Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  HID support for Linux
   3 *
   4 *  Copyright (c) 1999 Andreas Gal
   5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   7 *  Copyright (c) 2006-2010 Jiri Kosina
   8 */
   9
  10/*
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option)
  14 * any later version.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/mm.h>
  25#include <linux/spinlock.h>
  26#include <asm/unaligned.h>
  27#include <asm/byteorder.h>
  28#include <linux/input.h>
  29#include <linux/wait.h>
  30#include <linux/vmalloc.h>
  31#include <linux/sched.h>
 
  32
  33#include <linux/hid.h>
  34#include <linux/hiddev.h>
  35#include <linux/hid-debug.h>
  36#include <linux/hidraw.h>
  37
  38#include "hid-ids.h"
  39
  40/*
  41 * Version Information
  42 */
  43
  44#define DRIVER_DESC "HID core driver"
  45#define DRIVER_LICENSE "GPL"
  46
  47int hid_debug = 0;
  48module_param_named(debug, hid_debug, int, 0600);
  49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  50EXPORT_SYMBOL_GPL(hid_debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52/*
  53 * Register a new report for a device.
  54 */
  55
  56struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
 
 
  57{
  58	struct hid_report_enum *report_enum = device->report_enum + type;
  59	struct hid_report *report;
  60
 
 
  61	if (report_enum->report_id_hash[id])
  62		return report_enum->report_id_hash[id];
  63
  64	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  65	if (!report)
  66		return NULL;
  67
  68	if (id != 0)
  69		report_enum->numbered = 1;
  70
  71	report->id = id;
  72	report->type = type;
  73	report->size = 0;
  74	report->device = device;
 
  75	report_enum->report_id_hash[id] = report;
  76
  77	list_add_tail(&report->list, &report_enum->report_list);
 
  78
  79	return report;
  80}
  81EXPORT_SYMBOL_GPL(hid_register_report);
  82
  83/*
  84 * Register a new field for this report.
  85 */
  86
  87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  88{
  89	struct hid_field *field;
  90
  91	if (report->maxfield == HID_MAX_FIELDS) {
  92		dbg_hid("too many fields in report\n");
  93		return NULL;
  94	}
  95
  96	field = kzalloc((sizeof(struct hid_field) +
  97			 usages * sizeof(struct hid_usage) +
  98			 values * sizeof(unsigned)), GFP_KERNEL);
  99	if (!field)
 100		return NULL;
 101
 102	field->index = report->maxfield++;
 103	report->field[field->index] = field;
 104	field->usage = (struct hid_usage *)(field + 1);
 105	field->value = (s32 *)(field->usage + usages);
 
 
 106	field->report = report;
 107
 108	return field;
 109}
 110
 111/*
 112 * Open a collection. The type/usage is pushed on the stack.
 113 */
 114
 115static int open_collection(struct hid_parser *parser, unsigned type)
 116{
 117	struct hid_collection *collection;
 118	unsigned usage;
 
 119
 120	usage = parser->local.usage[0];
 121
 122	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
 123		dbg_hid("collection stack overflow\n");
 124		return -1;
 
 
 
 
 
 
 
 
 
 
 125	}
 126
 127	if (parser->device->maxcollection == parser->device->collection_size) {
 128		collection = kmalloc(sizeof(struct hid_collection) *
 129				parser->device->collection_size * 2, GFP_KERNEL);
 
 
 
 130		if (collection == NULL) {
 131			dbg_hid("failed to reallocate collection array\n");
 132			return -1;
 133		}
 134		memcpy(collection, parser->device->collection,
 135			sizeof(struct hid_collection) *
 136			parser->device->collection_size);
 137		memset(collection + parser->device->collection_size, 0,
 138			sizeof(struct hid_collection) *
 139			parser->device->collection_size);
 140		kfree(parser->device->collection);
 141		parser->device->collection = collection;
 142		parser->device->collection_size *= 2;
 143	}
 144
 145	parser->collection_stack[parser->collection_stack_ptr++] =
 146		parser->device->maxcollection;
 147
 148	collection = parser->device->collection +
 149		parser->device->maxcollection++;
 150	collection->type = type;
 151	collection->usage = usage;
 152	collection->level = parser->collection_stack_ptr - 1;
 
 
 153
 154	if (type == HID_COLLECTION_APPLICATION)
 155		parser->device->maxapplication++;
 156
 157	return 0;
 158}
 159
 160/*
 161 * Close a collection.
 162 */
 163
 164static int close_collection(struct hid_parser *parser)
 165{
 166	if (!parser->collection_stack_ptr) {
 167		dbg_hid("collection stack underflow\n");
 168		return -1;
 169	}
 170	parser->collection_stack_ptr--;
 171	return 0;
 172}
 173
 174/*
 175 * Climb up the stack, search for the specified collection type
 176 * and return the usage.
 177 */
 178
 179static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 180{
 181	struct hid_collection *collection = parser->device->collection;
 182	int n;
 183
 184	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 185		unsigned index = parser->collection_stack[n];
 186		if (collection[index].type == type)
 187			return collection[index].usage;
 188	}
 189	return 0; /* we know nothing about this usage type */
 190}
 191
 192/*
 
 
 
 
 
 
 
 
 
 
 
 
 193 * Add a usage to the temporary parser table.
 194 */
 195
 196static int hid_add_usage(struct hid_parser *parser, unsigned usage)
 197{
 198	if (parser->local.usage_index >= HID_MAX_USAGES) {
 199		dbg_hid("usage index exceeded\n");
 200		return -1;
 201	}
 202	parser->local.usage[parser->local.usage_index] = usage;
 
 
 
 
 
 
 
 
 
 203	parser->local.collection_index[parser->local.usage_index] =
 204		parser->collection_stack_ptr ?
 205		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 206	parser->local.usage_index++;
 207	return 0;
 208}
 209
 210/*
 211 * Register a new field for this report.
 212 */
 213
 214static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 215{
 216	struct hid_report *report;
 217	struct hid_field *field;
 218	int usages;
 219	unsigned offset;
 220	int i;
 
 
 221
 222	report = hid_register_report(parser->device, report_type, parser->global.report_id);
 
 
 
 223	if (!report) {
 224		dbg_hid("hid_register_report failed\n");
 225		return -1;
 226	}
 227
 228	if (parser->global.logical_maximum < parser->global.logical_minimum) {
 229		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
 
 
 
 
 
 
 
 
 230		return -1;
 231	}
 232
 233	offset = report->size;
 234	report->size += parser->global.report_size * parser->global.report_count;
 235
 
 
 
 
 
 
 
 
 
 236	if (!parser->local.usage_index) /* Ignore padding fields */
 237		return 0;
 238
 239	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
 
 240
 241	field = hid_register_field(report, usages, parser->global.report_count);
 242	if (!field)
 243		return 0;
 244
 245	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 246	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 247	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 248
 249	for (i = 0; i < usages; i++) {
 250		int j = i;
 251		/* Duplicate the last usage we parsed if we have excess values */
 252		if (i >= parser->local.usage_index)
 253			j = parser->local.usage_index - 1;
 254		field->usage[i].hid = parser->local.usage[j];
 255		field->usage[i].collection_index =
 256			parser->local.collection_index[j];
 
 
 257	}
 258
 259	field->maxusage = usages;
 260	field->flags = flags;
 261	field->report_offset = offset;
 262	field->report_type = report_type;
 263	field->report_size = parser->global.report_size;
 264	field->report_count = parser->global.report_count;
 265	field->logical_minimum = parser->global.logical_minimum;
 266	field->logical_maximum = parser->global.logical_maximum;
 267	field->physical_minimum = parser->global.physical_minimum;
 268	field->physical_maximum = parser->global.physical_maximum;
 269	field->unit_exponent = parser->global.unit_exponent;
 270	field->unit = parser->global.unit;
 271
 272	return 0;
 273}
 274
 275/*
 276 * Read data value from item.
 277 */
 278
 279static u32 item_udata(struct hid_item *item)
 280{
 281	switch (item->size) {
 282	case 1: return item->data.u8;
 283	case 2: return item->data.u16;
 284	case 4: return item->data.u32;
 285	}
 286	return 0;
 287}
 288
 289static s32 item_sdata(struct hid_item *item)
 290{
 291	switch (item->size) {
 292	case 1: return item->data.s8;
 293	case 2: return item->data.s16;
 294	case 4: return item->data.s32;
 295	}
 296	return 0;
 297}
 298
 299/*
 300 * Process a global item.
 301 */
 302
 303static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 304{
 
 305	switch (item->tag) {
 306	case HID_GLOBAL_ITEM_TAG_PUSH:
 307
 308		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 309			dbg_hid("global environment stack overflow\n");
 310			return -1;
 311		}
 312
 313		memcpy(parser->global_stack + parser->global_stack_ptr++,
 314			&parser->global, sizeof(struct hid_global));
 315		return 0;
 316
 317	case HID_GLOBAL_ITEM_TAG_POP:
 318
 319		if (!parser->global_stack_ptr) {
 320			dbg_hid("global environment stack underflow\n");
 321			return -1;
 322		}
 323
 324		memcpy(&parser->global, parser->global_stack +
 325			--parser->global_stack_ptr, sizeof(struct hid_global));
 326		return 0;
 327
 328	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 329		parser->global.usage_page = item_udata(item);
 330		return 0;
 331
 332	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 333		parser->global.logical_minimum = item_sdata(item);
 334		return 0;
 335
 336	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 337		if (parser->global.logical_minimum < 0)
 338			parser->global.logical_maximum = item_sdata(item);
 339		else
 340			parser->global.logical_maximum = item_udata(item);
 341		return 0;
 342
 343	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 344		parser->global.physical_minimum = item_sdata(item);
 345		return 0;
 346
 347	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 348		if (parser->global.physical_minimum < 0)
 349			parser->global.physical_maximum = item_sdata(item);
 350		else
 351			parser->global.physical_maximum = item_udata(item);
 352		return 0;
 353
 354	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 355		parser->global.unit_exponent = item_sdata(item);
 
 
 
 
 
 
 
 
 356		return 0;
 357
 358	case HID_GLOBAL_ITEM_TAG_UNIT:
 359		parser->global.unit = item_udata(item);
 360		return 0;
 361
 362	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 363		parser->global.report_size = item_udata(item);
 364		if (parser->global.report_size > 32) {
 365			dbg_hid("invalid report_size %d\n",
 366					parser->global.report_size);
 367			return -1;
 368		}
 369		return 0;
 370
 371	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 372		parser->global.report_count = item_udata(item);
 373		if (parser->global.report_count > HID_MAX_USAGES) {
 374			dbg_hid("invalid report_count %d\n",
 375					parser->global.report_count);
 376			return -1;
 377		}
 378		return 0;
 379
 380	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 381		parser->global.report_id = item_udata(item);
 382		if (parser->global.report_id == 0) {
 383			dbg_hid("report_id 0 is invalid\n");
 
 
 384			return -1;
 385		}
 386		return 0;
 387
 388	default:
 389		dbg_hid("unknown global tag 0x%x\n", item->tag);
 390		return -1;
 391	}
 392}
 393
 394/*
 395 * Process a local item.
 396 */
 397
 398static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 399{
 400	__u32 data;
 401	unsigned n;
 
 402
 403	data = item_udata(item);
 404
 405	switch (item->tag) {
 406	case HID_LOCAL_ITEM_TAG_DELIMITER:
 407
 408		if (data) {
 409			/*
 410			 * We treat items before the first delimiter
 411			 * as global to all usage sets (branch 0).
 412			 * In the moment we process only these global
 413			 * items and the first delimiter set.
 414			 */
 415			if (parser->local.delimiter_depth != 0) {
 416				dbg_hid("nested delimiters\n");
 417				return -1;
 418			}
 419			parser->local.delimiter_depth++;
 420			parser->local.delimiter_branch++;
 421		} else {
 422			if (parser->local.delimiter_depth < 1) {
 423				dbg_hid("bogus close delimiter\n");
 424				return -1;
 425			}
 426			parser->local.delimiter_depth--;
 427		}
 428		return 1;
 429
 430	case HID_LOCAL_ITEM_TAG_USAGE:
 431
 432		if (parser->local.delimiter_branch > 1) {
 433			dbg_hid("alternative usage ignored\n");
 434			return 0;
 435		}
 436
 437		if (item->size <= 2)
 438			data = (parser->global.usage_page << 16) + data;
 439
 440		return hid_add_usage(parser, data);
 441
 442	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 443
 444		if (parser->local.delimiter_branch > 1) {
 445			dbg_hid("alternative usage ignored\n");
 446			return 0;
 447		}
 448
 449		if (item->size <= 2)
 450			data = (parser->global.usage_page << 16) + data;
 451
 452		parser->local.usage_minimum = data;
 453		return 0;
 454
 455	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 456
 457		if (parser->local.delimiter_branch > 1) {
 458			dbg_hid("alternative usage ignored\n");
 459			return 0;
 460		}
 461
 462		if (item->size <= 2)
 463			data = (parser->global.usage_page << 16) + data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465		for (n = parser->local.usage_minimum; n <= data; n++)
 466			if (hid_add_usage(parser, n)) {
 467				dbg_hid("hid_add_usage failed\n");
 468				return -1;
 469			}
 470		return 0;
 471
 472	default:
 473
 474		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 475		return 0;
 476	}
 477	return 0;
 478}
 479
 480/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481 * Process a main item.
 482 */
 483
 484static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 485{
 486	__u32 data;
 487	int ret;
 488
 
 
 489	data = item_udata(item);
 490
 491	switch (item->tag) {
 492	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 493		ret = open_collection(parser, data & 0xff);
 494		break;
 495	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 496		ret = close_collection(parser);
 497		break;
 498	case HID_MAIN_ITEM_TAG_INPUT:
 499		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 500		break;
 501	case HID_MAIN_ITEM_TAG_OUTPUT:
 502		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 503		break;
 504	case HID_MAIN_ITEM_TAG_FEATURE:
 505		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 506		break;
 507	default:
 508		dbg_hid("unknown main item tag 0x%x\n", item->tag);
 509		ret = 0;
 510	}
 511
 512	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 513
 514	return ret;
 515}
 516
 517/*
 518 * Process a reserved item.
 519 */
 520
 521static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 522{
 523	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 524	return 0;
 525}
 526
 527/*
 528 * Free a report and all registered fields. The field->usage and
 529 * field->value table's are allocated behind the field, so we need
 530 * only to free(field) itself.
 531 */
 532
 533static void hid_free_report(struct hid_report *report)
 534{
 535	unsigned n;
 536
 
 
 537	for (n = 0; n < report->maxfield; n++)
 538		kfree(report->field[n]);
 539	kfree(report);
 540}
 541
 542/*
 543 * Free a device structure, all reports, and all fields.
 
 544 */
 545
 546static void hid_device_release(struct device *dev)
 547{
 548	struct hid_device *device = container_of(dev, struct hid_device, dev);
 549	unsigned i, j;
 550
 551	for (i = 0; i < HID_REPORT_TYPES; i++) {
 552		struct hid_report_enum *report_enum = device->report_enum + i;
 553
 554		for (j = 0; j < 256; j++) {
 555			struct hid_report *report = report_enum->report_id_hash[j];
 556			if (report)
 557				hid_free_report(report);
 558		}
 
 
 559	}
 560
 561	kfree(device->rdesc);
 
 
 
 
 
 
 
 
 
 
 562	kfree(device->collection);
 563	kfree(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564}
 565
 566/*
 567 * Fetch a report description item from the data stream. We support long
 568 * items, though they are not used yet.
 569 */
 570
 571static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 572{
 573	u8 b;
 574
 575	if ((end - start) <= 0)
 576		return NULL;
 577
 578	b = *start++;
 579
 580	item->type = (b >> 2) & 3;
 581	item->tag  = (b >> 4) & 15;
 582
 583	if (item->tag == HID_ITEM_TAG_LONG) {
 584
 585		item->format = HID_ITEM_FORMAT_LONG;
 586
 587		if ((end - start) < 2)
 588			return NULL;
 589
 590		item->size = *start++;
 591		item->tag  = *start++;
 592
 593		if ((end - start) < item->size)
 594			return NULL;
 595
 596		item->data.longdata = start;
 597		start += item->size;
 598		return start;
 599	}
 600
 601	item->format = HID_ITEM_FORMAT_SHORT;
 602	item->size = b & 3;
 
 
 
 603
 604	switch (item->size) {
 605	case 0:
 606		return start;
 607
 608	case 1:
 609		if ((end - start) < 1)
 610			return NULL;
 611		item->data.u8 = *start++;
 612		return start;
 613
 614	case 2:
 615		if ((end - start) < 2)
 616			return NULL;
 617		item->data.u16 = get_unaligned_le16(start);
 618		start = (__u8 *)((__le16 *)start + 1);
 619		return start;
 620
 621	case 3:
 622		item->size++;
 623		if ((end - start) < 4)
 624			return NULL;
 625		item->data.u32 = get_unaligned_le32(start);
 626		start = (__u8 *)((__le32 *)start + 1);
 627		return start;
 628	}
 629
 630	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631}
 632
 633/**
 634 * hid_parse_report - parse device report
 635 *
 636 * @device: hid device
 637 * @start: report start
 638 * @size: report size
 639 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640 * Parse a report description into a hid_device structure. Reports are
 641 * enumerated, fields are attached to these reports.
 642 * 0 returned on success, otherwise nonzero error value.
 
