Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2#undef DEBUG
  3
  4/*
  5 * ARM performance counter support.
  6 *
  7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  9 *
 10 * This code is based on the sparc64 perf event code, which is in turn based
 11 * on the x86 code.
 12 */
 13#define pr_fmt(fmt) "hw perfevents: " fmt
 14
 15#include <linux/bitmap.h>
 16#include <linux/cpumask.h>
 17#include <linux/cpu_pm.h>
 18#include <linux/export.h>
 19#include <linux/kernel.h>
 20#include <linux/perf/arm_pmu.h>
 21#include <linux/slab.h>
 22#include <linux/sched/clock.h>
 23#include <linux/spinlock.h>
 24#include <linux/irq.h>
 25#include <linux/irqdesc.h>
 26
 27#include <asm/irq_regs.h>
 28
 29static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
 30static DEFINE_PER_CPU(int, cpu_irq);
 31
 32static inline u64 arm_pmu_event_max_period(struct perf_event *event)
 33{
 34	if (event->hw.flags & ARMPMU_EVT_64BIT)
 35		return GENMASK_ULL(63, 0);
 36	else
 37		return GENMASK_ULL(31, 0);
 38}
 39
 40static int
 41armpmu_map_cache_event(const unsigned (*cache_map)
 42				      [PERF_COUNT_HW_CACHE_MAX]
 43				      [PERF_COUNT_HW_CACHE_OP_MAX]
 44				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
 45		       u64 config)
 46{
 47	unsigned int cache_type, cache_op, cache_result, ret;
 48
 49	cache_type = (config >>  0) & 0xff;
 50	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 51		return -EINVAL;
 52
 53	cache_op = (config >>  8) & 0xff;
 54	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 55		return -EINVAL;
 56
 57	cache_result = (config >> 16) & 0xff;
 58	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 59		return -EINVAL;
 60
 61	if (!cache_map)
 62		return -ENOENT;
 63
 64	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
 65
 66	if (ret == CACHE_OP_UNSUPPORTED)
 67		return -ENOENT;
 68
 69	return ret;
 70}
 71
 72static int
 73armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
 74{
 75	int mapping;
 76
 77	if (config >= PERF_COUNT_HW_MAX)
 78		return -EINVAL;
 79
 80	if (!event_map)
 81		return -ENOENT;
 82
 83	mapping = (*event_map)[config];
 84	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
 85}
 86
 87static int
 88armpmu_map_raw_event(u32 raw_event_mask, u64 config)
 89{
 90	return (int)(config & raw_event_mask);
 91}
 92
 93int
 94armpmu_map_event(struct perf_event *event,
 95		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
 96		 const unsigned (*cache_map)
 97				[PERF_COUNT_HW_CACHE_MAX]
 98				[PERF_COUNT_HW_CACHE_OP_MAX]
 99				[PERF_COUNT_HW_CACHE_RESULT_MAX],
100		 u32 raw_event_mask)
101{
102	u64 config = event->attr.config;
103	int type = event->attr.type;
104
105	if (type == event->pmu->type)
106		return armpmu_map_raw_event(raw_event_mask, config);
107
108	switch (type) {
109	case PERF_TYPE_HARDWARE:
110		return armpmu_map_hw_event(event_map, config);
111	case PERF_TYPE_HW_CACHE:
112		return armpmu_map_cache_event(cache_map, config);
113	case PERF_TYPE_RAW:
114		return armpmu_map_raw_event(raw_event_mask, config);
115	}
116
117	return -ENOENT;
118}
119
120int armpmu_event_set_period(struct perf_event *event)
121{
122	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
123	struct hw_perf_event *hwc = &event->hw;
124	s64 left = local64_read(&hwc->period_left);
125	s64 period = hwc->sample_period;
126	u64 max_period;
127	int ret = 0;
128
129	max_period = arm_pmu_event_max_period(event);
130	if (unlikely(left <= -period)) {
131		left = period;
132		local64_set(&hwc->period_left, left);
133		hwc->last_period = period;
134		ret = 1;
135	}
136
137	if (unlikely(left <= 0)) {
138		left += period;
139		local64_set(&hwc->period_left, left);
140		hwc->last_period = period;
141		ret = 1;
142	}
143
144	/*
145	 * Limit the maximum period to prevent the counter value
146	 * from overtaking the one we are about to program. In
147	 * effect we are reducing max_period to account for
148	 * interrupt latency (and we are being very conservative).
