Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
 
  45
  46#include <asm/byteorder.h>
  47#include <asm/page.h>
  48#include <asm/system.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57#define DESCRIPTOR_OUTPUT_MORE		0
  58#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  59#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  60#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  61#define DESCRIPTOR_STATUS		(1 << 11)
  62#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  63#define DESCRIPTOR_PING			(1 << 7)
  64#define DESCRIPTOR_YY			(1 << 6)
  65#define DESCRIPTOR_NO_IRQ		(0 << 4)
  66#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  67#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  68#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  69#define DESCRIPTOR_WAIT			(3 << 0)
  70
 
 
  71struct descriptor {
  72	__le16 req_count;
  73	__le16 control;
  74	__le32 data_address;
  75	__le32 branch_address;
  76	__le16 res_count;
  77	__le16 transfer_status;
  78} __attribute__((aligned(16)));
  79
  80#define CONTROL_SET(regs)	(regs)
  81#define CONTROL_CLEAR(regs)	((regs) + 4)
  82#define COMMAND_PTR(regs)	((regs) + 12)
  83#define CONTEXT_MATCH(regs)	((regs) + 16)
  84
  85#define AR_BUFFER_SIZE	(32*1024)
  86#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  87/* we need at least two pages for proper list management */
  88#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  89
  90#define MAX_ASYNC_PAYLOAD	4096
  91#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  92#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  93
  94struct ar_context {
  95	struct fw_ohci *ohci;
  96	struct page *pages[AR_BUFFERS];
  97	void *buffer;
  98	struct descriptor *descriptors;
  99	dma_addr_t descriptors_bus;
 100	void *pointer;
 101	unsigned int last_buffer_index;
 102	u32 regs;
 103	struct tasklet_struct tasklet;
 104};
 105
 106struct context;
 107
 108typedef int (*descriptor_callback_t)(struct context *ctx,
 109				     struct descriptor *d,
 110				     struct descriptor *last);
 111
 112/*
 113 * A buffer that contains a block of DMA-able coherent memory used for
 114 * storing a portion of a DMA descriptor program.
 115 */
 116struct descriptor_buffer {
 117	struct list_head list;
 118	dma_addr_t buffer_bus;
 119	size_t buffer_size;
 120	size_t used;
 121	struct descriptor buffer[0];
 122};
 123
 124struct context {
 125	struct fw_ohci *ohci;
 126	u32 regs;
 127	int total_allocation;
 
 128	bool running;
 129	bool flushing;
 130
 131	/*
 132	 * List of page-sized buffers for storing DMA descriptors.
 133	 * Head of list contains buffers in use and tail of list contains
 134	 * free buffers.
 135	 */
 136	struct list_head buffer_list;
 137
 138	/*
 139	 * Pointer to a buffer inside buffer_list that contains the tail
 140	 * end of the current DMA program.
 141	 */
 142	struct descriptor_buffer *buffer_tail;
 143
 144	/*
 145	 * The descriptor containing the branch address of the first
 146	 * descriptor that has not yet been filled by the device.
 147	 */
 148	struct descriptor *last;
 149
 150	/*
 151	 * The last descriptor in the DMA program.  It contains the branch
 152	 * address that must be updated upon appending a new descriptor.
 153	 */
 154	struct descriptor *prev;
 
 155
 156	descriptor_callback_t callback;
 157
 158	struct tasklet_struct tasklet;
 159};
 160
 161#define IT_HEADER_SY(v)          ((v) <<  0)
 162#define IT_HEADER_TCODE(v)       ((v) <<  4)
 163#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 164#define IT_HEADER_TAG(v)         ((v) << 14)
 165#define IT_HEADER_SPEED(v)       ((v) << 16)
 166#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 167
 168struct iso_context {
 169	struct fw_iso_context base;
 170	struct context context;
 171	int excess_bytes;
 172	void *header;
 173	size_t header_length;
 174
 
 
 
 175	u8 sync;
 176	u8 tags;
 177};
 178
 179#define CONFIG_ROM_SIZE 1024
 180
 181struct fw_ohci {
 182	struct fw_card card;
 183
 184	__iomem char *registers;
 185	int node_id;
 186	int generation;
 187	int request_generation;	/* for timestamping incoming requests */
 188	unsigned quirks;
 189	unsigned int pri_req_max;
 190	u32 bus_time;
 
 191	bool is_root;
 192	bool csr_state_setclear_abdicate;
 193	int n_ir;
 194	int n_it;
 195	/*
 196	 * Spinlock for accessing fw_ohci data.  Never call out of
 197	 * this driver with this lock held.
 198	 */
 199	spinlock_t lock;
 200
 201	struct mutex phy_reg_mutex;
 202
 203	void *misc_buffer;
 204	dma_addr_t misc_buffer_bus;
 205
 206	struct ar_context ar_request_ctx;
 207	struct ar_context ar_response_ctx;
 208	struct context at_request_ctx;
 209	struct context at_response_ctx;
 210
 211	u32 it_context_support;
 212	u32 it_context_mask;     /* unoccupied IT contexts */
 213	struct iso_context *it_context_list;
 214	u64 ir_context_channels; /* unoccupied channels */
 215	u32 ir_context_support;
 216	u32 ir_context_mask;     /* unoccupied IR contexts */
 217	struct iso_context *ir_context_list;
 218	u64 mc_channels; /* channels in use by the multichannel IR context */
 219	bool mc_allocated;
 220
 221	__be32    *config_rom;
 222	dma_addr_t config_rom_bus;
 223	__be32    *next_config_rom;
 224	dma_addr_t next_config_rom_bus;
 225	__be32     next_header;
 226
 227	__le32    *self_id_cpu;
 228	dma_addr_t self_id_bus;
 229	struct tasklet_struct bus_reset_tasklet;
 230
 231	u32 self_id_buffer[512];
 232};
 233
 
 
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236	return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 240#define IR_CONTEXT_BUFFER_FILL		0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 245
 246#define CONTEXT_RUN	0x8000
 247#define CONTEXT_WAKE	0x1000
 248#define CONTEXT_DEAD	0x0800
 249#define CONTEXT_ACTIVE	0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 254
 255#define OHCI1394_REGISTER_SIZE		0x800
 256#define OHCI1394_PCI_HCI_Control	0x40
 257#define SELF_ID_BUF_SIZE		0x800
 258#define OHCI_TCODE_PHY_PACKET		0x0e
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 
 263#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 
 264#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 265#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 266#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268#define QUIRK_CYCLE_TIMER		1
 269#define QUIRK_RESET_PACKET		2
 270#define QUIRK_BE_HEADERS		4
 271#define QUIRK_NO_1394A			8
 272#define QUIRK_NO_MSI			16
 273
 274/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 275static const struct {
 276	unsigned short vendor, device, revision, flags;
 277} ohci_quirks[] = {
 278	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 279		QUIRK_CYCLE_TIMER},
 280
 281	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 282		QUIRK_BE_HEADERS},
 283
 284	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 285		QUIRK_NO_MSI},
 286
 
 
 
 287	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 288		QUIRK_NO_MSI},
 289
 290	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 291		QUIRK_CYCLE_TIMER},
 292
 293	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 294		QUIRK_NO_MSI},
 295
 296	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 297		QUIRK_CYCLE_TIMER},
 298
 299	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 300		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 301
 
 
 
 
 
 
 302	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 303		QUIRK_RESET_PACKET},
 304
 
 
 
 
 
 
 
 
 
 305	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 306		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 307};
 308
 309/* This overrides anything that was found in ohci_quirks[]. */
 310static int param_quirks;
 311module_param_named(quirks, param_quirks, int, 0644);
 312MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 313	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 314	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 315	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
 316	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 317	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 
 
 318	")");
 319
 320#define OHCI_PARAM_DEBUG_AT_AR		1
 321#define OHCI_PARAM_DEBUG_SELFIDS	2
 322#define OHCI_PARAM_DEBUG_IRQS		4
 323#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 324
 325#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
 326
 327static int param_debug;
 328module_param_named(debug, param_debug, int, 0644);
 329MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 330	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 331	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 332	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 333	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 334	", or a combination, or all = -1)");
 335
 336static void log_irqs(u32 evt)
 337{
 338	if (likely(!(param_debug &
 339			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 340		return;
 341
 342	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 343	    !(evt & OHCI1394_busReset))
 
 344		return;
 345
 346	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 347	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 348	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 349	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 350	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 351	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 352	    evt & OHCI1394_isochRx		? " IR"			: "",
 353	    evt & OHCI1394_isochTx		? " IT"			: "",
 354	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 355	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 356	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 357	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 358	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 359	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 360	    evt & OHCI1394_busReset		? " busReset"		: "",
 361	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 362		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 363		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 364		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 365		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 366		    OHCI1394_cycleInconsistent |
 367		    OHCI1394_regAccessFail | OHCI1394_busReset)
 368						? " ?"			: "");
 369}
 370
 371static const char *speed[] = {
 372	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 373};
 374static const char *power[] = {
 375	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 376	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 377};
 378static const char port[] = { '.', '-', 'p', 'c', };
 379
 380static char _p(u32 *s, int shift)
 381{
 382	return port[*s >> shift & 3];
 383}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
 386{
 387	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 388		return;
 389
 390	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
 391		  self_id_count, generation, node_id);
 392
 393	for (; self_id_count--; ++s)
 394		if ((*s & 1 << 23) == 0)
 395			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
 396			    "%s gc=%d %s %s%s%s\n",
 397			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 398			    speed[*s >> 14 & 3], *s >> 16 & 63,
 399			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 400			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 401		else
 402			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 403			    *s, *s >> 24 & 63,
 404			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 405			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406}
 407
 408static const char *evts[] = {
 409	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 410	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 411	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 412	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 413	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 414	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 415	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 416	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 417	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 418	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 419	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 420	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 421	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 422	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 423	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 424	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 425	[0x20] = "pending/cancelled",
 426};
 427static const char *tcodes[] = {
 428	[0x0] = "QW req",		[0x1] = "BW req",
 429	[0x2] = "W resp",		[0x3] = "-reserved-",
 430	[0x4] = "QR req",		[0x5] = "BR req",
 431	[0x6] = "QR resp",		[0x7] = "BR resp",
 432	[0x8] = "cycle start",		[0x9] = "Lk req",
 433	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 434	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 435	[0xe] = "link internal",	[0xf] = "-reserved-",
 436};
 437
 438static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
 
 439{
 440	int tcode = header[0] >> 4 & 0xf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	char specific[12];
 442
 443	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 444		return;
 445
 446	if (unlikely(evt >= ARRAY_SIZE(evts)))
 447			evt = 0x1f;
 448
 449	if (evt == OHCI1394_evt_bus_reset) {
 450		fw_notify("A%c evt_bus_reset, generation %d\n",
 451		    dir, (header[2] >> 16) & 0xff);
 452		return;
 453	}
 454
 455	switch (tcode) {
 456	case 0x0: case 0x6: case 0x8:
 
 
 457		snprintf(specific, sizeof(specific), " = %08x",
 458			 be32_to_cpu((__force __be32)header[3]));
 459		break;
 460	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 
 
 
 
 461		snprintf(specific, sizeof(specific), " %x,%x",
 462			 header[3] >> 16, header[3] & 0xffff);
 
 463		break;
 464	default:
 465		specific[0] = '\0';
 466	}
 467
 468	switch (tcode) {
 469	case 0xa:
 470		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
 
 471		break;
 472	case 0xe:
 473		fw_notify("A%c %s, PHY %08x %08x\n",
 474			  dir, evts[evt], header[1], header[2]);
 475		break;
 476	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 477		fw_notify("A%c spd %x tl %02x, "
 478		    "%04x -> %04x, %s, "
 479		    "%s, %04x%08x%s\n",
 480		    dir, speed, header[0] >> 10 & 0x3f,
 481		    header[1] >> 16, header[0] >> 16, evts[evt],
 482		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 
 
 
 483		break;
 484	default:
 485		fw_notify("A%c spd %x tl %02x, "
 486		    "%04x -> %04x, %s, "
 487		    "%s%s\n",
 488		    dir, speed, header[0] >> 10 & 0x3f,
 489		    header[1] >> 16, header[0] >> 16, evts[evt],
 490		    tcodes[tcode], specific);
 491	}
 492}
 493
 494#else
 495
 496#define param_debug 0
 497static inline void log_irqs(u32 evt) {}
 498static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
 499static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
 500
 501#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
 502
 503static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 504{
 505	writel(data, ohci->registers + offset);
 506}
 507
 508static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 509{
 510	return readl(ohci->registers + offset);
 511}
 512
 513static inline void flush_writes(const struct fw_ohci *ohci)
 514{
 515	/* Do a dummy read to flush writes. */
 516	reg_read(ohci, OHCI1394_Version);
 517}
 518
 519/*
 520 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 521 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 522 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 523 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 524 */
 525static int read_phy_reg(struct fw_ohci *ohci, int addr)
 526{
 527	u32 val;
 528	int i;
 529
 530	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 531	for (i = 0; i < 3 + 100; i++) {
 532		val = reg_read(ohci, OHCI1394_PhyControl);
 533		if (!~val)
 534			return -ENODEV; /* Card was ejected. */
 535
 536		if (val & OHCI1394_PhyControl_ReadDone)
 537			return OHCI1394_PhyControl_ReadData(val);
 538
 539		/*
 540		 * Try a few times without waiting.  Sleeping is necessary
 541		 * only when the link/PHY interface is busy.
 542		 */
 543		if (i >= 3)
 544			msleep(1);
 545	}
 546	fw_error("failed to read phy reg\n");
 
 547
 548	return -EBUSY;
 549}
 550
 551static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 552{
 553	int i;
 554
 555	reg_write(ohci, OHCI1394_PhyControl,
 556		  OHCI1394_PhyControl_Write(addr, val));
 557	for (i = 0; i < 3 + 100; i++) {
 558		val = reg_read(ohci, OHCI1394_PhyControl);
 559		if (!~val)
 560			return -ENODEV; /* Card was ejected. */
 561
 562		if (!(val & OHCI1394_PhyControl_WritePending))
 563			return 0;
 564
 565		if (i >= 3)
 566			msleep(1);
 567	}
 568	fw_error("failed to write phy reg\n");
 
 569
 570	return -EBUSY;
 571}
 572
 573static int update_phy_reg(struct fw_ohci *ohci, int addr,
 574			  int clear_bits, int set_bits)
 575{
 576	int ret = read_phy_reg(ohci, addr);
 577	if (ret < 0)
 578		return ret;
 579
 580	/*
 581	 * The interrupt status bits are cleared by writing a one bit.
 582	 * Avoid clearing them unless explicitly requested in set_bits.
 583	 */
 584	if (addr == 5)
 585		clear_bits |= PHY_INT_STATUS_BITS;
 586
 587	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 588}
 589
 590static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 591{
 592	int ret;
 593
 594	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 595	if (ret < 0)
 596		return ret;
 597
 598	return read_phy_reg(ohci, addr);
 599}
 600
 601static int ohci_read_phy_reg(struct fw_card *card, int addr)
 602{
 603	struct fw_ohci *ohci = fw_ohci(card);
 604	int ret;
 605
 606	mutex_lock(&ohci->phy_reg_mutex);
 607	ret = read_phy_reg(ohci, addr);
 608	mutex_unlock(&ohci->phy_reg_mutex);
 609
 610	return ret;
 611}
 612
 613static int ohci_update_phy_reg(struct fw_card *card, int addr,
 614			       int clear_bits, int set_bits)
 615{
 616	struct fw_ohci *ohci = fw_ohci(card);
 617	int ret;
 618
 619	mutex_lock(&ohci->phy_reg_mutex);
 620	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 621	mutex_unlock(&ohci->phy_reg_mutex);
 622
 623	return ret;
 624}
 625
 626static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 627{
 628	return page_private(ctx->pages[i]);
 629}
 630
 631static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 632{
 633	struct descriptor *d;
 634
 635	d = &ctx->descriptors[index];
 636	d->branch_address  &= cpu_to_le32(~0xf);
 637	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 638	d->transfer_status =  0;
 639
 640	wmb(); /* finish init of new descriptors before branch_address update */
 641	d = &ctx->descriptors[ctx->last_buffer_index];
 642	d->branch_address  |= cpu_to_le32(1);
 643
 644	ctx->last_buffer_index = index;
 645
 646	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 647}
 648
 649static void ar_context_release(struct ar_context *ctx)
 650{
 
 651	unsigned int i;
 652
 653	if (ctx->buffer)
 654		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 655
 656	for (i = 0; i < AR_BUFFERS; i++)
 657		if (ctx->pages[i]) {
 658			dma_unmap_page(ctx->ohci->card.device,
 659				       ar_buffer_bus(ctx, i),
 660				       PAGE_SIZE, DMA_FROM_DEVICE);
 661			__free_page(ctx->pages[i]);
 662		}
 663}
 664
 665static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 666{
 667	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 668		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 669		flush_writes(ctx->ohci);
 
 
 670
 671		fw_error("AR error: %s; DMA stopped\n", error_msg);
 672	}
 673	/* FIXME: restart? */
 674}
 675
 676static inline unsigned int ar_next_buffer_index(unsigned int index)
 677{
 678	return (index + 1) % AR_BUFFERS;
 679}
 680
 681static inline unsigned int ar_prev_buffer_index(unsigned int index)
 682{
 683	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 684}
 685
 686static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 687{
 688	return ar_next_buffer_index(ctx->last_buffer_index);
 689}
 690
 691/*
 692 * We search for the buffer that contains the last AR packet DMA data written
 693 * by the controller.
 694 */
 695static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 696						 unsigned int *buffer_offset)
 697{
 698	unsigned int i, next_i, last = ctx->last_buffer_index;
 699	__le16 res_count, next_res_count;
 700
 701	i = ar_first_buffer_index(ctx);
 702	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 703
 704	/* A buffer that is not yet completely filled must be the last one. */
 705	while (i != last && res_count == 0) {
 706
 707		/* Peek at the next descriptor. */
 708		next_i = ar_next_buffer_index(i);
 709		rmb(); /* read descriptors in order */
 710		next_res_count = ACCESS_ONCE(
 711				ctx->descriptors[next_i].res_count);
 712		/*
 713		 * If the next descriptor is still empty, we must stop at this
 714		 * descriptor.
 715		 */
 716		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 717			/*
 718			 * The exception is when the DMA data for one packet is
 719			 * split over three buffers; in this case, the middle
 720			 * buffer's descriptor might be never updated by the
 721			 * controller and look still empty, and we have to peek
 722			 * at the third one.
 723			 */
 724			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 725				next_i = ar_next_buffer_index(next_i);
 726				rmb();
 727				next_res_count = ACCESS_ONCE(
 728					ctx->descriptors[next_i].res_count);
 729				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 730					goto next_buffer_is_active;
 731			}
 732
 733			break;
 734		}
 735
 736next_buffer_is_active:
 737		i = next_i;
 738		res_count = next_res_count;
 739	}
 740
 741	rmb(); /* read res_count before the DMA data */
 742
 743	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 744	if (*buffer_offset > PAGE_SIZE) {
 745		*buffer_offset = 0;
 746		ar_context_abort(ctx, "corrupted descriptor");
 747	}
 748
 749	return i;
 750}
 751
 752static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 753				    unsigned int end_buffer_index,
 754				    unsigned int end_buffer_offset)
 755{
 756	unsigned int i;
 757
 758	i = ar_first_buffer_index(ctx);
 759	while (i != end_buffer_index) {
 760		dma_sync_single_for_cpu(ctx->ohci->card.device,
 761					ar_buffer_bus(ctx, i),
 762					PAGE_SIZE, DMA_FROM_DEVICE);
 763		i = ar_next_buffer_index(i);
 764	}
 765	if (end_buffer_offset > 0)
 766		dma_sync_single_for_cpu(ctx->ohci->card.device,
 767					ar_buffer_bus(ctx, i),
 768					end_buffer_offset, DMA_FROM_DEVICE);
 769}
 770
 771#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 772#define cond_le32_to_cpu(v) \
 773	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 
 
 
 
 
 
 
 774#else
 775#define cond_le32_to_cpu(v) le32_to_cpu(v)
 
 
 
 
 
 
 
 
 776#endif
 777
 778static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 779{
 780	struct fw_ohci *ohci = ctx->ohci;
 781	struct fw_packet p;
 782	u32 status, length, tcode;
 783	int evt;
 784
 785	p.header[0] = cond_le32_to_cpu(buffer[0]);
 786	p.header[1] = cond_le32_to_cpu(buffer[1]);
 787	p.header[2] = cond_le32_to_cpu(buffer[2]);
 788
 789	tcode = (p.header[0] >> 4) & 0x0f;
 790	switch (tcode) {
 791	case TCODE_WRITE_QUADLET_REQUEST:
 792	case TCODE_READ_QUADLET_RESPONSE:
 793		p.header[3] = (__force __u32) buffer[3];
 794		p.header_length = 16;
 795		p.payload_length = 0;
 796		break;
 797
 798	case TCODE_READ_BLOCK_REQUEST :
 799		p.header[3] = cond_le32_to_cpu(buffer[3]);
 800		p.header_length = 16;
 801		p.payload_length = 0;
 802		break;
 803
 804	case TCODE_WRITE_BLOCK_REQUEST:
 805	case TCODE_READ_BLOCK_RESPONSE:
 806	case TCODE_LOCK_REQUEST:
 807	case TCODE_LOCK_RESPONSE:
 808		p.header[3] = cond_le32_to_cpu(buffer[3]);
 809		p.header_length = 16;
 810		p.payload_length = p.header[3] >> 16;
 811		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 812			ar_context_abort(ctx, "invalid packet length");
 813			return NULL;
 814		}
 815		break;
 816
 817	case TCODE_WRITE_RESPONSE:
 818	case TCODE_READ_QUADLET_REQUEST:
 819	case OHCI_TCODE_PHY_PACKET:
 820		p.header_length = 12;
 821		p.payload_length = 0;
 822		break;
 823
 824	default:
 825		ar_context_abort(ctx, "invalid tcode");
 826		return NULL;
 827	}
 828
 829	p.payload = (void *) buffer + p.header_length;
 830
 831	/* FIXME: What to do about evt_* errors? */
 832	length = (p.header_length + p.payload_length + 3) / 4;
 833	status = cond_le32_to_cpu(buffer[length]);
 834	evt    = (status >> 16) & 0x1f;
 835
 836	p.ack        = evt - 16;
 837	p.speed      = (status >> 21) & 0x7;
 838	p.timestamp  = status & 0xffff;
 839	p.generation = ohci->request_generation;
 840
 841	log_ar_at_event('R', p.speed, p.header, evt);
 842
 843	/*
 844	 * Several controllers, notably from NEC and VIA, forget to
 845	 * write ack_complete status at PHY packet reception.
 846	 */
 847	if (evt == OHCI1394_evt_no_status &&
 848	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 849		p.ack = ACK_COMPLETE;
 850
 851	/*
 852	 * The OHCI bus reset handler synthesizes a PHY packet with
 853	 * the new generation number when a bus reset happens (see
 854	 * section 8.4.2.3).  This helps us determine when a request
 855	 * was received and make sure we send the response in the same
 856	 * generation.  We only need this for requests; for responses
 857	 * we use the unique tlabel for finding the matching
 858	 * request.
 859	 *
 860	 * Alas some chips sometimes emit bus reset packets with a
 861	 * wrong generation.  We set the correct generation for these
 862	 * at a slightly incorrect time (in bus_reset_tasklet).
 863	 */
 864	if (evt == OHCI1394_evt_bus_reset) {
 865		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 866			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 867	} else if (ctx == &ohci->ar_request_ctx) {
 868		fw_core_handle_request(&ohci->card, &p);
 869	} else {
 870		fw_core_handle_response(&ohci->card, &p);
 871	}
 872
 873	return buffer + length + 1;
 874}
 875
 876static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 877{
 878	void *next;
 879
 880	while (p < end) {
 881		next = handle_ar_packet(ctx, p);
 882		if (!next)
 883			return p;
 884		p = next;
 885	}
 886
 887	return p;
 888}
 889
 890static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 891{
 892	unsigned int i;
 893
 894	i = ar_first_buffer_index(ctx);
 895	while (i != end_buffer) {
 896		dma_sync_single_for_device(ctx->ohci->card.device,
 897					   ar_buffer_bus(ctx, i),
 898					   PAGE_SIZE, DMA_FROM_DEVICE);
 899		ar_context_link_page(ctx, i);
 900		i = ar_next_buffer_index(i);
 901	}
 902}
 903
 904static void ar_context_tasklet(unsigned long data)
 905{
 906	struct ar_context *ctx = (struct ar_context *)data;
 907	unsigned int end_buffer_index, end_buffer_offset;
 908	void *p, *end;
 909
 910	p = ctx->pointer;
 911	if (!p)
 912		return;
 913
 914	end_buffer_index = ar_search_last_active_buffer(ctx,
 915							&end_buffer_offset);
 916	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 917	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 918
 919	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 920		/*
 921		 * The filled part of the overall buffer wraps around; handle
 922		 * all packets up to the buffer end here.  If the last packet
 923		 * wraps around, its tail will be visible after the buffer end
 924		 * because the buffer start pages are mapped there again.
 925		 */
 926		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 927		p = handle_ar_packets(ctx, p, buffer_end);
 928		if (p < buffer_end)
 929			goto error;
 930		/* adjust p to point back into the actual buffer */
 931		p -= AR_BUFFERS * PAGE_SIZE;
 932	}
 933
 934	p = handle_ar_packets(ctx, p, end);
 935	if (p != end) {
 936		if (p > end)
 937			ar_context_abort(ctx, "inconsistent descriptor");
 938		goto error;
 939	}
 940
 941	ctx->pointer = p;
 942	ar_recycle_buffers(ctx, end_buffer_index);
 943
 944	return;
 945
 946error:
 947	ctx->pointer = NULL;
 948}
 949
 950static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 951			   unsigned int descriptors_offset, u32 regs)
 952{
 
 953	unsigned int i;
 954	dma_addr_t dma_addr;
 955	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 956	struct descriptor *d;
 957
 958	ctx->regs        = regs;
 959	ctx->ohci        = ohci;
 960	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 961
 962	for (i = 0; i < AR_BUFFERS; i++) {
 963		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 
 964		if (!ctx->pages[i])
 965			goto out_of_memory;
 966		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
 967					0, PAGE_SIZE, DMA_FROM_DEVICE);
 968		if (dma_mapping_error(ohci->card.device, dma_addr)) {
 969			__free_page(ctx->pages[i]);
 970			ctx->pages[i] = NULL;
 971			goto out_of_memory;
 972		}
 973		set_page_private(ctx->pages[i], dma_addr);
 
 
 974	}
 975
 976	for (i = 0; i < AR_BUFFERS; i++)
 977		pages[i]              = ctx->pages[i];
 978	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
 979		pages[AR_BUFFERS + i] = ctx->pages[i];
 980	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
 981				 -1, PAGE_KERNEL);
 982	if (!ctx->buffer)
 983		goto out_of_memory;
 984
 985	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
 986	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
 987
 988	for (i = 0; i < AR_BUFFERS; i++) {
 989		d = &ctx->descriptors[i];
 990		d->req_count      = cpu_to_le16(PAGE_SIZE);
 991		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
 992						DESCRIPTOR_STATUS |
 993						DESCRIPTOR_BRANCH_ALWAYS);
 994		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
 995		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
 996			ar_next_buffer_index(i) * sizeof(struct descriptor));
 997	}
 998
 999	return 0;
1000
1001out_of_memory:
1002	ar_context_release(ctx);
1003
1004	return -ENOMEM;
1005}
1006
1007static void ar_context_run(struct ar_context *ctx)
1008{
1009	unsigned int i;
1010
1011	for (i = 0; i < AR_BUFFERS; i++)
1012		ar_context_link_page(ctx, i);
1013
1014	ctx->pointer = ctx->buffer;
1015
1016	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1017	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1018}
1019
1020static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1021{
1022	__le16 branch;
1023
1024	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1025
1026	/* figure out which descriptor the branch address goes in */
1027	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1028		return d;
1029	else
1030		return d + z - 1;
1031}
1032
1033static void context_tasklet(unsigned long data)
1034{
1035	struct context *ctx = (struct context *) data;
1036	struct descriptor *d, *last;
1037	u32 address;
1038	int z;
1039	struct descriptor_buffer *desc;
1040
1041	desc = list_entry(ctx->buffer_list.next,
1042			struct descriptor_buffer, list);
1043	last = ctx->last;
1044	while (last->branch_address != 0) {
1045		struct descriptor_buffer *old_desc = desc;
1046		address = le32_to_cpu(last->branch_address);
1047		z = address & 0xf;
1048		address &= ~0xf;
 