 
 
 643 */
 644int hid_parse_report(struct hid_device *device, __u8 *start,
 645		unsigned size)
 646{
 647	struct hid_parser *parser;
 648	struct hid_item item;
 649	__u8 *end;
 
 
 
 650	int ret;
 
 651	static int (*dispatch_type[])(struct hid_parser *parser,
 652				      struct hid_item *item) = {
 653		hid_parser_main,
 654		hid_parser_global,
 655		hid_parser_local,
 656		hid_parser_reserved
 657	};
 658
 659	if (device->driver->report_fixup)
 660		start = device->driver->report_fixup(device, start, &size);
 661
 662	device->rdesc = kmemdup(start, size, GFP_KERNEL);
 663	if (device->rdesc == NULL)
 664		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	device->rsize = size;
 666
 667	parser = vzalloc(sizeof(struct hid_parser));
 668	if (!parser) {
 669		ret = -ENOMEM;
 670		goto err;
 671	}
 672
 673	parser->device = device;
 674
 675	end = start + size;
 
 
 
 
 
 
 
 
 
 
 
 676	ret = -EINVAL;
 677	while ((start = fetch_item(start, end, &item)) != NULL) {
 
 678
 679		if (item.format != HID_ITEM_FORMAT_SHORT) {
 680			dbg_hid("unexpected long global item\n");
 681			goto err;
 682		}
 683
 684		if (dispatch_type[item.type](parser, &item)) {
 685			dbg_hid("item %u %u %u %u parsing failed\n",
 686				item.format, (unsigned)item.size,
 687				(unsigned)item.type, (unsigned)item.tag);
 688			goto err;
 689		}
 690
 691		if (start == end) {
 692			if (parser->collection_stack_ptr) {
 693				dbg_hid("unbalanced collection at end of report description\n");
 694				goto err;
 695			}
 696			if (parser->local.delimiter_depth) {
 697				dbg_hid("unbalanced delimiter at end of report description\n");
 698				goto err;
 699			}
 
 
 
 
 
 
 
 
 700			vfree(parser);
 
 
 701			return 0;
 702		}
 703	}
 704
 705	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
 
 706err:
 
 
 707	vfree(parser);
 
 708	return ret;
 709}
 710EXPORT_SYMBOL_GPL(hid_parse_report);
 711
 712/*
 713 * Convert a signed n-bit integer to signed 32-bit integer. Common
 714 * cases are done through the compiler, the screwed things has to be
 715 * done by hand.
 716 */
 717
 718static s32 snto32(__u32 value, unsigned n)
 719{
 720	switch (n) {
 721	case 8:  return ((__s8)value);
 722	case 16: return ((__s16)value);
 723	case 32: return ((__s32)value);
 724	}
 725	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
 726}
 727
 728/*
 729 * Convert a signed 32-bit integer to a signed n-bit integer.
 730 */
 731
 732static u32 s32ton(__s32 value, unsigned n)
 733{
 734	s32 a = value >> (n - 1);
 735	if (a && a != -1)
 736		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
 737	return value & ((1 << n) - 1);
 738}
 739
 740/*
 741 * Extract/implement a data field from/to a little endian report (bit array).
 742 *
 743 * Code sort-of follows HID spec:
 744 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
 745 *
 746 * While the USB HID spec allows unlimited length bit fields in "report
 747 * descriptors", most devices never use more than 16 bits.
 748 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
 749 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
 750 */
 751
 752static __u32 extract(const struct hid_device *hid, __u8 *report,
 753		     unsigned offset, unsigned n)
 754{
 755	u64 x;
 
 
 
 
 
 756
 757	if (n > 32)
 758		hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
 759			 n, current->comm);
 
 
 
 
 
 760
 761	report += offset >> 3;  /* adjust byte index */
 762	offset &= 7;            /* now only need bit offset into one byte */
 763	x = get_unaligned_le64(report);
 764	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
 765	return (u32) x;
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 768/*
 769 * "implement" : set bits in a little endian bit stream.
 770 * Same concepts as "extract" (see comments above).
 771 * The data mangled in the bit stream remains in little endian
 772 * order the whole time. It make more sense to talk about
 773 * endianness of register values by considering a register
 774 * a "cached" copy of the little endiad bit stream.
 775 */
 776static void implement(const struct hid_device *hid, __u8 *report,
 777		      unsigned offset, unsigned n, __u32 value)
 778{
 779	u64 x;
 780	u64 m = (1ULL << n) - 1;
 
 781
 782	if (n > 32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
 784			 __func__, n, current->comm);
 
 
 
 
 
 
 
 
 
 
 
 785
 786	if (value > m)
 787		hid_warn(hid, "%s() called with too large value %d! (%s)\n",
 788			 __func__, value, current->comm);
 789	WARN_ON(value > m);
 790	value &= m;
 791
 792	report += offset >> 3;
 793	offset &= 7;
 794
 795	x = get_unaligned_le64(report);
 796	x &= ~(m << offset);
 797	x |= ((u64)value) << offset;
 798	put_unaligned_le64(x, report);
 799}
 800
 801/*
 802 * Search an array for a value.
 803 */
 804
 805static int search(__s32 *array, __s32 value, unsigned n)
 806{
 807	while (n--) {
 808		if (*array++ == value)
 809			return 0;
 810	}
 811	return -1;
 812}
 813
 814/**
 815 * hid_match_report - check if driver's raw_event should be called
 816 *
 817 * @hid: hid device
 818 * @report_type: type to match against
 819 *
 820 * compare hid->driver->report_table->report_type to report->type
 821 */
 822static int hid_match_report(struct hid_device *hid, struct hid_report *report)
 823{
 824	const struct hid_report_id *id = hid->driver->report_table;
 825
 826	if (!id) /* NULL means all */
 827		return 1;
 828
 829	for (; id->report_type != HID_TERMINATOR; id++)
 830		if (id->report_type == HID_ANY_ID ||
 831				id->report_type == report->type)
 832			return 1;
 833	return 0;
 834}
 835
 836/**
 837 * hid_match_usage - check if driver's event should be called
 838 *
 839 * @hid: hid device
 840 * @usage: usage to match against
 841 *
 842 * compare hid->driver->usage_table->usage_{type,code} to
 843 * usage->usage_{type,code}
 844 */
 845static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
 846{
 847	const struct hid_usage_id *id = hid->driver->usage_table;
 848
 849	if (!id) /* NULL means all */
 850		return 1;
 851
 852	for (; id->usage_type != HID_ANY_ID - 1; id++)
 853		if ((id->usage_hid == HID_ANY_ID ||
 854				id->usage_hid == usage->hid) &&
 855				(id->usage_type == HID_ANY_ID ||
 856				id->usage_type == usage->type) &&
 857				(id->usage_code == HID_ANY_ID ||
 858				 id->usage_code == usage->code))
 859			return 1;
 860	return 0;
 861}
 862
 863static void hid_process_event(struct hid_device *hid, struct hid_field *field,
 864		struct hid_usage *usage, __s32 value, int interrupt)
 865{
 866	struct hid_driver *hdrv = hid->driver;
 867	int ret;
 868
 869	hid_dump_input(hid, usage, value);
 
 870
 871	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
 872		ret = hdrv->event(hid, field, usage, value);
 873		if (ret != 0) {
 874			if (ret < 0)
 875				dbg_hid("%s's event failed with %d\n",
 876						hdrv->name, ret);
 877			return;
 878		}
 879	}
 880
 881	if (hid->claimed & HID_CLAIMED_INPUT)
 882		hidinput_hid_event(hid, field, usage, value);
 883	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
 884		hid->hiddev_hid_event(hid, field, usage, value);
 885}
 886
 887/*
 888 * Analyse a received field, and fetch the data from it. The field
 889 * content is stored for next report processing (we do differential
 890 * reporting to the layer).
 891 */
 
 
 
 
 892
 893static void hid_input_field(struct hid_device *hid, struct hid_field *field,
 894			    __u8 *data, int interrupt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895{
 896	unsigned n;
 897	unsigned count = field->report_count;
 898	unsigned offset = field->report_offset;
 899	unsigned size = field->report_size;
 900	__s32 min = field->logical_minimum;
 901	__s32 max = field->logical_maximum;
 902	__s32 *value;
 903
 904	value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
 905	if (!value)
 906		return;
 907
 908	for (n = 0; n < count; n++) {
 909
 910		value[n] = min < 0 ?
 911			snto32(extract(hid, data, offset + n * size, size),
 912			       size) :
 913			extract(hid, data, offset + n * size, size);
 914
 915		/* Ignore report if ErrorRollOver */
 916		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
 917		    value[n] >= min && value[n] <= max &&
 918		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
 919			goto exit;
 
 
 920	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921
 922	for (n = 0; n < count; n++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
 925			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
 926			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927		}
 928
 929		if (field->value[n] >= min && field->value[n] <= max
 930			&& field->usage[field->value[n] - min].hid
 931			&& search(value, field->value[n], count))
 932				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
 933
 934		if (value[n] >= min && value[n] <= max
 935			&& field->usage[value[n] - min].hid
 936			&& search(field->value, value[n], count))
 937				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
 
 
 
 
 
 
 
 
 
 938	}
 
 939
 940	memcpy(field->value, value, count * sizeof(__s32));
 941exit:
 942	kfree(value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943}
 944
 945/*
 946 * Output the field into the report.
 947 */
 948
 949static void hid_output_field(const struct hid_device *hid,
 950			     struct hid_field *field, __u8 *data)
 951{
 952	unsigned count = field->report_count;
 953	unsigned offset = field->report_offset;
 954	unsigned size = field->report_size;
 955	unsigned n;
 956
 957	for (n = 0; n < count; n++) {
 958		if (field->logical_minimum < 0)	/* signed values */
 959			implement(hid, data, offset + n * size, size,
 960				  s32ton(field->value[n], size));
 961		else				/* unsigned values */
 962			implement(hid, data, offset + n * size, size,
 963				  field->value[n]);
 964	}
 965}
 966
 967/*
 968 * Create a report.
 
 
 
 
 
 
 
 
 
 
 
 
 969 */
 970
 971void hid_output_report(struct hid_report *report, __u8 *data)
 972{
 973	unsigned n;
 974
 975	if (report->id > 0)
 976		*data++ = report->id;
 977
 978	memset(data, 0, ((report->size - 1) >> 3) + 1);
 979	for (n = 0; n < report->maxfield; n++)
 980		hid_output_field(report->device, report->field[n], data);
 981}
 982EXPORT_SYMBOL_GPL(hid_output_report);
 983
 984/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985 * Set a field value. The report this field belongs to has to be
 986 * created and transferred to the device, to set this value in the
 987 * device.
 988 */
 989
 990int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
 991{
 992	unsigned size = field->report_size;
 
 
 
 
 
 993
 994	hid_dump_input(field->report->device, field->usage + offset, value);
 995
 996	if (offset >= field->report_count) {
 997		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
 
 998		return -1;
 999	}
1000	if (field->logical_minimum < 0) {
1001		if (value != snto32(s32ton(value, size), size)) {
1002			dbg_hid("value %d is out of range\n", value);
1003			return -1;
1004		}
1005	}
1006	field->value[offset] = value;
1007	return 0;
1008}
1009EXPORT_SYMBOL_GPL(hid_set_field);
1010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1012		const u8 *data)
1013{
1014	struct hid_report *report;
1015	unsigned int n = 0;	/* Normally report number is 0 */
1016
1017	/* Device uses numbered reports, data[0] is report number */
1018	if (report_enum->numbered)
1019		n = *data;
1020
1021	report = report_enum->report_id_hash[n];
1022	if (report == NULL)
1023		dbg_hid("undefined report_id %u received\n", n);
1024
1025	return report;
1026}
1027
1028void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1029		int interrupt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030{
1031	struct hid_report_enum *report_enum = hid->report_enum + type;
1032	struct hid_report *report;
1033	unsigned int a;
1034	int rsize, csize = size;
 
1035	u8 *cdata = data;
 
1036
1037	report = hid_get_report(report_enum, data);
1038	if (!report)
1039		return;
1040
1041	if (report_enum->numbered) {
1042		cdata++;
1043		csize--;
1044	}
1045
1046	rsize = ((report->size - 1) >> 3) + 1;
 
 
 
1047
1048	if (rsize > HID_MAX_BUFFER_SIZE)
1049		rsize = HID_MAX_BUFFER_SIZE;
 
 
1050
1051	if (csize < rsize) {
1052		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1053				csize, rsize);
1054		memset(cdata + csize, 0, rsize - csize);
1055	}
1056
1057	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1058		hid->hiddev_report_event(hid, report);
1059	if (hid->claimed & HID_CLAIMED_HIDRAW)
1060		hidraw_report_event(hid, data, size);
 
 
 
1061
1062	for (a = 0; a < report->maxfield; a++)
1063		hid_input_field(hid, report->field[a], cdata, interrupt);
 
 
 
 
1064
1065	if (hid->claimed & HID_CLAIMED_INPUT)
1066		hidinput_report_event(hid, report);
 
 
1067}
1068EXPORT_SYMBOL_GPL(hid_report_raw_event);
1069
1070/**
1071 * hid_input_report - report data from lower layer (usb, bt...)
1072 *
1073 * @hid: hid device
1074 * @type: HID report type (HID_*_REPORT)
1075 * @data: report contents
1076 * @size: size of data parameter
1077 * @interrupt: distinguish between interrupt and control transfers
1078 *
1079 * This is data entry for lower layers.
1080 */
1081int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1082{
1083	struct hid_report_enum *report_enum;
1084	struct hid_driver *hdrv;
1085	struct hid_report *report;
1086	char *buf;
1087	unsigned int i;
1088	int ret;
1089
1090	if (!hid || !hid->driver)
1091		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
1092	report_enum = hid->report_enum + type;
1093	hdrv = hid->driver;
1094
 
 
 
 
 
 
1095	if (!size) {
1096		dbg_hid("empty report\n");
1097		return -1;
 
1098	}
1099
1100	buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
 
 
1101
1102	if (!buf)
1103		goto nomem;
1104
1105	/* dump the report */
1106	snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1107			"\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
1108	hid_debug_event(hid, buf);
1109
1110	for (i = 0; i < size; i++) {
1111		snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1112				" %02x", data[i]);
1113		hid_debug_event(hid, buf);
1114	}
1115	hid_debug_event(hid, "\n");
1116	kfree(buf);
1117
1118nomem:
1119	report = hid_get_report(report_enum, data);
1120
1121	if (!report)
1122		return -1;
 
 
1123
1124	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1125		ret = hdrv->raw_event(hid, report, data, size);
1126		if (ret != 0)
1127			return ret < 0 ? ret : 0;
1128	}
1129
1130	hid_report_raw_event(hid, type, data, size, interrupt);
1131
1132	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133}
1134EXPORT_SYMBOL_GPL(hid_input_report);
1135
1136static bool hid_match_one_id(struct hid_device *hdev,
1137		const struct hid_device_id *id)
1138{
1139	return id->bus == hdev->bus &&
 
1140		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1141		(id->product == HID_ANY_ID || id->product == hdev->product);
1142}
1143
1144static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1145		const struct hid_device_id *id)
1146{
1147	for (; id->bus; id++)
1148		if (hid_match_one_id(hdev, id))
1149			return id;
1150
1151	return NULL;
1152}
 
1153
1154static const struct hid_device_id hid_hiddev_list[] = {
1155	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1156	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1157	{ }
1158};
1159
1160static bool hid_hiddev(struct hid_device *hdev)
1161{
1162	return !!hid_match_id(hdev, hid_hiddev_list);
1163}
1164
1165
1166static ssize_t
1167read_report_descriptor(struct file *filp, struct kobject *kobj,
1168		struct bin_attribute *attr,
1169		char *buf, loff_t off, size_t count)
1170{
1171	struct device *dev = container_of(kobj, struct device, kobj);
1172	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1173
1174	if (off >= hdev->rsize)
1175		return 0;
1176
1177	if (off + count > hdev->rsize)
1178		count = hdev->rsize - off;
1179
1180	memcpy(buf, hdev->rdesc + off, count);
1181
1182	return count;
1183}
1184
 
 
 
 
 
 
 
 
 
1185static struct bin_attribute dev_bin_attr_report_desc = {
1186	.attr = { .name = "report_descriptor", .mode = 0444 },
1187	.read = read_report_descriptor,
1188	.size = HID_MAX_DESCRIPTOR_SIZE,
1189};
1190
 
 
 
 
 
1191int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1192{
1193	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1194		"Joystick", "Gamepad", "Keyboard", "Keypad",
1195		"Multi-Axis Controller"
1196	};
1197	const char *type, *bus;
1198	char buf[64];
1199	unsigned int i;
1200	int len;
1201	int ret;
1202
 
 
 
 
1203	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1204		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1205	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1206		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1207	if (hdev->bus != BUS_USB)
1208		connect_mask &= ~HID_CONNECT_HIDDEV;
1209	if (hid_hiddev(hdev))
1210		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1211
1212	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1213				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1214		hdev->claimed |= HID_CLAIMED_INPUT;
 
1215	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1216			!hdev->hiddev_connect(hdev,
1217				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1218		hdev->claimed |= HID_CLAIMED_HIDDEV;
1219	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1220		hdev->claimed |= HID_CLAIMED_HIDRAW;
1221
1222	if (!hdev->claimed) {
1223		hid_err(hdev, "claimed by neither input, hiddev nor hidraw\n");
 
 
 
 
 
1224		return -ENODEV;
1225	}
1226
 
 
1227	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1228			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1229		hdev->ff_init(hdev);
1230
1231	len = 0;
1232	if (hdev->claimed & HID_CLAIMED_INPUT)
1233		len += sprintf(buf + len, "input");
1234	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1235		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1236				hdev->minor);
1237	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1238		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1239				((struct hidraw *)hdev->hidraw)->minor);
1240
1241	type = "Device";
1242	for (i = 0; i < hdev->maxcollection; i++) {
1243		struct hid_collection *col = &hdev->collection[i];
1244		if (col->type == HID_COLLECTION_APPLICATION &&
1245		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1246		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1247			type = types[col->usage & 0xffff];
1248			break;
1249		}
1250	}
1251
1252	switch (hdev->bus) {
1253	case BUS_USB:
1254		bus = "USB";
1255		break;
1256	case BUS_BLUETOOTH:
1257		bus = "BLUETOOTH";
1258		break;
 
 
 
 
 
 
 
 
 
 
1259	default:
1260		bus = "<UNKNOWN>";
1261	}
1262
1263	ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1264	if (ret)
1265		hid_warn(hdev,
1266			 "can't create sysfs report descriptor attribute err: %d\n", ret);
1267
1268	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1269		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1270		 type, hdev->name, hdev->phys);
1271
1272	return 0;
1273}
1274EXPORT_SYMBOL_GPL(hid_connect);
1275
1276void hid_disconnect(struct hid_device *hdev)
1277{
1278	device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1279	if (hdev->claimed & HID_CLAIMED_INPUT)
1280		hidinput_disconnect(hdev);
1281	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1282		hdev->hiddev_disconnect(hdev);
1283	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1284		hidraw_disconnect(hdev);
 
 
 