149	 */
150	if (left > (max_period >> 1))
151		left = (max_period >> 1);
152
153	local64_set(&hwc->prev_count, (u64)-left);
154
155	armpmu->write_counter(event, (u64)(-left) & max_period);
156
157	perf_event_update_userpage(event);
158
159	return ret;
160}
161
162u64 armpmu_event_update(struct perf_event *event)
163{
164	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165	struct hw_perf_event *hwc = &event->hw;
166	u64 delta, prev_raw_count, new_raw_count;
167	u64 max_period = arm_pmu_event_max_period(event);
168
169again:
170	prev_raw_count = local64_read(&hwc->prev_count);
171	new_raw_count = armpmu->read_counter(event);
172
173	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
174			     new_raw_count) != prev_raw_count)
175		goto again;
176
177	delta = (new_raw_count - prev_raw_count) & max_period;
178
179	local64_add(delta, &event->count);
180	local64_sub(delta, &hwc->period_left);
181
182	return new_raw_count;
183}
184
185static void
186armpmu_read(struct perf_event *event)
187{
188	armpmu_event_update(event);
189}
190
191static void
192armpmu_stop(struct perf_event *event, int flags)
193{
194	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
195	struct hw_perf_event *hwc = &event->hw;
196
197	/*
198	 * ARM pmu always has to update the counter, so ignore
199	 * PERF_EF_UPDATE, see comments in armpmu_start().
200	 */
201	if (!(hwc->state & PERF_HES_STOPPED)) {
202		armpmu->disable(event);
203		armpmu_event_update(event);
204		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
205	}
206}
207
208static void armpmu_start(struct perf_event *event, int flags)
209{
210	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
211	struct hw_perf_event *hwc = &event->hw;
212
213	/*
214	 * ARM pmu always has to reprogram the period, so ignore
215	 * PERF_EF_RELOAD, see the comment below.
216	 */
217	if (flags & PERF_EF_RELOAD)
218		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
219
220	hwc->state = 0;
221	/*
222	 * Set the period again. Some counters can't be stopped, so when we
223	 * were stopped we simply disabled the IRQ source and the counter
224	 * may have been left counting. If we don't do this step then we may
225	 * get an interrupt too soon or *way* too late if the overflow has
226	 * happened since disabling.
227	 */
228	armpmu_event_set_period(event);
229	armpmu->enable(event);
230}
231
232static void
233armpmu_del(struct perf_event *event, int flags)
234{
235	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
237	struct hw_perf_event *hwc = &event->hw;
238	int idx = hwc->idx;
239
240	armpmu_stop(event, PERF_EF_UPDATE);
241	hw_events->events[idx] = NULL;
242	armpmu->clear_event_idx(hw_events, event);
243	perf_event_update_userpage(event);
244	/* Clear the allocated counter */
245	hwc->idx = -1;
246}
247
248static int
249armpmu_add(struct perf_event *event, int flags)
250{
251	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
252	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
253	struct hw_perf_event *hwc = &event->hw;
254	int idx;
255
256	/* An event following a process won't be stopped earlier */
257	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
258		return -ENOENT;
259
260	/* If we don't have a space for the counter then finish early. */
261	idx = armpmu->get_event_idx(hw_events, event);
262	if (idx < 0)
263		return idx;
264
265	/*
266	 * If there is an event in the counter we are going to use then make
267	 * sure it is disabled.
