Loading...
1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2010 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32
33#include <linux/hid.h>
34#include <linux/hiddev.h>
35#include <linux/hid-debug.h>
36#include <linux/hidraw.h>
37
38#include "hid-ids.h"
39
40/*
41 * Version Information
42 */
43
44#define DRIVER_DESC "HID core driver"
45#define DRIVER_LICENSE "GPL"
46
47int hid_debug = 0;
48module_param_named(debug, hid_debug, int, 0600);
49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50EXPORT_SYMBOL_GPL(hid_debug);
51
52/*
53 * Register a new report for a device.
54 */
55
56struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
57{
58 struct hid_report_enum *report_enum = device->report_enum + type;
59 struct hid_report *report;
60
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
63
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 if (!report)
66 return NULL;
67
68 if (id != 0)
69 report_enum->numbered = 1;
70
71 report->id = id;
72 report->type = type;
73 report->size = 0;
74 report->device = device;
75 report_enum->report_id_hash[id] = report;
76
77 list_add_tail(&report->list, &report_enum->report_list);
78
79 return report;
80}
81EXPORT_SYMBOL_GPL(hid_register_report);
82
83/*
84 * Register a new field for this report.
85 */
86
87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
88{
89 struct hid_field *field;
90
91 if (report->maxfield == HID_MAX_FIELDS) {
92 dbg_hid("too many fields in report\n");
93 return NULL;
94 }
95
96 field = kzalloc((sizeof(struct hid_field) +
97 usages * sizeof(struct hid_usage) +
98 values * sizeof(unsigned)), GFP_KERNEL);
99 if (!field)
100 return NULL;
101
102 field->index = report->maxfield++;
103 report->field[field->index] = field;
104 field->usage = (struct hid_usage *)(field + 1);
105 field->value = (s32 *)(field->usage + usages);
106 field->report = report;
107
108 return field;
109}
110
111/*
112 * Open a collection. The type/usage is pushed on the stack.
113 */
114
115static int open_collection(struct hid_parser *parser, unsigned type)
116{
117 struct hid_collection *collection;
118 unsigned usage;
119
120 usage = parser->local.usage[0];
121
122 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
123 dbg_hid("collection stack overflow\n");
124 return -1;
125 }
126
127 if (parser->device->maxcollection == parser->device->collection_size) {
128 collection = kmalloc(sizeof(struct hid_collection) *
129 parser->device->collection_size * 2, GFP_KERNEL);
130 if (collection == NULL) {
131 dbg_hid("failed to reallocate collection array\n");
132 return -1;
133 }
134 memcpy(collection, parser->device->collection,
135 sizeof(struct hid_collection) *
136 parser->device->collection_size);
137 memset(collection + parser->device->collection_size, 0,
138 sizeof(struct hid_collection) *
139 parser->device->collection_size);
140 kfree(parser->device->collection);
141 parser->device->collection = collection;
142 parser->device->collection_size *= 2;
143 }
144
145 parser->collection_stack[parser->collection_stack_ptr++] =
146 parser->device->maxcollection;
147
148 collection = parser->device->collection +
149 parser->device->maxcollection++;
150 collection->type = type;
151 collection->usage = usage;
152 collection->level = parser->collection_stack_ptr - 1;
153
154 if (type == HID_COLLECTION_APPLICATION)
155 parser->device->maxapplication++;
156
157 return 0;
158}
159
160/*
161 * Close a collection.
162 */
163
164static int close_collection(struct hid_parser *parser)
165{
166 if (!parser->collection_stack_ptr) {
167 dbg_hid("collection stack underflow\n");
168 return -1;
169 }
170 parser->collection_stack_ptr--;
171 return 0;
172}
173
174/*
175 * Climb up the stack, search for the specified collection type
176 * and return the usage.
177 */
178
179static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
180{
181 struct hid_collection *collection = parser->device->collection;
182 int n;
183
184 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
185 unsigned index = parser->collection_stack[n];
186 if (collection[index].type == type)
187 return collection[index].usage;
188 }
189 return 0; /* we know nothing about this usage type */
190}
191
192/*
193 * Add a usage to the temporary parser table.
194 */
195
196static int hid_add_usage(struct hid_parser *parser, unsigned usage)
197{
198 if (parser->local.usage_index >= HID_MAX_USAGES) {
199 dbg_hid("usage index exceeded\n");
200 return -1;
201 }
202 parser->local.usage[parser->local.usage_index] = usage;
203 parser->local.collection_index[parser->local.usage_index] =
204 parser->collection_stack_ptr ?
205 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
206 parser->local.usage_index++;
207 return 0;
208}
209
210/*
211 * Register a new field for this report.
212 */
213
214static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
215{
216 struct hid_report *report;
217 struct hid_field *field;
218 int usages;
219 unsigned offset;
220 int i;
221
222 report = hid_register_report(parser->device, report_type, parser->global.report_id);
223 if (!report) {
224 dbg_hid("hid_register_report failed\n");
225 return -1;
226 }
227
228 if (parser->global.logical_maximum < parser->global.logical_minimum) {
229 dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
230 return -1;
231 }
232
233 offset = report->size;
234 report->size += parser->global.report_size * parser->global.report_count;
235
236 if (!parser->local.usage_index) /* Ignore padding fields */
237 return 0;
238
239 usages = max_t(int, parser->local.usage_index, parser->global.report_count);
240
241 field = hid_register_field(report, usages, parser->global.report_count);
242 if (!field)
243 return 0;
244
245 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
246 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
247 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
248
249 for (i = 0; i < usages; i++) {
250 int j = i;
251 /* Duplicate the last usage we parsed if we have excess values */
252 if (i >= parser->local.usage_index)
253 j = parser->local.usage_index - 1;
254 field->usage[i].hid = parser->local.usage[j];
255 field->usage[i].collection_index =
256 parser->local.collection_index[j];
257 }
258
259 field->maxusage = usages;
260 field->flags = flags;
261 field->report_offset = offset;
262 field->report_type = report_type;
263 field->report_size = parser->global.report_size;
264 field->report_count = parser->global.report_count;
265 field->logical_minimum = parser->global.logical_minimum;
266 field->logical_maximum = parser->global.logical_maximum;
267 field->physical_minimum = parser->global.physical_minimum;
268 field->physical_maximum = parser->global.physical_maximum;
269 field->unit_exponent = parser->global.unit_exponent;
270 field->unit = parser->global.unit;
271
272 return 0;
273}
274
275/*
276 * Read data value from item.
277 */
278
279static u32 item_udata(struct hid_item *item)
280{
281 switch (item->size) {
282 case 1: return item->data.u8;
283 case 2: return item->data.u16;
284 case 4: return item->data.u32;
285 }
286 return 0;
287}
288
289static s32 item_sdata(struct hid_item *item)
290{
291 switch (item->size) {
292 case 1: return item->data.s8;
293 case 2: return item->data.s16;
294 case 4: return item->data.s32;
295 }
296 return 0;
297}
298
299/*
300 * Process a global item.
301 */
302
303static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
304{
305 switch (item->tag) {
306 case HID_GLOBAL_ITEM_TAG_PUSH:
307
308 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
309 dbg_hid("global environment stack overflow\n");
310 return -1;
311 }
312
313 memcpy(parser->global_stack + parser->global_stack_ptr++,
314 &parser->global, sizeof(struct hid_global));
315 return 0;
316
317 case HID_GLOBAL_ITEM_TAG_POP:
318
319 if (!parser->global_stack_ptr) {
320 dbg_hid("global environment stack underflow\n");
321 return -1;
322 }
323
324 memcpy(&parser->global, parser->global_stack +
325 --parser->global_stack_ptr, sizeof(struct hid_global));
326 return 0;
327
328 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
329 parser->global.usage_page = item_udata(item);
330 return 0;
331
332 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
333 parser->global.logical_minimum = item_sdata(item);
334 return 0;
335
336 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
337 if (parser->global.logical_minimum < 0)
338 parser->global.logical_maximum = item_sdata(item);
339 else
340 parser->global.logical_maximum = item_udata(item);
341 return 0;
342
343 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
344 parser->global.physical_minimum = item_sdata(item);
345 return 0;
346
347 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
348 if (parser->global.physical_minimum < 0)
349 parser->global.physical_maximum = item_sdata(item);
350 else
351 parser->global.physical_maximum = item_udata(item);
352 return 0;
353
354 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
355 parser->global.unit_exponent = item_sdata(item);
356 return 0;
357
358 case HID_GLOBAL_ITEM_TAG_UNIT:
359 parser->global.unit = item_udata(item);
360 return 0;
361
362 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
363 parser->global.report_size = item_udata(item);
364 if (parser->global.report_size > 32) {
365 dbg_hid("invalid report_size %d\n",
366 parser->global.report_size);
367 return -1;
368 }
369 return 0;
370
371 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
372 parser->global.report_count = item_udata(item);
373 if (parser->global.report_count > HID_MAX_USAGES) {
374 dbg_hid("invalid report_count %d\n",
375 parser->global.report_count);
376 return -1;
377 }
378 return 0;
379
380 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
381 parser->global.report_id = item_udata(item);
382 if (parser->global.report_id == 0) {
383 dbg_hid("report_id 0 is invalid\n");
384 return -1;
385 }
386 return 0;
387
388 default:
389 dbg_hid("unknown global tag 0x%x\n", item->tag);
390 return -1;
391 }
392}
393
394/*
395 * Process a local item.
396 */
397
398static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
399{
400 __u32 data;
401 unsigned n;
402
403 data = item_udata(item);
404
405 switch (item->tag) {
406 case HID_LOCAL_ITEM_TAG_DELIMITER:
407
408 if (data) {
409 /*
410 * We treat items before the first delimiter
411 * as global to all usage sets (branch 0).
412 * In the moment we process only these global
413 * items and the first delimiter set.
414 */
415 if (parser->local.delimiter_depth != 0) {
416 dbg_hid("nested delimiters\n");
417 return -1;
418 }
419 parser->local.delimiter_depth++;
420 parser->local.delimiter_branch++;
421 } else {
422 if (parser->local.delimiter_depth < 1) {
423 dbg_hid("bogus close delimiter\n");
424 return -1;
425 }
426 parser->local.delimiter_depth--;
427 }
428 return 1;
429
430 case HID_LOCAL_ITEM_TAG_USAGE:
431
432 if (parser->local.delimiter_branch > 1) {
433 dbg_hid("alternative usage ignored\n");
434 return 0;
435 }
436
437 if (item->size <= 2)
438 data = (parser->global.usage_page << 16) + data;
439
440 return hid_add_usage(parser, data);
441
442 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
443
444 if (parser->local.delimiter_branch > 1) {
445 dbg_hid("alternative usage ignored\n");
446 return 0;
447 }
448
449 if (item->size <= 2)
450 data = (parser->global.usage_page << 16) + data;
451
452 parser->local.usage_minimum = data;
453 return 0;
454
455 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
456
457 if (parser->local.delimiter_branch > 1) {
458 dbg_hid("alternative usage ignored\n");
459 return 0;
460 }
461
462 if (item->size <= 2)
463 data = (parser->global.usage_page << 16) + data;
464
465 for (n = parser->local.usage_minimum; n <= data; n++)
466 if (hid_add_usage(parser, n)) {
467 dbg_hid("hid_add_usage failed\n");
468 return -1;
469 }
470 return 0;
471
472 default:
473
474 dbg_hid("unknown local item tag 0x%x\n", item->tag);
475 return 0;
476 }
477 return 0;
478}
479
480/*
481 * Process a main item.
482 */
483
484static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
485{
486 __u32 data;
487 int ret;
488
489 data = item_udata(item);
490
491 switch (item->tag) {
492 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
493 ret = open_collection(parser, data & 0xff);
494 break;
495 case HID_MAIN_ITEM_TAG_END_COLLECTION:
496 ret = close_collection(parser);
497 break;
498 case HID_MAIN_ITEM_TAG_INPUT:
499 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
500 break;
501 case HID_MAIN_ITEM_TAG_OUTPUT:
502 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
503 break;
504 case HID_MAIN_ITEM_TAG_FEATURE:
505 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
506 break;
507 default:
508 dbg_hid("unknown main item tag 0x%x\n", item->tag);
509 ret = 0;
510 }
511
512 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
513
514 return ret;
515}
516
517/*
518 * Process a reserved item.
519 */
520
521static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
522{
523 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
524 return 0;
525}
526
527/*
528 * Free a report and all registered fields. The field->usage and
529 * field->value table's are allocated behind the field, so we need
530 * only to free(field) itself.
531 */
532
533static void hid_free_report(struct hid_report *report)
534{
535 unsigned n;
536
537 for (n = 0; n < report->maxfield; n++)
538 kfree(report->field[n]);
539 kfree(report);
540}
541
542/*
543 * Free a device structure, all reports, and all fields.
544 */
545
546static void hid_device_release(struct device *dev)
547{
548 struct hid_device *device = container_of(dev, struct hid_device, dev);
549 unsigned i, j;
550
551 for (i = 0; i < HID_REPORT_TYPES; i++) {
552 struct hid_report_enum *report_enum = device->report_enum + i;
553
554 for (j = 0; j < 256; j++) {
555 struct hid_report *report = report_enum->report_id_hash[j];
556 if (report)
557 hid_free_report(report);
558 }
559 }
560
561 kfree(device->rdesc);
562 kfree(device->collection);
563 kfree(device);
564}
565
566/*
567 * Fetch a report description item from the data stream. We support long
568 * items, though they are not used yet.
569 */
570
571static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
572{
573 u8 b;
574
575 if ((end - start) <= 0)
576 return NULL;
577
578 b = *start++;
579
580 item->type = (b >> 2) & 3;
581 item->tag = (b >> 4) & 15;
582
583 if (item->tag == HID_ITEM_TAG_LONG) {
584
585 item->format = HID_ITEM_FORMAT_LONG;
586
587 if ((end - start) < 2)
588 return NULL;
589
590 item->size = *start++;
591 item->tag = *start++;
592
593 if ((end - start) < item->size)
594 return NULL;
595
596 item->data.longdata = start;
597 start += item->size;
598 return start;
599 }
600
601 item->format = HID_ITEM_FORMAT_SHORT;
602 item->size = b & 3;
603
604 switch (item->size) {
605 case 0:
606 return start;
607
608 case 1:
609 if ((end - start) < 1)
610 return NULL;
611 item->data.u8 = *start++;
612 return start;
613
614 case 2:
615 if ((end - start) < 2)
616 return NULL;
617 item->data.u16 = get_unaligned_le16(start);
618 start = (__u8 *)((__le16 *)start + 1);
619 return start;
620
621 case 3:
622 item->size++;
623 if ((end - start) < 4)
624 return NULL;
625 item->data.u32 = get_unaligned_le32(start);
626 start = (__u8 *)((__le32 *)start + 1);
627 return start;
628 }
629
630 return NULL;
631}
632
633/**
634 * hid_parse_report - parse device report
635 *
636 * @device: hid device
637 * @start: report start
638 * @size: report size
639 *
640 * Parse a report description into a hid_device structure. Reports are
641 * enumerated, fields are attached to these reports.
642 * 0 returned on success, otherwise nonzero error value.