1049
1050		/* If the branch address points to a buffer outside of the
1051		 * current buffer, advance to the next buffer. */
1052		if (address < desc->buffer_bus ||
1053				address >= desc->buffer_bus + desc->used)
1054			desc = list_entry(desc->list.next,
1055					struct descriptor_buffer, list);
1056		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1057		last = find_branch_descriptor(d, z);
1058
1059		if (!ctx->callback(ctx, d, last))
1060			break;
1061
1062		if (old_desc != desc) {
1063			/* If we've advanced to the next buffer, move the
1064			 * previous buffer to the free list. */
1065			unsigned long flags;
1066			old_desc->used = 0;
1067			spin_lock_irqsave(&ctx->ohci->lock, flags);
1068			list_move_tail(&old_desc->list, &ctx->buffer_list);
1069			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1070		}
1071		ctx->last = last;
1072	}
1073}
1074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075/*
1076 * Allocate a new buffer and add it to the list of free buffers for this
1077 * context.  Must be called with ohci->lock held.
1078 */
1079static int context_add_buffer(struct context *ctx)
1080{
1081	struct descriptor_buffer *desc;
1082	dma_addr_t uninitialized_var(bus_addr);
1083	int offset;
1084
1085	/*
1086	 * 16MB of descriptors should be far more than enough for any DMA
1087	 * program.  This will catch run-away userspace or DoS attacks.
1088	 */
1089	if (ctx->total_allocation >= 16*1024*1024)
1090		return -ENOMEM;
1091
1092	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1093			&bus_addr, GFP_ATOMIC);
1094	if (!desc)
1095		return -ENOMEM;
1096
1097	offset = (void *)&desc->buffer - (void *)desc;
1098	desc->buffer_size = PAGE_SIZE - offset;
 
 
 
 
 
 
1099	desc->buffer_bus = bus_addr + offset;
1100	desc->used = 0;
1101
1102	list_add_tail(&desc->list, &ctx->buffer_list);
1103	ctx->total_allocation += PAGE_SIZE;
1104
1105	return 0;
1106}
1107
1108static int context_init(struct context *ctx, struct fw_ohci *ohci,
1109			u32 regs, descriptor_callback_t callback)
1110{
1111	ctx->ohci = ohci;
1112	ctx->regs = regs;
1113	ctx->total_allocation = 0;
1114
1115	INIT_LIST_HEAD(&ctx->buffer_list);
1116	if (context_add_buffer(ctx) < 0)
1117		return -ENOMEM;
1118
1119	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1120			struct descriptor_buffer, list);
1121
1122	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1123	ctx->callback = callback;
1124
1125	/*
1126	 * We put a dummy descriptor in the buffer that has a NULL
1127	 * branch address and looks like it's been sent.  That way we
1128	 * have a descriptor to append DMA programs to.
1129	 */
1130	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1131	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1132	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1133	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1134	ctx->last = ctx->buffer_tail->buffer;
1135	ctx->prev = ctx->buffer_tail->buffer;
 
1136
1137	return 0;
1138}
1139
1140static void context_release(struct context *ctx)
1141{
1142	struct fw_card *card = &ctx->ohci->card;
1143	struct descriptor_buffer *desc, *tmp;
1144
1145	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1146		dma_free_coherent(card->device, PAGE_SIZE, desc,
1147			desc->buffer_bus -
1148			((void *)&desc->buffer - (void *)desc));
1149}
1150
1151/* Must be called with ohci->lock held */
1152static struct descriptor *context_get_descriptors(struct context *ctx,
1153						  int z, dma_addr_t *d_bus)
1154{
1155	struct descriptor *d = NULL;
1156	struct descriptor_buffer *desc = ctx->buffer_tail;
1157
1158	if (z * sizeof(*d) > desc->buffer_size)
1159		return NULL;
1160
1161	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1162		/* No room for the descriptor in this buffer, so advance to the
1163		 * next one. */
1164
1165		if (desc->list.next == &ctx->buffer_list) {
1166			/* If there is no free buffer next in the list,
1167			 * allocate one. */
1168			if (context_add_buffer(ctx) < 0)
1169				return NULL;
1170		}
1171		desc = list_entry(desc->list.next,
1172				struct descriptor_buffer, list);
1173		ctx->buffer_tail = desc;
1174	}
1175
1176	d = desc->buffer + desc->used / sizeof(*d);
1177	memset(d, 0, z * sizeof(*d));
1178	*d_bus = desc->buffer_bus + desc->used;
1179
1180	return d;
1181}
1182
1183static void context_run(struct context *ctx, u32 extra)
1184{
1185	struct fw_ohci *ohci = ctx->ohci;
1186
1187	reg_write(ohci, COMMAND_PTR(ctx->regs),
1188		  le32_to_cpu(ctx->last->branch_address));
1189	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1190	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1191	ctx->running = true;
1192	flush_writes(ohci);
1193}
1194
1195static void context_append(struct context *ctx,
1196			   struct descriptor *d, int z, int extra)
1197{
1198	dma_addr_t d_bus;
1199	struct descriptor_buffer *desc = ctx->buffer_tail;
 
1200
1201	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1202
1203	desc->used += (z + extra) * sizeof(*d);
1204
1205	wmb(); /* finish init of new descriptors before branch_address update */
1206	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1207	ctx->prev = find_branch_descriptor(d, z);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208}
1209
1210static void context_stop(struct context *ctx)
1211{
 
1212	u32 reg;
1213	int i;
1214
1215	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1216	ctx->running = false;
1217
1218	for (i = 0; i < 1000; i++) {
1219		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1220		if ((reg & CONTEXT_ACTIVE) == 0)
1221			return;
1222
1223		if (i)
1224			udelay(10);
1225	}
1226	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1227}
1228
1229struct driver_data {
1230	u8 inline_data[8];
1231	struct fw_packet *packet;
1232};
1233
1234/*
1235 * This function apppends a packet to the DMA queue for transmission.
1236 * Must always be called with the ochi->lock held to ensure proper
1237 * generation handling and locking around packet queue manipulation.
1238 */
1239static int at_context_queue_packet(struct context *ctx,
1240				   struct fw_packet *packet)
1241{
1242	struct fw_ohci *ohci = ctx->ohci;
1243	dma_addr_t d_bus, uninitialized_var(payload_bus);
1244	struct driver_data *driver_data;
1245	struct descriptor *d, *last;
1246	__le32 *header;
1247	int z, tcode;
1248
1249	d = context_get_descriptors(ctx, 4, &d_bus);
1250	if (d == NULL) {
1251		packet->ack = RCODE_SEND_ERROR;
1252		return -1;
1253	}
1254
1255	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1256	d[0].res_count = cpu_to_le16(packet->timestamp);
1257
1258	/*
1259	 * The DMA format for asyncronous link packets is different
1260	 * from the IEEE1394 layout, so shift the fields around
1261	 * accordingly.
1262	 */
1263
1264	tcode = (packet->header[0] >> 4) & 0x0f;
1265	header = (__le32 *) &d[1];
1266	switch (tcode) {
1267	case TCODE_WRITE_QUADLET_REQUEST:
1268	case TCODE_WRITE_BLOCK_REQUEST:
1269	case TCODE_WRITE_RESPONSE:
1270	case TCODE_READ_QUADLET_REQUEST:
1271	case TCODE_READ_BLOCK_REQUEST:
1272	case TCODE_READ_QUADLET_RESPONSE:
1273	case TCODE_READ_BLOCK_RESPONSE:
1274	case TCODE_LOCK_REQUEST:
1275	case TCODE_LOCK_RESPONSE:
1276		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1277					(packet->speed << 16));
1278		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1279					(packet->header[0] & 0xffff0000));
1280		header[2] = cpu_to_le32(packet->header[2]);
 
 
 
 
 
 
 
 
 
 
1281
1282		if (TCODE_IS_BLOCK_PACKET(tcode))
1283			header[3] = cpu_to_le32(packet->header[3]);
1284		else
1285			header[3] = (__force __le32) packet->header[3];
1286
1287		d[0].req_count = cpu_to_le16(packet->header_length);
1288		break;
1289
1290	case TCODE_LINK_INTERNAL:
1291		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1292					(packet->speed << 16));
 
1293		header[1] = cpu_to_le32(packet->header[1]);
1294		header[2] = cpu_to_le32(packet->header[2]);
1295		d[0].req_count = cpu_to_le16(12);
1296
1297		if (is_ping_packet(&packet->header[1]))
1298			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1299		break;
1300
1301	case TCODE_STREAM_DATA:
1302		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1303					(packet->speed << 16));
1304		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
 
 
 
 
 
1305		d[0].req_count = cpu_to_le16(8);
1306		break;
1307
1308	default:
1309		/* BUG(); */
1310		packet->ack = RCODE_SEND_ERROR;
1311		return -1;
1312	}
1313
1314	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1315	driver_data = (struct driver_data *) &d[3];
1316	driver_data->packet = packet;
1317	packet->driver_data = driver_data;
1318
1319	if (packet->payload_length > 0) {
1320		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1321			payload_bus = dma_map_single(ohci->card.device,
1322						     packet->payload,
1323						     packet->payload_length,
1324						     DMA_TO_DEVICE);
1325			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1326				packet->ack = RCODE_SEND_ERROR;
1327				return -1;
1328			}
1329			packet->payload_bus	= payload_bus;
1330			packet->payload_mapped	= true;
1331		} else {
1332			memcpy(driver_data->inline_data, packet->payload,
1333			       packet->payload_length);
1334			payload_bus = d_bus + 3 * sizeof(*d);
1335		}
1336
1337		d[2].req_count    = cpu_to_le16(packet->payload_length);
1338		d[2].data_address = cpu_to_le32(payload_bus);
1339		last = &d[2];
1340		z = 3;
1341	} else {
1342		last = &d[0];
1343		z = 2;
1344	}
1345
1346	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1347				     DESCRIPTOR_IRQ_ALWAYS |
1348				     DESCRIPTOR_BRANCH_ALWAYS);
1349
1350	/* FIXME: Document how the locking works. */
1351	if (ohci->generation != packet->generation) {
1352		if (packet->payload_mapped)
1353			dma_unmap_single(ohci->card.device, payload_bus,
1354					 packet->payload_length, DMA_TO_DEVICE);
1355		packet->ack = RCODE_GENERATION;
1356		return -1;
1357	}
1358
1359	context_append(ctx, d, z, 4 - z);
1360
1361	if (ctx->running)
1362		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1363	else
1364		context_run(ctx, 0);
1365
1366	return 0;
1367}
1368
1369static void at_context_flush(struct context *ctx)
1370{
1371	tasklet_disable(&ctx->tasklet);
1372
1373	ctx->flushing = true;
1374	context_tasklet((unsigned long)ctx);
1375	ctx->flushing = false;
1376
1377	tasklet_enable(&ctx->tasklet);
1378}
1379
1380static int handle_at_packet(struct context *context,
1381			    struct descriptor *d,
1382			    struct descriptor *last)
1383{
1384	struct driver_data *driver_data;
1385	struct fw_packet *packet;
1386	struct fw_ohci *ohci = context->ohci;
1387	int evt;
1388
1389	if (last->transfer_status == 0 && !context->flushing)
1390		/* This descriptor isn't done yet, stop iteration. */
1391		return 0;
1392
1393	driver_data = (struct driver_data *) &d[3];
1394	packet = driver_data->packet;
1395	if (packet == NULL)
1396		/* This packet was cancelled, just continue. */
1397		return 1;
1398
1399	if (packet->payload_mapped)
1400		dma_unmap_single(ohci->card.device, packet->payload_bus,
1401				 packet->payload_length, DMA_TO_DEVICE);
1402
1403	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1404	packet->timestamp = le16_to_cpu(last->res_count);
1405
1406	log_ar_at_event('T', packet->speed, packet->header, evt);
1407
1408	switch (evt) {
1409	case OHCI1394_evt_timeout:
1410		/* Async response transmit timed out. */
1411		packet->ack = RCODE_CANCELLED;
1412		break;
1413
1414	case OHCI1394_evt_flushed:
1415		/*
1416		 * The packet was flushed should give same error as
1417		 * when we try to use a stale generation count.
1418		 */
1419		packet->ack = RCODE_GENERATION;
1420		break;
1421
1422	case OHCI1394_evt_missing_ack:
1423		if (context->flushing)
1424			packet->ack = RCODE_GENERATION;
1425		else {
1426			/*
1427			 * Using a valid (current) generation count, but the
1428			 * node is not on the bus or not sending acks.
1429			 */
1430			packet->ack = RCODE_NO_ACK;
1431		}
1432		break;
1433
1434	case ACK_COMPLETE + 0x10:
1435	case ACK_PENDING + 0x10:
1436	case ACK_BUSY_X + 0x10:
1437	case ACK_BUSY_A + 0x10:
1438	case ACK_BUSY_B + 0x10:
1439	case ACK_DATA_ERROR + 0x10:
1440	case ACK_TYPE_ERROR + 0x10:
1441		packet->ack = evt - 0x10;
1442		break;
1443
1444	case OHCI1394_evt_no_status:
1445		if (context->flushing) {
1446			packet->ack = RCODE_GENERATION;
1447			break;
1448		}
1449		/* fall through */
1450
1451	default:
1452		packet->ack = RCODE_SEND_ERROR;
1453		break;
1454	}
1455
1456	packet->callback(packet, &ohci->card, packet->ack);
1457
1458	return 1;
1459}
1460
1461#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1462#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1463#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1464#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1465#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1466
1467static void handle_local_rom(struct fw_ohci *ohci,
1468			     struct fw_packet *packet, u32 csr)
1469{
1470	struct fw_packet response;
1471	int tcode, length, i;
1472
1473	tcode = HEADER_GET_TCODE(packet->header[0]);
1474	if (TCODE_IS_BLOCK_PACKET(tcode))
1475		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1476	else
1477		length = 4;
1478
1479	i = csr - CSR_CONFIG_ROM;
1480	if (i + length > CONFIG_ROM_SIZE) {
1481		fw_fill_response(&response, packet->header,
1482				 RCODE_ADDRESS_ERROR, NULL, 0);
1483	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1484		fw_fill_response(&response, packet->header,
1485				 RCODE_TYPE_ERROR, NULL, 0);
1486	} else {
1487		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1488				 (void *) ohci->config_rom + i, length);
1489	}
1490
 
 
1491	fw_core_handle_response(&ohci->card, &response);
1492}
1493
1494static void handle_local_lock(struct fw_ohci *ohci,
1495			      struct fw_packet *packet, u32 csr)
1496{
1497	struct fw_packet response;
1498	int tcode, length, ext_tcode, sel, try;
1499	__be32 *payload, lock_old;
1500	u32 lock_arg, lock_data;
1501
1502	tcode = HEADER_GET_TCODE(packet->header[0]);
1503	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1504	payload = packet->payload;
1505	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1506
1507	if (tcode == TCODE_LOCK_REQUEST &&
1508	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1509		lock_arg = be32_to_cpu(payload[0]);
1510		lock_data = be32_to_cpu(payload[1]);
1511	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1512		lock_arg = 0;
1513		lock_data = 0;
1514	} else {
1515		fw_fill_response(&response, packet->header,
1516				 RCODE_TYPE_ERROR, NULL, 0);
1517		goto out;
1518	}
1519
1520	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1521	reg_write(ohci, OHCI1394_CSRData, lock_data);
1522	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1523	reg_write(ohci, OHCI1394_CSRControl, sel);
1524
1525	for (try = 0; try < 20; try++)
1526		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1527			lock_old = cpu_to_be32(reg_read(ohci,
1528							OHCI1394_CSRData));
1529			fw_fill_response(&response, packet->header,
1530					 RCODE_COMPLETE,
1531					 &lock_old, sizeof(lock_old));
1532			goto out;
1533		}
1534
1535	fw_error("swap not done (CSR lock timeout)\n");
1536	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1537
1538 out:
 
 
1539	fw_core_handle_response(&ohci->card, &response);
1540}
1541
1542static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1543{
1544	u64 offset, csr;
1545
1546	if (ctx == &ctx->ohci->at_request_ctx) {
1547		packet->ack = ACK_PENDING;
1548		packet->callback(packet, &ctx->ohci->card, packet->ack);
1549	}
1550
1551	offset =
1552		((unsigned long long)
1553		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1554		packet->header[2];
1555	csr = offset - CSR_REGISTER_BASE;
1556
1557	/* Handle config rom reads. */
1558	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1559		handle_local_rom(ctx->ohci, packet, csr);
1560	else switch (csr) {
1561	case CSR_BUS_MANAGER_ID:
1562	case CSR_BANDWIDTH_AVAILABLE:
1563	case CSR_CHANNELS_AVAILABLE_HI:
1564	case CSR_CHANNELS_AVAILABLE_LO:
1565		handle_local_lock(ctx->ohci, packet, csr);
1566		break;
1567	default:
1568		if (ctx == &ctx->ohci->at_request_ctx)
1569			fw_core_handle_request(&ctx->ohci->card, packet);
1570		else
1571			fw_core_handle_response(&ctx->ohci->card, packet);
1572		break;
1573	}
1574
1575	if (ctx == &ctx->ohci->at_response_ctx) {
1576		packet->ack = ACK_COMPLETE;
1577		packet->callback(packet, &ctx->ohci->card, packet->ack);
1578	}
1579}
1580
1581static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1582{
1583	unsigned long flags;
1584	int ret;
1585
1586	spin_lock_irqsave(&ctx->ohci->lock, flags);
1587
1588	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1589	    ctx->ohci->generation == packet->generation) {
1590		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 
 
 
 
1591		handle_local_request(ctx, packet);
1592		return;
1593	}
1594
1595	ret = at_context_queue_packet(ctx, packet);
1596	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1597
1598	if (ret < 0)
1599		packet->callback(packet, &ctx->ohci->card, packet->ack);
 
1600
 
 
1601}
1602
1603static void detect_dead_context(struct fw_ohci *ohci,
1604				const char *name, unsigned int regs)
1605{
1606	u32 ctl;
1607
1608	ctl = reg_read(ohci, CONTROL_SET(regs));
1609	if (ctl & CONTEXT_DEAD) {
1610#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1611		fw_error("DMA context %s has stopped, error code: %s\n",
1612			 name, evts[ctl & 0x1f]);
1613#else
1614		fw_error("DMA context %s has stopped, error code: %#x\n",
1615			 name, ctl & 0x1f);
1616#endif
1617	}
1618}
1619
1620static void handle_dead_contexts(struct fw_ohci *ohci)
1621{
1622	unsigned int i;
1623	char name[8];
1624
1625	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1626	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1627	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1628	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1629	for (i = 0; i < 32; ++i) {
1630		if (!(ohci->it_context_support & (1 << i)))
1631			continue;
1632		sprintf(name, "IT%u", i);
1633		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1634	}
1635	for (i = 0; i < 32; ++i) {
1636		if (!(ohci->ir_context_support & (1 << i)))
1637			continue;
1638		sprintf(name, "IR%u", i);
1639		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1640	}
1641	/* TODO: maybe try to flush and restart the dead contexts */
1642}
1643
1644static u32 cycle_timer_ticks(u32 cycle_timer)
1645{
1646	u32 ticks;
1647
1648	ticks = cycle_timer & 0xfff;
1649	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1650	ticks += (3072 * 8000) * (cycle_timer >> 25);
1651
1652	return ticks;
1653}
1654
1655/*
1656 * Some controllers exhibit one or more of the following bugs when updating the
1657 * iso cycle timer register:
1658 *  - When the lowest six bits are wrapping around to zero, a read that happens
1659 *    at the same time will return garbage in the lowest ten bits.
1660 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1661 *    not incremented for about 60 ns.
1662 *  - Occasionally, the entire register reads zero.
1663 *
1664 * To catch these, we read the register three times and ensure that the
1665 * difference between each two consecutive reads is approximately the same, i.e.
1666 * less than twice the other.  Furthermore, any negative difference indicates an
1667 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1668 * execute, so we have enough precision to compute the ratio of the differences.)
1669 */
1670static u32 get_cycle_time(struct fw_ohci *ohci)
1671{
1672	u32 c0, c1, c2;
1673	u32 t0, t1, t2;
1674	s32 diff01, diff12;
1675	int i;
1676
 
 
 
1677	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1678
1679	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1680		i = 0;
1681		c1 = c2;
1682		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1683		do {
1684			c0 = c1;
1685			c1 = c2;
1686			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1687			t0 = cycle_timer_ticks(c0);
1688			t1 = cycle_timer_ticks(c1);
1689			t2 = cycle_timer_ticks(c2);
1690			diff01 = t1 - t0;
1691			diff12 = t2 - t1;
1692		} while ((diff01 <= 0 || diff12 <= 0 ||
1693			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1694			 && i++ < 20);
1695	}
1696
1697	return c2;
1698}
1699
1700/*
1701 * This function has to be called at least every 64 seconds.  The bus_time
1702 * field stores not only the upper 25 bits of the BUS_TIME register but also
1703 * the most significant bit of the cycle timer in bit 6 so that we can detect
1704 * changes in this bit.
1705 */
1706static u32 update_bus_time(struct fw_ohci *ohci)
1707{
1708	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1709
 
 
 
 
 
 
 
1710	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1711		ohci->bus_time += 0x40;
1712
1713	return ohci->bus_time | cycle_time_seconds;
1714}
1715
1716static void bus_reset_tasklet(unsigned long data)
 
1717{
1718	struct fw_ohci *ohci = (struct fw_ohci *)data;
1719	int self_id_count, i, j, reg;
1720	int generation, new_generation;
1721	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	void *free_rom = NULL;
1723	dma_addr_t free_rom_bus = 0;
1724	bool is_new_root;
1725
1726	reg = reg_read(ohci, OHCI1394_NodeID);
1727	if (!(reg & OHCI1394_NodeID_idValid)) {
1728		fw_notify("node ID not valid, new bus reset in progress\n");
 
1729		return;
1730	}
1731	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1732		fw_notify("malconfigured bus\n");
1733		return;
1734	}
1735	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1736			       OHCI1394_NodeID_nodeNumber);
1737
1738	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1739	if (!(ohci->is_root && is_new_root))
1740		reg_write(ohci, OHCI1394_LinkControlSet,
1741			  OHCI1394_LinkControl_cycleMaster);
1742	ohci->is_root = is_new_root;
1743
1744	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1745	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1746		fw_notify("inconsistent self IDs\n");
1747		return;
1748	}
1749	/*
1750	 * The count in the SelfIDCount register is the number of
1751	 * bytes in the self ID receive buffer.  Since we also receive
1752	 * the inverted quadlets and a header quadlet, we shift one
1753	 * bit extra to get the actual number of self IDs.
1754	 */
1755	self_id_count = (reg >> 3) & 0xff;
1756	if (self_id_count == 0 || self_id_count > 252) {
1757		fw_notify("inconsistent self IDs\n");
 
1758		return;
1759	}
1760	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
 
 
1761	rmb();
1762
1763	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1764		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1765			fw_notify("inconsistent self IDs\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766			return;
1767		}
1768		ohci->self_id_buffer[j] =
1769				cond_le32_to_cpu(ohci->self_id_cpu[i]);
 
 
 
1770	}
1771	rmb();
1772
1773	/*
1774	 * Check the consistency of the self IDs we just read.  The
1775	 * problem we face is that a new bus reset can start while we
1776	 * read out the self IDs from the DMA buffer. If this happens,
1777	 * the DMA buffer will be overwritten with new self IDs and we
1778	 * will read out inconsistent data.  The OHCI specification
1779	 * (section 11.2) recommends a technique similar to
1780	 * linux/seqlock.h, where we remember the generation of the
1781	 * self IDs in the buffer before reading them out and compare
1782	 * it to the current generation after reading them out.  If
1783	 * the two generations match we know we have a consistent set
1784	 * of self IDs.
1785	 */
1786
1787	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
 
1788	if (new_generation != generation) {
1789		fw_notify("recursive bus reset detected, "
1790			  "discarding self ids\n");
1791		return;
1792	}
1793
1794	/* FIXME: Document how the locking works. */
1795	spin_lock_irqsave(&ohci->lock, flags);
1796
1797	ohci->generation = -1; /* prevent AT packet queueing */
1798	context_stop(&ohci->at_request_ctx);
1799	context_stop(&ohci->at_response_ctx);
1800
1801	spin_unlock_irqrestore(&ohci->lock, flags);
1802
1803	/*
1804	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1805	 * packets in the AT queues and software needs to drain them.
1806	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1807	 */
1808	at_context_flush(&ohci->at_request_ctx);
1809	at_context_flush(&ohci->at_response_ctx);
1810
1811	spin_lock_irqsave(&ohci->lock, flags);
1812
1813	ohci->generation = generation;
1814	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1815
1816	if (ohci->quirks & QUIRK_RESET_PACKET)
1817		ohci->request_generation = generation;
1818
1819	/*
1820	 * This next bit is unrelated to the AT context stuff but we
1821	 * have to do it under the spinlock also.  If a new config rom
1822	 * was set up before this reset, the old one is now no longer
1823	 * in use and we can free it. Update the config rom pointers
1824	 * to point to the current config rom and clear the
1825	 * next_config_rom pointer so a new update can take place.
1826	 */
 
 
 
 
 
1827
1828	if (ohci->next_config_rom != NULL) {
1829		if (ohci->next_config_rom != ohci->config_rom) {
1830			free_rom      = ohci->config_rom;
1831			free_rom_bus  = ohci->config_rom_bus;
 
 
1832		}
1833		ohci->config_rom      = ohci->next_config_rom;
1834		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1835		ohci->next_config_rom = NULL;
1836
1837		/*
1838		 * Restore config_rom image and manually update
1839		 * config_rom registers.  Writing the header quadlet
1840		 * will indicate that the config rom is ready, so we
1841		 * do that last.
1842		 */
1843		reg_write(ohci, OHCI1394_BusOptions,
1844			  be32_to_cpu(ohci->config_rom[2]));
1845		ohci->config_rom[0] = ohci->next_header;
1846		reg_write(ohci, OHCI1394_ConfigROMhdr,
1847			  be32_to_cpu(ohci->next_header));
1848	}
1849
1850#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1851	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1852	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1853#endif
1854
1855	spin_unlock_irqrestore(&ohci->lock, flags);
1856
1857	if (free_rom)
1858		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1859				  free_rom, free_rom_bus);
1860
1861	log_selfids(ohci->node_id, generation,
1862		    self_id_count, ohci->self_id_buffer);
1863
1864	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1865				 self_id_count, ohci->self_id_buffer,
1866				 ohci->csr_state_setclear_abdicate);
1867	ohci->csr_state_setclear_abdicate = false;
1868}
1869
1870static irqreturn_t irq_handler(int irq, void *data)
1871{
1872	struct fw_ohci *ohci = data;
1873	u32 event, iso_event;
1874	int i;
1875
1876	event = reg_read(ohci, OHCI1394_IntEventClear);
1877
1878	if (!event || !~event)
1879		return IRQ_NONE;
1880
 