268	 */
269	event->hw.idx = idx;
270	armpmu->disable(event);
271	hw_events->events[idx] = event;
272
273	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
274	if (flags & PERF_EF_START)
275		armpmu_start(event, PERF_EF_RELOAD);
276
277	/* Propagate our changes to the userspace mapping. */
278	perf_event_update_userpage(event);
279
280	return 0;
281}
282
283static int
284validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
285			       struct perf_event *event)
286{
287	struct arm_pmu *armpmu;
288
289	if (is_software_event(event))
290		return 1;
291
292	/*
293	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
294	 * core perf code won't check that the pmu->ctx == leader->ctx
295	 * until after pmu->event_init(event).
296	 */
297	if (event->pmu != pmu)
298		return 0;
299
300	if (event->state < PERF_EVENT_STATE_OFF)
301		return 1;
302
303	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
304		return 1;
305
306	armpmu = to_arm_pmu(event->pmu);
307	return armpmu->get_event_idx(hw_events, event) >= 0;
308}
309
310static int
311validate_group(struct perf_event *event)
312{
313	struct perf_event *sibling, *leader = event->group_leader;
314	struct pmu_hw_events fake_pmu;
315
316	/*
317	 * Initialise the fake PMU. We only need to populate the
318	 * used_mask for the purposes of validation.
319	 */
320	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
321
322	if (!validate_event(event->pmu, &fake_pmu, leader))
323		return -EINVAL;
324
325	for_each_sibling_event(sibling, leader) {
326		if (!validate_event(event->pmu, &fake_pmu, sibling))
327			return -EINVAL;
328	}
329
330	if (!validate_event(event->pmu, &fake_pmu, event))
331		return -EINVAL;
332
333	return 0;
334}
335
336static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
337{
338	struct arm_pmu *armpmu;
339	int ret;
340	u64 start_clock, finish_clock;
341
342	/*
343	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
344	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
345	 * do any necessary shifting, we just need to perform the first
346	 * dereference.
347	 */
348	armpmu = *(void **)dev;
349	if (WARN_ON_ONCE(!armpmu))
350		return IRQ_NONE;
351
352	start_clock = sched_clock();
353	ret = armpmu->handle_irq(armpmu);
354	finish_clock = sched_clock();
355
356	perf_sample_event_took(finish_clock - start_clock);
357	return ret;
358}
359
360static int
361__hw_perf_event_init(struct perf_event *event)
362{
363	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
364	struct hw_perf_event *hwc = &event->hw;
365	int mapping;
366
367	hwc->flags = 0;
368	mapping = armpmu->map_event(event);
369
370	if (mapping < 0) {
371		pr_debug("event %x:%llx not supported\n", event->attr.type,
372			 event->attr.config);
373		return mapping;
374	}
375
376	/*
377	 * We don't assign an index until we actually place the event onto
378	 * hardware. Use -1 to signify that we haven't decided where to put it
379	 * yet. For SMP systems, each core has it's own PMU so we can't do any
380	 * clever allocation or constraints checking at this point.
381	 */
382	hwc->idx		= -1;
383	hwc->config_base	= 0;
384	hwc->config		= 0;
385	hwc->event_base		= 0;
386
387	/*
388	 * Check whether we need to exclude the counter from certain modes.
389	 */
390	if (armpmu->set_event_filter &&
391	    armpmu->set_event_filter(hwc, &event->attr)) {
392		pr_debug("ARM performance counters do not support "
393			 "mode exclusion\n");
394		return -EOPNOTSUPP;
395	}
396
397	/*
398	 * Store the event encoding into the config_base field.
399	 */
400	hwc->config_base	    |= (unsigned long)mapping;
401
402	if (!is_sampling_event(event)) {
403		/*
404		 * For non-sampling runs, limit the sample_period to half
405		 * of the counter width. That way, the new counter value
406		 * is far less likely to overtake the previous one unless
407		 * you have some serious IRQ latency issues.
