Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
  8 */
  9
 10#include <stdarg.h>
 11
 12#include <linux/compat.h>
 13#include <linux/efi.h>
 14#include <linux/export.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/sched/task.h>
 18#include <linux/sched/task_stack.h>
 19#include <linux/kernel.h>
 20#include <linux/lockdep.h>
 21#include <linux/mm.h>
 22#include <linux/stddef.h>
 23#include <linux/sysctl.h>
 24#include <linux/unistd.h>
 25#include <linux/user.h>
 26#include <linux/delay.h>
 27#include <linux/reboot.h>
 28#include <linux/interrupt.h>
 29#include <linux/init.h>
 30#include <linux/cpu.h>
 31#include <linux/elfcore.h>
 32#include <linux/pm.h>
 33#include <linux/tick.h>
 34#include <linux/utsname.h>
 35#include <linux/uaccess.h>
 36#include <linux/random.h>
 37#include <linux/hw_breakpoint.h>
 38#include <linux/personality.h>
 39#include <linux/notifier.h>
 40#include <trace/events/power.h>
 41#include <linux/percpu.h>
 42#include <linux/thread_info.h>
 43#include <linux/prctl.h>
 44
 45#include <asm/alternative.h>
 46#include <asm/arch_gicv3.h>
 47#include <asm/compat.h>
 48#include <asm/cpufeature.h>
 49#include <asm/cacheflush.h>
 50#include <asm/exec.h>
 51#include <asm/fpsimd.h>
 52#include <asm/mmu_context.h>
 53#include <asm/processor.h>
 54#include <asm/pointer_auth.h>
 55#include <asm/stacktrace.h>
 56
 57#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 58#include <linux/stackprotector.h>
 59unsigned long __stack_chk_guard __read_mostly;
 60EXPORT_SYMBOL(__stack_chk_guard);
 61#endif
 62
 63/*
 64 * Function pointers to optional machine specific functions
 65 */
 66void (*pm_power_off)(void);
 67EXPORT_SYMBOL_GPL(pm_power_off);
 68
 69void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 70
 71static void __cpu_do_idle(void)
 72{
 73	dsb(sy);
 74	wfi();
 75}
 76
 77static void __cpu_do_idle_irqprio(void)
 78{
 79	unsigned long pmr;
 80	unsigned long daif_bits;
 81
 82	daif_bits = read_sysreg(daif);
 83	write_sysreg(daif_bits | PSR_I_BIT, daif);
 84
 85	/*
 86	 * Unmask PMR before going idle to make sure interrupts can
 87	 * be raised.
 88	 */
 89	pmr = gic_read_pmr();
 90	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
 91
 92	__cpu_do_idle();
 93
 94	gic_write_pmr(pmr);
 95	write_sysreg(daif_bits, daif);
 96}
 97
 98/*
 99 *	cpu_do_idle()
100 *
101 *	Idle the processor (wait for interrupt).
102 *
103 *	If the CPU supports priority masking we must do additional work to
104 *	ensure that interrupts are not masked at the PMR (because the core will
105 *	not wake up if we block the wake up signal in the interrupt controller).
106 */
107void cpu_do_idle(void)
108{
109	if (system_uses_irq_prio_masking())
110		__cpu_do_idle_irqprio();
111	else
112		__cpu_do_idle();
113}
114
115/*
116 * This is our default idle handler.
117 */
118void arch_cpu_idle(void)
119{
120	/*
121	 * This should do all the clock switching and wait for interrupt
122	 * tricks
123	 */
124	trace_cpu_idle_rcuidle(1, smp_processor_id());
125	cpu_do_idle();
126	local_irq_enable();
127	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
128}
129
130#ifdef CONFIG_HOTPLUG_CPU
131void arch_cpu_idle_dead(void)
132{
133       cpu_die();
134}
135#endif
136
137/*
138 * Called by kexec, immediately prior to machine_kexec().
139 *
140 * This must completely disable all secondary CPUs; simply causing those CPUs
141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142 * kexec'd kernel to use any and all RAM as it sees fit, without having to
143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144 * functionality embodied in disable_nonboot_cpus() to achieve this.
145 */
146void machine_shutdown(void)
147{
148	disable_nonboot_cpus();
149}
150
151/*
152 * Halting simply requires that the secondary CPUs stop performing any
153 * activity (executing tasks, handling interrupts). smp_send_stop()
154 * achieves this.
155 */
156void machine_halt(void)
157{
158	local_irq_disable();
159	smp_send_stop();
160	while (1);
161}
162
163/*
164 * Power-off simply requires that the secondary CPUs stop performing any
165 * activity (executing tasks, handling interrupts). smp_send_stop()
166 * achieves this. When the system power is turned off, it will take all CPUs
167 * with it.