643 */
644int hid_parse_report(struct hid_device *device, __u8 *start,
645 unsigned size)
646{
647 struct hid_parser *parser;
648 struct hid_item item;
649 __u8 *end;
650 int ret;
651 static int (*dispatch_type[])(struct hid_parser *parser,
652 struct hid_item *item) = {
653 hid_parser_main,
654 hid_parser_global,
655 hid_parser_local,
656 hid_parser_reserved
657 };
658
659 if (device->driver->report_fixup)
660 start = device->driver->report_fixup(device, start, &size);
661
662 device->rdesc = kmemdup(start, size, GFP_KERNEL);
663 if (device->rdesc == NULL)
664 return -ENOMEM;
665 device->rsize = size;
666
667 parser = vzalloc(sizeof(struct hid_parser));
668 if (!parser) {
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 parser->device = device;
674
675 end = start + size;
676 ret = -EINVAL;
677 while ((start = fetch_item(start, end, &item)) != NULL) {
678
679 if (item.format != HID_ITEM_FORMAT_SHORT) {
680 dbg_hid("unexpected long global item\n");
681 goto err;
682 }
683
684 if (dispatch_type[item.type](parser, &item)) {
685 dbg_hid("item %u %u %u %u parsing failed\n",
686 item.format, (unsigned)item.size,
687 (unsigned)item.type, (unsigned)item.tag);
688 goto err;
689 }
690
691 if (start == end) {
692 if (parser->collection_stack_ptr) {
693 dbg_hid("unbalanced collection at end of report description\n");
694 goto err;
695 }
696 if (parser->local.delimiter_depth) {
697 dbg_hid("unbalanced delimiter at end of report description\n");
698 goto err;
699 }
700 vfree(parser);
701 return 0;
702 }
703 }
704
705 dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
706err:
707 vfree(parser);
708 return ret;
709}
710EXPORT_SYMBOL_GPL(hid_parse_report);
711
712/*
713 * Convert a signed n-bit integer to signed 32-bit integer. Common
714 * cases are done through the compiler, the screwed things has to be
715 * done by hand.
716 */
717
718static s32 snto32(__u32 value, unsigned n)
719{
720 switch (n) {
721 case 8: return ((__s8)value);
722 case 16: return ((__s16)value);
723 case 32: return ((__s32)value);
724 }
725 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
726}
727
728/*
729 * Convert a signed 32-bit integer to a signed n-bit integer.
730 */
731
732static u32 s32ton(__s32 value, unsigned n)
733{
734 s32 a = value >> (n - 1);
735 if (a && a != -1)
736 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
737 return value & ((1 << n) - 1);
738}
739
740/*
741 * Extract/implement a data field from/to a little endian report (bit array).
742 *
743 * Code sort-of follows HID spec:
744 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
745 *
746 * While the USB HID spec allows unlimited length bit fields in "report
747 * descriptors", most devices never use more than 16 bits.
748 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
749 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
750 */
751
752static __u32 extract(const struct hid_device *hid, __u8 *report,
753 unsigned offset, unsigned n)
754{
755 u64 x;
756
757 if (n > 32)
758 hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
759 n, current->comm);
760
761 report += offset >> 3; /* adjust byte index */
762 offset &= 7; /* now only need bit offset into one byte */
763 x = get_unaligned_le64(report);
764 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
765 return (u32) x;
766}
767
768/*
769 * "implement" : set bits in a little endian bit stream.
770 * Same concepts as "extract" (see comments above).
771 * The data mangled in the bit stream remains in little endian
772 * order the whole time. It make more sense to talk about
773 * endianness of register values by considering a register
774 * a "cached" copy of the little endiad bit stream.
775 */
776static void implement(const struct hid_device *hid, __u8 *report,
777 unsigned offset, unsigned n, __u32 value)
778{
779 u64 x;
780 u64 m = (1ULL << n) - 1;
781
782 if (n > 32)
783 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
784 __func__, n, current->comm);
785
786 if (value > m)
787 hid_warn(hid, "%s() called with too large value %d! (%s)\n",
788 __func__, value, current->comm);
789 WARN_ON(value > m);
790 value &= m;
791
792 report += offset >> 3;
793 offset &= 7;
794
795 x = get_unaligned_le64(report);
796 x &= ~(m << offset);
797 x |= ((u64)value) << offset;
798 put_unaligned_le64(x, report);
799}
800
801/*
802 * Search an array for a value.
803 */
804
805static int search(__s32 *array, __s32 value, unsigned n)
806{
807 while (n--) {
808 if (*array++ == value)
809 return 0;
810 }
811 return -1;
812}
813
814/**
815 * hid_match_report - check if driver's raw_event should be called
816 *
817 * @hid: hid device
818 * @report_type: type to match against
819 *
820 * compare hid->driver->report_table->report_type to report->type
821 */
822static int hid_match_report(struct hid_device *hid, struct hid_report *report)
823{
824 const struct hid_report_id *id = hid->driver->report_table;
825
826 if (!id) /* NULL means all */
827 return 1;
828
829 for (; id->report_type != HID_TERMINATOR; id++)
830 if (id->report_type == HID_ANY_ID ||
831 id->report_type == report->type)
832 return 1;
833 return 0;
834}
835
836/**
837 * hid_match_usage - check if driver's event should be called
838 *
839 * @hid: hid device
840 * @usage: usage to match against
841 *
842 * compare hid->driver->usage_table->usage_{type,code} to
843 * usage->usage_{type,code}
844 */
845static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
846{
847 const struct hid_usage_id *id = hid->driver->usage_table;
848
849 if (!id) /* NULL means all */
850 return 1;
851
852 for (; id->usage_type != HID_ANY_ID - 1; id++)
853 if ((id->usage_hid == HID_ANY_ID ||
854 id->usage_hid == usage->hid) &&
855 (id->usage_type == HID_ANY_ID ||
856 id->usage_type == usage->type) &&
857 (id->usage_code == HID_ANY_ID ||
858 id->usage_code == usage->code))
859 return 1;
860 return 0;
861}
862
863static void hid_process_event(struct hid_device *hid, struct hid_field *field,
864 struct hid_usage *usage, __s32 value, int interrupt)
865{
866 struct hid_driver *hdrv = hid->driver;
867 int ret;
868
869 hid_dump_input(hid, usage, value);
870
871 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
872 ret = hdrv->event(hid, field, usage, value);
873 if (ret != 0) {
874 if (ret < 0)
875 dbg_hid("%s's event failed with %d\n",
876 hdrv->name, ret);
877 return;
878 }
879 }
880
881 if (hid->claimed & HID_CLAIMED_INPUT)
882 hidinput_hid_event(hid, field, usage, value);
883 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
884 hid->hiddev_hid_event(hid, field, usage, value);
885}
886
887/*
888 * Analyse a received field, and fetch the data from it. The field
889 * content is stored for next report processing (we do differential
890 * reporting to the layer).
891 */
892
893static void hid_input_field(struct hid_device *hid, struct hid_field *field,
894 __u8 *data, int interrupt)
895{
896 unsigned n;
897 unsigned count = field->report_count;
898 unsigned offset = field->report_offset;
899 unsigned size = field->report_size;
900 __s32 min = field->logical_minimum;
901 __s32 max = field->logical_maximum;
902 __s32 *value;
903
904 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
905 if (!value)
906 return;
907
908 for (n = 0; n < count; n++) {
909
910 value[n] = min < 0 ?
911 snto32(extract(hid, data, offset + n * size, size),
912 size) :
913 extract(hid, data, offset + n * size, size);
914
915 /* Ignore report if ErrorRollOver */
916 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
917 value[n] >= min && value[n] <= max &&
918 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
919 goto exit;
920 }
921
922 for (n = 0; n < count; n++) {
923
924 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
925 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
926 continue;
927 }
928
929 if (field->value[n] >= min && field->value[n] <= max
930 && field->usage[field->value[n] - min].hid
931 && search(value, field->value[n], count))
932 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
933
934 if (value[n] >= min && value[n] <= max
935 && field->usage[value[n] - min].hid
936 && search(field->value, value[n], count))
937 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
938 }
939
940 memcpy(field->value, value, count * sizeof(__s32));
941exit:
942 kfree(value);
943}
944
945/*
946 * Output the field into the report.
947 */
948
949static void hid_output_field(const struct hid_device *hid,
950 struct hid_field *field, __u8 *data)
951{
952 unsigned count = field->report_count;
953 unsigned offset = field->report_offset;
954 unsigned size = field->report_size;
955 unsigned n;
956
957 for (n = 0; n < count; n++) {
958 if (field->logical_minimum < 0) /* signed values */
959 implement(hid, data, offset + n * size, size,
960 s32ton(field->value[n], size));
961 else /* unsigned values */
962 implement(hid, data, offset + n * size, size,
963 field->value[n]);
964 }
965}
966
967/*
968 * Create a report.
969 */
970
971void hid_output_report(struct hid_report *report, __u8 *data)
972{
973 unsigned n;
974
975 if (report->id > 0)
976 *data++ = report->id;
977
978 memset(data, 0, ((report->size - 1) >> 3) + 1);
979 for (n = 0; n < report->maxfield; n++)
980 hid_output_field(report->device, report->field[n], data);
981}
982EXPORT_SYMBOL_GPL(hid_output_report);
983
984/*
985 * Set a field value. The report this field belongs to has to be
986 * created and transferred to the device, to set this value in the
987 * device.
988 */
989
990int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
991{
992 unsigned size = field->report_size;
993
994 hid_dump_input(field->report->device, field->usage + offset, value);
995
996 if (offset >= field->report_count) {
997 dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
998 return -1;
999 }
1000 if (field->logical_minimum < 0) {
1001 if (value != snto32(s32ton(value, size), size)) {
1002 dbg_hid("value %d is out of range\n", value);
1003 return -1;
1004 }
1005 }
1006 field->value[offset] = value;
1007 return 0;
1008}
1009EXPORT_SYMBOL_GPL(hid_set_field);
1010
1011static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1012 const u8 *data)
1013{
1014 struct hid_report *report;
1015 unsigned int n = 0; /* Normally report number is 0 */
1016
1017 /* Device uses numbered reports, data[0] is report number */
1018 if (report_enum->numbered)
1019 n = *data;
1020
1021 report = report_enum->report_id_hash[n];
1022 if (report == NULL)
1023 dbg_hid("undefined report_id %u received\n", n);
1024
1025 return report;
1026}
1027
1028void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1029 int interrupt)
1030{
1031 struct hid_report_enum *report_enum = hid->report_enum + type;
1032 struct hid_report *report;
1033 unsigned int a;
1034 int rsize, csize = size;
1035 u8 *cdata = data;
1036
1037 report = hid_get_report(report_enum, data);
1038 if (!report)
1039 return;
1040
1041 if (report_enum->numbered) {
1042 cdata++;
1043 csize--;
1044 }
1045
1046 rsize = ((report->size - 1) >> 3) + 1;
1047
1048 if (rsize > HID_MAX_BUFFER_SIZE)
1049 rsize = HID_MAX_BUFFER_SIZE;
1050
1051 if (csize < rsize) {
1052 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1053 csize, rsize);
1054 memset(cdata + csize, 0, rsize - csize);
1055 }
1056
1057 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1058 hid->hiddev_report_event(hid, report);
1059 if (hid->claimed & HID_CLAIMED_HIDRAW)
1060 hidraw_report_event(hid, data, size);
1061
1062 for (a = 0; a < report->maxfield; a++)
1063 hid_input_field(hid, report->field[a], cdata, interrupt);
1064
1065 if (hid->claimed & HID_CLAIMED_INPUT)
1066 hidinput_report_event(hid, report);
1067}
1068EXPORT_SYMBOL_GPL(hid_report_raw_event);
1069
1070/**
1071 * hid_input_report - report data from lower layer (usb, bt...)
1072 *
1073 * @hid: hid device
1074 * @type: HID report type (HID_*_REPORT)
1075 * @data: report contents
1076 * @size: size of data parameter
1077 * @interrupt: distinguish between interrupt and control transfers
1078 *
1079 * This is data entry for lower layers.
