Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * V4L2 fwnode binding parsing library
   4 *
   5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
   6 * formerly was located in v4l2-of.c.
   7 *
   8 * Copyright (c) 2016 Intel Corporation.
   9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
  10 *
  11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
  12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
  13 *
  14 * Copyright (C) 2012 Renesas Electronics Corp.
  15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
  16 */
  17#include <linux/acpi.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/property.h>
  23#include <linux/slab.h>
  24#include <linux/string.h>
  25#include <linux/types.h>
  26
  27#include <media/v4l2-async.h>
  28#include <media/v4l2-fwnode.h>
  29#include <media/v4l2-subdev.h>
  30
  31enum v4l2_fwnode_bus_type {
  32	V4L2_FWNODE_BUS_TYPE_GUESS = 0,
  33	V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
  34	V4L2_FWNODE_BUS_TYPE_CSI1,
  35	V4L2_FWNODE_BUS_TYPE_CCP2,
  36	V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
  37	V4L2_FWNODE_BUS_TYPE_PARALLEL,
  38	V4L2_FWNODE_BUS_TYPE_BT656,
  39	NR_OF_V4L2_FWNODE_BUS_TYPE,
  40};
  41
  42static const struct v4l2_fwnode_bus_conv {
  43	enum v4l2_fwnode_bus_type fwnode_bus_type;
  44	enum v4l2_mbus_type mbus_type;
  45	const char *name;
  46} buses[] = {
  47	{
  48		V4L2_FWNODE_BUS_TYPE_GUESS,
  49		V4L2_MBUS_UNKNOWN,
  50		"not specified",
  51	}, {
  52		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
  53		V4L2_MBUS_CSI2_CPHY,
  54		"MIPI CSI-2 C-PHY",
  55	}, {
  56		V4L2_FWNODE_BUS_TYPE_CSI1,
  57		V4L2_MBUS_CSI1,
  58		"MIPI CSI-1",
  59	}, {
  60		V4L2_FWNODE_BUS_TYPE_CCP2,
  61		V4L2_MBUS_CCP2,
  62		"compact camera port 2",
  63	}, {
  64		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
  65		V4L2_MBUS_CSI2_DPHY,
  66		"MIPI CSI-2 D-PHY",
  67	}, {
  68		V4L2_FWNODE_BUS_TYPE_PARALLEL,
  69		V4L2_MBUS_PARALLEL,
  70		"parallel",
  71	}, {
  72		V4L2_FWNODE_BUS_TYPE_BT656,
  73		V4L2_MBUS_BT656,
  74		"Bt.656",
  75	}
  76};
  77
  78static const struct v4l2_fwnode_bus_conv *
  79get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
  80{
  81	unsigned int i;
  82
  83	for (i = 0; i < ARRAY_SIZE(buses); i++)
  84		if (buses[i].fwnode_bus_type == type)
  85			return &buses[i];
  86
  87	return NULL;
  88}
  89
  90static enum v4l2_mbus_type
  91v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
  92{
  93	const struct v4l2_fwnode_bus_conv *conv =
  94		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
  95
  96	return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
  97}
  98
  99static const char *
 100v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
 101{
 102	const struct v4l2_fwnode_bus_conv *conv =
 103		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
 104
 105	return conv ? conv->name : "not found";
 106}
 107
 108static const struct v4l2_fwnode_bus_conv *
 109get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
 110{
 111	unsigned int i;
 112
 113	for (i = 0; i < ARRAY_SIZE(buses); i++)
 114		if (buses[i].mbus_type == type)
 115			return &buses[i];
 116
 117	return NULL;
 118}
 119
 120static const char *
 121v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
 122{
 123	const struct v4l2_fwnode_bus_conv *conv =
 124		get_v4l2_fwnode_bus_conv_by_mbus(type);
 125
 126	return conv ? conv->name : "not found";
 127}
 128
 129static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
 130					       struct v4l2_fwnode_endpoint *vep,
 131					       enum v4l2_mbus_type bus_type)
 132{
 133	struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
 134	bool have_clk_lane = false, have_data_lanes = false,
 135		have_lane_polarities = false;
 136	unsigned int flags = 0, lanes_used = 0;
 137	u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
 138	u32 clock_lane = 0;
 139	unsigned int num_data_lanes = 0;
 140	bool use_default_lane_mapping = false;
 141	unsigned int i;
 142	u32 v;
 143	int rval;
 144
 145	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
