806 int rc;
807
808 mutex_lock(&rp->fetch_lock);
809
810 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
811 mutex_unlock(&rp->fetch_lock);
812 return rc;
813 }
814
815 ep = MON_OFF2HDR(rp, rp->b_out);
816
817 if (rp->b_read < hdrbytes) {
818 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
819 ptr = ((char *)ep) + rp->b_read;
820 if (step_len && copy_to_user(buf, ptr, step_len)) {
821 mutex_unlock(&rp->fetch_lock);
822 return -EFAULT;
823 }
824 nbytes -= step_len;
825 buf += step_len;
826 rp->b_read += step_len;
827 done += step_len;
828 }
829
830 if (rp->b_read >= hdrbytes) {
831 step_len = ep->len_cap;
832 step_len -= rp->b_read - hdrbytes;
833 if (step_len > nbytes)
834 step_len = nbytes;
835 offset = rp->b_out + PKT_SIZE;
836 offset += rp->b_read - hdrbytes;
837 if (offset >= rp->b_size)
838 offset -= rp->b_size;
839 if (copy_from_buf(rp, offset, buf, step_len)) {
840 mutex_unlock(&rp->fetch_lock);
841 return -EFAULT;
842 }
843 nbytes -= step_len;
844 buf += step_len;
845 rp->b_read += step_len;
846 done += step_len;
847 }
848
849 /*
850 * Check if whole packet was read, and if so, jump to the next one.
851 */
852 if (rp->b_read >= hdrbytes + ep->len_cap) {
853 spin_lock_irqsave(&rp->b_lock, flags);
854 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
855 spin_unlock_irqrestore(&rp->b_lock, flags);
856 rp->b_read = 0;
857 }
858
859 mutex_unlock(&rp->fetch_lock);
860 return done;
861}
862
863/*
864 * Remove at most nevents from chunked buffer.
865 * Returns the number of removed events.
866 */
867static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
868{
869 unsigned long flags;
870 struct mon_bin_hdr *ep;
871 int i;
872
873 mutex_lock(&rp->fetch_lock);
874 spin_lock_irqsave(&rp->b_lock, flags);
875 for (i = 0; i < nevents; ++i) {
876 if (MON_RING_EMPTY(rp))
877 break;
878
879 ep = MON_OFF2HDR(rp, rp->b_out);
880 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
881 }
882 spin_unlock_irqrestore(&rp->b_lock, flags);
883 rp->b_read = 0;
884 mutex_unlock(&rp->fetch_lock);
885 return i;
886}
887
888/*
889 * Fetch at most max event offsets into the buffer and put them into vec.
890 * The events are usually freed later with mon_bin_flush.
891 * Return the effective number of events fetched.
892 */
893static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
894 u32 __user *vec, unsigned int max)
895{
896 unsigned int cur_out;
897 unsigned int bytes, avail;
898 unsigned int size;
899 unsigned int nevents;
900 struct mon_bin_hdr *ep;
901 unsigned long flags;
902 int rc;
903
904 mutex_lock(&rp->fetch_lock);
905
906 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
907 mutex_unlock(&rp->fetch_lock);
908 return rc;
909 }
910
911 spin_lock_irqsave(&rp->b_lock, flags);
912 avail = rp->b_cnt;
913 spin_unlock_irqrestore(&rp->b_lock, flags);
914
915 cur_out = rp->b_out;
916 nevents = 0;
917 bytes = 0;
918 while (bytes < avail) {
919 if (nevents >= max)
920 break;
921
922 ep = MON_OFF2HDR(rp, cur_out);
923 if (put_user(cur_out, &vec[nevents])) {
924 mutex_unlock(&rp->fetch_lock);
925 return -EFAULT;
926 }
927
928 nevents++;
929 size = ep->len_cap + PKT_SIZE;
930 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
931 if ((cur_out += size) >= rp->b_size)
932 cur_out -= rp->b_size;
933 bytes += size;
934 }
935
936 mutex_unlock(&rp->fetch_lock);
937 return nevents;
938}
939
940/*
941 * Count events. This is almost the same as the above mon_bin_fetch,
942 * only we do not store offsets into user vector, and we have no limit.
943 */
944static int mon_bin_queued(struct mon_reader_bin *rp)
945{
946 unsigned int cur_out;
947 unsigned int bytes, avail;
948 unsigned int size;
949 unsigned int nevents;
950 struct mon_bin_hdr *ep;
951 unsigned long flags;
952
953 mutex_lock(&rp->fetch_lock);
954
955 spin_lock_irqsave(&rp->b_lock, flags);
956 avail = rp->b_cnt;
957 spin_unlock_irqrestore(&rp->b_lock, flags);
958
959 cur_out = rp->b_out;
960 nevents = 0;
961 bytes = 0;
962 while (bytes < avail) {
963 ep = MON_OFF2HDR(rp, cur_out);
964
965 nevents++;
966 size = ep->len_cap + PKT_SIZE;
967 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
968 if ((cur_out += size) >= rp->b_size)
969 cur_out -= rp->b_size;
970 bytes += size;
971 }
972
973 mutex_unlock(&rp->fetch_lock);
974 return nevents;
975}
976
977/*
978 */
979static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
980{
981 struct mon_reader_bin *rp = file->private_data;
982 // struct mon_bus* mbus = rp->r.m_bus;
983 int ret = 0;
984 struct mon_bin_hdr *ep;
985 unsigned long flags;
986
987 switch (cmd) {
988
989 case MON_IOCQ_URB_LEN:
990 /*
991 * N.B. This only returns the size of data, without the header.
992 */
993 spin_lock_irqsave(&rp->b_lock, flags);
994 if (!MON_RING_EMPTY(rp)) {
995 ep = MON_OFF2HDR(rp, rp->b_out);
996 ret = ep->len_cap;
997 }
998 spin_unlock_irqrestore(&rp->b_lock, flags);
999 break;
1000
1001 case MON_IOCQ_RING_SIZE:
1002 ret = rp->b_size;
1003 break;
1004
1005 case MON_IOCT_RING_SIZE:
1006 /*
1007 * Changing the buffer size will flush it's contents; the new
1008 * buffer is allocated before releasing the old one to be sure
1009 * the device will stay functional also in case of memory
1010 * pressure.
