Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
  8 */
  9#include <linux/compat.h>
 10#include <linux/efi.h>
 11#include <linux/elf.h>
 12#include <linux/export.h>
 13#include <linux/sched.h>
 14#include <linux/sched/debug.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/mman.h>
 19#include <linux/mm.h>
 20#include <linux/nospec.h>
 21#include <linux/stddef.h>
 22#include <linux/sysctl.h>
 23#include <linux/unistd.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/reboot.h>
 27#include <linux/interrupt.h>
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 30#include <linux/elfcore.h>
 31#include <linux/pm.h>
 32#include <linux/tick.h>
 33#include <linux/utsname.h>
 34#include <linux/uaccess.h>
 35#include <linux/random.h>
 36#include <linux/hw_breakpoint.h>
 37#include <linux/personality.h>
 38#include <linux/notifier.h>
 39#include <trace/events/power.h>
 40#include <linux/percpu.h>
 41#include <linux/thread_info.h>
 42#include <linux/prctl.h>
 43#include <linux/stacktrace.h>
 44
 45#include <asm/alternative.h>
 46#include <asm/arch_timer.h>
 47#include <asm/compat.h>
 48#include <asm/cpufeature.h>
 49#include <asm/cacheflush.h>
 50#include <asm/exec.h>
 51#include <asm/fpsimd.h>
 52#include <asm/gcs.h>
 53#include <asm/mmu_context.h>
 54#include <asm/mte.h>
 55#include <asm/processor.h>
 56#include <asm/pointer_auth.h>
 57#include <asm/stacktrace.h>
 58#include <asm/switch_to.h>
 59#include <asm/system_misc.h>
 60
 61#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 62#include <linux/stackprotector.h>
 63unsigned long __stack_chk_guard __ro_after_init;
 64EXPORT_SYMBOL(__stack_chk_guard);
 65#endif
 66
 67/*
 68 * Function pointers to optional machine specific functions
 69 */
 70void (*pm_power_off)(void);
 71EXPORT_SYMBOL_GPL(pm_power_off);
 72
 73#ifdef CONFIG_HOTPLUG_CPU
 74void __noreturn arch_cpu_idle_dead(void)
 75{
 76       cpu_die();
 77}
 78#endif
 79
 80/*
 81 * Called by kexec, immediately prior to machine_kexec().
 82 *
 83 * This must completely disable all secondary CPUs; simply causing those CPUs
 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
 88 */
 89void machine_shutdown(void)
 90{
 91	smp_shutdown_nonboot_cpus(reboot_cpu);
 92}
 93
 94/*
 95 * Halting simply requires that the secondary CPUs stop performing any
 96 * activity (executing tasks, handling interrupts). smp_send_stop()
 97 * achieves this.
 98 */
 99void machine_halt(void)
100{
101	local_irq_disable();
102	smp_send_stop();
103	while (1);
104}
105
106/*
107 * Power-off simply requires that the secondary CPUs stop performing any
108 * activity (executing tasks, handling interrupts). smp_send_stop()
109 * achieves this. When the system power is turned off, it will take all CPUs
110 * with it.
111 */
112void machine_power_off(void)
113{
114	local_irq_disable();
115	smp_send_stop();
116	do_kernel_power_off();
117}
118
119/*
120 * Restart requires that the secondary CPUs stop performing any activity
121 * while the primary CPU resets the system. Systems with multiple CPUs must
122 * provide a HW restart implementation, to ensure that all CPUs reset at once.
123 * This is required so that any code running after reset on the primary CPU
124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
125 * executing pre-reset code, and using RAM that the primary CPU's code wishes
126 * to use. Implementing such co-ordination would be essentially impossible.
127 */
128void machine_restart(char *cmd)
129{
130	/* Disable interrupts first */
131	local_irq_disable();
132	smp_send_stop();
133
134	/*
135	 * UpdateCapsule() depends on the system being reset via
136	 * ResetSystem().
137	 */
138	if (efi_enabled(EFI_RUNTIME_SERVICES))
139		efi_reboot(reboot_mode, NULL);
140
141	/* Now call the architecture specific reboot code. */
142	do_kernel_restart(cmd);
143
144	/*
145	 * Whoops - the architecture was unable to reboot.
