Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2014-2016 Intel Corporation
  5 */
  6
  7#include <drm/drm_cache.h>
  8#include <linux/vmalloc.h>
  9
 10#include "gt/intel_gt.h"
 11#include "gt/intel_tlb.h"
 12
 13#include "i915_drv.h"
 14#include "i915_gem_object.h"
 15#include "i915_scatterlist.h"
 16#include "i915_gem_lmem.h"
 17#include "i915_gem_mman.h"
 18
 19void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
 20				 struct sg_table *pages)
 21{
 22	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 23	unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
 24	bool shrinkable;
 25	int i;
 26
 27	assert_object_held_shared(obj);
 28
 29	if (i915_gem_object_is_volatile(obj))
 30		obj->mm.madv = I915_MADV_DONTNEED;
 31
 32	/* Make the pages coherent with the GPU (flushing any swapin). */
 33	if (obj->cache_dirty) {
 34		WARN_ON_ONCE(IS_DGFX(i915));
 35		obj->write_domain = 0;
 36		if (i915_gem_object_has_struct_page(obj))
 37			drm_clflush_sg(pages);
 38		obj->cache_dirty = false;
 39	}
 40
 41	obj->mm.get_page.sg_pos = pages->sgl;
 42	obj->mm.get_page.sg_idx = 0;
 43	obj->mm.get_dma_page.sg_pos = pages->sgl;
 44	obj->mm.get_dma_page.sg_idx = 0;
 45
 46	obj->mm.pages = pages;
 47
 48	obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl);
 49	GEM_BUG_ON(!obj->mm.page_sizes.phys);
 50
 51	/*
 52	 * Calculate the supported page-sizes which fit into the given
 53	 * sg_page_sizes. This will give us the page-sizes which we may be able
 54	 * to use opportunistically when later inserting into the GTT. For
 55	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
 56	 * 64K or 4K pages, although in practice this will depend on a number of
 57	 * other factors.
 58	 */
 59	obj->mm.page_sizes.sg = 0;
 60	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
 61		if (obj->mm.page_sizes.phys & ~0u << i)
 62			obj->mm.page_sizes.sg |= BIT(i);
 63	}
 64	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
 65
 66	shrinkable = i915_gem_object_is_shrinkable(obj);
 67
 68	if (i915_gem_object_is_tiled(obj) &&
 69	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
 70		GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
 71		i915_gem_object_set_tiling_quirk(obj);
 72		GEM_BUG_ON(!list_empty(&obj->mm.link));
 73		atomic_inc(&obj->mm.shrink_pin);
 74		shrinkable = false;
 75	}
 76
 77	if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
 78		struct list_head *list;
 79		unsigned long flags;
 80
 81		assert_object_held(obj);
 82		spin_lock_irqsave(&i915->mm.obj_lock, flags);
 83
 84		i915->mm.shrink_count++;
 85		i915->mm.shrink_memory += obj->base.size;
 86
 87		if (obj->mm.madv != I915_MADV_WILLNEED)
 88			list = &i915->mm.purge_list;
 89		else
 90			list = &i915->mm.shrink_list;
 91		list_add_tail(&obj->mm.link, list);
 92
 93		atomic_set(&obj->mm.shrink_pin, 0);
 94		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
 95	}
 96}
 97
 98int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
 99{
100	struct drm_i915_private *i915 = to_i915(obj->base.dev);
101	int err;
102
103	assert_object_held_shared(obj);
104
105	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
106		drm_dbg(&i915->drm,
107			"Attempting to obtain a purgeable object\n");
108		return -EFAULT;
109	}
110
111	err = obj->ops->get_pages(obj);
112	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
113
114	return err;
115}
116
117/* Ensure that the associated pages are gathered from the backing storage
118 * and pinned into our object. i915_gem_object_pin_pages() may be called
119 * multiple times before they are released by a single call to
120 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
121 * either as a result of memory pressure (reaping pages under the shrinker)
122 * or as the object is itself released.
