Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
   9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  11 * Copyright(c) 2018 - 2019 Intel Corporation
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of version 2 of the GNU General Public License as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful, but
  18 * WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20 * General Public License for more details.
  21 *
  22 * The full GNU General Public License is included in this distribution
  23 * in the file called COPYING.
  24 *
  25 * Contact Information:
  26 *  Intel Linux Wireless <linuxwifi@intel.com>
  27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  28 *
  29 * BSD LICENSE
  30 *
  31 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  34 * Copyright(c) 2018 - 2019 Intel Corporation
  35 * All rights reserved.
  36 *
  37 * Redistribution and use in source and binary forms, with or without
  38 * modification, are permitted provided that the following conditions
  39 * are met:
  40 *
  41 *  * Redistributions of source code must retain the above copyright
  42 *    notice, this list of conditions and the following disclaimer.
  43 *  * Redistributions in binary form must reproduce the above copyright
  44 *    notice, this list of conditions and the following disclaimer in
  45 *    the documentation and/or other materials provided with the
  46 *    distribution.
  47 *  * Neither the name Intel Corporation nor the names of its
  48 *    contributors may be used to endorse or promote products derived
  49 *    from this software without specific prior written permission.
  50 *
  51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  62 *****************************************************************************/
  63#include <linux/types.h>
  64#include <linux/slab.h>
  65#include <linux/export.h>
  66#include <linux/etherdevice.h>
  67#include <linux/pci.h>
  68#include <linux/firmware.h>
  69
  70#include "iwl-drv.h"
  71#include "iwl-modparams.h"
  72#include "iwl-nvm-parse.h"
  73#include "iwl-prph.h"
  74#include "iwl-io.h"
  75#include "iwl-csr.h"
  76#include "fw/acpi.h"
  77#include "fw/api/nvm-reg.h"
  78#include "fw/api/commands.h"
  79#include "fw/api/cmdhdr.h"
  80#include "fw/img.h"
  81
  82/* NVM offsets (in words) definitions */
  83enum nvm_offsets {
  84	/* NVM HW-Section offset (in words) definitions */
  85	SUBSYSTEM_ID = 0x0A,
  86	HW_ADDR = 0x15,
  87
  88	/* NVM SW-Section offset (in words) definitions */
  89	NVM_SW_SECTION = 0x1C0,
  90	NVM_VERSION = 0,
  91	RADIO_CFG = 1,
  92	SKU = 2,
  93	N_HW_ADDRS = 3,
  94	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
  95
  96	/* NVM calibration section offset (in words) definitions */
  97	NVM_CALIB_SECTION = 0x2B8,
  98	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
  99
 100	/* NVM REGULATORY -Section offset (in words) definitions */
 101	NVM_CHANNELS_SDP = 0,
 102};
 103
 104enum ext_nvm_offsets {
 105	/* NVM HW-Section offset (in words) definitions */
 106	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
 107
 108	/* NVM SW-Section offset (in words) definitions */
 109	NVM_VERSION_EXT_NVM = 0,
 110	RADIO_CFG_FAMILY_EXT_NVM = 0,
 111	SKU_FAMILY_8000 = 2,
 112	N_HW_ADDRS_FAMILY_8000 = 3,
 113
 114	/* NVM REGULATORY -Section offset (in words) definitions */
 115	NVM_CHANNELS_EXTENDED = 0,
 116	NVM_LAR_OFFSET_OLD = 0x4C7,
 117	NVM_LAR_OFFSET = 0x507,
 118	NVM_LAR_ENABLED = 0x7,
 119};
 120
 121/* SKU Capabilities (actual values from NVM definition) */
 122enum nvm_sku_bits {
 123	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
 124	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
 125	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
 126	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
 127	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
 128};
 129
 130/*
 131 * These are the channel numbers in the order that they are stored in the NVM
 132 */
 133static const u16 iwl_nvm_channels[] = {
 134	/* 2.4 GHz */
 135	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 136	/* 5 GHz */
 137	36, 40, 44 , 48, 52, 56, 60, 64,
 138	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
 139	149, 153, 157, 161, 165
 140};
 141
 142static const u16 iwl_ext_nvm_channels[] = {
 143	/* 2.4 GHz */
 144	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 145	/* 5 GHz */
 146	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
 147	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
 148	149, 153, 157, 161, 165, 169, 173, 177, 181
 149};
 150
 151static const u16 iwl_uhb_nvm_channels[] = {
 152	/* 2.4 GHz */
 153	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 154	/* 5 GHz */
 155	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
 156	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
 157	149, 153, 157, 161, 165, 169, 173, 177, 181,
 158	/* 6-7 GHz */
 159	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
 160	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
 161	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
 162	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
 163};
 164
 165#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
 166#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
 167#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
 168#define NUM_2GHZ_CHANNELS		14
 169#define FIRST_2GHZ_HT_MINUS		5
 170#define LAST_2GHZ_HT_PLUS		9
 171#define N_HW_ADDR_MASK			0xF
 172
 173/* rate data (static) */
 174static struct ieee80211_rate iwl_cfg80211_rates[] = {
 175	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
 176	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
 177	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 178	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
 179	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 180	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
 181	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 182	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
 183	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
 184	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
 185	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
 186	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
 187	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
 188	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
 189	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
 190};
 191#define RATES_24_OFFS	0
 192#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
 193#define RATES_52_OFFS	4
 194#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
 195
 196/**
 197 * enum iwl_nvm_channel_flags - channel flags in NVM
 198 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 199 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 200 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 201 * @NVM_CHANNEL_RADAR: radar detection required
 202 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 203 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 204 *	on same channel on 2.4 or same UNII band on 5.2
 205 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 206 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 207 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 208 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 209 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 210 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
 211 */
 212enum iwl_nvm_channel_flags {
 213	NVM_CHANNEL_VALID		= BIT(0),
 214	NVM_CHANNEL_IBSS		= BIT(1),
 215	NVM_CHANNEL_ACTIVE		= BIT(3),
 216	NVM_CHANNEL_RADAR		= BIT(4),
 217	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
 218	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
 219	NVM_CHANNEL_UNIFORM		= BIT(7),
 220	NVM_CHANNEL_20MHZ		= BIT(8),
 221	NVM_CHANNEL_40MHZ		= BIT(9),
 222	NVM_CHANNEL_80MHZ		= BIT(10),
 223	NVM_CHANNEL_160MHZ		= BIT(11),
 224	NVM_CHANNEL_DC_HIGH		= BIT(12),
 225};
 226
 227/**
 228 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
 229 * domain.
