Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1#undef DEBUG
   2
   3/*
   4 * ARM performance counter support.
   5 *
   6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
   7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
   8 *
   9 * This code is based on the sparc64 perf event code, which is in turn based
  10 * on the x86 code.
  11 */
  12#define pr_fmt(fmt) "hw perfevents: " fmt
  13
  14#include <linux/bitmap.h>
  15#include <linux/cpumask.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/of_device.h>
  20#include <linux/perf/arm_pmu.h>
  21#include <linux/platform_device.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/irq.h>
  25#include <linux/irqdesc.h>
  26
  27#include <asm/cputype.h>
  28#include <asm/irq_regs.h>
  29
  30static int
  31armpmu_map_cache_event(const unsigned (*cache_map)
  32				      [PERF_COUNT_HW_CACHE_MAX]
  33				      [PERF_COUNT_HW_CACHE_OP_MAX]
  34				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
  35		       u64 config)
  36{
  37	unsigned int cache_type, cache_op, cache_result, ret;
  38
  39	cache_type = (config >>  0) & 0xff;
  40	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  41		return -EINVAL;
  42
  43	cache_op = (config >>  8) & 0xff;
  44	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  45		return -EINVAL;
  46
  47	cache_result = (config >> 16) & 0xff;
  48	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  49		return -EINVAL;
  50
  51	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  52
  53	if (ret == CACHE_OP_UNSUPPORTED)
  54		return -ENOENT;
  55
  56	return ret;
  57}
  58
  59static int
  60armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  61{
  62	int mapping;
  63
  64	if (config >= PERF_COUNT_HW_MAX)
  65		return -EINVAL;
  66
  67	mapping = (*event_map)[config];
  68	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  69}
  70
  71static int
  72armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  73{
  74	return (int)(config & raw_event_mask);
  75}
  76
  77int
  78armpmu_map_event(struct perf_event *event,
  79		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  80		 const unsigned (*cache_map)
  81				[PERF_COUNT_HW_CACHE_MAX]
  82				[PERF_COUNT_HW_CACHE_OP_MAX]
  83				[PERF_COUNT_HW_CACHE_RESULT_MAX],
  84		 u32 raw_event_mask)
  85{
  86	u64 config = event->attr.config;
  87	int type = event->attr.type;
  88
  89	if (type == event->pmu->type)
  90		return armpmu_map_raw_event(raw_event_mask, config);
  91
  92	switch (type) {
  93	case PERF_TYPE_HARDWARE:
  94		return armpmu_map_hw_event(event_map, config);
  95	case PERF_TYPE_HW_CACHE:
  96		return armpmu_map_cache_event(cache_map, config);
  97	case PERF_TYPE_RAW:
  98		return armpmu_map_raw_event(raw_event_mask, config);
  99	}
 100
 101	return -ENOENT;
 102}
 103
 104int armpmu_event_set_period(struct perf_event *event)
 105{
 106	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 107	struct hw_perf_event *hwc = &event->hw;
 108	s64 left = local64_read(&hwc->period_left);
 109	s64 period = hwc->sample_period;
 110	int ret = 0;
 111
 112	if (unlikely(left <= -period)) {
 113		left = period;
 114		local64_set(&hwc->period_left, left);
 115		hwc->last_period = period;
 116		ret = 1;
 117	}
 118
 119	if (unlikely(left <= 0)) {
 120		left += period;
 121		local64_set(&hwc->period_left, left);
 122		hwc->last_period = period;
 123		ret = 1;
 124	}
 125
 126	/*
 127	 * Limit the maximum period to prevent the counter value
 128	 * from overtaking the one we are about to program. In
 129	 * effect we are reducing max_period to account for
 130	 * interrupt latency (and we are being very conservative).