1285}
1286EXPORT_SYMBOL_GPL(hid_disconnect);
1287
1288/* a list of devices for which there is a specialized driver on HID bus */
1289static const struct hid_device_id hid_have_special_driver[] = {
1290	{ HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M1968) },
1291	{ HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M2256) },
1292	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1293	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1294	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1295	{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1296	{ HID_USB_DEVICE(USB_VENDOR_ID_ACTIONSTAR, USB_DEVICE_ID_ACTIONSTAR_1011) },
1297	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
1298	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1299	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1300	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1301	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1302	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1303	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1304	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1305	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1306	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1307	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1308	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1309	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1310	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1311	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1312	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1313	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1314	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1315	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1316	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1317	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1318	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1319	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1320	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1321	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1322	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1323	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1324	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1325	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1326	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1327	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1328	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1329	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1330	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1331	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1332	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1333	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1334	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1335	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1336	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1337	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1338	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1339	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1340	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1341	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1342	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1343	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1344	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1345	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1346	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1347	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1348	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1349	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1350	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1351	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_T91MT) },
1352	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUSTEK_MULTITOUCH_YFO) },
1353	{ HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1354	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1355	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1356	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_PIXCIR_MULTI_TOUCH) },
1357	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH) },
1358	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_10_1) },
1359	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_11_6) },
1360	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_15_6) },
1361	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1362	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1363	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1364	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1365	{ HID_USB_DEVICE(USB_VENDOR_ID_CHUNGHWAT, USB_DEVICE_ID_CHUNGHWAT_MULTITOUCH) },
1366	{ HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1367	{ HID_USB_DEVICE(USB_VENDOR_ID_CVTOUCH, USB_DEVICE_ID_CVTOUCH_SCREEN) },
1368	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1369	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1370	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1371	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1372	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_TRUETOUCH) },
1373	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1374	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1375	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH) },
1376	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH1) },
1377	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH2) },
1378	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH3) },
1379	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH4) },
1380	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1381	{ HID_USB_DEVICE(USB_VENDOR_ID_ELO, USB_DEVICE_ID_ELO_TS2515) },
1382	{ HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1383	{ HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1384	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1385	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1386	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, USB_DEVICE_ID_GENERAL_TOUCH_WIN7_TWOFINGERS) },
1387	{ HID_USB_DEVICE(USB_VENDOR_ID_GOODTOUCH, USB_DEVICE_ID_GOODTOUCH_000f) },
1388	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1389	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1390	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1391	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1392	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1393	{ HID_USB_DEVICE(USB_VENDOR_ID_HANVON, USB_DEVICE_ID_HANVON_MULTITOUCH) },
1394	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1395	{ HID_USB_DEVICE(USB_VENDOR_ID_ILITEK, USB_DEVICE_ID_ILITEK_MULTITOUCH) },
1396	{ HID_USB_DEVICE(USB_VENDOR_ID_IRTOUCHSYSTEMS, USB_DEVICE_ID_IRTOUCH_INFRARED_USB) },
1397	{ HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1398	{ HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1399	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1400	{ HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1401	{ HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1402	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1403	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1404	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1405	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1406	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1407	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1408	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1409	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1410	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1411	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1412	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1413	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1414	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1415	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1416	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1417	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1418	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1419	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1420	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1421	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1422	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1423	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1424	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1425	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1426	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1427	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1428	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1429	{ HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH) },
1430	{ HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH_DUAL) },
1431	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1432	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1433	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1434	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1435	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1436	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1437	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1438	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1439	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1440	{ HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1441	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1442	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1443	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1444	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1445	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1446	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1447	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1448	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1449	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1450	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1451	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1452	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1453	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1454	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1455	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1456	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1457	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1458	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1459	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1460	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1461	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1462	{ HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_PCI) },
1463	{ HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1464	{ HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_QUANTA_OPTICAL_TOUCH) },
1465	{ HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_PIXART_IMAGING_INC_OPTICAL_TOUCH_SCREEN) },
1466	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1467	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1468	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1469	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1470	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1471	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1472	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1473	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1474	{ HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1475	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1476	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1477	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1478	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1479	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM, USB_DEVICE_ID_MTP) },
1480	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_STM, USB_DEVICE_ID_MTP_STM) },
1481	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_SITRONIX, USB_DEVICE_ID_MTP_SITRONIX) },
1482	{ HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1483	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1484	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1485	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1486	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1487	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1488	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1489	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1490	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1491	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1492	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1493	{ HID_USB_DEVICE(USB_VENDOR_ID_TOUCH_INTL, USB_DEVICE_ID_TOUCH_INTL_MULTI_TOUCH) },
1494	{ HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1495	{ HID_USB_DEVICE(USB_VENDOR_ID_TURBOX, USB_DEVICE_ID_TURBOX_TOUCHSCREEN_MOSART) },
1496	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1497	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1498	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1499	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1500	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1501	{ HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0709) },
1502	{ HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0A19) },
1503	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1504	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1505	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1506	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1507	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1508	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1509	{ HID_USB_DEVICE(USB_VENDOR_ID_XAT, USB_DEVICE_ID_XAT_CSR) },
1510	{ HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1511	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1512	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1513	{ HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1514
1515	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1516	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1517	{ }
1518};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520struct hid_dynid {
1521	struct list_head list;
1522	struct hid_device_id id;
1523};
1524
1525/**
1526 * store_new_id - add a new HID device ID to this driver and re-probe devices
1527 * @driver: target device driver
1528 * @buf: buffer for scanning device ID data
1529 * @count: input size
1530 *
1531 * Adds a new dynamic hid device ID to this driver,
1532 * and causes the driver to probe for all devices again.
1533 */
1534static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1535		size_t count)
1536{
1537	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1538	struct hid_dynid *dynid;
1539	__u32 bus, vendor, product;
1540	unsigned long driver_data = 0;
1541	int ret;
1542
1543	ret = sscanf(buf, "%x %x %x %lx",
1544			&bus, &vendor, &product, &driver_data);
1545	if (ret < 3)
1546		return -EINVAL;
1547
1548	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1549	if (!dynid)
1550		return -ENOMEM;
1551
1552	dynid->id.bus = bus;
 
1553	dynid->id.vendor = vendor;
1554	dynid->id.product = product;
1555	dynid->id.driver_data = driver_data;
1556
1557	spin_lock(&hdrv->dyn_lock);
1558	list_add_tail(&dynid->list, &hdrv->dyn_list);
1559	spin_unlock(&hdrv->dyn_lock);
1560
1561	ret = 0;
1562	if (get_driver(&hdrv->driver)) {
1563		ret = driver_attach(&hdrv->driver);
1564		put_driver(&hdrv->driver);
1565	}
1566
1567	return ret ? : count;
1568}
1569static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
 
 
 
 
 
 
1570
1571static void hid_free_dynids(struct hid_driver *hdrv)
1572{
1573	struct hid_dynid *dynid, *n;
1574
1575	spin_lock(&hdrv->dyn_lock);
1576	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1577		list_del(&dynid->list);
1578		kfree(dynid);
1579	}
1580	spin_unlock(&hdrv->dyn_lock);
1581}
1582
1583static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1584		struct hid_driver *hdrv)
1585{
1586	struct hid_dynid *dynid;
1587
1588	spin_lock(&hdrv->dyn_lock);
1589	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1590		if (hid_match_one_id(hdev, &dynid->id)) {
1591			spin_unlock(&hdrv->dyn_lock);
1592			return &dynid->id;
1593		}
1594	}
1595	spin_unlock(&hdrv->dyn_lock);
1596
1597	return hid_match_id(hdev, hdrv->id_table);
1598}
 
1599
1600static int hid_bus_match(struct device *dev, struct device_driver *drv)
1601{
1602	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1603	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1604
1605	if (!hid_match_device(hdev, hdrv))
1606		return 0;
1607
1608	/* generic wants all that don't have specialized driver */
1609	if (!strncmp(hdrv->name, "generic-", 8))
1610		return !hid_match_id(hdev, hid_have_special_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611
1612	return 1;
1613}
 
1614
1615static int hid_device_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616{
1617	struct hid_driver *hdrv = container_of(dev->driver,
1618			struct hid_driver, driver);
1619	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1620	const struct hid_device_id *id;
1621	int ret = 0;
1622
1623	if (!hdev->driver) {
1624		id = hid_match_device(hdev, hdrv);
1625		if (id == NULL)
1626			return -ENODEV;
1627
1628		hdev->driver = hdrv;
1629		if (hdrv->probe) {
1630			ret = hdrv->probe(hdev, id);
1631		} else { /* default probe */
1632			ret = hid_parse(hdev);
1633			if (!ret)
1634				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1635		}
1636		if (ret)
1637			hdev->driver = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638	}
 
1639	return ret;
1640}
1641
1642static int hid_device_remove(struct device *dev)
1643{
1644	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1645	struct hid_driver *hdrv = hdev->driver;
 
 
 
 
 
 
 
 
 
 
1646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647	if (hdrv) {
1648		if (hdrv->remove)
1649			hdrv->remove(hdev);
1650		else /* default remove */
1651			hid_hw_stop(hdev);
 
 
 
 
 
1652		hdev->driver = NULL;
1653	}
1654
1655	return 0;
 
1656}
1657
1658static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
 
1659{
1660	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1663			hdev->bus, hdev->vendor, hdev->product))
1664		return -ENOMEM;
1665
1666	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1667		return -ENOMEM;
1668
1669	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1670		return -ENOMEM;
1671
1672	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1673		return -ENOMEM;
1674
1675	if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1676			hdev->bus, hdev->vendor, hdev->product))
1677		return -ENOMEM;
1678
1679	return 0;
1680}
1681
1682static struct bus_type hid_bus_type = {
1683	.name		= "hid",
 
 
1684	.match		= hid_bus_match,
1685	.probe		= hid_device_probe,
1686	.remove		= hid_device_remove,
1687	.uevent		= hid_uevent,
1688};
1689
1690/* a list of devices that shouldn't be handled by HID core at all */
1691static const struct hid_device_id hid_ignore_list[] = {
1692	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1693	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1694	{ HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1695	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1696	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1697	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1698	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1699	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1700	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1701	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1702	{ HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1703	{ HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1704	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
1705	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
1706	{ HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
1707	{ HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1708	{ HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1709	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1710	{ HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1711	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1712	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1713	{ HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
1714	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1715	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1716	{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
1717	{ HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1718	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
1719	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
1720	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1721	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1722	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1723	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1724	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1725	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1726	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1727	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1728	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1729	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1730	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1731	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1732	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1733	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1734	{ HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1735	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1736	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1737	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1738	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1739	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1740	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1741	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1742	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1743	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1744	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1745	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1746	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1747	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1748	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1749	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1750	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1751	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1752	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1753	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1754	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1755	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1756	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1757	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1758	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1759	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1760	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1761	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1762	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1763	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1764	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1765	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1766	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1767	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1768	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1769	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1770	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1771	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1772	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1773	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1774	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1775	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1776	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1777	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1778	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1779	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1780	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1781	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1782	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1783	{ HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1784	{ HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1785	{ HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
1786	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1787	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
1788	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1789	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
1790	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1791	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
1792	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1793	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
1794	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
1795	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
1796	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
1797	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
1798	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
1799	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1800	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1801	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1802	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
1803	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
1804	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
1805	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1806	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1807	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
1808	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1809	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1810	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1811	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1812	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1813	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
1814	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
1815	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
1816	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
1817	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
1818	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
1819	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
1820	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1821	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1822	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1823	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1824	{ HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1825	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1826	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1827	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1828	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1829	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1830	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1831	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1832	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1833	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1834	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1835	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1836	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1837	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1838	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1839	{ HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
1840	{ HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
1841	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1842	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1843	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1844	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1845	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1846	{ HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1847	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1848	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1849	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1850	{ HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1851	{ }
1852};
1853
1854/**
1855 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
1856 *
1857 * There are composite devices for which we want to ignore only a certain
1858 * interface. This is a list of devices for which only the mouse interface will
1859 * be ignored. This allows a dedicated driver to take care of the interface.
1860 */
1861static const struct hid_device_id hid_mouse_ignore_list[] = {
1862	/* appletouch driver */
1863	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1864	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1865	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1866	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1867	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1868	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1869	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1870	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1871	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1872	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1873	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1874	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1875	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1876	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1877	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1878	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1879	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1880	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1881	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1882	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1883	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1884	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1885	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1886	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1887	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1888	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1889	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1890	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1891	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1892	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1893	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1894	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1895	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1896	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1897	{ }
1898};
1899
1900static bool hid_ignore(struct hid_device *hdev)
1901{
1902	switch (hdev->vendor) {
1903	case USB_VENDOR_ID_CODEMERCS:
1904		/* ignore all Code Mercenaries IOWarrior devices */
1905		if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1906				hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1907			return true;
1908		break;
1909	case USB_VENDOR_ID_LOGITECH:
1910		if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1911				hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1912			return true;
1913		break;
1914	case USB_VENDOR_ID_SOUNDGRAPH:
1915		if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
1916		    hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
1917			return true;
1918		break;
1919	case USB_VENDOR_ID_HANWANG:
1920		if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
1921		    hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
1922			return true;
1923		break;
1924	case USB_VENDOR_ID_JESS:
1925		if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
1926				hdev->type == HID_TYPE_USBNONE)
1927			return true;
1928	break;
1929	}
1930
1931	if (hdev->type == HID_TYPE_USBMOUSE &&
1932			hid_match_id(hdev, hid_mouse_ignore_list))
1933		return true;
1934
1935	return !!hid_match_id(hdev, hid_ignore_list);
1936}
1937
1938int hid_add_device(struct hid_device *hdev)
1939{
1940	static atomic_t id = ATOMIC_INIT(0);
1941	int ret;
1942
1943	if (WARN_ON(hdev->status & HID_STAT_ADDED))
1944		return -EBUSY;
1945
 
 
1946	/* we need to kill them here, otherwise they will stay allocated to
1947	 * wait for coming driver */
1948	if (!(hdev->quirks & HID_QUIRK_NO_IGNORE)
1949            && (hid_ignore(hdev) || (hdev->quirks & HID_QUIRK_IGNORE)))
1950		return -ENODEV;
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	/* XXX hack, any other cleaner solution after the driver core
1953	 * is converted to allow more than 20 bytes as the device name? */
1954	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
1955		     hdev->vendor, hdev->product, atomic_inc_return(&id));
1956
1957	hid_debug_register(hdev, dev_name(&hdev->dev));
1958	ret = device_add(&hdev->dev);
1959	if (!ret)
1960		hdev->status |= HID_STAT_ADDED;
1961	else
1962		hid_debug_unregister(hdev);
1963
1964	return ret;
1965}
1966EXPORT_SYMBOL_GPL(hid_add_device);
1967
1968/**
1969 * hid_allocate_device - allocate new hid device descriptor
1970 *
1971 * Allocate and initialize hid device, so that hid_destroy_device might be
1972 * used to free it.
1973 *
1974 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1975 * error value.
1976 */
1977struct hid_device *hid_allocate_device(void)
1978{
1979	struct hid_device *hdev;
1980	unsigned int i;
1981	int ret = -ENOMEM;
1982
1983	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1984	if (hdev == NULL)
1985		return ERR_PTR(ret);
1986
1987	device_initialize(&hdev->dev);
1988	hdev->dev.release = hid_device_release;
1989	hdev->dev.bus = &hid_bus_type;
 
1990
1991	hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1992			sizeof(struct hid_collection), GFP_KERNEL);
1993	if (hdev->collection == NULL)
1994		goto err;
1995	hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1996
1997	for (i = 0; i < HID_REPORT_TYPES; i++)
1998		INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1999
2000	init_waitqueue_head(&hdev->debug_wait);
2001	INIT_LIST_HEAD(&hdev->debug_list);
 
 
 
 
 
 
 
 
2002
2003	return hdev;
2004err:
2005	put_device(&hdev->dev);
 
2006	return ERR_PTR(ret);
2007}
2008EXPORT_SYMBOL_GPL(hid_allocate_device);
2009
2010static void hid_remove_device(struct hid_device *hdev)
2011{
2012	if (hdev->status & HID_STAT_ADDED) {
2013		device_del(&hdev->dev);
2014		hid_debug_unregister(hdev);
2015		hdev->status &= ~HID_STAT_ADDED;
2016	}
 
 
 
 
 
2017}
2018
2019/**
2020 * hid_destroy_device - free previously allocated device
2021 *
2022 * @hdev: hid device
2023 *
2024 * If you allocate hid_device through hid_allocate_device, you should ever
2025 * free by this function.
2026 */
2027void hid_destroy_device(struct hid_device *hdev)
2028{
 
2029	hid_remove_device(hdev);
2030	put_device(&hdev->dev);
2031}
2032EXPORT_SYMBOL_GPL(hid_destroy_device);
2033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2035		const char *mod_name)
2036{
2037	int ret;
2038
2039	hdrv->driver.name = hdrv->name;
2040	hdrv->driver.bus = &hid_bus_type;
2041	hdrv->driver.owner = owner;
2042	hdrv->driver.mod_name = mod_name;
2043
2044	INIT_LIST_HEAD(&hdrv->dyn_list);
2045	spin_lock_init(&hdrv->dyn_lock);
2046
2047	ret = driver_register(&hdrv->driver);
2048	if (ret)
2049		return ret;
2050
2051	ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2052	if (ret)
2053		driver_unregister(&hdrv->driver);
2054
2055	return ret;
2056}
2057EXPORT_SYMBOL_GPL(__hid_register_driver);
2058
2059void hid_unregister_driver(struct hid_driver *hdrv)
2060{
2061	driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2062	driver_unregister(&hdrv->driver);
2063	hid_free_dynids(hdrv);
 
 
2064}
2065EXPORT_SYMBOL_GPL(hid_unregister_driver);
2066
2067int hid_check_keys_pressed(struct hid_device *hid)
2068{
2069	struct hid_input *hidinput;
2070	int i;
2071
2072	if (!(hid->claimed & HID_CLAIMED_INPUT))
2073		return 0;
2074
2075	list_for_each_entry(hidinput, &hid->inputs, list) {
2076		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2077			if (hidinput->input->key[i])
2078				return 1;
2079	}
2080
2081	return 0;
2082}
2083
2084EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2085
 
 
 
 
 
 
 
 
 
 
 
2086static int __init hid_init(void)
2087{
2088	int ret;
2089
2090	if (hid_debug)
2091		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2092			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2093
2094	ret = bus_register(&hid_bus_type);
2095	if (ret) {
2096		pr_err("can't register hid bus\n");
2097		goto err;
2098	}
2099
 