168 */
169void machine_power_off(void)
170{
171	local_irq_disable();
172	smp_send_stop();
173	if (pm_power_off)
174		pm_power_off();
175}
176
177/*
178 * Restart requires that the secondary CPUs stop performing any activity
179 * while the primary CPU resets the system. Systems with multiple CPUs must
180 * provide a HW restart implementation, to ensure that all CPUs reset at once.
181 * This is required so that any code running after reset on the primary CPU
182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183 * executing pre-reset code, and using RAM that the primary CPU's code wishes
184 * to use. Implementing such co-ordination would be essentially impossible.
185 */
186void machine_restart(char *cmd)
187{
188	/* Disable interrupts first */
189	local_irq_disable();
190	smp_send_stop();
191
192	/*
193	 * UpdateCapsule() depends on the system being reset via
194	 * ResetSystem().
195	 */
196	if (efi_enabled(EFI_RUNTIME_SERVICES))
197		efi_reboot(reboot_mode, NULL);
198
199	/* Now call the architecture specific reboot code. */
200	if (arm_pm_restart)
201		arm_pm_restart(reboot_mode, cmd);
202	else
203		do_kernel_restart(cmd);
204
205	/*
206	 * Whoops - the architecture was unable to reboot.
207	 */
208	printk("Reboot failed -- System halted\n");
209	while (1);
210}
211
212static void print_pstate(struct pt_regs *regs)
213{
214	u64 pstate = regs->pstate;
215
216	if (compat_user_mode(regs)) {
217		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
218			pstate,
219			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
220			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
221			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
222			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
223			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
224			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
225			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
226			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
227			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
228			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
229	} else {
230		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
231			pstate,
232			pstate & PSR_N_BIT ? 'N' : 'n',
233			pstate & PSR_Z_BIT ? 'Z' : 'z',
234			pstate & PSR_C_BIT ? 'C' : 'c',
235			pstate & PSR_V_BIT ? 'V' : 'v',
236			pstate & PSR_D_BIT ? 'D' : 'd',
237			pstate & PSR_A_BIT ? 'A' : 'a',
238			pstate & PSR_I_BIT ? 'I' : 'i',
239			pstate & PSR_F_BIT ? 'F' : 'f',
240			pstate & PSR_PAN_BIT ? '+' : '-',
241			pstate & PSR_UAO_BIT ? '+' : '-');
242	}
243}
244
245void __show_regs(struct pt_regs *regs)
246{
247	int i, top_reg;
248	u64 lr, sp;
249
250	if (compat_user_mode(regs)) {
251		lr = regs->compat_lr;
252		sp = regs->compat_sp;
253		top_reg = 12;
254	} else {
255		lr = regs->regs[30];
256		sp = regs->sp;
257		top_reg = 29;
258	}
259
260	show_regs_print_info(KERN_DEFAULT);
261	print_pstate(regs);
262
263	if (!user_mode(regs)) {
264		printk("pc : %pS\n", (void *)regs->pc);
265		printk("lr : %pS\n", (void *)lr);
266	} else {
267		printk("pc : %016llx\n", regs->pc);
268		printk("lr : %016llx\n", lr);
269	}
270
271	printk("sp : %016llx\n", sp);
272
273	if (system_uses_irq_prio_masking())
274		printk("pmr_save: %08llx\n", regs->pmr_save);
275
276	i = top_reg;
277
278	while (i >= 0) {
279		printk("x%-2d: %016llx ", i, regs->regs[i]);
280		i--;
281
282		if (i % 2 == 0) {
283			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
284			i--;
285		}
286
287		pr_cont("\n");
288	}
289}
290
291void show_regs(struct pt_regs * regs)
292{
293	__show_regs(regs);
294	dump_backtrace(regs, NULL);
295}
296
297static void tls_thread_flush(void)
298{
299	write_sysreg(0, tpidr_el0);
300
301	if (is_compat_task()) {
302		current->thread.uw.tp_value = 0;
303
304		/*
305		 * We need to ensure ordering between the shadow state and the
306		 * hardware state, so that we don't corrupt the hardware state
307		 * with a stale shadow state during context switch.
308		 */
309		barrier();
310		write_sysreg(0, tpidrro_el0);
311	}
312}
313
314static void flush_tagged_addr_state(void)
315{
316	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
317		clear_thread_flag(TIF_TAGGED_ADDR);
318}
319
320void flush_thread(void)
321{
322	fpsimd_flush_thread();
323	tls_thread_flush();
324	flush_ptrace_hw_breakpoint(current);
325	flush_tagged_addr_state();
326}
327
328void release_thread(struct task_struct *dead_task)
329{
330}
331
332void arch_release_task_struct(struct task_struct *tsk)
333{
334	fpsimd_release_task(tsk);
335}
336
337int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
338{
339	if (current->mm)
340		fpsimd_preserve_current_state();
341	*dst = *src;
342
343	/* We rely on the above assignment to initialize dst's thread_flags: */
344	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
345
346	/*
347	 * Detach src's sve_state (if any) from dst so that it does not
348	 * get erroneously used or freed prematurely.  dst's sve_state
349	 * will be allocated on demand later on if dst uses SVE.