 131	 */
 132	if (left > (armpmu->max_period >> 1))
 133		left = armpmu->max_period >> 1;
 134
 135	local64_set(&hwc->prev_count, (u64)-left);
 136
 137	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
 138
 139	perf_event_update_userpage(event);
 140
 141	return ret;
 142}
 143
 144u64 armpmu_event_update(struct perf_event *event)
 145{
 146	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 147	struct hw_perf_event *hwc = &event->hw;
 148	u64 delta, prev_raw_count, new_raw_count;
 149
 150again:
 151	prev_raw_count = local64_read(&hwc->prev_count);
 152	new_raw_count = armpmu->read_counter(event);
 153
 154	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 155			     new_raw_count) != prev_raw_count)
 156		goto again;
 157
 158	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
 159
 160	local64_add(delta, &event->count);
 161	local64_sub(delta, &hwc->period_left);
 162
 163	return new_raw_count;
 164}
 165
 166static void
 167armpmu_read(struct perf_event *event)
 168{
 169	armpmu_event_update(event);
 170}
 171
 172static void
 173armpmu_stop(struct perf_event *event, int flags)
 174{
 175	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 176	struct hw_perf_event *hwc = &event->hw;
 177
 178	/*
 179	 * ARM pmu always has to update the counter, so ignore
 180	 * PERF_EF_UPDATE, see comments in armpmu_start().
 181	 */
 182	if (!(hwc->state & PERF_HES_STOPPED)) {
 183		armpmu->disable(event);
 184		armpmu_event_update(event);
 185		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 186	}
 187}
 188
 189static void armpmu_start(struct perf_event *event, int flags)
 190{
 191	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 192	struct hw_perf_event *hwc = &event->hw;
 193
 194	/*
 195	 * ARM pmu always has to reprogram the period, so ignore
 196	 * PERF_EF_RELOAD, see the comment below.
 197	 */
 198	if (flags & PERF_EF_RELOAD)
 199		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 200
 201	hwc->state = 0;
 202	/*
 203	 * Set the period again. Some counters can't be stopped, so when we
 204	 * were stopped we simply disabled the IRQ source and the counter
 205	 * may have been left counting. If we don't do this step then we may
 206	 * get an interrupt too soon or *way* too late if the overflow has
 207	 * happened since disabling.
 208	 */
 209	armpmu_event_set_period(event);
 210	armpmu->enable(event);
 211}
 212
 213static void
 214armpmu_del(struct perf_event *event, int flags)
 215{
 216	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 217	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 218	struct hw_perf_event *hwc = &event->hw;
 219	int idx = hwc->idx;
 220
 221	armpmu_stop(event, PERF_EF_UPDATE);
 222	hw_events->events[idx] = NULL;
 223	clear_bit(idx, hw_events->used_mask);
 224	if (armpmu->clear_event_idx)
 225		armpmu->clear_event_idx(hw_events, event);
 226
 227	perf_event_update_userpage(event);
 228}
 229
 230static int
 231armpmu_add(struct perf_event *event, int flags)
 232{
 233	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 234	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 235	struct hw_perf_event *hwc = &event->hw;
 236	int idx;
 237	int err = 0;
 238
 239	/* An event following a process won't be stopped earlier */
 240	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 241		return -ENOENT;
 242
 243	perf_pmu_disable(event->pmu);
 244
 245	/* If we don't have a space for the counter then finish early. */
 246	idx = armpmu->get_event_idx(hw_events, event);
 247	if (idx < 0) {
 248		err = idx;
 249		goto out;
 250	}
 251
 252	/*
 253	 * If there is an event in the counter we are going to use then make
 254	 * sure it is disabled.
 255	 */
 256	event->hw.idx = idx;
 257	armpmu->disable(event);
 258	hw_events->events[idx] = event;
 259
 260	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 261	if (flags & PERF_EF_START)
 262		armpmu_start(event, PERF_EF_RELOAD);
 263
 264	/* Propagate our changes to the userspace mapping. */
 265	perf_event_update_userpage(event);
 266
 267out:
 268	perf_pmu_enable(event->pmu);
 269	return err;
 270}
 271
 272static int
 273validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
 274			       struct perf_event *event)
 275{
 276	struct arm_pmu *armpmu;
 277
 278	if (is_software_event(event))
 279		return 1;
 280
 281	/*
 282	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
 283	 * core perf code won't check that the pmu->ctx == leader->ctx
 284	 * until after pmu->event_init(event).