 
 
 
2100	ret = hidraw_init();
2101	if (ret)
2102		goto err_bus;
2103
2104	hid_debug_init();
2105
2106	return 0;
2107err_bus:
2108	bus_unregister(&hid_bus_type);
2109err:
2110	return ret;
2111}
2112
2113static void __exit hid_exit(void)
2114{
 
 
 
2115	hid_debug_exit();
2116	hidraw_exit();
2117	bus_unregister(&hid_bus_type);
 
2118}
2119
2120module_init(hid_init);
2121module_exit(hid_exit);
2122
2123MODULE_AUTHOR("Andreas Gal");
2124MODULE_AUTHOR("Vojtech Pavlik");
2125MODULE_AUTHOR("Jiri Kosina");
2126MODULE_LICENSE(DRIVER_LICENSE);
2127
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
 
 
 
 
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <linux/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
 
  43
  44static int hid_ignore_special_drivers = 0;
  45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  47
  48/*
  49 * Convert a signed n-bit integer to signed 32-bit integer.
  50 */
  51
  52static s32 snto32(__u32 value, unsigned int n)
  53{
  54	if (!value || !n)
  55		return 0;
  56
  57	if (n > 32)
  58		n = 32;
  59
  60	return sign_extend32(value, n - 1);
  61}
  62
  63/*
  64 * Convert a signed 32-bit integer to a signed n-bit integer.
  65 */
  66
  67static u32 s32ton(__s32 value, unsigned int n)
  68{
  69	s32 a = value >> (n - 1);
  70
  71	if (a && a != -1)
  72		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
  73	return value & ((1 << n) - 1);
  74}
  75
  76/*
  77 * Register a new report for a device.
  78 */
  79
  80struct hid_report *hid_register_report(struct hid_device *device,
  81				       enum hid_report_type type, unsigned int id,
  82				       unsigned int application)
  83{
  84	struct hid_report_enum *report_enum = device->report_enum + type;
  85	struct hid_report *report;
  86
  87	if (id >= HID_MAX_IDS)
  88		return NULL;
  89	if (report_enum->report_id_hash[id])
  90		return report_enum->report_id_hash[id];
  91
  92	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  93	if (!report)
  94		return NULL;
  95
  96	if (id != 0)
  97		report_enum->numbered = 1;
  98
  99	report->id = id;
 100	report->type = type;
 101	report->size = 0;
 102	report->device = device;
 103	report->application = application;
 104	report_enum->report_id_hash[id] = report;
 105
 106	list_add_tail(&report->list, &report_enum->report_list);
 107	INIT_LIST_HEAD(&report->field_entry_list);
 108
 109	return report;
 110}
 111EXPORT_SYMBOL_GPL(hid_register_report);
 112
 113/*
 114 * Register a new field for this report.
 115 */
 116
 117static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
 118{
 119	struct hid_field *field;
 120
 121	if (report->maxfield == HID_MAX_FIELDS) {
 122		hid_err(report->device, "too many fields in report\n");
 123		return NULL;
 124	}
 125
 126	field = kvzalloc((sizeof(struct hid_field) +
 127			  usages * sizeof(struct hid_usage) +
 128			  3 * usages * sizeof(unsigned int)), GFP_KERNEL);
 129	if (!field)
 130		return NULL;
 131
 132	field->index = report->maxfield++;
 133	report->field[field->index] = field;
 134	field->usage = (struct hid_usage *)(field + 1);
 135	field->value = (s32 *)(field->usage + usages);
 136	field->new_value = (s32 *)(field->value + usages);
 137	field->usages_priorities = (s32 *)(field->new_value + usages);
 138	field->report = report;
 139
 140	return field;
 141}
 142
 143/*
 144 * Open a collection. The type/usage is pushed on the stack.
 145 */
 146
 147static int open_collection(struct hid_parser *parser, unsigned type)
 148{
 149	struct hid_collection *collection;
 150	unsigned usage;
 151	int collection_index;
 152
 153	usage = parser->local.usage[0];
 154
 155	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 156		unsigned int *collection_stack;
 157		unsigned int new_size = parser->collection_stack_size +
 158					HID_COLLECTION_STACK_SIZE;
 159
 160		collection_stack = krealloc(parser->collection_stack,
 161					    new_size * sizeof(unsigned int),
 162					    GFP_KERNEL);
 163		if (!collection_stack)
 164			return -ENOMEM;
 165
 166		parser->collection_stack = collection_stack;
 167		parser->collection_stack_size = new_size;
 168	}
 169
 170	if (parser->device->maxcollection == parser->device->collection_size) {
 171		collection = kmalloc(
 172				array3_size(sizeof(struct hid_collection),
 173					    parser->device->collection_size,
 174					    2),
 175				GFP_KERNEL);
 176		if (collection == NULL) {
 177			hid_err(parser->device, "failed to reallocate collection array\n");
 178			return -ENOMEM;
 179		}
 180		memcpy(collection, parser->device->collection,
 181			sizeof(struct hid_collection) *
 182			parser->device->collection_size);
 183		memset(collection + parser->device->collection_size, 0,
 184			sizeof(struct hid_collection) *
 185			parser->device->collection_size);
 186		kfree(parser->device->collection);
 187		parser->device->collection = collection;
 188		parser->device->collection_size *= 2;
 189	}
 190
 191	parser->collection_stack[parser->collection_stack_ptr++] =
 192		parser->device->maxcollection;
 193
 194	collection_index = parser->device->maxcollection++;
 195	collection = parser->device->collection + collection_index;
 196	collection->type = type;
 197	collection->usage = usage;
 198	collection->level = parser->collection_stack_ptr - 1;
 199	collection->parent_idx = (collection->level == 0) ? -1 :
 200		parser->collection_stack[collection->level - 1];
 201
 202	if (type == HID_COLLECTION_APPLICATION)
 203		parser->device->maxapplication++;
 204
 205	return 0;
 206}
 207
 208/*
 209 * Close a collection.
 210 */
 211
 212static int close_collection(struct hid_parser *parser)
 213{
 214	if (!parser->collection_stack_ptr) {
 215		hid_err(parser->device, "collection stack underflow\n");
 216		return -EINVAL;
 217	}
 218	parser->collection_stack_ptr--;
 219	return 0;
 220}
 221
 222/*
 223 * Climb up the stack, search for the specified collection type
 224 * and return the usage.
 225 */
 226
 227static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 228{
 229	struct hid_collection *collection = parser->device->collection;
 230	int n;
 231
 232	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 233		unsigned index = parser->collection_stack[n];
 234		if (collection[index].type == type)
 235			return collection[index].usage;
 236	}
 237	return 0; /* we know nothing about this usage type */
 238}
 239
 240/*
 241 * Concatenate usage which defines 16 bits or less with the
 242 * currently defined usage page to form a 32 bit usage
 243 */
 244
 245static void complete_usage(struct hid_parser *parser, unsigned int index)
 246{
 247	parser->local.usage[index] &= 0xFFFF;
 248	parser->local.usage[index] |=
 249		(parser->global.usage_page & 0xFFFF) << 16;
 250}
 251
 252/*
 253 * Add a usage to the temporary parser table.
 254 */
 255
 256static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 257{
 258	if (parser->local.usage_index >= HID_MAX_USAGES) {
 259		hid_err(parser->device, "usage index exceeded\n");
 260		return -1;
 261	}
 262	parser->local.usage[parser->local.usage_index] = usage;
 263
 264	/*
 265	 * If Usage item only includes usage id, concatenate it with
 266	 * currently defined usage page
 267	 */
 268	if (size <= 2)
 269		complete_usage(parser, parser->local.usage_index);
 270
 271	parser->local.usage_size[parser->local.usage_index] = size;
 272	parser->local.collection_index[parser->local.usage_index] =
 273		parser->collection_stack_ptr ?
 274		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 275	parser->local.usage_index++;
 276	return 0;
 277}
 278
 279/*
 280 * Register a new field for this report.
 281 */
 282
 283static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 284{
 285	struct hid_report *report;
 286	struct hid_field *field;
 287	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
 288	unsigned int usages;
 289	unsigned int offset;
 290	unsigned int i;
 291	unsigned int application;
 292
 293	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 294
 295	report = hid_register_report(parser->device, report_type,
 296				     parser->global.report_id, application);
 297	if (!report) {
 298		hid_err(parser->device, "hid_register_report failed\n");
 299		return -1;
 300	}
 301
 302	/* Handle both signed and unsigned cases properly */
 303	if ((parser->global.logical_minimum < 0 &&
 304		parser->global.logical_maximum <
 305		parser->global.logical_minimum) ||
 306		(parser->global.logical_minimum >= 0 &&
 307		(__u32)parser->global.logical_maximum <
 308		(__u32)parser->global.logical_minimum)) {
 309		dbg_hid("logical range invalid 0x%x 0x%x\n",
 310			parser->global.logical_minimum,
 311			parser->global.logical_maximum);
 312		return -1;
 313	}
 314
 315	offset = report->size;
 316	report->size += parser->global.report_size * parser->global.report_count;
 317
 318	if (parser->device->ll_driver->max_buffer_size)
 319		max_buffer_size = parser->device->ll_driver->max_buffer_size;
 320
 321	/* Total size check: Allow for possible report index byte */
 322	if (report->size > (max_buffer_size - 1) << 3) {
 323		hid_err(parser->device, "report is too long\n");
 324		return -1;
 325	}
 326
 327	if (!parser->local.usage_index) /* Ignore padding fields */
 328		return 0;
 329
 330	usages = max_t(unsigned, parser->local.usage_index,
 331				 parser->global.report_count);
 332
 333	field = hid_register_field(report, usages);
 334	if (!field)
 335		return 0;
 336
 337	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 338	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 339	field->application = application;
 340
 341	for (i = 0; i < usages; i++) {
 342		unsigned j = i;
 343		/* Duplicate the last usage we parsed if we have excess values */
 344		if (i >= parser->local.usage_index)
 345			j = parser->local.usage_index - 1;
 346		field->usage[i].hid = parser->local.usage[j];
 347		field->usage[i].collection_index =
 348			parser->local.collection_index[j];
 349		field->usage[i].usage_index = i;
 350		field->usage[i].resolution_multiplier = 1;
 351	}
 352
 353	field->maxusage = usages;
 354	field->flags = flags;
 355	field->report_offset = offset;
 356	field->report_type = report_type;
 357	field->report_size = parser->global.report_size;
 358	field->report_count = parser->global.report_count;
 359	field->logical_minimum = parser->global.logical_minimum;
 360	field->logical_maximum = parser->global.logical_maximum;
 361	field->physical_minimum = parser->global.physical_minimum;
 362	field->physical_maximum = parser->global.physical_maximum;
 363	field->unit_exponent = parser->global.unit_exponent;
 364	field->unit = parser->global.unit;
 365
 366	return 0;
 367}
 368
 369/*
 370 * Read data value from item.
 371 */
 372
 373static u32 item_udata(struct hid_item *item)
 374{
 375	switch (item->size) {
 376	case 1: return item->data.u8;
 377	case 2: return item->data.u16;
 378	case 4: return item->data.u32;
 379	}
 380	return 0;
 381}
 382
 383static s32 item_sdata(struct hid_item *item)
 384{
 385	switch (item->size) {
 386	case 1: return item->data.s8;
 387	case 2: return item->data.s16;
 388	case 4: return item->data.s32;
 389	}
 390	return 0;
 391}
 392
 393/*
 394 * Process a global item.
 395 */
 396
 397static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 398{
 399	__s32 raw_value;
 400	switch (item->tag) {
 401	case HID_GLOBAL_ITEM_TAG_PUSH:
 402
 403		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 404			hid_err(parser->device, "global environment stack overflow\n");
 405			return -1;
 406		}
 407
 408		memcpy(parser->global_stack + parser->global_stack_ptr++,
 409			&parser->global, sizeof(struct hid_global));
 410		return 0;
 411
 412	case HID_GLOBAL_ITEM_TAG_POP:
 413
 414		if (!parser->global_stack_ptr) {
 415			hid_err(parser->device, "global environment stack underflow\n");
 416			return -1;
 417		}
 418
 419		memcpy(&parser->global, parser->global_stack +
 420			--parser->global_stack_ptr, sizeof(struct hid_global));
 421		return 0;
 422
 423	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 424		parser->global.usage_page = item_udata(item);
 425		return 0;
 426
 427	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 428		parser->global.logical_minimum = item_sdata(item);
 429		return 0;
 430
 431	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 432		if (parser->global.logical_minimum < 0)
 433			parser->global.logical_maximum = item_sdata(item);
 434		else
 435			parser->global.logical_maximum = item_udata(item);
 436		return 0;
 437
 438	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 439		parser->global.physical_minimum = item_sdata(item);
 440		return 0;
 441
 442	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 443		if (parser->global.physical_minimum < 0)
 444			parser->global.physical_maximum = item_sdata(item);
 445		else
 446			parser->global.physical_maximum = item_udata(item);
 447		return 0;
 448
 449	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 450		/* Many devices provide unit exponent as a two's complement
 451		 * nibble due to the common misunderstanding of HID
 452		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 453		 * both this and the standard encoding. */
 454		raw_value = item_sdata(item);
 455		if (!(raw_value & 0xfffffff0))
 456			parser->global.unit_exponent = snto32(raw_value, 4);
 457		else
 458			parser->global.unit_exponent = raw_value;
 459		return 0;
 460
 461	case HID_GLOBAL_ITEM_TAG_UNIT:
 462		parser->global.unit = item_udata(item);
 463		return 0;
 464
 465	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 466		parser->global.report_size = item_udata(item);
 467		if (parser->global.report_size > 256) {
 468			hid_err(parser->device, "invalid report_size %d\n",
 469					parser->global.report_size);
 470			return -1;
 471		}
 472		return 0;
 473
 474	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 475		parser->global.report_count = item_udata(item);
 476		if (parser->global.report_count > HID_MAX_USAGES) {
 477			hid_err(parser->device, "invalid report_count %d\n",
 478					parser->global.report_count);
 479			return -1;
 480		}
 481		return 0;
 482
 483	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 484		parser->global.report_id = item_udata(item);
 485		if (parser->global.report_id == 0 ||
 486		    parser->global.report_id >= HID_MAX_IDS) {
 487			hid_err(parser->device, "report_id %u is invalid\n",
 488				parser->global.report_id);
 489			return -1;
 490		}
 491		return 0;
 492
 493	default:
 494		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 495		return -1;
 496	}
 497}
 498
 499/*
 500 * Process a local item.
 501 */
 502
 503static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 504{
 505	__u32 data;
 506	unsigned n;
 507	__u32 count;
 508
 509	data = item_udata(item);
 510
 511	switch (item->tag) {
 512	case HID_LOCAL_ITEM_TAG_DELIMITER:
 513
 514		if (data) {
 515			/*
 516			 * We treat items before the first delimiter
 517			 * as global to all usage sets (branch 0).
 518			 * In the moment we process only these global
 519			 * items and the first delimiter set.
 520			 */
 521			if (parser->local.delimiter_depth != 0) {
 522				hid_err(parser->device, "nested delimiters\n");
 523				return -1;
 524			}
 525			parser->local.delimiter_depth++;
 526			parser->local.delimiter_branch++;
 527		} else {
 528			if (parser->local.delimiter_depth < 1) {
 529				hid_err(parser->device, "bogus close delimiter\n");
 530				return -1;
 531			}
 532			parser->local.delimiter_depth--;
 533		}
 534		return 0;
 535
 536	case HID_LOCAL_ITEM_TAG_USAGE:
 537
 538		if (parser->local.delimiter_branch > 1) {
 539			dbg_hid("alternative usage ignored\n");
 540			return 0;
 541		}
 542
 543		return hid_add_usage(parser, data, item->size);
 
 
 
 544
 545	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 546
 547		if (parser->local.delimiter_branch > 1) {
 548			dbg_hid("alternative usage ignored\n");
 549			return 0;
 550		}
 551
 
 
 
 552		parser->local.usage_minimum = data;
 553		return 0;
 554
 555	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 556
 557		if (parser->local.delimiter_branch > 1) {
 558			dbg_hid("alternative usage ignored\n");
 559			return 0;
 560		}
 561
 562		count = data - parser->local.usage_minimum;
 563		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 564			/*
 565			 * We do not warn if the name is not set, we are
 566			 * actually pre-scanning the device.
 567			 */
 568			if (dev_name(&parser->device->dev))
 569				hid_warn(parser->device,
 570					 "ignoring exceeding usage max\n");
 571			data = HID_MAX_USAGES - parser->local.usage_index +
 572				parser->local.usage_minimum - 1;
 573			if (data <= 0) {
 574				hid_err(parser->device,
 575					"no more usage index available\n");
 576				return -1;
 577			}
 578		}
 579
 580		for (n = parser->local.usage_minimum; n <= data; n++)
 581			if (hid_add_usage(parser, n, item->size)) {
 582				dbg_hid("hid_add_usage failed\n");
 583				return -1;
 584			}
 585		return 0;
 586
 587	default:
 588
 589		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 590		return 0;
 591	}
 592	return 0;
 593}
 594
 595/*
 596 * Concatenate Usage Pages into Usages where relevant:
 597 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 598 * concatenates the last declared Usage Page with a Usage to form a complete
 599 * usage value."
 600 */
 601
 602static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 603{
 604	int i;
 605	unsigned int usage_page;
 606	unsigned int current_page;
 607
 608	if (!parser->local.usage_index)
 609		return;
 610
 611	usage_page = parser->global.usage_page;
 612
 613	/*
 614	 * Concatenate usage page again only if last declared Usage Page
 615	 * has not been already used in previous usages concatenation
 616	 */
 617	for (i = parser->local.usage_index - 1; i >= 0; i--) {
 618		if (parser->local.usage_size[i] > 2)
 619			/* Ignore extended usages */
 620			continue;
 621
 622		current_page = parser->local.usage[i] >> 16;
 623		if (current_page == usage_page)
 624			break;
 625
 626		complete_usage(parser, i);
 627	}
 628}
 629
 630/*
 631 * Process a main item.
 632 */
 633
 634static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 635{
 636	__u32 data;
 637	int ret;
 638
 639	hid_concatenate_last_usage_page(parser);
 640
 641	data = item_udata(item);
 642
 643	switch (item->tag) {
 644	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 645		ret = open_collection(parser, data & 0xff);
 646		break;
 647	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 648		ret = close_collection(parser);
 649		break;
 650	case HID_MAIN_ITEM_TAG_INPUT:
 651		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 652		break;
 653	case HID_MAIN_ITEM_TAG_OUTPUT:
 654		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 655		break;
 656	case HID_MAIN_ITEM_TAG_FEATURE:
 657		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 658		break;
 659	default:
 660		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 661		ret = 0;
 662	}
 663
 664	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 665
 666	return ret;
 667}
 668
 669/*
 670 * Process a reserved item.
 671 */
 672
 673static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 674{
 675	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 676	return 0;
 677}
 678
 679/*
 680 * Free a report and all registered fields. The field->usage and
 681 * field->value table's are allocated behind the field, so we need
 682 * only to free(field) itself.
 683 */
 684
 685static void hid_free_report(struct hid_report *report)
 686{
 687	unsigned n;
 688
 689	kfree(report->field_entries);
 690
 691	for (n = 0; n < report->maxfield; n++)
 692		kvfree(report->field[n]);
 693	kfree(report);
 694}
 695
 696/*
 697 * Close report. This function returns the device
 698 * state to the point prior to hid_open_report().
 699 */
 700static void hid_close_report(struct hid_device *device)
 