1080 */
1081int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1082{
1083 struct hid_report_enum *report_enum;
1084 struct hid_driver *hdrv;
1085 struct hid_report *report;
1086 char *buf;
1087 unsigned int i;
1088 int ret;
1089
1090 if (!hid || !hid->driver)
1091 return -ENODEV;
1092 report_enum = hid->report_enum + type;
1093 hdrv = hid->driver;
1094
1095 if (!size) {
1096 dbg_hid("empty report\n");
1097 return -1;
1098 }
1099
1100 buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
1101
1102 if (!buf)
1103 goto nomem;
1104
1105 /* dump the report */
1106 snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1107 "\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
1108 hid_debug_event(hid, buf);
1109
1110 for (i = 0; i < size; i++) {
1111 snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1112 " %02x", data[i]);
1113 hid_debug_event(hid, buf);
1114 }
1115 hid_debug_event(hid, "\n");
1116 kfree(buf);
1117
1118nomem:
1119 report = hid_get_report(report_enum, data);
1120
1121 if (!report)
1122 return -1;
1123
1124 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1125 ret = hdrv->raw_event(hid, report, data, size);
1126 if (ret != 0)
1127 return ret < 0 ? ret : 0;
1128 }
1129
1130 hid_report_raw_event(hid, type, data, size, interrupt);
1131
1132 return 0;
1133}
1134EXPORT_SYMBOL_GPL(hid_input_report);
1135
1136static bool hid_match_one_id(struct hid_device *hdev,
1137 const struct hid_device_id *id)
1138{
1139 return id->bus == hdev->bus &&
1140 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1141 (id->product == HID_ANY_ID || id->product == hdev->product);
1142}
1143
1144static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1145 const struct hid_device_id *id)
1146{
1147 for (; id->bus; id++)
1148 if (hid_match_one_id(hdev, id))
1149 return id;
1150
1151 return NULL;
1152}
1153
1154static const struct hid_device_id hid_hiddev_list[] = {
1155 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1156 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1157 { }
1158};
1159
1160static bool hid_hiddev(struct hid_device *hdev)
1161{
1162 return !!hid_match_id(hdev, hid_hiddev_list);
1163}
1164
1165
1166static ssize_t
1167read_report_descriptor(struct file *filp, struct kobject *kobj,
1168 struct bin_attribute *attr,
1169 char *buf, loff_t off, size_t count)
1170{
1171 struct device *dev = container_of(kobj, struct device, kobj);
1172 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1173
1174 if (off >= hdev->rsize)
1175 return 0;
1176
1177 if (off + count > hdev->rsize)
1178 count = hdev->rsize - off;
1179
1180 memcpy(buf, hdev->rdesc + off, count);
1181
1182 return count;
1183}
1184
1185static struct bin_attribute dev_bin_attr_report_desc = {
1186 .attr = { .name = "report_descriptor", .mode = 0444 },
1187 .read = read_report_descriptor,
1188 .size = HID_MAX_DESCRIPTOR_SIZE,
1189};
1190
1191int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1192{
1193 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1194 "Joystick", "Gamepad", "Keyboard", "Keypad",
1195 "Multi-Axis Controller"
1196 };
1197 const char *type, *bus;
1198 char buf[64];
1199 unsigned int i;
1200 int len;
1201 int ret;
1202
1203 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1204 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1205 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1206 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1207 if (hdev->bus != BUS_USB)
1208 connect_mask &= ~HID_CONNECT_HIDDEV;
1209 if (hid_hiddev(hdev))
1210 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1211
1212 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1213 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1214 hdev->claimed |= HID_CLAIMED_INPUT;
1215 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1216 !hdev->hiddev_connect(hdev,
1217 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1218 hdev->claimed |= HID_CLAIMED_HIDDEV;
1219 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1220 hdev->claimed |= HID_CLAIMED_HIDRAW;
1221
1222 if (!hdev->claimed) {
1223 hid_err(hdev, "claimed by neither input, hiddev nor hidraw\n");
1224 return -ENODEV;
1225 }
1226
1227 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1228 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1229 hdev->ff_init(hdev);
1230
1231 len = 0;
1232 if (hdev->claimed & HID_CLAIMED_INPUT)
1233 len += sprintf(buf + len, "input");
1234 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1235 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1236 hdev->minor);
1237 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1238 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1239 ((struct hidraw *)hdev->hidraw)->minor);
1240
1241 type = "Device";
1242 for (i = 0; i < hdev->maxcollection; i++) {
1243 struct hid_collection *col = &hdev->collection[i];
1244 if (col->type == HID_COLLECTION_APPLICATION &&
1245 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1246 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1247 type = types[col->usage & 0xffff];
1248 break;
1249 }
1250 }
1251
1252 switch (hdev->bus) {
1253 case BUS_USB:
1254 bus = "USB";
1255 break;
1256 case BUS_BLUETOOTH:
1257 bus = "BLUETOOTH";
1258 break;
1259 default:
1260 bus = "<UNKNOWN>";
1261 }
1262
1263 ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1264 if (ret)
1265 hid_warn(hdev,
1266 "can't create sysfs report descriptor attribute err: %d\n", ret);
1267
1268 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1269 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1270 type, hdev->name, hdev->phys);
1271
1272 return 0;
1273}
1274EXPORT_SYMBOL_GPL(hid_connect);
1275
1276void hid_disconnect(struct hid_device *hdev)
1277{
1278 device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1279 if (hdev->claimed & HID_CLAIMED_INPUT)
1280 hidinput_disconnect(hdev);
1281 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1282 hdev->hiddev_disconnect(hdev);
1283 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1284 hidraw_disconnect(hdev);
1285}
1286EXPORT_SYMBOL_GPL(hid_disconnect);
1287
1288/* a list of devices for which there is a specialized driver on HID bus */
1289static const struct hid_device_id hid_have_special_driver[] = {
1290 { HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M1968) },
1291 { HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M2256) },
1292 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1293 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1294 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1295 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1296 { HID_USB_DEVICE(USB_VENDOR_ID_ACTIONSTAR, USB_DEVICE_ID_ACTIONSTAR_1011) },
1297 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
1298 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1299 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1300 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1301 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1302 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1303 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1304 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1305 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1306 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1307 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1308 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1309 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1310 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1311 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1312 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1313 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1314 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1315 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1316 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1317 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1318 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1319 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1320 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1321 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1322 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1323 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1324 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1325 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1326 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1327 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1328 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1329 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1330 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1331 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1332 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1333 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1334 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1335 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1336 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1337 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1338 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1339 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1340 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1341 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1342 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1343 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1344 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1345 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1346 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1347 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1348 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1349 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1350 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1351 { HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_T91MT) },
1352 { HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUSTEK_MULTITOUCH_YFO) },
1353 { HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1354 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1355 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1356 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_PIXCIR_MULTI_TOUCH) },
1357 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH) },
1358 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_10_1) },
1359 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_11_6) },
1360 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_15_6) },
1361 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1362 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1363 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1364 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1365 { HID_USB_DEVICE(USB_VENDOR_ID_CHUNGHWAT, USB_DEVICE_ID_CHUNGHWAT_MULTITOUCH) },
1366 { HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1367 { HID_USB_DEVICE(USB_VENDOR_ID_CVTOUCH, USB_DEVICE_ID_CVTOUCH_SCREEN) },
1368 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1369 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1370 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1371 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1372 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_TRUETOUCH) },
1373 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1374 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1375 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH) },
1376 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH1) },
1377 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH2) },
1378 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH3) },
1379 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH4) },
1380 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1381 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, USB_DEVICE_ID_ELO_TS2515) },
1382 { HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1383 { HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1384 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1385 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1386 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, USB_DEVICE_ID_GENERAL_TOUCH_WIN7_TWOFINGERS) },
1387 { HID_USB_DEVICE(USB_VENDOR_ID_GOODTOUCH, USB_DEVICE_ID_GOODTOUCH_000f) },
1388 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1389 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1390 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1391 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1392 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1393 { HID_USB_DEVICE(USB_VENDOR_ID_HANVON, USB_DEVICE_ID_HANVON_MULTITOUCH) },
1394 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1395 { HID_USB_DEVICE(USB_VENDOR_ID_ILITEK, USB_DEVICE_ID_ILITEK_MULTITOUCH) },
1396 { HID_USB_DEVICE(USB_VENDOR_ID_IRTOUCHSYSTEMS, USB_DEVICE_ID_IRTOUCH_INFRARED_USB) },
1397 { HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1398 { HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1399 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1400 { HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1401 { HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1402 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1403 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1404 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1405 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1406 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1407 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1408 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1409 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1410 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1411 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1412 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1413 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1414 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1415 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1416 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1417 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1418 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1419 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1420 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1421 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1422 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1423 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1424 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1425 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1426 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1427 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1428 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1429 { HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH) },
1430 { HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH_DUAL) },
1431 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1432 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1433 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1434 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1435 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1436 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1437 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1438 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1439 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1440 { HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1441 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1442 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1443 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1444 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1445 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1446 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1447 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1448 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1449 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1450 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1451 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1452 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1453 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1454 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1455 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1456 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1457 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1458 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1459 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1460 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1461 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1462 { HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_PCI) },
1463 { HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1464 { HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_QUANTA_OPTICAL_TOUCH) },
1465 { HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_PIXART_IMAGING_INC_OPTICAL_TOUCH_SCREEN) },
1466 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1467 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1468 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1469 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1470 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1471 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1472 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1473 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1474 { HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1475 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1476 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1477 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1478 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1479 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM, USB_DEVICE_ID_MTP) },
1480 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_STM, USB_DEVICE_ID_MTP_STM) },
1481 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_SITRONIX, USB_DEVICE_ID_MTP_SITRONIX) },
1482 { HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1483 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1484 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1485 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1486 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1487 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1488 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1489 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1490 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1491 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1492 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1493 { HID_USB_DEVICE(USB_VENDOR_ID_TOUCH_INTL, USB_DEVICE_ID_TOUCH_INTL_MULTI_TOUCH) },
1494 { HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1495 { HID_USB_DEVICE(USB_VENDOR_ID_TURBOX, USB_DEVICE_ID_TURBOX_TOUCHSCREEN_MOSART) },
1496 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1497 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1498 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1499 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1500 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1501 { HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0709) },
1502 { HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0A19) },
1503 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1504 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1505 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1506 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1507 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1508 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1509 { HID_USB_DEVICE(USB_VENDOR_ID_XAT, USB_DEVICE_ID_XAT_CSR) },
1510 { HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1511 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1512 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1513 { HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1514
1515 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1516 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1517 { }
1518};
1519
1520struct hid_dynid {
1521 struct list_head list;
1522 struct hid_device_id id;
1523};
1524
1525/**
1526 * store_new_id - add a new HID device ID to this driver and re-probe devices
1527 * @driver: target device driver
1528 * @buf: buffer for scanning device ID data
1529 * @count: input size
1530 *
1531 * Adds a new dynamic hid device ID to this driver,
1532 * and causes the driver to probe for all devices again.
1533 */
1534static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1535 size_t count)
1536{
1537 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1538 struct hid_dynid *dynid;
1539 __u32 bus, vendor, product;
1540 unsigned long driver_data = 0;
1541 int ret;
1542
1543 ret = sscanf(buf, "%x %x %x %lx",
1544 &bus, &vendor, &product, &driver_data);
1545 if (ret < 3)
1546 return -EINVAL;
1547
1548 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1549 if (!dynid)
1550 return -ENOMEM;
1551
1552 dynid->id.bus = bus;
1553 dynid->id.vendor = vendor;
1554 dynid->id.product = product;
1555 dynid->id.driver_data = driver_data;
1556
1557 spin_lock(&hdrv->dyn_lock);
1558 list_add_tail(&dynid->list, &hdrv->dyn_list);
1559 spin_unlock(&hdrv->dyn_lock);
1560
1561 ret = 0;
1562 if (get_driver(&hdrv->driver)) {
1563 ret = driver_attach(&hdrv->driver);
1564 put_driver(&hdrv->driver);
1565 }
1566
1567 return ret ? : count;
1568}
1569static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
1570
1571static void hid_free_dynids(struct hid_driver *hdrv)
1572{
1573 struct hid_dynid *dynid, *n;
1574
1575 spin_lock(&hdrv->dyn_lock);
1576 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1577 list_del(&dynid->list);
1578 kfree(dynid);
1579 }
1580 spin_unlock(&hdrv->dyn_lock);
1581}
1582
1583static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1584 struct hid_driver *hdrv)
1585{
1586 struct hid_dynid *dynid;
1587
1588 spin_lock(&hdrv->dyn_lock);
1589 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1590 if (hid_match_one_id(hdev, &dynid->id)) {
1591 spin_unlock(&hdrv->dyn_lock);
1592 return &dynid->id;
1593 }
1594 }
1595 spin_unlock(&hdrv->dyn_lock);
1596
1597 return hid_match_id(hdev, hdrv->id_table);
1598}
1599
1600static int hid_bus_match(struct device *dev, struct device_driver *drv)
1601{
1602 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1603 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1604
1605 if (!hid_match_device(hdev, hdrv))
1606 return 0;
1607
1608 /* generic wants all that don't have specialized driver */
1609 if (!strncmp(hdrv->name, "generic-", 8))
1610 return !hid_match_id(hdev, hid_have_special_driver);
1611
1612 return 1;
1613}
1614
1615static int hid_device_probe(struct device *dev)
1616{
1617 struct hid_driver *hdrv = container_of(dev->driver,
1618 struct hid_driver, driver);
1619 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1620 const struct hid_device_id *id;
1621 int ret = 0;
1622
1623 if (!hdev->driver) {
1624 id = hid_match_device(hdev, hdrv);
1625 if (id == NULL)
1626 return -ENODEV;
1627
1628 hdev->driver = hdrv;
1629 if (hdrv->probe) {
1630 ret = hdrv->probe(hdev, id);
1631 } else { /* default probe */
1632 ret = hid_parse(hdev);
1633 if (!ret)
1634 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1635 }
1636 if (ret)
1637 hdev->driver = NULL;
1638 }
1639 return ret;
1640}
1641
1642static int hid_device_remove(struct device *dev)
1643{
1644 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1645 struct hid_driver *hdrv = hdev->driver;
1646
1647 if (hdrv) {
1648 if (hdrv->remove)
1649 hdrv->remove(hdev);
1650 else /* default remove */
1651 hid_hw_stop(hdev);
1652 hdev->driver = NULL;
1653 }
1654
1655 return 0;
1656}
1657
1658static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
1659{
1660 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1661
1662 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1663 hdev->bus, hdev->vendor, hdev->product))
1664 return -ENOMEM;
1665
1666 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1667 return -ENOMEM;
1668
1669 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1670 return -ENOMEM;
1671
1672 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1673 return -ENOMEM;
1674
1675 if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1676 hdev->bus, hdev->vendor, hdev->product))
1677 return -ENOMEM;
1678
1679 return 0;
1680}
1681
1682static struct bus_type hid_bus_type = {
1683 .name = "hid",
1684 .match = hid_bus_match,
1685 .probe = hid_device_probe,
1686 .remove = hid_device_remove,
1687 .uevent = hid_uevent,
1688};
1689
1690/* a list of devices that shouldn't be handled by HID core at all */
1691static const struct hid_device_id hid_ignore_list[] = {
1692 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1693 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1694 { HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1695 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1696 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1697 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1698 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1699 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1700 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1701 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1702 { HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1703 { HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1704 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
1705 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
1706 { HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
1707 { HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1708 { HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1709 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1710 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1711 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1712 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1713 { HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
1714 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1715 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1716 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
1717 { HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1718 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
1719 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
1720 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1721 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1722 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1723 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1724 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1725 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1726 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1727 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1728 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1729 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1730 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1731 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1732 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1733 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1734 { HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1735 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1736 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1737 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1738 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1739 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1740 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1741 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1742 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1743 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1744 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1745 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1746 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1747 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1748 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1749 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1750 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1751 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1752 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1753 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1754 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1755 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1756 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1757 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1758 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1759 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1760 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1761 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1762 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1763 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1764 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1765 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1766 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1767 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1768 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1769 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1770 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1771 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1772 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1773 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1774 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1775 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1776 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1777 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1778 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1779 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1780 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1781 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1782 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1783 { HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1784 { HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1785 { HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
1786 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1787 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
1788 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1789 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
1790 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1791 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
1792 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1793 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
1794 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
1796 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
1797 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
1798 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
1799 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1800 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1801 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1802 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
1803 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
1804 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
1805 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1806 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1807 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
1808 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1809 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1810 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1812 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1813 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
1814 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
1815 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
1816 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
1817 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
1818 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
1819 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
1820 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1821 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1822 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1823 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1824 { HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1825 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1826 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1827 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1828 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1829 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1830 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1831 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1832 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1833 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1834 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1835 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1836 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1837 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1838 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1839 { HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
1840 { HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
1841 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1842 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1843 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1844 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1845 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1846 { HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1847 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1848 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1849 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1850 { HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1851 { }
1852};
1853
1854/**
1855 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
1856 *
1857 * There are composite devices for which we want to ignore only a certain
1858 * interface. This is a list of devices for which only the mouse interface will
1859 * be ignored. This allows a dedicated driver to take care of the interface.