 285	 */
 286	if (event->pmu != pmu)
 287		return 0;
 288
 289	if (event->state < PERF_EVENT_STATE_OFF)
 290		return 1;
 291
 292	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
 293		return 1;
 294
 295	armpmu = to_arm_pmu(event->pmu);
 296	return armpmu->get_event_idx(hw_events, event) >= 0;
 297}
 298
 299static int
 300validate_group(struct perf_event *event)
 301{
 302	struct perf_event *sibling, *leader = event->group_leader;
 303	struct pmu_hw_events fake_pmu;
 304
 305	/*
 306	 * Initialise the fake PMU. We only need to populate the
 307	 * used_mask for the purposes of validation.
 308	 */
 309	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
 310
 311	if (!validate_event(event->pmu, &fake_pmu, leader))
 312		return -EINVAL;
 313
 314	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 315		if (!validate_event(event->pmu, &fake_pmu, sibling))
 316			return -EINVAL;
 317	}
 318
 319	if (!validate_event(event->pmu, &fake_pmu, event))
 320		return -EINVAL;
 321
 322	return 0;
 323}
 324
 325static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 326{
 327	struct arm_pmu *armpmu;
 328	struct platform_device *plat_device;
 329	struct arm_pmu_platdata *plat;
 330	int ret;
 331	u64 start_clock, finish_clock;
 332
 333	/*
 334	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
 335	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
 336	 * do any necessary shifting, we just need to perform the first
 337	 * dereference.
 338	 */
 339	armpmu = *(void **)dev;
 340	plat_device = armpmu->plat_device;
 341	plat = dev_get_platdata(&plat_device->dev);
 342
 343	start_clock = sched_clock();
 344	if (plat && plat->handle_irq)
 345		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
 346	else
 347		ret = armpmu->handle_irq(irq, armpmu);
 348	finish_clock = sched_clock();
 349
 350	perf_sample_event_took(finish_clock - start_clock);
 351	return ret;
 352}
 353
 354static void
 355armpmu_release_hardware(struct arm_pmu *armpmu)
 356{
 357	armpmu->free_irq(armpmu);
 358}
 359
 360static int
 361armpmu_reserve_hardware(struct arm_pmu *armpmu)
 362{
 363	int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
 364	if (err) {
 365		armpmu_release_hardware(armpmu);
 366		return err;
 367	}
 368
 369	return 0;
 370}
 371
 372static void
 373hw_perf_event_destroy(struct perf_event *event)
 374{
 375	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 376	atomic_t *active_events	 = &armpmu->active_events;
 377	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
 378
 379	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
 380		armpmu_release_hardware(armpmu);
 381		mutex_unlock(pmu_reserve_mutex);
 382	}
 383}
 384
 385static int
 386event_requires_mode_exclusion(struct perf_event_attr *attr)
 387{
 388	return attr->exclude_idle || attr->exclude_user ||
 389	       attr->exclude_kernel || attr->exclude_hv;
 390}
 391
 392static int
 393__hw_perf_event_init(struct perf_event *event)
 394{
 395	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 396	struct hw_perf_event *hwc = &event->hw;
 397	int mapping;
 398
 399	mapping = armpmu->map_event(event);
 400
 401	if (mapping < 0) {
 402		pr_debug("event %x:%llx not supported\n", event->attr.type,
 403			 event->attr.config);
 404		return mapping;
 405	}
 406
 407	/*
 408	 * We don't assign an index until we actually place the event onto
 409	 * hardware. Use -1 to signify that we haven't decided where to put it
 410	 * yet. For SMP systems, each core has it's own PMU so we can't do any
 411	 * clever allocation or constraints checking at this point.
 412	 */
 413	hwc->idx		= -1;
 414	hwc->config_base	= 0;
 415	hwc->config		= 0;
 416	hwc->event_base		= 0;
 417
 418	/*
 419	 * Check whether we need to exclude the counter from certain modes.