 
 
 
 
1881	/*
1882	 * busReset and postedWriteErr must not be cleared yet
1883	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1884	 */
1885	reg_write(ohci, OHCI1394_IntEventClear,
1886		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1887	log_irqs(event);
 
 
 
 
 
 
 
 
1888
1889	if (event & OHCI1394_selfIDComplete)
1890		tasklet_schedule(&ohci->bus_reset_tasklet);
 
 
 
1891
1892	if (event & OHCI1394_RQPkt)
1893		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1894
1895	if (event & OHCI1394_RSPkt)
1896		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1897
1898	if (event & OHCI1394_reqTxComplete)
1899		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1900
1901	if (event & OHCI1394_respTxComplete)
1902		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1903
1904	if (event & OHCI1394_isochRx) {
1905		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1906		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1907
1908		while (iso_event) {
1909			i = ffs(iso_event) - 1;
1910			tasklet_schedule(
1911				&ohci->ir_context_list[i].context.tasklet);
1912			iso_event &= ~(1 << i);
1913		}
1914	}
1915
1916	if (event & OHCI1394_isochTx) {
1917		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1918		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1919
1920		while (iso_event) {
1921			i = ffs(iso_event) - 1;
1922			tasklet_schedule(
1923				&ohci->it_context_list[i].context.tasklet);
1924			iso_event &= ~(1 << i);
1925		}
1926	}
1927
1928	if (unlikely(event & OHCI1394_regAccessFail))
1929		fw_error("Register access failure - "
1930			 "please notify linux1394-devel@lists.sf.net\n");
1931
1932	if (unlikely(event & OHCI1394_postedWriteErr)) {
1933		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1934		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1935		reg_write(ohci, OHCI1394_IntEventClear,
1936			  OHCI1394_postedWriteErr);
1937		fw_error("PCI posted write error\n");
1938	}
1939
1940	if (unlikely(event & OHCI1394_cycleTooLong)) {
1941		if (printk_ratelimit())
1942			fw_notify("isochronous cycle too long\n");
1943		reg_write(ohci, OHCI1394_LinkControlSet,
1944			  OHCI1394_LinkControl_cycleMaster);
1945	}
1946
1947	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1948		/*
1949		 * We need to clear this event bit in order to make
1950		 * cycleMatch isochronous I/O work.  In theory we should
1951		 * stop active cycleMatch iso contexts now and restart
1952		 * them at least two cycles later.  (FIXME?)
1953		 */
1954		if (printk_ratelimit())
1955			fw_notify("isochronous cycle inconsistent\n");
1956	}
1957
1958	if (unlikely(event & OHCI1394_unrecoverableError))
1959		handle_dead_contexts(ohci);
1960
1961	if (event & OHCI1394_cycle64Seconds) {
1962		spin_lock(&ohci->lock);
1963		update_bus_time(ohci);
1964		spin_unlock(&ohci->lock);
1965	} else
1966		flush_writes(ohci);
1967
1968	return IRQ_HANDLED;
1969}
1970
1971static int software_reset(struct fw_ohci *ohci)
1972{
1973	u32 val;
1974	int i;
1975
1976	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1977	for (i = 0; i < 500; i++) {
1978		val = reg_read(ohci, OHCI1394_HCControlSet);
1979		if (!~val)
1980			return -ENODEV; /* Card was ejected. */
1981
1982		if (!(val & OHCI1394_HCControl_softReset))
1983			return 0;
1984
1985		msleep(1);
1986	}
1987
1988	return -EBUSY;
1989}
1990
1991static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1992{
1993	size_t size = length * 4;
1994
1995	memcpy(dest, src, size);
1996	if (size < CONFIG_ROM_SIZE)
1997		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1998}
1999
2000static int configure_1394a_enhancements(struct fw_ohci *ohci)
2001{
2002	bool enable_1394a;
2003	int ret, clear, set, offset;
2004
2005	/* Check if the driver should configure link and PHY. */
2006	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2007	      OHCI1394_HCControl_programPhyEnable))
2008		return 0;
2009
2010	/* Paranoia: check whether the PHY supports 1394a, too. */
2011	enable_1394a = false;
2012	ret = read_phy_reg(ohci, 2);
2013	if (ret < 0)
2014		return ret;
2015	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2016		ret = read_paged_phy_reg(ohci, 1, 8);
2017		if (ret < 0)
2018			return ret;
2019		if (ret >= 1)
2020			enable_1394a = true;
2021	}
2022
2023	if (ohci->quirks & QUIRK_NO_1394A)
2024		enable_1394a = false;
2025
2026	/* Configure PHY and link consistently. */
2027	if (enable_1394a) {
2028		clear = 0;
2029		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2030	} else {
2031		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2032		set = 0;
2033	}
2034	ret = update_phy_reg(ohci, 5, clear, set);
2035	if (ret < 0)
2036		return ret;
2037
2038	if (enable_1394a)
2039		offset = OHCI1394_HCControlSet;
2040	else
2041		offset = OHCI1394_HCControlClear;
2042	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2043
2044	/* Clean up: configuration has been taken care of. */
2045	reg_write(ohci, OHCI1394_HCControlClear,
2046		  OHCI1394_HCControl_programPhyEnable);
2047
2048	return 0;
2049}
2050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051static int ohci_enable(struct fw_card *card,
2052		       const __be32 *config_rom, size_t length)
2053{
2054	struct fw_ohci *ohci = fw_ohci(card);
2055	struct pci_dev *dev = to_pci_dev(card->device);
2056	u32 lps, seconds, version, irqs;
2057	int i, ret;
2058
2059	if (software_reset(ohci)) {
2060		fw_error("Failed to reset ohci card.\n");
2061		return -EBUSY;
 
2062	}
2063
2064	/*
2065	 * Now enable LPS, which we need in order to start accessing
2066	 * most of the registers.  In fact, on some cards (ALI M5251),
2067	 * accessing registers in the SClk domain without LPS enabled
2068	 * will lock up the machine.  Wait 50msec to make sure we have
2069	 * full link enabled.  However, with some cards (well, at least
2070	 * a JMicron PCIe card), we have to try again sometimes.
 
 
 
 
2071	 */
 
2072	reg_write(ohci, OHCI1394_HCControlSet,
2073		  OHCI1394_HCControl_LPS |
2074		  OHCI1394_HCControl_postedWriteEnable);
2075	flush_writes(ohci);
2076
2077	for (lps = 0, i = 0; !lps && i < 3; i++) {
2078		msleep(50);
2079		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2080		      OHCI1394_HCControl_LPS;
2081	}
2082
2083	if (!lps) {
2084		fw_error("Failed to set Link Power Status\n");
2085		return -EIO;
2086	}
2087
 
 
 
 
 
 
 
 
 
 
2088	reg_write(ohci, OHCI1394_HCControlClear,
2089		  OHCI1394_HCControl_noByteSwapData);
2090
2091	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2092	reg_write(ohci, OHCI1394_LinkControlSet,
2093		  OHCI1394_LinkControl_cycleTimerEnable |
2094		  OHCI1394_LinkControl_cycleMaster);
2095
2096	reg_write(ohci, OHCI1394_ATRetries,
2097		  OHCI1394_MAX_AT_REQ_RETRIES |
2098		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2099		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2100		  (200 << 16));
2101
2102	seconds = lower_32_bits(get_seconds());
2103	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2104	ohci->bus_time = seconds & ~0x3f;
 
 
 
2105
2106	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2107	if (version >= OHCI_VERSION_1_1) {
2108		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2109			  0xfffffffe);
2110		card->broadcast_channel_auto_allocated = true;
2111	}
2112
2113	/* Get implemented bits of the priority arbitration request counter. */
2114	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2115	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2116	reg_write(ohci, OHCI1394_FairnessControl, 0);
2117	card->priority_budget_implemented = ohci->pri_req_max != 0;
2118
2119	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2120	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2121	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2122
2123	ret = configure_1394a_enhancements(ohci);
2124	if (ret < 0)
2125		return ret;
2126
2127	/* Activate link_on bit and contender bit in our self ID packets.*/
2128	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2129	if (ret < 0)
2130		return ret;
2131
2132	/*
2133	 * When the link is not yet enabled, the atomic config rom
2134	 * update mechanism described below in ohci_set_config_rom()
2135	 * is not active.  We have to update ConfigRomHeader and
2136	 * BusOptions manually, and the write to ConfigROMmap takes
2137	 * effect immediately.  We tie this to the enabling of the
2138	 * link, so we have a valid config rom before enabling - the
2139	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2140	 * values before enabling.
2141	 *
2142	 * However, when the ConfigROMmap is written, some controllers
2143	 * always read back quadlets 0 and 2 from the config rom to
2144	 * the ConfigRomHeader and BusOptions registers on bus reset.
2145	 * They shouldn't do that in this initial case where the link
2146	 * isn't enabled.  This means we have to use the same
2147	 * workaround here, setting the bus header to 0 and then write
2148	 * the right values in the bus reset tasklet.
2149	 */
2150
2151	if (config_rom) {
2152		ohci->next_config_rom =
2153			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2154					   &ohci->next_config_rom_bus,
2155					   GFP_KERNEL);
2156		if (ohci->next_config_rom == NULL)
2157			return -ENOMEM;
2158
2159		copy_config_rom(ohci->next_config_rom, config_rom, length);
2160	} else {
2161		/*
2162		 * In the suspend case, config_rom is NULL, which
2163		 * means that we just reuse the old config rom.
2164		 */
2165		ohci->next_config_rom = ohci->config_rom;
2166		ohci->next_config_rom_bus = ohci->config_rom_bus;
2167	}
2168
2169	ohci->next_header = ohci->next_config_rom[0];
2170	ohci->next_config_rom[0] = 0;
2171	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2172	reg_write(ohci, OHCI1394_BusOptions,
2173		  be32_to_cpu(ohci->next_config_rom[2]));
2174	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2175
2176	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2177
2178	if (!(ohci->quirks & QUIRK_NO_MSI))
2179		pci_enable_msi(dev);
2180	if (request_irq(dev->irq, irq_handler,
2181			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2182			ohci_driver_name, ohci)) {
2183		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2184		pci_disable_msi(dev);
2185
2186		if (config_rom) {
2187			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2188					  ohci->next_config_rom,
2189					  ohci->next_config_rom_bus);
2190			ohci->next_config_rom = NULL;
2191		}
2192		return -EIO;
2193	}
2194
2195	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2196		OHCI1394_RQPkt | OHCI1394_RSPkt |
2197		OHCI1394_isochTx | OHCI1394_isochRx |
2198		OHCI1394_postedWriteErr |
2199		OHCI1394_selfIDComplete |
2200		OHCI1394_regAccessFail |
2201		OHCI1394_cycle64Seconds |
2202		OHCI1394_cycleInconsistent |
2203		OHCI1394_unrecoverableError |
2204		OHCI1394_cycleTooLong |
2205		OHCI1394_masterIntEnable;
2206	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2207		irqs |= OHCI1394_busReset;
2208	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2209
2210	reg_write(ohci, OHCI1394_HCControlSet,
2211		  OHCI1394_HCControl_linkEnable |
2212		  OHCI1394_HCControl_BIBimageValid);
2213
2214	reg_write(ohci, OHCI1394_LinkControlSet,
2215		  OHCI1394_LinkControl_rcvSelfID |
2216		  OHCI1394_LinkControl_rcvPhyPkt);
2217
2218	ar_context_run(&ohci->ar_request_ctx);
2219	ar_context_run(&ohci->ar_response_ctx);
2220
2221	flush_writes(ohci);
2222
2223	/* We are ready to go, reset bus to finish initialization. */
2224	fw_schedule_bus_reset(&ohci->card, false, true);
2225
2226	return 0;
2227}
2228
2229static int ohci_set_config_rom(struct fw_card *card,
2230			       const __be32 *config_rom, size_t length)
2231{
2232	struct fw_ohci *ohci;
2233	unsigned long flags;
2234	__be32 *next_config_rom;
2235	dma_addr_t uninitialized_var(next_config_rom_bus);
2236
2237	ohci = fw_ohci(card);
2238
2239	/*
2240	 * When the OHCI controller is enabled, the config rom update
2241	 * mechanism is a bit tricky, but easy enough to use.  See
2242	 * section 5.5.6 in the OHCI specification.
2243	 *
2244	 * The OHCI controller caches the new config rom address in a
2245	 * shadow register (ConfigROMmapNext) and needs a bus reset
2246	 * for the changes to take place.  When the bus reset is
2247	 * detected, the controller loads the new values for the
2248	 * ConfigRomHeader and BusOptions registers from the specified
2249	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2250	 * shadow register. All automatically and atomically.
2251	 *
2252	 * Now, there's a twist to this story.  The automatic load of
2253	 * ConfigRomHeader and BusOptions doesn't honor the
2254	 * noByteSwapData bit, so with a be32 config rom, the
2255	 * controller will load be32 values in to these registers
2256	 * during the atomic update, even on litte endian
2257	 * architectures.  The workaround we use is to put a 0 in the
2258	 * header quadlet; 0 is endian agnostic and means that the
2259	 * config rom isn't ready yet.  In the bus reset tasklet we
2260	 * then set up the real values for the two registers.
2261	 *
2262	 * We use ohci->lock to avoid racing with the code that sets
2263	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2264	 */
2265
2266	next_config_rom =
2267		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2268				   &next_config_rom_bus, GFP_KERNEL);
2269	if (next_config_rom == NULL)
2270		return -ENOMEM;
2271
2272	spin_lock_irqsave(&ohci->lock, flags);
2273
2274	/*
2275	 * If there is not an already pending config_rom update,
2276	 * push our new allocation into the ohci->next_config_rom
2277	 * and then mark the local variable as null so that we
2278	 * won't deallocate the new buffer.
2279	 *
2280	 * OTOH, if there is a pending config_rom update, just
2281	 * use that buffer with the new config_rom data, and
2282	 * let this routine free the unused DMA allocation.
2283	 */
2284
2285	if (ohci->next_config_rom == NULL) {
2286		ohci->next_config_rom = next_config_rom;
2287		ohci->next_config_rom_bus = next_config_rom_bus;
2288		next_config_rom = NULL;
2289	}
2290
2291	copy_config_rom(ohci->next_config_rom, config_rom, length);
2292
2293	ohci->next_header = config_rom[0];
2294	ohci->next_config_rom[0] = 0;
2295
2296	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
 
2297
2298	spin_unlock_irqrestore(&ohci->lock, flags);
 
2299
2300	/* If we didn't use the DMA allocation, delete it. */
2301	if (next_config_rom != NULL)
2302		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2303				  next_config_rom, next_config_rom_bus);
 
2304
2305	/*
2306	 * Now initiate a bus reset to have the changes take
2307	 * effect. We clean up the old config rom memory and DMA
2308	 * mappings in the bus reset tasklet, since the OHCI
2309	 * controller could need to access it before the bus reset
2310	 * takes effect.
2311	 */
2312
2313	fw_schedule_bus_reset(&ohci->card, true, true);
2314
2315	return 0;
2316}
2317
2318static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2319{
2320	struct fw_ohci *ohci = fw_ohci(card);
2321
2322	at_context_transmit(&ohci->at_request_ctx, packet);
2323}
2324
2325static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2326{
2327	struct fw_ohci *ohci = fw_ohci(card);
2328
2329	at_context_transmit(&ohci->at_response_ctx, packet);
2330}
2331
2332static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2333{
2334	struct fw_ohci *ohci = fw_ohci(card);
2335	struct context *ctx = &ohci->at_request_ctx;
2336	struct driver_data *driver_data = packet->driver_data;
2337	int ret = -ENOENT;
2338
2339	tasklet_disable(&ctx->tasklet);
2340
2341	if (packet->ack != 0)
2342		goto out;
2343
2344	if (packet->payload_mapped)
2345		dma_unmap_single(ohci->card.device, packet->payload_bus,
2346				 packet->payload_length, DMA_TO_DEVICE);
2347
2348	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2349	driver_data->packet = NULL;
2350	packet->ack = RCODE_CANCELLED;
 
 
 
 
2351	packet->callback(packet, &ohci->card, packet->ack);
2352	ret = 0;
2353 out:
2354	tasklet_enable(&ctx->tasklet);
2355
2356	return ret;
2357}
2358
2359static int ohci_enable_phys_dma(struct fw_card *card,
2360				int node_id, int generation)
2361{
2362#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2363	return 0;
2364#else
2365	struct fw_ohci *ohci = fw_ohci(card);
2366	unsigned long flags;
2367	int n, ret = 0;
2368
 
 
 
2369	/*
2370	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2371	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2372	 */
2373
2374	spin_lock_irqsave(&ohci->lock, flags);
2375
2376	if (ohci->generation != generation) {
2377		ret = -ESTALE;
2378		goto out;
2379	}
2380
2381	/*
2382	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2383	 * enabled for _all_ nodes on remote buses.
2384	 */
2385
2386	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2387	if (n < 32)
2388		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2389	else
2390		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2391
2392	flush_writes(ohci);
2393 out:
2394	spin_unlock_irqrestore(&ohci->lock, flags);
2395
2396	return ret;
2397#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2398}
2399
2400static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2401{
2402	struct fw_ohci *ohci = fw_ohci(card);
2403	unsigned long flags;
2404	u32 value;
2405
2406	switch (csr_offset) {
2407	case CSR_STATE_CLEAR:
2408	case CSR_STATE_SET:
2409		if (ohci->is_root &&
2410		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2411		     OHCI1394_LinkControl_cycleMaster))
2412			value = CSR_STATE_BIT_CMSTR;
2413		else
2414			value = 0;
2415		if (ohci->csr_state_setclear_abdicate)
2416			value |= CSR_STATE_BIT_ABDICATE;
2417
2418		return value;
2419
2420	case CSR_NODE_IDS:
2421		return reg_read(ohci, OHCI1394_NodeID) << 16;
2422
2423	case CSR_CYCLE_TIME:
2424		return get_cycle_time(ohci);
2425
2426	case CSR_BUS_TIME:
2427		/*
2428		 * We might be called just after the cycle timer has wrapped
2429		 * around but just before the cycle64Seconds handler, so we
2430		 * better check here, too, if the bus time needs to be updated.
2431		 */
2432		spin_lock_irqsave(&ohci->lock, flags);
2433		value = update_bus_time(ohci);
2434		spin_unlock_irqrestore(&ohci->lock, flags);
2435		return value;
2436
 
 
 
2437	case CSR_BUSY_TIMEOUT:
2438		value = reg_read(ohci, OHCI1394_ATRetries);
2439		return (value >> 4) & 0x0ffff00f;
2440
2441	case CSR_PRIORITY_BUDGET:
2442		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2443			(ohci->pri_req_max << 8);
2444
2445	default:
2446		WARN_ON(1);
2447		return 0;
2448	}
2449}
2450
2451static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2452{
2453	struct fw_ohci *ohci = fw_ohci(card);
2454	unsigned long flags;
2455
2456	switch (csr_offset) {
2457	case CSR_STATE_CLEAR:
2458		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2459			reg_write(ohci, OHCI1394_LinkControlClear,
2460				  OHCI1394_LinkControl_cycleMaster);
2461			flush_writes(ohci);
2462		}
2463		if (value & CSR_STATE_BIT_ABDICATE)
2464			ohci->csr_state_setclear_abdicate = false;
2465		break;
2466
2467	case CSR_STATE_SET:
2468		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2469			reg_write(ohci, OHCI1394_LinkControlSet,
2470				  OHCI1394_LinkControl_cycleMaster);
2471			flush_writes(ohci);
2472		}
2473		if (value & CSR_STATE_BIT_ABDICATE)
2474			ohci->csr_state_setclear_abdicate = true;
2475		break;
2476
2477	case CSR_NODE_IDS:
2478		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2479		flush_writes(ohci);
2480		break;
2481
2482	case CSR_CYCLE_TIME:
2483		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2484		reg_write(ohci, OHCI1394_IntEventSet,
2485			  OHCI1394_cycleInconsistent);
2486		flush_writes(ohci);
2487		break;
2488
2489	case CSR_BUS_TIME:
2490		spin_lock_irqsave(&ohci->lock, flags);
2491		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2492		spin_unlock_irqrestore(&ohci->lock, flags);
2493		break;
2494
2495	case CSR_BUSY_TIMEOUT:
2496		value = (value & 0xf) | ((value & 0xf) << 4) |
2497			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2498		reg_write(ohci, OHCI1394_ATRetries, value);
2499		flush_writes(ohci);
2500		break;
2501
2502	case CSR_PRIORITY_BUDGET:
2503		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2504		flush_writes(ohci);
2505		break;
2506
2507	default:
2508		WARN_ON(1);
2509		break;
2510	}
2511}
2512
2513static void copy_iso_headers(struct iso_context *ctx, void *p)
2514{
2515	int i = ctx->header_length;
 
 
 
 
 
 
 
 
 
2516
2517	if (i + ctx->base.header_size > PAGE_SIZE)
2518		return;
 
 
 
 
 
 
 
 
 
 
2519
2520	/*
2521	 * The iso header is byteswapped to little endian by
2522	 * the controller, but the remaining header quadlets
2523	 * are big endian.  We want to present all the headers
2524	 * as big endian, so we have to swap the first quadlet.
2525	 */
2526	if (ctx->base.header_size > 0)
2527		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2528	if (ctx->base.header_size > 4)
2529		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2530	if (ctx->base.header_size > 8)
2531		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2532	ctx->header_length += ctx->base.header_size;
2533}
2534
2535static int handle_ir_packet_per_buffer(struct context *context,
2536				       struct descriptor *d,
2537				       struct descriptor *last)
2538{
2539	struct iso_context *ctx =
2540		container_of(context, struct iso_context, context);
2541	struct descriptor *pd;
2542	__le32 *ir_header;
2543	void *p;
2544
2545	for (pd = d; pd <= last; pd++)
2546		if (pd->transfer_status)
2547			break;
2548	if (pd > last)
2549		/* Descriptor(s) not done yet, stop iteration */
2550		return 0;
2551
2552	p = last + 1;
2553	copy_iso_headers(ctx, p);
2554
2555	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2556		ir_header = (__le32 *) p;
2557		ctx->base.callback.sc(&ctx->base,
2558				      le32_to_cpu(ir_header[0]) & 0xffff,
2559				      ctx->header_length, ctx->header,
2560				      ctx->base.callback_data);
2561		ctx->header_length = 0;
2562	}
2563
 
 
 
 
 
2564	return 1;
2565}
2566
2567/* d == last because each descriptor block is only a single descriptor. */
2568static int handle_ir_buffer_fill(struct context *context,
2569				 struct descriptor *d,
2570				 struct descriptor *last)
2571{
2572	struct iso_context *ctx =
2573		container_of(context, struct iso_context, context);
 
 
2574
2575	if (!last->transfer_status)
 
 
 
 
 
 
 
 
 
 
2576		/* Descriptor(s) not done yet, stop iteration */
2577		return 0;
2578
2579	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
 
 
 
 
 
 
 
 
2580		ctx->base.callback.mc(&ctx->base,
2581				      le32_to_cpu(last->data_address) +
2582				      le16_to_cpu(last->req_count) -
2583				      le16_to_cpu(last->res_count),
2584				      ctx->base.callback_data);
 
 
2585
2586	return 1;
2587}
2588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589static int handle_it_packet(struct context *context,
2590			    struct descriptor *d,
2591			    struct descriptor *last)
2592{
2593	struct iso_context *ctx =
2594		container_of(context, struct iso_context, context);
2595	int i;
2596	struct descriptor *pd;
 
2597
2598	for (pd = d; pd <= last; pd++)
2599		if (pd->transfer_status)
2600			break;
2601	if (pd > last)
2602		/* Descriptor(s) not done yet, stop iteration */
2603		return 0;
2604
2605	i = ctx->header_length;
2606	if (i + 4 < PAGE_SIZE) {
2607		/* Present this value as big-endian to match the receive code */
2608		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2609				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2610				le16_to_cpu(pd->res_count));
2611		ctx->header_length += 4;
2612	}
2613	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2614		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2615				      ctx->header_length, ctx->header,
2616				      ctx->base.callback_data);
2617		ctx->header_length = 0;
2618	}
 
 
 
 
2619	return 1;
2620}
2621
2622static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2623{
2624	u32 hi = channels >> 32, lo = channels;
2625
2626	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2627	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2628	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2629	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2630	mmiowb();
2631	ohci->mc_channels = channels;
2632}
2633
2634static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2635				int type, int channel, size_t header_size)
2636{
2637	struct fw_ohci *ohci = fw_ohci(card);
2638	struct iso_context *uninitialized_var(ctx);
2639	descriptor_callback_t uninitialized_var(callback);
2640	u64 *uninitialized_var(channels);
2641	u32 *uninitialized_var(mask), uninitialized_var(regs);
2642	unsigned long flags;
2643	int index, ret = -EBUSY;
2644
2645	spin_lock_irqsave(&ohci->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
2646
2647	switch (type) {
2648	case FW_ISO_CONTEXT_TRANSMIT:
2649		mask     = &ohci->it_context_mask;
2650		callback = handle_it_packet;
2651		index    = ffs(*mask) - 1;
2652		if (index >= 0) {
2653			*mask &= ~(1 << index);
2654			regs = OHCI1394_IsoXmitContextBase(index);
2655			ctx  = &ohci->it_context_list[index];
2656		}
2657		break;
 
2658
2659	case FW_ISO_CONTEXT_RECEIVE:
2660		channels = &ohci->ir_context_channels;
2661		mask     = &ohci->ir_context_mask;
2662		callback = handle_ir_packet_per_buffer;
2663		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2664		if (index >= 0) {
2665			*channels &= ~(1ULL << channel);
2666			*mask     &= ~(1 << index);
2667			regs = OHCI1394_IsoRcvContextBase(index);
2668			ctx  = &ohci->ir_context_list[index];
2669		}
2670		break;
2671
2672	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2673		mask     = &ohci->ir_context_mask;
2674		callback = handle_ir_buffer_fill;
2675		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2676		if (index >= 0) {
2677			ohci->mc_allocated = true;
2678			*mask &= ~(1 << index);
2679			regs = OHCI1394_IsoRcvContextBase(index);
2680			ctx  = &ohci->ir_context_list[index];
2681		}
2682		break;
2683
2684	default:
2685		index = -1;
2686		ret = -ENOSYS;
2687	}
2688
2689	spin_unlock_irqrestore(&ohci->lock, flags);
2690
2691	if (index < 0)
2692		return ERR_PTR(ret);
2693
2694	memset(ctx, 0, sizeof(*ctx));
2695	ctx->header_length = 0;
2696	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2697	if (ctx->header == NULL) {
2698		ret = -ENOMEM;
2699		goto out;
2700	}
2701	ret = context_init(&ctx->context, ohci, regs, callback);
2702	if (ret < 0)
2703		goto out_with_header;
 
2704
2705	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2706		set_multichannel_mask(ohci, 0);
 
 
2707
2708	return &ctx->base;
2709
2710 out_with_header:
2711	free_page((unsigned long)ctx->header);
2712 out:
2713	spin_lock_irqsave(&ohci->lock, flags);
2714
2715	switch (type) {
2716	case FW_ISO_CONTEXT_RECEIVE:
2717		*channels |= 1ULL << channel;
2718		break;
2719
2720	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2721		ohci->mc_allocated = false;
2722		break;
 