123 */
124int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
125{
126	int err;
127
128	assert_object_held(obj);
129
130	assert_object_held_shared(obj);
131
132	if (unlikely(!i915_gem_object_has_pages(obj))) {
133		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
134
135		err = ____i915_gem_object_get_pages(obj);
136		if (err)
137			return err;
138
139		smp_mb__before_atomic();
140	}
141	atomic_inc(&obj->mm.pages_pin_count);
142
143	return 0;
144}
145
146int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
147{
148	struct i915_gem_ww_ctx ww;
149	int err;
150
151	i915_gem_ww_ctx_init(&ww, true);
152retry:
153	err = i915_gem_object_lock(obj, &ww);
154	if (!err)
155		err = i915_gem_object_pin_pages(obj);
156
157	if (err == -EDEADLK) {
158		err = i915_gem_ww_ctx_backoff(&ww);
159		if (!err)
160			goto retry;
161	}
162	i915_gem_ww_ctx_fini(&ww);
163	return err;
164}
165
166/* Immediately discard the backing storage */
167int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
168{
169	if (obj->ops->truncate)
170		return obj->ops->truncate(obj);
171
172	return 0;
173}
174
175static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
176{
177	struct radix_tree_iter iter;
178	void __rcu **slot;
179
180	rcu_read_lock();
181	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
182		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
183	radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
184		radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
185	rcu_read_unlock();
186}
187
188static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
189{
190	if (is_vmalloc_addr(ptr))
191		vunmap(ptr);
192}
193
194static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
195{
196	struct drm_i915_private *i915 = to_i915(obj->base.dev);
197	struct intel_gt *gt;
198	int id;
199
200	for_each_gt(gt, i915, id) {
201		if (!obj->mm.tlb[id])
202			continue;
203
204		intel_gt_invalidate_tlb_full(gt, obj->mm.tlb[id]);
205		obj->mm.tlb[id] = 0;
206	}
207}
208
209struct sg_table *
210__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
211{
212	struct sg_table *pages;
213
214	assert_object_held_shared(obj);
215
216	pages = fetch_and_zero(&obj->mm.pages);
217	if (IS_ERR_OR_NULL(pages))
218		return pages;
219
220	if (i915_gem_object_is_volatile(obj))
221		obj->mm.madv = I915_MADV_WILLNEED;
222
223	if (!i915_gem_object_has_self_managed_shrink_list(obj))
224		i915_gem_object_make_unshrinkable(obj);
225
226	if (obj->mm.mapping) {
227		unmap_object(obj, page_mask_bits(obj->mm.mapping));
228		obj->mm.mapping = NULL;
229	}
230
231	__i915_gem_object_reset_page_iter(obj);
232	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
233
234	flush_tlb_invalidate(obj);
235
236	return pages;
237}
238
239int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
240{
241	struct sg_table *pages;
242
243	if (i915_gem_object_has_pinned_pages(obj))
244		return -EBUSY;
245
246	/* May be called by shrinker from within get_pages() (on another bo) */
247	assert_object_held_shared(obj);
248
249	i915_gem_object_release_mmap_offset(obj);
250
251	/*
252	 * ->put_pages might need to allocate memory for the bit17 swizzle
253	 * array, hence protect them from being reaped by removing them from gtt
254	 * lists early.
255	 */
256	pages = __i915_gem_object_unset_pages(obj);
257
258	/*
259	 * XXX Temporary hijinx to avoid updating all backends to handle
260	 * NULL pages. In the future, when we have more asynchronous
261	 * get_pages backends we should be better able to handle the
262	 * cancellation of the async task in a more uniform manner.