 420	 */
 421	if ((!armpmu->set_event_filter ||
 422	     armpmu->set_event_filter(hwc, &event->attr)) &&
 423	     event_requires_mode_exclusion(&event->attr)) {
 424		pr_debug("ARM performance counters do not support "
 425			 "mode exclusion\n");
 426		return -EOPNOTSUPP;
 427	}
 428
 429	/*
 430	 * Store the event encoding into the config_base field.
 431	 */
 432	hwc->config_base	    |= (unsigned long)mapping;
 433
 434	if (!is_sampling_event(event)) {
 435		/*
 436		 * For non-sampling runs, limit the sample_period to half
 437		 * of the counter width. That way, the new counter value
 438		 * is far less likely to overtake the previous one unless
 439		 * you have some serious IRQ latency issues.
 440		 */
 441		hwc->sample_period  = armpmu->max_period >> 1;
 442		hwc->last_period    = hwc->sample_period;
 443		local64_set(&hwc->period_left, hwc->sample_period);
 444	}
 445
 446	if (event->group_leader != event) {
 447		if (validate_group(event) != 0)
 448			return -EINVAL;
 449	}
 450
 451	return 0;
 452}
 453
 454static int armpmu_event_init(struct perf_event *event)
 455{
 456	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 457	int err = 0;
 458	atomic_t *active_events = &armpmu->active_events;
 459
 460	/*
 461	 * Reject CPU-affine events for CPUs that are of a different class to
 462	 * that which this PMU handles. Process-following events (where
 463	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
 464	 * reject them later (in armpmu_add) if they're scheduled on a
 465	 * different class of CPU.
 466	 */
 467	if (event->cpu != -1 &&
 468		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
 469		return -ENOENT;
 470
 471	/* does not support taken branch sampling */
 472	if (has_branch_stack(event))
 473		return -EOPNOTSUPP;
 474
 475	if (armpmu->map_event(event) == -ENOENT)
 476		return -ENOENT;
 477
 478	event->destroy = hw_perf_event_destroy;
 479
 480	if (!atomic_inc_not_zero(active_events)) {
 481		mutex_lock(&armpmu->reserve_mutex);
 482		if (atomic_read(active_events) == 0)
 483			err = armpmu_reserve_hardware(armpmu);
 484
 485		if (!err)
 486			atomic_inc(active_events);
 487		mutex_unlock(&armpmu->reserve_mutex);
 488	}
 489
 490	if (err)
 491		return err;
 492
 493	err = __hw_perf_event_init(event);
 494	if (err)
 495		hw_perf_event_destroy(event);
 496
 497	return err;
 498}
 499
 500static void armpmu_enable(struct pmu *pmu)
 501{
 502	struct arm_pmu *armpmu = to_arm_pmu(pmu);
 503	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 504	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 505
 506	/* For task-bound events we may be called on other CPUs */
 507	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 508		return;
 509
 510	if (enabled)
 511		armpmu->start(armpmu);
 512}
 513
 514static void armpmu_disable(struct pmu *pmu)
 515{
 516	struct arm_pmu *armpmu = to_arm_pmu(pmu);
 517
 518	/* For task-bound events we may be called on other CPUs */
 519	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 520		return;
 521
 522	armpmu->stop(armpmu);
 523}
 524
 525/*
 526 * In heterogeneous systems, events are specific to a particular
 527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 528 * the same microarchitecture.