 701{
 
 702	unsigned i, j;
 703
 704	for (i = 0; i < HID_REPORT_TYPES; i++) {
 705		struct hid_report_enum *report_enum = device->report_enum + i;
 706
 707		for (j = 0; j < HID_MAX_IDS; j++) {
 708			struct hid_report *report = report_enum->report_id_hash[j];
 709			if (report)
 710				hid_free_report(report);
 711		}
 712		memset(report_enum, 0, sizeof(*report_enum));
 713		INIT_LIST_HEAD(&report_enum->report_list);
 714	}
 715
 716	/*
 717	 * If the HID driver had a rdesc_fixup() callback, dev->rdesc
 718	 * will be allocated by hid-core and needs to be freed.
 719	 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
 720	 * which cases it'll be freed later on device removal or destroy.
 721	 */
 722	if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
 723		kfree(device->rdesc);
 724	device->rdesc = NULL;
 725	device->rsize = 0;
 726
 727	kfree(device->collection);
 728	device->collection = NULL;
 729	device->collection_size = 0;
 730	device->maxcollection = 0;
 731	device->maxapplication = 0;
 732
 733	device->status &= ~HID_STAT_PARSED;
 734}
 735
 736static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
 737{
 738	/* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
 739	if (hdev->bpf_rdesc != hdev->dev_rdesc)
 740		kfree(hdev->bpf_rdesc);
 741	hdev->bpf_rdesc = NULL;
 742}
 743
 744/*
 745 * Free a device structure, all reports, and all fields.
 746 */
 747
 748void hiddev_free(struct kref *ref)
 749{
 750	struct hid_device *hid = container_of(ref, struct hid_device, ref);
 751
 752	hid_close_report(hid);
 753	hid_free_bpf_rdesc(hid);
 754	kfree(hid->dev_rdesc);
 755	kfree(hid);
 756}
 757
 758static void hid_device_release(struct device *dev)
 759{
 760	struct hid_device *hid = to_hid_device(dev);
 761
 762	kref_put(&hid->ref, hiddev_free);
 763}
 764
 765/*
 766 * Fetch a report description item from the data stream. We support long
 767 * items, though they are not used yet.
 768 */
 769
 770static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
 771{
 772	u8 b;
 773
 774	if ((end - start) <= 0)
 775		return NULL;
 776
 777	b = *start++;
 778
 779	item->type = (b >> 2) & 3;
 780	item->tag  = (b >> 4) & 15;
 781
 782	if (item->tag == HID_ITEM_TAG_LONG) {
 783
 784		item->format = HID_ITEM_FORMAT_LONG;
 785
 786		if ((end - start) < 2)
 787			return NULL;
 788
 789		item->size = *start++;
 790		item->tag  = *start++;
 791
 792		if ((end - start) < item->size)
 793			return NULL;
 794
 795		item->data.longdata = start;
 796		start += item->size;
 797		return start;
 798	}
 799
 800	item->format = HID_ITEM_FORMAT_SHORT;
 801	item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
 802
 803	if (end - start < item->size)
 804		return NULL;
 805
 806	switch (item->size) {
 807	case 0:
 808		break;
 809
 810	case 1:
 811		item->data.u8 = *start;
 812		break;
 
 
 813
 814	case 2:
 
 
 815		item->data.u16 = get_unaligned_le16(start);
 816		break;
 
 817
 818	case 4:
 
 
 
 819		item->data.u32 = get_unaligned_le32(start);
 820		break;
 
 821	}
 822
 823	return start + item->size;
 824}
 825
 826static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 827{
 828	struct hid_device *hid = parser->device;
 829
 830	if (usage == HID_DG_CONTACTID)
 831		hid->group = HID_GROUP_MULTITOUCH;
 832}
 833
 834static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 835{
 836	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 837	    parser->global.report_size == 8)
 838		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 839
 840	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 841	    parser->global.report_size == 8)
 842		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 843}
 844
 845static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 846{
 847	struct hid_device *hid = parser->device;
 848	int i;
 849
 850	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 851	    (type == HID_COLLECTION_PHYSICAL ||
 852	     type == HID_COLLECTION_APPLICATION))
 853		hid->group = HID_GROUP_SENSOR_HUB;
 854
 855	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 856	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 857	    hid->group == HID_GROUP_MULTITOUCH)
 858		hid->group = HID_GROUP_GENERIC;
 859
 860	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 861		for (i = 0; i < parser->local.usage_index; i++)
 862			if (parser->local.usage[i] == HID_GD_POINTER)
 863				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 864
 865	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 866		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 867
 868	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
 869		for (i = 0; i < parser->local.usage_index; i++)
 870			if (parser->local.usage[i] ==
 871					(HID_UP_GOOGLEVENDOR | 0x0001))
 872				parser->device->group =
 873					HID_GROUP_VIVALDI;
 874}
 875
 876static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 877{
 878	__u32 data;
 879	int i;
 880
 881	hid_concatenate_last_usage_page(parser);
 882
 883	data = item_udata(item);
 884
 885	switch (item->tag) {
 886	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 887		hid_scan_collection(parser, data & 0xff);
 888		break;
 889	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 890		break;
 891	case HID_MAIN_ITEM_TAG_INPUT:
 892		/* ignore constant inputs, they will be ignored by hid-input */
 893		if (data & HID_MAIN_ITEM_CONSTANT)
 894			break;
 895		for (i = 0; i < parser->local.usage_index; i++)
 896			hid_scan_input_usage(parser, parser->local.usage[i]);
 897		break;
 898	case HID_MAIN_ITEM_TAG_OUTPUT:
 899		break;
 900	case HID_MAIN_ITEM_TAG_FEATURE:
 901		for (i = 0; i < parser->local.usage_index; i++)
 902			hid_scan_feature_usage(parser, parser->local.usage[i]);
 903		break;
 904	}
 905
 906	/* Reset the local parser environment */
 907	memset(&parser->local, 0, sizeof(parser->local));
 908
 909	return 0;
 910}
 911
 912/*
 913 * Scan a report descriptor before the device is added to the bus.
 914 * Sets device groups and other properties that determine what driver
 915 * to load.
 916 */
 917static int hid_scan_report(struct hid_device *hid)
 918{
 919	struct hid_parser *parser;
 920	struct hid_item item;
 921	const __u8 *start = hid->dev_rdesc;
 922	const __u8 *end = start + hid->dev_rsize;
 923	static int (*dispatch_type[])(struct hid_parser *parser,
 924				      struct hid_item *item) = {
 925		hid_scan_main,
 926		hid_parser_global,
 927		hid_parser_local,
 928		hid_parser_reserved
 929	};
 930
 931	parser = vzalloc(sizeof(struct hid_parser));
 932	if (!parser)
 933		return -ENOMEM;
 934
 935	parser->device = hid;
 936	hid->group = HID_GROUP_GENERIC;
 937
 938	/*
 939	 * The parsing is simpler than the one in hid_open_report() as we should
 940	 * be robust against hid errors. Those errors will be raised by
 941	 * hid_open_report() anyway.
 942	 */
 943	while ((start = fetch_item(start, end, &item)) != NULL)
 944		dispatch_type[item.type](parser, &item);
 945
 946	/*
 947	 * Handle special flags set during scanning.
 948	 */
 949	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 950	    (hid->group == HID_GROUP_MULTITOUCH))
 951		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 952
 953	/*
 954	 * Vendor specific handlings
 955	 */
 956	switch (hid->vendor) {
 957	case USB_VENDOR_ID_WACOM:
 958		hid->group = HID_GROUP_WACOM;
 959		break;
 960	case USB_VENDOR_ID_SYNAPTICS:
 961		if (hid->group == HID_GROUP_GENERIC)
 962			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 963			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 964				/*
 965				 * hid-rmi should take care of them,
 966				 * not hid-generic
 967				 */
 968				hid->group = HID_GROUP_RMI;
 969		break;
 970	}
 971
 972	kfree(parser->collection_stack);
 973	vfree(parser);
 974	return 0;
 975}
 976
 977/**
 978 * hid_parse_report - parse device report
 979 *
 980 * @hid: hid device
 981 * @start: report start
 982 * @size: report size
 983 *
 984 * Allocate the device report as read by the bus driver. This function should
 985 * only be called from parse() in ll drivers.
 986 */
 987int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
 988{
 989	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 990	if (!hid->dev_rdesc)
 991		return -ENOMEM;
 992	hid->dev_rsize = size;
 993	return 0;
 994}
 995EXPORT_SYMBOL_GPL(hid_parse_report);
 996
 997static const char * const hid_report_names[] = {
 998	"HID_INPUT_REPORT",
 999	"HID_OUTPUT_REPORT",
1000	"HID_FEATURE_REPORT",
1001};
1002/**
1003 * hid_validate_values - validate existing device report's value indexes
1004 *
1005 * @hid: hid device
1006 * @type: which report type to examine
1007 * @id: which report ID to examine (0 for first)
1008 * @field_index: which report field to examine
1009 * @report_counts: expected number of values
1010 *
1011 * Validate the number of values in a given field of a given report, after
1012 * parsing.
1013 */
1014struct hid_report *hid_validate_values(struct hid_device *hid,
1015				       enum hid_report_type type, unsigned int id,
1016				       unsigned int field_index,
1017				       unsigned int report_counts)
1018{
1019	struct hid_report *report;
1020
1021	if (type > HID_FEATURE_REPORT) {
1022		hid_err(hid, "invalid HID report type %u\n", type);
1023		return NULL;
1024	}
1025
1026	if (id >= HID_MAX_IDS) {
1027		hid_err(hid, "invalid HID report id %u\n", id);
1028		return NULL;
1029	}
1030
1031	/*
1032	 * Explicitly not using hid_get_report() here since it depends on
1033	 * ->numbered being checked, which may not always be the case when
1034	 * drivers go to access report values.
1035	 */
1036	if (id == 0) {
1037		/*
1038		 * Validating on id 0 means we should examine the first
1039		 * report in the list.
1040		 */
1041		report = list_first_entry_or_null(
1042				&hid->report_enum[type].report_list,
1043				struct hid_report, list);
1044	} else {
1045		report = hid->report_enum[type].report_id_hash[id];
1046	}
1047	if (!report) {
1048		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1049		return NULL;
1050	}
1051	if (report->maxfield <= field_index) {
1052		hid_err(hid, "not enough fields in %s %u\n",
1053			hid_report_names[type], id);
1054		return NULL;
1055	}
1056	if (report->field[field_index]->report_count < report_counts) {
1057		hid_err(hid, "not enough values in %s %u field %u\n",
1058			hid_report_names[type], id, field_index);
1059		return NULL;
1060	}
1061	return report;
1062}
1063EXPORT_SYMBOL_GPL(hid_validate_values);
1064
1065static int hid_calculate_multiplier(struct hid_device *hid,
1066				     struct hid_field *multiplier)
1067{
1068	int m;
1069	__s32 v = *multiplier->value;
1070	__s32 lmin = multiplier->logical_minimum;
1071	__s32 lmax = multiplier->logical_maximum;
1072	__s32 pmin = multiplier->physical_minimum;
1073	__s32 pmax = multiplier->physical_maximum;
1074
1075	/*
1076	 * "Because OS implementations will generally divide the control's
1077	 * reported count by the Effective Resolution Multiplier, designers
1078	 * should take care not to establish a potential Effective
1079	 * Resolution Multiplier of zero."
1080	 * HID Usage Table, v1.12, Section 4.3.1, p31
1081	 */
1082	if (lmax - lmin == 0)
1083		return 1;
1084	/*
1085	 * Handling the unit exponent is left as an exercise to whoever
1086	 * finds a device where that exponent is not 0.
1087	 */
1088	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1089	if (unlikely(multiplier->unit_exponent != 0)) {
1090		hid_warn(hid,
1091			 "unsupported Resolution Multiplier unit exponent %d\n",
1092			 multiplier->unit_exponent);
1093	}
1094
1095	/* There are no devices with an effective multiplier > 255 */
1096	if (unlikely(m == 0 || m > 255 || m < -255)) {
1097		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1098		m = 1;
1099	}
1100
1101	return m;
1102}
1103
1104static void hid_apply_multiplier_to_field(struct hid_device *hid,
1105					  struct hid_field *field,
1106					  struct hid_collection *multiplier_collection,
1107					  int effective_multiplier)
1108{
1109	struct hid_collection *collection;
1110	struct hid_usage *usage;
1111	int i;
1112
1113	/*
1114	 * If multiplier_collection is NULL, the multiplier applies
1115	 * to all fields in the report.
1116	 * Otherwise, it is the Logical Collection the multiplier applies to
1117	 * but our field may be in a subcollection of that collection.
1118	 */
1119	for (i = 0; i < field->maxusage; i++) {
1120		usage = &field->usage[i];
1121
1122		collection = &hid->collection[usage->collection_index];
1123		while (collection->parent_idx != -1 &&
1124		       collection != multiplier_collection)
1125			collection = &hid->collection[collection->parent_idx];
1126
1127		if (collection->parent_idx != -1 ||
1128		    multiplier_collection == NULL)
1129			usage->resolution_multiplier = effective_multiplier;
1130
1131	}
1132}
1133
1134static void hid_apply_multiplier(struct hid_device *hid,
1135				 struct hid_field *multiplier)
1136{
1137	struct hid_report_enum *rep_enum;
1138	struct hid_report *rep;
1139	struct hid_field *field;
1140	struct hid_collection *multiplier_collection;
1141	int effective_multiplier;
1142	int i;
1143
1144	/*
1145	 * "The Resolution Multiplier control must be contained in the same
1146	 * Logical Collection as the control(s) to which it is to be applied.
1147	 * If no Resolution Multiplier is defined, then the Resolution
1148	 * Multiplier defaults to 1.  If more than one control exists in a
1149	 * Logical Collection, the Resolution Multiplier is associated with
1150	 * all controls in the collection. If no Logical Collection is
1151	 * defined, the Resolution Multiplier is associated with all
1152	 * controls in the report."
1153	 * HID Usage Table, v1.12, Section 4.3.1, p30
1154	 *
1155	 * Thus, search from the current collection upwards until we find a
1156	 * logical collection. Then search all fields for that same parent
1157	 * collection. Those are the fields the multiplier applies to.
1158	 *
1159	 * If we have more than one multiplier, it will overwrite the
1160	 * applicable fields later.
1161	 */
1162	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1163	while (multiplier_collection->parent_idx != -1 &&
1164	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1165		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1166	if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1167		multiplier_collection = NULL;
1168
1169	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1170
1171	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1172	list_for_each_entry(rep, &rep_enum->report_list, list) {
1173		for (i = 0; i < rep->maxfield; i++) {
1174			field = rep->field[i];
1175			hid_apply_multiplier_to_field(hid, field,
1176						      multiplier_collection,
1177						      effective_multiplier);
1178		}
1179	}
1180}
1181
1182/*
1183 * hid_setup_resolution_multiplier - set up all resolution multipliers
1184 *
1185 * @device: hid device
1186 *
1187 * Search for all Resolution Multiplier Feature Reports and apply their
1188 * value to all matching Input items. This only updates the internal struct
1189 * fields.
1190 *
1191 * The Resolution Multiplier is applied by the hardware. If the multiplier
1192 * is anything other than 1, the hardware will send pre-multiplied events
1193 * so that the same physical interaction generates an accumulated
1194 *	accumulated_value = value * * multiplier
1195 * This may be achieved by sending
1196 * - "value * multiplier" for each event, or
1197 * - "value" but "multiplier" times as frequently, or
1198 * - a combination of the above
1199 * The only guarantee is that the same physical interaction always generates
1200 * an accumulated 'value * multiplier'.
1201 *
1202 * This function must be called before any event processing and after
1203 * any SetRequest to the Resolution Multiplier.
1204 */
1205void hid_setup_resolution_multiplier(struct hid_device *hid)
1206{
1207	struct hid_report_enum *rep_enum;
1208	struct hid_report *rep;
1209	struct hid_usage *usage;
1210	int i, j;
1211
1212	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1213	list_for_each_entry(rep, &rep_enum->report_list, list) {
1214		for (i = 0; i < rep->maxfield; i++) {
1215			/* Ignore if report count is out of bounds. */
1216			if (rep->field[i]->report_count < 1)
1217				continue;
1218
1219			for (j = 0; j < rep->field[i]->maxusage; j++) {
1220				usage = &rep->field[i]->usage[j];
1221				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1222					hid_apply_multiplier(hid,
1223							     rep->field[i]);
1224			}
1225		}
1226	}
1227}
1228EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1229
1230/**
1231 * hid_open_report - open a driver-specific device report
1232 *
1233 * @device: hid device
1234 *
1235 * Parse a report description into a hid_device structure. Reports are
1236 * enumerated, fields are attached to these reports.
1237 * 0 returned on success, otherwise nonzero error value.
1238 *
1239 * This function (or the equivalent hid_parse() macro) should only be
1240 * called from probe() in drivers, before starting the device.
1241 */
1242int hid_open_report(struct hid_device *device)
 