 230 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 231 *	2.4Ghz band is allowed.
 232 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 233 *	5Ghz band is allowed.
 234 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 235 *	for this regulatory domain (valid only in 5Ghz).
 236 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 237 *	for this regulatory domain (valid only in 5Ghz).
 238 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 239 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 240 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
 241 *	for this regulatory domain (valid only in 5Ghz).
 242 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
 243 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 244 */
 245enum iwl_reg_capa_flags {
 246	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
 247	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
 248	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
 249	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
 250	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
 251	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
 252	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
 253	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
 254	REG_CAPA_11AX_DISABLED		= BIT(10),
 255};
 256
 257static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
 258					       int chan, u32 flags)
 259{
 260#define CHECK_AND_PRINT_I(x)	\
 261	((flags & NVM_CHANNEL_##x) ? " " #x : "")
 262
 263	if (!(flags & NVM_CHANNEL_VALID)) {
 264		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
 265			      chan, flags);
 266		return;
 267	}
 268
 269	/* Note: already can print up to 101 characters, 110 is the limit! */
 270	IWL_DEBUG_DEV(dev, level,
 271		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
 272		      chan, flags,
 273		      CHECK_AND_PRINT_I(VALID),
 274		      CHECK_AND_PRINT_I(IBSS),
 275		      CHECK_AND_PRINT_I(ACTIVE),
 276		      CHECK_AND_PRINT_I(RADAR),
 277		      CHECK_AND_PRINT_I(INDOOR_ONLY),
 278		      CHECK_AND_PRINT_I(GO_CONCURRENT),
 279		      CHECK_AND_PRINT_I(UNIFORM),
 280		      CHECK_AND_PRINT_I(20MHZ),
 281		      CHECK_AND_PRINT_I(40MHZ),
 282		      CHECK_AND_PRINT_I(80MHZ),
 283		      CHECK_AND_PRINT_I(160MHZ),
 284		      CHECK_AND_PRINT_I(DC_HIGH));
 285#undef CHECK_AND_PRINT_I
 286}
 287
 288static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
 289				 u32 nvm_flags, const struct iwl_cfg *cfg)
 290{
 291	u32 flags = IEEE80211_CHAN_NO_HT40;
 292
 293	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
 294		if (ch_num <= LAST_2GHZ_HT_PLUS)
 295			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 296		if (ch_num >= FIRST_2GHZ_HT_MINUS)
 297			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 298	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
 299		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
 300			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 301		else
 302			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 303	}
 304	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
 305		flags |= IEEE80211_CHAN_NO_80MHZ;
 306	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
 307		flags |= IEEE80211_CHAN_NO_160MHZ;
 308
 309	if (!(nvm_flags & NVM_CHANNEL_IBSS))
 310		flags |= IEEE80211_CHAN_NO_IR;
 311
 312	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
 313		flags |= IEEE80211_CHAN_NO_IR;
 314
 315	if (nvm_flags & NVM_CHANNEL_RADAR)
 316		flags |= IEEE80211_CHAN_RADAR;
 317
 318	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
 319		flags |= IEEE80211_CHAN_INDOOR_ONLY;
 320
 321	/* Set the GO concurrent flag only in case that NO_IR is set.
 322	 * Otherwise it is meaningless
 323	 */
 324	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
 325	    (flags & IEEE80211_CHAN_NO_IR))
 326		flags |= IEEE80211_CHAN_IR_CONCURRENT;
 327
 328	return flags;
 329}
 330
 331static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
 332{
 333	if (ch_idx >= NUM_2GHZ_CHANNELS)
 334		return NL80211_BAND_5GHZ;
 335	return NL80211_BAND_2GHZ;
 336}
 337
 338static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
 339				struct iwl_nvm_data *data,
 340				const void * const nvm_ch_flags,
 341				u32 sbands_flags, bool v4)
 342{
 343	int ch_idx;
 344	int n_channels = 0;
 345	struct ieee80211_channel *channel;
 346	u32 ch_flags;
 347	int num_of_ch;
 348	const u16 *nvm_chan;
 349
 350	if (cfg->uhb_supported) {
 351		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
 352		nvm_chan = iwl_uhb_nvm_channels;
 353	} else if (cfg->nvm_type == IWL_NVM_EXT) {
 354		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
 355		nvm_chan = iwl_ext_nvm_channels;
 356	} else {
 357		num_of_ch = IWL_NVM_NUM_CHANNELS;
 358		nvm_chan = iwl_nvm_channels;
 359	}
 360
 361	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
 362		enum nl80211_band band =
 363			iwl_nl80211_band_from_channel_idx(ch_idx);
 364
 365		if (v4)
 366			ch_flags =
 367				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
 368		else
 369			ch_flags =
 370				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
 371
 372		if (band == NL80211_BAND_5GHZ &&
 373		    !data->sku_cap_band_52ghz_enable)
 374			continue;
 375
 376		/* workaround to disable wide channels in 5GHz */
 377		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
 378		    band == NL80211_BAND_5GHZ) {
 379			ch_flags &= ~(NVM_CHANNEL_40MHZ |
 380				     NVM_CHANNEL_80MHZ |
 381				     NVM_CHANNEL_160MHZ);
 382		}
 383
 384		if (ch_flags & NVM_CHANNEL_160MHZ)
 385			data->vht160_supported = true;
 386
 387		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
 388		    !(ch_flags & NVM_CHANNEL_VALID)) {
 389			/*
 390			 * Channels might become valid later if lar is
 391			 * supported, hence we still want to add them to
 392			 * the list of supported channels to cfg80211.