408		 */
409		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
410		hwc->last_period    = hwc->sample_period;
411		local64_set(&hwc->period_left, hwc->sample_period);
412	}
413
414	if (event->group_leader != event) {
415		if (validate_group(event) != 0)
416			return -EINVAL;
417	}
418
419	return 0;
420}
421
422static int armpmu_event_init(struct perf_event *event)
423{
424	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425
426	/*
427	 * Reject CPU-affine events for CPUs that are of a different class to
428	 * that which this PMU handles. Process-following events (where
429	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
430	 * reject them later (in armpmu_add) if they're scheduled on a
431	 * different class of CPU.
432	 */
433	if (event->cpu != -1 &&
434		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
435		return -ENOENT;
436
437	/* does not support taken branch sampling */
438	if (has_branch_stack(event))
439		return -EOPNOTSUPP;
440
441	if (armpmu->map_event(event) == -ENOENT)
442		return -ENOENT;
443
444	return __hw_perf_event_init(event);
445}
446
447static void armpmu_enable(struct pmu *pmu)
448{
449	struct arm_pmu *armpmu = to_arm_pmu(pmu);
450	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
451	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
452
453	/* For task-bound events we may be called on other CPUs */
454	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
455		return;
456
457	if (enabled)
458		armpmu->start(armpmu);
459}
460
461static void armpmu_disable(struct pmu *pmu)
462{
463	struct arm_pmu *armpmu = to_arm_pmu(pmu);
464
465	/* For task-bound events we may be called on other CPUs */
466	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
467		return;
468
469	armpmu->stop(armpmu);
470}
471
472/*
473 * In heterogeneous systems, events are specific to a particular
474 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
475 * the same microarchitecture.
476 */
477static int armpmu_filter_match(struct perf_event *event)
478{
479	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
480	unsigned int cpu = smp_processor_id();
481	int ret;
482
483	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
484	if (ret && armpmu->filter_match)
485		return armpmu->filter_match(event);
486
487	return ret;
488}
489
490static ssize_t armpmu_cpumask_show(struct device *dev,
491				   struct device_attribute *attr, char *buf)
492{
493	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
494	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
495}
496
497static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
498
499static struct attribute *armpmu_common_attrs[] = {
500	&dev_attr_cpus.attr,
501	NULL,
502};
503
504static struct attribute_group armpmu_common_attr_group = {
505	.attrs = armpmu_common_attrs,
506};
507
508/* Set at runtime when we know what CPU type we are. */
509static struct arm_pmu *__oprofile_cpu_pmu;
510
511/*
512 * Despite the names, these two functions are CPU-specific and are used
513 * by the OProfile/perf code.
514 */
515const char *perf_pmu_name(void)
516{
517	if (!__oprofile_cpu_pmu)
518		return NULL;
519
520	return __oprofile_cpu_pmu->name;
521}
522EXPORT_SYMBOL_GPL(perf_pmu_name);
523
524int perf_num_counters(void)
525{
526	int max_events = 0;
527
528	if (__oprofile_cpu_pmu != NULL)
529		max_events = __oprofile_cpu_pmu->num_events;
530
531	return max_events;
532}
533EXPORT_SYMBOL_GPL(perf_num_counters);
534
535static int armpmu_count_irq_users(const int irq)
536{
537	int cpu, count = 0;
538
539	for_each_possible_cpu(cpu) {
540		if (per_cpu(cpu_irq, cpu) == irq)
541			count++;
542	}
543
544	return count;
545}
546
547void armpmu_free_irq(int irq, int cpu)
548{
549	if (per_cpu(cpu_irq, cpu) == 0)
550		return;
551	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
552		return;
553
554	if (!irq_is_percpu_devid(irq))
555		free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
556	else if (armpmu_count_irq_users(irq) == 1)
557		free_percpu_irq(irq, &cpu_armpmu);
558
559	per_cpu(cpu_irq, cpu) = 0;
560}
561
562int armpmu_request_irq(int irq, int cpu)
563{
564	int err = 0;
565	const irq_handler_t handler = armpmu_dispatch_irq;
566	if (!irq)
567		return 0;
568
569	if (!irq_is_percpu_devid(irq)) {
570		unsigned long irq_flags;
571
572		err = irq_force_affinity(irq, cpumask_of(cpu));
573
574		if (err && num_possible_cpus() > 1) {
575			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
576				irq, cpu);
577			goto err_out;
578		}
579
580		irq_flags = IRQF_PERCPU |
581			    IRQF_NOBALANCING |
582			    IRQF_NO_THREAD;
583
584		irq_set_status_flags(irq, IRQ_NOAUTOEN);
585		err = request_irq(irq, handler, irq_flags, "arm-pmu",
586				  per_cpu_ptr(&cpu_armpmu, cpu));
587	} else if (armpmu_count_irq_users(irq) == 0) {
588		err = request_percpu_irq(irq, handler, "arm-pmu",
589					 &cpu_armpmu);
590	}
591
592	if (err)
593		goto err_out;
594
595	per_cpu(cpu_irq, cpu) = irq;
596	return 0;
597
598err_out:
599	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
600	return err;
601}
602
603static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
604{
605	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
606	return per_cpu(hw_events->irq, cpu);
607}
608
609/*
610 * PMU hardware loses all context when a CPU goes offline.