 529 */
 530static int armpmu_filter_match(struct perf_event *event)
 531{
 532	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 533	unsigned int cpu = smp_processor_id();
 534	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
 535}
 536
 537static ssize_t armpmu_cpumask_show(struct device *dev,
 538				   struct device_attribute *attr, char *buf)
 539{
 540	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
 541	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
 542}
 543
 544static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
 545
 546static struct attribute *armpmu_common_attrs[] = {
 547	&dev_attr_cpus.attr,
 548	NULL,
 549};
 550
 551static struct attribute_group armpmu_common_attr_group = {
 552	.attrs = armpmu_common_attrs,
 553};
 554
 555static void armpmu_init(struct arm_pmu *armpmu)
 556{
 557	atomic_set(&armpmu->active_events, 0);
 558	mutex_init(&armpmu->reserve_mutex);
 559
 560	armpmu->pmu = (struct pmu) {
 561		.pmu_enable	= armpmu_enable,
 562		.pmu_disable	= armpmu_disable,
 563		.event_init	= armpmu_event_init,
 564		.add		= armpmu_add,
 565		.del		= armpmu_del,
 566		.start		= armpmu_start,
 567		.stop		= armpmu_stop,
 568		.read		= armpmu_read,
 569		.filter_match	= armpmu_filter_match,
 570		.attr_groups	= armpmu->attr_groups,
 571	};
 572	armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
 573		&armpmu_common_attr_group;
 574}
 575
 576/* Set at runtime when we know what CPU type we are. */
 577static struct arm_pmu *__oprofile_cpu_pmu;
 578
 579/*
 580 * Despite the names, these two functions are CPU-specific and are used
 581 * by the OProfile/perf code.
 582 */
 583const char *perf_pmu_name(void)
 584{
 585	if (!__oprofile_cpu_pmu)
 586		return NULL;
 587
 588	return __oprofile_cpu_pmu->name;
 589}
 590EXPORT_SYMBOL_GPL(perf_pmu_name);
 591
 592int perf_num_counters(void)
 593{
 594	int max_events = 0;
 595
 596	if (__oprofile_cpu_pmu != NULL)
 597		max_events = __oprofile_cpu_pmu->num_events;
 598
 599	return max_events;
 600}
 601EXPORT_SYMBOL_GPL(perf_num_counters);
 602
 603static void cpu_pmu_enable_percpu_irq(void *data)
 604{
 605	int irq = *(int *)data;
 606
 607	enable_percpu_irq(irq, IRQ_TYPE_NONE);
 608}
 609
 610static void cpu_pmu_disable_percpu_irq(void *data)
 611{
 612	int irq = *(int *)data;
 613
 614	disable_percpu_irq(irq);
 615}
 616
 617static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
 618{
 619	int i, irq, irqs;
 620	struct platform_device *pmu_device = cpu_pmu->plat_device;
 621	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
 622
 623	irqs = min(pmu_device->num_resources, num_possible_cpus());
 624
 625	irq = platform_get_irq(pmu_device, 0);
 626	if (irq > 0 && irq_is_percpu(irq)) {
 627		on_each_cpu_mask(&cpu_pmu->supported_cpus,
 628				 cpu_pmu_disable_percpu_irq, &irq, 1);
 629		free_percpu_irq(irq, &hw_events->percpu_pmu);
 630	} else {
 631		for (i = 0; i < irqs; ++i) {
 632			int cpu = i;
 633
 634			if (cpu_pmu->irq_affinity)
 635				cpu = cpu_pmu->irq_affinity[i];
 636
 637			if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
 638				continue;
 639			irq = platform_get_irq(pmu_device, i);
 640			if (irq > 0)
 641				free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
 642		}
 643	}
 644}
 645
 646static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
 647{
 648	int i, err, irq, irqs;
 649	struct platform_device *pmu_device = cpu_pmu->plat_device;
 650	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
 651
 652	if (!pmu_device)
 653		return -ENODEV;
 654
 655	irqs = min(pmu_device->num_resources, num_possible_cpus());
 656	if (irqs < 1) {
 657		pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
 658		return 0;
 659	}
 660
 661	irq = platform_get_irq(pmu_device, 0);
 662	if (irq > 0 && irq_is_percpu(irq)) {
 663		err = request_percpu_irq(irq, handler, "arm-pmu",
 664					 &hw_events->percpu_pmu);
 665		if (err) {
 666			pr_err("unable to request IRQ%d for ARM PMU counters\n",
 667				irq);
 668			return err;
 669		}
 670
 671		on_each_cpu_mask(&cpu_pmu->supported_cpus,
 672				 cpu_pmu_enable_percpu_irq, &irq, 1);
 673	} else {
 674		for (i = 0; i < irqs; ++i) {
 675			int cpu = i;
 676
 677			err = 0;
 678			irq = platform_get_irq(pmu_device, i);
 679			if (irq < 0)
 680				continue;
 681
 682			if (cpu_pmu->irq_affinity)
 683				cpu = cpu_pmu->irq_affinity[i];
 684
 685			/*
 686			 * If we have a single PMU interrupt that we can't shift,
 687			 * assume that we're running on a uniprocessor machine and
 688			 * continue. Otherwise, continue without this interrupt.