 393			 */
 394			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 395						    nvm_chan[ch_idx], ch_flags);
 396			continue;
 397		}
 398
 399		channel = &data->channels[n_channels];
 400		n_channels++;
 401
 402		channel->hw_value = nvm_chan[ch_idx];
 403		channel->band = band;
 404		channel->center_freq =
 405			ieee80211_channel_to_frequency(
 406				channel->hw_value, channel->band);
 407
 408		/* Initialize regulatory-based run-time data */
 409
 410		/*
 411		 * Default value - highest tx power value.  max_power
 412		 * is not used in mvm, and is used for backwards compatibility
 413		 */
 414		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
 415
 416		/* don't put limitations in case we're using LAR */
 417		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
 418			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
 419							       ch_idx, band,
 420							       ch_flags, cfg);
 421		else
 422			channel->flags = 0;
 423
 424		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 425					    channel->hw_value, ch_flags);
 426		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
 427				 channel->hw_value, channel->max_power);
 428	}
 429
 430	return n_channels;
 431}
 432
 433static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
 434				  struct iwl_nvm_data *data,
 435				  struct ieee80211_sta_vht_cap *vht_cap,
 436				  u8 tx_chains, u8 rx_chains)
 437{
 438	const struct iwl_cfg *cfg = trans->cfg;
 439	int num_rx_ants = num_of_ant(rx_chains);
 440	int num_tx_ants = num_of_ant(tx_chains);
 441	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
 442					   IEEE80211_VHT_MAX_AMPDU_1024K);
 443
 444	vht_cap->vht_supported = true;
 445
 446	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
 447		       IEEE80211_VHT_CAP_RXSTBC_1 |
 448		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
 449		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
 450		       max_ampdu_exponent <<
 451		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
 452
 453	if (data->vht160_supported)
 454		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
 455				IEEE80211_VHT_CAP_SHORT_GI_160;
 456
 457	if (cfg->vht_mu_mimo_supported)
 458		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
 459
 460	if (cfg->ht_params->ldpc)
 461		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
 462
 463	if (data->sku_cap_mimo_disabled) {
 464		num_rx_ants = 1;
 465		num_tx_ants = 1;
 466	}
 467
 468	if (num_tx_ants > 1)
 469		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
 470	else
 471		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
 472
 473	switch (iwlwifi_mod_params.amsdu_size) {
 474	case IWL_AMSDU_DEF:
 475		if (trans->trans_cfg->mq_rx_supported)
 476			vht_cap->cap |=
 477				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 478		else
 479			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 480		break;
 481	case IWL_AMSDU_2K:
 482		if (trans->trans_cfg->mq_rx_supported)
 483			vht_cap->cap |=
 484				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 485		else
 486			WARN(1, "RB size of 2K is not supported by this device\n");
 487		break;
 488	case IWL_AMSDU_4K:
 489		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 490		break;
 491	case IWL_AMSDU_8K:
 492		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
 493		break;
 494	case IWL_AMSDU_12K:
 495		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 496		break;
 497	default:
 498		break;
 499	}
 500
 501	vht_cap->vht_mcs.rx_mcs_map =
 502		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
 503			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
 504			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
 505			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
 506			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
 507			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
 508			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
 509			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
 510
 511	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
 512		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
 513		/* this works because NOT_SUPPORTED == 3 */
 514		vht_cap->vht_mcs.rx_mcs_map |=
 515			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
 516	}
 517
 518	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
 519
 520	vht_cap->vht_mcs.tx_highest |=
 521		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
 522}
 523
 524static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
 525	{
 526		.types_mask = BIT(NL80211_IFTYPE_STATION),
 527		.he_cap = {
 528			.has_he = true,
 529			.he_cap_elem = {
 530				.mac_cap_info[0] =
 531					IEEE80211_HE_MAC_CAP0_HTC_HE |
 532					IEEE80211_HE_MAC_CAP0_TWT_REQ,
 533				.mac_cap_info[1] =
 534					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 535					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 536				.mac_cap_info[2] =
 537					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
 538				.mac_cap_info[3] =
 539					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
 540					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
 541				.mac_cap_info[4] =
 542					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
 543					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
 544				.mac_cap_info[5] =
 545					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
 546					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
 547					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
 548					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
 549					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
 550				.phy_cap_info[0] =
 551					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
 552					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
 553					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
 554				.phy_cap_info[1] =
 555					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
 556					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
 557					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 558				.phy_cap_info[2] =
 559					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
 560				.phy_cap_info[3] =
 561					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
 562					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 563					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
 564					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 565				.phy_cap_info[4] =
 566					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
 567					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
 568					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
 569				.phy_cap_info[5] =
 570					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
 571					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
 572				.phy_cap_info[6] =
 573					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 574				.phy_cap_info[7] =
 575					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
 576					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
 577					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
 578				.phy_cap_info[8] =
 579					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 580					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
 581					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
 582					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
 583					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
 584				.phy_cap_info[9] =
 585					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
 586					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
 587					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
 588					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
 589			},
 590			/*
 591			 * Set default Tx/Rx HE MCS NSS Support field.