263	 */
264	if (!IS_ERR_OR_NULL(pages))
265		obj->ops->put_pages(obj, pages);
266
267	return 0;
268}
269
270/* The 'mapping' part of i915_gem_object_pin_map() below */
271static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
272				      enum i915_map_type type)
273{
274	unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
275	struct page *stack[32], **pages = stack, *page;
276	struct sgt_iter iter;
277	pgprot_t pgprot;
278	void *vaddr;
279
280	switch (type) {
281	default:
282		MISSING_CASE(type);
283		fallthrough;	/* to use PAGE_KERNEL anyway */
284	case I915_MAP_WB:
285		/*
286		 * On 32b, highmem using a finite set of indirect PTE (i.e.
287		 * vmap) to provide virtual mappings of the high pages.
288		 * As these are finite, map_new_virtual() must wait for some
289		 * other kmap() to finish when it runs out. If we map a large
290		 * number of objects, there is no method for it to tell us
291		 * to release the mappings, and we deadlock.
292		 *
293		 * However, if we make an explicit vmap of the page, that
294		 * uses a larger vmalloc arena, and also has the ability
295		 * to tell us to release unwanted mappings. Most importantly,
296		 * it will fail and propagate an error instead of waiting
297		 * forever.
298		 *
299		 * So if the page is beyond the 32b boundary, make an explicit
300		 * vmap.
301		 */
302		if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
303			return page_address(sg_page(obj->mm.pages->sgl));
304		pgprot = PAGE_KERNEL;
305		break;
306	case I915_MAP_WC:
307		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
308		break;
309	}
310
311	if (n_pages > ARRAY_SIZE(stack)) {
312		/* Too big for stack -- allocate temporary array instead */
313		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
314		if (!pages)
315			return ERR_PTR(-ENOMEM);
316	}
317
318	i = 0;
319	for_each_sgt_page(page, iter, obj->mm.pages)
320		pages[i++] = page;
321	vaddr = vmap(pages, n_pages, 0, pgprot);
322	if (pages != stack)
323		kvfree(pages);
324
325	return vaddr ?: ERR_PTR(-ENOMEM);
326}
327
328static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
329				     enum i915_map_type type)
330{
331	resource_size_t iomap = obj->mm.region->iomap.base -
332		obj->mm.region->region.start;
333	unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
334	unsigned long stack[32], *pfns = stack, i;
335	struct sgt_iter iter;
336	dma_addr_t addr;
337	void *vaddr;
338
339	GEM_BUG_ON(type != I915_MAP_WC);
340
341	if (n_pfn > ARRAY_SIZE(stack)) {
342		/* Too big for stack -- allocate temporary array instead */
343		pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
344		if (!pfns)
345			return ERR_PTR(-ENOMEM);
346	}
347
348	i = 0;
349	for_each_sgt_daddr(addr, iter, obj->mm.pages)
350		pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
351	vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
352	if (pfns != stack)
353		kvfree(pfns);
354
355	return vaddr ?: ERR_PTR(-ENOMEM);
356}
357
358/* get, pin, and map the pages of the object into kernel space */
359void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
360			      enum i915_map_type type)
361{
362	enum i915_map_type has_type;
363	bool pinned;
364	void *ptr;
365	int err;
366
367	if (!i915_gem_object_has_struct_page(obj) &&
368	    !i915_gem_object_has_iomem(obj))
369		return ERR_PTR(-ENXIO);
370
371	if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
372		return ERR_PTR(-EINVAL);
373
374	assert_object_held(obj);
375
376	pinned = !(type & I915_MAP_OVERRIDE);
377	type &= ~I915_MAP_OVERRIDE;
378
379	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
380		if (unlikely(!i915_gem_object_has_pages(obj))) {
381			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
382
383			err = ____i915_gem_object_get_pages(obj);
384			if (err)
385				return ERR_PTR(err);
386
387			smp_mb__before_atomic();
388		}
389		atomic_inc(&obj->mm.pages_pin_count);
390		pinned = false;
391	}
392	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
393
394	/*
395	 * For discrete our CPU mappings needs to be consistent in order to
396	 * function correctly on !x86. When mapping things through TTM, we use
397	 * the same rules to determine the caching type.
