Loading...
Note: File does not exist in v3.1.
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7#include "i915_drv.h"
8#include "i915_gem_object.h"
9#include "i915_scatterlist.h"
10#include "i915_gem_lmem.h"
11#include "i915_gem_mman.h"
12
13void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
14 struct sg_table *pages,
15 unsigned int sg_page_sizes)
16{
17 struct drm_i915_private *i915 = to_i915(obj->base.dev);
18 unsigned long supported = INTEL_INFO(i915)->page_sizes;
19 bool shrinkable;
20 int i;
21
22 assert_object_held_shared(obj);
23
24 if (i915_gem_object_is_volatile(obj))
25 obj->mm.madv = I915_MADV_DONTNEED;
26
27 /* Make the pages coherent with the GPU (flushing any swapin). */
28 if (obj->cache_dirty) {
29 obj->write_domain = 0;
30 if (i915_gem_object_has_struct_page(obj))
31 drm_clflush_sg(pages);
32 obj->cache_dirty = false;
33 }
34
35 obj->mm.get_page.sg_pos = pages->sgl;
36 obj->mm.get_page.sg_idx = 0;
37 obj->mm.get_dma_page.sg_pos = pages->sgl;
38 obj->mm.get_dma_page.sg_idx = 0;
39
40 obj->mm.pages = pages;
41
42 GEM_BUG_ON(!sg_page_sizes);
43 obj->mm.page_sizes.phys = sg_page_sizes;
44
45 /*
46 * Calculate the supported page-sizes which fit into the given
47 * sg_page_sizes. This will give us the page-sizes which we may be able
48 * to use opportunistically when later inserting into the GTT. For
49 * example if phys=2G, then in theory we should be able to use 1G, 2M,
50 * 64K or 4K pages, although in practice this will depend on a number of
51 * other factors.
52 */
53 obj->mm.page_sizes.sg = 0;
54 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
55 if (obj->mm.page_sizes.phys & ~0u << i)
56 obj->mm.page_sizes.sg |= BIT(i);
57 }
58 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
59
60 shrinkable = i915_gem_object_is_shrinkable(obj);
61
62 if (i915_gem_object_is_tiled(obj) &&
63 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
64 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
65 i915_gem_object_set_tiling_quirk(obj);
66 GEM_BUG_ON(!list_empty(&obj->mm.link));
67 atomic_inc(&obj->mm.shrink_pin);
68 shrinkable = false;
69 }
70
71 if (shrinkable) {
72 struct list_head *list;
73 unsigned long flags;
74
75 assert_object_held(obj);
76 spin_lock_irqsave(&i915->mm.obj_lock, flags);
77
78 i915->mm.shrink_count++;
79 i915->mm.shrink_memory += obj->base.size;
80
81 if (obj->mm.madv != I915_MADV_WILLNEED)
82 list = &i915->mm.purge_list;
83 else
84 list = &i915->mm.shrink_list;
85 list_add_tail(&obj->mm.link, list);
86
87 atomic_set(&obj->mm.shrink_pin, 0);
88 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
89 }
90}
91
92int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
93{
94 struct drm_i915_private *i915 = to_i915(obj->base.dev);
95 int err;
96
97 assert_object_held_shared(obj);
98
99 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
100 drm_dbg(&i915->drm,
101 "Attempting to obtain a purgeable object\n");
102 return -EFAULT;
103 }
104
105 err = obj->ops->get_pages(obj);
106 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
107
108 return err;
109}
110
111/* Ensure that the associated pages are gathered from the backing storage
112 * and pinned into our object. i915_gem_object_pin_pages() may be called
113 * multiple times before they are released by a single call to
114 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
115 * either as a result of memory pressure (reaping pages under the shrinker)
116 * or as the object is itself released.