146	 */
147	printk("Reboot failed -- System halted\n");
148	while (1);
149}
150
151#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
152static const char *const btypes[] = {
153	bstr(NONE, "--"),
154	bstr(  JC, "jc"),
155	bstr(   C, "-c"),
156	bstr(  J , "j-")
157};
158#undef bstr
159
160static void print_pstate(struct pt_regs *regs)
161{
162	u64 pstate = regs->pstate;
163
164	if (compat_user_mode(regs)) {
165		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
166			pstate,
167			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
168			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
169			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
170			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
171			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
172			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
173			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
174			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
175			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
176			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
177			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
178			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
179	} else {
180		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
181					       PSR_BTYPE_SHIFT];
182
183		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
184			pstate,
185			pstate & PSR_N_BIT ? 'N' : 'n',
186			pstate & PSR_Z_BIT ? 'Z' : 'z',
187			pstate & PSR_C_BIT ? 'C' : 'c',
188			pstate & PSR_V_BIT ? 'V' : 'v',
189			pstate & PSR_D_BIT ? 'D' : 'd',
190			pstate & PSR_A_BIT ? 'A' : 'a',
191			pstate & PSR_I_BIT ? 'I' : 'i',
192			pstate & PSR_F_BIT ? 'F' : 'f',
193			pstate & PSR_PAN_BIT ? '+' : '-',
194			pstate & PSR_UAO_BIT ? '+' : '-',
195			pstate & PSR_TCO_BIT ? '+' : '-',
196			pstate & PSR_DIT_BIT ? '+' : '-',
197			pstate & PSR_SSBS_BIT ? '+' : '-',
198			btype_str);
199	}
200}
201
202void __show_regs(struct pt_regs *regs)
203{
204	int i, top_reg;
205	u64 lr, sp;
206
207	if (compat_user_mode(regs)) {
208		lr = regs->compat_lr;
209		sp = regs->compat_sp;
210		top_reg = 12;
211	} else {
212		lr = regs->regs[30];
213		sp = regs->sp;
214		top_reg = 29;
215	}
216
217	show_regs_print_info(KERN_DEFAULT);
218	print_pstate(regs);
219
220	if (!user_mode(regs)) {
221		printk("pc : %pS\n", (void *)regs->pc);
222		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
223	} else {
224		printk("pc : %016llx\n", regs->pc);
225		printk("lr : %016llx\n", lr);
226	}
227
228	printk("sp : %016llx\n", sp);
229
230	if (system_uses_irq_prio_masking())
231		printk("pmr: %08x\n", regs->pmr);
232
233	i = top_reg;
234
235	while (i >= 0) {
236		printk("x%-2d: %016llx", i, regs->regs[i]);
237
238		while (i-- % 3)
239			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
240
241		pr_cont("\n");
242	}
243}
244
245void show_regs(struct pt_regs *regs)
246{
247	__show_regs(regs);
248	dump_backtrace(regs, NULL, KERN_DEFAULT);
249}
250
251static void tls_thread_flush(void)
252{
253	write_sysreg(0, tpidr_el0);
254	if (system_supports_tpidr2())
255		write_sysreg_s(0, SYS_TPIDR2_EL0);
256
257	if (is_compat_task()) {
258		current->thread.uw.tp_value = 0;
259
260		/*
261		 * We need to ensure ordering between the shadow state and the
262		 * hardware state, so that we don't corrupt the hardware state
263		 * with a stale shadow state during context switch.