398	 *
399	 * The caching rules, starting from DG1:
400	 *
401	 *	- If the object can be placed in device local-memory, then the
402	 *	  pages should be allocated and mapped as write-combined only.
403	 *
404	 *	- Everything else is always allocated and mapped as write-back,
405	 *	  with the guarantee that everything is also coherent with the
406	 *	  GPU.
407	 *
408	 * Internal users of lmem are already expected to get this right, so no
409	 * fudging needed there.
410	 */
411	if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
412		if (type != I915_MAP_WC && !obj->mm.n_placements) {
413			ptr = ERR_PTR(-ENODEV);
414			goto err_unpin;
415		}
416
417		type = I915_MAP_WC;
418	} else if (IS_DGFX(to_i915(obj->base.dev))) {
419		type = I915_MAP_WB;
420	}
421
422	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
423	if (ptr && has_type != type) {
424		if (pinned) {
425			ptr = ERR_PTR(-EBUSY);
426			goto err_unpin;
427		}
428
429		unmap_object(obj, ptr);
430
431		ptr = obj->mm.mapping = NULL;
432	}
433
434	if (!ptr) {
435		err = i915_gem_object_wait_moving_fence(obj, true);
436		if (err) {
437			ptr = ERR_PTR(err);
438			goto err_unpin;
439		}
440
441		if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
442			ptr = ERR_PTR(-ENODEV);
443		else if (i915_gem_object_has_struct_page(obj))
444			ptr = i915_gem_object_map_page(obj, type);
445		else
446			ptr = i915_gem_object_map_pfn(obj, type);
447		if (IS_ERR(ptr))
448			goto err_unpin;
449
450		obj->mm.mapping = page_pack_bits(ptr, type);
451	}
452
453	return ptr;
454
455err_unpin:
456	atomic_dec(&obj->mm.pages_pin_count);
457	return ptr;
458}
459
460void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
461				       enum i915_map_type type)
462{
463	void *ret;
464
465	i915_gem_object_lock(obj, NULL);
466	ret = i915_gem_object_pin_map(obj, type);
467	i915_gem_object_unlock(obj);
468
469	return ret;
470}
471
472void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
473				 unsigned long offset,
474				 unsigned long size)
475{
476	enum i915_map_type has_type;
477	void *ptr;
478
479	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
480	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
481				     offset, size, obj->base.size));
482
483	wmb(); /* let all previous writes be visible to coherent partners */
484	obj->mm.dirty = true;
485
486	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
487		return;
488
489	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
490	if (has_type == I915_MAP_WC)
491		return;
492
493	drm_clflush_virt_range(ptr + offset, size);
494	if (size == obj->base.size) {
495		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
496		obj->cache_dirty = false;
497	}
498}
499
500void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
501{
502	GEM_BUG_ON(!obj->mm.mapping);
503
504	/*
505	 * We allow removing the mapping from underneath pinned pages!
506	 *
507	 * Furthermore, since this is an unsafe operation reserved only
508	 * for construction time manipulation, we ignore locking prudence.
509	 */
510	unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
511
512	i915_gem_object_unpin_map(obj);
513}
514
515struct scatterlist *
516__i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object *obj,
517				   struct i915_gem_object_page_iter *iter,
518				   pgoff_t n,
519				   unsigned int *offset)
520
521{
522	const bool dma = iter == &obj->mm.get_dma_page ||
523			 iter == &obj->ttm.get_io_page;
524	unsigned int idx, count;
525	struct scatterlist *sg;
526
527	might_sleep();
528	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
529	if (!i915_gem_object_has_pinned_pages(obj))
530		assert_object_held(obj);
531
532	/* As we iterate forward through the sg, we record each entry in a
533	 * radixtree for quick repeated (backwards) lookups. If we have seen
534	 * this index previously, we will have an entry for it.