 689			 */
 690			if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
 691				pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
 692					irq, cpu);
 693				continue;
 694			}
 695
 696			err = request_irq(irq, handler,
 697					  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
 698					  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
 699			if (err) {
 700				pr_err("unable to request IRQ%d for ARM PMU counters\n",
 701					irq);
 702				return err;
 703			}
 704
 705			cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
 706		}
 707	}
 708
 709	return 0;
 710}
 711
 712/*
 713 * PMU hardware loses all context when a CPU goes offline.
 714 * When a CPU is hotplugged back in, since some hardware registers are
 715 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 716 * junk values out of them.
 717 */
 718static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
 719{
 720	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 721
 722	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 723		return 0;
 724	if (pmu->reset)
 725		pmu->reset(pmu);
 726	return 0;
 727}
 728
 729#ifdef CONFIG_CPU_PM
 730static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
 731{
 732	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 733	struct perf_event *event;
 734	int idx;
 735
 736	for (idx = 0; idx < armpmu->num_events; idx++) {
 737		/*
 738		 * If the counter is not used skip it, there is no
 739		 * need of stopping/restarting it.
 740		 */
 741		if (!test_bit(idx, hw_events->used_mask))
 742			continue;
 743
 744		event = hw_events->events[idx];
 745
 746		switch (cmd) {
 747		case CPU_PM_ENTER:
 748			/*
 749			 * Stop and update the counter
 750			 */
 751			armpmu_stop(event, PERF_EF_UPDATE);
 752			break;
 753		case CPU_PM_EXIT:
 754		case CPU_PM_ENTER_FAILED:
 755			 /*
 756			  * Restore and enable the counter.
 757			  * armpmu_start() indirectly calls
 758			  *
 759			  * perf_event_update_userpage()
 760			  *
 761			  * that requires RCU read locking to be functional,
 762			  * wrap the call within RCU_NONIDLE to make the
 763			  * RCU subsystem aware this cpu is not idle from
 764			  * an RCU perspective for the armpmu_start() call
 765			  * duration.
 766			  */
 767			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
 768			break;
 769		default:
 770			break;
 771		}
 772	}
 773}
 774
 775static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 776			     void *v)
 777{
 778	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
 779	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 780	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 781
 782	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 783		return NOTIFY_DONE;
 784
 785	/*
 786	 * Always reset the PMU registers on power-up even if
 787	 * there are no events running.