 592			 * Indicate support for up to 2 spatial streams and all
 593			 * MCS, without any special cases
 594			 */
 595			.he_mcs_nss_supp = {
 596				.rx_mcs_80 = cpu_to_le16(0xfffa),
 597				.tx_mcs_80 = cpu_to_le16(0xfffa),
 598				.rx_mcs_160 = cpu_to_le16(0xfffa),
 599				.tx_mcs_160 = cpu_to_le16(0xfffa),
 600				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 601				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 602			},
 603			/*
 604			 * Set default PPE thresholds, with PPET16 set to 0,
 605			 * PPET8 set to 7
 606			 */
 607			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 608		},
 609	},
 610	{
 611		.types_mask = BIT(NL80211_IFTYPE_AP),
 612		.he_cap = {
 613			.has_he = true,
 614			.he_cap_elem = {
 615				.mac_cap_info[0] =
 616					IEEE80211_HE_MAC_CAP0_HTC_HE,
 617				.mac_cap_info[1] =
 618					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 619					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 620				.mac_cap_info[2] =
 621					IEEE80211_HE_MAC_CAP2_BSR,
 622				.mac_cap_info[3] =
 623					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
 624					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
 625				.mac_cap_info[4] =
 626					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
 627				.mac_cap_info[5] =
 628					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
 629				.phy_cap_info[0] =
 630					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
 631					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
 632					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
 633				.phy_cap_info[1] =
 634					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 635				.phy_cap_info[2] =
 636					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
 637				.phy_cap_info[3] =
 638					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
 639					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 640					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
 641					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 642				.phy_cap_info[4] =
 643					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
 644					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
 645					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
 646				.phy_cap_info[5] =
 647					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
 648					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
 649				.phy_cap_info[6] =
 650					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 651				.phy_cap_info[7] =
 652					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
 653					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
 654				.phy_cap_info[8] =
 655					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 656					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
 657					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
 658					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
 659					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
 660				.phy_cap_info[9] =
 661					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
 662					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
 663					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
 664			},
 665			/*
 666			 * Set default Tx/Rx HE MCS NSS Support field.
 667			 * Indicate support for up to 2 spatial streams and all
 668			 * MCS, without any special cases
 669			 */
 670			.he_mcs_nss_supp = {
 671				.rx_mcs_80 = cpu_to_le16(0xfffa),
 672				.tx_mcs_80 = cpu_to_le16(0xfffa),
 673				.rx_mcs_160 = cpu_to_le16(0xfffa),
 674				.tx_mcs_160 = cpu_to_le16(0xfffa),
 675				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 676				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 677			},
 678			/*
 679			 * Set default PPE thresholds, with PPET16 set to 0,
 680			 * PPET8 set to 7
 681			 */
 682			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 683		},
 684	},
 685};
 686
 687static void iwl_init_he_hw_capab(struct iwl_trans *trans,
 688				 struct iwl_nvm_data *data,
 689				 struct ieee80211_supported_band *sband,
 690				 u8 tx_chains, u8 rx_chains)
 691{
 692	sband->iftype_data = iwl_he_capa;
 693	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
 694
 695	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
 696	if ((tx_chains & rx_chains) != ANT_AB) {
 697		int i;
 698
 699		for (i = 0; i < sband->n_iftype_data; i++) {
 700			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
 701				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
 702			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
 703				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
 704			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
 705				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
 706		}
 707	}
 708}
 709
 710static void iwl_init_sbands(struct iwl_trans *trans,
 711			    struct iwl_nvm_data *data,
 712			    const void *nvm_ch_flags, u8 tx_chains,
 713			    u8 rx_chains, u32 sbands_flags, bool v4)
 714{
 715	struct device *dev = trans->dev;
 716	const struct iwl_cfg *cfg = trans->cfg;
 717	int n_channels;
 718	int n_used = 0;
 719	struct ieee80211_supported_band *sband;
 720
 721	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
 722					  sbands_flags, v4);
 723	sband = &data->bands[NL80211_BAND_2GHZ];
 724	sband->band = NL80211_BAND_2GHZ;
 725	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
 726	sband->n_bitrates = N_RATES_24;
 727	n_used += iwl_init_sband_channels(data, sband, n_channels,
 728					  NL80211_BAND_2GHZ);
 729	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
 730			     tx_chains, rx_chains);
 731
 732	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
 733		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
 734
 735	sband = &data->bands[NL80211_BAND_5GHZ];
 736	sband->band = NL80211_BAND_5GHZ;
 737	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
 738	sband->n_bitrates = N_RATES_52;
 739	n_used += iwl_init_sband_channels(data, sband, n_channels,
 740					  NL80211_BAND_5GHZ);
 741	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
 742			     tx_chains, rx_chains);
 743	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
 744		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
 745				      tx_chains, rx_chains);
 746
 747	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
 748		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