1011 */
1012 {
1013 int size;
1014 struct mon_pgmap *vec;
1015
1016 if (arg < BUFF_MIN || arg > BUFF_MAX)
1017 return -EINVAL;
1018
1019 size = CHUNK_ALIGN(arg);
1020 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1021 GFP_KERNEL)) == NULL) {
1022 ret = -ENOMEM;
1023 break;
1024 }
1025
1026 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1027 if (ret < 0) {
1028 kfree(vec);
1029 break;
1030 }
1031
1032 mutex_lock(&rp->fetch_lock);
1033 spin_lock_irqsave(&rp->b_lock, flags);
1034 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1035 kfree(rp->b_vec);
1036 rp->b_vec = vec;
1037 rp->b_size = size;
1038 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1039 rp->cnt_lost = 0;
1040 spin_unlock_irqrestore(&rp->b_lock, flags);
1041 mutex_unlock(&rp->fetch_lock);
1042 }
1043 break;
1044
1045 case MON_IOCH_MFLUSH:
1046 ret = mon_bin_flush(rp, arg);
1047 break;
1048
1049 case MON_IOCX_GET:
1050 case MON_IOCX_GETX:
1051 {
1052 struct mon_bin_get getb;
1053
1054 if (copy_from_user(&getb, (void __user *)arg,
1055 sizeof(struct mon_bin_get)))
1056 return -EFAULT;
1057
1058 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1059 return -EINVAL;
1060 ret = mon_bin_get_event(file, rp, getb.hdr,
1061 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1062 getb.data, (unsigned int)getb.alloc);
1063 }
1064 break;
1065
1066 case MON_IOCX_MFETCH:
1067 {
1068 struct mon_bin_mfetch mfetch;
1069 struct mon_bin_mfetch __user *uptr;
1070
1071 uptr = (struct mon_bin_mfetch __user *)arg;
1072
1073 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1074 return -EFAULT;
1075
1076 if (mfetch.nflush) {
1077 ret = mon_bin_flush(rp, mfetch.nflush);
1078 if (ret < 0)
1079 return ret;
1080 if (put_user(ret, &uptr->nflush))
1081 return -EFAULT;
1082 }
1083 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1084 if (ret < 0)
1085 return ret;
1086 if (put_user(ret, &uptr->nfetch))
1087 return -EFAULT;
1088 ret = 0;
1089 }
1090 break;
1091
1092 case MON_IOCG_STATS: {
1093 struct mon_bin_stats __user *sp;
1094 unsigned int nevents;
1095 unsigned int ndropped;
1096
1097 spin_lock_irqsave(&rp->b_lock, flags);
1098 ndropped = rp->cnt_lost;
1099 rp->cnt_lost = 0;
1100 spin_unlock_irqrestore(&rp->b_lock, flags);
1101 nevents = mon_bin_queued(rp);
1102
1103 sp = (struct mon_bin_stats __user *)arg;
1104 if (put_user(rp->cnt_lost, &sp->dropped))
1105 return -EFAULT;
1106 if (put_user(nevents, &sp->queued))
1107 return -EFAULT;
1108
1109 }
1110 break;
1111
1112 default:
1113 return -ENOTTY;
1114 }
1115
1116 return ret;
1117}
1118
1119#ifdef CONFIG_COMPAT
1120static long mon_bin_compat_ioctl(struct file *file,
1121 unsigned int cmd, unsigned long arg)
1122{
1123 struct mon_reader_bin *rp = file->private_data;
1124 int ret;
1125
1126 switch (cmd) {
1127
1128 case MON_IOCX_GET32:
1129 case MON_IOCX_GETX32:
1130 {
1131 struct mon_bin_get32 getb;
1132
1133 if (copy_from_user(&getb, (void __user *)arg,
1134 sizeof(struct mon_bin_get32)))
1135 return -EFAULT;
1136
1137 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1138 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1139 compat_ptr(getb.data32), getb.alloc32);
1140 if (ret < 0)
1141 return ret;
1142 }
1143 return 0;
1144
1145 case MON_IOCX_MFETCH32:
1146 {
1147 struct mon_bin_mfetch32 mfetch;
1148 struct mon_bin_mfetch32 __user *uptr;
1149
1150 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1151
1152 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1153 return -EFAULT;
1154
1155 if (mfetch.nflush32) {
1156 ret = mon_bin_flush(rp, mfetch.nflush32);
1157 if (ret < 0)
1158 return ret;
1159 if (put_user(ret, &uptr->nflush32))
1160 return -EFAULT;
1161 }
1162 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1163 mfetch.nfetch32);
1164 if (ret < 0)
1165 return ret;
1166 if (put_user(ret, &uptr->nfetch32))
1167 return -EFAULT;
1168 }
1169 return 0;
1170
1171 case MON_IOCG_STATS:
1172 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1173
1174 case MON_IOCQ_URB_LEN:
1175 case MON_IOCQ_RING_SIZE:
1176 case MON_IOCT_RING_SIZE:
1177 case MON_IOCH_MFLUSH:
1178 return mon_bin_ioctl(file, cmd, arg);
1179
1180 default:
1181 ;
1182 }
1183 return -ENOTTY;
1184}
1185#endif /* CONFIG_COMPAT */
1186
1187static unsigned int
1188mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1189{
1190 struct mon_reader_bin *rp = file->private_data;
1191 unsigned int mask = 0;
1192 unsigned long flags;
1193
1194 if (file->f_mode & FMODE_READ)
1195 poll_wait(file, &rp->b_wait, wait);
1196
1197 spin_lock_irqsave(&rp->b_lock, flags);
1198 if (!MON_RING_EMPTY(rp))
1199 mask |= POLLIN | POLLRDNORM; /* readable */
1200 spin_unlock_irqrestore(&rp->b_lock, flags);
1201 return mask;
1202}
1203
1204/*
1205 * open and close: just keep track of how many times the device is
1206 * mapped, to use the proper memory allocation function.
1207 */
1208static void mon_bin_vma_open(struct vm_area_struct *vma)
1209{
1210 struct mon_reader_bin *rp = vma->vm_private_data;
1211 rp->mmap_active++;
1212}
1213
1214static void mon_bin_vma_close(struct vm_area_struct *vma)
1215{
1216 struct mon_reader_bin *rp = vma->vm_private_data;
1217 rp->mmap_active--;
1218}
1219
1220/*
1221 * Map ring pages to user space.