 788	 */
 789	if (cmd == CPU_PM_EXIT && armpmu->reset)
 790		armpmu->reset(armpmu);
 791
 792	if (!enabled)
 793		return NOTIFY_OK;
 794
 795	switch (cmd) {
 796	case CPU_PM_ENTER:
 797		armpmu->stop(armpmu);
 798		cpu_pm_pmu_setup(armpmu, cmd);
 799		break;
 800	case CPU_PM_EXIT:
 801		cpu_pm_pmu_setup(armpmu, cmd);
 802	case CPU_PM_ENTER_FAILED:
 803		armpmu->start(armpmu);
 804		break;
 805	default:
 806		return NOTIFY_DONE;
 807	}
 808
 809	return NOTIFY_OK;
 810}
 811
 812static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
 813{
 814	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
 815	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
 816}
 817
 818static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
 819{
 820	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
 821}
 822#else
 823static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
 824static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
 825#endif
 826
 827static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
 828{
 829	int err;
 830	int cpu;
 831	struct pmu_hw_events __percpu *cpu_hw_events;
 832
 833	cpu_hw_events = alloc_percpu(struct pmu_hw_events);
 834	if (!cpu_hw_events)
 835		return -ENOMEM;
 836
 837	err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 838					       &cpu_pmu->node);
 839	if (err)
 840		goto out_free;
 841
 842	err = cpu_pm_pmu_register(cpu_pmu);
 843	if (err)
 844		goto out_unregister;
 845
 846	for_each_possible_cpu(cpu) {
 847		struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
 848		raw_spin_lock_init(&events->pmu_lock);
 849		events->percpu_pmu = cpu_pmu;
 850	}
 851
 852	cpu_pmu->hw_events	= cpu_hw_events;
 853	cpu_pmu->request_irq	= cpu_pmu_request_irq;
 854	cpu_pmu->free_irq	= cpu_pmu_free_irq;
 855
 856	/* Ensure the PMU has sane values out of reset. */
 857	if (cpu_pmu->reset)
 858		on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
 859			 cpu_pmu, 1);
 860
 861	/* If no interrupts available, set the corresponding capability flag */
 862	if (!platform_get_irq(cpu_pmu->plat_device, 0))
 863		cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
 864
 865	/*
 866	 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
 867	 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
 868	 * sharing into account (e.g. with our pmu::filter_match callback and
 869	 * pmu::event_init group validation).
 870	 */
 871	cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
 872
 873	return 0;
 874
 875out_unregister:
 876	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 877					    &cpu_pmu->node);
 878out_free:
 879	free_percpu(cpu_hw_events);
 880	return err;
 881}
 882
 883static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
 884{
 885	cpu_pm_pmu_unregister(cpu_pmu);
 886	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 887					    &cpu_pmu->node);
 888	free_percpu(cpu_pmu->hw_events);
 889}
 890
 891/*
 892 * CPU PMU identification and probing.
 893 */
 894static int probe_current_pmu(struct arm_pmu *pmu,
 895			     const struct pmu_probe_info *info)
 896{
 897	int cpu = get_cpu();
 898	unsigned int cpuid = read_cpuid_id();
 899	int ret = -ENODEV;
 900
 901	pr_info("probing PMU on CPU %d\n", cpu);
 902
 903	for (; info->init != NULL; info++) {
 904		if ((cpuid & info->mask) != info->cpuid)
 905			continue;
 906		ret = info->init(pmu);
 907		break;
 908	}
 909
 910	put_cpu();
 911	return ret;
 912}
 913
 914static int of_pmu_irq_cfg(struct arm_pmu *pmu)
 915{
 916	int *irqs, i = 0;
 917	bool using_spi = false;
 918	struct platform_device *pdev = pmu->plat_device;
 919
 920	irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
 921	if (!irqs)
 922		return -ENOMEM;
 923
 924	do {
 925		struct device_node *dn;
 926		int cpu, irq;
 927
 928		/* See if we have an affinity entry */
 929		dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
 930		if (!dn)
 931			break;
 932
 933		/* Check the IRQ type and prohibit a mix of PPIs and SPIs */
 934		irq = platform_get_irq(pdev, i);
 935		if (irq > 0) {
 936			bool spi = !irq_is_percpu(irq);