 146	    bus_type == V4L2_MBUS_CSI2_CPHY) {
 147		use_default_lane_mapping = true;
 148
 149		num_data_lanes = min_t(u32, bus->num_data_lanes,
 150				       V4L2_FWNODE_CSI2_MAX_DATA_LANES);
 151
 152		clock_lane = bus->clock_lane;
 153		if (clock_lane)
 154			use_default_lane_mapping = false;
 155
 156		for (i = 0; i < num_data_lanes; i++) {
 157			array[i] = bus->data_lanes[i];
 158			if (array[i])
 159				use_default_lane_mapping = false;
 160		}
 161
 162		if (use_default_lane_mapping)
 163			pr_debug("no lane mapping given, using defaults\n");
 164	}
 165
 166	rval = fwnode_property_count_u32(fwnode, "data-lanes");
 167	if (rval > 0) {
 168		num_data_lanes =
 169			min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
 170
 171		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
 172					       num_data_lanes);
 173
 174		have_data_lanes = true;
 175		if (use_default_lane_mapping) {
 176			pr_debug("data-lanes property exists; disabling default mapping\n");
 177			use_default_lane_mapping = false;
 178		}
 179	}
 180
 181	for (i = 0; i < num_data_lanes; i++) {
 182		if (lanes_used & BIT(array[i])) {
 183			if (have_data_lanes || !use_default_lane_mapping)
 184				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
 185					array[i]);
 186			use_default_lane_mapping = true;
 187		}
 188		lanes_used |= BIT(array[i]);
 189
 190		if (have_data_lanes)
 191			pr_debug("lane %u position %u\n", i, array[i]);
 192	}
 193
 194	rval = fwnode_property_count_u32(fwnode, "lane-polarities");
 195	if (rval > 0) {
 196		if (rval != 1 + num_data_lanes /* clock+data */) {
 197			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
 198				1 + num_data_lanes, rval);
 199			return -EINVAL;
 200		}
 201
 202		have_lane_polarities = true;
 203	}
 204
 205	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
 206		clock_lane = v;
 207		pr_debug("clock lane position %u\n", v);
 208		have_clk_lane = true;
 209	}
 210
 211	if (have_clk_lane && lanes_used & BIT(clock_lane) &&
 212	    !use_default_lane_mapping) {
 213		pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
 214			v);
 215		use_default_lane_mapping = true;
 216	}
 217
 218	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
 219		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
 220		pr_debug("non-continuous clock\n");
 221	} else {
 222		flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
 223	}
 224
 225	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
 226	    bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
 227	    have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
 228		/* Only D-PHY has a clock lane. */
 229		unsigned int dfl_data_lane_index =
 230			bus_type == V4L2_MBUS_CSI2_DPHY;
 231
 232		bus->flags = flags;
 233		if (bus_type == V4L2_MBUS_UNKNOWN)
 234			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
 235		bus->num_data_lanes = num_data_lanes;
 236
 237		if (use_default_lane_mapping) {
 238			bus->clock_lane = 0;
 239			for (i = 0; i < num_data_lanes; i++)
 240				bus->data_lanes[i] = dfl_data_lane_index + i;
 241		} else {
 242			bus->clock_lane = clock_lane;
 243			for (i = 0; i < num_data_lanes; i++)
 244				bus->data_lanes[i] = array[i];
 245		}
 246
 247		if (have_lane_polarities) {
 248			fwnode_property_read_u32_array(fwnode,
 249						       "lane-polarities", array,
 250						       1 + num_data_lanes);
 251
 252			for (i = 0; i < 1 + num_data_lanes; i++) {
 253				bus->lane_polarities[i] = array[i];
 254				pr_debug("lane %u polarity %sinverted",
 255					 i, array[i] ? "" : "not ");
 256			}
 257		} else {
 258			pr_debug("no lane polarities defined, assuming not inverted\n");
 259		}
 260	}
 261
 262	return 0;
 263}
 264
 265#define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
 266			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
 267			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
 268			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
 269			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
 270			     V4L2_MBUS_FIELD_EVEN_LOW)
 271