 
2723	}
2724	*mask |= 1 << index;
2725
2726	spin_unlock_irqrestore(&ohci->lock, flags);
2727
2728	return ERR_PTR(ret);
2729}
2730
2731static int ohci_start_iso(struct fw_iso_context *base,
2732			  s32 cycle, u32 sync, u32 tags)
2733{
2734	struct iso_context *ctx = container_of(base, struct iso_context, base);
2735	struct fw_ohci *ohci = ctx->context.ohci;
2736	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2737	int index;
2738
2739	/* the controller cannot start without any queued packets */
2740	if (ctx->context.last->branch_address == 0)
2741		return -ENODATA;
2742
2743	switch (ctx->base.type) {
2744	case FW_ISO_CONTEXT_TRANSMIT:
2745		index = ctx - ohci->it_context_list;
2746		match = 0;
2747		if (cycle >= 0)
2748			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2749				(cycle & 0x7fff) << 16;
2750
2751		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2752		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2753		context_run(&ctx->context, match);
2754		break;
2755
2756	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2757		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2758		/* fall through */
2759	case FW_ISO_CONTEXT_RECEIVE:
2760		index = ctx - ohci->ir_context_list;
2761		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2762		if (cycle >= 0) {
2763			match |= (cycle & 0x07fff) << 12;
2764			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2765		}
2766
2767		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2768		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2769		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2770		context_run(&ctx->context, control);
2771
2772		ctx->sync = sync;
2773		ctx->tags = tags;
2774
2775		break;
2776	}
2777
2778	return 0;
2779}
2780
2781static int ohci_stop_iso(struct fw_iso_context *base)
2782{
2783	struct fw_ohci *ohci = fw_ohci(base->card);
2784	struct iso_context *ctx = container_of(base, struct iso_context, base);
2785	int index;
2786
2787	switch (ctx->base.type) {
2788	case FW_ISO_CONTEXT_TRANSMIT:
2789		index = ctx - ohci->it_context_list;
2790		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2791		break;
2792
2793	case FW_ISO_CONTEXT_RECEIVE:
2794	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2795		index = ctx - ohci->ir_context_list;
2796		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2797		break;
2798	}
2799	flush_writes(ohci);
2800	context_stop(&ctx->context);
2801	tasklet_kill(&ctx->context.tasklet);
2802
2803	return 0;
2804}
2805
2806static void ohci_free_iso_context(struct fw_iso_context *base)
2807{
2808	struct fw_ohci *ohci = fw_ohci(base->card);
2809	struct iso_context *ctx = container_of(base, struct iso_context, base);
2810	unsigned long flags;
2811	int index;
2812
2813	ohci_stop_iso(base);
2814	context_release(&ctx->context);
2815	free_page((unsigned long)ctx->header);
2816
2817	spin_lock_irqsave(&ohci->lock, flags);
2818
2819	switch (base->type) {
2820	case FW_ISO_CONTEXT_TRANSMIT:
2821		index = ctx - ohci->it_context_list;
2822		ohci->it_context_mask |= 1 << index;
2823		break;
2824
2825	case FW_ISO_CONTEXT_RECEIVE:
2826		index = ctx - ohci->ir_context_list;
2827		ohci->ir_context_mask |= 1 << index;
2828		ohci->ir_context_channels |= 1ULL << base->channel;
2829		break;
2830
2831	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2832		index = ctx - ohci->ir_context_list;
2833		ohci->ir_context_mask |= 1 << index;
2834		ohci->ir_context_channels |= ohci->mc_channels;
2835		ohci->mc_channels = 0;
2836		ohci->mc_allocated = false;
2837		break;
2838	}
2839
2840	spin_unlock_irqrestore(&ohci->lock, flags);
2841}
2842
2843static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2844{
2845	struct fw_ohci *ohci = fw_ohci(base->card);
2846	unsigned long flags;
2847	int ret;
2848
2849	switch (base->type) {
2850	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
 
 
2851
2852		spin_lock_irqsave(&ohci->lock, flags);
2853
2854		/* Don't allow multichannel to grab other contexts' channels. */
2855		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2856			*channels = ohci->ir_context_channels;
2857			ret = -EBUSY;
2858		} else {
2859			set_multichannel_mask(ohci, *channels);
2860			ret = 0;
2861		}
2862
2863		spin_unlock_irqrestore(&ohci->lock, flags);
2864
2865		break;
2866	default:
2867		ret = -EINVAL;
2868	}
2869
2870	return ret;
2871}
2872
2873#ifdef CONFIG_PM
2874static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2875{
2876	int i;
2877	struct iso_context *ctx;
2878
2879	for (i = 0 ; i < ohci->n_ir ; i++) {
2880		ctx = &ohci->ir_context_list[i];
2881		if (ctx->context.running)
2882			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2883	}
2884
2885	for (i = 0 ; i < ohci->n_it ; i++) {
2886		ctx = &ohci->it_context_list[i];
2887		if (ctx->context.running)
2888			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2889	}
2890}
2891#endif
2892
2893static int queue_iso_transmit(struct iso_context *ctx,
2894			      struct fw_iso_packet *packet,
2895			      struct fw_iso_buffer *buffer,
2896			      unsigned long payload)
2897{
2898	struct descriptor *d, *last, *pd;
2899	struct fw_iso_packet *p;
2900	__le32 *header;
2901	dma_addr_t d_bus, page_bus;
2902	u32 z, header_z, payload_z, irq;
2903	u32 payload_index, payload_end_index, next_page_index;
2904	int page, end_page, i, length, offset;
2905
2906	p = packet;
2907	payload_index = payload;
2908
2909	if (p->skip)
2910		z = 1;
2911	else
2912		z = 2;
2913	if (p->header_length > 0)
2914		z++;
2915
2916	/* Determine the first page the payload isn't contained in. */
2917	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2918	if (p->payload_length > 0)
2919		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2920	else
2921		payload_z = 0;
2922
2923	z += payload_z;
2924
2925	/* Get header size in number of descriptors. */
2926	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2927
2928	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2929	if (d == NULL)
2930		return -ENOMEM;
2931
2932	if (!p->skip) {
2933		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2934		d[0].req_count = cpu_to_le16(8);
2935		/*
2936		 * Link the skip address to this descriptor itself.  This causes
2937		 * a context to skip a cycle whenever lost cycles or FIFO
2938		 * overruns occur, without dropping the data.  The application
2939		 * should then decide whether this is an error condition or not.
2940		 * FIXME:  Make the context's cycle-lost behaviour configurable?
2941		 */
2942		d[0].branch_address = cpu_to_le32(d_bus | z);
2943
2944		header = (__le32 *) &d[1];
2945		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2946					IT_HEADER_TAG(p->tag) |
2947					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2948					IT_HEADER_CHANNEL(ctx->base.channel) |
2949					IT_HEADER_SPEED(ctx->base.speed));
2950		header[1] =
2951			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2952							  p->payload_length));
2953	}
2954
2955	if (p->header_length > 0) {
2956		d[2].req_count    = cpu_to_le16(p->header_length);
2957		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2958		memcpy(&d[z], p->header, p->header_length);
2959	}
2960
2961	pd = d + z - payload_z;
2962	payload_end_index = payload_index + p->payload_length;
2963	for (i = 0; i < payload_z; i++) {
2964		page               = payload_index >> PAGE_SHIFT;
2965		offset             = payload_index & ~PAGE_MASK;
2966		next_page_index    = (page + 1) << PAGE_SHIFT;
2967		length             =
2968			min(next_page_index, payload_end_index) - payload_index;
2969		pd[i].req_count    = cpu_to_le16(length);
2970
2971		page_bus = page_private(buffer->pages[page]);
2972		pd[i].data_address = cpu_to_le32(page_bus + offset);
2973
 
 
 
 
2974		payload_index += length;
2975	}
2976
2977	if (p->interrupt)
2978		irq = DESCRIPTOR_IRQ_ALWAYS;
2979	else
2980		irq = DESCRIPTOR_NO_IRQ;
2981
2982	last = z == 2 ? d : d + z - 1;
2983	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2984				     DESCRIPTOR_STATUS |
2985				     DESCRIPTOR_BRANCH_ALWAYS |
2986				     irq);
2987
2988	context_append(&ctx->context, d, z, header_z);
2989
2990	return 0;
2991}
2992
2993static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2994				       struct fw_iso_packet *packet,
2995				       struct fw_iso_buffer *buffer,
2996				       unsigned long payload)
2997{
 
2998	struct descriptor *d, *pd;
2999	dma_addr_t d_bus, page_bus;
3000	u32 z, header_z, rest;
3001	int i, j, length;
3002	int page, offset, packet_count, header_size, payload_per_buffer;
3003
3004	/*
3005	 * The OHCI controller puts the isochronous header and trailer in the
3006	 * buffer, so we need at least 8 bytes.
3007	 */
3008	packet_count = packet->header_length / ctx->base.header_size;
3009	header_size  = max(ctx->base.header_size, (size_t)8);
3010
3011	/* Get header size in number of descriptors. */
3012	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3013	page     = payload >> PAGE_SHIFT;
3014	offset   = payload & ~PAGE_MASK;
3015	payload_per_buffer = packet->payload_length / packet_count;
3016
3017	for (i = 0; i < packet_count; i++) {
3018		/* d points to the header descriptor */
3019		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3020		d = context_get_descriptors(&ctx->context,
3021				z + header_z, &d_bus);
3022		if (d == NULL)
3023			return -ENOMEM;
3024
3025		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3026					      DESCRIPTOR_INPUT_MORE);
3027		if (packet->skip && i == 0)
3028			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3029		d->req_count    = cpu_to_le16(header_size);
3030		d->res_count    = d->req_count;
3031		d->transfer_status = 0;
3032		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3033
3034		rest = payload_per_buffer;
3035		pd = d;
3036		for (j = 1; j < z; j++) {
3037			pd++;
3038			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3039						  DESCRIPTOR_INPUT_MORE);
3040
3041			if (offset + rest < PAGE_SIZE)
3042				length = rest;
3043			else
3044				length = PAGE_SIZE - offset;
3045			pd->req_count = cpu_to_le16(length);
3046			pd->res_count = pd->req_count;
3047			pd->transfer_status = 0;
3048
3049			page_bus = page_private(buffer->pages[page]);
3050			pd->data_address = cpu_to_le32(page_bus + offset);
3051
 
 
 
 
3052			offset = (offset + length) & ~PAGE_MASK;
3053			rest -= length;
3054			if (offset == 0)
3055				page++;
3056		}
3057		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3058					  DESCRIPTOR_INPUT_LAST |
3059					  DESCRIPTOR_BRANCH_ALWAYS);
3060		if (packet->interrupt && i == packet_count - 1)
3061			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3062
3063		context_append(&ctx->context, d, z, header_z);
3064	}
3065
3066	return 0;
3067}
3068
3069static int queue_iso_buffer_fill(struct iso_context *ctx,
3070				 struct fw_iso_packet *packet,
3071				 struct fw_iso_buffer *buffer,
3072				 unsigned long payload)
3073{
3074	struct descriptor *d;
3075	dma_addr_t d_bus, page_bus;
3076	int page, offset, rest, z, i, length;
3077
3078	page   = payload >> PAGE_SHIFT;
3079	offset = payload & ~PAGE_MASK;
3080	rest   = packet->payload_length;
3081
3082	/* We need one descriptor for each page in the buffer. */
3083	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3084
3085	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3086		return -EFAULT;
3087
3088	for (i = 0; i < z; i++) {
3089		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3090		if (d == NULL)
3091			return -ENOMEM;
3092
3093		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3094					 DESCRIPTOR_BRANCH_ALWAYS);
3095		if (packet->skip && i == 0)
3096			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3097		if (packet->interrupt && i == z - 1)
3098			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3099
3100		if (offset + rest < PAGE_SIZE)
3101			length = rest;
3102		else
3103			length = PAGE_SIZE - offset;
3104		d->req_count = cpu_to_le16(length);
3105		d->res_count = d->req_count;
3106		d->transfer_status = 0;
3107
3108		page_bus = page_private(buffer->pages[page]);
3109		d->data_address = cpu_to_le32(page_bus + offset);
3110
 
 
 
 
3111		rest -= length;
3112		offset = 0;
3113		page++;
3114
3115		context_append(&ctx->context, d, 1, 0);
3116	}
3117
3118	return 0;
3119}
3120
3121static int ohci_queue_iso(struct fw_iso_context *base,
3122			  struct fw_iso_packet *packet,
3123			  struct fw_iso_buffer *buffer,
3124			  unsigned long payload)
3125{
3126	struct iso_context *ctx = container_of(base, struct iso_context, base);
3127	unsigned long flags;
3128	int ret = -ENOSYS;
3129
3130	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
 
3131	switch (base->type) {
3132	case FW_ISO_CONTEXT_TRANSMIT:
3133		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3134		break;
3135	case FW_ISO_CONTEXT_RECEIVE:
3136		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3137		break;
3138	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3139		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3140		break;
 
3141	}
3142	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3143
3144	return ret;
3145}
3146
3147static void ohci_flush_queue_iso(struct fw_iso_context *base)
3148{
3149	struct context *ctx =
3150			&container_of(base, struct iso_context, base)->context;
3151
3152	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155static const struct fw_card_driver ohci_driver = {
3156	.enable			= ohci_enable,
3157	.read_phy_reg		= ohci_read_phy_reg,
3158	.update_phy_reg		= ohci_update_phy_reg,
3159	.set_config_rom		= ohci_set_config_rom,
3160	.send_request		= ohci_send_request,
3161	.send_response		= ohci_send_response,
3162	.cancel_packet		= ohci_cancel_packet,
3163	.enable_phys_dma	= ohci_enable_phys_dma,
3164	.read_csr		= ohci_read_csr,
3165	.write_csr		= ohci_write_csr,
3166
3167	.allocate_iso_context	= ohci_allocate_iso_context,
3168	.free_iso_context	= ohci_free_iso_context,
3169	.set_iso_channels	= ohci_set_iso_channels,
3170	.queue_iso		= ohci_queue_iso,
3171	.flush_queue_iso	= ohci_flush_queue_iso,
 
3172	.start_iso		= ohci_start_iso,
3173	.stop_iso		= ohci_stop_iso,
3174};
3175
3176#ifdef CONFIG_PPC_PMAC
3177static void pmac_ohci_on(struct pci_dev *dev)
3178{
3179	if (machine_is(powermac)) {
3180		struct device_node *ofn = pci_device_to_OF_node(dev);
3181
3182		if (ofn) {
3183			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3184			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3185		}
3186	}
3187}
3188
3189static void pmac_ohci_off(struct pci_dev *dev)
3190{
3191	if (machine_is(powermac)) {
3192		struct device_node *ofn = pci_device_to_OF_node(dev);
3193
3194		if (ofn) {
3195			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3196			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3197		}
3198	}
3199}
3200#else
3201static inline void pmac_ohci_on(struct pci_dev *dev) {}
3202static inline void pmac_ohci_off(struct pci_dev *dev) {}
3203#endif /* CONFIG_PPC_PMAC */
3204
3205static int __devinit pci_probe(struct pci_dev *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
3206			       const struct pci_device_id *ent)
3207{
3208	struct fw_ohci *ohci;
3209	u32 bus_options, max_receive, link_speed, version;
3210	u64 guid;
3211	int i, err;
3212	size_t size;
3213
3214	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3215		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3216		return -ENOSYS;
3217	}
3218
3219	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3220	if (ohci == NULL) {
3221		err = -ENOMEM;
3222		goto fail;
3223	}
3224
3225	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3226
3227	pmac_ohci_on(dev);
 
3228
3229	err = pci_enable_device(dev);
3230	if (err) {
3231		fw_error("Failed to enable OHCI hardware\n");
3232		goto fail_free;
3233	}
3234
3235	pci_set_master(dev);
3236	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237	pci_set_drvdata(dev, ohci);
3238
3239	spin_lock_init(&ohci->lock);
3240	mutex_init(&ohci->phy_reg_mutex);
3241
3242	tasklet_init(&ohci->bus_reset_tasklet,
3243		     bus_reset_tasklet, (unsigned long)ohci);
3244
3245	err = pci_request_region(dev, 0, ohci_driver_name);
3246	if (err) {
3247		fw_error("MMIO resource unavailable\n");
3248		goto fail_disable;
3249	}
3250
3251	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3252	if (ohci->registers == NULL) {
3253		fw_error("Failed to remap registers\n");
3254		err = -ENXIO;
3255		goto fail_iomem;
3256	}
3257
3258	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3259		if ((ohci_quirks[i].vendor == dev->vendor) &&
3260		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3261		     ohci_quirks[i].device == dev->device) &&
3262		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3263		     ohci_quirks[i].revision >= dev->revision)) {
3264			ohci->quirks = ohci_quirks[i].flags;
3265			break;
3266		}
3267	if (param_quirks)
3268		ohci->quirks = param_quirks;
3269
 
 
 
3270	/*
3271	 * Because dma_alloc_coherent() allocates at least one page,
3272	 * we save space by using a common buffer for the AR request/
3273	 * response descriptors and the self IDs buffer.
3274	 */
3275	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3276	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3277	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3278					       PAGE_SIZE,
3279					       &ohci->misc_buffer_bus,
3280					       GFP_KERNEL);
3281	if (!ohci->misc_buffer) {
3282		err = -ENOMEM;
3283		goto fail_iounmap;
3284	}
3285
3286	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3287			      OHCI1394_AsReqRcvContextControlSet);
3288	if (err < 0)
3289		goto fail_misc_buf;
3290
3291	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3292			      OHCI1394_AsRspRcvContextControlSet);
3293	if (err < 0)
3294		goto fail_arreq_ctx;
3295
3296	err = context_init(&ohci->at_request_ctx, ohci,
3297			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3298	if (err < 0)
3299		goto fail_arrsp_ctx;
3300
3301	err = context_init(&ohci->at_response_ctx, ohci,
3302			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3303	if (err < 0)
3304		goto fail_atreq_ctx;
3305
3306	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3307	ohci->ir_context_channels = ~0ULL;
3308	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3309	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3310	ohci->ir_context_mask = ohci->ir_context_support;
3311	ohci->n_ir = hweight32(ohci->ir_context_mask);
3312	size = sizeof(struct iso_context) * ohci->n_ir;
3313	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
 
 
3314
3315	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3316	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
 
 
 
 
 
3317	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3318	ohci->it_context_mask = ohci->it_context_support;
3319	ohci->n_it = hweight32(ohci->it_context_mask);
3320	size = sizeof(struct iso_context) * ohci->n_it;
3321	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3322
3323	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3324		err = -ENOMEM;
3325		goto fail_contexts;
3326	}
3327
3328	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3329	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3330
3331	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3332	max_receive = (bus_options >> 12) & 0xf;
3333	link_speed = bus_options & 0x7;
3334	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3335		reg_read(ohci, OHCI1394_GUIDLo);
3336
3337	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338	if (err)
3339		goto fail_contexts;
3340
3341	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3342	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3343		  "%d IR + %d IT contexts, quirks 0x%x\n",
3344		  dev_name(&dev->dev), version >> 16, version & 0xff,
3345		  ohci->n_ir, ohci->n_it, ohci->quirks);
 
 
 
3346
3347	return 0;
3348
3349 fail_contexts:
3350	kfree(ohci->ir_context_list);
3351	kfree(ohci->it_context_list);
3352	context_release(&ohci->at_response_ctx);
3353 fail_atreq_ctx:
3354	context_release(&ohci->at_request_ctx);
3355 fail_arrsp_ctx:
3356	ar_context_release(&ohci->ar_response_ctx);
3357 fail_arreq_ctx:
3358	ar_context_release(&ohci->ar_request_ctx);
3359 fail_misc_buf:
3360	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3361			  ohci->misc_buffer, ohci->misc_buffer_bus);
3362 fail_iounmap:
3363	pci_iounmap(dev, ohci->registers);
3364 fail_iomem:
3365	pci_release_region(dev, 0);
3366 fail_disable:
3367	pci_disable_device(dev);
3368 fail_free:
3369	kfree(ohci);
3370	pmac_ohci_off(dev);
3371 fail:
3372	if (err == -ENOMEM)
3373		fw_error("Out of memory\n");
3374
3375	return err;
3376}
3377
3378static void pci_remove(struct pci_dev *dev)
3379{
3380	struct fw_ohci *ohci;
 
3381
3382	ohci = pci_get_drvdata(dev);
3383	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3384	flush_writes(ohci);
 
 
 
 
 
 
3385	fw_core_remove_card(&ohci->card);
3386
3387	/*
3388	 * FIXME: Fail all pending packets here, now that the upper
3389	 * layers can't queue any more.
3390	 */
3391
3392	software_reset(ohci);
3393	free_irq(dev->irq, ohci);
3394
3395	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3396		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3397				  ohci->next_config_rom, ohci->next_config_rom_bus);
3398	if (ohci->config_rom)
3399		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3400				  ohci->config_rom, ohci->config_rom_bus);
3401	ar_context_release(&ohci->ar_request_ctx);
3402	ar_context_release(&ohci->ar_response_ctx);
3403	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3404			  ohci->misc_buffer, ohci->misc_buffer_bus);
3405	context_release(&ohci->at_request_ctx);
3406	context_release(&ohci->at_response_ctx);
3407	kfree(ohci->it_context_list);
3408	kfree(ohci->ir_context_list);
3409	pci_disable_msi(dev);
3410	pci_iounmap(dev, ohci->registers);
3411	pci_release_region(dev, 0);
3412	pci_disable_device(dev);
3413	kfree(ohci);
3414	pmac_ohci_off(dev);
3415
3416	fw_notify("Removed fw-ohci device.\n");
3417}
3418
3419#ifdef CONFIG_PM
3420static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3421{
3422	struct fw_ohci *ohci = pci_get_drvdata(dev);
3423	int err;
3424
3425	software_reset(ohci);
3426	free_irq(dev->irq, ohci);
3427	pci_disable_msi(dev);
3428	err = pci_save_state(dev);
3429	if (err) {
3430		fw_error("pci_save_state failed\n");
3431		return err;
3432	}
3433	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3434	if (err)
3435		fw_error("pci_set_power_state failed with %d\n", err);
3436	pmac_ohci_off(dev);
3437
3438	return 0;
3439}
3440
3441static int pci_resume(struct pci_dev *dev)
3442{
3443	struct fw_ohci *ohci = pci_get_drvdata(dev);
3444	int err;
3445
3446	pmac_ohci_on(dev);
3447	pci_set_power_state(dev, PCI_D0);
3448	pci_restore_state(dev);
3449	err = pci_enable_device(dev);
3450	if (err) {
3451		fw_error("pci_enable_device failed\n");
3452		return err;
3453	}
3454
3455	/* Some systems don't setup GUID register on resume from ram  */
3456	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3457					!reg_read(ohci, OHCI1394_GUIDHi)) {
3458		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3459		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3460	}
3461
3462	err = ohci_enable(&ohci->card, NULL, 0);
3463	if (err)
3464		return err;
3465
3466	ohci_resume_iso_dma(ohci);
3467
3468	return 0;
3469}
3470#endif
3471
3472static const struct pci_device_id pci_table[] = {
3473	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3474	{ }
3475};
3476
3477MODULE_DEVICE_TABLE(pci, pci_table);
3478
3479static struct pci_driver fw_ohci_pci_driver = {
3480	.name		= ohci_driver_name,
3481	.id_table	= pci_table,
3482	.probe		= pci_probe,
3483	.remove		= pci_remove,
3484#ifdef CONFIG_PM
3485	.resume		= pci_resume,
3486	.suspend	= pci_suspend,
3487#endif
3488};
3489
3490MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3491MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3492MODULE_LICENSE("GPL");
3493
3494/* Provide a module alias so root-on-sbp2 initrds don't break. */
3495#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3496MODULE_ALIAS("ohci1394");
3497#endif
3498
3499static int __init fw_ohci_init(void)
3500{
 
 
 
 
3501	return pci_register_driver(&fw_ohci_pci_driver);
3502}
3503
3504static void __exit fw_ohci_cleanup(void)
3505{
3506	pci_unregister_driver(&fw_ohci_pci_driver);
 
3507}
3508
3509module_init(fw_ohci_init);
3510module_exit(fw_ohci_cleanup);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
 
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43#include "packet-header-definitions.h"
  44#include "phy-packet-definitions.h"
  45
  46#include <trace/events/firewire.h>
  47
  48static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/firewire_ohci.h>
  52
  53#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  54#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  55
  56#define DESCRIPTOR_OUTPUT_MORE		0
  57#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  58#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  59#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  60#define DESCRIPTOR_STATUS		(1 << 11)
  61#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  62#define DESCRIPTOR_PING			(1 << 7)
  63#define DESCRIPTOR_YY			(1 << 6)
  64#define DESCRIPTOR_NO_IRQ		(0 << 4)
  65#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  66#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  67#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  68#define DESCRIPTOR_WAIT			(3 << 0)
  69
  70#define DESCRIPTOR_CMD			(0xf << 12)
  71
  72struct descriptor {
  73	__le16 req_count;
  74	__le16 control;
  75	__le32 data_address;
  76	__le32 branch_address;
  77	__le16 res_count;
  78	__le16 transfer_status;
  79} __aligned(16);
  80
  81#define CONTROL_SET(regs)	(regs)
  82#define CONTROL_CLEAR(regs)	((regs) + 4)
  83#define COMMAND_PTR(regs)	((regs) + 12)
  84#define CONTEXT_MATCH(regs)	((regs) + 16)
  85
  86#define AR_BUFFER_SIZE	(32*1024)
  87#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  88/* we need at least two pages for proper list management */
  89#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  90
  91#define MAX_ASYNC_PAYLOAD	4096
  92#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  93#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  94
  95struct ar_context {
  96	struct fw_ohci *ohci;
  97	struct page *pages[AR_BUFFERS];
  98	void *buffer;
  99	struct descriptor *descriptors;
 100	dma_addr_t descriptors_bus;
 101	void *pointer;
 102	unsigned int last_buffer_index;
 103	u32 regs;
 104	struct tasklet_struct tasklet;
 105};
 106
 107struct context;
 108
 109typedef int (*descriptor_callback_t)(struct context *ctx,
 110				     struct descriptor *d,
 111				     struct descriptor *last);
 112
 113/*
 114 * A buffer that contains a block of DMA-able coherent memory used for
 115 * storing a portion of a DMA descriptor program.
 116 */
 117struct descriptor_buffer {
 118	struct list_head list;
 119	dma_addr_t buffer_bus;
 120	size_t buffer_size;
 121	size_t used;
 122	struct descriptor buffer[];
 123};
 124
 125struct context {
 126	struct fw_ohci *ohci;
 127	u32 regs;
 128	int total_allocation;
 129	u32 current_bus;
 130	bool running;
 131	bool flushing;
 132
 133	/*
 134	 * List of page-sized buffers for storing DMA descriptors.
 135	 * Head of list contains buffers in use and tail of list contains
 136	 * free buffers.
 137	 */
 138	struct list_head buffer_list;
 139
 140	/*
 141	 * Pointer to a buffer inside buffer_list that contains the tail
 142	 * end of the current DMA program.
 143	 */
 144	struct descriptor_buffer *buffer_tail;
 145
 146	/*
 147	 * The descriptor containing the branch address of the first
 148	 * descriptor that has not yet been filled by the device.
 149	 */
 150	struct descriptor *last;
 151
 152	/*
 153	 * The last descriptor block in the DMA program. It contains the branch
 154	 * address that must be updated upon appending a new descriptor.
 155	 */
 156	struct descriptor *prev;
 157	int prev_z;
 158
 159	descriptor_callback_t callback;
 160
 161	struct tasklet_struct tasklet;
 162};
 163
 
 
 
 
 
 
 
 164struct iso_context {
 165	struct fw_iso_context base;
 166	struct context context;
 