117 */
118int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
119{
120 int err;
121
122 assert_object_held(obj);
123
124 assert_object_held_shared(obj);
125
126 if (unlikely(!i915_gem_object_has_pages(obj))) {
127 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
128
129 err = ____i915_gem_object_get_pages(obj);
130 if (err)
131 return err;
132
133 smp_mb__before_atomic();
134 }
135 atomic_inc(&obj->mm.pages_pin_count);
136
137 return 0;
138}
139
140int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
141{
142 struct i915_gem_ww_ctx ww;
143 int err;
144
145 i915_gem_ww_ctx_init(&ww, true);
146retry:
147 err = i915_gem_object_lock(obj, &ww);
148 if (!err)
149 err = i915_gem_object_pin_pages(obj);
150
151 if (err == -EDEADLK) {
152 err = i915_gem_ww_ctx_backoff(&ww);
153 if (!err)
154 goto retry;
155 }
156 i915_gem_ww_ctx_fini(&ww);
157 return err;
158}
159
160/* Immediately discard the backing storage */
161void i915_gem_object_truncate(struct drm_i915_gem_object *obj)
162{
163 drm_gem_free_mmap_offset(&obj->base);
164 if (obj->ops->truncate)
165 obj->ops->truncate(obj);
166}
167
168/* Try to discard unwanted pages */
169void i915_gem_object_writeback(struct drm_i915_gem_object *obj)
170{
171 assert_object_held_shared(obj);
172 GEM_BUG_ON(i915_gem_object_has_pages(obj));
173
174 if (obj->ops->writeback)
175 obj->ops->writeback(obj);
176}
177
178static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
179{
180 struct radix_tree_iter iter;
181 void __rcu **slot;
182
183 rcu_read_lock();
184 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
185 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
186 radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
187 radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
188 rcu_read_unlock();
189}
190
191static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
192{
193 if (is_vmalloc_addr(ptr))
194 vunmap(ptr);
195}
196
197struct sg_table *
198__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
199{
200 struct sg_table *pages;
201
202 assert_object_held_shared(obj);
203
204 pages = fetch_and_zero(&obj->mm.pages);
205 if (IS_ERR_OR_NULL(pages))
206 return pages;
207
208 if (i915_gem_object_is_volatile(obj))
209 obj->mm.madv = I915_MADV_WILLNEED;
210
211 i915_gem_object_make_unshrinkable(obj);
212
213 if (obj->mm.mapping) {
214 unmap_object(obj, page_mask_bits(obj->mm.mapping));
215 obj->mm.mapping = NULL;
216 }
217
218 __i915_gem_object_reset_page_iter(obj);
219 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
220
221 return pages;
222}
223
224int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
225{
226 struct sg_table *pages;
227
228 if (i915_gem_object_has_pinned_pages(obj))
229 return -EBUSY;
230
231 /* May be called by shrinker from within get_pages() (on another bo) */
232 assert_object_held_shared(obj);
233
234 i915_gem_object_release_mmap_offset(obj);
235
236 /*
237 * ->put_pages might need to allocate memory for the bit17 swizzle
238 * array, hence protect them from being reaped by removing them from gtt
239 * lists early.
240 */
241 pages = __i915_gem_object_unset_pages(obj);
242
243 /*
244 * XXX Temporary hijinx to avoid updating all backends to handle
245 * NULL pages. In the future, when we have more asynchronous
246 * get_pages backends we should be better able to handle the
247 * cancellation of the async task in a more uniform manner.
248 */
249 if (!IS_ERR_OR_NULL(pages))
250 obj->ops->put_pages(obj, pages);
251
252 return 0;
253}
254
255/* The 'mapping' part of i915_gem_object_pin_map() below */
256static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
257 enum i915_map_type type)
258{
259 unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
260 struct page *stack[32], **pages = stack, *page;
261 struct sgt_iter iter;
262 pgprot_t pgprot;
263 void *vaddr;
264
265 switch (type) {
266 default:
267 MISSING_CASE(type);
268 fallthrough; /* to use PAGE_KERNEL anyway */
269 case I915_MAP_WB:
270 /*
271 * On 32b, highmem using a finite set of indirect PTE (i.e.
272 * vmap) to provide virtual mappings of the high pages.
273 * As these are finite, map_new_virtual() must wait for some
274 * other kmap() to finish when it runs out. If we map a large
275 * number of objects, there is no method for it to tell us
276 * to release the mappings, and we deadlock.
277 *
278 * However, if we make an explicit vmap of the page, that
279 * uses a larger vmalloc arena, and also has the ability
280 * to tell us to release unwanted mappings. Most importantly,
281 * it will fail and propagate an error instead of waiting
282 * forever.
283 *
284 * So if the page is beyond the 32b boundary, make an explicit
285 * vmap.