1243{
1244	struct hid_parser *parser;
1245	struct hid_item item;
1246	unsigned int size;
1247	const __u8 *start;
1248	const __u8 *end;
1249	const __u8 *next;
1250	int ret;
1251	int i;
1252	static int (*dispatch_type[])(struct hid_parser *parser,
1253				      struct hid_item *item) = {
1254		hid_parser_main,
1255		hid_parser_global,
1256		hid_parser_local,
1257		hid_parser_reserved
1258	};
1259
1260	if (WARN_ON(device->status & HID_STAT_PARSED))
1261		return -EBUSY;
1262
1263	start = device->bpf_rdesc;
1264	if (WARN_ON(!start))
1265		return -ENODEV;
1266	size = device->bpf_rsize;
1267
1268	if (device->driver->report_fixup) {
1269		/*
1270		 * device->driver->report_fixup() needs to work
1271		 * on a copy of our report descriptor so it can
1272		 * change it.
1273		 */
1274		__u8 *buf = kmemdup(start, size, GFP_KERNEL);
1275
1276		if (buf == NULL)
1277			return -ENOMEM;
1278
1279		start = device->driver->report_fixup(device, buf, &size);
1280
1281		/*
1282		 * The second kmemdup is required in case report_fixup() returns
1283		 * a static read-only memory, but we have no idea if that memory
1284		 * needs to be cleaned up or not at the end.
1285		 */
1286		start = kmemdup(start, size, GFP_KERNEL);
1287		kfree(buf);
1288		if (start == NULL)
1289			return -ENOMEM;
1290	}
1291
1292	device->rdesc = start;
1293	device->rsize = size;
1294
1295	parser = vzalloc(sizeof(struct hid_parser));
1296	if (!parser) {
1297		ret = -ENOMEM;
1298		goto alloc_err;
1299	}
1300
1301	parser->device = device;
1302
1303	end = start + size;
1304
1305	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1306				     sizeof(struct hid_collection), GFP_KERNEL);
1307	if (!device->collection) {
1308		ret = -ENOMEM;
1309		goto err;
1310	}
1311	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1312	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1313		device->collection[i].parent_idx = -1;
1314
1315	ret = -EINVAL;
1316	while ((next = fetch_item(start, end, &item)) != NULL) {
1317		start = next;
1318
1319		if (item.format != HID_ITEM_FORMAT_SHORT) {
1320			hid_err(device, "unexpected long global item\n");
1321			goto err;
1322		}
1323
1324		if (dispatch_type[item.type](parser, &item)) {
1325			hid_err(device, "item %u %u %u %u parsing failed\n",
1326				item.format, (unsigned)item.size,
1327				(unsigned)item.type, (unsigned)item.tag);
1328			goto err;
1329		}
1330
1331		if (start == end) {
1332			if (parser->collection_stack_ptr) {
1333				hid_err(device, "unbalanced collection at end of report description\n");
1334				goto err;
1335			}
1336			if (parser->local.delimiter_depth) {
1337				hid_err(device, "unbalanced delimiter at end of report description\n");
1338				goto err;
1339			}
1340
1341			/*
1342			 * fetch initial values in case the device's
1343			 * default multiplier isn't the recommended 1
1344			 */
1345			hid_setup_resolution_multiplier(device);
1346
1347			kfree(parser->collection_stack);
1348			vfree(parser);
1349			device->status |= HID_STAT_PARSED;
1350
1351			return 0;
1352		}
1353	}
1354
1355	hid_err(device, "item fetching failed at offset %u/%u\n",
1356		size - (unsigned int)(end - start), size);
1357err:
1358	kfree(parser->collection_stack);
1359alloc_err:
1360	vfree(parser);
1361	hid_close_report(device);
1362	return ret;
1363}
1364EXPORT_SYMBOL_GPL(hid_open_report);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
1366/*
1367 * Extract/implement a data field from/to a little endian report (bit array).
1368 *
1369 * Code sort-of follows HID spec:
1370 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1371 *
1372 * While the USB HID spec allows unlimited length bit fields in "report
1373 * descriptors", most devices never use more than 16 bits.
1374 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1375 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1376 */
1377
1378static u32 __extract(u8 *report, unsigned offset, int n)
 
1379{
1380	unsigned int idx = offset / 8;
1381	unsigned int bit_nr = 0;
1382	unsigned int bit_shift = offset % 8;
1383	int bits_to_copy = 8 - bit_shift;
1384	u32 value = 0;
1385	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1386
1387	while (n > 0) {
1388		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1389		n -= bits_to_copy;
1390		bit_nr += bits_to_copy;
1391		bits_to_copy = 8;
1392		bit_shift = 0;
1393		idx++;
1394	}
1395
1396	return value & mask;
 
 
 
 
1397}
1398
1399u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1400			unsigned offset, unsigned n)
1401{
1402	if (n > 32) {
1403		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1404			      __func__, n, current->comm);
1405		n = 32;
1406	}
1407
1408	return __extract(report, offset, n);
1409}
1410EXPORT_SYMBOL_GPL(hid_field_extract);
1411
1412/*
1413 * "implement" : set bits in a little endian bit stream.
1414 * Same concepts as "extract" (see comments above).
1415 * The data mangled in the bit stream remains in little endian
1416 * order the whole time. It make more sense to talk about
1417 * endianness of register values by considering a register
1418 * a "cached" copy of the little endian bit stream.
1419 */
1420
1421static void __implement(u8 *report, unsigned offset, int n, u32 value)
1422{
1423	unsigned int idx = offset / 8;
1424	unsigned int bit_shift = offset % 8;
1425	int bits_to_set = 8 - bit_shift;
1426
1427	while (n - bits_to_set >= 0) {
1428		report[idx] &= ~(0xff << bit_shift);
1429		report[idx] |= value << bit_shift;
1430		value >>= bits_to_set;
1431		n -= bits_to_set;
1432		bits_to_set = 8;
1433		bit_shift = 0;
1434		idx++;
1435	}
1436
1437	/* last nibble */
1438	if (n) {
1439		u8 bit_mask = ((1U << n) - 1);
1440		report[idx] &= ~(bit_mask << bit_shift);
1441		report[idx] |= value << bit_shift;
1442	}
1443}
1444
1445static void implement(const struct hid_device *hid, u8 *report,
1446		      unsigned offset, unsigned n, u32 value)
1447{
1448	if (unlikely(n > 32)) {
1449		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1450			 __func__, n, current->comm);
1451		n = 32;
1452	} else if (n < 32) {
1453		u32 m = (1U << n) - 1;
1454
1455		if (unlikely(value > m)) {
1456			hid_warn(hid,
1457				 "%s() called with too large value %d (n: %d)! (%s)\n",
1458				 __func__, value, n, current->comm);
1459			value &= m;
1460		}
1461	}
1462
1463	__implement(report, offset, n, value);
 
 
 
 
 
 
 
 
 
 
 
 
1464}
1465
1466/*
1467 * Search an array for a value.
1468 */
1469
1470static int search(__s32 *array, __s32 value, unsigned n)
1471{
1472	while (n--) {
1473		if (*array++ == value)
1474			return 0;
1475	}
1476	return -1;
1477}
1478
1479/**
1480 * hid_match_report - check if driver's raw_event should be called
1481 *
1482 * @hid: hid device
1483 * @report: hid report to match against
1484 *
1485 * compare hid->driver->report_table->report_type to report->type
1486 */
1487static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1488{
1489	const struct hid_report_id *id = hid->driver->report_table;
1490
1491	if (!id) /* NULL means all */
1492		return 1;
1493
1494	for (; id->report_type != HID_TERMINATOR; id++)
1495		if (id->report_type == HID_ANY_ID ||
1496				id->report_type == report->type)
1497			return 1;
1498	return 0;
1499}
1500
1501/**
1502 * hid_match_usage - check if driver's event should be called
1503 *
1504 * @hid: hid device
1505 * @usage: usage to match against
1506 *
1507 * compare hid->driver->usage_table->usage_{type,code} to
1508 * usage->usage_{type,code}
1509 */
1510static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1511{
1512	const struct hid_usage_id *id = hid->driver->usage_table;
1513
1514	if (!id) /* NULL means all */
1515		return 1;
1516
1517	for (; id->usage_type != HID_ANY_ID - 1; id++)
1518		if ((id->usage_hid == HID_ANY_ID ||
1519				id->usage_hid == usage->hid) &&
1520				(id->usage_type == HID_ANY_ID ||
1521				id->usage_type == usage->type) &&
1522				(id->usage_code == HID_ANY_ID ||
1523				 id->usage_code == usage->code))
1524			return 1;
1525	return 0;
1526}
1527
1528static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1529		struct hid_usage *usage, __s32 value, int interrupt)
1530{
1531	struct hid_driver *hdrv = hid->driver;
1532	int ret;
1533
1534	if (!list_empty(&hid->debug_list))
1535		hid_dump_input(hid, usage, value);
1536
1537	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1538		ret = hdrv->event(hid, field, usage, value);
1539		if (ret != 0) {
1540			if (ret < 0)
1541				hid_err(hid, "%s's event failed with %d\n",
1542						hdrv->name, ret);
1543			return;
1544		}
1545	}
1546
1547	if (hid->claimed & HID_CLAIMED_INPUT)
1548		hidinput_hid_event(hid, field, usage, value);
1549	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1550		hid->hiddev_hid_event(hid, field, usage, value);
1551}
1552
1553/*
1554 * Checks if the given value is valid within this field
 
 
1555 */
1556static inline int hid_array_value_is_valid(struct hid_field *field,
1557					   __s32 value)
1558{
1559	__s32 min = field->logical_minimum;
1560
1561	/*
1562	 * Value needs to be between logical min and max, and
1563	 * (value - min) is used as an index in the usage array.
1564	 * This array is of size field->maxusage
1565	 */
1566	return value >= min &&
1567	       value <= field->logical_maximum &&
1568	       value - min < field->maxusage;
1569}
1570
1571/*
1572 * Fetch the field from the data. The field content is stored for next
1573 * report processing (we do differential reporting to the layer).
1574 */
1575static void hid_input_fetch_field(struct hid_device *hid,
1576				  struct hid_field *field,
1577				  __u8 *data)
1578{
1579	unsigned n;
1580	unsigned count = field->report_count;
1581	unsigned offset = field->report_offset;
1582	unsigned size = field->report_size;
1583	__s32 min = field->logical_minimum;
 
1584	__s32 *value;
1585
1586	value = field->new_value;
1587	memset(value, 0, count * sizeof(__s32));
1588	field->ignored = false;
1589
1590	for (n = 0; n < count; n++) {
1591
1592		value[n] = min < 0 ?
1593			snto32(hid_field_extract(hid, data, offset + n * size,
1594			       size), size) :
1595			hid_field_extract(hid, data, offset + n * size, size);
1596
1597		/* Ignore report if ErrorRollOver */
1598		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1599		    hid_array_value_is_valid(field, value[n]) &&
1600		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1601			field->ignored = true;
1602			return;
1603		}
1604	}
1605}
1606
1607/*
1608 * Process a received variable field.
1609 */
1610
1611static void hid_input_var_field(struct hid_device *hid,
1612				struct hid_field *field,
1613				int interrupt)
1614{
1615	unsigned int count = field->report_count;
1616	__s32 *value = field->new_value;
1617	unsigned int n;
1618
1619	for (n = 0; n < count; n++)
1620		hid_process_event(hid,
1621				  field,
1622				  &field->usage[n],
1623				  value[n],
1624				  interrupt);
1625
1626	memcpy(field->value, value, count * sizeof(__s32));
1627}
1628
1629/*
1630 * Process a received array field. The field content is stored for
1631 * next report processing (we do differential reporting to the layer).
1632 */
1633
1634static void hid_input_array_field(struct hid_device *hid,
1635				  struct hid_field *field,
1636				  int interrupt)
1637{
1638	unsigned int n;
1639	unsigned int count = field->report_count;
1640	__s32 min = field->logical_minimum;
1641	__s32 *value;
1642
1643	value = field->new_value;
1644
1645	/* ErrorRollOver */
1646	if (field->ignored)
1647		return;
1648
1649	for (n = 0; n < count; n++) {
1650		if (hid_array_value_is_valid(field, field->value[n]) &&
1651		    search(value, field->value[n], count))
1652			hid_process_event(hid,
1653					  field,
1654					  &field->usage[field->value[n] - min],
1655					  0,
1656					  interrupt);
1657
1658		if (hid_array_value_is_valid(field, value[n]) &&
1659		    search(field->value, value[n], count))
1660			hid_process_event(hid,
1661					  field,
1662					  &field->usage[value[n] - min],
1663					  1,
1664					  interrupt);
1665	}
1666
1667	memcpy(field->value, value, count * sizeof(__s32));
1668}
1669
1670/*
1671 * Analyse a received report, and fetch the data from it. The field
1672 * content is stored for next report processing (we do differential
1673 * reporting to the layer).
1674 */
1675static void hid_process_report(struct hid_device *hid,
1676			       struct hid_report *report,
1677			       __u8 *data,
1678			       int interrupt)
1679{
1680	unsigned int a;
1681	struct hid_field_entry *entry;
1682	struct hid_field *field;
1683
1684	/* first retrieve all incoming values in data */
1685	for (a = 0; a < report->maxfield; a++)
1686		hid_input_fetch_field(hid, report->field[a], data);
1687
1688	if (!list_empty(&report->field_entry_list)) {
1689		/* INPUT_REPORT, we have a priority list of fields */
1690		list_for_each_entry(entry,
1691				    &report->field_entry_list,
1692				    list) {
1693			field = entry->field;
1694
1695			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696				hid_process_event(hid,
1697						  field,
1698						  &field->usage[entry->index],
1699						  field->new_value[entry->index],
1700						  interrupt);
1701			else
1702				hid_input_array_field(hid, field, interrupt);
1703		}
1704
1705		/* we need to do the memcpy at the end for var items */
1706		for (a = 0; a < report->maxfield; a++) {
1707			field = report->field[a];
1708
1709			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1710				memcpy(field->value, field->new_value,
1711				       field->report_count * sizeof(__s32));
1712		}
1713	} else {
1714		/* FEATURE_REPORT, regular processing */
1715		for (a = 0; a < report->maxfield; a++) {
1716			field = report->field[a];
1717
1718			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1719				hid_input_var_field(hid, field, interrupt);
1720			else
1721				hid_input_array_field(hid, field, interrupt);
1722		}
1723	}
1724}
1725
1726/*
1727 * Insert a given usage_index in a field in the list
1728 * of processed usages in the report.
1729 *
1730 * The elements of lower priority score are processed
1731 * first.
1732 */
1733static void __hid_insert_field_entry(struct hid_device *hid,
1734				     struct hid_report *report,
1735				     struct hid_field_entry *entry,
1736				     struct hid_field *field,
1737				     unsigned int usage_index)
1738{
1739	struct hid_field_entry *next;
1740
1741	entry->field = field;
1742	entry->index = usage_index;
1743	entry->priority = field->usages_priorities[usage_index];
1744
1745	/* insert the element at the correct position */
1746	list_for_each_entry(next,
1747			    &report->field_entry_list,
1748			    list) {
1749		/*
1750		 * the priority of our element is strictly higher
1751		 * than the next one, insert it before
1752		 */
1753		if (entry->priority > next->priority) {
1754			list_add_tail(&entry->list, &next->list);
1755			return;
1756		}
1757	}
1758
1759	/* lowest priority score: insert at the end */
1760	list_add_tail(&entry->list, &report->field_entry_list);
1761}
1762
1763static void hid_report_process_ordering(struct hid_device *hid,
1764					struct hid_report *report)
1765{
1766	struct hid_field *field;
1767	struct hid_field_entry *entries;
1768	unsigned int a, u, usages;
1769	unsigned int count = 0;
1770
1771	/* count the number of individual fields in the report */
1772	for (a = 0; a < report->maxfield; a++) {
1773		field = report->field[a];
1774
1775		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1776			count += field->report_count;
1777		else
1778			count++;
1779	}
1780
1781	/* allocate the memory to process the fields */
1782	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1783	if (!entries)
1784		return;
1785
1786	report->field_entries = entries;
1787
1788	/*
1789	 * walk through all fields in the report and
1790	 * store them by priority order in report->field_entry_list
1791	 *
1792	 * - Var elements are individualized (field + usage_index)
1793	 * - Arrays are taken as one, we can not chose an order for them
1794	 */
1795	usages = 0;
1796	for (a = 0; a < report->maxfield; a++) {
1797		field = report->field[a];
1798
1799		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1800			for (u = 0; u < field->report_count; u++) {
1801				__hid_insert_field_entry(hid, report,
1802							 &entries[usages],
1803							 field, u);
1804				usages++;
1805			}
1806		} else {
1807			__hid_insert_field_entry(hid, report, &entries[usages],
1808						 field, 0);
1809			usages++;
1810		}
1811	}
1812}
1813
1814static void hid_process_ordering(struct hid_device *hid)
1815{
1816	struct hid_report *report;
1817	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1818
1819	list_for_each_entry(report, &report_enum->report_list, list)
1820		hid_report_process_ordering(hid, report);
1821}
1822
1823/*
1824 * Output the field into the report.
1825 */
1826
1827static void hid_output_field(const struct hid_device *hid,
1828			     struct hid_field *field, __u8 *data)
1829{
1830	unsigned count = field->report_count;
1831	unsigned offset = field->report_offset;
1832	unsigned size = field->report_size;
1833	unsigned n;
1834
1835	for (n = 0; n < count; n++) {
1836		if (field->logical_minimum < 0)	/* signed values */
1837			implement(hid, data, offset + n * size, size,
1838				  s32ton(field->value[n], size));
1839		else				/* unsigned values */
1840			implement(hid, data, offset + n * size, size,
1841				  field->value[n]);
1842	}
1843}
1844
1845/*
1846 * Compute the size of a report.
1847 */
1848static size_t hid_compute_report_size(struct hid_report *report)
1849{
1850	if (report->size)
1851		return ((report->size - 1) >> 3) + 1;
1852
1853	return 0;
1854}
1855
1856/*
1857 * Create a report. 'data' has to be allocated using
1858 * hid_alloc_report_buf() so that it has proper size.
1859 */
1860
1861void hid_output_report(struct hid_report *report, __u8 *data)
1862{
1863	unsigned n;
1864
1865	if (report->id > 0)
1866		*data++ = report->id;
1867
1868	memset(data, 0, hid_compute_report_size(report));
1869	for (n = 0; n < report->maxfield; n++)
1870		hid_output_field(report->device, report->field[n], data);
1871}
1872EXPORT_SYMBOL_GPL(hid_output_report);
1873
1874/*
1875 * Allocator for buffer that is going to be passed to hid_output_report()
1876 */
1877u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1878{
1879	/*
1880	 * 7 extra bytes are necessary to achieve proper functionality
1881	 * of implement() working on 8 byte chunks
1882	 */
1883
1884	u32 len = hid_report_len(report) + 7;
1885
1886	return kzalloc(len, flags);
1887}
1888EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1889
1890/*
1891 * Set a field value. The report this field belongs to has to be
1892 * created and transferred to the device, to set this value in the
1893 * device.
1894 */
1895
1896int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1897{
1898	unsigned size;
1899
1900	if (!field)
1901		return -1;
1902
1903	size = field->report_size;
1904
1905	hid_dump_input(field->report->device, field->usage + offset, value);
1906
1907	if (offset >= field->report_count) {
1908		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1909				offset, field->report_count);
1910		return -1;
1911	}
1912	if (field->logical_minimum < 0) {
1913		if (value != snto32(s32ton(value, size), size)) {
1914			hid_err(field->report->device, "value %d is out of range\n", value);
1915			return -1;
1916		}
1917	}
1918	field->value[offset] = value;
1919	return 0;
1920}
1921EXPORT_SYMBOL_GPL(hid_set_field);
1922
1923struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1924				 unsigned int application, unsigned int usage)
1925{
1926	struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1927	struct hid_report *report;
1928	int i, j;
1929
1930	list_for_each_entry(report, report_list, list) {
1931		if (report->application != application)
1932			continue;
1933
1934		for (i = 0; i < report->maxfield; i++) {
1935			struct hid_field *field = report->field[i];
1936
1937			for (j = 0; j < field->maxusage; j++) {
1938				if (field->usage[j].hid == usage)
1939					return field;
1940			}
1941		}
1942	}
1943
1944	return NULL;
1945}
1946EXPORT_SYMBOL_GPL(hid_find_field);
1947
1948static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1949		const u8 *data)
1950{
1951	struct hid_report *report;
1952	unsigned int n = 0;	/* Normally report number is 0 */
1953
1954	/* Device uses numbered reports, data[0] is report number */
1955	if (report_enum->numbered)
1956		n = *data;
1957
1958	report = report_enum->report_id_hash[n];
1959	if (report == NULL)
1960		dbg_hid("undefined report_id %u received\n", n);
1961
1962	return report;
1963}
1964
1965/*
1966 * Implement a generic .request() callback, using .raw_request()
1967 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1968 */
1969int __hid_request(struct hid_device *hid, struct hid_report *report,
1970		enum hid_class_request reqtype)
1971{
1972	char *buf;
1973	int ret;
1974	u32 len;
1975
1976	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1977	if (!buf)
1978		return -ENOMEM;
1979
1980	len = hid_report_len(report);
1981
1982	if (reqtype == HID_REQ_SET_REPORT)
1983		hid_output_report(report, buf);
1984
1985	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1986					  report->type, reqtype);
1987	if (ret < 0) {
1988		dbg_hid("unable to complete request: %d\n", ret);
1989		goto out;
1990	}
1991
1992	if (reqtype == HID_REQ_GET_REPORT)
1993		hid_input_report(hid, report->type, buf, ret, 0);
1994
1995	ret = 0;
1996
1997out:
1998	kfree(buf);
1999	return ret;
2000}
2001EXPORT_SYMBOL_GPL(__hid_request);
2002
2003int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2004			 int interrupt)
2005{
2006	struct hid_report_enum *report_enum = hid->report_enum + type;
2007	struct hid_report *report;
2008	struct hid_driver *hdrv;
2009	int max_buffer_size = HID_MAX_BUFFER_SIZE;
2010	u32 rsize, csize = size;
2011	u8 *cdata = data;
2012	int ret = 0;
2013
2014	report = hid_get_report(report_enum, data);
2015	if (!report)
2016		goto out;
2017
2018	if (report_enum->numbered) {
2019		cdata++;
2020		csize--;
2021	}
2022
2023	rsize = hid_compute_report_size(report);
2024
2025	if (hid->ll_driver->max_buffer_size)
2026		max_buffer_size = hid->ll_driver->max_buffer_size;
2027
2028	if (report_enum->numbered && rsize >= max_buffer_size)
2029		rsize = max_buffer_size - 1;
2030	else if (rsize > max_buffer_size)
2031		rsize = max_buffer_size;
2032
2033	if (csize < rsize) {
2034		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2035				csize, rsize);
2036		memset(cdata + csize, 0, rsize - csize);
2037	}
2038
2039	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2040		hid->hiddev_report_event(hid, report);
2041	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2042		ret = hidraw_report_event(hid, data, size);
2043		if (ret)
2044			goto out;
2045	}
2046
2047	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2048		hid_process_report(hid, report, cdata, interrupt);
2049		hdrv = hid->driver;
2050		if (hdrv && hdrv->report)
2051			hdrv->report(hid, report);
2052	}
2053
2054	if (hid->claimed & HID_CLAIMED_INPUT)
2055		hidinput_report_event(hid, report);
2056out:
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(hid_report_raw_event);
2060
2061
2062static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2063			      u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2064			      bool lock_already_taken)
 