 167	void *header;
 168	size_t header_length;
 169	unsigned long flushing_completions;
 170	u32 mc_buffer_bus;
 171	u16 mc_completed;
 172	u16 last_timestamp;
 173	u8 sync;
 174	u8 tags;
 175};
 176
 177#define CONFIG_ROM_SIZE		(CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
 178
 179struct fw_ohci {
 180	struct fw_card card;
 181
 182	__iomem char *registers;
 183	int node_id;
 184	int generation;
 185	int request_generation;	/* for timestamping incoming requests */
 186	unsigned quirks;
 187	unsigned int pri_req_max;
 188	u32 bus_time;
 189	bool bus_time_running;
 190	bool is_root;
 191	bool csr_state_setclear_abdicate;
 192	int n_ir;
 193	int n_it;
 194	/*
 195	 * Spinlock for accessing fw_ohci data.  Never call out of
 196	 * this driver with this lock held.
 197	 */
 198	spinlock_t lock;
 199
 200	struct mutex phy_reg_mutex;
 201
 202	void *misc_buffer;
 203	dma_addr_t misc_buffer_bus;
 204
 205	struct ar_context ar_request_ctx;
 206	struct ar_context ar_response_ctx;
 207	struct context at_request_ctx;
 208	struct context at_response_ctx;
 209
 210	u32 it_context_support;
 211	u32 it_context_mask;     /* unoccupied IT contexts */
 212	struct iso_context *it_context_list;
 213	u64 ir_context_channels; /* unoccupied channels */
 214	u32 ir_context_support;
 215	u32 ir_context_mask;     /* unoccupied IR contexts */
 216	struct iso_context *ir_context_list;
 217	u64 mc_channels; /* channels in use by the multichannel IR context */
 218	bool mc_allocated;
 219
 220	__be32    *config_rom;
 221	dma_addr_t config_rom_bus;
 222	__be32    *next_config_rom;
 223	dma_addr_t next_config_rom_bus;
 224	__be32     next_header;
 225
 226	__le32    *self_id;
 227	dma_addr_t self_id_bus;
 228	struct work_struct bus_reset_work;
 229
 230	u32 self_id_buffer[512];
 231};
 232
 233static struct workqueue_struct *selfid_workqueue;
 234
 235static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 236{
 237	return container_of(card, struct fw_ohci, card);
 238}
 239
 240#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 241#define IR_CONTEXT_BUFFER_FILL		0x80000000
 242#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 243#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 244#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 245#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 246
 247#define CONTEXT_RUN	0x8000
 248#define CONTEXT_WAKE	0x1000
 249#define CONTEXT_DEAD	0x0800
 250#define CONTEXT_ACTIVE	0x0400
 251
 252#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 253#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 254#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 255
 256#define OHCI1394_REGISTER_SIZE		0x800
 257#define OHCI1394_PCI_HCI_Control	0x40
 258#define SELF_ID_BUF_SIZE		0x800
 
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 
 
 
 396
 397static int param_debug;
 398module_param_named(debug, param_debug, int, 0644);
 399MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
 400	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 401	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 402	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 
 403	", or a combination, or all = -1)");
 404
 405static bool param_remote_dma;
 406module_param_named(remote_dma, param_remote_dma, bool, 0444);
 407MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 
 
 408
 409static void log_irqs(struct fw_ohci *ohci, u32 evt)
 410{
 411	if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
 412		return;
 413
 414	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 415	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 416	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 417	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 418	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 419	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 420	    evt & OHCI1394_isochRx		? " IR"			: "",
 421	    evt & OHCI1394_isochTx		? " IT"			: "",
 422	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 423	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 424	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 425	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 426	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 427	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 428	    evt & OHCI1394_busReset		? " busReset"		: "",
 429	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 430		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 431		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 432		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 433		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 434		    OHCI1394_cycleInconsistent |
 435		    OHCI1394_regAccessFail | OHCI1394_busReset)
 436						? " ?"			: "");
 437}
 438
 439static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 
 
 
 
 
 
 
 
 
 440{
 441	static const char *const speed[] = {
 442		[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 443	};
 444	static const char *const power[] = {
 445		[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 446		[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 447	};
 448	static const char port[] = {
 449		[PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
 450		[PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
 451		[PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
 452		[PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
 453	};
 454	struct self_id_sequence_enumerator enumerator = {
 455		.cursor = ohci->self_id_buffer,
 456		.quadlet_count = self_id_count,
 457	};
 458
 
 
 459	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 460		return;
 461
 462	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 463		    self_id_count, generation, ohci->node_id);
 464
 465	while (enumerator.quadlet_count > 0) {
 466		unsigned int quadlet_count;
 467		unsigned int port_index;
 468		const u32 *s;
 469		int i;
 470
 471		s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
 472		if (IS_ERR(s))
 473			break;
 474
 475		ohci_notice(ohci,
 476		    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 477		    *s,
 478		    phy_packet_self_id_get_phy_id(*s),
 479		    port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
 480		    port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
 481		    port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
 482		    speed[*s >> 14 & 3], *s >> 16 & 63,
 483		    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 484		    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 485
 486		port_index = 3;
 487		for (i = 1; i < quadlet_count; ++i) {
 488			ohci_notice(ohci,
 489			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 490			    s[i],
 491			    phy_packet_self_id_get_phy_id(s[i]),
 492			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
 493			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
 494			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
 495			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
 496			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
 497			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
 498			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
 499			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
 500			);
 501
 502			port_index += 8;
 503		}
 504	}
 505}
 506
 507static const char *evts[] = {
 508	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 509	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 510	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 511	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 512	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 513	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 514	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 515	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 516	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 517	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 518	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 519	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 520	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 521	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 522	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 523	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 524	[0x20] = "pending/cancelled",
 525};
 
 
 
 
 
 
 
 
 
 
 526
 527static void log_ar_at_event(struct fw_ohci *ohci,
 528			    char dir, int speed, u32 *header, int evt)
 529{
 530	static const char *const tcodes[] = {
 531		[TCODE_WRITE_QUADLET_REQUEST]	= "QW req",
 532		[TCODE_WRITE_BLOCK_REQUEST]	= "BW req",
 533		[TCODE_WRITE_RESPONSE]		= "W resp",
 534		[0x3]				= "-reserved-",
 535		[TCODE_READ_QUADLET_REQUEST]	= "QR req",
 536		[TCODE_READ_BLOCK_REQUEST]	= "BR req",
 537		[TCODE_READ_QUADLET_RESPONSE]	= "QR resp",
 538		[TCODE_READ_BLOCK_RESPONSE]	= "BR resp",
 539		[TCODE_CYCLE_START]		= "cycle start",
 540		[TCODE_LOCK_REQUEST]		= "Lk req",
 541		[TCODE_STREAM_DATA]		= "async stream packet",
 542		[TCODE_LOCK_RESPONSE]		= "Lk resp",
 543		[0xc]				= "-reserved-",
 544		[0xd]				= "-reserved-",
 545		[TCODE_LINK_INTERNAL]		= "link internal",
 546		[0xf]				= "-reserved-",
 547	};
 548	int tcode = async_header_get_tcode(header);
 549	char specific[12];
 550
 551	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 552		return;
 553
 554	if (unlikely(evt >= ARRAY_SIZE(evts)))
 555		evt = 0x1f;
 556
 557	if (evt == OHCI1394_evt_bus_reset) {
 558		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 559			    dir, (header[2] >> 16) & 0xff);
 560		return;
 561	}
 562
 563	switch (tcode) {
 564	case TCODE_WRITE_QUADLET_REQUEST:
 565	case TCODE_READ_QUADLET_RESPONSE:
 566	case TCODE_CYCLE_START:
 567		snprintf(specific, sizeof(specific), " = %08x",
 568			 be32_to_cpu((__force __be32)header[3]));
 569		break;
 570	case TCODE_WRITE_BLOCK_REQUEST:
 571	case TCODE_READ_BLOCK_REQUEST:
 572	case TCODE_READ_BLOCK_RESPONSE:
 573	case TCODE_LOCK_REQUEST:
 574	case TCODE_LOCK_RESPONSE:
 575		snprintf(specific, sizeof(specific), " %x,%x",
 576			 async_header_get_data_length(header),
 577			 async_header_get_extended_tcode(header));
 578		break;
 579	default:
 580		specific[0] = '\0';
 581	}
 582
 583	switch (tcode) {
 584	case TCODE_STREAM_DATA:
 585		ohci_notice(ohci, "A%c %s, %s\n",
 586			    dir, evts[evt], tcodes[tcode]);
 587		break;
 588	case TCODE_LINK_INTERNAL:
 589		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 590			    dir, evts[evt], header[1], header[2]);
 591		break;
 592	case TCODE_WRITE_QUADLET_REQUEST:
 593	case TCODE_WRITE_BLOCK_REQUEST:
 594	case TCODE_READ_QUADLET_REQUEST:
 595	case TCODE_READ_BLOCK_REQUEST:
 596	case TCODE_LOCK_REQUEST:
 597		ohci_notice(ohci,
 598			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
 599			    dir, speed, async_header_get_tlabel(header),
 600			    async_header_get_source(header), async_header_get_destination(header),
 601			    evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
 602		break;
 603	default:
 604		ohci_notice(ohci,
 605			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 606			    dir, speed, async_header_get_tlabel(header),
 607			    async_header_get_source(header), async_header_get_destination(header),
 608			    evts[evt], tcodes[tcode], specific);
 
 609	}
 610}
 611
 
 
 
 
 
 
 
 
 
 612static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 613{
 614	writel(data, ohci->registers + offset);
 615}
 616
 617static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 618{
 619	return readl(ohci->registers + offset);
 620}
 621
 622static inline void flush_writes(const struct fw_ohci *ohci)
 623{
 624	/* Do a dummy read to flush writes. */
 625	reg_read(ohci, OHCI1394_Version);
 626}
 627
 628/*
 629 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 630 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 631 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 632 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 633 */
 634static int read_phy_reg(struct fw_ohci *ohci, int addr)
 635{
 636	u32 val;
 637	int i;
 638
 639	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 640	for (i = 0; i < 3 + 100; i++) {
 641		val = reg_read(ohci, OHCI1394_PhyControl);
 642		if (!~val)
 643			return -ENODEV; /* Card was ejected. */
 644
 645		if (val & OHCI1394_PhyControl_ReadDone)
 646			return OHCI1394_PhyControl_ReadData(val);
 647
 648		/*
 649		 * Try a few times without waiting.  Sleeping is necessary
 650		 * only when the link/PHY interface is busy.
 651		 */
 652		if (i >= 3)
 653			msleep(1);
 654	}
 655	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 656	dump_stack();
 657
 658	return -EBUSY;
 659}
 660
 661static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 662{
 663	int i;
 664
 665	reg_write(ohci, OHCI1394_PhyControl,
 666		  OHCI1394_PhyControl_Write(addr, val));
 667	for (i = 0; i < 3 + 100; i++) {
 668		val = reg_read(ohci, OHCI1394_PhyControl);
 669		if (!~val)
 670			return -ENODEV; /* Card was ejected. */
 671
 672		if (!(val & OHCI1394_PhyControl_WritePending))
 673			return 0;
 674
 675		if (i >= 3)
 676			msleep(1);
 677	}
 678	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 679	dump_stack();
 680
 681	return -EBUSY;
 682}
 683
 684static int update_phy_reg(struct fw_ohci *ohci, int addr,
 685			  int clear_bits, int set_bits)
 686{
 687	int ret = read_phy_reg(ohci, addr);
 688	if (ret < 0)
 689		return ret;
 690
 691	/*
 692	 * The interrupt status bits are cleared by writing a one bit.
 693	 * Avoid clearing them unless explicitly requested in set_bits.
 694	 */
 695	if (addr == 5)
 696		clear_bits |= PHY_INT_STATUS_BITS;
 697
 698	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 699}
 700
 701static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 702{
 703	int ret;
 704
 705	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 706	if (ret < 0)
 707		return ret;
 708
 709	return read_phy_reg(ohci, addr);
 710}
 711
 712static int ohci_read_phy_reg(struct fw_card *card, int addr)
 713{
 714	struct fw_ohci *ohci = fw_ohci(card);
 
 715
 716	guard(mutex)(&ohci->phy_reg_mutex);
 
 
 717
 718	return read_phy_reg(ohci, addr);
 719}
 720
 721static int ohci_update_phy_reg(struct fw_card *card, int addr,
 722			       int clear_bits, int set_bits)
 723{
 724	struct fw_ohci *ohci = fw_ohci(card);
 
 725
 726	guard(mutex)(&ohci->phy_reg_mutex);
 
 
 727
 728	return update_phy_reg(ohci, addr, clear_bits, set_bits);
 729}
 730
 731static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 732{
 733	return page_private(ctx->pages[i]);
 734}
 735
 736static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 737{
 738	struct descriptor *d;
 739
 740	d = &ctx->descriptors[index];
 741	d->branch_address  &= cpu_to_le32(~0xf);
 742	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 743	d->transfer_status =  0;
 744
 745	wmb(); /* finish init of new descriptors before branch_address update */
 746	d = &ctx->descriptors[ctx->last_buffer_index];
 747	d->branch_address  |= cpu_to_le32(1);
 748
 749	ctx->last_buffer_index = index;
 750
 751	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 752}
 753
 754static void ar_context_release(struct ar_context *ctx)
 755{
 756	struct device *dev = ctx->ohci->card.device;
 757	unsigned int i;
 758
 759	if (!ctx->buffer)
 760		return;
 761
 762	vunmap(ctx->buffer);
 763
 764	for (i = 0; i < AR_BUFFERS; i++) {
 765		if (ctx->pages[i])
 766			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 767				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 768	}
 769}
 770
 771static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 772{
 773	struct fw_ohci *ohci = ctx->ohci;
 774
 775	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 776		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 777		flush_writes(ohci);
 778
 779		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 780	}
 781	/* FIXME: restart? */
 782}
 783
 784static inline unsigned int ar_next_buffer_index(unsigned int index)
 785{
 786	return (index + 1) % AR_BUFFERS;
 787}
 788
 
 
 
 
 
 789static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 790{
 791	return ar_next_buffer_index(ctx->last_buffer_index);
 792}
 793
 794/*
 795 * We search for the buffer that contains the last AR packet DMA data written
 796 * by the controller.
 797 */
 798static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 799						 unsigned int *buffer_offset)
 800{
 801	unsigned int i, next_i, last = ctx->last_buffer_index;
 802	__le16 res_count, next_res_count;
 803
 804	i = ar_first_buffer_index(ctx);
 805	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 806
 807	/* A buffer that is not yet completely filled must be the last one. */
 808	while (i != last && res_count == 0) {
 809
 810		/* Peek at the next descriptor. */
 811		next_i = ar_next_buffer_index(i);
 812		rmb(); /* read descriptors in order */
 813		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 814		/*
 815		 * If the next descriptor is still empty, we must stop at this
 816		 * descriptor.
 817		 */
 818		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 819			/*
 820			 * The exception is when the DMA data for one packet is
 821			 * split over three buffers; in this case, the middle
 822			 * buffer's descriptor might be never updated by the
 823			 * controller and look still empty, and we have to peek
 824			 * at the third one.
 825			 */
 826			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 827				next_i = ar_next_buffer_index(next_i);
 828				rmb();
 829				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 830				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 831					goto next_buffer_is_active;
 832			}
 833
 834			break;
 835		}
 836
 837next_buffer_is_active:
 838		i = next_i;
 839		res_count = next_res_count;
 840	}
 841
 842	rmb(); /* read res_count before the DMA data */
 843
 844	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 845	if (*buffer_offset > PAGE_SIZE) {
 846		*buffer_offset = 0;
 847		ar_context_abort(ctx, "corrupted descriptor");
 848	}
 849
 850	return i;
 851}
 852
 853static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 854				    unsigned int end_buffer_index,
 855				    unsigned int end_buffer_offset)
 856{
 857	unsigned int i;
 858
 859	i = ar_first_buffer_index(ctx);
 860	while (i != end_buffer_index) {
 861		dma_sync_single_for_cpu(ctx->ohci->card.device,
 862					ar_buffer_bus(ctx, i),
 863					PAGE_SIZE, DMA_FROM_DEVICE);
 864		i = ar_next_buffer_index(i);
 865	}
 866	if (end_buffer_offset > 0)
 867		dma_sync_single_for_cpu(ctx->ohci->card.device,
 868					ar_buffer_bus(ctx, i),
 869					end_buffer_offset, DMA_FROM_DEVICE);
 870}
 871
 872#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 873static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
 874{
 875	return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
 876}
 877
 878static bool has_be_header_quirk(const struct fw_ohci *ohci)
 879{
 880	return !!(ohci->quirks & QUIRK_BE_HEADERS);
 881}
 882#else
 883static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
 884{
 885	return le32_to_cpu(value);
 886}
 887
 888static bool has_be_header_quirk(const struct fw_ohci *ohci)
 889{
 890	return false;
 891}
 892#endif
 893
 894static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 895{
 896	struct fw_ohci *ohci = ctx->ohci;
 897	struct fw_packet p;
 898	u32 status, length, tcode;
 899	int evt;
 900
 901	p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
 902	p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
 903	p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
 904
 905	tcode = async_header_get_tcode(p.header);
 906	switch (tcode) {
 907	case TCODE_WRITE_QUADLET_REQUEST:
 908	case TCODE_READ_QUADLET_RESPONSE:
 909		p.header[3] = (__force __u32) buffer[3];
 910		p.header_length = 16;
 911		p.payload_length = 0;
 912		break;
 913
 914	case TCODE_READ_BLOCK_REQUEST :
 915		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
 916		p.header_length = 16;
 917		p.payload_length = 0;
 918		break;
 919
 920	case TCODE_WRITE_BLOCK_REQUEST:
 921	case TCODE_READ_BLOCK_RESPONSE:
 922	case TCODE_LOCK_REQUEST:
 923	case TCODE_LOCK_RESPONSE:
 924		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
 925		p.header_length = 16;
 926		p.payload_length = async_header_get_data_length(p.header);
 927		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 928			ar_context_abort(ctx, "invalid packet length");
 929			return NULL;
 930		}
 931		break;
 932
 933	case TCODE_WRITE_RESPONSE:
 934	case TCODE_READ_QUADLET_REQUEST:
 935	case TCODE_LINK_INTERNAL:
 936		p.header_length = 12;
 937		p.payload_length = 0;
 938		break;
 939
 940	default:
 941		ar_context_abort(ctx, "invalid tcode");
 942		return NULL;
 943	}
 944
 945	p.payload = (void *) buffer + p.header_length;
 946
 947	/* FIXME: What to do about evt_* errors? */
 948	length = (p.header_length + p.payload_length + 3) / 4;
 949	status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
 950	evt    = (status >> 16) & 0x1f;
 951
 952	p.ack        = evt - 16;
 953	p.speed      = (status >> 21) & 0x7;
 954	p.timestamp  = status & 0xffff;
 955	p.generation = ohci->request_generation;
 956
 957	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 958
 959	/*
 960	 * Several controllers, notably from NEC and VIA, forget to
 961	 * write ack_complete status at PHY packet reception.
 962	 */
 963	if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
 
 964		p.ack = ACK_COMPLETE;
 965
 966	/*
 967	 * The OHCI bus reset handler synthesizes a PHY packet with
 968	 * the new generation number when a bus reset happens (see
 969	 * section 8.4.2.3).  This helps us determine when a request
 970	 * was received and make sure we send the response in the same
 971	 * generation.  We only need this for requests; for responses
 972	 * we use the unique tlabel for finding the matching
 973	 * request.
 974	 *
 975	 * Alas some chips sometimes emit bus reset packets with a
 976	 * wrong generation.  We set the correct generation for these
 977	 * at a slightly incorrect time (in bus_reset_work).
 978	 */
 979	if (evt == OHCI1394_evt_bus_reset) {
 980		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 981			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 982	} else if (ctx == &ohci->ar_request_ctx) {
 983		fw_core_handle_request(&ohci->card, &p);
 984	} else {
 985		fw_core_handle_response(&ohci->card, &p);
 986	}
 987
 988	return buffer + length + 1;
 989}
 990
 991static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 992{
 993	void *next;
 994
 995	while (p < end) {
 996		next = handle_ar_packet(ctx, p);
 997		if (!next)
 998			return p;
 999		p = next;
1000	}
1001
1002	return p;
1003}
1004
1005static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1006{
1007	unsigned int i;
1008
1009	i = ar_first_buffer_index(ctx);
1010	while (i != end_buffer) {
1011		dma_sync_single_for_device(ctx->ohci->card.device,
1012					   ar_buffer_bus(ctx, i),
1013					   PAGE_SIZE, DMA_FROM_DEVICE);
1014		ar_context_link_page(ctx, i);
1015		i = ar_next_buffer_index(i);
1016	}
1017}
1018
1019static void ar_context_tasklet(unsigned long data)
1020{
1021	struct ar_context *ctx = (struct ar_context *)data;
1022	unsigned int end_buffer_index, end_buffer_offset;
1023	void *p, *end;
1024
1025	p = ctx->pointer;
1026	if (!p)
1027		return;
1028
1029	end_buffer_index = ar_search_last_active_buffer(ctx,
1030							&end_buffer_offset);
1031	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1032	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1033
1034	if (end_buffer_index < ar_first_buffer_index(ctx)) {
1035		/*
1036		 * The filled part of the overall buffer wraps around; handle
1037		 * all packets up to the buffer end here.  If the last packet
1038		 * wraps around, its tail will be visible after the buffer end
1039		 * because the buffer start pages are mapped there again.
1040		 */
1041		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1042		p = handle_ar_packets(ctx, p, buffer_end);
1043		if (p < buffer_end)
1044			goto error;
1045		/* adjust p to point back into the actual buffer */
1046		p -= AR_BUFFERS * PAGE_SIZE;
1047	}
1048
1049	p = handle_ar_packets(ctx, p, end);
1050	if (p != end) {
1051		if (p > end)
1052			ar_context_abort(ctx, "inconsistent descriptor");
1053		goto error;
1054	}
1055
1056	ctx->pointer = p;
1057	ar_recycle_buffers(ctx, end_buffer_index);
1058
1059	return;
1060
1061error:
1062	ctx->pointer = NULL;
1063}
1064
1065static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1066			   unsigned int descriptors_offset, u32 regs)
1067{
1068	struct device *dev = ohci->card.device;
1069	unsigned int i;
1070	dma_addr_t dma_addr;
1071	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1072	struct descriptor *d;
1073
1074	ctx->regs        = regs;
1075	ctx->ohci        = ohci;
1076	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1077
1078	for (i = 0; i < AR_BUFFERS; i++) {
1079		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1080						DMA_FROM_DEVICE, GFP_KERNEL);
1081		if (!ctx->pages[i])
1082			goto out_of_memory;
 
 
 
 
 
 
 
1083		set_page_private(ctx->pages[i], dma_addr);
1084		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1085					   DMA_FROM_DEVICE);
1086	}
1087
1088	for (i = 0; i < AR_BUFFERS; i++)
1089		pages[i]              = ctx->pages[i];
1090	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1091		pages[AR_BUFFERS + i] = ctx->pages[i];
1092	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
 
1093	if (!ctx->buffer)
1094		goto out_of_memory;
1095
1096	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1097	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1098
1099	for (i = 0; i < AR_BUFFERS; i++) {
1100		d = &ctx->descriptors[i];
1101		d->req_count      = cpu_to_le16(PAGE_SIZE);
1102		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1103						DESCRIPTOR_STATUS |
1104						DESCRIPTOR_BRANCH_ALWAYS);
1105		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1106		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1107			ar_next_buffer_index(i) * sizeof(struct descriptor));
1108	}
1109
1110	return 0;
1111
1112out_of_memory:
1113	ar_context_release(ctx);
1114
1115	return -ENOMEM;
1116}
1117
1118static void ar_context_run(struct ar_context *ctx)
1119{
1120	unsigned int i;
1121
1122	for (i = 0; i < AR_BUFFERS; i++)
1123		ar_context_link_page(ctx, i);
1124
1125	ctx->pointer = ctx->buffer;
1126
1127	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1128	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1129}
1130
1131static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1132{
1133	__le16 branch;
1134
1135	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1136
1137	/* figure out which descriptor the branch address goes in */
1138	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1139		return d;
1140	else
1141		return d + z - 1;
1142}
1143
1144static void context_retire_descriptors(struct context *ctx)
1145{
 
1146	struct descriptor *d, *last;
1147	u32 address;
1148	int z;
1149	struct descriptor_buffer *desc;
1150
1151	desc = list_entry(ctx->buffer_list.next,
1152			struct descriptor_buffer, list);
1153	last = ctx->last;
1154	while (last->branch_address != 0) {
1155		struct descriptor_buffer *old_desc = desc;
1156		address = le32_to_cpu(last->branch_address);
1157		z = address & 0xf;
1158		address &= ~0xf;
1159		ctx->current_bus = address;
1160
1161		/* If the branch address points to a buffer outside of the
1162		 * current buffer, advance to the next buffer. */
1163		if (address < desc->buffer_bus ||
1164				address >= desc->buffer_bus + desc->used)
1165			desc = list_entry(desc->list.next,
1166					struct descriptor_buffer, list);
1167		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1168		last = find_branch_descriptor(d, z);
1169
1170		if (!ctx->callback(ctx, d, last))
1171			break;
1172
1173		if (old_desc != desc) {
1174			// If we've advanced to the next buffer, move the previous buffer to the
1175			// free list.
 