286 */
287 if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
288 return page_address(sg_page(obj->mm.pages->sgl));
289 pgprot = PAGE_KERNEL;
290 break;
291 case I915_MAP_WC:
292 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
293 break;
294 }
295
296 if (n_pages > ARRAY_SIZE(stack)) {
297 /* Too big for stack -- allocate temporary array instead */
298 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
299 if (!pages)
300 return ERR_PTR(-ENOMEM);
301 }
302
303 i = 0;
304 for_each_sgt_page(page, iter, obj->mm.pages)
305 pages[i++] = page;
306 vaddr = vmap(pages, n_pages, 0, pgprot);
307 if (pages != stack)
308 kvfree(pages);
309
310 return vaddr ?: ERR_PTR(-ENOMEM);
311}
312
313static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
314 enum i915_map_type type)
315{
316 resource_size_t iomap = obj->mm.region->iomap.base -
317 obj->mm.region->region.start;
318 unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
319 unsigned long stack[32], *pfns = stack, i;
320 struct sgt_iter iter;
321 dma_addr_t addr;
322 void *vaddr;
323
324 if (type != I915_MAP_WC)
325 return ERR_PTR(-ENODEV);
326
327 if (n_pfn > ARRAY_SIZE(stack)) {
328 /* Too big for stack -- allocate temporary array instead */
329 pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
330 if (!pfns)
331 return ERR_PTR(-ENOMEM);
332 }
333
334 i = 0;
335 for_each_sgt_daddr(addr, iter, obj->mm.pages)
336 pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
337 vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
338 if (pfns != stack)
339 kvfree(pfns);
340
341 return vaddr ?: ERR_PTR(-ENOMEM);
342}
343
344/* get, pin, and map the pages of the object into kernel space */
345void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
346 enum i915_map_type type)
347{
348 enum i915_map_type has_type;
349 bool pinned;
350 void *ptr;
351 int err;
352
353 if (!i915_gem_object_has_struct_page(obj) &&
354 !i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_IOMEM))
355 return ERR_PTR(-ENXIO);
356
357 assert_object_held(obj);
358
359 pinned = !(type & I915_MAP_OVERRIDE);
360 type &= ~I915_MAP_OVERRIDE;
361
362 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
363 if (unlikely(!i915_gem_object_has_pages(obj))) {
364 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
365
366 err = ____i915_gem_object_get_pages(obj);
367 if (err)
368 return ERR_PTR(err);
369
370 smp_mb__before_atomic();
371 }
372 atomic_inc(&obj->mm.pages_pin_count);
373 pinned = false;
374 }
375 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
376
377 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
378 if (ptr && has_type != type) {
379 if (pinned) {
380 ptr = ERR_PTR(-EBUSY);
381 goto err_unpin;
382 }
383
384 unmap_object(obj, ptr);
385
386 ptr = obj->mm.mapping = NULL;
387 }
388
389 if (!ptr) {
390 if (GEM_WARN_ON(type == I915_MAP_WC &&
391 !static_cpu_has(X86_FEATURE_PAT)))
392 ptr = ERR_PTR(-ENODEV);
393 else if (i915_gem_object_has_struct_page(obj))
394 ptr = i915_gem_object_map_page(obj, type);
395 else
396 ptr = i915_gem_object_map_pfn(obj, type);
397 if (IS_ERR(ptr))
398 goto err_unpin;
399
400 obj->mm.mapping = page_pack_bits(ptr, type);
401 }
402
403 return ptr;
404
405err_unpin:
406 atomic_dec(&obj->mm.pages_pin_count);
407 return ptr;
408}
409
410void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
411 enum i915_map_type type)
412{
413 void *ret;
414
415 i915_gem_object_lock(obj, NULL);
416 ret = i915_gem_object_pin_map(obj, type);
417 i915_gem_object_unlock(obj);
418
419 return ret;
420}
421
422void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
423 unsigned long offset,
424 unsigned long size)
425{
426 enum i915_map_type has_type;
427 void *ptr;
428
429 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
430 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
431 offset, size, obj->base.size));
432
433 wmb(); /* let all previous writes be visible to coherent partners */
434 obj->mm.dirty = true;
435
436 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
437 return;
438
439 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
440 if (has_type == I915_MAP_WC)
441 return;
442
443 drm_clflush_virt_range(ptr + offset, size);
444 if (size == obj->base.size) {
445 obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
446 obj->cache_dirty = false;
447 }
448}
449
450void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
451{
452 GEM_BUG_ON(!obj->mm.mapping);
453
454 /*
455 * We allow removing the mapping from underneath pinned pages!
456 *
457 * Furthermore, since this is an unsafe operation reserved only
458 * for construction time manipulation, we ignore locking prudence.