1222 */
1223static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224{
1225 struct mon_reader_bin *rp = vma->vm_private_data;
1226 unsigned long offset, chunk_idx;
1227 struct page *pageptr;
1228
1229 offset = vmf->pgoff << PAGE_SHIFT;
1230 if (offset >= rp->b_size)
1231 return VM_FAULT_SIGBUS;
1232 chunk_idx = offset / CHUNK_SIZE;
1233 pageptr = rp->b_vec[chunk_idx].pg;
1234 get_page(pageptr);
1235 vmf->page = pageptr;
1236 return 0;
1237}
1238
1239static const struct vm_operations_struct mon_bin_vm_ops = {
1240 .open = mon_bin_vma_open,
1241 .close = mon_bin_vma_close,
1242 .fault = mon_bin_vma_fault,
1243};
1244
1245static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1246{
1247 /* don't do anything here: "fault" will set up page table entries */
1248 vma->vm_ops = &mon_bin_vm_ops;
1249 vma->vm_flags |= VM_RESERVED;
1250 vma->vm_private_data = filp->private_data;
1251 mon_bin_vma_open(vma);
1252 return 0;
1253}
1254
1255static const struct file_operations mon_fops_binary = {
1256 .owner = THIS_MODULE,
1257 .open = mon_bin_open,
1258 .llseek = no_llseek,
1259 .read = mon_bin_read,
1260 /* .write = mon_text_write, */
1261 .poll = mon_bin_poll,
1262 .unlocked_ioctl = mon_bin_ioctl,
1263#ifdef CONFIG_COMPAT
1264 .compat_ioctl = mon_bin_compat_ioctl,
1265#endif
1266 .release = mon_bin_release,
1267 .mmap = mon_bin_mmap,
1268};
1269
1270static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1271{
1272 DECLARE_WAITQUEUE(waita, current);
1273 unsigned long flags;
1274
1275 add_wait_queue(&rp->b_wait, &waita);
1276 set_current_state(TASK_INTERRUPTIBLE);
1277
1278 spin_lock_irqsave(&rp->b_lock, flags);
1279 while (MON_RING_EMPTY(rp)) {
1280 spin_unlock_irqrestore(&rp->b_lock, flags);
1281
1282 if (file->f_flags & O_NONBLOCK) {
1283 set_current_state(TASK_RUNNING);
1284 remove_wait_queue(&rp->b_wait, &waita);
1285 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1286 }
1287 schedule();
1288 if (signal_pending(current)) {
1289 remove_wait_queue(&rp->b_wait, &waita);
1290 return -EINTR;
1291 }
1292 set_current_state(TASK_INTERRUPTIBLE);
1293
1294 spin_lock_irqsave(&rp->b_lock, flags);
1295 }
1296 spin_unlock_irqrestore(&rp->b_lock, flags);
1297
1298 set_current_state(TASK_RUNNING);
1299 remove_wait_queue(&rp->b_wait, &waita);
1300 return 0;
1301}
1302
1303static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1304{
1305 int n;
1306 unsigned long vaddr;
1307
1308 for (n = 0; n < npages; n++) {
1309 vaddr = get_zeroed_page(GFP_KERNEL);
1310 if (vaddr == 0) {
1311 while (n-- != 0)
1312 free_page((unsigned long) map[n].ptr);
1313 return -ENOMEM;
1314 }
1315 map[n].ptr = (unsigned char *) vaddr;
1316 map[n].pg = virt_to_page((void *) vaddr);
1317 }
1318 return 0;
1319}
1320
1321static void mon_free_buff(struct mon_pgmap *map, int npages)
1322{
1323 int n;
1324
1325 for (n = 0; n < npages; n++)
1326 free_page((unsigned long) map[n].ptr);
1327}
1328
1329int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1330{
1331 struct device *dev;
1332 unsigned minor = ubus? ubus->busnum: 0;
1333
1334 if (minor >= MON_BIN_MAX_MINOR)
1335 return 0;
1336
1337 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1338 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1339 "usbmon%d", minor);
1340 if (IS_ERR(dev))
1341 return 0;
1342
1343 mbus->classdev = dev;
1344 return 1;
1345}
1346
1347void mon_bin_del(struct mon_bus *mbus)
1348{
1349 device_destroy(mon_bin_class, mbus->classdev->devt);
1350}
1351
1352int __init mon_bin_init(void)
1353{
1354 int rc;
1355
1356 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1357 if (IS_ERR(mon_bin_class)) {
1358 rc = PTR_ERR(mon_bin_class);
1359 goto err_class;
1360 }
1361
1362 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1363 if (rc < 0)
1364 goto err_dev;
1365
1366 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1367 mon_bin_cdev.owner = THIS_MODULE;
1368
1369 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1370 if (rc < 0)
1371 goto err_add;
1372
1373 return 0;
1374
1375err_add:
1376 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1377err_dev:
1378 class_destroy(mon_bin_class);
1379err_class:
1380 return rc;
1381}
1382
1383void mon_bin_exit(void)
1384{
1385 cdev_del(&mon_bin_cdev);
1386 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1387 class_destroy(mon_bin_class);
1388}
1/*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/fs.h>
13#include <linux/cdev.h>
14#include <linux/export.h>
15#include <linux/usb.h>
16#include <linux/poll.h>
17#include <linux/compat.h>
18#include <linux/mm.h>
19#include <linux/scatterlist.h>
20#include <linux/slab.h>
21#include <linux/time64.h>
22
23#include <asm/uaccess.h>
24
25#include "usb_mon.h"
26
27/*
28 * Defined by USB 2.0 clause 9.3, table 9.2.
29 */
30#define SETUP_LEN 8
31
32/* ioctl macros */
33#define MON_IOC_MAGIC 0x92
34
35#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
36/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
37#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
38#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
39#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
40#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
41#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
42#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
43/* #9 was MON_IOCT_SETAPI */
44#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
45
46#ifdef CONFIG_COMPAT
47#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
48#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
49#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
50#endif
51
52/*
53 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
54 * But it's all right. Just use a simple way to make sure the chunk is never
55 * smaller than a page.
56 *
57 * N.B. An application does not know our chunk size.
58 *
59 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
60 * page-sized chunks for the time being.
61 */
62#define CHUNK_SIZE PAGE_SIZE
63#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
64
65/*
66 * The magic limit was calculated so that it allows the monitoring
67 * application to pick data once in two ticks. This way, another application,
68 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
69 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
70 * enormous overhead built into the bus protocol, so we need about 1000 KB.
71 *
72 * This is still too much for most cases, where we just snoop a few
73 * descriptor fetches for enumeration. So, the default is a "reasonable"
74 * amount for systems with HZ=250 and incomplete bus saturation.
75 *
76 * XXX What about multi-megabyte URBs which take minutes to transfer?
77 */
78#define BUFF_MAX CHUNK_ALIGN(1200*1024)
79#define BUFF_DFL CHUNK_ALIGN(300*1024)
80#define BUFF_MIN CHUNK_ALIGN(8*1024)
81
82/*
83 * The per-event API header (2 per URB).
84 *
85 * This structure is seen in userland as defined by the documentation.
86 */
87struct mon_bin_hdr {
88 u64 id; /* URB ID - from submission to callback */
89 unsigned char type; /* Same as in text API; extensible. */
90 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
91 unsigned char epnum; /* Endpoint number and transfer direction */
92 unsigned char devnum; /* Device address */
93 unsigned short busnum; /* Bus number */
94 char flag_setup;
95 char flag_data;
96 s64 ts_sec; /* getnstimeofday64 */
97 s32 ts_usec; /* getnstimeofday64 */
98 int status;
99 unsigned int len_urb; /* Length of data (submitted or actual) */
100 unsigned int len_cap; /* Delivered length */
101 union {
102 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
103 struct iso_rec {
104 int error_count;
105 int numdesc;
106 } iso;
107 } s;
108 int interval;
109 int start_frame;
110 unsigned int xfer_flags;
111 unsigned int ndesc; /* Actual number of ISO descriptors */
112};
113
114/*
115 * ISO vector, packed into the head of data stream.
116 * This has to take 16 bytes to make sure that the end of buffer
117 * wrap is not happening in the middle of a descriptor.
118 */
119struct mon_bin_isodesc {
120 int iso_status;
121 unsigned int iso_off;
122 unsigned int iso_len;
123 u32 _pad;
124};
125
126/* per file statistic */
127struct mon_bin_stats {
128 u32 queued;
129 u32 dropped;
130};
131
132struct mon_bin_get {
133 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
134 void __user *data;
135 size_t alloc; /* Length of data (can be zero) */
136};
137
138struct mon_bin_mfetch {
139 u32 __user *offvec; /* Vector of events fetched */
140 u32 nfetch; /* Number of events to fetch (out: fetched) */
141 u32 nflush; /* Number of events to flush */
142};
143
144#ifdef CONFIG_COMPAT
145struct mon_bin_get32 {
146 u32 hdr32;
147 u32 data32;
148 u32 alloc32;
149};
150
151struct mon_bin_mfetch32 {
152 u32 offvec32;
153 u32 nfetch32;
154 u32 nflush32;
155};
156#endif
157
158/* Having these two values same prevents wrapping of the mon_bin_hdr */
159#define PKT_ALIGN 64
160#define PKT_SIZE 64
161
162#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
163#define PKT_SZ_API1 64 /* API 1 size: extra fields */
164
165#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
166
167/* max number of USB bus supported */
168#define MON_BIN_MAX_MINOR 128
169
170/*
171 * The buffer: map of used pages.