1176			old_desc->used = 0;
1177			guard(spinlock_irqsave)(&ctx->ohci->lock);
1178			list_move_tail(&old_desc->list, &ctx->buffer_list);
 
1179		}
1180		ctx->last = last;
1181	}
1182}
1183
1184static void context_tasklet(unsigned long data)
1185{
1186	struct context *ctx = (struct context *) data;
1187
1188	context_retire_descriptors(ctx);
1189}
1190
1191static void ohci_isoc_context_work(struct work_struct *work)
1192{
1193	struct fw_iso_context *base = container_of(work, struct fw_iso_context, work);
1194	struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1195
1196	context_retire_descriptors(&isoc_ctx->context);
1197}
1198
1199/*
1200 * Allocate a new buffer and add it to the list of free buffers for this
1201 * context.  Must be called with ohci->lock held.
1202 */
1203static int context_add_buffer(struct context *ctx)
1204{
1205	struct descriptor_buffer *desc;
1206	dma_addr_t bus_addr;
1207	int offset;
1208
1209	/*
1210	 * 16MB of descriptors should be far more than enough for any DMA
1211	 * program.  This will catch run-away userspace or DoS attacks.
1212	 */
1213	if (ctx->total_allocation >= 16*1024*1024)
1214		return -ENOMEM;
1215
1216	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
 
1217	if (!desc)
1218		return -ENOMEM;
1219
1220	offset = (void *)&desc->buffer - (void *)desc;
1221	/*
1222	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1223	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1224	 * an IOMMU is in use and the oversized read crosses a page boundary.
1225	 * Work around this by always leaving at least 0x10 bytes of padding.
1226	 */
1227	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1228	desc->buffer_bus = bus_addr + offset;
1229	desc->used = 0;
1230
1231	list_add_tail(&desc->list, &ctx->buffer_list);
1232	ctx->total_allocation += PAGE_SIZE;
1233
1234	return 0;
1235}
1236
1237static int context_init(struct context *ctx, struct fw_ohci *ohci,
1238			u32 regs, descriptor_callback_t callback)
1239{
1240	ctx->ohci = ohci;
1241	ctx->regs = regs;
1242	ctx->total_allocation = 0;
1243
1244	INIT_LIST_HEAD(&ctx->buffer_list);
1245	if (context_add_buffer(ctx) < 0)
1246		return -ENOMEM;
1247
1248	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1249			struct descriptor_buffer, list);
1250
1251	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1252	ctx->callback = callback;
1253
1254	/*
1255	 * We put a dummy descriptor in the buffer that has a NULL
1256	 * branch address and looks like it's been sent.  That way we
1257	 * have a descriptor to append DMA programs to.
1258	 */
1259	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1260	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1261	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1262	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1263	ctx->last = ctx->buffer_tail->buffer;
1264	ctx->prev = ctx->buffer_tail->buffer;
1265	ctx->prev_z = 1;
1266
1267	return 0;
1268}
1269
1270static void context_release(struct context *ctx)
1271{
1272	struct fw_card *card = &ctx->ohci->card;
1273	struct descriptor_buffer *desc, *tmp;
1274
1275	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1276		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1277				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1278	}
1279}
1280
1281/* Must be called with ohci->lock held */
1282static struct descriptor *context_get_descriptors(struct context *ctx,
1283						  int z, dma_addr_t *d_bus)
1284{
1285	struct descriptor *d = NULL;
1286	struct descriptor_buffer *desc = ctx->buffer_tail;
1287
1288	if (z * sizeof(*d) > desc->buffer_size)
1289		return NULL;
1290
1291	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1292		/* No room for the descriptor in this buffer, so advance to the
1293		 * next one. */
1294
1295		if (desc->list.next == &ctx->buffer_list) {
1296			/* If there is no free buffer next in the list,
1297			 * allocate one. */
1298			if (context_add_buffer(ctx) < 0)
1299				return NULL;
1300		}
1301		desc = list_entry(desc->list.next,
1302				struct descriptor_buffer, list);
1303		ctx->buffer_tail = desc;
1304	}
1305
1306	d = desc->buffer + desc->used / sizeof(*d);
1307	memset(d, 0, z * sizeof(*d));
1308	*d_bus = desc->buffer_bus + desc->used;
1309
1310	return d;
1311}
1312
1313static void context_run(struct context *ctx, u32 extra)
1314{
1315	struct fw_ohci *ohci = ctx->ohci;
1316
1317	reg_write(ohci, COMMAND_PTR(ctx->regs),
1318		  le32_to_cpu(ctx->last->branch_address));
1319	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1320	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1321	ctx->running = true;
1322	flush_writes(ohci);
1323}
1324
1325static void context_append(struct context *ctx,
1326			   struct descriptor *d, int z, int extra)
1327{
1328	dma_addr_t d_bus;
1329	struct descriptor_buffer *desc = ctx->buffer_tail;
1330	struct descriptor *d_branch;
1331
1332	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1333
1334	desc->used += (z + extra) * sizeof(*d);
1335
1336	wmb(); /* finish init of new descriptors before branch_address update */
1337
1338	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1339	d_branch->branch_address = cpu_to_le32(d_bus | z);
1340
1341	/*
1342	 * VT6306 incorrectly checks only the single descriptor at the
1343	 * CommandPtr when the wake bit is written, so if it's a
1344	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1345	 * the branch address in the first descriptor.
1346	 *
1347	 * Not doing this for transmit contexts since not sure how it interacts
1348	 * with skip addresses.
1349	 */
1350	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1351	    d_branch != ctx->prev &&
1352	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1353	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1354		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1355	}
1356
1357	ctx->prev = d;
1358	ctx->prev_z = z;
1359}
1360
1361static void context_stop(struct context *ctx)
1362{
1363	struct fw_ohci *ohci = ctx->ohci;
1364	u32 reg;
1365	int i;
1366
1367	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1368	ctx->running = false;
1369
1370	for (i = 0; i < 1000; i++) {
1371		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1372		if ((reg & CONTEXT_ACTIVE) == 0)
1373			return;
1374
1375		if (i)
1376			udelay(10);
1377	}
1378	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1379}
1380
1381struct driver_data {
1382	u8 inline_data[8];
1383	struct fw_packet *packet;
1384};
1385
1386/*
1387 * This function appends a packet to the DMA queue for transmission.
1388 * Must always be called with the ochi->lock held to ensure proper
1389 * generation handling and locking around packet queue manipulation.
1390 */
1391static int at_context_queue_packet(struct context *ctx,
1392				   struct fw_packet *packet)
1393{
1394	struct fw_ohci *ohci = ctx->ohci;
1395	dma_addr_t d_bus, payload_bus;
1396	struct driver_data *driver_data;
1397	struct descriptor *d, *last;
1398	__le32 *header;
1399	int z, tcode;
1400
1401	d = context_get_descriptors(ctx, 4, &d_bus);
1402	if (d == NULL) {
1403		packet->ack = RCODE_SEND_ERROR;
1404		return -1;
1405	}
1406
1407	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1408	d[0].res_count = cpu_to_le16(packet->timestamp);
1409
1410	tcode = async_header_get_tcode(packet->header);
 
 
 
 
 
 
1411	header = (__le32 *) &d[1];
1412	switch (tcode) {
1413	case TCODE_WRITE_QUADLET_REQUEST:
1414	case TCODE_WRITE_BLOCK_REQUEST:
1415	case TCODE_WRITE_RESPONSE:
1416	case TCODE_READ_QUADLET_REQUEST:
1417	case TCODE_READ_BLOCK_REQUEST:
1418	case TCODE_READ_QUADLET_RESPONSE:
1419	case TCODE_READ_BLOCK_RESPONSE:
1420	case TCODE_LOCK_REQUEST:
1421	case TCODE_LOCK_RESPONSE:
1422		ohci1394_at_data_set_src_bus_id(header, false);
1423		ohci1394_at_data_set_speed(header, packet->speed);
1424		ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1425		ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1426		ohci1394_at_data_set_tcode(header, tcode);
1427
1428		ohci1394_at_data_set_destination_id(header,
1429						    async_header_get_destination(packet->header));
1430
1431		if (ctx == &ctx->ohci->at_response_ctx) {
1432			ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1433		} else {
1434			ohci1394_at_data_set_destination_offset(header,
1435							async_header_get_offset(packet->header));
1436		}
1437
1438		if (tcode_is_block_packet(tcode))
1439			header[3] = cpu_to_le32(packet->header[3]);
1440		else
1441			header[3] = (__force __le32) packet->header[3];
1442
1443		d[0].req_count = cpu_to_le16(packet->header_length);
1444		break;
 
1445	case TCODE_LINK_INTERNAL:
1446		ohci1394_at_data_set_speed(header, packet->speed);
1447		ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1448
1449		header[1] = cpu_to_le32(packet->header[1]);
1450		header[2] = cpu_to_le32(packet->header[2]);
1451		d[0].req_count = cpu_to_le16(12);
1452
1453		if (is_ping_packet(&packet->header[1]))
1454			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1455		break;
1456
1457	case TCODE_STREAM_DATA:
1458		ohci1394_it_data_set_speed(header, packet->speed);
1459		ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1460		ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1461		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1462		ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1463
1464		ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1465
1466		d[0].req_count = cpu_to_le16(8);
1467		break;
1468
1469	default:
1470		/* BUG(); */
1471		packet->ack = RCODE_SEND_ERROR;
1472		return -1;
1473	}
1474
1475	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1476	driver_data = (struct driver_data *) &d[3];
1477	driver_data->packet = packet;
1478	packet->driver_data = driver_data;
1479
1480	if (packet->payload_length > 0) {
1481		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1482			payload_bus = dma_map_single(ohci->card.device,
1483						     packet->payload,
1484						     packet->payload_length,
1485						     DMA_TO_DEVICE);
1486			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1487				packet->ack = RCODE_SEND_ERROR;
1488				return -1;
1489			}
1490			packet->payload_bus	= payload_bus;
1491			packet->payload_mapped	= true;
1492		} else {
1493			memcpy(driver_data->inline_data, packet->payload,
1494			       packet->payload_length);
1495			payload_bus = d_bus + 3 * sizeof(*d);
1496		}
1497
1498		d[2].req_count    = cpu_to_le16(packet->payload_length);
1499		d[2].data_address = cpu_to_le32(payload_bus);
1500		last = &d[2];
1501		z = 3;
1502	} else {
1503		last = &d[0];
1504		z = 2;
1505	}
1506
1507	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1508				     DESCRIPTOR_IRQ_ALWAYS |
1509				     DESCRIPTOR_BRANCH_ALWAYS);
1510
1511	/* FIXME: Document how the locking works. */
1512	if (ohci->generation != packet->generation) {
1513		if (packet->payload_mapped)
1514			dma_unmap_single(ohci->card.device, payload_bus,
1515					 packet->payload_length, DMA_TO_DEVICE);
1516		packet->ack = RCODE_GENERATION;
1517		return -1;
1518	}
1519
1520	context_append(ctx, d, z, 4 - z);
1521
1522	if (ctx->running)
1523		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1524	else
1525		context_run(ctx, 0);
1526
1527	return 0;
1528}
1529
1530static void at_context_flush(struct context *ctx)
1531{
1532	tasklet_disable(&ctx->tasklet);
1533
1534	ctx->flushing = true;
1535	context_tasklet((unsigned long)ctx);
1536	ctx->flushing = false;
1537
1538	tasklet_enable(&ctx->tasklet);
1539}
1540
1541static int handle_at_packet(struct context *context,
1542			    struct descriptor *d,
1543			    struct descriptor *last)
1544{
1545	struct driver_data *driver_data;
1546	struct fw_packet *packet;
1547	struct fw_ohci *ohci = context->ohci;
1548	int evt;
1549
1550	if (last->transfer_status == 0 && !context->flushing)
1551		/* This descriptor isn't done yet, stop iteration. */
1552		return 0;
1553
1554	driver_data = (struct driver_data *) &d[3];
1555	packet = driver_data->packet;
1556	if (packet == NULL)
1557		/* This packet was cancelled, just continue. */
1558		return 1;
1559
1560	if (packet->payload_mapped)
1561		dma_unmap_single(ohci->card.device, packet->payload_bus,
1562				 packet->payload_length, DMA_TO_DEVICE);
1563
1564	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1565	packet->timestamp = le16_to_cpu(last->res_count);
1566
1567	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1568
1569	switch (evt) {
1570	case OHCI1394_evt_timeout:
1571		/* Async response transmit timed out. */
1572		packet->ack = RCODE_CANCELLED;
1573		break;
1574
1575	case OHCI1394_evt_flushed:
1576		/*
1577		 * The packet was flushed should give same error as
1578		 * when we try to use a stale generation count.
1579		 */
1580		packet->ack = RCODE_GENERATION;
1581		break;
1582
1583	case OHCI1394_evt_missing_ack:
1584		if (context->flushing)
1585			packet->ack = RCODE_GENERATION;
1586		else {
1587			/*
1588			 * Using a valid (current) generation count, but the
1589			 * node is not on the bus or not sending acks.
1590			 */
1591			packet->ack = RCODE_NO_ACK;
1592		}
1593		break;
1594
1595	case ACK_COMPLETE + 0x10:
1596	case ACK_PENDING + 0x10:
1597	case ACK_BUSY_X + 0x10:
1598	case ACK_BUSY_A + 0x10:
1599	case ACK_BUSY_B + 0x10:
1600	case ACK_DATA_ERROR + 0x10:
1601	case ACK_TYPE_ERROR + 0x10:
1602		packet->ack = evt - 0x10;
1603		break;
1604
1605	case OHCI1394_evt_no_status:
1606		if (context->flushing) {
1607			packet->ack = RCODE_GENERATION;
1608			break;
1609		}
1610		fallthrough;
1611
1612	default:
1613		packet->ack = RCODE_SEND_ERROR;
1614		break;
1615	}
1616
1617	packet->callback(packet, &ohci->card, packet->ack);
1618
1619	return 1;
1620}
1621
1622static u32 get_cycle_time(struct fw_ohci *ohci);
 
 
 
 
1623
1624static void handle_local_rom(struct fw_ohci *ohci,
1625			     struct fw_packet *packet, u32 csr)
1626{
1627	struct fw_packet response;
1628	int tcode, length, i;
1629
1630	tcode = async_header_get_tcode(packet->header);
1631	if (tcode_is_block_packet(tcode))
1632		length = async_header_get_data_length(packet->header);
1633	else
1634		length = 4;
1635
1636	i = csr - CSR_CONFIG_ROM;
1637	if (i + length > CONFIG_ROM_SIZE) {
1638		fw_fill_response(&response, packet->header,
1639				 RCODE_ADDRESS_ERROR, NULL, 0);
1640	} else if (!tcode_is_read_request(tcode)) {
1641		fw_fill_response(&response, packet->header,
1642				 RCODE_TYPE_ERROR, NULL, 0);
1643	} else {
1644		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1645				 (void *) ohci->config_rom + i, length);
1646	}
1647
1648	// Timestamping on behalf of the hardware.
1649	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1650	fw_core_handle_response(&ohci->card, &response);
1651}
1652
1653static void handle_local_lock(struct fw_ohci *ohci,
1654			      struct fw_packet *packet, u32 csr)
1655{
1656	struct fw_packet response;
1657	int tcode, length, ext_tcode, sel, try;
1658	__be32 *payload, lock_old;
1659	u32 lock_arg, lock_data;
1660
1661	tcode = async_header_get_tcode(packet->header);
1662	length = async_header_get_data_length(packet->header);
1663	payload = packet->payload;
1664	ext_tcode = async_header_get_extended_tcode(packet->header);
1665
1666	if (tcode == TCODE_LOCK_REQUEST &&
1667	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1668		lock_arg = be32_to_cpu(payload[0]);
1669		lock_data = be32_to_cpu(payload[1]);
1670	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1671		lock_arg = 0;
1672		lock_data = 0;
1673	} else {
1674		fw_fill_response(&response, packet->header,
1675				 RCODE_TYPE_ERROR, NULL, 0);
1676		goto out;
1677	}
1678
1679	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1680	reg_write(ohci, OHCI1394_CSRData, lock_data);
1681	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1682	reg_write(ohci, OHCI1394_CSRControl, sel);
1683
1684	for (try = 0; try < 20; try++)
1685		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1686			lock_old = cpu_to_be32(reg_read(ohci,
1687							OHCI1394_CSRData));
1688			fw_fill_response(&response, packet->header,
1689					 RCODE_COMPLETE,
1690					 &lock_old, sizeof(lock_old));
1691			goto out;
1692		}
1693
1694	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1695	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1696
1697 out:
1698	// Timestamping on behalf of the hardware.
1699	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1700	fw_core_handle_response(&ohci->card, &response);
1701}
1702
1703static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1704{
1705	u64 offset, csr;
1706
1707	if (ctx == &ctx->ohci->at_request_ctx) {
1708		packet->ack = ACK_PENDING;
1709		packet->callback(packet, &ctx->ohci->card, packet->ack);
1710	}
1711
1712	offset = async_header_get_offset(packet->header);
 
 
 
1713	csr = offset - CSR_REGISTER_BASE;
1714
1715	/* Handle config rom reads. */
1716	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1717		handle_local_rom(ctx->ohci, packet, csr);
1718	else switch (csr) {
1719	case CSR_BUS_MANAGER_ID:
1720	case CSR_BANDWIDTH_AVAILABLE:
1721	case CSR_CHANNELS_AVAILABLE_HI:
1722	case CSR_CHANNELS_AVAILABLE_LO:
1723		handle_local_lock(ctx->ohci, packet, csr);
1724		break;
1725	default:
1726		if (ctx == &ctx->ohci->at_request_ctx)
1727			fw_core_handle_request(&ctx->ohci->card, packet);
1728		else
1729			fw_core_handle_response(&ctx->ohci->card, packet);
1730		break;
1731	}
1732
1733	if (ctx == &ctx->ohci->at_response_ctx) {
1734		packet->ack = ACK_COMPLETE;
1735		packet->callback(packet, &ctx->ohci->card, packet->ack);
1736	}
1737}
1738
1739static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1740{
1741	unsigned long flags;
1742	int ret;
1743
1744	spin_lock_irqsave(&ctx->ohci->lock, flags);
1745
1746	if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1747	    ctx->ohci->generation == packet->generation) {
1748		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1749
1750		// Timestamping on behalf of the hardware.
1751		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1752
1753		handle_local_request(ctx, packet);
1754		return;
1755	}
1756
1757	ret = at_context_queue_packet(ctx, packet);
1758	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1759
1760	if (ret < 0) {
1761		// Timestamping on behalf of the hardware.
1762		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1763
1764		packet->callback(packet, &ctx->ohci->card, packet->ack);
1765	}
1766}
1767
1768static void detect_dead_context(struct fw_ohci *ohci,
1769				const char *name, unsigned int regs)
1770{
1771	u32 ctl;
1772
1773	ctl = reg_read(ohci, CONTROL_SET(regs));
1774	if (ctl & CONTEXT_DEAD)
1775		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1776			name, evts[ctl & 0x1f]);
 
 
 
 
 
 
1777}
1778
1779static void handle_dead_contexts(struct fw_ohci *ohci)
1780{
1781	unsigned int i;
1782	char name[8];
1783
1784	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1785	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1786	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1787	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1788	for (i = 0; i < 32; ++i) {
1789		if (!(ohci->it_context_support & (1 << i)))
1790			continue;
1791		sprintf(name, "IT%u", i);
1792		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1793	}
1794	for (i = 0; i < 32; ++i) {
1795		if (!(ohci->ir_context_support & (1 << i)))
1796			continue;
1797		sprintf(name, "IR%u", i);
1798		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1799	}
1800	/* TODO: maybe try to flush and restart the dead contexts */
1801}
1802
1803static u32 cycle_timer_ticks(u32 cycle_timer)
1804{
1805	u32 ticks;
1806
1807	ticks = cycle_timer & 0xfff;
1808	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1809	ticks += (3072 * 8000) * (cycle_timer >> 25);
1810
1811	return ticks;
1812}
1813
1814/*
1815 * Some controllers exhibit one or more of the following bugs when updating the
1816 * iso cycle timer register:
1817 *  - When the lowest six bits are wrapping around to zero, a read that happens
1818 *    at the same time will return garbage in the lowest ten bits.
1819 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1820 *    not incremented for about 60 ns.
1821 *  - Occasionally, the entire register reads zero.
1822 *
1823 * To catch these, we read the register three times and ensure that the
1824 * difference between each two consecutive reads is approximately the same, i.e.
1825 * less than twice the other.  Furthermore, any negative difference indicates an
1826 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1827 * execute, so we have enough precision to compute the ratio of the differences.)
1828 */
1829static u32 get_cycle_time(struct fw_ohci *ohci)
1830{
1831	u32 c0, c1, c2;
1832	u32 t0, t1, t2;
1833	s32 diff01, diff12;
1834	int i;
1835
1836	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1837		return 0;
1838
1839	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1840
1841	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1842		i = 0;
1843		c1 = c2;
1844		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1845		do {
1846			c0 = c1;
1847			c1 = c2;
1848			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849			t0 = cycle_timer_ticks(c0);
1850			t1 = cycle_timer_ticks(c1);
1851			t2 = cycle_timer_ticks(c2);
1852			diff01 = t1 - t0;
1853			diff12 = t2 - t1;
1854		} while ((diff01 <= 0 || diff12 <= 0 ||
1855			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1856			 && i++ < 20);
1857	}
1858
1859	return c2;
1860}
1861
1862/*
1863 * This function has to be called at least every 64 seconds.  The bus_time
1864 * field stores not only the upper 25 bits of the BUS_TIME register but also
1865 * the most significant bit of the cycle timer in bit 6 so that we can detect
1866 * changes in this bit.
1867 */
1868static u32 update_bus_time(struct fw_ohci *ohci)
1869{
1870	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1871
1872	if (unlikely(!ohci->bus_time_running)) {
1873		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1874		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1875		                 (cycle_time_seconds & 0x40);
1876		ohci->bus_time_running = true;
1877	}
1878
1879	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1880		ohci->bus_time += 0x40;
1881
1882	return ohci->bus_time | cycle_time_seconds;
1883}
1884
1885static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1886			       enum phy_packet_self_id_port_status *status)
1887{
1888	int reg;
1889
1890	scoped_guard(mutex, &ohci->phy_reg_mutex) {
1891		reg = write_phy_reg(ohci, 7, port_index);
1892		if (reg < 0)
1893			return reg;
1894
1895		reg = read_phy_reg(ohci, 8);
1896		if (reg < 0)
1897			return reg;
1898	}
1899
1900	switch (reg & 0x0f) {
1901	case 0x06:
1902		// is child node (connected to parent node)
1903		*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1904		break;
1905	case 0x0e:
1906		// is parent node (connected to child node)
1907		*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1908		break;
1909	default:
1910		// not connected
1911		*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1912		break;
1913	}
1914
1915	return 0;
1916}
1917
1918static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1919	int self_id_count)
1920{
1921	unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1922	int i;
1923
1924	for (i = 0; i < self_id_count; i++) {
1925		u32 entry = ohci->self_id_buffer[i];
1926		unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1927
1928		if (left_phy_id == right_phy_id)
1929			return -1;
1930		if (left_phy_id < right_phy_id)
1931			return i;
1932	}
1933	return i;
1934}
1935
1936static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1937{
1938	int reg;
1939
1940	guard(mutex)(&ohci->phy_reg_mutex);
1941
1942	// Select page 7
1943	reg = write_phy_reg(ohci, 7, 0xe0);
1944	if (reg < 0)
1945		return reg;
1946
1947	reg = read_phy_reg(ohci, 8);
1948	if (reg < 0)
1949		return reg;
1950
1951	// set PMODE bit
1952	reg |= 0x40;
1953	reg = write_phy_reg(ohci, 8, reg);
1954	if (reg < 0)
1955		return reg;
1956
1957	// read register 12
1958	reg = read_phy_reg(ohci, 12);
1959	if (reg < 0)
1960		return reg;
1961
1962	// bit 3 indicates "initiated reset"
1963	*is_initiated_reset = !!((reg & 0x08) == 0x08);
1964
1965	return 0;
1966}
1967
1968/*
1969 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1970 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1971 * Construct the selfID from phy register contents.
1972 */
1973static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1974{
1975	int reg, i, pos, err;
1976	bool is_initiated_reset;
1977	u32 self_id = 0;
1978
1979	// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1980	phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1981	phy_packet_self_id_zero_set_link_active(&self_id, true);
1982	phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1983	phy_packet_self_id_zero_set_contender(&self_id, true);
1984
1985	reg = reg_read(ohci, OHCI1394_NodeID);
1986	if (!(reg & OHCI1394_NodeID_idValid)) {
1987		ohci_notice(ohci,
1988			    "node ID not valid, new bus reset in progress\n");
1989		return -EBUSY;
1990	}
1991	phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1992
1993	reg = ohci_read_phy_reg(&ohci->card, 4);
1994	if (reg < 0)
1995		return reg;
1996	phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1997
1998	reg = ohci_read_phy_reg(&ohci->card, 1);
1999	if (reg < 0)
2000		return reg;
2001	phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2002
2003	for (i = 0; i < 3; i++) {
2004		enum phy_packet_self_id_port_status status;
2005
2006		err = get_status_for_port(ohci, i, &status);
2007		if (err < 0)
2008			return err;
2009
2010		self_id_sequence_set_port_status(&self_id, 1, i, status);
2011	}
2012
2013	err = detect_initiated_reset(ohci, &is_initiated_reset);
2014	if (err < 0)
2015		return err;
2016	phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2017
2018	pos = get_self_id_pos(ohci, self_id, self_id_count);
2019	if (pos >= 0) {
2020		memmove(&(ohci->self_id_buffer[pos+1]),
2021			&(ohci->self_id_buffer[pos]),
2022			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2023		ohci->self_id_buffer[pos] = self_id;
2024		self_id_count++;
2025	}
2026	return self_id_count;
2027}
2028
2029static void bus_reset_work(struct work_struct *work)
2030{
2031	struct fw_ohci *ohci =
2032		container_of(work, struct fw_ohci, bus_reset_work);
2033	int self_id_count, generation, new_generation, i, j;
2034	u32 reg, quadlet;
2035	void *free_rom = NULL;
2036	dma_addr_t free_rom_bus = 0;
2037	bool is_new_root;
2038
2039	reg = reg_read(ohci, OHCI1394_NodeID);
2040	if (!(reg & OHCI1394_NodeID_idValid)) {
2041		ohci_notice(ohci,
2042			    "node ID not valid, new bus reset in progress\n");
2043		return;
2044	}
2045	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2046		ohci_notice(ohci, "malconfigured bus\n");
2047		return;
2048	}
2049	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2050			       OHCI1394_NodeID_nodeNumber);
2051
2052	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2053	if (!(ohci->is_root && is_new_root))
2054		reg_write(ohci, OHCI1394_LinkControlSet,
2055			  OHCI1394_LinkControl_cycleMaster);
2056	ohci->is_root = is_new_root;
2057
2058	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2059	if (ohci1394_self_id_count_is_error(reg)) {
2060		ohci_notice(ohci, "self ID receive error\n");
2061		return;
2062	}
2063	/*
2064	 * The count in the SelfIDCount register is the number of
2065	 * bytes in the self ID receive buffer.  Since we also receive
2066	 * the inverted quadlets and a header quadlet, we shift one
2067	 * bit extra to get the actual number of self IDs.
2068	 */
2069	self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2070
2071	if (self_id_count > 252) {
2072		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2073		return;
2074	}
2075
2076	quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2077	generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2078	rmb();
2079
2080	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2081		u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2082		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2083
2084		if (id != ~id2) {
2085			/*
2086			 * If the invalid data looks like a cycle start packet,
2087			 * it's likely to be the result of the cycle master
2088			 * having a wrong gap count.  In this case, the self IDs
2089			 * so far are valid and should be processed so that the
2090			 * bus manager can then correct the gap count.
2091			 */
2092			if (id == 0xffff008f) {
2093				ohci_notice(ohci, "ignoring spurious self IDs\n");
2094				self_id_count = j;
2095				break;
2096			}
2097
2098			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2099				    j, self_id_count, id, id2);
2100			return;
2101		}
2102		ohci->self_id_buffer[j] = id;
2103	}
2104
2105	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2106		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2107		if (self_id_count < 0) {
2108			ohci_notice(ohci,
2109				    "could not construct local self ID\n");
2110			return;
2111		}
2112	}
2113
2114	if (self_id_count == 0) {
2115		ohci_notice(ohci, "no self IDs\n");
2116		return;
2117	}
2118	rmb();
2119
2120	/*
2121	 * Check the consistency of the self IDs we just read.  The
2122	 * problem we face is that a new bus reset can start while we
2123	 * read out the self IDs from the DMA buffer. If this happens,
2124	 * the DMA buffer will be overwritten with new self IDs and we
2125	 * will read out inconsistent data.  The OHCI specification
2126	 * (section 11.2) recommends a technique similar to
2127	 * linux/seqlock.h, where we remember the generation of the
2128	 * self IDs in the buffer before reading them out and compare
2129	 * it to the current generation after reading them out.  If
2130	 * the two generations match we know we have a consistent set
2131	 * of self IDs.
2132	 */
2133
2134	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2135	new_generation = ohci1394_self_id_count_get_generation(reg);
2136	if (new_generation != generation) {
2137		ohci_notice(ohci, "new bus reset, discarding self ids\n");
 
2138		return;
2139	}
2140
2141	// FIXME: Document how the locking works.
2142	scoped_guard(spinlock_irq, &ohci->lock) {
2143		ohci->generation = -1; // prevent AT packet queueing
2144		context_stop(&ohci->at_request_ctx);
2145		context_stop(&ohci->at_response_ctx);
2146	}
 