 749
 750	if (n_channels != n_used)
 751		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
 752			    n_used, n_channels);
 753}
 754
 755static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
 756		       const __le16 *phy_sku)
 757{
 758	if (cfg->nvm_type != IWL_NVM_EXT)
 759		return le16_to_cpup(nvm_sw + SKU);
 760
 761	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
 762}
 763
 764static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
 765{
 766	if (cfg->nvm_type != IWL_NVM_EXT)
 767		return le16_to_cpup(nvm_sw + NVM_VERSION);
 768	else
 769		return le32_to_cpup((__le32 *)(nvm_sw +
 770					       NVM_VERSION_EXT_NVM));
 771}
 772
 773static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
 774			     const __le16 *phy_sku)
 775{
 776	if (cfg->nvm_type != IWL_NVM_EXT)
 777		return le16_to_cpup(nvm_sw + RADIO_CFG);
 778
 779	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
 780
 781}
 782
 783static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
 784{
 785	int n_hw_addr;
 786
 787	if (cfg->nvm_type != IWL_NVM_EXT)
 788		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
 789
 790	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
 791
 792	return n_hw_addr & N_HW_ADDR_MASK;
 793}
 794
 795static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
 796			      struct iwl_nvm_data *data,
 797			      u32 radio_cfg)
 798{
 799	if (cfg->nvm_type != IWL_NVM_EXT) {
 800		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
 801		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
 802		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
 803		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
 804		return;
 805	}
 806
 807	/* set the radio configuration for family 8000 */
 808	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
 809	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
 810	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
 811	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
 812	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
 813	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
 814}
 815
 816static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
 817{
 818	const u8 *hw_addr;
 819
 820	hw_addr = (const u8 *)&mac_addr0;
 821	dest[0] = hw_addr[3];
 822	dest[1] = hw_addr[2];
 823	dest[2] = hw_addr[1];
 824	dest[3] = hw_addr[0];
 825
 826	hw_addr = (const u8 *)&mac_addr1;
 827	dest[4] = hw_addr[1];
 828	dest[5] = hw_addr[0];
 829}
 830
 831static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
 832					struct iwl_nvm_data *data)
 833{
 834	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
 835	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
 836
 837	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
 838	/*
 839	 * If the OEM fused a valid address, use it instead of the one in the
 840	 * OTP
 841	 */
 842	if (is_valid_ether_addr(data->hw_addr))
 843		return;
 844
 845	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
 846	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
 847
 848	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
 849}
 850
 851static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
 852					   const struct iwl_cfg *cfg,
 853					   struct iwl_nvm_data *data,
 854					   const __le16 *mac_override,
 855					   const __be16 *nvm_hw)
 856{
 857	const u8 *hw_addr;
 858
 859	if (mac_override) {
 860		static const u8 reserved_mac[] = {
 861			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
 862		};
 863
 864		hw_addr = (const u8 *)(mac_override +
 865				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
 866
 867		/*
 868		 * Store the MAC address from MAO section.
 869		 * No byte swapping is required in MAO section
 870		 */
 871		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
 872
 873		/*
 874		 * Force the use of the OTP MAC address in case of reserved MAC
 875		 * address in the NVM, or if address is given but invalid.
 876		 */
 877		if (is_valid_ether_addr(data->hw_addr) &&
 878		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
 879			return;
 880
 881		IWL_ERR(trans,
 882			"mac address from nvm override section is not valid\n");
 883	}
 884
 885	if (nvm_hw) {
 886		/* read the mac address from WFMP registers */
 887		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
 888						WFMP_MAC_ADDR_0));
 889		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
 890						WFMP_MAC_ADDR_1));
 891
 892		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
 893
 894		return;
 895	}
 896
 897	IWL_ERR(trans, "mac address is not found\n");
 898}
 899
 900static int iwl_set_hw_address(struct iwl_trans *trans,
 901			      const struct iwl_cfg *cfg,
 902			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
 903			      const __le16 *mac_override)
 904{
 905	if (cfg->mac_addr_from_csr) {
 906		iwl_set_hw_address_from_csr(trans, data);
 907	} else if (cfg->nvm_type != IWL_NVM_EXT) {
 908		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
 909
 910		/* The byte order is little endian 16 bit, meaning 214365 */
 911		data->hw_addr[0] = hw_addr[1];
 912		data->hw_addr[1] = hw_addr[0];
 913		data->hw_addr[2] = hw_addr[3];
 914		data->hw_addr[3] = hw_addr[2];
 915		data->hw_addr[4] = hw_addr[5];
 916		data->hw_addr[5] = hw_addr[4];
 917	} else {
 918		iwl_set_hw_address_family_8000(trans, cfg, data,
 919					       mac_override, nvm_hw);
 920	}
 921
 922	if (!is_valid_ether_addr(data->hw_addr)) {
 923		IWL_ERR(trans, "no valid mac address was found\n");
 924		return -EINVAL;
 925	}
 926
 927	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
 928
 929	return 0;
 930}
 931
 932static bool
 933iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
 934			const __be16 *nvm_hw)
 935{
 936	/*
 937	 * Workaround a bug in Indonesia SKUs where the regulatory in
 938	 * some 7000-family OTPs erroneously allow wide channels in
 939	 * 5GHz.  To check for Indonesia, we take the SKU value from
 940	 * bits 1-4 in the subsystem ID and check if it is either 5 or
 941	 * 9.  In those cases, we need to force-disable wide channels
 942	 * in 5GHz otherwise the FW will throw a sysassert when we try
 943	 * to use them.
 944	 */
 945	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
 946		/*
 947		 * Unlike the other sections in the NVM, the hw
 948		 * section uses big-endian.