172 */
173struct mon_pgmap {
174 struct page *pg;
175 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
176};
177
178/*
179 * This gets associated with an open file struct.
180 */
181struct mon_reader_bin {
182 /* The buffer: one per open. */
183 spinlock_t b_lock; /* Protect b_cnt, b_in */
184 unsigned int b_size; /* Current size of the buffer - bytes */
185 unsigned int b_cnt; /* Bytes used */
186 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
187 unsigned int b_read; /* Amount of read data in curr. pkt. */
188 struct mon_pgmap *b_vec; /* The map array */
189 wait_queue_head_t b_wait; /* Wait for data here */
190
191 struct mutex fetch_lock; /* Protect b_read, b_out */
192 int mmap_active;
193
194 /* A list of these is needed for "bus 0". Some time later. */
195 struct mon_reader r;
196
197 /* Stats */
198 unsigned int cnt_lost;
199};
200
201static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
202 unsigned int offset)
203{
204 return (struct mon_bin_hdr *)
205 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
206}
207
208#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
209
210static unsigned char xfer_to_pipe[4] = {
211 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
212};
213
214static struct class *mon_bin_class;
215static dev_t mon_bin_dev0;
216static struct cdev mon_bin_cdev;
217
218static void mon_buff_area_fill(const struct mon_reader_bin *rp,
219 unsigned int offset, unsigned int size);
220static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
221static int mon_alloc_buff(struct mon_pgmap *map, int npages);
222static void mon_free_buff(struct mon_pgmap *map, int npages);
223
224/*
225 * This is a "chunked memcpy". It does not manipulate any counters.
226 */
227static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
228 unsigned int off, const unsigned char *from, unsigned int length)
229{
230 unsigned int step_len;
231 unsigned char *buf;
232 unsigned int in_page;
233
234 while (length) {
235 /*
236 * Determine step_len.
237 */
238 step_len = length;
239 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
240 if (in_page < step_len)
241 step_len = in_page;
242
243 /*
244 * Copy data and advance pointers.
245 */
246 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
247 memcpy(buf, from, step_len);
248 if ((off += step_len) >= this->b_size) off = 0;
249 from += step_len;
250 length -= step_len;
251 }
252 return off;
253}
254
255/*
256 * This is a little worse than the above because it's "chunked copy_to_user".
257 * The return value is an error code, not an offset.
258 */
259static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
260 char __user *to, int length)
261{
262 unsigned int step_len;
263 unsigned char *buf;
264 unsigned int in_page;
265
266 while (length) {
267 /*
268 * Determine step_len.
269 */
270 step_len = length;
271 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
272 if (in_page < step_len)
273 step_len = in_page;
274
275 /*
276 * Copy data and advance pointers.
277 */
278 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
279 if (copy_to_user(to, buf, step_len))
280 return -EINVAL;
281 if ((off += step_len) >= this->b_size) off = 0;
282 to += step_len;
283 length -= step_len;
284 }
285 return 0;
286}
287
288/*
289 * Allocate an (aligned) area in the buffer.
290 * This is called under b_lock.
291 * Returns ~0 on failure.
292 */
293static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
294 unsigned int size)
295{
296 unsigned int offset;
297
298 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
299 if (rp->b_cnt + size > rp->b_size)
300 return ~0;
301 offset = rp->b_in;
302 rp->b_cnt += size;
303 if ((rp->b_in += size) >= rp->b_size)
304 rp->b_in -= rp->b_size;
305 return offset;
306}
307
308/*
309 * This is the same thing as mon_buff_area_alloc, only it does not allow
310 * buffers to wrap. This is needed by applications which pass references
311 * into mmap-ed buffers up their stacks (libpcap can do that).
312 *
313 * Currently, we always have the header stuck with the data, although
314 * it is not strictly speaking necessary.
315 *
316 * When a buffer would wrap, we place a filler packet to mark the space.
317 */
318static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
319 unsigned int size)
320{
321 unsigned int offset;
322 unsigned int fill_size;
323
324 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
325 if (rp->b_cnt + size > rp->b_size)
326 return ~0;
327 if (rp->b_in + size > rp->b_size) {
328 /*
329 * This would wrap. Find if we still have space after
330 * skipping to the end of the buffer. If we do, place
331 * a filler packet and allocate a new packet.
332 */
333 fill_size = rp->b_size - rp->b_in;
334 if (rp->b_cnt + size + fill_size > rp->b_size)
335 return ~0;
336 mon_buff_area_fill(rp, rp->b_in, fill_size);
337
338 offset = 0;
339 rp->b_in = size;
340 rp->b_cnt += size + fill_size;
341 } else if (rp->b_in + size == rp->b_size) {
342 offset = rp->b_in;
343 rp->b_in = 0;
344 rp->b_cnt += size;
345 } else {
346 offset = rp->b_in;
347 rp->b_in += size;
348 rp->b_cnt += size;
349 }
350 return offset;
351}
352
353/*
354 * Return a few (kilo-)bytes to the head of the buffer.
355 * This is used if a data fetch fails.
356 */
357static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
358{
359
360 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
361 rp->b_cnt -= size;
362 if (rp->b_in < size)
363 rp->b_in += rp->b_size;
364 rp->b_in -= size;
365}
366
367/*
368 * This has to be called under both b_lock and fetch_lock, because
369 * it accesses both b_cnt and b_out.
370 */
371static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
372{
373
374 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
375 rp->b_cnt -= size;
376 if ((rp->b_out += size) >= rp->b_size)
377 rp->b_out -= rp->b_size;
378}
379
380static void mon_buff_area_fill(const struct mon_reader_bin *rp,
381 unsigned int offset, unsigned int size)
382{
383 struct mon_bin_hdr *ep;
384
385 ep = MON_OFF2HDR(rp, offset);
386 memset(ep, 0, PKT_SIZE);
387 ep->type = '@';
388 ep->len_cap = size - PKT_SIZE;
389}
390
391static inline char mon_bin_get_setup(unsigned char *setupb,
392 const struct urb *urb, char ev_type)
393{
394
395 if (urb->setup_packet == NULL)
396 return 'Z';
397 memcpy(setupb, urb->setup_packet, SETUP_LEN);
398 return 0;
399}
400
401static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
402 unsigned int offset, struct urb *urb, unsigned int length,
403 char *flag)
404{
405 int i;
406 struct scatterlist *sg;
407 unsigned int this_len;
408
409 *flag = 0;
410 if (urb->num_sgs == 0) {
411 if (urb->transfer_buffer == NULL) {
412 *flag = 'Z';
413 return length;
414 }
415 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
416 length = 0;
417
418 } else {
419 /* If IOMMU coalescing occurred, we cannot trust sg_page */
420 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
421 *flag = 'D';
422 return length;
423 }
424
425 /* Copy up to the first non-addressable segment */
426 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
427 if (length == 0 || PageHighMem(sg_page(sg)))
428 break;
429 this_len = min_t(unsigned int, sg->length, length);
430 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
431 this_len);
432 length -= this_len;
433 }
434 if (i == 0)
435 *flag = 'D';
436 }
437
438 return length;
439}
440
441/*
442 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
443 * be used to determine the length of the whole contiguous buffer.