 
2147
2148	/*
2149	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2150	 * packets in the AT queues and software needs to drain them.
2151	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2152	 */
2153	at_context_flush(&ohci->at_request_ctx);
2154	at_context_flush(&ohci->at_response_ctx);
2155
2156	scoped_guard(spinlock_irq, &ohci->lock) {
2157		ohci->generation = generation;
2158		reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2159		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2160
2161		if (ohci->quirks & QUIRK_RESET_PACKET)
2162			ohci->request_generation = generation;
2163
2164		// This next bit is unrelated to the AT context stuff but we have to do it under the
2165		// spinlock also. If a new config rom was set up before this reset, the old one is
2166		// now no longer in use and we can free it. Update the config rom pointers to point
2167		// to the current config rom and clear the next_config_rom pointer so a new update
2168		// can take place.
2169		if (ohci->next_config_rom != NULL) {
2170			if (ohci->next_config_rom != ohci->config_rom) {
2171				free_rom      = ohci->config_rom;
2172				free_rom_bus  = ohci->config_rom_bus;
2173			}
2174			ohci->config_rom      = ohci->next_config_rom;
2175			ohci->config_rom_bus  = ohci->next_config_rom_bus;
2176			ohci->next_config_rom = NULL;
2177
2178			// Restore config_rom image and manually update config_rom registers.
2179			// Writing the header quadlet will indicate that the config rom is ready,
2180			// so we do that last.
2181			reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2182			ohci->config_rom[0] = ohci->next_header;
2183			reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2184		}
 
 
 
2185
2186		if (param_remote_dma) {
2187			reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2188			reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2189		}
 
 
 
 
 
 
 
2190	}
2191
 
 
 
 
 
 
 
2192	if (free_rom)
2193		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
 
2194
2195	log_selfids(ohci, generation, self_id_count);
 
2196
2197	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2198				 self_id_count, ohci->self_id_buffer,
2199				 ohci->csr_state_setclear_abdicate);
2200	ohci->csr_state_setclear_abdicate = false;
2201}
2202
2203static irqreturn_t irq_handler(int irq, void *data)
2204{
2205	struct fw_ohci *ohci = data;
2206	u32 event, iso_event;
2207	int i;
2208
2209	event = reg_read(ohci, OHCI1394_IntEventClear);
2210
2211	if (!event || !~event)
2212		return IRQ_NONE;
2213
2214	if (unlikely(param_debug > 0)) {
2215		dev_notice_ratelimited(ohci->card.device,
2216				       "The debug parameter is superseded by tracepoints events, and deprecated.");
2217	}
2218
2219	/*
2220	 * busReset and postedWriteErr events must not be cleared yet
2221	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2222	 */
2223	reg_write(ohci, OHCI1394_IntEventClear,
2224		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2225	trace_irqs(ohci->card.index, event);
2226	log_irqs(ohci, event);
2227	// The flag is masked again at bus_reset_work() scheduled by selfID event.
2228	if (event & OHCI1394_busReset)
2229		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2230
2231	if (event & OHCI1394_selfIDComplete) {
2232		if (trace_self_id_complete_enabled()) {
2233			u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2234
2235			trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2236					       has_be_header_quirk(ohci));
2237		}
2238		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2239	}
2240
2241	if (event & OHCI1394_RQPkt)
2242		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2243
2244	if (event & OHCI1394_RSPkt)
2245		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2246
2247	if (event & OHCI1394_reqTxComplete)
2248		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2249
2250	if (event & OHCI1394_respTxComplete)
2251		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2252
2253	if (event & OHCI1394_isochRx) {
2254		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2255		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2256
2257		while (iso_event) {
2258			i = ffs(iso_event) - 1;
2259			fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
 
2260			iso_event &= ~(1 << i);
2261		}
2262	}
2263
2264	if (event & OHCI1394_isochTx) {
2265		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2266		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2267
2268		while (iso_event) {
2269			i = ffs(iso_event) - 1;
2270			fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
 
2271			iso_event &= ~(1 << i);
2272		}
2273	}
2274
2275	if (unlikely(event & OHCI1394_regAccessFail))
2276		ohci_err(ohci, "register access failure\n");
 
2277
2278	if (unlikely(event & OHCI1394_postedWriteErr)) {
2279		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2280		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2281		reg_write(ohci, OHCI1394_IntEventClear,
2282			  OHCI1394_postedWriteErr);
2283		dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2284	}
2285
2286	if (unlikely(event & OHCI1394_cycleTooLong)) {
2287		dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
 
2288		reg_write(ohci, OHCI1394_LinkControlSet,
2289			  OHCI1394_LinkControl_cycleMaster);
2290	}
2291
2292	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2293		/*
2294		 * We need to clear this event bit in order to make
2295		 * cycleMatch isochronous I/O work.  In theory we should
2296		 * stop active cycleMatch iso contexts now and restart
2297		 * them at least two cycles later.  (FIXME?)
2298		 */
2299		dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
 
2300	}
2301
2302	if (unlikely(event & OHCI1394_unrecoverableError))
2303		handle_dead_contexts(ohci);
2304
2305	if (event & OHCI1394_cycle64Seconds) {
2306		guard(spinlock)(&ohci->lock);
2307		update_bus_time(ohci);
 
2308	} else
2309		flush_writes(ohci);
2310
2311	return IRQ_HANDLED;
2312}
2313
2314static int software_reset(struct fw_ohci *ohci)
2315{
2316	u32 val;
2317	int i;
2318
2319	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2320	for (i = 0; i < 500; i++) {
2321		val = reg_read(ohci, OHCI1394_HCControlSet);
2322		if (!~val)
2323			return -ENODEV; /* Card was ejected. */
2324
2325		if (!(val & OHCI1394_HCControl_softReset))
2326			return 0;
2327
2328		msleep(1);
2329	}
2330
2331	return -EBUSY;
2332}
2333
2334static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2335{
2336	size_t size = length * 4;
2337
2338	memcpy(dest, src, size);
2339	if (size < CONFIG_ROM_SIZE)
2340		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2341}
2342
2343static int configure_1394a_enhancements(struct fw_ohci *ohci)
2344{
2345	bool enable_1394a;
2346	int ret, clear, set, offset;
2347
2348	/* Check if the driver should configure link and PHY. */
2349	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2350	      OHCI1394_HCControl_programPhyEnable))
2351		return 0;
2352
2353	/* Paranoia: check whether the PHY supports 1394a, too. */
2354	enable_1394a = false;
2355	ret = read_phy_reg(ohci, 2);
2356	if (ret < 0)
2357		return ret;
2358	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2359		ret = read_paged_phy_reg(ohci, 1, 8);
2360		if (ret < 0)
2361			return ret;
2362		if (ret >= 1)
2363			enable_1394a = true;
2364	}
2365
2366	if (ohci->quirks & QUIRK_NO_1394A)
2367		enable_1394a = false;
2368
2369	/* Configure PHY and link consistently. */
2370	if (enable_1394a) {
2371		clear = 0;
2372		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2373	} else {
2374		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2375		set = 0;
2376	}
2377	ret = update_phy_reg(ohci, 5, clear, set);
2378	if (ret < 0)
2379		return ret;
2380
2381	if (enable_1394a)
2382		offset = OHCI1394_HCControlSet;
2383	else
2384		offset = OHCI1394_HCControlClear;
2385	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2386
2387	/* Clean up: configuration has been taken care of. */
2388	reg_write(ohci, OHCI1394_HCControlClear,
2389		  OHCI1394_HCControl_programPhyEnable);
2390
2391	return 0;
2392}
2393
2394static int probe_tsb41ba3d(struct fw_ohci *ohci)
2395{
2396	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2397	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2398	int reg, i;
2399
2400	reg = read_phy_reg(ohci, 2);
2401	if (reg < 0)
2402		return reg;
2403	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2404		return 0;
2405
2406	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2407		reg = read_paged_phy_reg(ohci, 1, i + 10);
2408		if (reg < 0)
2409			return reg;
2410		if (reg != id[i])
2411			return 0;
2412	}
2413	return 1;
2414}
2415
2416static int ohci_enable(struct fw_card *card,
2417		       const __be32 *config_rom, size_t length)
2418{
2419	struct fw_ohci *ohci = fw_ohci(card);
2420	u32 lps, version, irqs;
 
2421	int i, ret;
2422
2423	ret = software_reset(ohci);
2424	if (ret < 0) {
2425		ohci_err(ohci, "failed to reset ohci card\n");
2426		return ret;
2427	}
2428
2429	/*
2430	 * Now enable LPS, which we need in order to start accessing
2431	 * most of the registers.  In fact, on some cards (ALI M5251),
2432	 * accessing registers in the SClk domain without LPS enabled
2433	 * will lock up the machine.  Wait 50msec to make sure we have
2434	 * full link enabled.  However, with some cards (well, at least
2435	 * a JMicron PCIe card), we have to try again sometimes.
2436	 *
2437	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2438	 * cannot actually use the phy at that time.  These need tens of
2439	 * millisecods pause between LPS write and first phy access too.
2440	 */
2441
2442	reg_write(ohci, OHCI1394_HCControlSet,
2443		  OHCI1394_HCControl_LPS |
2444		  OHCI1394_HCControl_postedWriteEnable);
2445	flush_writes(ohci);
2446
2447	for (lps = 0, i = 0; !lps && i < 3; i++) {
2448		msleep(50);
2449		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2450		      OHCI1394_HCControl_LPS;
2451	}
2452
2453	if (!lps) {
2454		ohci_err(ohci, "failed to set Link Power Status\n");
2455		return -EIO;
2456	}
2457
2458	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2459		ret = probe_tsb41ba3d(ohci);
2460		if (ret < 0)
2461			return ret;
2462		if (ret)
2463			ohci_notice(ohci, "local TSB41BA3D phy\n");
2464		else
2465			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2466	}
2467
2468	reg_write(ohci, OHCI1394_HCControlClear,
2469		  OHCI1394_HCControl_noByteSwapData);
2470
2471	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2472	reg_write(ohci, OHCI1394_LinkControlSet,
2473		  OHCI1394_LinkControl_cycleTimerEnable |
2474		  OHCI1394_LinkControl_cycleMaster);
2475
2476	reg_write(ohci, OHCI1394_ATRetries,
2477		  OHCI1394_MAX_AT_REQ_RETRIES |
2478		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2479		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2480		  (200 << 16));
2481
2482	ohci->bus_time_running = false;
2483
2484	for (i = 0; i < 32; i++)
2485		if (ohci->ir_context_support & (1 << i))
2486			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2487				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2488
2489	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2490	if (version >= OHCI_VERSION_1_1) {
2491		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2492			  0xfffffffe);
2493		card->broadcast_channel_auto_allocated = true;
2494	}
2495
2496	/* Get implemented bits of the priority arbitration request counter. */
2497	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2498	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2499	reg_write(ohci, OHCI1394_FairnessControl, 0);
2500	card->priority_budget_implemented = ohci->pri_req_max != 0;
2501
2502	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2503	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2504	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2505
2506	ret = configure_1394a_enhancements(ohci);
2507	if (ret < 0)
2508		return ret;
2509
2510	/* Activate link_on bit and contender bit in our self ID packets.*/
2511	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2512	if (ret < 0)
2513		return ret;
2514
2515	/*
2516	 * When the link is not yet enabled, the atomic config rom
2517	 * update mechanism described below in ohci_set_config_rom()
2518	 * is not active.  We have to update ConfigRomHeader and
2519	 * BusOptions manually, and the write to ConfigROMmap takes
2520	 * effect immediately.  We tie this to the enabling of the
2521	 * link, so we have a valid config rom before enabling - the
2522	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2523	 * values before enabling.
2524	 *
2525	 * However, when the ConfigROMmap is written, some controllers
2526	 * always read back quadlets 0 and 2 from the config rom to
2527	 * the ConfigRomHeader and BusOptions registers on bus reset.
2528	 * They shouldn't do that in this initial case where the link
2529	 * isn't enabled.  This means we have to use the same
2530	 * workaround here, setting the bus header to 0 and then write
2531	 * the right values in the bus reset tasklet.
2532	 */
2533
2534	if (config_rom) {
2535		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2536							    &ohci->next_config_rom_bus, GFP_KERNEL);
 
 
2537		if (ohci->next_config_rom == NULL)
2538			return -ENOMEM;
2539
2540		copy_config_rom(ohci->next_config_rom, config_rom, length);
2541	} else {
2542		/*
2543		 * In the suspend case, config_rom is NULL, which
2544		 * means that we just reuse the old config rom.
2545		 */
2546		ohci->next_config_rom = ohci->config_rom;
2547		ohci->next_config_rom_bus = ohci->config_rom_bus;
2548	}
2549
2550	ohci->next_header = ohci->next_config_rom[0];
2551	ohci->next_config_rom[0] = 0;
2552	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2553	reg_write(ohci, OHCI1394_BusOptions,
2554		  be32_to_cpu(ohci->next_config_rom[2]));
2555	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2556
2557	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2560		OHCI1394_RQPkt | OHCI1394_RSPkt |
2561		OHCI1394_isochTx | OHCI1394_isochRx |
2562		OHCI1394_postedWriteErr |
2563		OHCI1394_selfIDComplete |
2564		OHCI1394_regAccessFail |
 
2565		OHCI1394_cycleInconsistent |
2566		OHCI1394_unrecoverableError |
2567		OHCI1394_cycleTooLong |
2568		OHCI1394_masterIntEnable |
2569		OHCI1394_busReset;
 
2570	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2571
2572	reg_write(ohci, OHCI1394_HCControlSet,
2573		  OHCI1394_HCControl_linkEnable |
2574		  OHCI1394_HCControl_BIBimageValid);
2575
2576	reg_write(ohci, OHCI1394_LinkControlSet,
2577		  OHCI1394_LinkControl_rcvSelfID |
2578		  OHCI1394_LinkControl_rcvPhyPkt);
2579
2580	ar_context_run(&ohci->ar_request_ctx);
2581	ar_context_run(&ohci->ar_response_ctx);
2582
2583	flush_writes(ohci);
2584
2585	/* We are ready to go, reset bus to finish initialization. */
2586	fw_schedule_bus_reset(&ohci->card, false, true);
2587
2588	return 0;
2589}
2590
2591static int ohci_set_config_rom(struct fw_card *card,
2592			       const __be32 *config_rom, size_t length)
2593{
2594	struct fw_ohci *ohci;
 
2595	__be32 *next_config_rom;
2596	dma_addr_t next_config_rom_bus;
2597
2598	ohci = fw_ohci(card);
2599
2600	/*
2601	 * When the OHCI controller is enabled, the config rom update
2602	 * mechanism is a bit tricky, but easy enough to use.  See
2603	 * section 5.5.6 in the OHCI specification.
2604	 *
2605	 * The OHCI controller caches the new config rom address in a
2606	 * shadow register (ConfigROMmapNext) and needs a bus reset
2607	 * for the changes to take place.  When the bus reset is
2608	 * detected, the controller loads the new values for the
2609	 * ConfigRomHeader and BusOptions registers from the specified
2610	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2611	 * shadow register. All automatically and atomically.
2612	 *
2613	 * Now, there's a twist to this story.  The automatic load of
2614	 * ConfigRomHeader and BusOptions doesn't honor the
2615	 * noByteSwapData bit, so with a be32 config rom, the
2616	 * controller will load be32 values in to these registers
2617	 * during the atomic update, even on little endian
2618	 * architectures.  The workaround we use is to put a 0 in the
2619	 * header quadlet; 0 is endian agnostic and means that the
2620	 * config rom isn't ready yet.  In the bus reset tasklet we
2621	 * then set up the real values for the two registers.
2622	 *
2623	 * We use ohci->lock to avoid racing with the code that sets
2624	 * ohci->next_config_rom to NULL (see bus_reset_work).
2625	 */
2626
2627	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2628					      &next_config_rom_bus, GFP_KERNEL);
 
2629	if (next_config_rom == NULL)
2630		return -ENOMEM;
2631
2632	scoped_guard(spinlock_irq, &ohci->lock) {
2633		// If there is not an already pending config_rom update, push our new allocation
2634		// into the ohci->next_config_rom and then mark the local variable as null so that
2635		// we won't deallocate the new buffer.
2636		//
2637		// OTOH, if there is a pending config_rom update, just use that buffer with the new
2638		// config_rom data, and let this routine free the unused DMA allocation.
2639		if (ohci->next_config_rom == NULL) {
2640			ohci->next_config_rom = next_config_rom;
2641			ohci->next_config_rom_bus = next_config_rom_bus;
2642			next_config_rom = NULL;
2643		}
 
 
 
 
 
 
 
 
2644
2645		copy_config_rom(ohci->next_config_rom, config_rom, length);
 
2646
2647		ohci->next_header = config_rom[0];
2648		ohci->next_config_rom[0] = 0;
2649
2650		reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2651	}
2652
2653	/* If we didn't use the DMA allocation, delete it. */
2654	if (next_config_rom != NULL) {
2655		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2656				   next_config_rom_bus);
2657	}
2658
2659	/*
2660	 * Now initiate a bus reset to have the changes take
2661	 * effect. We clean up the old config rom memory and DMA
2662	 * mappings in the bus reset tasklet, since the OHCI
2663	 * controller could need to access it before the bus reset
2664	 * takes effect.
2665	 */
2666
2667	fw_schedule_bus_reset(&ohci->card, true, true);
2668
2669	return 0;
2670}
2671
2672static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2673{
2674	struct fw_ohci *ohci = fw_ohci(card);
2675
2676	at_context_transmit(&ohci->at_request_ctx, packet);
2677}
2678
2679static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2680{
2681	struct fw_ohci *ohci = fw_ohci(card);
2682
2683	at_context_transmit(&ohci->at_response_ctx, packet);
2684}
2685
2686static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2687{
2688	struct fw_ohci *ohci = fw_ohci(card);
2689	struct context *ctx = &ohci->at_request_ctx;
2690	struct driver_data *driver_data = packet->driver_data;
2691	int ret = -ENOENT;
2692
2693	tasklet_disable_in_atomic(&ctx->tasklet);
2694
2695	if (packet->ack != 0)
2696		goto out;
2697
2698	if (packet->payload_mapped)
2699		dma_unmap_single(ohci->card.device, packet->payload_bus,
2700				 packet->payload_length, DMA_TO_DEVICE);
2701
2702	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2703	driver_data->packet = NULL;
2704	packet->ack = RCODE_CANCELLED;
2705
2706	// Timestamping on behalf of the hardware.
2707	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2708
2709	packet->callback(packet, &ohci->card, packet->ack);
2710	ret = 0;
2711 out:
2712	tasklet_enable(&ctx->tasklet);
2713
2714	return ret;
2715}
2716
2717static int ohci_enable_phys_dma(struct fw_card *card,
2718				int node_id, int generation)
2719{
 
 
 
2720	struct fw_ohci *ohci = fw_ohci(card);
 
2721	int n, ret = 0;
2722
2723	if (param_remote_dma)
2724		return 0;
2725
2726	/*
2727	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2728	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2729	 */
2730
2731	guard(spinlock_irqsave)(&ohci->lock);
2732
2733	if (ohci->generation != generation)
2734		return -ESTALE;
 
 
2735
2736	/*
2737	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2738	 * enabled for _all_ nodes on remote buses.
2739	 */
2740
2741	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2742	if (n < 32)
2743		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2744	else
2745		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2746
2747	flush_writes(ohci);
 
 
2748
2749	return ret;
 
2750}
2751
2752static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2753{
2754	struct fw_ohci *ohci = fw_ohci(card);
 
2755	u32 value;
2756
2757	switch (csr_offset) {
2758	case CSR_STATE_CLEAR:
2759	case CSR_STATE_SET:
2760		if (ohci->is_root &&
2761		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2762		     OHCI1394_LinkControl_cycleMaster))
2763			value = CSR_STATE_BIT_CMSTR;
2764		else
2765			value = 0;
2766		if (ohci->csr_state_setclear_abdicate)
2767			value |= CSR_STATE_BIT_ABDICATE;
2768
2769		return value;
2770
2771	case CSR_NODE_IDS:
2772		return reg_read(ohci, OHCI1394_NodeID) << 16;
2773
2774	case CSR_CYCLE_TIME:
2775		return get_cycle_time(ohci);
2776
2777	case CSR_BUS_TIME:
2778	{
2779		// We might be called just after the cycle timer has wrapped around but just before
2780		// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2781		// to be updated.
 
 
 
 
 
2782
2783		guard(spinlock_irqsave)(&ohci->lock);
2784		return update_bus_time(ohci);
2785	}
2786	case CSR_BUSY_TIMEOUT:
2787		value = reg_read(ohci, OHCI1394_ATRetries);
2788		return (value >> 4) & 0x0ffff00f;
2789
2790	case CSR_PRIORITY_BUDGET:
2791		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2792			(ohci->pri_req_max << 8);
2793
2794	default:
2795		WARN_ON(1);
2796		return 0;
2797	}
2798}
2799
2800static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2801{
2802	struct fw_ohci *ohci = fw_ohci(card);
 
2803
2804	switch (csr_offset) {
2805	case CSR_STATE_CLEAR:
2806		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2807			reg_write(ohci, OHCI1394_LinkControlClear,
2808				  OHCI1394_LinkControl_cycleMaster);
2809			flush_writes(ohci);
2810		}
2811		if (value & CSR_STATE_BIT_ABDICATE)
2812			ohci->csr_state_setclear_abdicate = false;
2813		break;
2814
2815	case CSR_STATE_SET:
2816		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2817			reg_write(ohci, OHCI1394_LinkControlSet,
2818				  OHCI1394_LinkControl_cycleMaster);
2819			flush_writes(ohci);
2820		}
2821		if (value & CSR_STATE_BIT_ABDICATE)
2822			ohci->csr_state_setclear_abdicate = true;
2823		break;
2824
2825	case CSR_NODE_IDS:
2826		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2827		flush_writes(ohci);
2828		break;
2829
2830	case CSR_CYCLE_TIME:
2831		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2832		reg_write(ohci, OHCI1394_IntEventSet,
2833			  OHCI1394_cycleInconsistent);
2834		flush_writes(ohci);
2835		break;
2836
2837	case CSR_BUS_TIME:
2838	{
2839		guard(spinlock_irqsave)(&ohci->lock);
2840		ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2841		break;
2842	}
2843	case CSR_BUSY_TIMEOUT:
2844		value = (value & 0xf) | ((value & 0xf) << 4) |
2845			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2846		reg_write(ohci, OHCI1394_ATRetries, value);
2847		flush_writes(ohci);
2848		break;
2849
2850	case CSR_PRIORITY_BUDGET:
2851		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2852		flush_writes(ohci);
2853		break;
2854
2855	default:
2856		WARN_ON(1);
2857		break;
2858	}
2859}
2860
2861static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2862{
2863	trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2864					      ctx->header_length);
2865	trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2866					ctx->header_length);
2867
2868	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2869			      ctx->header_length, ctx->header,
2870			      ctx->base.callback_data);
2871	ctx->header_length = 0;
2872}
2873
2874static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2875{
2876	u32 *ctx_hdr;
2877
2878	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2879		if (ctx->base.drop_overflow_headers)
2880			return;
2881		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2882	}
2883
2884	ctx_hdr = ctx->header + ctx->header_length;
2885	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2886
2887	/*
2888	 * The two iso header quadlets are byteswapped to little
2889	 * endian by the controller, but we want to present them
2890	 * as big endian for consistency with the bus endianness.
 
2891	 */
2892	if (ctx->base.header_size > 0)
2893		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2894	if (ctx->base.header_size > 4)
2895		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2896	if (ctx->base.header_size > 8)
2897		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2898	ctx->header_length += ctx->base.header_size;
2899}
2900
2901static int handle_ir_packet_per_buffer(struct context *context,
2902				       struct descriptor *d,
2903				       struct descriptor *last)
2904{
2905	struct iso_context *ctx =
2906		container_of(context, struct iso_context, context);
2907	struct descriptor *pd;
2908	u32 buffer_dma;
 
2909
2910	for (pd = d; pd <= last; pd++)
2911		if (pd->transfer_status)
2912			break;
2913	if (pd > last)
2914		/* Descriptor(s) not done yet, stop iteration */
2915		return 0;
2916
2917	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2918		d++;
2919		buffer_dma = le32_to_cpu(d->data_address);
2920		dma_sync_single_range_for_cpu(context->ohci->card.device,
2921					      buffer_dma & PAGE_MASK,
2922					      buffer_dma & ~PAGE_MASK,
2923					      le16_to_cpu(d->req_count),
2924					      DMA_FROM_DEVICE);
 
 
2925	}
2926
2927	copy_iso_headers(ctx, (u32 *) (last + 1));
2928
2929	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2930		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2931
2932	return 1;
2933}
2934
2935/* d == last because each descriptor block is only a single descriptor. */
2936static int handle_ir_buffer_fill(struct context *context,
2937				 struct descriptor *d,
2938				 struct descriptor *last)
2939{
2940	struct iso_context *ctx =
2941		container_of(context, struct iso_context, context);
2942	unsigned int req_count, res_count, completed;
2943	u32 buffer_dma;
2944
2945	req_count = le16_to_cpu(last->req_count);
2946	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2947	completed = req_count - res_count;
2948	buffer_dma = le32_to_cpu(last->data_address);
2949
2950	if (completed > 0) {
2951		ctx->mc_buffer_bus = buffer_dma;
2952		ctx->mc_completed = completed;
2953	}
2954
2955	if (res_count != 0)
2956		/* Descriptor(s) not done yet, stop iteration */
2957		return 0;
2958
2959	dma_sync_single_range_for_cpu(context->ohci->card.device,
2960				      buffer_dma & PAGE_MASK,
2961				      buffer_dma & ~PAGE_MASK,
2962				      completed, DMA_FROM_DEVICE);
2963
2964	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2965		trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2966							FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2967
2968		ctx->base.callback.mc(&ctx->base,
2969				      buffer_dma + completed,
 
 
2970				      ctx->base.callback_data);
2971		ctx->mc_completed = 0;
2972	}
2973
2974	return 1;
2975}
2976
2977static void flush_ir_buffer_fill(struct iso_context *ctx)
2978{
2979	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2980				      ctx->mc_buffer_bus & PAGE_MASK,
2981				      ctx->mc_buffer_bus & ~PAGE_MASK,
2982				      ctx->mc_completed, DMA_FROM_DEVICE);
2983
2984	trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2985						FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2986
2987	ctx->base.callback.mc(&ctx->base,
2988			      ctx->mc_buffer_bus + ctx->mc_completed,
2989			      ctx->base.callback_data);
2990	ctx->mc_completed = 0;
2991}
2992
2993static inline void sync_it_packet_for_cpu(struct context *context,
2994					  struct descriptor *pd)
2995{
2996	__le16 control;
2997	u32 buffer_dma;
2998
2999	/* only packets beginning with OUTPUT_MORE* have data buffers */
3000	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3001		return;
3002
3003	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3004	pd += 2;
3005
3006	/*
3007	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3008	 * data buffer is in the context program's coherent page and must not
3009	 * be synced.
3010	 */
3011	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3012	    (context->current_bus          & PAGE_MASK)) {
3013		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3014			return;
3015		pd++;
3016	}
3017
3018	do {
3019		buffer_dma = le32_to_cpu(pd->data_address);
3020		dma_sync_single_range_for_cpu(context->ohci->card.device,
3021					      buffer_dma & PAGE_MASK,
3022					      buffer_dma & ~PAGE_MASK,
3023					      le16_to_cpu(pd->req_count),
3024					      DMA_TO_DEVICE);
3025		control = pd->control;
3026		pd++;
3027	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3028}
3029
3030static int handle_it_packet(struct context *context,
3031			    struct descriptor *d,
3032			    struct descriptor *last)
3033{
3034	struct iso_context *ctx =
3035		container_of(context, struct iso_context, context);
 
3036	struct descriptor *pd;
3037	__be32 *ctx_hdr;
3038
3039	for (pd = d; pd <= last; pd++)
3040		if (pd->transfer_status)
3041			break;
3042	if (pd > last)
3043		/* Descriptor(s) not done yet, stop iteration */
3044		return 0;
3045
3046	sync_it_packet_for_cpu(context, d);
3047
3048	if (ctx->header_length + 4 > PAGE_SIZE) {
3049		if (ctx->base.drop_overflow_headers)
3050			return 1;
3051		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3052	}
3053
3054	ctx_hdr = ctx->header + ctx->header_length;
3055	ctx->last_timestamp = le16_to_cpu(last->res_count);
3056	/* Present this value as big-endian to match the receive code */
3057	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3058			       le16_to_cpu(pd->res_count));
3059	ctx->header_length += 4;
3060
3061	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3062		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3063
3064	return 1;
3065}
3066
3067static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3068{
3069	u32 hi = channels >> 32, lo = channels;
3070
3071	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3072	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3073	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3074	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
 