459 */
460 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
461
462 i915_gem_object_unpin_map(obj);
463}
464
465struct scatterlist *
466__i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
467 struct i915_gem_object_page_iter *iter,
468 unsigned int n,
469 unsigned int *offset,
470 bool allow_alloc)
471{
472 const bool dma = iter == &obj->mm.get_dma_page;
473 struct scatterlist *sg;
474 unsigned int idx, count;
475
476 might_sleep();
477 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
478 if (!i915_gem_object_has_pinned_pages(obj))
479 assert_object_held(obj);
480
481 /* As we iterate forward through the sg, we record each entry in a
482 * radixtree for quick repeated (backwards) lookups. If we have seen
483 * this index previously, we will have an entry for it.
484 *
485 * Initial lookup is O(N), but this is amortized to O(1) for
486 * sequential page access (where each new request is consecutive
487 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
488 * i.e. O(1) with a large constant!
489 */
490 if (n < READ_ONCE(iter->sg_idx))
491 goto lookup;
492
493 if (!allow_alloc)
494 goto manual_lookup;
495
496 mutex_lock(&iter->lock);
497
498 /* We prefer to reuse the last sg so that repeated lookup of this
499 * (or the subsequent) sg are fast - comparing against the last
500 * sg is faster than going through the radixtree.
501 */
502
503 sg = iter->sg_pos;
504 idx = iter->sg_idx;
505 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
506
507 while (idx + count <= n) {
508 void *entry;
509 unsigned long i;
510 int ret;
511
512 /* If we cannot allocate and insert this entry, or the
513 * individual pages from this range, cancel updating the
514 * sg_idx so that on this lookup we are forced to linearly
515 * scan onwards, but on future lookups we will try the
516 * insertion again (in which case we need to be careful of
517 * the error return reporting that we have already inserted
518 * this index).
519 */
520 ret = radix_tree_insert(&iter->radix, idx, sg);
521 if (ret && ret != -EEXIST)
522 goto scan;
523
524 entry = xa_mk_value(idx);
525 for (i = 1; i < count; i++) {
526 ret = radix_tree_insert(&iter->radix, idx + i, entry);
527 if (ret && ret != -EEXIST)
528 goto scan;
529 }
530
531 idx += count;
532 sg = ____sg_next(sg);
533 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
534 }
535
536scan:
537 iter->sg_pos = sg;
538 iter->sg_idx = idx;
539
540 mutex_unlock(&iter->lock);
541
542 if (unlikely(n < idx)) /* insertion completed by another thread */
543 goto lookup;
544
545 goto manual_walk;
546
547manual_lookup:
548 idx = 0;
549 sg = obj->mm.pages->sgl;
550 count = __sg_page_count(sg);
551
552manual_walk:
553 /*
554 * In case we failed to insert the entry into the radixtree, we need
555 * to look beyond the current sg.
556 */
557 while (idx + count <= n) {
558 idx += count;
559 sg = ____sg_next(sg);
560 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
561 }
562
563 *offset = n - idx;
564 return sg;
565
566lookup:
567 rcu_read_lock();
568
569 sg = radix_tree_lookup(&iter->radix, n);
570 GEM_BUG_ON(!sg);
571
572 /* If this index is in the middle of multi-page sg entry,
573 * the radix tree will contain a value entry that points
574 * to the start of that range. We will return the pointer to
575 * the base page and the offset of this page within the
576 * sg entry's range.
577 */
578 *offset = 0;
579 if (unlikely(xa_is_value(sg))) {
580 unsigned long base = xa_to_value(sg);
581
582 sg = radix_tree_lookup(&iter->radix, base);
583 GEM_BUG_ON(!sg);
584
585 *offset = n - base;
586 }
587
588 rcu_read_unlock();
589
590 return sg;
591}
592
593struct page *
594i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
595{
596 struct scatterlist *sg;
597 unsigned int offset;
598
599 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
600
601 sg = i915_gem_object_get_sg(obj, n, &offset, true);
602 return nth_page(sg_page(sg), offset);
603}
604
605/* Like i915_gem_object_get_page(), but mark the returned page dirty */
606struct page *
607i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
608 unsigned int n)
609{
610 struct page *page;
611
612 page = i915_gem_object_get_page(obj, n);
613 if (!obj->mm.dirty)
614 set_page_dirty(page);
615
616 return page;
617}
618
619dma_addr_t
620i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
621 unsigned long n,
622 unsigned int *len)
623{
624 struct scatterlist *sg;
625 unsigned int offset;
626
627 sg = i915_gem_object_get_sg_dma(obj, n, &offset, true);
628
629 if (len)
630 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
631
632 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
633}
634
635dma_addr_t
636i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
637 unsigned long n)
638{
639 return i915_gem_object_get_dma_address_len(obj, n, NULL);
640}