 949		 */
 950		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
 951		u8 sku = (subsystem_id & 0x1e) >> 1;
 952
 953		if (sku == 5 || sku == 9) {
 954			IWL_DEBUG_EEPROM(trans->dev,
 955					 "disabling wide channels in 5GHz (0x%0x %d)\n",
 956					 subsystem_id, sku);
 957			return true;
 958		}
 959	}
 960
 961	return false;
 962}
 963
 964struct iwl_nvm_data *
 965iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
 966		   const struct iwl_fw *fw,
 967		   const __be16 *nvm_hw, const __le16 *nvm_sw,
 968		   const __le16 *nvm_calib, const __le16 *regulatory,
 969		   const __le16 *mac_override, const __le16 *phy_sku,
 970		   u8 tx_chains, u8 rx_chains)
 971{
 972	struct iwl_nvm_data *data;
 973	bool lar_enabled;
 974	u32 sku, radio_cfg;
 975	u32 sbands_flags = 0;
 976	u16 lar_config;
 977	const __le16 *ch_section;
 978
 979	if (cfg->uhb_supported)
 980		data = kzalloc(struct_size(data, channels,
 981					   IWL_NVM_NUM_CHANNELS_UHB),
 982					   GFP_KERNEL);
 983	else if (cfg->nvm_type != IWL_NVM_EXT)
 984		data = kzalloc(struct_size(data, channels,
 985					   IWL_NVM_NUM_CHANNELS),
 986					   GFP_KERNEL);
 987	else
 988		data = kzalloc(struct_size(data, channels,
 989					   IWL_NVM_NUM_CHANNELS_EXT),
 990					   GFP_KERNEL);
 991	if (!data)
 992		return NULL;
 993
 994	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
 995
 996	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
 997	iwl_set_radio_cfg(cfg, data, radio_cfg);
 998	if (data->valid_tx_ant)
 999		tx_chains &= data->valid_tx_ant;
1000	if (data->valid_rx_ant)
1001		rx_chains &= data->valid_rx_ant;
1002
1003	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1004	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1005	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1006	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1007	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1008		data->sku_cap_11n_enable = false;
1009	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1010				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1011	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1012
1013	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1014
1015	if (cfg->nvm_type != IWL_NVM_EXT) {
1016		/* Checking for required sections */
1017		if (!nvm_calib) {
1018			IWL_ERR(trans,
1019				"Can't parse empty Calib NVM sections\n");
1020			kfree(data);
1021			return NULL;
1022		}
1023
1024		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1025			     &regulatory[NVM_CHANNELS_SDP] :
1026			     &nvm_sw[NVM_CHANNELS];
1027
1028		/* in family 8000 Xtal calibration values moved to OTP */
1029		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1030		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1031		lar_enabled = true;
1032	} else {
1033		u16 lar_offset = data->nvm_version < 0xE39 ?
1034				 NVM_LAR_OFFSET_OLD :
1035				 NVM_LAR_OFFSET;
1036
1037		lar_config = le16_to_cpup(regulatory + lar_offset);
1038		data->lar_enabled = !!(lar_config &
1039				       NVM_LAR_ENABLED);
1040		lar_enabled = data->lar_enabled;
1041		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1042	}
1043
1044	/* If no valid mac address was found - bail out */
1045	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1046		kfree(data);
1047		return NULL;
1048	}
1049
1050	if (lar_enabled &&
1051	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1052		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1053
1054	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1055		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1056
1057	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1058			sbands_flags, false);
1059	data->calib_version = 255;
1060
1061	return data;
1062}
1063IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1064
1065static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1066				       int ch_idx, u16 nvm_flags,
1067				       u16 cap_flags,
1068				       const struct iwl_cfg *cfg)
1069{
1070	u32 flags = NL80211_RRF_NO_HT40;
1071
1072	if (ch_idx < NUM_2GHZ_CHANNELS &&
1073	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1074		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1075			flags &= ~NL80211_RRF_NO_HT40PLUS;
1076		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1077			flags &= ~NL80211_RRF_NO_HT40MINUS;
1078	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1079		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1080			flags &= ~NL80211_RRF_NO_HT40PLUS;
1081		else
1082			flags &= ~NL80211_RRF_NO_HT40MINUS;
1083	}
1084
1085	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1086		flags |= NL80211_RRF_NO_80MHZ;
1087	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1088		flags |= NL80211_RRF_NO_160MHZ;
1089
1090	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1091		flags |= NL80211_RRF_NO_IR;
1092
1093	if (nvm_flags & NVM_CHANNEL_RADAR)
1094		flags |= NL80211_RRF_DFS;
1095
1096	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1097		flags |= NL80211_RRF_NO_OUTDOOR;
1098
1099	/* Set the GO concurrent flag only in case that NO_IR is set.