350	 * For consistency, also clear TIF_SVE here: this could be done
351	 * later in copy_process(), but to avoid tripping up future
352	 * maintainers it is best not to leave TIF_SVE and sve_state in
353	 * an inconsistent state, even temporarily.
354	 */
355	dst->thread.sve_state = NULL;
356	clear_tsk_thread_flag(dst, TIF_SVE);
357
358	return 0;
359}
360
361asmlinkage void ret_from_fork(void) asm("ret_from_fork");
362
363int copy_thread(unsigned long clone_flags, unsigned long stack_start,
364		unsigned long stk_sz, struct task_struct *p)
365{
366	struct pt_regs *childregs = task_pt_regs(p);
367
368	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
369
370	/*
371	 * In case p was allocated the same task_struct pointer as some
372	 * other recently-exited task, make sure p is disassociated from
373	 * any cpu that may have run that now-exited task recently.
374	 * Otherwise we could erroneously skip reloading the FPSIMD
375	 * registers for p.
376	 */
377	fpsimd_flush_task_state(p);
378
379	if (likely(!(p->flags & PF_KTHREAD))) {
380		*childregs = *current_pt_regs();
381		childregs->regs[0] = 0;
382
383		/*
384		 * Read the current TLS pointer from tpidr_el0 as it may be
385		 * out-of-sync with the saved value.
386		 */
387		*task_user_tls(p) = read_sysreg(tpidr_el0);
388
389		if (stack_start) {
390			if (is_compat_thread(task_thread_info(p)))
391				childregs->compat_sp = stack_start;
392			else
393				childregs->sp = stack_start;
394		}
395
396		/*
397		 * If a TLS pointer was passed to clone (4th argument), use it
398		 * for the new thread.
399		 */
400		if (clone_flags & CLONE_SETTLS)
401			p->thread.uw.tp_value = childregs->regs[3];
402	} else {
403		memset(childregs, 0, sizeof(struct pt_regs));
404		childregs->pstate = PSR_MODE_EL1h;
405		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
406		    cpus_have_const_cap(ARM64_HAS_UAO))
407			childregs->pstate |= PSR_UAO_BIT;
408
409		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
410			set_ssbs_bit(childregs);
411
412		if (system_uses_irq_prio_masking())
413			childregs->pmr_save = GIC_PRIO_IRQON;
414
415		p->thread.cpu_context.x19 = stack_start;
416		p->thread.cpu_context.x20 = stk_sz;
417	}
418	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
419	p->thread.cpu_context.sp = (unsigned long)childregs;
420
421	ptrace_hw_copy_thread(p);
422
423	return 0;
424}
425
426void tls_preserve_current_state(void)
427{
428	*task_user_tls(current) = read_sysreg(tpidr_el0);
429}
430
431static void tls_thread_switch(struct task_struct *next)
432{
433	tls_preserve_current_state();
434
435	if (is_compat_thread(task_thread_info(next)))
436		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
437	else if (!arm64_kernel_unmapped_at_el0())
438		write_sysreg(0, tpidrro_el0);
439
440	write_sysreg(*task_user_tls(next), tpidr_el0);
441}
442
443/* Restore the UAO state depending on next's addr_limit */
444void uao_thread_switch(struct task_struct *next)
445{
446	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
447		if (task_thread_info(next)->addr_limit == KERNEL_DS)
448			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
449		else
450			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
451	}
452}
453
454/*
455 * Force SSBS state on context-switch, since it may be lost after migrating
456 * from a CPU which treats the bit as RES0 in a heterogeneous system.
457 */
458static void ssbs_thread_switch(struct task_struct *next)
459{
460	struct pt_regs *regs = task_pt_regs(next);
461
462	/*
463	 * Nothing to do for kernel threads, but 'regs' may be junk
464	 * (e.g. idle task) so check the flags and bail early.
465	 */
466	if (unlikely(next->flags & PF_KTHREAD))
467		return;
468
469	/* If the mitigation is enabled, then we leave SSBS clear. */
470	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
471	    test_tsk_thread_flag(next, TIF_SSBD))
472		return;
473
474	if (compat_user_mode(regs))
475		set_compat_ssbs_bit(regs);
476	else if (user_mode(regs))
477		set_ssbs_bit(regs);
478}
479
480/*
481 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
482 * shadow copy so that we can restore this upon entry from userspace.