611 * When a CPU is hotplugged back in, since some hardware registers are
612 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
613 * junk values out of them.
614 */
615static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
616{
617	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
618	int irq;
619
620	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
621		return 0;
622	if (pmu->reset)
623		pmu->reset(pmu);
624
625	per_cpu(cpu_armpmu, cpu) = pmu;
626
627	irq = armpmu_get_cpu_irq(pmu, cpu);
628	if (irq) {
629		if (irq_is_percpu_devid(irq))
630			enable_percpu_irq(irq, IRQ_TYPE_NONE);
631		else
632			enable_irq(irq);
633	}
634
635	return 0;
636}
637
638static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
639{
640	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
641	int irq;
642
643	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
644		return 0;
645
646	irq = armpmu_get_cpu_irq(pmu, cpu);
647	if (irq) {
648		if (irq_is_percpu_devid(irq))
649			disable_percpu_irq(irq);
650		else
651			disable_irq_nosync(irq);
652	}
653
654	per_cpu(cpu_armpmu, cpu) = NULL;
655
656	return 0;
657}
658
659#ifdef CONFIG_CPU_PM
660static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
661{
662	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
663	struct perf_event *event;
664	int idx;
665
666	for (idx = 0; idx < armpmu->num_events; idx++) {
667		event = hw_events->events[idx];
668		if (!event)
669			continue;
670
671		switch (cmd) {
672		case CPU_PM_ENTER:
673			/*
674			 * Stop and update the counter
675			 */
676			armpmu_stop(event, PERF_EF_UPDATE);
677			break;
678		case CPU_PM_EXIT:
679		case CPU_PM_ENTER_FAILED:
680			 /*
681			  * Restore and enable the counter.
682			  * armpmu_start() indirectly calls
683			  *
684			  * perf_event_update_userpage()
685			  *
686			  * that requires RCU read locking to be functional,
687			  * wrap the call within RCU_NONIDLE to make the
688			  * RCU subsystem aware this cpu is not idle from
689			  * an RCU perspective for the armpmu_start() call
690			  * duration.
691			  */
692			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
693			break;
694		default:
695			break;
696		}
697	}
698}
699
700static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
701			     void *v)
702{
703	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
704	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
705	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
706
707	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
708		return NOTIFY_DONE;
709
710	/*
711	 * Always reset the PMU registers on power-up even if
712	 * there are no events running.