535	 *
536	 * Initial lookup is O(N), but this is amortized to O(1) for
537	 * sequential page access (where each new request is consecutive
538	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
539	 * i.e. O(1) with a large constant!
540	 */
541	if (n < READ_ONCE(iter->sg_idx))
542		goto lookup;
543
544	mutex_lock(&iter->lock);
545
546	/* We prefer to reuse the last sg so that repeated lookup of this
547	 * (or the subsequent) sg are fast - comparing against the last
548	 * sg is faster than going through the radixtree.
549	 */
550
551	sg = iter->sg_pos;
552	idx = iter->sg_idx;
553	count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
554
555	while (idx + count <= n) {
556		void *entry;
557		unsigned long i;
558		int ret;
559
560		/* If we cannot allocate and insert this entry, or the
561		 * individual pages from this range, cancel updating the
562		 * sg_idx so that on this lookup we are forced to linearly
563		 * scan onwards, but on future lookups we will try the
564		 * insertion again (in which case we need to be careful of
565		 * the error return reporting that we have already inserted
566		 * this index).
567		 */
568		ret = radix_tree_insert(&iter->radix, idx, sg);
569		if (ret && ret != -EEXIST)
570			goto scan;
571
572		entry = xa_mk_value(idx);
573		for (i = 1; i < count; i++) {
574			ret = radix_tree_insert(&iter->radix, idx + i, entry);
575			if (ret && ret != -EEXIST)
576				goto scan;
577		}
578
579		idx += count;
580		sg = ____sg_next(sg);
581		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
582	}
583
584scan:
585	iter->sg_pos = sg;
586	iter->sg_idx = idx;
587
588	mutex_unlock(&iter->lock);
589
590	if (unlikely(n < idx)) /* insertion completed by another thread */
591		goto lookup;
592
593	/* In case we failed to insert the entry into the radixtree, we need
594	 * to look beyond the current sg.
595	 */
596	while (idx + count <= n) {
597		idx += count;
598		sg = ____sg_next(sg);
599		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
600	}
601
602	*offset = n - idx;
603	return sg;
604
605lookup:
606	rcu_read_lock();
607
608	sg = radix_tree_lookup(&iter->radix, n);
609	GEM_BUG_ON(!sg);
610
611	/* If this index is in the middle of multi-page sg entry,
612	 * the radix tree will contain a value entry that points
613	 * to the start of that range. We will return the pointer to
614	 * the base page and the offset of this page within the
615	 * sg entry's range.
616	 */
617	*offset = 0;
618	if (unlikely(xa_is_value(sg))) {
619		unsigned long base = xa_to_value(sg);
620
621		sg = radix_tree_lookup(&iter->radix, base);
622		GEM_BUG_ON(!sg);
623
624		*offset = n - base;
625	}
626
627	rcu_read_unlock();
628
629	return sg;
630}
631
632struct page *
633__i915_gem_object_get_page(struct drm_i915_gem_object *obj, pgoff_t n)
634{
635	struct scatterlist *sg;
636	unsigned int offset;
637
638	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
639
640	sg = i915_gem_object_get_sg(obj, n, &offset);
641	return nth_page(sg_page(sg), offset);
642}
643
644/* Like i915_gem_object_get_page(), but mark the returned page dirty */
645struct page *
646__i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, pgoff_t n)
647{
648	struct page *page;
649
650	page = i915_gem_object_get_page(obj, n);
651	if (!obj->mm.dirty)
652		set_page_dirty(page);
653
654	return page;
655}
656
657dma_addr_t
658__i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
659				      pgoff_t n, unsigned int *len)
660{
661	struct scatterlist *sg;
662	unsigned int offset;
663
664	sg = i915_gem_object_get_sg_dma(obj, n, &offset);
665
666	if (len)
667		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
668
669	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
670}
671
672dma_addr_t
673__i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, pgoff_t n)
674{
675	return i915_gem_object_get_dma_address_len(obj, n, NULL);
676}