1100	 * Otherwise it is meaningless
1101	 */
1102	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1103	    (flags & NL80211_RRF_NO_IR))
1104		flags |= NL80211_RRF_GO_CONCURRENT;
1105
1106	/*
1107	 * cap_flags is per regulatory domain so apply it for every channel
1108	 */
1109	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1110		if (cap_flags & REG_CAPA_40MHZ_FORBIDDEN)
1111			flags |= NL80211_RRF_NO_HT40;
1112
1113		if (!(cap_flags & REG_CAPA_80MHZ_ALLOWED))
1114			flags |= NL80211_RRF_NO_80MHZ;
1115
1116		if (!(cap_flags & REG_CAPA_160MHZ_ALLOWED))
1117			flags |= NL80211_RRF_NO_160MHZ;
1118	}
1119
1120	if (cap_flags & REG_CAPA_11AX_DISABLED)
1121		flags |= NL80211_RRF_NO_HE;
1122
1123	return flags;
1124}
1125
1126struct ieee80211_regdomain *
1127iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1128		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1129		       u16 geo_info, u16 cap)
1130{
1131	int ch_idx;
1132	u16 ch_flags;
1133	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1134	const u16 *nvm_chan;
1135	struct ieee80211_regdomain *regd, *copy_rd;
1136	struct ieee80211_reg_rule *rule;
1137	enum nl80211_band band;
1138	int center_freq, prev_center_freq = 0;
1139	int valid_rules = 0;
1140	bool new_rule;
1141	int max_num_ch;
1142
1143	if (cfg->uhb_supported) {
1144		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1145		nvm_chan = iwl_uhb_nvm_channels;
1146	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1147		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1148		nvm_chan = iwl_ext_nvm_channels;
1149	} else {
1150		max_num_ch = IWL_NVM_NUM_CHANNELS;
1151		nvm_chan = iwl_nvm_channels;
1152	}
1153
1154	if (WARN_ON(num_of_ch > max_num_ch))
1155		num_of_ch = max_num_ch;
1156
1157	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1158		return ERR_PTR(-EINVAL);
1159
1160	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1161		      num_of_ch);
1162
1163	/* build a regdomain rule for every valid channel */
1164	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1165	if (!regd)
1166		return ERR_PTR(-ENOMEM);
1167
1168	/* set alpha2 from FW. */
1169	regd->alpha2[0] = fw_mcc >> 8;
1170	regd->alpha2[1] = fw_mcc & 0xff;
1171
1172	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1173		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1174		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1175		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1176							     band);
1177		new_rule = false;
1178
1179		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1180			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1181						    nvm_chan[ch_idx], ch_flags);
1182			continue;
1183		}
1184
1185		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1186							     ch_flags, cap,
1187							     cfg);
1188
1189		/* we can't continue the same rule */
1190		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1191		    center_freq - prev_center_freq > 20) {
1192			valid_rules++;
1193			new_rule = true;
1194		}
1195
1196		rule = &regd->reg_rules[valid_rules - 1];
1197
1198		if (new_rule)
1199			rule->freq_range.start_freq_khz =
1200						MHZ_TO_KHZ(center_freq - 10);
1201
1202		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1203
1204		/* this doesn't matter - not used by FW */
1205		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1206		rule->power_rule.max_eirp =
1207			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1208
1209		rule->flags = reg_rule_flags;
1210
1211		/* rely on auto-calculation to merge BW of contiguous chans */
1212		rule->flags |= NL80211_RRF_AUTO_BW;
1213		rule->freq_range.max_bandwidth_khz = 0;
1214
1215		prev_center_freq = center_freq;
1216		prev_reg_rule_flags = reg_rule_flags;
1217
1218		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1219					    nvm_chan[ch_idx], ch_flags);
1220
1221		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1222		    band == NL80211_BAND_2GHZ)
1223			continue;
1224
1225		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1226	}
1227
1228	regd->n_reg_rules = valid_rules;
1229
1230	/*
1231	 * Narrow down regdom for unused regulatory rules to prevent hole
1232	 * between reg rules to wmm rules.
1233	 */
1234	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1235			  GFP_KERNEL);
1236	if (!copy_rd)
1237		copy_rd = ERR_PTR(-ENOMEM);
1238
1239	kfree(regd);
1240	return copy_rd;
1241}
1242IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1243
1244#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1245#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1246#define MAX_NVM_FILE_LEN	16384
1247
1248void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1249		    unsigned int len)
1250{
1251#define IWL_4165_DEVICE_ID	0x5501
1252#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1253
1254	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1255	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1256	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1257		/* OTP 0x52 bug work around: it's a 1x1 device */
1258		data[3] = ANT_B | (ANT_B << 4);
1259}
1260IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1261
1262/*
1263 * Reads external NVM from a file into mvm->nvm_sections
1264 *
1265 * HOW TO CREATE THE NVM FILE FORMAT:
1266 * ------------------------------
1267 * 1. create hex file, format:
1268 *      3800 -> header
1269 *      0000 -> header
1270 *      5a40 -> data
1271 *
1272 *   rev - 6 bit (word1)
1273 *   len - 10 bit (word1)
1274 *   id - 4 bit (word2)
1275 *   rsv - 12 bit (word2)
1276 *
1277 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1278 *
1279 * 3. create binary file from the hex file
1280 *
1281 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1282 */
1283int iwl_read_external_nvm(struct iwl_trans *trans,
1284			  const char *nvm_file_name,
1285			  struct iwl_nvm_section *nvm_sections)
1286{
1287	int ret, section_size;
1288	u16 section_id;
1289	const struct firmware *fw_entry;
1290	const struct {
1291		__le16 word1;
1292		__le16 word2;
1293		u8 data[];
1294	} *file_sec;
1295	const u8 *eof;
1296	u8 *temp;
1297	int max_section_size;
1298	const __le32 *dword_buff;
1299
1300#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1301#define NVM_WORD2_ID(x) (x >> 12)
1302#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1303#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1304#define NVM_HEADER_0	(0x2A504C54)
1305#define NVM_HEADER_1	(0x4E564D2A)
1306#define NVM_HEADER_SIZE	(4 * sizeof(u32))
1307
1308	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1309
1310	/* Maximal size depends on NVM version */
1311	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1312		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1313	else
1314		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1315
1316	/*
1317	 * Obtain NVM image via request_firmware. Since we already used
1318	 * request_firmware_nowait() for the firmware binary load and only
1319	 * get here after that we assume the NVM request can be satisfied
1320	 * synchronously.
1321	 */
1322	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1323	if (ret) {
1324		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1325			nvm_file_name, ret);
1326		return ret;
1327	}
1328
1329	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1330		 nvm_file_name, fw_entry->size);
1331
1332	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1333		IWL_ERR(trans, "NVM file too large\n");
1334		ret = -EINVAL;
1335		goto out;
1336	}
1337
1338	eof = fw_entry->data + fw_entry->size;
1339	dword_buff = (__le32 *)fw_entry->data;
1340
1341	/* some NVM file will contain a header.
1342	 * The header is identified by 2 dwords header as follow:
1343	 * dword[0] = 0x2A504C54
1344	 * dword[1] = 0x4E564D2A
1345	 *
1346	 * This header must be skipped when providing the NVM data to the FW.