444 */
445static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
446 struct urb *urb, unsigned int ndesc)
447{
448 struct usb_iso_packet_descriptor *fp;
449 unsigned int length;
450
451 length = 0;
452 fp = urb->iso_frame_desc;
453 while (ndesc-- != 0) {
454 if (fp->actual_length != 0) {
455 if (fp->offset + fp->actual_length > length)
456 length = fp->offset + fp->actual_length;
457 }
458 fp++;
459 }
460 return length;
461}
462
463static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
464 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
465{
466 struct mon_bin_isodesc *dp;
467 struct usb_iso_packet_descriptor *fp;
468
469 fp = urb->iso_frame_desc;
470 while (ndesc-- != 0) {
471 dp = (struct mon_bin_isodesc *)
472 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
473 dp->iso_status = fp->status;
474 dp->iso_off = fp->offset;
475 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
476 dp->_pad = 0;
477 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
478 offset = 0;
479 fp++;
480 }
481}
482
483static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
484 char ev_type, int status)
485{
486 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
487 struct timespec64 ts;
488 unsigned long flags;
489 unsigned int urb_length;
490 unsigned int offset;
491 unsigned int length;
492 unsigned int delta;
493 unsigned int ndesc, lendesc;
494 unsigned char dir;
495 struct mon_bin_hdr *ep;
496 char data_tag = 0;
497
498 getnstimeofday64(&ts);
499
500 spin_lock_irqsave(&rp->b_lock, flags);
501
502 /*
503 * Find the maximum allowable length, then allocate space.
504 */
505 urb_length = (ev_type == 'S') ?
506 urb->transfer_buffer_length : urb->actual_length;
507 length = urb_length;
508
509 if (usb_endpoint_xfer_isoc(epd)) {
510 if (urb->number_of_packets < 0) {
511 ndesc = 0;
512 } else if (urb->number_of_packets >= ISODESC_MAX) {
513 ndesc = ISODESC_MAX;
514 } else {
515 ndesc = urb->number_of_packets;
516 }
517 if (ev_type == 'C' && usb_urb_dir_in(urb))
518 length = mon_bin_collate_isodesc(rp, urb, ndesc);
519 } else {
520 ndesc = 0;
521 }
522 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
523
524 /* not an issue unless there's a subtle bug in a HCD somewhere */
525 if (length >= urb->transfer_buffer_length)
526 length = urb->transfer_buffer_length;
527
528 if (length >= rp->b_size/5)
529 length = rp->b_size/5;
530
531 if (usb_urb_dir_in(urb)) {
532 if (ev_type == 'S') {
533 length = 0;
534 data_tag = '<';
535 }
536 /* Cannot rely on endpoint number in case of control ep.0 */
537 dir = USB_DIR_IN;
538 } else {
539 if (ev_type == 'C') {
540 length = 0;
541 data_tag = '>';
542 }
543 dir = 0;
544 }
545
546 if (rp->mmap_active) {
547 offset = mon_buff_area_alloc_contiguous(rp,
548 length + PKT_SIZE + lendesc);
549 } else {
550 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
551 }
552 if (offset == ~0) {
553 rp->cnt_lost++;
554 spin_unlock_irqrestore(&rp->b_lock, flags);
555 return;
556 }
557
558 ep = MON_OFF2HDR(rp, offset);
559 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
560
561 /*
562 * Fill the allocated area.
563 */
564 memset(ep, 0, PKT_SIZE);
565 ep->type = ev_type;
566 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
567 ep->epnum = dir | usb_endpoint_num(epd);
568 ep->devnum = urb->dev->devnum;
569 ep->busnum = urb->dev->bus->busnum;
570 ep->id = (unsigned long) urb;
571 ep->ts_sec = ts.tv_sec;
572 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
573 ep->status = status;
574 ep->len_urb = urb_length;
575 ep->len_cap = length + lendesc;
576 ep->xfer_flags = urb->transfer_flags;
577
578 if (usb_endpoint_xfer_int(epd)) {
579 ep->interval = urb->interval;
580 } else if (usb_endpoint_xfer_isoc(epd)) {
581 ep->interval = urb->interval;
582 ep->start_frame = urb->start_frame;
583 ep->s.iso.error_count = urb->error_count;
584 ep->s.iso.numdesc = urb->number_of_packets;
585 }
586
587 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
588 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
589 } else {
590 ep->flag_setup = '-';
591 }
592
593 if (ndesc != 0) {
594 ep->ndesc = ndesc;
595 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
596 if ((offset += lendesc) >= rp->b_size)
597 offset -= rp->b_size;
598 }
599
600 if (length != 0) {
601 length = mon_bin_get_data(rp, offset, urb, length,
602 &ep->flag_data);
603 if (length > 0) {
604 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
605 ep->len_cap -= length;
606 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 mon_buff_area_shrink(rp, delta);
608 }
609 } else {
610 ep->flag_data = data_tag;
611 }
612
613 spin_unlock_irqrestore(&rp->b_lock, flags);
614
615 wake_up(&rp->b_wait);
616}
617
618static void mon_bin_submit(void *data, struct urb *urb)
619{
620 struct mon_reader_bin *rp = data;
621 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
622}
623
624static void mon_bin_complete(void *data, struct urb *urb, int status)
625{
626 struct mon_reader_bin *rp = data;
627 mon_bin_event(rp, urb, 'C', status);
628}
629
630static void mon_bin_error(void *data, struct urb *urb, int error)
631{
632 struct mon_reader_bin *rp = data;
633 struct timespec64 ts;
634 unsigned long flags;
635 unsigned int offset;
636 struct mon_bin_hdr *ep;
637
638 getnstimeofday64(&ts);
639
640 spin_lock_irqsave(&rp->b_lock, flags);
641
642 offset = mon_buff_area_alloc(rp, PKT_SIZE);
643 if (offset == ~0) {
644 /* Not incrementing cnt_lost. Just because. */
645 spin_unlock_irqrestore(&rp->b_lock, flags);
646 return;
647 }
648
649 ep = MON_OFF2HDR(rp, offset);
650
651 memset(ep, 0, PKT_SIZE);
652 ep->type = 'E';
653 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
654 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
655 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
656 ep->devnum = urb->dev->devnum;
657 ep->busnum = urb->dev->bus->busnum;
658 ep->id = (unsigned long) urb;
659 ep->ts_sec = ts.tv_sec;
660 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
661 ep->status = error;
662
663 ep->flag_setup = '-';
664 ep->flag_data = 'E';
665
666 spin_unlock_irqrestore(&rp->b_lock, flags);
667
668 wake_up(&rp->b_wait);
669}
670
671static int mon_bin_open(struct inode *inode, struct file *file)
672{
673 struct mon_bus *mbus;
674 struct mon_reader_bin *rp;
675 size_t size;
676 int rc;
677
678 mutex_lock(&mon_lock);
679 mbus = mon_bus_lookup(iminor(inode));
680 if (mbus == NULL) {
681 mutex_unlock(&mon_lock);
682 return -ENODEV;
683 }
684 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
685 printk(KERN_ERR TAG ": consistency error on open\n");
686 mutex_unlock(&mon_lock);
687 return -ENODEV;
688 }
689
690 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
691 if (rp == NULL) {
692 rc = -ENOMEM;
693 goto err_alloc;
694 }
695 spin_lock_init(&rp->b_lock);
696 init_waitqueue_head(&rp->b_wait);
697 mutex_init(&rp->fetch_lock);
698 rp->b_size = BUFF_DFL;
699
700 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
701 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
702 rc = -ENOMEM;
703 goto err_allocvec;
704 }
705
706 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
707 goto err_allocbuff;
708
709 rp->r.m_bus = mbus;
710 rp->r.r_data = rp;
711 rp->r.rnf_submit = mon_bin_submit;
712 rp->r.rnf_error = mon_bin_error;
713 rp->r.rnf_complete = mon_bin_complete;
714
715 mon_reader_add(mbus, &rp->r);
716
717 file->private_data = rp;
718 mutex_unlock(&mon_lock);
719 return 0;
720
721err_allocbuff:
722 kfree(rp->b_vec);
723err_allocvec:
724 kfree(rp);
725err_alloc:
726 mutex_unlock(&mon_lock);
727 return rc;
728}
729
730/*
731 * Extract an event from buffer and copy it to user space.