 
 
 
 
 
 
 
2065{
2066	struct hid_report_enum *report_enum;
2067	struct hid_driver *hdrv;
2068	struct hid_report *report;
2069	int ret = 0;
 
 
2070
2071	if (!hid)
2072		return -ENODEV;
2073
2074	ret = down_trylock(&hid->driver_input_lock);
2075	if (lock_already_taken && !ret) {
2076		up(&hid->driver_input_lock);
2077		return -EINVAL;
2078	} else if (!lock_already_taken && ret) {
2079		return -EBUSY;
2080	}
2081
2082	if (!hid->driver) {
2083		ret = -ENODEV;
2084		goto unlock;
2085	}
2086	report_enum = hid->report_enum + type;
2087	hdrv = hid->driver;
2088
2089	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2090	if (IS_ERR(data)) {
2091		ret = PTR_ERR(data);
2092		goto unlock;
2093	}
2094
2095	if (!size) {
2096		dbg_hid("empty report\n");
2097		ret = -1;
2098		goto unlock;
2099	}
2100
2101	/* Avoid unnecessary overhead if debugfs is disabled */
2102	if (!list_empty(&hid->debug_list))
2103		hid_dump_report(hid, type, data, size);
2104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105	report = hid_get_report(report_enum, data);
2106
2107	if (!report) {
2108		ret = -1;
2109		goto unlock;
2110	}
2111
2112	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2113		ret = hdrv->raw_event(hid, report, data, size);
2114		if (ret < 0)
2115			goto unlock;
2116	}
2117
2118	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2119
2120unlock:
2121	if (!lock_already_taken)
2122		up(&hid->driver_input_lock);
2123	return ret;
2124}
2125
2126/**
2127 * hid_input_report - report data from lower layer (usb, bt...)
2128 *
2129 * @hid: hid device
2130 * @type: HID report type (HID_*_REPORT)
2131 * @data: report contents
2132 * @size: size of data parameter
2133 * @interrupt: distinguish between interrupt and control transfers
2134 *
2135 * This is data entry for lower layers.
2136 */
2137int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2138		     int interrupt)
2139{
2140	return __hid_input_report(hid, type, data, size, interrupt, 0,
2141				  false, /* from_bpf */
2142				  false /* lock_already_taken */);
2143}
2144EXPORT_SYMBOL_GPL(hid_input_report);
2145
2146bool hid_match_one_id(const struct hid_device *hdev,
2147		      const struct hid_device_id *id)
2148{
2149	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2150		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2151		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2152		(id->product == HID_ANY_ID || id->product == hdev->product);
2153}
2154
2155const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2156		const struct hid_device_id *id)
2157{
2158	for (; id->bus; id++)
2159		if (hid_match_one_id(hdev, id))
2160			return id;
2161
2162	return NULL;
2163}
2164EXPORT_SYMBOL_GPL(hid_match_id);
2165
2166static const struct hid_device_id hid_hiddev_list[] = {
2167	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2168	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2169	{ }
2170};
2171
2172static bool hid_hiddev(struct hid_device *hdev)
2173{
2174	return !!hid_match_id(hdev, hid_hiddev_list);
2175}
2176
2177
2178static ssize_t
2179read_report_descriptor(struct file *filp, struct kobject *kobj,
2180		struct bin_attribute *attr,
2181		char *buf, loff_t off, size_t count)
2182{
2183	struct device *dev = kobj_to_dev(kobj);
2184	struct hid_device *hdev = to_hid_device(dev);
2185
2186	if (off >= hdev->rsize)
2187		return 0;
2188
2189	if (off + count > hdev->rsize)
2190		count = hdev->rsize - off;
2191
2192	memcpy(buf, hdev->rdesc + off, count);
2193
2194	return count;
2195}
2196
2197static ssize_t
2198show_country(struct device *dev, struct device_attribute *attr,
2199		char *buf)
2200{
2201	struct hid_device *hdev = to_hid_device(dev);
2202
2203	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2204}
2205
2206static struct bin_attribute dev_bin_attr_report_desc = {
2207	.attr = { .name = "report_descriptor", .mode = 0444 },
2208	.read = read_report_descriptor,
2209	.size = HID_MAX_DESCRIPTOR_SIZE,
2210};
2211
2212static const struct device_attribute dev_attr_country = {
2213	.attr = { .name = "country", .mode = 0444 },
2214	.show = show_country,
2215};
2216
2217int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2218{
2219	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2220		"Joystick", "Gamepad", "Keyboard", "Keypad",
2221		"Multi-Axis Controller"
2222	};
2223	const char *type, *bus;
2224	char buf[64] = "";
2225	unsigned int i;
2226	int len;
2227	int ret;
2228
2229	ret = hid_bpf_connect_device(hdev);
2230	if (ret)
2231		return ret;
2232
2233	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2234		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2235	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2236		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2237	if (hdev->bus != BUS_USB)
2238		connect_mask &= ~HID_CONNECT_HIDDEV;
2239	if (hid_hiddev(hdev))
2240		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2241
2242	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2243				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2244		hdev->claimed |= HID_CLAIMED_INPUT;
2245
2246	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2247			!hdev->hiddev_connect(hdev,
2248				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2249		hdev->claimed |= HID_CLAIMED_HIDDEV;
2250	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2251		hdev->claimed |= HID_CLAIMED_HIDRAW;
2252
2253	if (connect_mask & HID_CONNECT_DRIVER)
2254		hdev->claimed |= HID_CLAIMED_DRIVER;
2255
2256	/* Drivers with the ->raw_event callback set are not required to connect
2257	 * to any other listener. */
2258	if (!hdev->claimed && !hdev->driver->raw_event) {
2259		hid_err(hdev, "device has no listeners, quitting\n");
2260		return -ENODEV;
2261	}
2262
2263	hid_process_ordering(hdev);
2264
2265	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2266			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2267		hdev->ff_init(hdev);
2268
2269	len = 0;
2270	if (hdev->claimed & HID_CLAIMED_INPUT)
2271		len += sprintf(buf + len, "input");
2272	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2273		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2274				((struct hiddev *)hdev->hiddev)->minor);
2275	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2276		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2277				((struct hidraw *)hdev->hidraw)->minor);
2278
2279	type = "Device";
2280	for (i = 0; i < hdev->maxcollection; i++) {
2281		struct hid_collection *col = &hdev->collection[i];
2282		if (col->type == HID_COLLECTION_APPLICATION &&
2283		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2284		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2285			type = types[col->usage & 0xffff];
2286			break;
2287		}
2288	}
2289
2290	switch (hdev->bus) {
2291	case BUS_USB:
2292		bus = "USB";
2293		break;
2294	case BUS_BLUETOOTH:
2295		bus = "BLUETOOTH";
2296		break;
2297	case BUS_I2C:
2298		bus = "I2C";
2299		break;
2300	case BUS_VIRTUAL:
2301		bus = "VIRTUAL";
2302		break;
2303	case BUS_INTEL_ISHTP:
2304	case BUS_AMD_SFH:
2305		bus = "SENSOR HUB";
2306		break;
2307	default:
2308		bus = "<UNKNOWN>";
2309	}
2310
2311	ret = device_create_file(&hdev->dev, &dev_attr_country);
2312	if (ret)
2313		hid_warn(hdev,
2314			 "can't create sysfs country code attribute err: %d\n", ret);
2315
2316	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2317		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2318		 type, hdev->name, hdev->phys);
2319
2320	return 0;
2321}
2322EXPORT_SYMBOL_GPL(hid_connect);
2323
2324void hid_disconnect(struct hid_device *hdev)
2325{
2326	device_remove_file(&hdev->dev, &dev_attr_country);
2327	if (hdev->claimed & HID_CLAIMED_INPUT)
2328		hidinput_disconnect(hdev);
2329	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2330		hdev->hiddev_disconnect(hdev);
2331	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2332		hidraw_disconnect(hdev);
2333	hdev->claimed = 0;
2334
2335	hid_bpf_disconnect_device(hdev);
2336}
2337EXPORT_SYMBOL_GPL(hid_disconnect);
2338
2339/**
2340 * hid_hw_start - start underlying HW
2341 * @hdev: hid device
2342 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2343 *
2344 * Call this in probe function *after* hid_parse. This will setup HW
2345 * buffers and start the device (if not defeirred to device open).
2346 * hid_hw_stop must be called if this was successful.
2347 */
2348int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2349{
2350	int error;
2351
2352	error = hdev->ll_driver->start(hdev);
2353	if (error)
2354		return error;
2355
2356	if (connect_mask) {
2357		error = hid_connect(hdev, connect_mask);
2358		if (error) {
2359			hdev->ll_driver->stop(hdev);
2360			return error;
2361		}
2362	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363
2364	return 0;
2365}
2366EXPORT_SYMBOL_GPL(hid_hw_start);
2367
2368/**
2369 * hid_hw_stop - stop underlying HW
2370 * @hdev: hid device
2371 *
2372 * This is usually called from remove function or from probe when something
2373 * failed and hid_hw_start was called already.
2374 */
2375void hid_hw_stop(struct hid_device *hdev)
2376{
2377	hid_disconnect(hdev);
2378	hdev->ll_driver->stop(hdev);
2379}
2380EXPORT_SYMBOL_GPL(hid_hw_stop);
2381
2382/**
2383 * hid_hw_open - signal underlying HW to start delivering events
2384 * @hdev: hid device
2385 *
2386 * Tell underlying HW to start delivering events from the device.
2387 * This function should be called sometime after successful call
2388 * to hid_hw_start().
2389 */
2390int hid_hw_open(struct hid_device *hdev)
2391{
2392	int ret;
2393
2394	ret = mutex_lock_killable(&hdev->ll_open_lock);
2395	if (ret)
2396		return ret;
2397
2398	if (!hdev->ll_open_count++) {
2399		ret = hdev->ll_driver->open(hdev);
2400		if (ret)
2401			hdev->ll_open_count--;
2402	}
2403
2404	mutex_unlock(&hdev->ll_open_lock);
2405	return ret;
2406}
2407EXPORT_SYMBOL_GPL(hid_hw_open);
2408
2409/**
2410 * hid_hw_close - signal underlaying HW to stop delivering events
2411 *
2412 * @hdev: hid device
2413 *
2414 * This function indicates that we are not interested in the events
2415 * from this device anymore. Delivery of events may or may not stop,
2416 * depending on the number of users still outstanding.
2417 */
2418void hid_hw_close(struct hid_device *hdev)
2419{
2420	mutex_lock(&hdev->ll_open_lock);
2421	if (!--hdev->ll_open_count)
2422		hdev->ll_driver->close(hdev);
2423	mutex_unlock(&hdev->ll_open_lock);
2424}
2425EXPORT_SYMBOL_GPL(hid_hw_close);
2426
2427/**
2428 * hid_hw_request - send report request to device
2429 *
2430 * @hdev: hid device
2431 * @report: report to send
2432 * @reqtype: hid request type
2433 */
2434void hid_hw_request(struct hid_device *hdev,
2435		    struct hid_report *report, enum hid_class_request reqtype)
2436{
2437	if (hdev->ll_driver->request)
2438		return hdev->ll_driver->request(hdev, report, reqtype);
2439
2440	__hid_request(hdev, report, reqtype);
2441}
2442EXPORT_SYMBOL_GPL(hid_hw_request);
2443
2444int __hid_hw_raw_request(struct hid_device *hdev,
2445			 unsigned char reportnum, __u8 *buf,
2446			 size_t len, enum hid_report_type rtype,
2447			 enum hid_class_request reqtype,
2448			 u64 source, bool from_bpf)
2449{
2450	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2451	int ret;
2452
2453	if (hdev->ll_driver->max_buffer_size)
2454		max_buffer_size = hdev->ll_driver->max_buffer_size;
2455
2456	if (len < 1 || len > max_buffer_size || !buf)
2457		return -EINVAL;
2458
2459	ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2460					    reqtype, source, from_bpf);
2461	if (ret)
2462		return ret;
2463
2464	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2465					    rtype, reqtype);
2466}
2467
2468/**
2469 * hid_hw_raw_request - send report request to device
2470 *
2471 * @hdev: hid device
2472 * @reportnum: report ID
2473 * @buf: in/out data to transfer
2474 * @len: length of buf
2475 * @rtype: HID report type
2476 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2477 *
2478 * Return: count of data transferred, negative if error
2479 *
2480 * Same behavior as hid_hw_request, but with raw buffers instead.
2481 */
2482int hid_hw_raw_request(struct hid_device *hdev,
2483		       unsigned char reportnum, __u8 *buf,
2484		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2485{
2486	return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2487}
2488EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2489
2490int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2491			   bool from_bpf)
2492{
2493	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2494	int ret;
2495
2496	if (hdev->ll_driver->max_buffer_size)
2497		max_buffer_size = hdev->ll_driver->max_buffer_size;
2498
2499	if (len < 1 || len > max_buffer_size || !buf)
2500		return -EINVAL;
2501
2502	ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2503	if (ret)
2504		return ret;
2505
2506	if (hdev->ll_driver->output_report)
2507		return hdev->ll_driver->output_report(hdev, buf, len);
2508
2509	return -ENOSYS;
2510}
2511
2512/**
2513 * hid_hw_output_report - send output report to device
2514 *
2515 * @hdev: hid device
2516 * @buf: raw data to transfer
2517 * @len: length of buf
2518 *
2519 * Return: count of data transferred, negative if error
2520 */
2521int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2522{
2523	return __hid_hw_output_report(hdev, buf, len, 0, false);
2524}
2525EXPORT_SYMBOL_GPL(hid_hw_output_report);
2526
2527#ifdef CONFIG_PM
2528int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2529{
2530	if (hdev->driver && hdev->driver->suspend)
2531		return hdev->driver->suspend(hdev, state);
2532
2533	return 0;
2534}
2535EXPORT_SYMBOL_GPL(hid_driver_suspend);
2536
2537int hid_driver_reset_resume(struct hid_device *hdev)
2538{
2539	if (hdev->driver && hdev->driver->reset_resume)
2540		return hdev->driver->reset_resume(hdev);
2541
2542	return 0;
2543}
2544EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2545
2546int hid_driver_resume(struct hid_device *hdev)
2547{
2548	if (hdev->driver && hdev->driver->resume)
2549		return hdev->driver->resume(hdev);
2550
2551	return 0;
2552}
2553EXPORT_SYMBOL_GPL(hid_driver_resume);
2554#endif /* CONFIG_PM */
2555
2556struct hid_dynid {
2557	struct list_head list;
2558	struct hid_device_id id;
2559};
2560
2561/**
2562 * new_id_store - add a new HID device ID to this driver and re-probe devices
2563 * @drv: target device driver
2564 * @buf: buffer for scanning device ID data
2565 * @count: input size
2566 *
2567 * Adds a new dynamic hid device ID to this driver,
2568 * and causes the driver to probe for all devices again.
2569 */
2570static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2571		size_t count)
2572{
2573	struct hid_driver *hdrv = to_hid_driver(drv);
2574	struct hid_dynid *dynid;
2575	__u32 bus, vendor, product;
2576	unsigned long driver_data = 0;
2577	int ret;
2578
2579	ret = sscanf(buf, "%x %x %x %lx",
2580			&bus, &vendor, &product, &driver_data);
2581	if (ret < 3)
2582		return -EINVAL;
2583
2584	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2585	if (!dynid)
2586		return -ENOMEM;
2587
2588	dynid->id.bus = bus;
2589	dynid->id.group = HID_GROUP_ANY;
2590	dynid->id.vendor = vendor;
2591	dynid->id.product = product;
2592	dynid->id.driver_data = driver_data;
2593
2594	spin_lock(&hdrv->dyn_lock);
2595	list_add_tail(&dynid->list, &hdrv->dyn_list);
2596	spin_unlock(&hdrv->dyn_lock);
2597
2598	ret = driver_attach(&hdrv->driver);
 