 937
 938			if (i > 0 && spi != using_spi) {
 939				pr_err("PPI/SPI IRQ type mismatch for %s!\n",
 940					dn->name);
 941				of_node_put(dn);
 942				kfree(irqs);
 943				return -EINVAL;
 944			}
 945
 946			using_spi = spi;
 947		}
 948
 949		/* Now look up the logical CPU number */
 950		for_each_possible_cpu(cpu) {
 951			struct device_node *cpu_dn;
 952
 953			cpu_dn = of_cpu_device_node_get(cpu);
 954			of_node_put(cpu_dn);
 955
 956			if (dn == cpu_dn)
 957				break;
 958		}
 959
 960		if (cpu >= nr_cpu_ids) {
 961			pr_warn("Failed to find logical CPU for %s\n",
 962				dn->name);
 963			of_node_put(dn);
 964			cpumask_setall(&pmu->supported_cpus);
 965			break;
 966		}
 967		of_node_put(dn);
 968
 969		/* For SPIs, we need to track the affinity per IRQ */
 970		if (using_spi) {
 971			if (i >= pdev->num_resources)
 972				break;
 973
 974			irqs[i] = cpu;
 975		}
 976
 977		/* Keep track of the CPUs containing this PMU type */
 978		cpumask_set_cpu(cpu, &pmu->supported_cpus);
 979		i++;
 980	} while (1);
 981
 982	/* If we didn't manage to parse anything, try the interrupt affinity */
 983	if (cpumask_weight(&pmu->supported_cpus) == 0) {
 984		int irq = platform_get_irq(pdev, 0);
 985
 986		if (irq > 0 && irq_is_percpu(irq)) {
 987			/* If using PPIs, check the affinity of the partition */
 988			int ret;
 989
 990			ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
 991			if (ret) {
 992				kfree(irqs);
 993				return ret;
 994			}
 995		} else {
 996			/* Otherwise default to all CPUs */
 997			cpumask_setall(&pmu->supported_cpus);
 998		}
 999	}
1000
1001	/* If we matched up the IRQ affinities, use them to route the SPIs */
1002	if (using_spi && i == pdev->num_resources)
1003		pmu->irq_affinity = irqs;
1004	else
1005		kfree(irqs);
1006
1007	return 0;
1008}
1009
1010int arm_pmu_device_probe(struct platform_device *pdev,
1011			 const struct of_device_id *of_table,
1012			 const struct pmu_probe_info *probe_table)
1013{
1014	const struct of_device_id *of_id;
1015	const int (*init_fn)(struct arm_pmu *);
1016	struct device_node *node = pdev->dev.of_node;
1017	struct arm_pmu *pmu;
1018	int ret = -ENODEV;
1019
1020	pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1021	if (!pmu) {
1022		pr_info("failed to allocate PMU device!\n");
1023		return -ENOMEM;
1024	}
1025
1026	armpmu_init(pmu);
1027
1028	pmu->plat_device = pdev;
1029
1030	if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1031		init_fn = of_id->data;
1032
1033		pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1034							   "secure-reg-access");
1035
1036		/* arm64 systems boot only as non-secure */
1037		if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1038			pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1039			pmu->secure_access = false;
1040		}
1041
1042		ret = of_pmu_irq_cfg(pmu);
1043		if (!ret)
1044			ret = init_fn(pmu);
1045	} else if (probe_table) {
1046		cpumask_setall(&pmu->supported_cpus);
1047		ret = probe_current_pmu(pmu, probe_table);
1048	}
1049
1050	if (ret) {
1051		pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1052		goto out_free;
1053	}
1054
1055
1056	ret = cpu_pmu_init(pmu);
1057	if (ret)
1058		goto out_free;
1059
1060	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1061	if (ret)
1062		goto out_destroy;
1063
1064	if (!__oprofile_cpu_pmu)
1065		__oprofile_cpu_pmu = pmu;
1066
1067	pr_info("enabled with %s PMU driver, %d counters available\n",
1068			pmu->name, pmu->num_events);
1069
1070	return 0;
1071
1072out_destroy:
1073	cpu_pmu_destroy(pmu);
1074out_free:
1075	pr_info("%s: failed to register PMU devices!\n",
1076		of_node_full_name(node));
1077	kfree(pmu->irq_affinity);
1078	kfree(pmu);
1079	return ret;
1080}
1081
1082static int arm_pmu_hp_init(void)
1083{
1084	int ret;
1085
1086	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1087				      "perf/arm/pmu:starting",
1088				      arm_perf_starting_cpu, NULL);
1089	if (ret)
1090		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1091		       ret);
1092	return ret;
1093}
1094subsys_initcall(arm_pmu_hp_init);