732 * Wait if there is no event ready.
733 * Returns zero or error.
734 */
735static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
736 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
737 void __user *data, unsigned int nbytes)
738{
739 unsigned long flags;
740 struct mon_bin_hdr *ep;
741 size_t step_len;
742 unsigned int offset;
743 int rc;
744
745 mutex_lock(&rp->fetch_lock);
746
747 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
748 mutex_unlock(&rp->fetch_lock);
749 return rc;
750 }
751
752 ep = MON_OFF2HDR(rp, rp->b_out);
753
754 if (copy_to_user(hdr, ep, hdrbytes)) {
755 mutex_unlock(&rp->fetch_lock);
756 return -EFAULT;
757 }
758
759 step_len = min(ep->len_cap, nbytes);
760 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
761
762 if (copy_from_buf(rp, offset, data, step_len)) {
763 mutex_unlock(&rp->fetch_lock);
764 return -EFAULT;
765 }
766
767 spin_lock_irqsave(&rp->b_lock, flags);
768 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
769 spin_unlock_irqrestore(&rp->b_lock, flags);
770 rp->b_read = 0;
771
772 mutex_unlock(&rp->fetch_lock);
773 return 0;
774}
775
776static int mon_bin_release(struct inode *inode, struct file *file)
777{
778 struct mon_reader_bin *rp = file->private_data;
779 struct mon_bus* mbus = rp->r.m_bus;
780
781 mutex_lock(&mon_lock);
782
783 if (mbus->nreaders <= 0) {
784 printk(KERN_ERR TAG ": consistency error on close\n");
785 mutex_unlock(&mon_lock);
786 return 0;
787 }
788 mon_reader_del(mbus, &rp->r);
789
790 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
791 kfree(rp->b_vec);
792 kfree(rp);
793
794 mutex_unlock(&mon_lock);
795 return 0;
796}
797
798static ssize_t mon_bin_read(struct file *file, char __user *buf,
799 size_t nbytes, loff_t *ppos)
800{
801 struct mon_reader_bin *rp = file->private_data;
802 unsigned int hdrbytes = PKT_SZ_API0;
803 unsigned long flags;
804 struct mon_bin_hdr *ep;
805 unsigned int offset;
806 size_t step_len;
807 char *ptr;
808 ssize_t done = 0;
809 int rc;
810
811 mutex_lock(&rp->fetch_lock);
812
813 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
814 mutex_unlock(&rp->fetch_lock);
815 return rc;
816 }
817
818 ep = MON_OFF2HDR(rp, rp->b_out);
819
820 if (rp->b_read < hdrbytes) {
821 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
822 ptr = ((char *)ep) + rp->b_read;
823 if (step_len && copy_to_user(buf, ptr, step_len)) {
824 mutex_unlock(&rp->fetch_lock);
825 return -EFAULT;
826 }
827 nbytes -= step_len;
828 buf += step_len;
829 rp->b_read += step_len;
830 done += step_len;
831 }
832
833 if (rp->b_read >= hdrbytes) {
834 step_len = ep->len_cap;
835 step_len -= rp->b_read - hdrbytes;
836 if (step_len > nbytes)
837 step_len = nbytes;
838 offset = rp->b_out + PKT_SIZE;
839 offset += rp->b_read - hdrbytes;
840 if (offset >= rp->b_size)
841 offset -= rp->b_size;
842 if (copy_from_buf(rp, offset, buf, step_len)) {
843 mutex_unlock(&rp->fetch_lock);
844 return -EFAULT;
845 }
846 nbytes -= step_len;
847 buf += step_len;
848 rp->b_read += step_len;
849 done += step_len;
850 }
851
852 /*
853 * Check if whole packet was read, and if so, jump to the next one.
854 */
855 if (rp->b_read >= hdrbytes + ep->len_cap) {
856 spin_lock_irqsave(&rp->b_lock, flags);
857 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
858 spin_unlock_irqrestore(&rp->b_lock, flags);
859 rp->b_read = 0;
860 }
861
862 mutex_unlock(&rp->fetch_lock);
863 return done;
864}
865
866/*
867 * Remove at most nevents from chunked buffer.
868 * Returns the number of removed events.
869 */
870static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
871{
872 unsigned long flags;
873 struct mon_bin_hdr *ep;
874 int i;
875
876 mutex_lock(&rp->fetch_lock);
877 spin_lock_irqsave(&rp->b_lock, flags);
878 for (i = 0; i < nevents; ++i) {
879 if (MON_RING_EMPTY(rp))
880 break;
881
882 ep = MON_OFF2HDR(rp, rp->b_out);
883 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
884 }
885 spin_unlock_irqrestore(&rp->b_lock, flags);
886 rp->b_read = 0;
887 mutex_unlock(&rp->fetch_lock);
888 return i;
889}
890
891/*
892 * Fetch at most max event offsets into the buffer and put them into vec.
893 * The events are usually freed later with mon_bin_flush.
894 * Return the effective number of events fetched.