1860 */
1861static const struct hid_device_id hid_mouse_ignore_list[] = {
1862 /* appletouch driver */
1863 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1864 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1865 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1866 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1867 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1868 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1869 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1870 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1871 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1873 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1874 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1875 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1876 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1877 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1878 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1879 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1880 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1881 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1882 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1883 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1884 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1885 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1886 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1887 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1888 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1889 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1890 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1891 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1892 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1893 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1894 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1895 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1896 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1897 { }
1898};
1899
1900static bool hid_ignore(struct hid_device *hdev)
1901{
1902 switch (hdev->vendor) {
1903 case USB_VENDOR_ID_CODEMERCS:
1904 /* ignore all Code Mercenaries IOWarrior devices */
1905 if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1906 hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1907 return true;
1908 break;
1909 case USB_VENDOR_ID_LOGITECH:
1910 if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1911 hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1912 return true;
1913 break;
1914 case USB_VENDOR_ID_SOUNDGRAPH:
1915 if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
1916 hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
1917 return true;
1918 break;
1919 case USB_VENDOR_ID_HANWANG:
1920 if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
1921 hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
1922 return true;
1923 break;
1924 case USB_VENDOR_ID_JESS:
1925 if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
1926 hdev->type == HID_TYPE_USBNONE)
1927 return true;
1928 break;
1929 }
1930
1931 if (hdev->type == HID_TYPE_USBMOUSE &&
1932 hid_match_id(hdev, hid_mouse_ignore_list))
1933 return true;
1934
1935 return !!hid_match_id(hdev, hid_ignore_list);
1936}
1937
1938int hid_add_device(struct hid_device *hdev)
1939{
1940 static atomic_t id = ATOMIC_INIT(0);
1941 int ret;
1942
1943 if (WARN_ON(hdev->status & HID_STAT_ADDED))
1944 return -EBUSY;
1945
1946 /* we need to kill them here, otherwise they will stay allocated to
1947 * wait for coming driver */
1948 if (!(hdev->quirks & HID_QUIRK_NO_IGNORE)
1949 && (hid_ignore(hdev) || (hdev->quirks & HID_QUIRK_IGNORE)))
1950 return -ENODEV;
1951
1952 /* XXX hack, any other cleaner solution after the driver core
1953 * is converted to allow more than 20 bytes as the device name? */
1954 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
1955 hdev->vendor, hdev->product, atomic_inc_return(&id));
1956
1957 hid_debug_register(hdev, dev_name(&hdev->dev));
1958 ret = device_add(&hdev->dev);
1959 if (!ret)
1960 hdev->status |= HID_STAT_ADDED;
1961 else
1962 hid_debug_unregister(hdev);
1963
1964 return ret;
1965}
1966EXPORT_SYMBOL_GPL(hid_add_device);
1967
1968/**
1969 * hid_allocate_device - allocate new hid device descriptor
1970 *
1971 * Allocate and initialize hid device, so that hid_destroy_device might be
1972 * used to free it.
1973 *
1974 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1975 * error value.
1976 */
1977struct hid_device *hid_allocate_device(void)
1978{
1979 struct hid_device *hdev;
1980 unsigned int i;
1981 int ret = -ENOMEM;
1982
1983 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1984 if (hdev == NULL)
1985 return ERR_PTR(ret);
1986
1987 device_initialize(&hdev->dev);
1988 hdev->dev.release = hid_device_release;
1989 hdev->dev.bus = &hid_bus_type;
1990
1991 hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1992 sizeof(struct hid_collection), GFP_KERNEL);
1993 if (hdev->collection == NULL)
1994 goto err;
1995 hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1996
1997 for (i = 0; i < HID_REPORT_TYPES; i++)
1998 INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1999
2000 init_waitqueue_head(&hdev->debug_wait);
2001 INIT_LIST_HEAD(&hdev->debug_list);
2002
2003 return hdev;
2004err:
2005 put_device(&hdev->dev);
2006 return ERR_PTR(ret);
2007}
2008EXPORT_SYMBOL_GPL(hid_allocate_device);
2009
2010static void hid_remove_device(struct hid_device *hdev)
2011{
2012 if (hdev->status & HID_STAT_ADDED) {
2013 device_del(&hdev->dev);
2014 hid_debug_unregister(hdev);
2015 hdev->status &= ~HID_STAT_ADDED;
2016 }
2017}
2018
2019/**
2020 * hid_destroy_device - free previously allocated device
2021 *
2022 * @hdev: hid device
2023 *
2024 * If you allocate hid_device through hid_allocate_device, you should ever
2025 * free by this function.
2026 */
2027void hid_destroy_device(struct hid_device *hdev)
2028{
2029 hid_remove_device(hdev);
2030 put_device(&hdev->dev);
2031}
2032EXPORT_SYMBOL_GPL(hid_destroy_device);
2033
2034int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2035 const char *mod_name)
2036{
2037 int ret;
2038
2039 hdrv->driver.name = hdrv->name;
2040 hdrv->driver.bus = &hid_bus_type;
2041 hdrv->driver.owner = owner;
2042 hdrv->driver.mod_name = mod_name;
2043
2044 INIT_LIST_HEAD(&hdrv->dyn_list);
2045 spin_lock_init(&hdrv->dyn_lock);
2046
2047 ret = driver_register(&hdrv->driver);
2048 if (ret)
2049 return ret;
2050
2051 ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2052 if (ret)
2053 driver_unregister(&hdrv->driver);
2054
2055 return ret;
2056}
2057EXPORT_SYMBOL_GPL(__hid_register_driver);
2058
2059void hid_unregister_driver(struct hid_driver *hdrv)
2060{
2061 driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2062 driver_unregister(&hdrv->driver);
2063 hid_free_dynids(hdrv);
2064}
2065EXPORT_SYMBOL_GPL(hid_unregister_driver);
2066
2067int hid_check_keys_pressed(struct hid_device *hid)
2068{
2069 struct hid_input *hidinput;
2070 int i;
2071
2072 if (!(hid->claimed & HID_CLAIMED_INPUT))
2073 return 0;
2074
2075 list_for_each_entry(hidinput, &hid->inputs, list) {
2076 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2077 if (hidinput->input->key[i])
2078 return 1;
2079 }
2080
2081 return 0;
2082}
2083
2084EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2085
2086static int __init hid_init(void)
2087{
2088 int ret;
2089
2090 if (hid_debug)
2091 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2092 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2093
2094 ret = bus_register(&hid_bus_type);
2095 if (ret) {
2096 pr_err("can't register hid bus\n");
2097 goto err;
2098 }
2099
2100 ret = hidraw_init();
2101 if (ret)
2102 goto err_bus;
2103
2104 hid_debug_init();
2105
2106 return 0;
2107err_bus:
2108 bus_unregister(&hid_bus_type);
2109err:
2110 return ret;
2111}
2112
2113static void __exit hid_exit(void)
2114{
2115 hid_debug_exit();
2116 hidraw_exit();
2117 bus_unregister(&hid_bus_type);
2118}
2119
2120module_init(hid_init);
2121module_exit(hid_exit);
2122
2123MODULE_AUTHOR("Andreas Gal");
2124MODULE_AUTHOR("Vojtech Pavlik");
2125MODULE_AUTHOR("Jiri Kosina");
2126MODULE_LICENSE(DRIVER_LICENSE);
2127
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <asm/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44int hid_debug = 0;
45module_param_named(debug, hid_debug, int, 0600);
46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47EXPORT_SYMBOL_GPL(hid_debug);
48
49static int hid_ignore_special_drivers = 0;
50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53/*
54 * Register a new report for a device.
55 */
56
57struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
60{
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84
85 return report;
86}
87EXPORT_SYMBOL_GPL(hid_register_report);
88
89/*
90 * Register a new field for this report.
91 */
92
93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94{
95 struct hid_field *field;
96
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
100 }
101
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 values * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
107
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
113
114 return field;
115}
116
117/*
118 * Open a collection. The type/usage is pushed on the stack.
119 */
120
121static int open_collection(struct hid_parser *parser, unsigned type)
122{
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
133
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
139
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
142 }
143
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
148 2),
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
153 }
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
163 }
164
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
167
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
175
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
178
179 return 0;
180}
181
182/*
183 * Close a collection.
184 */
185
186static int close_collection(struct hid_parser *parser)
187{
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
191 }
192 parser->collection_stack_ptr--;
193 return 0;
194}
195
196/*
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
199 */
200
201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202{
203 struct hid_collection *collection = parser->device->collection;
204 int n;
205
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
210 }
211 return 0; /* we know nothing about this usage type */
212}
213
214/*
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
217 */
218
219static void complete_usage(struct hid_parser *parser, unsigned int index)
220{
221 parser->local.usage[index] &= 0xFFFF;
222 parser->local.usage[index] |=
223 (parser->global.usage_page & 0xFFFF) << 16;
224}
225
226/*
227 * Add a usage to the temporary parser table.
228 */
229
230static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231{
232 if (parser->local.usage_index >= HID_MAX_USAGES) {
233 hid_err(parser->device, "usage index exceeded\n");
234 return -1;
235 }
236 parser->local.usage[parser->local.usage_index] = usage;
237
238 /*
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
241 */
242 if (size <= 2)
243 complete_usage(parser, parser->local.usage_index);
244
245 parser->local.usage_size[parser->local.usage_index] = size;
246 parser->local.collection_index[parser->local.usage_index] =
247 parser->collection_stack_ptr ?
248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 parser->local.usage_index++;
250 return 0;
251}
252
253/*
254 * Register a new field for this report.
255 */
256
257static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258{
259 struct hid_report *report;
260 struct hid_field *field;
261 unsigned int usages;
262 unsigned int offset;
263 unsigned int i;
264 unsigned int application;
265
266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267
268 report = hid_register_report(parser->device, report_type,
269 parser->global.report_id, application);
270 if (!report) {
271 hid_err(parser->device, "hid_register_report failed\n");
272 return -1;
273 }
274
275 /* Handle both signed and unsigned cases properly */
276 if ((parser->global.logical_minimum < 0 &&
277 parser->global.logical_maximum <
278 parser->global.logical_minimum) ||
279 (parser->global.logical_minimum >= 0 &&
280 (__u32)parser->global.logical_maximum <
281 (__u32)parser->global.logical_minimum)) {
282 dbg_hid("logical range invalid 0x%x 0x%x\n",
283 parser->global.logical_minimum,
284 parser->global.logical_maximum);
285 return -1;
286 }
287
288 offset = report->size;
289 report->size += parser->global.report_size * parser->global.report_count;
290
291 /* Total size check: Allow for possible report index byte */
292 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293 hid_err(parser->device, "report is too long\n");
294 return -1;
295 }
296
297 if (!parser->local.usage_index) /* Ignore padding fields */
298 return 0;
299
300 usages = max_t(unsigned, parser->local.usage_index,
301 parser->global.report_count);
302
303 field = hid_register_field(report, usages, parser->global.report_count);
304 if (!field)
305 return 0;
306
307 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309 field->application = application;
310
311 for (i = 0; i < usages; i++) {
312 unsigned j = i;
313 /* Duplicate the last usage we parsed if we have excess values */
314 if (i >= parser->local.usage_index)
315 j = parser->local.usage_index - 1;
316 field->usage[i].hid = parser->local.usage[j];
317 field->usage[i].collection_index =
318 parser->local.collection_index[j];
319 field->usage[i].usage_index = i;
320 field->usage[i].resolution_multiplier = 1;
321 }
322
323 field->maxusage = usages;
324 field->flags = flags;
325 field->report_offset = offset;
326 field->report_type = report_type;
327 field->report_size = parser->global.report_size;
328 field->report_count = parser->global.report_count;
329 field->logical_minimum = parser->global.logical_minimum;
330 field->logical_maximum = parser->global.logical_maximum;
331 field->physical_minimum = parser->global.physical_minimum;
332 field->physical_maximum = parser->global.physical_maximum;
333 field->unit_exponent = parser->global.unit_exponent;
334 field->unit = parser->global.unit;
335
336 return 0;
337}
338
339/*
340 * Read data value from item.
341 */
342
343static u32 item_udata(struct hid_item *item)
344{
345 switch (item->size) {
346 case 1: return item->data.u8;
347 case 2: return item->data.u16;
348 case 4: return item->data.u32;
349 }
350 return 0;
351}
352
353static s32 item_sdata(struct hid_item *item)
354{
355 switch (item->size) {
356 case 1: return item->data.s8;
357 case 2: return item->data.s16;
358 case 4: return item->data.s32;
359 }
360 return 0;
361}
362
363/*
364 * Process a global item.
365 */
366
367static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368{
369 __s32 raw_value;
370 switch (item->tag) {
371 case HID_GLOBAL_ITEM_TAG_PUSH:
372
373 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
374 hid_err(parser->device, "global environment stack overflow\n");
375 return -1;
376 }
377
378 memcpy(parser->global_stack + parser->global_stack_ptr++,
379 &parser->global, sizeof(struct hid_global));
380 return 0;
381
382 case HID_GLOBAL_ITEM_TAG_POP:
383
384 if (!parser->global_stack_ptr) {
385 hid_err(parser->device, "global environment stack underflow\n");
386 return -1;
387 }
388
389 memcpy(&parser->global, parser->global_stack +
390 --parser->global_stack_ptr, sizeof(struct hid_global));
391 return 0;
392
393 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
394 parser->global.usage_page = item_udata(item);
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
398 parser->global.logical_minimum = item_sdata(item);
399 return 0;
400
401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
402 if (parser->global.logical_minimum < 0)
403 parser->global.logical_maximum = item_sdata(item);
404 else
405 parser->global.logical_maximum = item_udata(item);
406 return 0;
407
408 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
409 parser->global.physical_minimum = item_sdata(item);
410 return 0;
411
412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
413 if (parser->global.physical_minimum < 0)
414 parser->global.physical_maximum = item_sdata(item);
415 else
416 parser->global.physical_maximum = item_udata(item);
417 return 0;
418
419 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
420 /* Many devices provide unit exponent as a two's complement
421 * nibble due to the common misunderstanding of HID
422 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423 * both this and the standard encoding. */
424 raw_value = item_sdata(item);
425 if (!(raw_value & 0xfffffff0))
426 parser->global.unit_exponent = hid_snto32(raw_value, 4);
427 else
428 parser->global.unit_exponent = raw_value;
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_UNIT:
432 parser->global.unit = item_udata(item);
433 return 0;
434
435 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
436 parser->global.report_size = item_udata(item);
437 if (parser->global.report_size > 256) {
438 hid_err(parser->device, "invalid report_size %d\n",
439 parser->global.report_size);
440 return -1;
441 }
442 return 0;
443
444 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
445 parser->global.report_count = item_udata(item);
446 if (parser->global.report_count > HID_MAX_USAGES) {
447 hid_err(parser->device, "invalid report_count %d\n",
448 parser->global.report_count);
449 return -1;
450 }
451 return 0;
452
453 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
454 parser->global.report_id = item_udata(item);
455 if (parser->global.report_id == 0 ||
456 parser->global.report_id >= HID_MAX_IDS) {
457 hid_err(parser->device, "report_id %u is invalid\n",
458 parser->global.report_id);
459 return -1;
460 }
461 return 0;
462
463 default:
464 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
465 return -1;
466 }
467}
468
469/*
470 * Process a local item.
471 */
472
473static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474{
475 __u32 data;
476 unsigned n;
477 __u32 count;
478
479 data = item_udata(item);
480
481 switch (item->tag) {
482 case HID_LOCAL_ITEM_TAG_DELIMITER:
483
484 if (data) {
485 /*
486 * We treat items before the first delimiter
487 * as global to all usage sets (branch 0).
488 * In the moment we process only these global
489 * items and the first delimiter set.