264		 */
265		barrier();
266		write_sysreg(0, tpidrro_el0);
267	}
268}
269
270static void flush_tagged_addr_state(void)
271{
272	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273		clear_thread_flag(TIF_TAGGED_ADDR);
274}
275
276static void flush_poe(void)
277{
278	if (!system_supports_poe())
279		return;
280
281	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
282}
283
284#ifdef CONFIG_ARM64_GCS
285
286static void flush_gcs(void)
287{
288	if (!system_supports_gcs())
289		return;
290
291	gcs_free(current);
292	current->thread.gcs_el0_mode = 0;
293	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
294	write_sysreg_s(0, SYS_GCSPR_EL0);
295}
296
297static int copy_thread_gcs(struct task_struct *p,
298			   const struct kernel_clone_args *args)
299{
300	unsigned long gcs;
301
302	if (!system_supports_gcs())
303		return 0;
304
305	p->thread.gcs_base = 0;
306	p->thread.gcs_size = 0;
307
308	gcs = gcs_alloc_thread_stack(p, args);
309	if (IS_ERR_VALUE(gcs))
310		return PTR_ERR((void *)gcs);
311
312	p->thread.gcs_el0_mode = current->thread.gcs_el0_mode;
313	p->thread.gcs_el0_locked = current->thread.gcs_el0_locked;
314
315	return 0;
316}
317
318#else
319
320static void flush_gcs(void) { }
321static int copy_thread_gcs(struct task_struct *p,
322			   const struct kernel_clone_args *args)
323{
324	return 0;
325}
326
327#endif
328
329void flush_thread(void)
330{
331	fpsimd_flush_thread();
332	tls_thread_flush();
333	flush_ptrace_hw_breakpoint(current);
334	flush_tagged_addr_state();
335	flush_poe();
336	flush_gcs();
337}
338
339void arch_release_task_struct(struct task_struct *tsk)
340{
341	fpsimd_release_task(tsk);
342	gcs_free(tsk);
343}
344
345int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
346{
347	if (current->mm)
348		fpsimd_preserve_current_state();
349	*dst = *src;
350
351	/*
352	 * Detach src's sve_state (if any) from dst so that it does not
353	 * get erroneously used or freed prematurely.  dst's copies
354	 * will be allocated on demand later on if dst uses SVE.
355	 * For consistency, also clear TIF_SVE here: this could be done
356	 * later in copy_process(), but to avoid tripping up future
357	 * maintainers it is best not to leave TIF flags and buffers in
358	 * an inconsistent state, even temporarily.
359	 */
360	dst->thread.sve_state = NULL;
361	clear_tsk_thread_flag(dst, TIF_SVE);
362
363	/*
364	 * In the unlikely event that we create a new thread with ZA
365	 * enabled we should retain the ZA and ZT state so duplicate
366	 * it here.  This may be shortly freed if we exec() or if
367	 * CLONE_SETTLS but it's simpler to do it here. To avoid
368	 * confusing the rest of the code ensure that we have a
369	 * sve_state allocated whenever sme_state is allocated.
370	 */
371	if (thread_za_enabled(&src->thread)) {
372		dst->thread.sve_state = kzalloc(sve_state_size(src),
373						GFP_KERNEL);
374		if (!dst->thread.sve_state)
375			return -ENOMEM;
376
377		dst->thread.sme_state = kmemdup(src->thread.sme_state,
378						sme_state_size(src),
379						GFP_KERNEL);
380		if (!dst->thread.sme_state) {
381			kfree(dst->thread.sve_state);
382			dst->thread.sve_state = NULL;
383			return -ENOMEM;
384		}
385	} else {
386		dst->thread.sme_state = NULL;
387		clear_tsk_thread_flag(dst, TIF_SME);
388	}
389
390	dst->thread.fp_type = FP_STATE_FPSIMD;
391
392	/* clear any pending asynchronous tag fault raised by the parent */
393	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
394
395	return 0;
396}
397
398asmlinkage void ret_from_fork(void) asm("ret_from_fork");
399
400int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
401{
402	unsigned long clone_flags = args->flags;
403	unsigned long stack_start = args->stack;
404	unsigned long tls = args->tls;
405	struct pt_regs *childregs = task_pt_regs(p);
406	int ret;
407
408	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
409
410	/*
411	 * In case p was allocated the same task_struct pointer as some
412	 * other recently-exited task, make sure p is disassociated from
413	 * any cpu that may have run that now-exited task recently.
414	 * Otherwise we could erroneously skip reloading the FPSIMD
415	 * registers for p.
416	 */
417	fpsimd_flush_task_state(p);
418
419	ptrauth_thread_init_kernel(p);
420
421	if (likely(!args->fn)) {
422		*childregs = *current_pt_regs();
423		childregs->regs[0] = 0;
424
425		/*
426		 * Read the current TLS pointer from tpidr_el0 as it may be
427		 * out-of-sync with the saved value.
428		 */
429		*task_user_tls(p) = read_sysreg(tpidr_el0);
430		if (system_supports_tpidr2())
431			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
432
433		if (system_supports_poe())
434			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
435
436		if (stack_start) {
437			if (is_compat_thread(task_thread_info(p)))
438				childregs->compat_sp = stack_start;
439			else
440				childregs->sp = stack_start;
441		}
442
443		/*
444		 * If a TLS pointer was passed to clone, use it for the new
445		 * thread.  We also reset TPIDR2 if it's in use.