713	 */
714	if (cmd == CPU_PM_EXIT && armpmu->reset)
715		armpmu->reset(armpmu);
716
717	if (!enabled)
718		return NOTIFY_OK;
719
720	switch (cmd) {
721	case CPU_PM_ENTER:
722		armpmu->stop(armpmu);
723		cpu_pm_pmu_setup(armpmu, cmd);
724		break;
725	case CPU_PM_EXIT:
726	case CPU_PM_ENTER_FAILED:
727		cpu_pm_pmu_setup(armpmu, cmd);
728		armpmu->start(armpmu);
729		break;
730	default:
731		return NOTIFY_DONE;
732	}
733
734	return NOTIFY_OK;
735}
736
737static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
738{
739	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
740	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
741}
742
743static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
744{
745	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
746}
747#else
748static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
749static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
750#endif
751
752static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
753{
754	int err;
755
756	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
757				       &cpu_pmu->node);
758	if (err)
759		goto out;
760
761	err = cpu_pm_pmu_register(cpu_pmu);
762	if (err)
763		goto out_unregister;
764
765	return 0;
766
767out_unregister:
768	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
769					    &cpu_pmu->node);
770out:
771	return err;
772}
773
774static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
775{
776	cpu_pm_pmu_unregister(cpu_pmu);
777	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
778					    &cpu_pmu->node);
779}
780
781static struct arm_pmu *__armpmu_alloc(gfp_t flags)
782{
783	struct arm_pmu *pmu;
784	int cpu;
785
786	pmu = kzalloc(sizeof(*pmu), flags);
787	if (!pmu) {
788		pr_info("failed to allocate PMU device!\n");
789		goto out;
790	}
791
792	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
793	if (!pmu->hw_events) {
794		pr_info("failed to allocate per-cpu PMU data.\n");
795		goto out_free_pmu;
796	}
797
798	pmu->pmu = (struct pmu) {
799		.pmu_enable	= armpmu_enable,
800		.pmu_disable	= armpmu_disable,
801		.event_init	= armpmu_event_init,
802		.add		= armpmu_add,
803		.del		= armpmu_del,
804		.start		= armpmu_start,
805		.stop		= armpmu_stop,
806		.read		= armpmu_read,
807		.filter_match	= armpmu_filter_match,
808		.attr_groups	= pmu->attr_groups,
809		/*
810		 * This is a CPU PMU potentially in a heterogeneous
811		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
812		 * and we have taken ctx sharing into account (e.g. with our
813		 * pmu::filter_match callback and pmu::event_init group
814		 * validation).
815		 */
816		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
817	};
818
819	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
820		&armpmu_common_attr_group;
821
822	for_each_possible_cpu(cpu) {
823		struct pmu_hw_events *events;
824
825		events = per_cpu_ptr(pmu->hw_events, cpu);
826		raw_spin_lock_init(&events->pmu_lock);
827		events->percpu_pmu = pmu;
828	}
829
830	return pmu;
831
832out_free_pmu:
833	kfree(pmu);
834out:
835	return NULL;
836}
837
838struct arm_pmu *armpmu_alloc(void)
839{
840	return __armpmu_alloc(GFP_KERNEL);
841}
842
843struct arm_pmu *armpmu_alloc_atomic(void)
844{
845	return __armpmu_alloc(GFP_ATOMIC);
846}
847
848
849void armpmu_free(struct arm_pmu *pmu)
850{
851	free_percpu(pmu->hw_events);
852	kfree(pmu);
853}
854
855int armpmu_register(struct arm_pmu *pmu)
856{
857	int ret;
858
859	ret = cpu_pmu_init(pmu);
860	if (ret)
861		return ret;
862
863	if (!pmu->set_event_filter)
864		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
865
866	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
867	if (ret)
868		goto out_destroy;
869
870	if (!__oprofile_cpu_pmu)
871		__oprofile_cpu_pmu = pmu;
872
873	pr_info("enabled with %s PMU driver, %d counters available\n",
874		pmu->name, pmu->num_events);
875
876	return 0;
877
878out_destroy:
879	cpu_pmu_destroy(pmu);
880	return ret;
881}
882
883static int arm_pmu_hp_init(void)
884{
885	int ret;
886
887	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
888				      "perf/arm/pmu:starting",
889				      arm_perf_starting_cpu,
890				      arm_perf_teardown_cpu);
891	if (ret)
892		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
893		       ret);
894	return ret;
895}
896subsys_initcall(arm_pmu_hp_init);