490 */
491 if (parser->local.delimiter_depth != 0) {
492 hid_err(parser->device, "nested delimiters\n");
493 return -1;
494 }
495 parser->local.delimiter_depth++;
496 parser->local.delimiter_branch++;
497 } else {
498 if (parser->local.delimiter_depth < 1) {
499 hid_err(parser->device, "bogus close delimiter\n");
500 return -1;
501 }
502 parser->local.delimiter_depth--;
503 }
504 return 0;
505
506 case HID_LOCAL_ITEM_TAG_USAGE:
507
508 if (parser->local.delimiter_branch > 1) {
509 dbg_hid("alternative usage ignored\n");
510 return 0;
511 }
512
513 return hid_add_usage(parser, data, item->size);
514
515 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516
517 if (parser->local.delimiter_branch > 1) {
518 dbg_hid("alternative usage ignored\n");
519 return 0;
520 }
521
522 parser->local.usage_minimum = data;
523 return 0;
524
525 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526
527 if (parser->local.delimiter_branch > 1) {
528 dbg_hid("alternative usage ignored\n");
529 return 0;
530 }
531
532 count = data - parser->local.usage_minimum;
533 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534 /*
535 * We do not warn if the name is not set, we are
536 * actually pre-scanning the device.
537 */
538 if (dev_name(&parser->device->dev))
539 hid_warn(parser->device,
540 "ignoring exceeding usage max\n");
541 data = HID_MAX_USAGES - parser->local.usage_index +
542 parser->local.usage_minimum - 1;
543 if (data <= 0) {
544 hid_err(parser->device,
545 "no more usage index available\n");
546 return -1;
547 }
548 }
549
550 for (n = parser->local.usage_minimum; n <= data; n++)
551 if (hid_add_usage(parser, n, item->size)) {
552 dbg_hid("hid_add_usage failed\n");
553 return -1;
554 }
555 return 0;
556
557 default:
558
559 dbg_hid("unknown local item tag 0x%x\n", item->tag);
560 return 0;
561 }
562 return 0;
563}
564
565/*
566 * Concatenate Usage Pages into Usages where relevant:
567 * As per specification, 6.2.2.8: "When the parser encounters a main item it
568 * concatenates the last declared Usage Page with a Usage to form a complete
569 * usage value."
570 */
571
572static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573{
574 int i;
575 unsigned int usage_page;
576 unsigned int current_page;
577
578 if (!parser->local.usage_index)
579 return;
580
581 usage_page = parser->global.usage_page;
582
583 /*
584 * Concatenate usage page again only if last declared Usage Page
585 * has not been already used in previous usages concatenation
586 */
587 for (i = parser->local.usage_index - 1; i >= 0; i--) {
588 if (parser->local.usage_size[i] > 2)
589 /* Ignore extended usages */
590 continue;
591
592 current_page = parser->local.usage[i] >> 16;
593 if (current_page == usage_page)
594 break;
595
596 complete_usage(parser, i);
597 }
598}
599
600/*
601 * Process a main item.
602 */
603
604static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605{
606 __u32 data;
607 int ret;
608
609 hid_concatenate_last_usage_page(parser);
610
611 data = item_udata(item);
612
613 switch (item->tag) {
614 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
615 ret = open_collection(parser, data & 0xff);
616 break;
617 case HID_MAIN_ITEM_TAG_END_COLLECTION:
618 ret = close_collection(parser);
619 break;
620 case HID_MAIN_ITEM_TAG_INPUT:
621 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
622 break;
623 case HID_MAIN_ITEM_TAG_OUTPUT:
624 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
625 break;
626 case HID_MAIN_ITEM_TAG_FEATURE:
627 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
628 break;
629 default:
630 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
631 ret = 0;
632 }
633
634 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
635
636 return ret;
637}
638
639/*
640 * Process a reserved item.
641 */
642
643static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644{
645 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
646 return 0;
647}
648
649/*
650 * Free a report and all registered fields. The field->usage and
651 * field->value table's are allocated behind the field, so we need
652 * only to free(field) itself.
653 */
654
655static void hid_free_report(struct hid_report *report)
656{
657 unsigned n;
658
659 for (n = 0; n < report->maxfield; n++)
660 kfree(report->field[n]);
661 kfree(report);
662}
663
664/*
665 * Close report. This function returns the device
666 * state to the point prior to hid_open_report().
667 */
668static void hid_close_report(struct hid_device *device)
669{
670 unsigned i, j;
671
672 for (i = 0; i < HID_REPORT_TYPES; i++) {
673 struct hid_report_enum *report_enum = device->report_enum + i;
674
675 for (j = 0; j < HID_MAX_IDS; j++) {
676 struct hid_report *report = report_enum->report_id_hash[j];
677 if (report)
678 hid_free_report(report);
679 }
680 memset(report_enum, 0, sizeof(*report_enum));
681 INIT_LIST_HEAD(&report_enum->report_list);
682 }
683
684 kfree(device->rdesc);
685 device->rdesc = NULL;
686 device->rsize = 0;
687
688 kfree(device->collection);
689 device->collection = NULL;
690 device->collection_size = 0;
691 device->maxcollection = 0;
692 device->maxapplication = 0;
693
694 device->status &= ~HID_STAT_PARSED;
695}
696
697/*
698 * Free a device structure, all reports, and all fields.
699 */
700
701static void hid_device_release(struct device *dev)
702{
703 struct hid_device *hid = to_hid_device(dev);
704
705 hid_close_report(hid);
706 kfree(hid->dev_rdesc);
707 kfree(hid);
708}
709
710/*
711 * Fetch a report description item from the data stream. We support long
712 * items, though they are not used yet.
713 */
714
715static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716{
717 u8 b;
718
719 if ((end - start) <= 0)
720 return NULL;
721
722 b = *start++;
723
724 item->type = (b >> 2) & 3;
725 item->tag = (b >> 4) & 15;
726
727 if (item->tag == HID_ITEM_TAG_LONG) {
728
729 item->format = HID_ITEM_FORMAT_LONG;
730
731 if ((end - start) < 2)
732 return NULL;
733
734 item->size = *start++;
735 item->tag = *start++;
736
737 if ((end - start) < item->size)
738 return NULL;
739
740 item->data.longdata = start;
741 start += item->size;
742 return start;
743 }
744
745 item->format = HID_ITEM_FORMAT_SHORT;
746 item->size = b & 3;
747
748 switch (item->size) {
749 case 0:
750 return start;
751
752 case 1:
753 if ((end - start) < 1)
754 return NULL;
755 item->data.u8 = *start++;
756 return start;
757
758 case 2:
759 if ((end - start) < 2)
760 return NULL;
761 item->data.u16 = get_unaligned_le16(start);
762 start = (__u8 *)((__le16 *)start + 1);
763 return start;
764
765 case 3:
766 item->size++;
767 if ((end - start) < 4)
768 return NULL;
769 item->data.u32 = get_unaligned_le32(start);
770 start = (__u8 *)((__le32 *)start + 1);
771 return start;
772 }
773
774 return NULL;
775}
776
777static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778{
779 struct hid_device *hid = parser->device;
780
781 if (usage == HID_DG_CONTACTID)
782 hid->group = HID_GROUP_MULTITOUCH;
783}
784
785static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786{
787 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788 parser->global.report_size == 8)
789 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790
791 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792 parser->global.report_size == 8)
793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794}
795
796static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797{
798 struct hid_device *hid = parser->device;
799 int i;
800
801 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802 type == HID_COLLECTION_PHYSICAL)
803 hid->group = HID_GROUP_SENSOR_HUB;
804
805 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
806 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
807 hid->group == HID_GROUP_MULTITOUCH)
808 hid->group = HID_GROUP_GENERIC;
809
810 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
811 for (i = 0; i < parser->local.usage_index; i++)
812 if (parser->local.usage[i] == HID_GD_POINTER)
813 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814
815 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
816 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
817}
818
819static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
820{
821 __u32 data;
822 int i;
823
824 hid_concatenate_last_usage_page(parser);
825
826 data = item_udata(item);
827
828 switch (item->tag) {
829 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
830 hid_scan_collection(parser, data & 0xff);
831 break;
832 case HID_MAIN_ITEM_TAG_END_COLLECTION:
833 break;
834 case HID_MAIN_ITEM_TAG_INPUT:
835 /* ignore constant inputs, they will be ignored by hid-input */
836 if (data & HID_MAIN_ITEM_CONSTANT)
837 break;
838 for (i = 0; i < parser->local.usage_index; i++)
839 hid_scan_input_usage(parser, parser->local.usage[i]);
840 break;
841 case HID_MAIN_ITEM_TAG_OUTPUT:
842 break;
843 case HID_MAIN_ITEM_TAG_FEATURE:
844 for (i = 0; i < parser->local.usage_index; i++)
845 hid_scan_feature_usage(parser, parser->local.usage[i]);
846 break;
847 }
848
849 /* Reset the local parser environment */
850 memset(&parser->local, 0, sizeof(parser->local));
851
852 return 0;
853}
854
855/*
856 * Scan a report descriptor before the device is added to the bus.
857 * Sets device groups and other properties that determine what driver
858 * to load.
859 */
860static int hid_scan_report(struct hid_device *hid)
861{
862 struct hid_parser *parser;
863 struct hid_item item;
864 __u8 *start = hid->dev_rdesc;
865 __u8 *end = start + hid->dev_rsize;
866 static int (*dispatch_type[])(struct hid_parser *parser,
867 struct hid_item *item) = {
868 hid_scan_main,
869 hid_parser_global,
870 hid_parser_local,
871 hid_parser_reserved
872 };
873
874 parser = vzalloc(sizeof(struct hid_parser));
875 if (!parser)
876 return -ENOMEM;
877
878 parser->device = hid;
879 hid->group = HID_GROUP_GENERIC;
880
881 /*
882 * The parsing is simpler than the one in hid_open_report() as we should
883 * be robust against hid errors. Those errors will be raised by
884 * hid_open_report() anyway.
885 */
886 while ((start = fetch_item(start, end, &item)) != NULL)
887 dispatch_type[item.type](parser, &item);
888
889 /*
890 * Handle special flags set during scanning.
891 */
892 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
893 (hid->group == HID_GROUP_MULTITOUCH))
894 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
895
896 /*
897 * Vendor specific handlings
898 */
899 switch (hid->vendor) {
900 case USB_VENDOR_ID_WACOM:
901 hid->group = HID_GROUP_WACOM;
902 break;
903 case USB_VENDOR_ID_SYNAPTICS:
904 if (hid->group == HID_GROUP_GENERIC)
905 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
906 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
907 /*
908 * hid-rmi should take care of them,
909 * not hid-generic
910 */
911 hid->group = HID_GROUP_RMI;
912 break;
913 }
914
915 kfree(parser->collection_stack);
916 vfree(parser);
917 return 0;
918}
919
920/**
921 * hid_parse_report - parse device report
922 *
923 * @device: hid device
924 * @start: report start
925 * @size: report size
926 *
927 * Allocate the device report as read by the bus driver. This function should
928 * only be called from parse() in ll drivers.
929 */
930int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
931{
932 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
933 if (!hid->dev_rdesc)
934 return -ENOMEM;
935 hid->dev_rsize = size;
936 return 0;
937}
938EXPORT_SYMBOL_GPL(hid_parse_report);
939
940static const char * const hid_report_names[] = {
941 "HID_INPUT_REPORT",
942 "HID_OUTPUT_REPORT",
943 "HID_FEATURE_REPORT",
944};
945/**
946 * hid_validate_values - validate existing device report's value indexes
947 *
948 * @device: hid device
949 * @type: which report type to examine
950 * @id: which report ID to examine (0 for first)
951 * @field_index: which report field to examine
952 * @report_counts: expected number of values
953 *
954 * Validate the number of values in a given field of a given report, after
955 * parsing.
956 */
957struct hid_report *hid_validate_values(struct hid_device *hid,
958 unsigned int type, unsigned int id,
959 unsigned int field_index,
960 unsigned int report_counts)
961{
962 struct hid_report *report;
963
964 if (type > HID_FEATURE_REPORT) {
965 hid_err(hid, "invalid HID report type %u\n", type);
966 return NULL;
967 }
968
969 if (id >= HID_MAX_IDS) {
970 hid_err(hid, "invalid HID report id %u\n", id);
971 return NULL;
972 }
973
974 /*
975 * Explicitly not using hid_get_report() here since it depends on
976 * ->numbered being checked, which may not always be the case when
977 * drivers go to access report values.
978 */
979 if (id == 0) {
980 /*
981 * Validating on id 0 means we should examine the first
982 * report in the list.
983 */
984 report = list_entry(
985 hid->report_enum[type].report_list.next,
986 struct hid_report, list);
987 } else {
988 report = hid->report_enum[type].report_id_hash[id];
989 }
990 if (!report) {
991 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
992 return NULL;
993 }
994 if (report->maxfield <= field_index) {
995 hid_err(hid, "not enough fields in %s %u\n",
996 hid_report_names[type], id);
997 return NULL;
998 }
999 if (report->field[field_index]->report_count < report_counts) {
1000 hid_err(hid, "not enough values in %s %u field %u\n",
1001 hid_report_names[type], id, field_index);
1002 return NULL;
1003 }
1004 return report;
1005}
1006EXPORT_SYMBOL_GPL(hid_validate_values);
1007
1008static int hid_calculate_multiplier(struct hid_device *hid,
1009 struct hid_field *multiplier)
1010{
1011 int m;
1012 __s32 v = *multiplier->value;
1013 __s32 lmin = multiplier->logical_minimum;
1014 __s32 lmax = multiplier->logical_maximum;
1015 __s32 pmin = multiplier->physical_minimum;
1016 __s32 pmax = multiplier->physical_maximum;
1017
1018 /*
1019 * "Because OS implementations will generally divide the control's
1020 * reported count by the Effective Resolution Multiplier, designers
1021 * should take care not to establish a potential Effective
1022 * Resolution Multiplier of zero."
1023 * HID Usage Table, v1.12, Section 4.3.1, p31
1024 */
1025 if (lmax - lmin == 0)
1026 return 1;
1027 /*
1028 * Handling the unit exponent is left as an exercise to whoever
1029 * finds a device where that exponent is not 0.
1030 */
1031 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1032 if (unlikely(multiplier->unit_exponent != 0)) {
1033 hid_warn(hid,
1034 "unsupported Resolution Multiplier unit exponent %d\n",
1035 multiplier->unit_exponent);
1036 }
1037
1038 /* There are no devices with an effective multiplier > 255 */
1039 if (unlikely(m == 0 || m > 255 || m < -255)) {
1040 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1041 m = 1;
1042 }
1043
1044 return m;
1045}
1046
1047static void hid_apply_multiplier_to_field(struct hid_device *hid,
1048 struct hid_field *field,
1049 struct hid_collection *multiplier_collection,
1050 int effective_multiplier)
1051{
1052 struct hid_collection *collection;
1053 struct hid_usage *usage;
1054 int i;
1055
1056 /*
1057 * If multiplier_collection is NULL, the multiplier applies
1058 * to all fields in the report.
1059 * Otherwise, it is the Logical Collection the multiplier applies to
1060 * but our field may be in a subcollection of that collection.