446		 */
447		if (clone_flags & CLONE_SETTLS) {
448			p->thread.uw.tp_value = tls;
449			p->thread.tpidr2_el0 = 0;
450		}
451
452		ret = copy_thread_gcs(p, args);
453		if (ret != 0)
454			return ret;
455	} else {
456		/*
457		 * A kthread has no context to ERET to, so ensure any buggy
458		 * ERET is treated as an illegal exception return.
459		 *
460		 * When a user task is created from a kthread, childregs will
461		 * be initialized by start_thread() or start_compat_thread().
462		 */
463		memset(childregs, 0, sizeof(struct pt_regs));
464		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
465		childregs->stackframe.type = FRAME_META_TYPE_FINAL;
466
467		p->thread.cpu_context.x19 = (unsigned long)args->fn;
468		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
469
470		if (system_supports_poe())
471			p->thread.por_el0 = POR_EL0_INIT;
472	}
473	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
474	p->thread.cpu_context.sp = (unsigned long)childregs;
475	/*
476	 * For the benefit of the unwinder, set up childregs->stackframe
477	 * as the final frame for the new task.
478	 */
479	p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe;
480
481	ptrace_hw_copy_thread(p);
482
483	return 0;
484}
485
486void tls_preserve_current_state(void)
487{
488	*task_user_tls(current) = read_sysreg(tpidr_el0);
489	if (system_supports_tpidr2() && !is_compat_task())
490		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
491}
492
493static void tls_thread_switch(struct task_struct *next)
494{
495	tls_preserve_current_state();
496
497	if (is_compat_thread(task_thread_info(next)))
498		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
499	else
500		write_sysreg(0, tpidrro_el0);
501
502	write_sysreg(*task_user_tls(next), tpidr_el0);
503	if (system_supports_tpidr2())
504		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
505}
506
507/*
508 * Force SSBS state on context-switch, since it may be lost after migrating
509 * from a CPU which treats the bit as RES0 in a heterogeneous system.
510 */
511static void ssbs_thread_switch(struct task_struct *next)
512{
513	/*
514	 * Nothing to do for kernel threads, but 'regs' may be junk
515	 * (e.g. idle task) so check the flags and bail early.
516	 */
517	if (unlikely(next->flags & PF_KTHREAD))
518		return;
519
520	/*
521	 * If all CPUs implement the SSBS extension, then we just need to
522	 * context-switch the PSTATE field.
523	 */
524	if (alternative_has_cap_unlikely(ARM64_SSBS))
525		return;
526
527	spectre_v4_enable_task_mitigation(next);
528}
529
530/*
531 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
532 * shadow copy so that we can restore this upon entry from userspace.
533 *
534 * This is *only* for exception entry from EL0, and is not valid until we
535 * __switch_to() a user task.
536 */
537DEFINE_PER_CPU(struct task_struct *, __entry_task);
538
539static void entry_task_switch(struct task_struct *next)
540{
541	__this_cpu_write(__entry_task, next);
542}
543
544#ifdef CONFIG_ARM64_GCS
545
546void gcs_preserve_current_state(void)
547{
548	current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
549}
550
551static void gcs_thread_switch(struct task_struct *next)
552{
553	if (!system_supports_gcs())
554		return;
555
556	/* GCSPR_EL0 is always readable */
557	gcs_preserve_current_state();
558	write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0);
559
560	if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode)
561		gcs_set_el0_mode(next);
562
563	/*
564	 * Ensure that GCS memory effects of the 'prev' thread are
565	 * ordered before other memory accesses with release semantics
566	 * (or preceded by a DMB) on the current PE. In addition, any
567	 * memory accesses with acquire semantics (or succeeded by a
568	 * DMB) are ordered before GCS memory effects of the 'next'
569	 * thread. This will ensure that the GCS memory effects are
570	 * visible to other PEs in case of migration.
571	 */
572	if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next))
573		gcsb_dsync();
574}
575
576#else
577
578static void gcs_thread_switch(struct task_struct *next)
579{
580}
581
582#endif
583
584/*
585 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
586 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
587 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
588 * required or PR_TSC_SIGSEGV is set.