895 */
896static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
897 u32 __user *vec, unsigned int max)
898{
899 unsigned int cur_out;
900 unsigned int bytes, avail;
901 unsigned int size;
902 unsigned int nevents;
903 struct mon_bin_hdr *ep;
904 unsigned long flags;
905 int rc;
906
907 mutex_lock(&rp->fetch_lock);
908
909 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
910 mutex_unlock(&rp->fetch_lock);
911 return rc;
912 }
913
914 spin_lock_irqsave(&rp->b_lock, flags);
915 avail = rp->b_cnt;
916 spin_unlock_irqrestore(&rp->b_lock, flags);
917
918 cur_out = rp->b_out;
919 nevents = 0;
920 bytes = 0;
921 while (bytes < avail) {
922 if (nevents >= max)
923 break;
924
925 ep = MON_OFF2HDR(rp, cur_out);
926 if (put_user(cur_out, &vec[nevents])) {
927 mutex_unlock(&rp->fetch_lock);
928 return -EFAULT;
929 }
930
931 nevents++;
932 size = ep->len_cap + PKT_SIZE;
933 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
934 if ((cur_out += size) >= rp->b_size)
935 cur_out -= rp->b_size;
936 bytes += size;
937 }
938
939 mutex_unlock(&rp->fetch_lock);
940 return nevents;
941}
942
943/*
944 * Count events. This is almost the same as the above mon_bin_fetch,
945 * only we do not store offsets into user vector, and we have no limit.
946 */
947static int mon_bin_queued(struct mon_reader_bin *rp)
948{
949 unsigned int cur_out;
950 unsigned int bytes, avail;
951 unsigned int size;
952 unsigned int nevents;
953 struct mon_bin_hdr *ep;
954 unsigned long flags;
955
956 mutex_lock(&rp->fetch_lock);
957
958 spin_lock_irqsave(&rp->b_lock, flags);
959 avail = rp->b_cnt;
960 spin_unlock_irqrestore(&rp->b_lock, flags);
961
962 cur_out = rp->b_out;
963 nevents = 0;
964 bytes = 0;
965 while (bytes < avail) {
966 ep = MON_OFF2HDR(rp, cur_out);
967
968 nevents++;
969 size = ep->len_cap + PKT_SIZE;
970 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
971 if ((cur_out += size) >= rp->b_size)
972 cur_out -= rp->b_size;
973 bytes += size;
974 }
975
976 mutex_unlock(&rp->fetch_lock);
977 return nevents;
978}
979
980/*
981 */
982static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
983{
984 struct mon_reader_bin *rp = file->private_data;
985 // struct mon_bus* mbus = rp->r.m_bus;
986 int ret = 0;
987 struct mon_bin_hdr *ep;
988 unsigned long flags;
989
990 switch (cmd) {
991
992 case MON_IOCQ_URB_LEN:
993 /*
994 * N.B. This only returns the size of data, without the header.
995 */
996 spin_lock_irqsave(&rp->b_lock, flags);
997 if (!MON_RING_EMPTY(rp)) {
998 ep = MON_OFF2HDR(rp, rp->b_out);
999 ret = ep->len_cap;
1000 }
1001 spin_unlock_irqrestore(&rp->b_lock, flags);
1002 break;
1003
1004 case MON_IOCQ_RING_SIZE:
1005 ret = rp->b_size;
1006 break;
1007
1008 case MON_IOCT_RING_SIZE:
1009 /*
1010 * Changing the buffer size will flush it's contents; the new
1011 * buffer is allocated before releasing the old one to be sure
1012 * the device will stay functional also in case of memory
1013 * pressure.
1014 */
1015 {
1016 int size;
1017 struct mon_pgmap *vec;
1018
1019 if (arg < BUFF_MIN || arg > BUFF_MAX)
1020 return -EINVAL;
1021
1022 size = CHUNK_ALIGN(arg);
1023 vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
1024 if (vec == NULL) {
1025 ret = -ENOMEM;
1026 break;
1027 }
1028
1029 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1030 if (ret < 0) {
1031 kfree(vec);
1032 break;
1033 }
1034
1035 mutex_lock(&rp->fetch_lock);
1036 spin_lock_irqsave(&rp->b_lock, flags);
1037 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1038 kfree(rp->b_vec);
1039 rp->b_vec = vec;
1040 rp->b_size = size;
1041 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1042 rp->cnt_lost = 0;
1043 spin_unlock_irqrestore(&rp->b_lock, flags);
1044 mutex_unlock(&rp->fetch_lock);
1045 }
1046 break;
1047
1048 case MON_IOCH_MFLUSH:
1049 ret = mon_bin_flush(rp, arg);
1050 break;
1051
1052 case MON_IOCX_GET:
1053 case MON_IOCX_GETX:
1054 {
1055 struct mon_bin_get getb;
1056
1057 if (copy_from_user(&getb, (void __user *)arg,
1058 sizeof(struct mon_bin_get)))
1059 return -EFAULT;
1060
1061 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1062 return -EINVAL;
1063 ret = mon_bin_get_event(file, rp, getb.hdr,
1064 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1065 getb.data, (unsigned int)getb.alloc);
1066 }
1067 break;
1068
1069 case MON_IOCX_MFETCH:
1070 {
1071 struct mon_bin_mfetch mfetch;
1072 struct mon_bin_mfetch __user *uptr;
1073
1074 uptr = (struct mon_bin_mfetch __user *)arg;
1075
1076 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1077 return -EFAULT;
1078
1079 if (mfetch.nflush) {
1080 ret = mon_bin_flush(rp, mfetch.nflush);
1081 if (ret < 0)
1082 return ret;
1083 if (put_user(ret, &uptr->nflush))
1084 return -EFAULT;
1085 }
1086 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1087 if (ret < 0)
1088 return ret;
1089 if (put_user(ret, &uptr->nfetch))
1090 return -EFAULT;
1091 ret = 0;
1092 }
1093 break;
1094
1095 case MON_IOCG_STATS: {
1096 struct mon_bin_stats __user *sp;
1097 unsigned int nevents;
1098 unsigned int ndropped;
1099
1100 spin_lock_irqsave(&rp->b_lock, flags);
1101 ndropped = rp->cnt_lost;
1102 rp->cnt_lost = 0;
1103 spin_unlock_irqrestore(&rp->b_lock, flags);
1104 nevents = mon_bin_queued(rp);
1105
1106 sp = (struct mon_bin_stats __user *)arg;
1107 if (put_user(ndropped, &sp->dropped))
1108 return -EFAULT;
1109 if (put_user(nevents, &sp->queued))
1110 return -EFAULT;
1111
1112 }
1113 break;
1114
1115 default:
1116 return -ENOTTY;
1117 }
1118
1119 return ret;
1120}
1121
1122#ifdef CONFIG_COMPAT
1123static long mon_bin_compat_ioctl(struct file *file,
1124 unsigned int cmd, unsigned long arg)
1125{
1126 struct mon_reader_bin *rp = file->private_data;
1127 int ret;
1128
1129 switch (cmd) {
1130
1131 case MON_IOCX_GET32:
1132 case MON_IOCX_GETX32:
1133 {
1134 struct mon_bin_get32 getb;
1135
1136 if (copy_from_user(&getb, (void __user *)arg,
1137 sizeof(struct mon_bin_get32)))
1138 return -EFAULT;
1139
1140 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1141 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1142 compat_ptr(getb.data32), getb.alloc32);
1143 if (ret < 0)
1144 return ret;
1145 }
1146 return 0;
1147
1148 case MON_IOCX_MFETCH32:
1149 {
1150 struct mon_bin_mfetch32 mfetch;
1151 struct mon_bin_mfetch32 __user *uptr;
1152
1153 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1154
1155 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1156 return -EFAULT;
1157
1158 if (mfetch.nflush32) {
1159 ret = mon_bin_flush(rp, mfetch.nflush32);
1160 if (ret < 0)
1161 return ret;
1162 if (put_user(ret, &uptr->nflush32))
1163 return -EFAULT;
1164 }
1165 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1166 mfetch.nfetch32);
1167 if (ret < 0)
1168 return ret;
1169 if (put_user(ret, &uptr->nfetch32))
1170 return -EFAULT;
1171 }
1172 return 0;
1173
1174 case MON_IOCG_STATS:
1175 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1176
1177 case MON_IOCQ_URB_LEN:
1178 case MON_IOCQ_RING_SIZE:
1179 case MON_IOCT_RING_SIZE:
1180 case MON_IOCH_MFLUSH:
1181 return mon_bin_ioctl(file, cmd, arg);
1182
1183 default:
1184 ;
1185 }
1186 return -ENOTTY;
1187}
1188#endif /* CONFIG_COMPAT */
1189
1190static unsigned int
1191mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1192{
1193 struct mon_reader_bin *rp = file->private_data;
1194 unsigned int mask = 0;
1195 unsigned long flags;
1196
1197 if (file->f_mode & FMODE_READ)
1198 poll_wait(file, &rp->b_wait, wait);
1199
1200 spin_lock_irqsave(&rp->b_lock, flags);
1201 if (!MON_RING_EMPTY(rp))
1202 mask |= POLLIN | POLLRDNORM; /* readable */
1203 spin_unlock_irqrestore(&rp->b_lock, flags);
1204 return mask;
1205}
1206
1207/*
1208 * open and close: just keep track of how many times the device is
1209 * mapped, to use the proper memory allocation function.