3075	ohci->mc_channels = channels;
3076}
3077
3078static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3079				int type, int channel, size_t header_size)
3080{
3081	struct fw_ohci *ohci = fw_ohci(card);
3082	struct iso_context *ctx;
3083	descriptor_callback_t callback;
3084	u64 *channels;
3085	u32 *mask, regs;
 
3086	int index, ret = -EBUSY;
3087
3088	scoped_guard(spinlock_irq, &ohci->lock) {
3089		switch (type) {
3090		case FW_ISO_CONTEXT_TRANSMIT:
3091			mask     = &ohci->it_context_mask;
3092			callback = handle_it_packet;
3093			index    = ffs(*mask) - 1;
3094			if (index >= 0) {
3095				*mask &= ~(1 << index);
3096				regs = OHCI1394_IsoXmitContextBase(index);
3097				ctx  = &ohci->it_context_list[index];
3098			}
3099			break;
3100
3101		case FW_ISO_CONTEXT_RECEIVE:
3102			channels = &ohci->ir_context_channels;
3103			mask     = &ohci->ir_context_mask;
3104			callback = handle_ir_packet_per_buffer;
3105			index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3106			if (index >= 0) {
3107				*channels &= ~(1ULL << channel);
3108				*mask     &= ~(1 << index);
3109				regs = OHCI1394_IsoRcvContextBase(index);
3110				ctx  = &ohci->ir_context_list[index];
3111			}
3112			break;
3113
3114		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3115			mask     = &ohci->ir_context_mask;
3116			callback = handle_ir_buffer_fill;
3117			index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3118			if (index >= 0) {
3119				ohci->mc_allocated = true;
3120				*mask &= ~(1 << index);
3121				regs = OHCI1394_IsoRcvContextBase(index);
3122				ctx  = &ohci->ir_context_list[index];
3123			}
3124			break;
 
3125
3126		default:
3127			index = -1;
3128			ret = -ENOSYS;
 
 
 
 
 
 
3129		}
 
3130
3131		if (index < 0)
3132			return ERR_PTR(ret);
 
3133	}
3134
 
 
 
 
 
3135	memset(ctx, 0, sizeof(*ctx));
3136	ctx->header_length = 0;
3137	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3138	if (ctx->header == NULL) {
3139		ret = -ENOMEM;
3140		goto out;
3141	}
3142	ret = context_init(&ctx->context, ohci, regs, callback);
3143	if (ret < 0)
3144		goto out_with_header;
3145	fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3146
3147	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3148		set_multichannel_mask(ohci, 0);
3149		ctx->mc_completed = 0;
3150	}
3151
3152	return &ctx->base;
3153
3154 out_with_header:
3155	free_page((unsigned long)ctx->header);
3156 out:
3157	scoped_guard(spinlock_irq, &ohci->lock) {
3158		switch (type) {
3159		case FW_ISO_CONTEXT_RECEIVE:
3160			*channels |= 1ULL << channel;
3161			break;
 
3162
3163		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3164			ohci->mc_allocated = false;
3165			break;
3166		}
3167		*mask |= 1 << index;
3168	}
 
 
 
3169
3170	return ERR_PTR(ret);
3171}
3172
3173static int ohci_start_iso(struct fw_iso_context *base,
3174			  s32 cycle, u32 sync, u32 tags)
3175{
3176	struct iso_context *ctx = container_of(base, struct iso_context, base);
3177	struct fw_ohci *ohci = ctx->context.ohci;
3178	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3179	int index;
3180
3181	/* the controller cannot start without any queued packets */
3182	if (ctx->context.last->branch_address == 0)
3183		return -ENODATA;
3184
3185	switch (ctx->base.type) {
3186	case FW_ISO_CONTEXT_TRANSMIT:
3187		index = ctx - ohci->it_context_list;
3188		match = 0;
3189		if (cycle >= 0)
3190			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3191				(cycle & 0x7fff) << 16;
3192
3193		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3194		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3195		context_run(&ctx->context, match);
3196		break;
3197
3198	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3199		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3200		fallthrough;
3201	case FW_ISO_CONTEXT_RECEIVE:
3202		index = ctx - ohci->ir_context_list;
3203		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3204		if (cycle >= 0) {
3205			match |= (cycle & 0x07fff) << 12;
3206			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3207		}
3208
3209		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3210		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3211		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3212		context_run(&ctx->context, control);
3213
3214		ctx->sync = sync;
3215		ctx->tags = tags;
3216
3217		break;
3218	}
3219
3220	return 0;
3221}
3222
3223static int ohci_stop_iso(struct fw_iso_context *base)
3224{
3225	struct fw_ohci *ohci = fw_ohci(base->card);
3226	struct iso_context *ctx = container_of(base, struct iso_context, base);
3227	int index;
3228
3229	switch (ctx->base.type) {
3230	case FW_ISO_CONTEXT_TRANSMIT:
3231		index = ctx - ohci->it_context_list;
3232		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3233		break;
3234
3235	case FW_ISO_CONTEXT_RECEIVE:
3236	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3237		index = ctx - ohci->ir_context_list;
3238		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3239		break;
3240	}
3241	flush_writes(ohci);
3242	context_stop(&ctx->context);
 
3243
3244	return 0;
3245}
3246
3247static void ohci_free_iso_context(struct fw_iso_context *base)
3248{
3249	struct fw_ohci *ohci = fw_ohci(base->card);
3250	struct iso_context *ctx = container_of(base, struct iso_context, base);
 
3251	int index;
3252
3253	ohci_stop_iso(base);
3254	context_release(&ctx->context);
3255	free_page((unsigned long)ctx->header);
3256
3257	guard(spinlock_irqsave)(&ohci->lock);
3258
3259	switch (base->type) {
3260	case FW_ISO_CONTEXT_TRANSMIT:
3261		index = ctx - ohci->it_context_list;
3262		ohci->it_context_mask |= 1 << index;
3263		break;
3264
3265	case FW_ISO_CONTEXT_RECEIVE:
3266		index = ctx - ohci->ir_context_list;
3267		ohci->ir_context_mask |= 1 << index;
3268		ohci->ir_context_channels |= 1ULL << base->channel;
3269		break;
3270
3271	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3272		index = ctx - ohci->ir_context_list;
3273		ohci->ir_context_mask |= 1 << index;
3274		ohci->ir_context_channels |= ohci->mc_channels;
3275		ohci->mc_channels = 0;
3276		ohci->mc_allocated = false;
3277		break;
3278	}
 
 
3279}
3280
3281static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3282{
3283	struct fw_ohci *ohci = fw_ohci(base->card);
 
 
3284
3285	switch (base->type) {
3286	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3287	{
3288		guard(spinlock_irqsave)(&ohci->lock);
3289
3290		// Don't allow multichannel to grab other contexts' channels.
 
 
3291		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3292			*channels = ohci->ir_context_channels;
3293			return -EBUSY;
3294		} else {
3295			set_multichannel_mask(ohci, *channels);
3296			return 0;
3297		}
3298	}
 
 
 
3299	default:
3300		return -EINVAL;
3301	}
 
 
3302}
3303
3304#ifdef CONFIG_PM
3305static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3306{
3307	int i;
3308	struct iso_context *ctx;
3309
3310	for (i = 0 ; i < ohci->n_ir ; i++) {
3311		ctx = &ohci->ir_context_list[i];
3312		if (ctx->context.running)
3313			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3314	}
3315
3316	for (i = 0 ; i < ohci->n_it ; i++) {
3317		ctx = &ohci->it_context_list[i];
3318		if (ctx->context.running)
3319			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3320	}
3321}
3322#endif
3323
3324static int queue_iso_transmit(struct iso_context *ctx,
3325			      struct fw_iso_packet *packet,
3326			      struct fw_iso_buffer *buffer,
3327			      unsigned long payload)
3328{
3329	struct descriptor *d, *last, *pd;
3330	struct fw_iso_packet *p;
3331	__le32 *header;
3332	dma_addr_t d_bus, page_bus;
3333	u32 z, header_z, payload_z, irq;
3334	u32 payload_index, payload_end_index, next_page_index;
3335	int page, end_page, i, length, offset;
3336
3337	p = packet;
3338	payload_index = payload;
3339
3340	if (p->skip)
3341		z = 1;
3342	else
3343		z = 2;
3344	if (p->header_length > 0)
3345		z++;
3346
3347	/* Determine the first page the payload isn't contained in. */
3348	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3349	if (p->payload_length > 0)
3350		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3351	else
3352		payload_z = 0;
3353
3354	z += payload_z;
3355
3356	/* Get header size in number of descriptors. */
3357	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3358
3359	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3360	if (d == NULL)
3361		return -ENOMEM;
3362
3363	if (!p->skip) {
3364		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3365		d[0].req_count = cpu_to_le16(8);
3366		/*
3367		 * Link the skip address to this descriptor itself.  This causes
3368		 * a context to skip a cycle whenever lost cycles or FIFO
3369		 * overruns occur, without dropping the data.  The application
3370		 * should then decide whether this is an error condition or not.
3371		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3372		 */
3373		d[0].branch_address = cpu_to_le32(d_bus | z);
3374
3375		header = (__le32 *) &d[1];
3376
3377		ohci1394_it_data_set_speed(header, ctx->base.speed);
3378		ohci1394_it_data_set_tag(header, p->tag);
3379		ohci1394_it_data_set_channel(header, ctx->base.channel);
3380		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3381		ohci1394_it_data_set_sync(header, p->sy);
3382
3383		ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3384	}
3385
3386	if (p->header_length > 0) {
3387		d[2].req_count    = cpu_to_le16(p->header_length);
3388		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3389		memcpy(&d[z], p->header, p->header_length);
3390	}
3391
3392	pd = d + z - payload_z;
3393	payload_end_index = payload_index + p->payload_length;
3394	for (i = 0; i < payload_z; i++) {
3395		page               = payload_index >> PAGE_SHIFT;
3396		offset             = payload_index & ~PAGE_MASK;
3397		next_page_index    = (page + 1) << PAGE_SHIFT;
3398		length             =
3399			min(next_page_index, payload_end_index) - payload_index;
3400		pd[i].req_count    = cpu_to_le16(length);
3401
3402		page_bus = page_private(buffer->pages[page]);
3403		pd[i].data_address = cpu_to_le32(page_bus + offset);
3404
3405		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3406						 page_bus, offset, length,
3407						 DMA_TO_DEVICE);
3408
3409		payload_index += length;
3410	}
3411
3412	if (p->interrupt)
3413		irq = DESCRIPTOR_IRQ_ALWAYS;
3414	else
3415		irq = DESCRIPTOR_NO_IRQ;
3416
3417	last = z == 2 ? d : d + z - 1;
3418	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3419				     DESCRIPTOR_STATUS |
3420				     DESCRIPTOR_BRANCH_ALWAYS |
3421				     irq);
3422
3423	context_append(&ctx->context, d, z, header_z);
3424
3425	return 0;
3426}
3427
3428static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3429				       struct fw_iso_packet *packet,
3430				       struct fw_iso_buffer *buffer,
3431				       unsigned long payload)
3432{
3433	struct device *device = ctx->context.ohci->card.device;
3434	struct descriptor *d, *pd;
3435	dma_addr_t d_bus, page_bus;
3436	u32 z, header_z, rest;
3437	int i, j, length;
3438	int page, offset, packet_count, header_size, payload_per_buffer;
3439
3440	/*
3441	 * The OHCI controller puts the isochronous header and trailer in the
3442	 * buffer, so we need at least 8 bytes.
3443	 */
3444	packet_count = packet->header_length / ctx->base.header_size;
3445	header_size  = max(ctx->base.header_size, (size_t)8);
3446
3447	/* Get header size in number of descriptors. */
3448	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3449	page     = payload >> PAGE_SHIFT;
3450	offset   = payload & ~PAGE_MASK;
3451	payload_per_buffer = packet->payload_length / packet_count;
3452
3453	for (i = 0; i < packet_count; i++) {
3454		/* d points to the header descriptor */
3455		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3456		d = context_get_descriptors(&ctx->context,
3457				z + header_z, &d_bus);
3458		if (d == NULL)
3459			return -ENOMEM;
3460
3461		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3462					      DESCRIPTOR_INPUT_MORE);
3463		if (packet->skip && i == 0)
3464			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3465		d->req_count    = cpu_to_le16(header_size);
3466		d->res_count    = d->req_count;
3467		d->transfer_status = 0;
3468		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3469
3470		rest = payload_per_buffer;
3471		pd = d;
3472		for (j = 1; j < z; j++) {
3473			pd++;
3474			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3475						  DESCRIPTOR_INPUT_MORE);
3476
3477			if (offset + rest < PAGE_SIZE)
3478				length = rest;
3479			else
3480				length = PAGE_SIZE - offset;
3481			pd->req_count = cpu_to_le16(length);
3482			pd->res_count = pd->req_count;
3483			pd->transfer_status = 0;
3484
3485			page_bus = page_private(buffer->pages[page]);
3486			pd->data_address = cpu_to_le32(page_bus + offset);
3487
3488			dma_sync_single_range_for_device(device, page_bus,
3489							 offset, length,
3490							 DMA_FROM_DEVICE);
3491
3492			offset = (offset + length) & ~PAGE_MASK;
3493			rest -= length;
3494			if (offset == 0)
3495				page++;
3496		}
3497		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3498					  DESCRIPTOR_INPUT_LAST |
3499					  DESCRIPTOR_BRANCH_ALWAYS);
3500		if (packet->interrupt && i == packet_count - 1)
3501			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3502
3503		context_append(&ctx->context, d, z, header_z);
3504	}
3505
3506	return 0;
3507}
3508
3509static int queue_iso_buffer_fill(struct iso_context *ctx,
3510				 struct fw_iso_packet *packet,
3511				 struct fw_iso_buffer *buffer,
3512				 unsigned long payload)
3513{
3514	struct descriptor *d;
3515	dma_addr_t d_bus, page_bus;
3516	int page, offset, rest, z, i, length;
3517
3518	page   = payload >> PAGE_SHIFT;
3519	offset = payload & ~PAGE_MASK;
3520	rest   = packet->payload_length;
3521
3522	/* We need one descriptor for each page in the buffer. */
3523	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3524
3525	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3526		return -EFAULT;
3527
3528	for (i = 0; i < z; i++) {
3529		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3530		if (d == NULL)
3531			return -ENOMEM;
3532
3533		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3534					 DESCRIPTOR_BRANCH_ALWAYS);
3535		if (packet->skip && i == 0)
3536			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3537		if (packet->interrupt && i == z - 1)
3538			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3539
3540		if (offset + rest < PAGE_SIZE)
3541			length = rest;
3542		else
3543			length = PAGE_SIZE - offset;
3544		d->req_count = cpu_to_le16(length);
3545		d->res_count = d->req_count;
3546		d->transfer_status = 0;
3547
3548		page_bus = page_private(buffer->pages[page]);
3549		d->data_address = cpu_to_le32(page_bus + offset);
3550
3551		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3552						 page_bus, offset, length,
3553						 DMA_FROM_DEVICE);
3554
3555		rest -= length;
3556		offset = 0;
3557		page++;
3558
3559		context_append(&ctx->context, d, 1, 0);
3560	}
3561
3562	return 0;
3563}
3564
3565static int ohci_queue_iso(struct fw_iso_context *base,
3566			  struct fw_iso_packet *packet,
3567			  struct fw_iso_buffer *buffer,
3568			  unsigned long payload)
3569{
3570	struct iso_context *ctx = container_of(base, struct iso_context, base);
 
 
3571
3572	guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3573
3574	switch (base->type) {
3575	case FW_ISO_CONTEXT_TRANSMIT:
3576		return queue_iso_transmit(ctx, packet, buffer, payload);
 
3577	case FW_ISO_CONTEXT_RECEIVE:
3578		return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
 
3579	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3580		return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3581	default:
3582		return -ENOSYS;
3583	}
 
 
 
3584}
3585
3586static void ohci_flush_queue_iso(struct fw_iso_context *base)
3587{
3588	struct context *ctx =
3589			&container_of(base, struct iso_context, base)->context;
3590
3591	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3592}
3593
3594static int ohci_flush_iso_completions(struct fw_iso_context *base)
3595{
3596	struct iso_context *ctx = container_of(base, struct iso_context, base);
3597	int ret = 0;
3598
3599	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3600		ohci_isoc_context_work(&base->work);
3601
3602		switch (base->type) {
3603		case FW_ISO_CONTEXT_TRANSMIT:
3604		case FW_ISO_CONTEXT_RECEIVE:
3605			if (ctx->header_length != 0)
3606				flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3607			break;
3608		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3609			if (ctx->mc_completed != 0)
3610				flush_ir_buffer_fill(ctx);
3611			break;
3612		default:
3613			ret = -ENOSYS;
3614		}
3615
3616		clear_bit_unlock(0, &ctx->flushing_completions);
3617		smp_mb__after_atomic();
3618	}
3619
3620	return ret;
3621}
3622
3623static const struct fw_card_driver ohci_driver = {
3624	.enable			= ohci_enable,
3625	.read_phy_reg		= ohci_read_phy_reg,
3626	.update_phy_reg		= ohci_update_phy_reg,
3627	.set_config_rom		= ohci_set_config_rom,
3628	.send_request		= ohci_send_request,
3629	.send_response		= ohci_send_response,
3630	.cancel_packet		= ohci_cancel_packet,
3631	.enable_phys_dma	= ohci_enable_phys_dma,
3632	.read_csr		= ohci_read_csr,
3633	.write_csr		= ohci_write_csr,
3634
3635	.allocate_iso_context	= ohci_allocate_iso_context,
3636	.free_iso_context	= ohci_free_iso_context,
3637	.set_iso_channels	= ohci_set_iso_channels,
3638	.queue_iso		= ohci_queue_iso,
3639	.flush_queue_iso	= ohci_flush_queue_iso,
3640	.flush_iso_completions	= ohci_flush_iso_completions,
3641	.start_iso		= ohci_start_iso,
3642	.stop_iso		= ohci_stop_iso,
3643};
3644
3645#ifdef CONFIG_PPC_PMAC
3646static void pmac_ohci_on(struct pci_dev *dev)
3647{
3648	if (machine_is(powermac)) {
3649		struct device_node *ofn = pci_device_to_OF_node(dev);
3650
3651		if (ofn) {
3652			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3653			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3654		}
3655	}
3656}
3657
3658static void pmac_ohci_off(struct pci_dev *dev)
3659{
3660	if (machine_is(powermac)) {
3661		struct device_node *ofn = pci_device_to_OF_node(dev);
3662
3663		if (ofn) {
3664			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3665			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3666		}
3667	}
3668}
3669#else
3670static inline void pmac_ohci_on(struct pci_dev *dev) {}
3671static inline void pmac_ohci_off(struct pci_dev *dev) {}
3672#endif /* CONFIG_PPC_PMAC */
3673
3674static void release_ohci(struct device *dev, void *data)
3675{
3676	struct pci_dev *pdev = to_pci_dev(dev);
3677	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3678
3679	pmac_ohci_off(pdev);
3680
3681	ar_context_release(&ohci->ar_response_ctx);
3682	ar_context_release(&ohci->ar_request_ctx);
3683
3684	dev_notice(dev, "removed fw-ohci device\n");
3685}
3686
3687static int pci_probe(struct pci_dev *dev,
3688			       const struct pci_device_id *ent)
3689{
3690	struct fw_ohci *ohci;
3691	u32 bus_options, max_receive, link_speed, version;
3692	u64 guid;
3693	int i, flags, irq, err;
3694	size_t size;
3695
3696	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3697		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3698		return -ENOSYS;
3699	}
3700
3701	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3702	if (ohci == NULL)
3703		return -ENOMEM;
 
 
 
3704	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3705	pci_set_drvdata(dev, ohci);
3706	pmac_ohci_on(dev);
3707	devres_add(&dev->dev, ohci);
3708
3709	err = pcim_enable_device(dev);
3710	if (err) {
3711		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3712		return err;
3713	}
3714
3715	pci_set_master(dev);
3716	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
 
3717
3718	spin_lock_init(&ohci->lock);
3719	mutex_init(&ohci->phy_reg_mutex);
3720
3721	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
 
3722
3723	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3724	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3725		ohci_err(ohci, "invalid MMIO resource\n");
3726		return -ENXIO;
3727	}
3728
3729	ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3730	if (IS_ERR(ohci->registers)) {
3731		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3732		return -ENXIO;
 
3733	}
3734
3735	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3736		if ((ohci_quirks[i].vendor == dev->vendor) &&
3737		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3738		     ohci_quirks[i].device == dev->device) &&
3739		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3740		     ohci_quirks[i].revision >= dev->revision)) {
3741			ohci->quirks = ohci_quirks[i].flags;
3742			break;
3743		}
3744	if (param_quirks)
3745		ohci->quirks = param_quirks;
3746
3747	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3748		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3749
3750	/*
3751	 * Because dma_alloc_coherent() allocates at least one page,
3752	 * we save space by using a common buffer for the AR request/
3753	 * response descriptors and the self IDs buffer.
3754	 */
3755	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3756	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3757	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3758						GFP_KERNEL);
3759	if (!ohci->misc_buffer)
3760		return -ENOMEM;
 
 
 
 
3761
3762	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3763			      OHCI1394_AsReqRcvContextControlSet);
3764	if (err < 0)
3765		return err;
3766
3767	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3768			      OHCI1394_AsRspRcvContextControlSet);
3769	if (err < 0)
3770		return err;
3771
3772	err = context_init(&ohci->at_request_ctx, ohci,
3773			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3774	if (err < 0)
3775		return err;
3776
3777	err = context_init(&ohci->at_response_ctx, ohci,
3778			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3779	if (err < 0)
3780		return err;
3781
3782	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3783	ohci->ir_context_channels = ~0ULL;
3784	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3785	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3786	ohci->ir_context_mask = ohci->ir_context_support;
3787	ohci->n_ir = hweight32(ohci->ir_context_mask);
3788	size = sizeof(struct iso_context) * ohci->n_ir;
3789	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3790	if (!ohci->ir_context_list)
3791		return -ENOMEM;
3792
3793	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3794	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3795	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3796	if (!ohci->it_context_support) {
3797		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3798		ohci->it_context_support = 0xf;
3799	}
3800	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3801	ohci->it_context_mask = ohci->it_context_support;
3802	ohci->n_it = hweight32(ohci->it_context_mask);
3803	size = sizeof(struct iso_context) * ohci->n_it;
3804	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3805	if (!ohci->it_context_list)
3806		return -ENOMEM;
 
 
 
3807
3808	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3809	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3810
3811	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3812	max_receive = (bus_options >> 12) & 0xf;
3813	link_speed = bus_options & 0x7;
3814	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3815		reg_read(ohci, OHCI1394_GUIDLo);
3816
3817	flags = PCI_IRQ_INTX;
3818	if (!(ohci->quirks & QUIRK_NO_MSI))
3819		flags |= PCI_IRQ_MSI;
3820	err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3821	if (err < 0)
3822		return err;
3823	irq = pci_irq_vector(dev, 0);
3824	if (irq < 0) {
3825		err = irq;
3826		goto fail_msi;
3827	}
3828
3829	err = request_threaded_irq(irq, irq_handler, NULL,
3830				   pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3831				   ohci);
3832	if (err < 0) {
3833		ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3834		goto fail_msi;
3835	}
3836
3837	err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3838	if (err)
3839		goto fail_irq;
3840
3841	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3842	ohci_notice(ohci,
3843		    "added OHCI v%x.%x device as card %d, "
3844		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3845		    version >> 16, version & 0xff, ohci->card.index,
3846		    ohci->n_ir, ohci->n_it, ohci->quirks,
3847		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3848			", physUB" : "");
3849
3850	return 0;
3851
3852 fail_irq:
3853	free_irq(irq, ohci);
3854 fail_msi:
3855	pci_free_irq_vectors(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3856
3857	return err;
3858}
3859
3860static void pci_remove(struct pci_dev *dev)
3861{
3862	struct fw_ohci *ohci = pci_get_drvdata(dev);
3863	int irq;
3864
3865	/*
3866	 * If the removal is happening from the suspend state, LPS won't be
3867	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3868	 */
3869	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3870		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3871		flush_writes(ohci);
3872	}
3873	cancel_work_sync(&ohci->bus_reset_work);
3874	fw_core_remove_card(&ohci->card);
3875
3876	/*
3877	 * FIXME: Fail all pending packets here, now that the upper
3878	 * layers can't queue any more.
3879	 */
3880
3881	software_reset(ohci);
 
3882
3883	irq = pci_irq_vector(dev, 0);
3884	if (irq >= 0)
3885		free_irq(irq, ohci);
3886	pci_free_irq_vectors(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887
3888	dev_notice(&dev->dev, "removing fw-ohci device\n");
3889}
3890
3891#ifdef CONFIG_PM
3892static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3893{
3894	struct fw_ohci *ohci = pci_get_drvdata(dev);
3895	int err;
3896
3897	software_reset(ohci);
 
 
3898	err = pci_save_state(dev);
3899	if (err) {
3900		ohci_err(ohci, "pci_save_state failed\n");
3901		return err;
3902	}
3903	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3904	if (err)
3905		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3906	pmac_ohci_off(dev);
3907
3908	return 0;
3909}
3910
3911static int pci_resume(struct pci_dev *dev)
3912{
3913	struct fw_ohci *ohci = pci_get_drvdata(dev);
3914	int err;
3915
3916	pmac_ohci_on(dev);
3917	pci_set_power_state(dev, PCI_D0);
3918	pci_restore_state(dev);
3919	err = pci_enable_device(dev);
3920	if (err) {
3921		ohci_err(ohci, "pci_enable_device failed\n");
3922		return err;
3923	}
3924
3925	/* Some systems don't setup GUID register on resume from ram  */
3926	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3927					!reg_read(ohci, OHCI1394_GUIDHi)) {
3928		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3929		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3930	}
3931
3932	err = ohci_enable(&ohci->card, NULL, 0);
3933	if (err)
3934		return err;
3935
3936	ohci_resume_iso_dma(ohci);
3937
3938	return 0;
3939}
3940#endif
3941
3942static const struct pci_device_id pci_table[] = {
3943	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3944	{ }
3945};
3946
3947MODULE_DEVICE_TABLE(pci, pci_table);
3948
3949static struct pci_driver fw_ohci_pci_driver = {
3950	.name		= ohci_driver_name,
3951	.id_table	= pci_table,
3952	.probe		= pci_probe,
3953	.remove		= pci_remove,
3954#ifdef CONFIG_PM
3955	.resume		= pci_resume,
3956	.suspend	= pci_suspend,
3957#endif
3958};
3959
 
 
 
 
 
 
 
 
 
3960static int __init fw_ohci_init(void)
3961{
3962	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3963	if (!selfid_workqueue)
3964		return -ENOMEM;
3965
3966	return pci_register_driver(&fw_ohci_pci_driver);
3967}
3968
3969static void __exit fw_ohci_cleanup(void)
3970{
3971	pci_unregister_driver(&fw_ohci_pci_driver);
3972	destroy_workqueue(selfid_workqueue);
3973}
3974
3975module_init(fw_ohci_init);
3976module_exit(fw_ohci_cleanup);
3977
3978MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3979MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3980MODULE_LICENSE("GPL");
3981
3982/* Provide a module alias so root-on-sbp2 initrds don't break. */
3983MODULE_ALIAS("ohci1394");