1347	 */
1348	if (fw_entry->size > NVM_HEADER_SIZE &&
1349	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1350	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1351		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1352		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1353		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1354			 le32_to_cpu(dword_buff[3]));
1355
1356		/* nvm file validation, dword_buff[2] holds the file version */
1357		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1358		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1359		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1360			ret = -EFAULT;
1361			goto out;
1362		}
1363	} else {
1364		file_sec = (void *)fw_entry->data;
1365	}
1366
1367	while (true) {
1368		if (file_sec->data > eof) {
1369			IWL_ERR(trans,
1370				"ERROR - NVM file too short for section header\n");
1371			ret = -EINVAL;
1372			break;
1373		}
1374
1375		/* check for EOF marker */
1376		if (!file_sec->word1 && !file_sec->word2) {
1377			ret = 0;
1378			break;
1379		}
1380
1381		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1382			section_size =
1383				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1384			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1385		} else {
1386			section_size = 2 * EXT_NVM_WORD2_LEN(
1387						le16_to_cpu(file_sec->word2));
1388			section_id = EXT_NVM_WORD1_ID(
1389						le16_to_cpu(file_sec->word1));
1390		}
1391
1392		if (section_size > max_section_size) {
1393			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1394				section_size);
1395			ret = -EINVAL;
1396			break;
1397		}
1398
1399		if (!section_size) {
1400			IWL_ERR(trans, "ERROR - section empty\n");
1401			ret = -EINVAL;
1402			break;
1403		}
1404
1405		if (file_sec->data + section_size > eof) {
1406			IWL_ERR(trans,
1407				"ERROR - NVM file too short for section (%d bytes)\n",
1408				section_size);
1409			ret = -EINVAL;
1410			break;
1411		}
1412
1413		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1414			 "Invalid NVM section ID %d\n", section_id)) {
1415			ret = -EINVAL;
1416			break;
1417		}
1418
1419		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1420		if (!temp) {
1421			ret = -ENOMEM;
1422			break;
1423		}
1424
1425		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1426
1427		kfree(nvm_sections[section_id].data);
1428		nvm_sections[section_id].data = temp;
1429		nvm_sections[section_id].length = section_size;
1430
1431		/* advance to the next section */
1432		file_sec = (void *)(file_sec->data + section_size);
1433	}
1434out:
1435	release_firmware(fw_entry);
1436	return ret;
1437}
1438IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1439
1440struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1441				 const struct iwl_fw *fw)
1442{
1443	struct iwl_nvm_get_info cmd = {};
1444	struct iwl_nvm_data *nvm;
1445	struct iwl_host_cmd hcmd = {
1446		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1447		.data = { &cmd, },
1448		.len = { sizeof(cmd) },
1449		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1450	};
1451	int  ret;
1452	bool empty_otp;
1453	u32 mac_flags;
1454	u32 sbands_flags = 0;
1455	/*
1456	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1457	 * in v3, except for the channel profile part of the
1458	 * regulatory.  So we can just access the new struct, with the
1459	 * exception of the latter.
1460	 */
1461	struct iwl_nvm_get_info_rsp *rsp;
1462	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1463	bool v4 = fw_has_api(&fw->ucode_capa,
1464			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1465	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1466	void *channel_profile;
1467
1468	ret = iwl_trans_send_cmd(trans, &hcmd);
1469	if (ret)
1470		return ERR_PTR(ret);
1471
1472	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1473		 "Invalid payload len in NVM response from FW %d",
1474		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1475		ret = -EINVAL;
1476		goto out;
1477	}
1478
1479	rsp = (void *)hcmd.resp_pkt->data;
1480	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1481		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1482	if (empty_otp)
1483		IWL_INFO(trans, "OTP is empty\n");
1484
1485	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1486	if (!nvm) {
1487		ret = -ENOMEM;
1488		goto out;
1489	}
1490
1491	iwl_set_hw_address_from_csr(trans, nvm);
1492	/* TODO: if platform NVM has MAC address - override it here */
1493
1494	if (!is_valid_ether_addr(nvm->hw_addr)) {
1495		IWL_ERR(trans, "no valid mac address was found\n");
1496		ret = -EINVAL;
1497		goto err_free;
1498	}
1499
1500	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1501
1502	/* Initialize general data */
1503	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1504	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1505	if (nvm->n_hw_addrs == 0)
1506		IWL_WARN(trans,
1507			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1508			 empty_otp);
1509
1510	/* Initialize MAC sku data */
1511	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1512	nvm->sku_cap_11ac_enable =
1513		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1514	nvm->sku_cap_11n_enable =
1515		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1516	nvm->sku_cap_11ax_enable =
1517		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1518	nvm->sku_cap_band_24ghz_enable =
1519		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1520	nvm->sku_cap_band_52ghz_enable =
1521		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1522	nvm->sku_cap_mimo_disabled =
1523		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1524
1525	/* Initialize PHY sku data */
1526	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1527	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1528
1529	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1530	    fw_has_capa(&fw->ucode_capa,
1531			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1532		nvm->lar_enabled = true;
1533		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1534	}
1535
1536	rsp_v3 = (void *)rsp;
1537	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1538			  (void *)rsp_v3->regulatory.channel_profile;
1539
1540	iwl_init_sbands(trans, nvm,
1541			channel_profile,
1542			nvm->valid_tx_ant & fw->valid_tx_ant,
1543			nvm->valid_rx_ant & fw->valid_rx_ant,
1544			sbands_flags, v4);
1545
1546	iwl_free_resp(&hcmd);
1547	return nvm;
1548
1549err_free:
1550	kfree(nvm);
1551out:
1552	iwl_free_resp(&hcmd);
1553	return ERR_PTR(ret);
1554}
1555IWL_EXPORT_SYMBOL(iwl_get_nvm);