1061 */
1062 for (i = 0; i < field->maxusage; i++) {
1063 usage = &field->usage[i];
1064
1065 collection = &hid->collection[usage->collection_index];
1066 while (collection->parent_idx != -1 &&
1067 collection != multiplier_collection)
1068 collection = &hid->collection[collection->parent_idx];
1069
1070 if (collection->parent_idx != -1 ||
1071 multiplier_collection == NULL)
1072 usage->resolution_multiplier = effective_multiplier;
1073
1074 }
1075}
1076
1077static void hid_apply_multiplier(struct hid_device *hid,
1078 struct hid_field *multiplier)
1079{
1080 struct hid_report_enum *rep_enum;
1081 struct hid_report *rep;
1082 struct hid_field *field;
1083 struct hid_collection *multiplier_collection;
1084 int effective_multiplier;
1085 int i;
1086
1087 /*
1088 * "The Resolution Multiplier control must be contained in the same
1089 * Logical Collection as the control(s) to which it is to be applied.
1090 * If no Resolution Multiplier is defined, then the Resolution
1091 * Multiplier defaults to 1. If more than one control exists in a
1092 * Logical Collection, the Resolution Multiplier is associated with
1093 * all controls in the collection. If no Logical Collection is
1094 * defined, the Resolution Multiplier is associated with all
1095 * controls in the report."
1096 * HID Usage Table, v1.12, Section 4.3.1, p30
1097 *
1098 * Thus, search from the current collection upwards until we find a
1099 * logical collection. Then search all fields for that same parent
1100 * collection. Those are the fields the multiplier applies to.
1101 *
1102 * If we have more than one multiplier, it will overwrite the
1103 * applicable fields later.
1104 */
1105 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1106 while (multiplier_collection->parent_idx != -1 &&
1107 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1108 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1109
1110 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1111
1112 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1113 list_for_each_entry(rep, &rep_enum->report_list, list) {
1114 for (i = 0; i < rep->maxfield; i++) {
1115 field = rep->field[i];
1116 hid_apply_multiplier_to_field(hid, field,
1117 multiplier_collection,
1118 effective_multiplier);
1119 }
1120 }
1121}
1122
1123/*
1124 * hid_setup_resolution_multiplier - set up all resolution multipliers
1125 *
1126 * @device: hid device
1127 *
1128 * Search for all Resolution Multiplier Feature Reports and apply their
1129 * value to all matching Input items. This only updates the internal struct
1130 * fields.
1131 *
1132 * The Resolution Multiplier is applied by the hardware. If the multiplier
1133 * is anything other than 1, the hardware will send pre-multiplied events
1134 * so that the same physical interaction generates an accumulated
1135 * accumulated_value = value * * multiplier
1136 * This may be achieved by sending
1137 * - "value * multiplier" for each event, or
1138 * - "value" but "multiplier" times as frequently, or
1139 * - a combination of the above
1140 * The only guarantee is that the same physical interaction always generates
1141 * an accumulated 'value * multiplier'.
1142 *
1143 * This function must be called before any event processing and after
1144 * any SetRequest to the Resolution Multiplier.
1145 */
1146void hid_setup_resolution_multiplier(struct hid_device *hid)
1147{
1148 struct hid_report_enum *rep_enum;
1149 struct hid_report *rep;
1150 struct hid_usage *usage;
1151 int i, j;
1152
1153 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1154 list_for_each_entry(rep, &rep_enum->report_list, list) {
1155 for (i = 0; i < rep->maxfield; i++) {
1156 /* Ignore if report count is out of bounds. */
1157 if (rep->field[i]->report_count < 1)
1158 continue;
1159
1160 for (j = 0; j < rep->field[i]->maxusage; j++) {
1161 usage = &rep->field[i]->usage[j];
1162 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1163 hid_apply_multiplier(hid,
1164 rep->field[i]);
1165 }
1166 }
1167 }
1168}
1169EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1170
1171/**
1172 * hid_open_report - open a driver-specific device report
1173 *
1174 * @device: hid device
1175 *
1176 * Parse a report description into a hid_device structure. Reports are
1177 * enumerated, fields are attached to these reports.
1178 * 0 returned on success, otherwise nonzero error value.
1179 *
1180 * This function (or the equivalent hid_parse() macro) should only be
1181 * called from probe() in drivers, before starting the device.
1182 */
1183int hid_open_report(struct hid_device *device)
1184{
1185 struct hid_parser *parser;
1186 struct hid_item item;
1187 unsigned int size;
1188 __u8 *start;
1189 __u8 *buf;
1190 __u8 *end;
1191 __u8 *next;
1192 int ret;
1193 static int (*dispatch_type[])(struct hid_parser *parser,
1194 struct hid_item *item) = {
1195 hid_parser_main,
1196 hid_parser_global,
1197 hid_parser_local,
1198 hid_parser_reserved
1199 };
1200
1201 if (WARN_ON(device->status & HID_STAT_PARSED))
1202 return -EBUSY;
1203
1204 start = device->dev_rdesc;
1205 if (WARN_ON(!start))
1206 return -ENODEV;
1207 size = device->dev_rsize;
1208
1209 buf = kmemdup(start, size, GFP_KERNEL);
1210 if (buf == NULL)
1211 return -ENOMEM;
1212
1213 if (device->driver->report_fixup)
1214 start = device->driver->report_fixup(device, buf, &size);
1215 else
1216 start = buf;
1217
1218 start = kmemdup(start, size, GFP_KERNEL);
1219 kfree(buf);
1220 if (start == NULL)
1221 return -ENOMEM;
1222
1223 device->rdesc = start;
1224 device->rsize = size;
1225
1226 parser = vzalloc(sizeof(struct hid_parser));
1227 if (!parser) {
1228 ret = -ENOMEM;
1229 goto alloc_err;
1230 }
1231
1232 parser->device = device;
1233
1234 end = start + size;
1235
1236 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1237 sizeof(struct hid_collection), GFP_KERNEL);
1238 if (!device->collection) {
1239 ret = -ENOMEM;
1240 goto err;
1241 }
1242 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1243
1244 ret = -EINVAL;
1245 while ((next = fetch_item(start, end, &item)) != NULL) {
1246 start = next;
1247
1248 if (item.format != HID_ITEM_FORMAT_SHORT) {
1249 hid_err(device, "unexpected long global item\n");
1250 goto err;
1251 }
1252
1253 if (dispatch_type[item.type](parser, &item)) {
1254 hid_err(device, "item %u %u %u %u parsing failed\n",
1255 item.format, (unsigned)item.size,
1256 (unsigned)item.type, (unsigned)item.tag);
1257 goto err;
1258 }
1259
1260 if (start == end) {
1261 if (parser->collection_stack_ptr) {
1262 hid_err(device, "unbalanced collection at end of report description\n");
1263 goto err;
1264 }
1265 if (parser->local.delimiter_depth) {
1266 hid_err(device, "unbalanced delimiter at end of report description\n");
1267 goto err;
1268 }
1269
1270 /*
1271 * fetch initial values in case the device's
1272 * default multiplier isn't the recommended 1
1273 */
1274 hid_setup_resolution_multiplier(device);
1275
1276 kfree(parser->collection_stack);
1277 vfree(parser);
1278 device->status |= HID_STAT_PARSED;
1279
1280 return 0;
1281 }
1282 }
1283
1284 hid_err(device, "item fetching failed at offset %u/%u\n",
1285 size - (unsigned int)(end - start), size);
1286err:
1287 kfree(parser->collection_stack);
1288alloc_err:
1289 vfree(parser);
1290 hid_close_report(device);
1291 return ret;
1292}
1293EXPORT_SYMBOL_GPL(hid_open_report);
1294
1295/*
1296 * Convert a signed n-bit integer to signed 32-bit integer. Common
1297 * cases are done through the compiler, the screwed things has to be
1298 * done by hand.
1299 */
1300
1301static s32 snto32(__u32 value, unsigned n)
1302{
1303 switch (n) {
1304 case 8: return ((__s8)value);
1305 case 16: return ((__s16)value);
1306 case 32: return ((__s32)value);
1307 }
1308 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1309}
1310
1311s32 hid_snto32(__u32 value, unsigned n)
1312{
1313 return snto32(value, n);
1314}
1315EXPORT_SYMBOL_GPL(hid_snto32);
1316
1317/*
1318 * Convert a signed 32-bit integer to a signed n-bit integer.
1319 */
1320
1321static u32 s32ton(__s32 value, unsigned n)
1322{
1323 s32 a = value >> (n - 1);
1324 if (a && a != -1)
1325 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1326 return value & ((1 << n) - 1);
1327}
1328
1329/*
1330 * Extract/implement a data field from/to a little endian report (bit array).
1331 *
1332 * Code sort-of follows HID spec:
1333 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1334 *
1335 * While the USB HID spec allows unlimited length bit fields in "report
1336 * descriptors", most devices never use more than 16 bits.
1337 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1338 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1339 */
1340
1341static u32 __extract(u8 *report, unsigned offset, int n)
1342{
1343 unsigned int idx = offset / 8;
1344 unsigned int bit_nr = 0;
1345 unsigned int bit_shift = offset % 8;
1346 int bits_to_copy = 8 - bit_shift;
1347 u32 value = 0;
1348 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1349
1350 while (n > 0) {
1351 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1352 n -= bits_to_copy;
1353 bit_nr += bits_to_copy;
1354 bits_to_copy = 8;
1355 bit_shift = 0;
1356 idx++;
1357 }
1358
1359 return value & mask;
1360}
1361
1362u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1363 unsigned offset, unsigned n)
1364{
1365 if (n > 32) {
1366 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1367 __func__, n, current->comm);
1368 n = 32;
1369 }
1370
1371 return __extract(report, offset, n);
1372}
1373EXPORT_SYMBOL_GPL(hid_field_extract);
1374
1375/*
1376 * "implement" : set bits in a little endian bit stream.
1377 * Same concepts as "extract" (see comments above).
1378 * The data mangled in the bit stream remains in little endian
1379 * order the whole time. It make more sense to talk about
1380 * endianness of register values by considering a register
1381 * a "cached" copy of the little endian bit stream.
1382 */
1383
1384static void __implement(u8 *report, unsigned offset, int n, u32 value)
1385{
1386 unsigned int idx = offset / 8;
1387 unsigned int bit_shift = offset % 8;
1388 int bits_to_set = 8 - bit_shift;
1389
1390 while (n - bits_to_set >= 0) {
1391 report[idx] &= ~(0xff << bit_shift);
1392 report[idx] |= value << bit_shift;
1393 value >>= bits_to_set;
1394 n -= bits_to_set;
1395 bits_to_set = 8;
1396 bit_shift = 0;
1397 idx++;
1398 }
1399
1400 /* last nibble */
1401 if (n) {
1402 u8 bit_mask = ((1U << n) - 1);
1403 report[idx] &= ~(bit_mask << bit_shift);
1404 report[idx] |= value << bit_shift;
1405 }
1406}
1407
1408static void implement(const struct hid_device *hid, u8 *report,
1409 unsigned offset, unsigned n, u32 value)
1410{
1411 if (unlikely(n > 32)) {
1412 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1413 __func__, n, current->comm);
1414 n = 32;
1415 } else if (n < 32) {
1416 u32 m = (1U << n) - 1;
1417
1418 if (unlikely(value > m)) {
1419 hid_warn(hid,
1420 "%s() called with too large value %d (n: %d)! (%s)\n",
1421 __func__, value, n, current->comm);
1422 WARN_ON(1);
1423 value &= m;
1424 }
1425 }
1426
1427 __implement(report, offset, n, value);
1428}
1429
1430/*
1431 * Search an array for a value.
1432 */
1433
1434static int search(__s32 *array, __s32 value, unsigned n)
1435{
1436 while (n--) {
1437 if (*array++ == value)
1438 return 0;
1439 }
1440 return -1;
1441}
1442
1443/**
1444 * hid_match_report - check if driver's raw_event should be called
1445 *
1446 * @hid: hid device
1447 * @report_type: type to match against
1448 *
1449 * compare hid->driver->report_table->report_type to report->type
1450 */
1451static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1452{
1453 const struct hid_report_id *id = hid->driver->report_table;
1454
1455 if (!id) /* NULL means all */
1456 return 1;
1457
1458 for (; id->report_type != HID_TERMINATOR; id++)
1459 if (id->report_type == HID_ANY_ID ||
1460 id->report_type == report->type)
1461 return 1;
1462 return 0;
1463}
1464
1465/**
1466 * hid_match_usage - check if driver's event should be called
1467 *
1468 * @hid: hid device
1469 * @usage: usage to match against
1470 *
1471 * compare hid->driver->usage_table->usage_{type,code} to
1472 * usage->usage_{type,code}
1473 */
1474static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1475{
1476 const struct hid_usage_id *id = hid->driver->usage_table;
1477
1478 if (!id) /* NULL means all */
1479 return 1;
1480
1481 for (; id->usage_type != HID_ANY_ID - 1; id++)
1482 if ((id->usage_hid == HID_ANY_ID ||
1483 id->usage_hid == usage->hid) &&
1484 (id->usage_type == HID_ANY_ID ||
1485 id->usage_type == usage->type) &&
1486 (id->usage_code == HID_ANY_ID ||
1487 id->usage_code == usage->code))
1488 return 1;
1489 return 0;
1490}
1491
1492static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1493 struct hid_usage *usage, __s32 value, int interrupt)
1494{
1495 struct hid_driver *hdrv = hid->driver;
1496 int ret;
1497
1498 if (!list_empty(&hid->debug_list))
1499 hid_dump_input(hid, usage, value);
1500
1501 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1502 ret = hdrv->event(hid, field, usage, value);
1503 if (ret != 0) {
1504 if (ret < 0)
1505 hid_err(hid, "%s's event failed with %d\n",
1506 hdrv->name, ret);
1507 return;
1508 }
1509 }
1510
1511 if (hid->claimed & HID_CLAIMED_INPUT)
1512 hidinput_hid_event(hid, field, usage, value);
1513 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1514 hid->hiddev_hid_event(hid, field, usage, value);
1515}
1516
1517/*
1518 * Analyse a received field, and fetch the data from it. The field
1519 * content is stored for next report processing (we do differential
1520 * reporting to the layer).
1521 */
1522
1523static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1524 __u8 *data, int interrupt)
1525{
1526 unsigned n;
1527 unsigned count = field->report_count;
1528 unsigned offset = field->report_offset;
1529 unsigned size = field->report_size;
1530 __s32 min = field->logical_minimum;
1531 __s32 max = field->logical_maximum;
1532 __s32 *value;
1533
1534 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1535 if (!value)
1536 return;
1537
1538 for (n = 0; n < count; n++) {
1539
1540 value[n] = min < 0 ?
1541 snto32(hid_field_extract(hid, data, offset + n * size,
1542 size), size) :
1543 hid_field_extract(hid, data, offset + n * size, size);
1544
1545 /* Ignore report if ErrorRollOver */
1546 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1547 value[n] >= min && value[n] <= max &&
1548 value[n] - min < field->maxusage &&
1549 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1550 goto exit;
1551 }
1552
1553 for (n = 0; n < count; n++) {
1554
1555 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1556 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1557 continue;
1558 }
1559
1560 if (field->value[n] >= min && field->value[n] <= max
1561 && field->value[n] - min < field->maxusage
1562 && field->usage[field->value[n] - min].hid
1563 && search(value, field->value[n], count))
1564 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1565
1566 if (value[n] >= min && value[n] <= max
1567 && value[n] - min < field->maxusage
1568 && field->usage[value[n] - min].hid
1569 && search(field->value, value[n], count))
1570 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1571 }
1572
1573 memcpy(field->value, value, count * sizeof(__s32));
1574exit:
1575 kfree(value);
1576}
1577
1578/*
1579 * Output the field into the report.