589 */
590static void update_cntkctl_el1(struct task_struct *next)
591{
592	struct thread_info *ti = task_thread_info(next);
593
594	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
595	    has_erratum_handler(read_cntvct_el0) ||
596	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
597	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
598	     is_compat_thread(ti)))
599		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
600	else
601		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
602}
603
604static void cntkctl_thread_switch(struct task_struct *prev,
605				  struct task_struct *next)
606{
607	if ((read_ti_thread_flags(task_thread_info(prev)) &
608	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
609	    (read_ti_thread_flags(task_thread_info(next)) &
610	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
611		update_cntkctl_el1(next);
612}
613
614static int do_set_tsc_mode(unsigned int val)
615{
616	bool tsc_sigsegv;
617
618	if (val == PR_TSC_SIGSEGV)
619		tsc_sigsegv = true;
620	else if (val == PR_TSC_ENABLE)
621		tsc_sigsegv = false;
622	else
623		return -EINVAL;
624
625	preempt_disable();
626	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
627	update_cntkctl_el1(current);
628	preempt_enable();
629
630	return 0;
631}
632
633static void permission_overlay_switch(struct task_struct *next)
634{
635	if (!system_supports_poe())
636		return;
637
638	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
639	if (current->thread.por_el0 != next->thread.por_el0) {
640		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
641	}
642}
643
644/*
645 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
646 * this function must be called with preemption disabled and the update to
647 * sctlr_user must be made in the same preemption disabled block so that
648 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
649 */
650void update_sctlr_el1(u64 sctlr)
651{
652	/*
653	 * EnIA must not be cleared while in the kernel as this is necessary for
654	 * in-kernel PAC. It will be cleared on kernel exit if needed.
655	 */
656	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
657
658	/* ISB required for the kernel uaccess routines when setting TCF0. */
659	isb();
660}
661
662/*
663 * Thread switching.
664 */
665__notrace_funcgraph __sched
666struct task_struct *__switch_to(struct task_struct *prev,
667				struct task_struct *next)
668{
669	struct task_struct *last;
670
671	fpsimd_thread_switch(next);
672	tls_thread_switch(next);
673	hw_breakpoint_thread_switch(next);
674	contextidr_thread_switch(next);
675	entry_task_switch(next);
676	ssbs_thread_switch(next);
677	cntkctl_thread_switch(prev, next);
678	ptrauth_thread_switch_user(next);
679	permission_overlay_switch(next);
680	gcs_thread_switch(next);
681
682	/*
683	 * Complete any pending TLB or cache maintenance on this CPU in case
684	 * the thread migrates to a different CPU.
685	 * This full barrier is also required by the membarrier system
686	 * call.
687	 */
688	dsb(ish);
689
690	/*
691	 * MTE thread switching must happen after the DSB above to ensure that
692	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
693	 * registers.
694	 */
695	mte_thread_switch(next);
696	/* avoid expensive SCTLR_EL1 accesses if no change */
697	if (prev->thread.sctlr_user != next->thread.sctlr_user)
698		update_sctlr_el1(next->thread.sctlr_user);
699
700	/* the actual thread switch */
701	last = cpu_switch_to(prev, next);
702
703	return last;
704}
705
706struct wchan_info {
707	unsigned long	pc;
708	int		count;
709};
710
711static bool get_wchan_cb(void *arg, unsigned long pc)
712{
713	struct wchan_info *wchan_info = arg;
714
715	if (!in_sched_functions(pc)) {
716		wchan_info->pc = pc;
717		return false;
718	}
719	return wchan_info->count++ < 16;
720}
721
722unsigned long __get_wchan(struct task_struct *p)
723{
724	struct wchan_info wchan_info = {
725		.pc = 0,
726		.count = 0,
727	};
728
729	if (!try_get_task_stack(p))
730		return 0;
731
732	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
733
734	put_task_stack(p);
735
736	return wchan_info.pc;
737}
738
739unsigned long arch_align_stack(unsigned long sp)
740{
741	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
742		sp -= get_random_u32_below(PAGE_SIZE);
743	return sp & ~0xf;
744}
745
746#ifdef CONFIG_COMPAT
747int compat_elf_check_arch(const struct elf32_hdr *hdr)
748{
749	if (!system_supports_32bit_el0())
750		return false;
751
752	if ((hdr)->e_machine != EM_ARM)
753		return false;
754
755	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
756		return false;
757
758	/*
759	 * Prevent execve() of a 32-bit program from a deadline task
760	 * if the restricted affinity mask would be inadmissible on an
761	 * asymmetric system.