1210 */
1211static void mon_bin_vma_open(struct vm_area_struct *vma)
1212{
1213 struct mon_reader_bin *rp = vma->vm_private_data;
1214 rp->mmap_active++;
1215}
1216
1217static void mon_bin_vma_close(struct vm_area_struct *vma)
1218{
1219 struct mon_reader_bin *rp = vma->vm_private_data;
1220 rp->mmap_active--;
1221}
1222
1223/*
1224 * Map ring pages to user space.
1225 */
1226static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1227{
1228 struct mon_reader_bin *rp = vma->vm_private_data;
1229 unsigned long offset, chunk_idx;
1230 struct page *pageptr;
1231
1232 offset = vmf->pgoff << PAGE_SHIFT;
1233 if (offset >= rp->b_size)
1234 return VM_FAULT_SIGBUS;
1235 chunk_idx = offset / CHUNK_SIZE;
1236 pageptr = rp->b_vec[chunk_idx].pg;
1237 get_page(pageptr);
1238 vmf->page = pageptr;
1239 return 0;
1240}
1241
1242static const struct vm_operations_struct mon_bin_vm_ops = {
1243 .open = mon_bin_vma_open,
1244 .close = mon_bin_vma_close,
1245 .fault = mon_bin_vma_fault,
1246};
1247
1248static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1249{
1250 /* don't do anything here: "fault" will set up page table entries */
1251 vma->vm_ops = &mon_bin_vm_ops;
1252 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1253 vma->vm_private_data = filp->private_data;
1254 mon_bin_vma_open(vma);
1255 return 0;
1256}
1257
1258static const struct file_operations mon_fops_binary = {
1259 .owner = THIS_MODULE,
1260 .open = mon_bin_open,
1261 .llseek = no_llseek,
1262 .read = mon_bin_read,
1263 /* .write = mon_text_write, */
1264 .poll = mon_bin_poll,
1265 .unlocked_ioctl = mon_bin_ioctl,
1266#ifdef CONFIG_COMPAT
1267 .compat_ioctl = mon_bin_compat_ioctl,
1268#endif
1269 .release = mon_bin_release,
1270 .mmap = mon_bin_mmap,
1271};
1272
1273static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1274{
1275 DECLARE_WAITQUEUE(waita, current);
1276 unsigned long flags;
1277
1278 add_wait_queue(&rp->b_wait, &waita);
1279 set_current_state(TASK_INTERRUPTIBLE);
1280
1281 spin_lock_irqsave(&rp->b_lock, flags);
1282 while (MON_RING_EMPTY(rp)) {
1283 spin_unlock_irqrestore(&rp->b_lock, flags);
1284
1285 if (file->f_flags & O_NONBLOCK) {
1286 set_current_state(TASK_RUNNING);
1287 remove_wait_queue(&rp->b_wait, &waita);
1288 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1289 }
1290 schedule();
1291 if (signal_pending(current)) {
1292 remove_wait_queue(&rp->b_wait, &waita);
1293 return -EINTR;
1294 }
1295 set_current_state(TASK_INTERRUPTIBLE);
1296
1297 spin_lock_irqsave(&rp->b_lock, flags);
1298 }
1299 spin_unlock_irqrestore(&rp->b_lock, flags);
1300
1301 set_current_state(TASK_RUNNING);
1302 remove_wait_queue(&rp->b_wait, &waita);
1303 return 0;
1304}
1305
1306static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1307{
1308 int n;
1309 unsigned long vaddr;
1310
1311 for (n = 0; n < npages; n++) {
1312 vaddr = get_zeroed_page(GFP_KERNEL);
1313 if (vaddr == 0) {
1314 while (n-- != 0)
1315 free_page((unsigned long) map[n].ptr);
1316 return -ENOMEM;
1317 }
1318 map[n].ptr = (unsigned char *) vaddr;
1319 map[n].pg = virt_to_page((void *) vaddr);
1320 }
1321 return 0;
1322}
1323
1324static void mon_free_buff(struct mon_pgmap *map, int npages)
1325{
1326 int n;
1327
1328 for (n = 0; n < npages; n++)
1329 free_page((unsigned long) map[n].ptr);
1330}
1331
1332int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1333{
1334 struct device *dev;
1335 unsigned minor = ubus? ubus->busnum: 0;
1336
1337 if (minor >= MON_BIN_MAX_MINOR)
1338 return 0;
1339
1340 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1341 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1342 "usbmon%d", minor);
1343 if (IS_ERR(dev))
1344 return 0;
1345
1346 mbus->classdev = dev;
1347 return 1;
1348}
1349
1350void mon_bin_del(struct mon_bus *mbus)
1351{
1352 device_destroy(mon_bin_class, mbus->classdev->devt);
1353}
1354
1355int __init mon_bin_init(void)
1356{
1357 int rc;
1358
1359 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1360 if (IS_ERR(mon_bin_class)) {
1361 rc = PTR_ERR(mon_bin_class);
1362 goto err_class;
1363 }
1364
1365 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1366 if (rc < 0)
1367 goto err_dev;
1368
1369 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1370 mon_bin_cdev.owner = THIS_MODULE;
1371
1372 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1373 if (rc < 0)
1374 goto err_add;
1375
1376 return 0;
1377
1378err_add:
1379 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1380err_dev:
1381 class_destroy(mon_bin_class);
1382err_class:
1383 return rc;
1384}
1385
1386void mon_bin_exit(void)
1387{
1388 cdev_del(&mon_bin_cdev);
1389 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1390 class_destroy(mon_bin_class);
1391}