483 *
484 * This is *only* for exception entry from EL0, and is not valid until we
485 * __switch_to() a user task.
486 */
487DEFINE_PER_CPU(struct task_struct *, __entry_task);
488
489static void entry_task_switch(struct task_struct *next)
490{
491	__this_cpu_write(__entry_task, next);
492}
493
494/*
495 * Thread switching.
496 */
497__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
498				struct task_struct *next)
499{
500	struct task_struct *last;
501
502	fpsimd_thread_switch(next);
503	tls_thread_switch(next);
504	hw_breakpoint_thread_switch(next);
505	contextidr_thread_switch(next);
506	entry_task_switch(next);
507	uao_thread_switch(next);
508	ptrauth_thread_switch(next);
509	ssbs_thread_switch(next);
510
511	/*
512	 * Complete any pending TLB or cache maintenance on this CPU in case
513	 * the thread migrates to a different CPU.
514	 * This full barrier is also required by the membarrier system
515	 * call.
516	 */
517	dsb(ish);
518
519	/* the actual thread switch */
520	last = cpu_switch_to(prev, next);
521
522	return last;
523}
524
525unsigned long get_wchan(struct task_struct *p)
526{
527	struct stackframe frame;
528	unsigned long stack_page, ret = 0;
529	int count = 0;
530	if (!p || p == current || p->state == TASK_RUNNING)
531		return 0;
532
533	stack_page = (unsigned long)try_get_task_stack(p);
534	if (!stack_page)
535		return 0;
536
537	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
538
539	do {
540		if (unwind_frame(p, &frame))
541			goto out;
542		if (!in_sched_functions(frame.pc)) {
543			ret = frame.pc;
544			goto out;
545		}
546	} while (count ++ < 16);
547
548out:
549	put_task_stack(p);
550	return ret;
551}
552
553unsigned long arch_align_stack(unsigned long sp)
554{
555	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
556		sp -= get_random_int() & ~PAGE_MASK;
557	return sp & ~0xf;
558}
559
560/*
561 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
562 */
563void arch_setup_new_exec(void)
564{
565	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
566
567	ptrauth_thread_init_user(current);
568}
569
570#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
571/*
572 * Control the relaxed ABI allowing tagged user addresses into the kernel.
573 */
574static unsigned int tagged_addr_disabled;
575
576long set_tagged_addr_ctrl(unsigned long arg)
577{
578	if (is_compat_task())
579		return -EINVAL;
580	if (arg & ~PR_TAGGED_ADDR_ENABLE)
581		return -EINVAL;
582
583	/*
584	 * Do not allow the enabling of the tagged address ABI if globally
585	 * disabled via sysctl abi.tagged_addr_disabled.
586	 */
587	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
588		return -EINVAL;
589
590	update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
591
592	return 0;
593}
594
595long get_tagged_addr_ctrl(void)
596{
597	if (is_compat_task())
598		return -EINVAL;
599
600	if (test_thread_flag(TIF_TAGGED_ADDR))
601		return PR_TAGGED_ADDR_ENABLE;
602
603	return 0;
604}
605
606/*
607 * Global sysctl to disable the tagged user addresses support. This control
608 * only prevents the tagged address ABI enabling via prctl() and does not
609 * disable it for tasks that already opted in to the relaxed ABI.
610 */
611static int zero;
612static int one = 1;
613
614static struct ctl_table tagged_addr_sysctl_table[] = {
615	{
616		.procname	= "tagged_addr_disabled",
617		.mode		= 0644,
618		.data		= &tagged_addr_disabled,
619		.maxlen		= sizeof(int),
620		.proc_handler	= proc_dointvec_minmax,
621		.extra1		= &zero,
622		.extra2		= &one,
623	},
624	{ }
625};
626
627static int __init tagged_addr_init(void)
628{
629	if (!register_sysctl("abi", tagged_addr_sysctl_table))
630		return -EINVAL;
631	return 0;
632}
633
634core_initcall(tagged_addr_init);
635#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
636
637asmlinkage void __sched arm64_preempt_schedule_irq(void)
638{
639	lockdep_assert_irqs_disabled();
640
641	/*
642	 * Preempting a task from an IRQ means we leave copies of PSTATE
643	 * on the stack. cpufeature's enable calls may modify PSTATE, but
644	 * resuming one of these preempted tasks would undo those changes.
645	 *
646	 * Only allow a task to be preempted once cpufeatures have been
647	 * enabled.
648	 */
649	if (static_branch_likely(&arm64_const_caps_ready))
650		preempt_schedule_irq();
651}