 
 
 
2599
2600	return ret ? : count;
2601}
2602static DRIVER_ATTR_WO(new_id);
2603
2604static struct attribute *hid_drv_attrs[] = {
2605	&driver_attr_new_id.attr,
2606	NULL,
2607};
2608ATTRIBUTE_GROUPS(hid_drv);
2609
2610static void hid_free_dynids(struct hid_driver *hdrv)
2611{
2612	struct hid_dynid *dynid, *n;
2613
2614	spin_lock(&hdrv->dyn_lock);
2615	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2616		list_del(&dynid->list);
2617		kfree(dynid);
2618	}
2619	spin_unlock(&hdrv->dyn_lock);
2620}
2621
2622const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2623					     struct hid_driver *hdrv)
2624{
2625	struct hid_dynid *dynid;
2626
2627	spin_lock(&hdrv->dyn_lock);
2628	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2629		if (hid_match_one_id(hdev, &dynid->id)) {
2630			spin_unlock(&hdrv->dyn_lock);
2631			return &dynid->id;
2632		}
2633	}
2634	spin_unlock(&hdrv->dyn_lock);
2635
2636	return hid_match_id(hdev, hdrv->id_table);
2637}
2638EXPORT_SYMBOL_GPL(hid_match_device);
2639
2640static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2641{
2642	struct hid_driver *hdrv = to_hid_driver(drv);
2643	struct hid_device *hdev = to_hid_device(dev);
2644
2645	return hid_match_device(hdev, hdrv) != NULL;
2646}
2647
2648/**
2649 * hid_compare_device_paths - check if both devices share the same path
2650 * @hdev_a: hid device
2651 * @hdev_b: hid device
2652 * @separator: char to use as separator
2653 *
2654 * Check if two devices share the same path up to the last occurrence of
2655 * the separator char. Both paths must exist (i.e., zero-length paths
2656 * don't match).
2657 */
2658bool hid_compare_device_paths(struct hid_device *hdev_a,
2659			      struct hid_device *hdev_b, char separator)
2660{
2661	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2662	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2663
2664	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2665		return false;
2666
2667	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2668}
2669EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2670
2671static bool hid_check_device_match(struct hid_device *hdev,
2672				   struct hid_driver *hdrv,
2673				   const struct hid_device_id **id)
2674{
2675	*id = hid_match_device(hdev, hdrv);
2676	if (!*id)
2677		return false;
2678
2679	if (hdrv->match)
2680		return hdrv->match(hdev, hid_ignore_special_drivers);
2681
2682	/*
2683	 * hid-generic implements .match(), so we must be dealing with a
2684	 * different HID driver here, and can simply check if
2685	 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2686	 * are set or not.
2687	 */
2688	return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2689}
2690
2691static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2692{
 
 
 
2693	const struct hid_device_id *id;
2694	int ret;
2695
2696	if (!hdev->bpf_rsize) {
2697		/* in case a bpf program gets detached, we need to free the old one */
2698		hid_free_bpf_rdesc(hdev);
2699
2700		/* keep this around so we know we called it once */
2701		hdev->bpf_rsize = hdev->dev_rsize;
2702
2703		/* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2704		hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2705							   &hdev->bpf_rsize);
2706	}
2707
2708	if (!hid_check_device_match(hdev, hdrv, &id))
2709		return -ENODEV;
2710
2711	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2712	if (!hdev->devres_group_id)
2713		return -ENOMEM;
2714
2715	/* reset the quirks that has been previously set */
2716	hdev->quirks = hid_lookup_quirk(hdev);
2717	hdev->driver = hdrv;
2718
2719	if (hdrv->probe) {
2720		ret = hdrv->probe(hdev, id);
2721	} else { /* default probe */
2722		ret = hid_open_report(hdev);
2723		if (!ret)
2724			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2725	}
2726
2727	/*
2728	 * Note that we are not closing the devres group opened above so
2729	 * even resources that were attached to the device after probe is
2730	 * run are released when hid_device_remove() is executed. This is
2731	 * needed as some drivers would allocate additional resources,
2732	 * for example when updating firmware.
2733	 */
2734
2735	if (ret) {
2736		devres_release_group(&hdev->dev, hdev->devres_group_id);
2737		hid_close_report(hdev);
2738		hdev->driver = NULL;
2739	}
2740
2741	return ret;
2742}
2743
2744static int hid_device_probe(struct device *dev)
2745{
2746	struct hid_device *hdev = to_hid_device(dev);
2747	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2748	int ret = 0;
2749
2750	if (down_interruptible(&hdev->driver_input_lock))
2751		return -EINTR;
2752
2753	hdev->io_started = false;
2754	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2755
2756	if (!hdev->driver)
2757		ret = __hid_device_probe(hdev, hdrv);
2758
2759	if (!hdev->io_started)
2760		up(&hdev->driver_input_lock);
2761
2762	return ret;
2763}
2764
2765static void hid_device_remove(struct device *dev)
2766{
2767	struct hid_device *hdev = to_hid_device(dev);
2768	struct hid_driver *hdrv;
2769
2770	down(&hdev->driver_input_lock);
2771	hdev->io_started = false;
2772
2773	hdrv = hdev->driver;
2774	if (hdrv) {
2775		if (hdrv->remove)
2776			hdrv->remove(hdev);
2777		else /* default remove */
2778			hid_hw_stop(hdev);
2779
2780		/* Release all devres resources allocated by the driver */
2781		devres_release_group(&hdev->dev, hdev->devres_group_id);
2782
2783		hid_close_report(hdev);
2784		hdev->driver = NULL;
2785	}
2786
2787	if (!hdev->io_started)
2788		up(&hdev->driver_input_lock);
2789}
2790
2791static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2792			     char *buf)
2793{
2794	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2795
2796	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2797			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2798}
2799static DEVICE_ATTR_RO(modalias);
2800
2801static struct attribute *hid_dev_attrs[] = {
2802	&dev_attr_modalias.attr,
2803	NULL,
2804};
2805static struct bin_attribute *hid_dev_bin_attrs[] = {
2806	&dev_bin_attr_report_desc,
2807	NULL
2808};
2809static const struct attribute_group hid_dev_group = {
2810	.attrs = hid_dev_attrs,
2811	.bin_attrs = hid_dev_bin_attrs,
2812};
2813__ATTRIBUTE_GROUPS(hid_dev);
2814
2815static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2816{
2817	const struct hid_device *hdev = to_hid_device(dev);
2818
2819	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2820			hdev->bus, hdev->vendor, hdev->product))
2821		return -ENOMEM;
2822
2823	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2824		return -ENOMEM;
2825
2826	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2827		return -ENOMEM;
2828
2829	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2830		return -ENOMEM;
2831
2832	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2833			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2834		return -ENOMEM;
2835
2836	return 0;
2837}
2838
2839const struct bus_type hid_bus_type = {
2840	.name		= "hid",
2841	.dev_groups	= hid_dev_groups,
2842	.drv_groups	= hid_drv_groups,
2843	.match		= hid_bus_match,
2844	.probe		= hid_device_probe,
2845	.remove		= hid_device_remove,
2846	.uevent		= hid_uevent,
2847};
2848EXPORT_SYMBOL(hid_bus_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849
2850int hid_add_device(struct hid_device *hdev)
2851{
2852	static atomic_t id = ATOMIC_INIT(0);
2853	int ret;
2854
2855	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2856		return -EBUSY;
2857
2858	hdev->quirks = hid_lookup_quirk(hdev);
2859
2860	/* we need to kill them here, otherwise they will stay allocated to
2861	 * wait for coming driver */
2862	if (hid_ignore(hdev))
 
2863		return -ENODEV;
2864
2865	/*
2866	 * Check for the mandatory transport channel.
2867	 */
2868	 if (!hdev->ll_driver->raw_request) {
2869		hid_err(hdev, "transport driver missing .raw_request()\n");
2870		return -EINVAL;
2871	 }
2872
2873	/*
2874	 * Read the device report descriptor once and use as template
2875	 * for the driver-specific modifications.
2876	 */
2877	ret = hdev->ll_driver->parse(hdev);
2878	if (ret)
2879		return ret;
2880	if (!hdev->dev_rdesc)
2881		return -ENODEV;
2882
2883	/*
2884	 * Scan generic devices for group information
2885	 */
2886	if (hid_ignore_special_drivers) {
2887		hdev->group = HID_GROUP_GENERIC;
2888	} else if (!hdev->group &&
2889		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2890		ret = hid_scan_report(hdev);
2891		if (ret)
2892			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2893	}
2894
2895	hdev->id = atomic_inc_return(&id);
2896
2897	/* XXX hack, any other cleaner solution after the driver core
2898	 * is converted to allow more than 20 bytes as the device name? */
2899	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2900		     hdev->vendor, hdev->product, hdev->id);
2901
2902	hid_debug_register(hdev, dev_name(&hdev->dev));
2903	ret = device_add(&hdev->dev);
2904	if (!ret)
2905		hdev->status |= HID_STAT_ADDED;
2906	else
2907		hid_debug_unregister(hdev);
2908
2909	return ret;
2910}
2911EXPORT_SYMBOL_GPL(hid_add_device);
2912
2913/**
2914 * hid_allocate_device - allocate new hid device descriptor
2915 *
2916 * Allocate and initialize hid device, so that hid_destroy_device might be
2917 * used to free it.
2918 *
2919 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2920 * error value.
2921 */
2922struct hid_device *hid_allocate_device(void)
2923{
2924	struct hid_device *hdev;
 
2925	int ret = -ENOMEM;
2926
2927	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2928	if (hdev == NULL)
2929		return ERR_PTR(ret);
2930
2931	device_initialize(&hdev->dev);
2932	hdev->dev.release = hid_device_release;
2933	hdev->dev.bus = &hid_bus_type;
2934	device_enable_async_suspend(&hdev->dev);
2935
2936	hid_close_report(hdev);
 
 
 
 
 
 
 
2937
2938	init_waitqueue_head(&hdev->debug_wait);
2939	INIT_LIST_HEAD(&hdev->debug_list);
2940	spin_lock_init(&hdev->debug_list_lock);
2941	sema_init(&hdev->driver_input_lock, 1);
2942	mutex_init(&hdev->ll_open_lock);
2943	kref_init(&hdev->ref);
2944
2945	ret = hid_bpf_device_init(hdev);
2946	if (ret)
2947		goto out_err;
2948
2949	return hdev;
2950
2951out_err:
2952	hid_destroy_device(hdev);
2953	return ERR_PTR(ret);
2954}
2955EXPORT_SYMBOL_GPL(hid_allocate_device);
2956
2957static void hid_remove_device(struct hid_device *hdev)
2958{
2959	if (hdev->status & HID_STAT_ADDED) {
2960		device_del(&hdev->dev);
2961		hid_debug_unregister(hdev);
2962		hdev->status &= ~HID_STAT_ADDED;
2963	}
2964	hid_free_bpf_rdesc(hdev);
2965	kfree(hdev->dev_rdesc);
2966	hdev->dev_rdesc = NULL;
2967	hdev->dev_rsize = 0;
2968	hdev->bpf_rsize = 0;
2969}
2970
2971/**
2972 * hid_destroy_device - free previously allocated device
2973 *
2974 * @hdev: hid device
2975 *
2976 * If you allocate hid_device through hid_allocate_device, you should ever
2977 * free by this function.
2978 */
2979void hid_destroy_device(struct hid_device *hdev)
2980{
2981	hid_bpf_destroy_device(hdev);
2982	hid_remove_device(hdev);
2983	put_device(&hdev->dev);
2984}
2985EXPORT_SYMBOL_GPL(hid_destroy_device);
2986
2987
2988static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2989{
2990	struct hid_driver *hdrv = data;
2991	struct hid_device *hdev = to_hid_device(dev);
2992
2993	if (hdev->driver == hdrv &&
2994	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2995	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2996		return device_reprobe(dev);
2997
2998	return 0;
2999}
3000
3001static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3002{
3003	struct hid_driver *hdrv = to_hid_driver(drv);
3004
3005	if (hdrv->match) {
3006		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3007				 __hid_bus_reprobe_drivers);
3008	}
3009
3010	return 0;
3011}
3012
3013static int __bus_removed_driver(struct device_driver *drv, void *data)
3014{
3015	return bus_rescan_devices(&hid_bus_type);
3016}
3017
3018int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3019		const char *mod_name)
3020{
3021	int ret;
3022
3023	hdrv->driver.name = hdrv->name;
3024	hdrv->driver.bus = &hid_bus_type;
3025	hdrv->driver.owner = owner;
3026	hdrv->driver.mod_name = mod_name;
3027
3028	INIT_LIST_HEAD(&hdrv->dyn_list);
3029	spin_lock_init(&hdrv->dyn_lock);
3030
3031	ret = driver_register(&hdrv->driver);
 
 
3032
3033	if (ret == 0)
3034		bus_for_each_drv(&hid_bus_type, NULL, NULL,
3035				 __hid_bus_driver_added);
3036
3037	return ret;
3038}
3039EXPORT_SYMBOL_GPL(__hid_register_driver);
3040
3041void hid_unregister_driver(struct hid_driver *hdrv)
3042{
 
3043	driver_unregister(&hdrv->driver);
3044	hid_free_dynids(hdrv);
3045
3046	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3047}
3048EXPORT_SYMBOL_GPL(hid_unregister_driver);
3049
3050int hid_check_keys_pressed(struct hid_device *hid)
3051{
3052	struct hid_input *hidinput;
3053	int i;
3054
3055	if (!(hid->claimed & HID_CLAIMED_INPUT))
3056		return 0;
3057
3058	list_for_each_entry(hidinput, &hid->inputs, list) {
3059		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3060			if (hidinput->input->key[i])
3061				return 1;
3062	}
3063
3064	return 0;
3065}
 
3066EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3067
3068#ifdef CONFIG_HID_BPF
3069static const struct hid_ops __hid_ops = {
3070	.hid_get_report = hid_get_report,
3071	.hid_hw_raw_request = __hid_hw_raw_request,
3072	.hid_hw_output_report = __hid_hw_output_report,
3073	.hid_input_report = __hid_input_report,
3074	.owner = THIS_MODULE,
3075	.bus_type = &hid_bus_type,
3076};
3077#endif
3078
3079static int __init hid_init(void)
3080{
3081	int ret;
3082
 
 
 
 
3083	ret = bus_register(&hid_bus_type);
3084	if (ret) {
3085		pr_err("can't register hid bus\n");
3086		goto err;
3087	}
3088
3089#ifdef CONFIG_HID_BPF
3090	hid_ops = &__hid_ops;
3091#endif
3092
3093	ret = hidraw_init();
3094	if (ret)
3095		goto err_bus;
3096
3097	hid_debug_init();
3098
3099	return 0;
3100err_bus:
3101	bus_unregister(&hid_bus_type);
3102err:
3103	return ret;
3104}
3105
3106static void __exit hid_exit(void)
3107{
3108#ifdef CONFIG_HID_BPF
3109	hid_ops = NULL;
3110#endif
3111	hid_debug_exit();
3112	hidraw_exit();
3113	bus_unregister(&hid_bus_type);
3114	hid_quirks_exit(HID_BUS_ANY);
3115}
3116
3117module_init(hid_init);
3118module_exit(hid_exit);
3119
3120MODULE_AUTHOR("Andreas Gal");
3121MODULE_AUTHOR("Vojtech Pavlik");
3122MODULE_AUTHOR("Jiri Kosina");
3123MODULE_DESCRIPTION("HID support for Linux");
3124MODULE_LICENSE("GPL");