1580 */
1581
1582static void hid_output_field(const struct hid_device *hid,
1583 struct hid_field *field, __u8 *data)
1584{
1585 unsigned count = field->report_count;
1586 unsigned offset = field->report_offset;
1587 unsigned size = field->report_size;
1588 unsigned n;
1589
1590 for (n = 0; n < count; n++) {
1591 if (field->logical_minimum < 0) /* signed values */
1592 implement(hid, data, offset + n * size, size,
1593 s32ton(field->value[n], size));
1594 else /* unsigned values */
1595 implement(hid, data, offset + n * size, size,
1596 field->value[n]);
1597 }
1598}
1599
1600/*
1601 * Compute the size of a report.
1602 */
1603static size_t hid_compute_report_size(struct hid_report *report)
1604{
1605 if (report->size)
1606 return ((report->size - 1) >> 3) + 1;
1607
1608 return 0;
1609}
1610
1611/*
1612 * Create a report. 'data' has to be allocated using
1613 * hid_alloc_report_buf() so that it has proper size.
1614 */
1615
1616void hid_output_report(struct hid_report *report, __u8 *data)
1617{
1618 unsigned n;
1619
1620 if (report->id > 0)
1621 *data++ = report->id;
1622
1623 memset(data, 0, hid_compute_report_size(report));
1624 for (n = 0; n < report->maxfield; n++)
1625 hid_output_field(report->device, report->field[n], data);
1626}
1627EXPORT_SYMBOL_GPL(hid_output_report);
1628
1629/*
1630 * Allocator for buffer that is going to be passed to hid_output_report()
1631 */
1632u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1633{
1634 /*
1635 * 7 extra bytes are necessary to achieve proper functionality
1636 * of implement() working on 8 byte chunks
1637 */
1638
1639 u32 len = hid_report_len(report) + 7;
1640
1641 return kmalloc(len, flags);
1642}
1643EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1644
1645/*
1646 * Set a field value. The report this field belongs to has to be
1647 * created and transferred to the device, to set this value in the
1648 * device.
1649 */
1650
1651int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1652{
1653 unsigned size;
1654
1655 if (!field)
1656 return -1;
1657
1658 size = field->report_size;
1659
1660 hid_dump_input(field->report->device, field->usage + offset, value);
1661
1662 if (offset >= field->report_count) {
1663 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1664 offset, field->report_count);
1665 return -1;
1666 }
1667 if (field->logical_minimum < 0) {
1668 if (value != snto32(s32ton(value, size), size)) {
1669 hid_err(field->report->device, "value %d is out of range\n", value);
1670 return -1;
1671 }
1672 }
1673 field->value[offset] = value;
1674 return 0;
1675}
1676EXPORT_SYMBOL_GPL(hid_set_field);
1677
1678static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1679 const u8 *data)
1680{
1681 struct hid_report *report;
1682 unsigned int n = 0; /* Normally report number is 0 */
1683
1684 /* Device uses numbered reports, data[0] is report number */
1685 if (report_enum->numbered)
1686 n = *data;
1687
1688 report = report_enum->report_id_hash[n];
1689 if (report == NULL)
1690 dbg_hid("undefined report_id %u received\n", n);
1691
1692 return report;
1693}
1694
1695/*
1696 * Implement a generic .request() callback, using .raw_request()
1697 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1698 */
1699int __hid_request(struct hid_device *hid, struct hid_report *report,
1700 int reqtype)
1701{
1702 char *buf;
1703 int ret;
1704 u32 len;
1705
1706 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1707 if (!buf)
1708 return -ENOMEM;
1709
1710 len = hid_report_len(report);
1711
1712 if (reqtype == HID_REQ_SET_REPORT)
1713 hid_output_report(report, buf);
1714
1715 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1716 report->type, reqtype);
1717 if (ret < 0) {
1718 dbg_hid("unable to complete request: %d\n", ret);
1719 goto out;
1720 }
1721
1722 if (reqtype == HID_REQ_GET_REPORT)
1723 hid_input_report(hid, report->type, buf, ret, 0);
1724
1725 ret = 0;
1726
1727out:
1728 kfree(buf);
1729 return ret;
1730}
1731EXPORT_SYMBOL_GPL(__hid_request);
1732
1733int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1734 int interrupt)
1735{
1736 struct hid_report_enum *report_enum = hid->report_enum + type;
1737 struct hid_report *report;
1738 struct hid_driver *hdrv;
1739 unsigned int a;
1740 u32 rsize, csize = size;
1741 u8 *cdata = data;
1742 int ret = 0;
1743
1744 report = hid_get_report(report_enum, data);
1745 if (!report)
1746 goto out;
1747
1748 if (report_enum->numbered) {
1749 cdata++;
1750 csize--;
1751 }
1752
1753 rsize = hid_compute_report_size(report);
1754
1755 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1756 rsize = HID_MAX_BUFFER_SIZE - 1;
1757 else if (rsize > HID_MAX_BUFFER_SIZE)
1758 rsize = HID_MAX_BUFFER_SIZE;
1759
1760 if (csize < rsize) {
1761 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1762 csize, rsize);
1763 memset(cdata + csize, 0, rsize - csize);
1764 }
1765
1766 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1767 hid->hiddev_report_event(hid, report);
1768 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1769 ret = hidraw_report_event(hid, data, size);
1770 if (ret)
1771 goto out;
1772 }
1773
1774 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1775 for (a = 0; a < report->maxfield; a++)
1776 hid_input_field(hid, report->field[a], cdata, interrupt);
1777 hdrv = hid->driver;
1778 if (hdrv && hdrv->report)
1779 hdrv->report(hid, report);
1780 }
1781
1782 if (hid->claimed & HID_CLAIMED_INPUT)
1783 hidinput_report_event(hid, report);
1784out:
1785 return ret;
1786}
1787EXPORT_SYMBOL_GPL(hid_report_raw_event);
1788
1789/**
1790 * hid_input_report - report data from lower layer (usb, bt...)
1791 *
1792 * @hid: hid device
1793 * @type: HID report type (HID_*_REPORT)
1794 * @data: report contents
1795 * @size: size of data parameter
1796 * @interrupt: distinguish between interrupt and control transfers
1797 *
1798 * This is data entry for lower layers.
1799 */
1800int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1801{
1802 struct hid_report_enum *report_enum;
1803 struct hid_driver *hdrv;
1804 struct hid_report *report;
1805 int ret = 0;
1806
1807 if (!hid)
1808 return -ENODEV;
1809
1810 if (down_trylock(&hid->driver_input_lock))
1811 return -EBUSY;
1812
1813 if (!hid->driver) {
1814 ret = -ENODEV;
1815 goto unlock;
1816 }
1817 report_enum = hid->report_enum + type;
1818 hdrv = hid->driver;
1819
1820 if (!size) {
1821 dbg_hid("empty report\n");
1822 ret = -1;
1823 goto unlock;
1824 }
1825
1826 /* Avoid unnecessary overhead if debugfs is disabled */
1827 if (!list_empty(&hid->debug_list))
1828 hid_dump_report(hid, type, data, size);
1829
1830 report = hid_get_report(report_enum, data);
1831
1832 if (!report) {
1833 ret = -1;
1834 goto unlock;
1835 }
1836
1837 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1838 ret = hdrv->raw_event(hid, report, data, size);
1839 if (ret < 0)
1840 goto unlock;
1841 }
1842
1843 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1844
1845unlock:
1846 up(&hid->driver_input_lock);
1847 return ret;
1848}
1849EXPORT_SYMBOL_GPL(hid_input_report);
1850
1851bool hid_match_one_id(const struct hid_device *hdev,
1852 const struct hid_device_id *id)
1853{
1854 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1855 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1856 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1857 (id->product == HID_ANY_ID || id->product == hdev->product);
1858}
1859
1860const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1861 const struct hid_device_id *id)
1862{
1863 for (; id->bus; id++)
1864 if (hid_match_one_id(hdev, id))
1865 return id;
1866
1867 return NULL;
1868}
1869
1870static const struct hid_device_id hid_hiddev_list[] = {
1871 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1873 { }
1874};
1875
1876static bool hid_hiddev(struct hid_device *hdev)
1877{
1878 return !!hid_match_id(hdev, hid_hiddev_list);
1879}
1880
1881
1882static ssize_t
1883read_report_descriptor(struct file *filp, struct kobject *kobj,
1884 struct bin_attribute *attr,
1885 char *buf, loff_t off, size_t count)
1886{
1887 struct device *dev = kobj_to_dev(kobj);
1888 struct hid_device *hdev = to_hid_device(dev);
1889
1890 if (off >= hdev->rsize)
1891 return 0;
1892
1893 if (off + count > hdev->rsize)
1894 count = hdev->rsize - off;
1895
1896 memcpy(buf, hdev->rdesc + off, count);
1897
1898 return count;
1899}
1900
1901static ssize_t
1902show_country(struct device *dev, struct device_attribute *attr,
1903 char *buf)
1904{
1905 struct hid_device *hdev = to_hid_device(dev);
1906
1907 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1908}
1909
1910static struct bin_attribute dev_bin_attr_report_desc = {
1911 .attr = { .name = "report_descriptor", .mode = 0444 },
1912 .read = read_report_descriptor,
1913 .size = HID_MAX_DESCRIPTOR_SIZE,
1914};
1915
1916static const struct device_attribute dev_attr_country = {
1917 .attr = { .name = "country", .mode = 0444 },
1918 .show = show_country,
1919};
1920
1921int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1922{
1923 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1924 "Joystick", "Gamepad", "Keyboard", "Keypad",
1925 "Multi-Axis Controller"
1926 };
1927 const char *type, *bus;
1928 char buf[64] = "";
1929 unsigned int i;
1930 int len;
1931 int ret;
1932
1933 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1934 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1935 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1936 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1937 if (hdev->bus != BUS_USB)
1938 connect_mask &= ~HID_CONNECT_HIDDEV;
1939 if (hid_hiddev(hdev))
1940 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1941
1942 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1943 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1944 hdev->claimed |= HID_CLAIMED_INPUT;
1945
1946 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1947 !hdev->hiddev_connect(hdev,
1948 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1949 hdev->claimed |= HID_CLAIMED_HIDDEV;
1950 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1951 hdev->claimed |= HID_CLAIMED_HIDRAW;
1952
1953 if (connect_mask & HID_CONNECT_DRIVER)
1954 hdev->claimed |= HID_CLAIMED_DRIVER;
1955
1956 /* Drivers with the ->raw_event callback set are not required to connect
1957 * to any other listener. */
1958 if (!hdev->claimed && !hdev->driver->raw_event) {
1959 hid_err(hdev, "device has no listeners, quitting\n");
1960 return -ENODEV;
1961 }
1962
1963 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1964 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1965 hdev->ff_init(hdev);
1966
1967 len = 0;
1968 if (hdev->claimed & HID_CLAIMED_INPUT)
1969 len += sprintf(buf + len, "input");
1970 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1971 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1972 ((struct hiddev *)hdev->hiddev)->minor);
1973 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1974 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1975 ((struct hidraw *)hdev->hidraw)->minor);
1976
1977 type = "Device";
1978 for (i = 0; i < hdev->maxcollection; i++) {
1979 struct hid_collection *col = &hdev->collection[i];
1980 if (col->type == HID_COLLECTION_APPLICATION &&
1981 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1982 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1983 type = types[col->usage & 0xffff];
1984 break;
1985 }
1986 }
1987
1988 switch (hdev->bus) {
1989 case BUS_USB:
1990 bus = "USB";
1991 break;
1992 case BUS_BLUETOOTH:
1993 bus = "BLUETOOTH";
1994 break;
1995 case BUS_I2C:
1996 bus = "I2C";
1997 break;
1998 default:
1999 bus = "<UNKNOWN>";
2000 }
2001
2002 ret = device_create_file(&hdev->dev, &dev_attr_country);
2003 if (ret)
2004 hid_warn(hdev,
2005 "can't create sysfs country code attribute err: %d\n", ret);
2006
2007 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2008 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2009 type, hdev->name, hdev->phys);
2010
2011 return 0;
2012}
2013EXPORT_SYMBOL_GPL(hid_connect);
2014
2015void hid_disconnect(struct hid_device *hdev)
2016{
2017 device_remove_file(&hdev->dev, &dev_attr_country);
2018 if (hdev->claimed & HID_CLAIMED_INPUT)
2019 hidinput_disconnect(hdev);
2020 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2021 hdev->hiddev_disconnect(hdev);
2022 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2023 hidraw_disconnect(hdev);
2024 hdev->claimed = 0;
2025}
2026EXPORT_SYMBOL_GPL(hid_disconnect);
2027
2028/**
2029 * hid_hw_start - start underlying HW
2030 * @hdev: hid device
2031 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2032 *
2033 * Call this in probe function *after* hid_parse. This will setup HW
2034 * buffers and start the device (if not defeirred to device open).
2035 * hid_hw_stop must be called if this was successful.
2036 */
2037int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2038{
2039 int error;
2040
2041 error = hdev->ll_driver->start(hdev);
2042 if (error)
2043 return error;
2044
2045 if (connect_mask) {
2046 error = hid_connect(hdev, connect_mask);
2047 if (error) {
2048 hdev->ll_driver->stop(hdev);
2049 return error;
2050 }
2051 }
2052
2053 return 0;
2054}
2055EXPORT_SYMBOL_GPL(hid_hw_start);
2056
2057/**
2058 * hid_hw_stop - stop underlying HW
2059 * @hdev: hid device
2060 *
2061 * This is usually called from remove function or from probe when something
2062 * failed and hid_hw_start was called already.
2063 */
2064void hid_hw_stop(struct hid_device *hdev)
2065{
2066 hid_disconnect(hdev);
2067 hdev->ll_driver->stop(hdev);
2068}
2069EXPORT_SYMBOL_GPL(hid_hw_stop);
2070
2071/**
2072 * hid_hw_open - signal underlying HW to start delivering events
2073 * @hdev: hid device
2074 *
2075 * Tell underlying HW to start delivering events from the device.
2076 * This function should be called sometime after successful call
2077 * to hid_hw_start().
2078 */
2079int hid_hw_open(struct hid_device *hdev)
2080{
2081 int ret;
2082
2083 ret = mutex_lock_killable(&hdev->ll_open_lock);
2084 if (ret)
2085 return ret;
2086
2087 if (!hdev->ll_open_count++) {
2088 ret = hdev->ll_driver->open(hdev);
2089 if (ret)
2090 hdev->ll_open_count--;
2091 }
2092
2093 mutex_unlock(&hdev->ll_open_lock);
2094 return ret;
2095}
2096EXPORT_SYMBOL_GPL(hid_hw_open);
2097
2098/**
2099 * hid_hw_close - signal underlaying HW to stop delivering events
2100 *
2101 * @hdev: hid device
2102 *
2103 * This function indicates that we are not interested in the events
2104 * from this device anymore. Delivery of events may or may not stop,
2105 * depending on the number of users still outstanding.