762	 */
763	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
764	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
765}
766#endif
767
768/*
769 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
770 */
771void arch_setup_new_exec(void)
772{
773	unsigned long mmflags = 0;
774
775	if (is_compat_task()) {
776		mmflags = MMCF_AARCH32;
777
778		/*
779		 * Restrict the CPU affinity mask for a 32-bit task so that
780		 * it contains only 32-bit-capable CPUs.
781		 *
782		 * From the perspective of the task, this looks similar to
783		 * what would happen if the 64-bit-only CPUs were hot-unplugged
784		 * at the point of execve(), although we try a bit harder to
785		 * honour the cpuset hierarchy.
786		 */
787		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
788			force_compatible_cpus_allowed_ptr(current);
789	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
790		relax_compatible_cpus_allowed_ptr(current);
791	}
792
793	current->mm->context.flags = mmflags;
794	ptrauth_thread_init_user();
795	mte_thread_init_user();
796	do_set_tsc_mode(PR_TSC_ENABLE);
797
798	if (task_spec_ssb_noexec(current)) {
799		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
800					 PR_SPEC_ENABLE);
801	}
802}
803
804#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
805/*
806 * Control the relaxed ABI allowing tagged user addresses into the kernel.
807 */
808static unsigned int tagged_addr_disabled;
809
810long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
811{
812	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
813	struct thread_info *ti = task_thread_info(task);
814
815	if (is_compat_thread(ti))
816		return -EINVAL;
817
818	if (system_supports_mte())
819		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
820			| PR_MTE_TAG_MASK;
821
822	if (arg & ~valid_mask)
823		return -EINVAL;
824
825	/*
826	 * Do not allow the enabling of the tagged address ABI if globally
827	 * disabled via sysctl abi.tagged_addr_disabled.
828	 */
829	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
830		return -EINVAL;
831
832	if (set_mte_ctrl(task, arg) != 0)
833		return -EINVAL;
834
835	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
836
837	return 0;
838}
839
840long get_tagged_addr_ctrl(struct task_struct *task)
841{
842	long ret = 0;
843	struct thread_info *ti = task_thread_info(task);
844
845	if (is_compat_thread(ti))
846		return -EINVAL;
847
848	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
849		ret = PR_TAGGED_ADDR_ENABLE;
850
851	ret |= get_mte_ctrl(task);
852
853	return ret;
854}
855
856/*
857 * Global sysctl to disable the tagged user addresses support. This control
858 * only prevents the tagged address ABI enabling via prctl() and does not
859 * disable it for tasks that already opted in to the relaxed ABI.
860 */
861
862static struct ctl_table tagged_addr_sysctl_table[] = {
863	{
864		.procname	= "tagged_addr_disabled",
865		.mode		= 0644,
866		.data		= &tagged_addr_disabled,
867		.maxlen		= sizeof(int),
868		.proc_handler	= proc_dointvec_minmax,
869		.extra1		= SYSCTL_ZERO,
870		.extra2		= SYSCTL_ONE,
871	},
872};
873
874static int __init tagged_addr_init(void)
875{
876	if (!register_sysctl("abi", tagged_addr_sysctl_table))
877		return -EINVAL;
878	return 0;
879}
880
881core_initcall(tagged_addr_init);
882#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
883
884#ifdef CONFIG_BINFMT_ELF
885int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
886			 bool has_interp, bool is_interp)
887{
888	/*
889	 * For dynamically linked executables the interpreter is
890	 * responsible for setting PROT_BTI on everything except
891	 * itself.
892	 */
893	if (is_interp != has_interp)
894		return prot;
895
896	if (!(state->flags & ARM64_ELF_BTI))
897		return prot;
898
899	if (prot & PROT_EXEC)
900		prot |= PROT_BTI;
901
902	return prot;
903}
904#endif
905
906int get_tsc_mode(unsigned long adr)
907{
908	unsigned int val;
909
910	if (is_compat_task())
911		return -EINVAL;
912
913	if (test_thread_flag(TIF_TSC_SIGSEGV))
914		val = PR_TSC_SIGSEGV;
915	else
916		val = PR_TSC_ENABLE;
917
918	return put_user(val, (unsigned int __user *)adr);
919}
920
921int set_tsc_mode(unsigned int val)
922{
923	if (is_compat_task())
924		return -EINVAL;
925
926	return do_set_tsc_mode(val);
927}