2106 */
2107void hid_hw_close(struct hid_device *hdev)
2108{
2109 mutex_lock(&hdev->ll_open_lock);
2110 if (!--hdev->ll_open_count)
2111 hdev->ll_driver->close(hdev);
2112 mutex_unlock(&hdev->ll_open_lock);
2113}
2114EXPORT_SYMBOL_GPL(hid_hw_close);
2115
2116struct hid_dynid {
2117 struct list_head list;
2118 struct hid_device_id id;
2119};
2120
2121/**
2122 * store_new_id - add a new HID device ID to this driver and re-probe devices
2123 * @driver: target device driver
2124 * @buf: buffer for scanning device ID data
2125 * @count: input size
2126 *
2127 * Adds a new dynamic hid device ID to this driver,
2128 * and causes the driver to probe for all devices again.
2129 */
2130static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2131 size_t count)
2132{
2133 struct hid_driver *hdrv = to_hid_driver(drv);
2134 struct hid_dynid *dynid;
2135 __u32 bus, vendor, product;
2136 unsigned long driver_data = 0;
2137 int ret;
2138
2139 ret = sscanf(buf, "%x %x %x %lx",
2140 &bus, &vendor, &product, &driver_data);
2141 if (ret < 3)
2142 return -EINVAL;
2143
2144 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2145 if (!dynid)
2146 return -ENOMEM;
2147
2148 dynid->id.bus = bus;
2149 dynid->id.group = HID_GROUP_ANY;
2150 dynid->id.vendor = vendor;
2151 dynid->id.product = product;
2152 dynid->id.driver_data = driver_data;
2153
2154 spin_lock(&hdrv->dyn_lock);
2155 list_add_tail(&dynid->list, &hdrv->dyn_list);
2156 spin_unlock(&hdrv->dyn_lock);
2157
2158 ret = driver_attach(&hdrv->driver);
2159
2160 return ret ? : count;
2161}
2162static DRIVER_ATTR_WO(new_id);
2163
2164static struct attribute *hid_drv_attrs[] = {
2165 &driver_attr_new_id.attr,
2166 NULL,
2167};
2168ATTRIBUTE_GROUPS(hid_drv);
2169
2170static void hid_free_dynids(struct hid_driver *hdrv)
2171{
2172 struct hid_dynid *dynid, *n;
2173
2174 spin_lock(&hdrv->dyn_lock);
2175 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2176 list_del(&dynid->list);
2177 kfree(dynid);
2178 }
2179 spin_unlock(&hdrv->dyn_lock);
2180}
2181
2182const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2183 struct hid_driver *hdrv)
2184{
2185 struct hid_dynid *dynid;
2186
2187 spin_lock(&hdrv->dyn_lock);
2188 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2189 if (hid_match_one_id(hdev, &dynid->id)) {
2190 spin_unlock(&hdrv->dyn_lock);
2191 return &dynid->id;
2192 }
2193 }
2194 spin_unlock(&hdrv->dyn_lock);
2195
2196 return hid_match_id(hdev, hdrv->id_table);
2197}
2198EXPORT_SYMBOL_GPL(hid_match_device);
2199
2200static int hid_bus_match(struct device *dev, struct device_driver *drv)
2201{
2202 struct hid_driver *hdrv = to_hid_driver(drv);
2203 struct hid_device *hdev = to_hid_device(dev);
2204
2205 return hid_match_device(hdev, hdrv) != NULL;
2206}
2207
2208/**
2209 * hid_compare_device_paths - check if both devices share the same path
2210 * @hdev_a: hid device
2211 * @hdev_b: hid device
2212 * @separator: char to use as separator
2213 *
2214 * Check if two devices share the same path up to the last occurrence of
2215 * the separator char. Both paths must exist (i.e., zero-length paths
2216 * don't match).
2217 */
2218bool hid_compare_device_paths(struct hid_device *hdev_a,
2219 struct hid_device *hdev_b, char separator)
2220{
2221 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2222 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2223
2224 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2225 return false;
2226
2227 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2228}
2229EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2230
2231static int hid_device_probe(struct device *dev)
2232{
2233 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2234 struct hid_device *hdev = to_hid_device(dev);
2235 const struct hid_device_id *id;
2236 int ret = 0;
2237
2238 if (down_interruptible(&hdev->driver_input_lock)) {
2239 ret = -EINTR;
2240 goto end;
2241 }
2242 hdev->io_started = false;
2243
2244 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2245
2246 if (!hdev->driver) {
2247 id = hid_match_device(hdev, hdrv);
2248 if (id == NULL) {
2249 ret = -ENODEV;
2250 goto unlock;
2251 }
2252
2253 if (hdrv->match) {
2254 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2255 ret = -ENODEV;
2256 goto unlock;
2257 }
2258 } else {
2259 /*
2260 * hid-generic implements .match(), so if
2261 * hid_ignore_special_drivers is set, we can safely
2262 * return.
2263 */
2264 if (hid_ignore_special_drivers) {
2265 ret = -ENODEV;
2266 goto unlock;
2267 }
2268 }
2269
2270 /* reset the quirks that has been previously set */
2271 hdev->quirks = hid_lookup_quirk(hdev);
2272 hdev->driver = hdrv;
2273 if (hdrv->probe) {
2274 ret = hdrv->probe(hdev, id);
2275 } else { /* default probe */
2276 ret = hid_open_report(hdev);
2277 if (!ret)
2278 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2279 }
2280 if (ret) {
2281 hid_close_report(hdev);
2282 hdev->driver = NULL;
2283 }
2284 }
2285unlock:
2286 if (!hdev->io_started)
2287 up(&hdev->driver_input_lock);
2288end:
2289 return ret;
2290}
2291
2292static int hid_device_remove(struct device *dev)
2293{
2294 struct hid_device *hdev = to_hid_device(dev);
2295 struct hid_driver *hdrv;
2296 int ret = 0;
2297
2298 if (down_interruptible(&hdev->driver_input_lock)) {
2299 ret = -EINTR;
2300 goto end;
2301 }
2302 hdev->io_started = false;
2303
2304 hdrv = hdev->driver;
2305 if (hdrv) {
2306 if (hdrv->remove)
2307 hdrv->remove(hdev);
2308 else /* default remove */
2309 hid_hw_stop(hdev);
2310 hid_close_report(hdev);
2311 hdev->driver = NULL;
2312 }
2313
2314 if (!hdev->io_started)
2315 up(&hdev->driver_input_lock);
2316end:
2317 return ret;
2318}
2319
2320static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2321 char *buf)
2322{
2323 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2324
2325 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2326 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2327}
2328static DEVICE_ATTR_RO(modalias);
2329
2330static struct attribute *hid_dev_attrs[] = {
2331 &dev_attr_modalias.attr,
2332 NULL,
2333};
2334static struct bin_attribute *hid_dev_bin_attrs[] = {
2335 &dev_bin_attr_report_desc,
2336 NULL
2337};
2338static const struct attribute_group hid_dev_group = {
2339 .attrs = hid_dev_attrs,
2340 .bin_attrs = hid_dev_bin_attrs,
2341};
2342__ATTRIBUTE_GROUPS(hid_dev);
2343
2344static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2345{
2346 struct hid_device *hdev = to_hid_device(dev);
2347
2348 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2349 hdev->bus, hdev->vendor, hdev->product))
2350 return -ENOMEM;
2351
2352 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2353 return -ENOMEM;
2354
2355 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2356 return -ENOMEM;
2357
2358 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2359 return -ENOMEM;
2360
2361 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2362 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2363 return -ENOMEM;
2364
2365 return 0;
2366}
2367
2368struct bus_type hid_bus_type = {
2369 .name = "hid",
2370 .dev_groups = hid_dev_groups,
2371 .drv_groups = hid_drv_groups,
2372 .match = hid_bus_match,
2373 .probe = hid_device_probe,
2374 .remove = hid_device_remove,
2375 .uevent = hid_uevent,
2376};
2377EXPORT_SYMBOL(hid_bus_type);
2378
2379int hid_add_device(struct hid_device *hdev)
2380{
2381 static atomic_t id = ATOMIC_INIT(0);
2382 int ret;
2383
2384 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2385 return -EBUSY;
2386
2387 hdev->quirks = hid_lookup_quirk(hdev);
2388
2389 /* we need to kill them here, otherwise they will stay allocated to
2390 * wait for coming driver */
2391 if (hid_ignore(hdev))
2392 return -ENODEV;
2393
2394 /*
2395 * Check for the mandatory transport channel.
2396 */
2397 if (!hdev->ll_driver->raw_request) {
2398 hid_err(hdev, "transport driver missing .raw_request()\n");
2399 return -EINVAL;
2400 }
2401
2402 /*
2403 * Read the device report descriptor once and use as template
2404 * for the driver-specific modifications.
2405 */
2406 ret = hdev->ll_driver->parse(hdev);
2407 if (ret)
2408 return ret;
2409 if (!hdev->dev_rdesc)
2410 return -ENODEV;
2411
2412 /*
2413 * Scan generic devices for group information
2414 */
2415 if (hid_ignore_special_drivers) {
2416 hdev->group = HID_GROUP_GENERIC;
2417 } else if (!hdev->group &&
2418 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2419 ret = hid_scan_report(hdev);
2420 if (ret)
2421 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2422 }
2423
2424 /* XXX hack, any other cleaner solution after the driver core
2425 * is converted to allow more than 20 bytes as the device name? */
2426 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2427 hdev->vendor, hdev->product, atomic_inc_return(&id));
2428
2429 hid_debug_register(hdev, dev_name(&hdev->dev));
2430 ret = device_add(&hdev->dev);
2431 if (!ret)
2432 hdev->status |= HID_STAT_ADDED;
2433 else
2434 hid_debug_unregister(hdev);
2435
2436 return ret;
2437}
2438EXPORT_SYMBOL_GPL(hid_add_device);
2439
2440/**
2441 * hid_allocate_device - allocate new hid device descriptor
2442 *
2443 * Allocate and initialize hid device, so that hid_destroy_device might be
2444 * used to free it.
2445 *
2446 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2447 * error value.
2448 */
2449struct hid_device *hid_allocate_device(void)
2450{
2451 struct hid_device *hdev;
2452 int ret = -ENOMEM;
2453
2454 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2455 if (hdev == NULL)
2456 return ERR_PTR(ret);
2457
2458 device_initialize(&hdev->dev);
2459 hdev->dev.release = hid_device_release;
2460 hdev->dev.bus = &hid_bus_type;
2461 device_enable_async_suspend(&hdev->dev);
2462
2463 hid_close_report(hdev);
2464
2465 init_waitqueue_head(&hdev->debug_wait);
2466 INIT_LIST_HEAD(&hdev->debug_list);
2467 spin_lock_init(&hdev->debug_list_lock);
2468 sema_init(&hdev->driver_input_lock, 1);
2469 mutex_init(&hdev->ll_open_lock);
2470
2471 return hdev;
2472}
2473EXPORT_SYMBOL_GPL(hid_allocate_device);
2474
2475static void hid_remove_device(struct hid_device *hdev)
2476{
2477 if (hdev->status & HID_STAT_ADDED) {
2478 device_del(&hdev->dev);
2479 hid_debug_unregister(hdev);
2480 hdev->status &= ~HID_STAT_ADDED;
2481 }
2482 kfree(hdev->dev_rdesc);
2483 hdev->dev_rdesc = NULL;
2484 hdev->dev_rsize = 0;
2485}
2486
2487/**
2488 * hid_destroy_device - free previously allocated device
2489 *
2490 * @hdev: hid device
2491 *
2492 * If you allocate hid_device through hid_allocate_device, you should ever
2493 * free by this function.
2494 */
2495void hid_destroy_device(struct hid_device *hdev)
2496{
2497 hid_remove_device(hdev);
2498 put_device(&hdev->dev);
2499}
2500EXPORT_SYMBOL_GPL(hid_destroy_device);
2501
2502
2503static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2504{
2505 struct hid_driver *hdrv = data;
2506 struct hid_device *hdev = to_hid_device(dev);
2507
2508 if (hdev->driver == hdrv &&
2509 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2510 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2511 return device_reprobe(dev);
2512
2513 return 0;
2514}
2515
2516static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2517{
2518 struct hid_driver *hdrv = to_hid_driver(drv);
2519
2520 if (hdrv->match) {
2521 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2522 __hid_bus_reprobe_drivers);
2523 }
2524
2525 return 0;
2526}
2527
2528static int __bus_removed_driver(struct device_driver *drv, void *data)
2529{
2530 return bus_rescan_devices(&hid_bus_type);
2531}
2532
2533int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2534 const char *mod_name)
2535{
2536 int ret;
2537
2538 hdrv->driver.name = hdrv->name;
2539 hdrv->driver.bus = &hid_bus_type;
2540 hdrv->driver.owner = owner;
2541 hdrv->driver.mod_name = mod_name;
2542
2543 INIT_LIST_HEAD(&hdrv->dyn_list);
2544 spin_lock_init(&hdrv->dyn_lock);
2545
2546 ret = driver_register(&hdrv->driver);
2547
2548 if (ret == 0)
2549 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2550 __hid_bus_driver_added);
2551
2552 return ret;
2553}
2554EXPORT_SYMBOL_GPL(__hid_register_driver);
2555
2556void hid_unregister_driver(struct hid_driver *hdrv)
2557{
2558 driver_unregister(&hdrv->driver);
2559 hid_free_dynids(hdrv);
2560
2561 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2562}
2563EXPORT_SYMBOL_GPL(hid_unregister_driver);
2564
2565int hid_check_keys_pressed(struct hid_device *hid)
2566{
2567 struct hid_input *hidinput;
2568 int i;
2569
2570 if (!(hid->claimed & HID_CLAIMED_INPUT))
2571 return 0;
2572
2573 list_for_each_entry(hidinput, &hid->inputs, list) {
2574 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2575 if (hidinput->input->key[i])
2576 return 1;
2577 }
2578
2579 return 0;
2580}
2581
2582EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2583
2584static int __init hid_init(void)
2585{
2586 int ret;
2587
2588 if (hid_debug)
2589 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2590 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2591
2592 ret = bus_register(&hid_bus_type);
2593 if (ret) {
2594 pr_err("can't register hid bus\n");
2595 goto err;
2596 }
2597
2598 ret = hidraw_init();
2599 if (ret)
2600 goto err_bus;
2601
2602 hid_debug_init();
2603
2604 return 0;
2605err_bus:
2606 bus_unregister(&hid_bus_type);
2607err:
2608 return ret;
2609}
2610
2611static void __exit hid_exit(void)
2612{
2613 hid_debug_exit();
2614 hidraw_exit();
2615 bus_unregister(&hid_bus_type);
2616 hid_quirks_exit(HID_BUS_ANY);
2617}
2618
2619module_init(hid_init);
2620module_exit(hid_exit);
2621
2622MODULE_AUTHOR("Andreas Gal");
2623MODULE_AUTHOR("Vojtech Pavlik");
2624MODULE_AUTHOR("Jiri Kosina");
2625MODULE_LICENSE("GPL");