 272static void
 273v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
 274					struct v4l2_fwnode_endpoint *vep,
 275					enum v4l2_mbus_type bus_type)
 276{
 277	struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
 278	unsigned int flags = 0;
 279	u32 v;
 280
 281	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
 282		flags = bus->flags;
 283
 284	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
 285		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
 286			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
 287		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
 288			V4L2_MBUS_HSYNC_ACTIVE_LOW;
 289		pr_debug("hsync-active %s\n", v ? "high" : "low");
 290	}
 291
 292	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
 293		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
 294			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
 295		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
 296			V4L2_MBUS_VSYNC_ACTIVE_LOW;
 297		pr_debug("vsync-active %s\n", v ? "high" : "low");
 298	}
 299
 300	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
 301		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
 302			   V4L2_MBUS_FIELD_EVEN_LOW);
 303		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
 304			V4L2_MBUS_FIELD_EVEN_LOW;
 305		pr_debug("field-even-active %s\n", v ? "high" : "low");
 306	}
 307
 308	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
 309		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
 310			   V4L2_MBUS_PCLK_SAMPLE_FALLING);
 311		flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
 312			V4L2_MBUS_PCLK_SAMPLE_FALLING;
 313		pr_debug("pclk-sample %s\n", v ? "high" : "low");
 314	}
 315
 316	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
 317		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
 318			   V4L2_MBUS_DATA_ACTIVE_LOW);
 319		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
 320			V4L2_MBUS_DATA_ACTIVE_LOW;
 321		pr_debug("data-active %s\n", v ? "high" : "low");
 322	}
 323
 324	if (fwnode_property_present(fwnode, "slave-mode")) {
 325		pr_debug("slave mode\n");
 326		flags &= ~V4L2_MBUS_MASTER;
 327		flags |= V4L2_MBUS_SLAVE;
 328	} else {
 329		flags &= ~V4L2_MBUS_SLAVE;
 330		flags |= V4L2_MBUS_MASTER;
 331	}
 332
 333	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
 334		bus->bus_width = v;
 335		pr_debug("bus-width %u\n", v);
 336	}
 337
 338	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
 339		bus->data_shift = v;
 340		pr_debug("data-shift %u\n", v);
 341	}
 342
 343	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
 344		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
 345			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
 346		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
 347			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
 348		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
 349	}
 350
 351	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
 352		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
 353			   V4L2_MBUS_DATA_ENABLE_LOW);
 354		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
 355			V4L2_MBUS_DATA_ENABLE_LOW;
 356		pr_debug("data-enable-active %s\n", v ? "high" : "low");
 357	}
 358
 359	switch (bus_type) {
 360	default:
 361		bus->flags = flags;
 362		if (flags & PARALLEL_MBUS_FLAGS)
 363			vep->bus_type = V4L2_MBUS_PARALLEL;
 364		else
 365			vep->bus_type = V4L2_MBUS_BT656;
 366		break;
 367	case V4L2_MBUS_PARALLEL:
 368		vep->bus_type = V4L2_MBUS_PARALLEL;
 369		bus->flags = flags;
 370		break;
 371	case V4L2_MBUS_BT656:
 372		vep->bus_type = V4L2_MBUS_BT656;
 373		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
 374		break;
 375	}
 376}
 377
 378static void
 379v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
 380				    struct v4l2_fwnode_endpoint *vep,
 381				    enum v4l2_mbus_type bus_type)
 382{
 383	struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
 384	u32 v;
 385
 386	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
 387		bus->clock_inv = v;
 388		pr_debug("clock-inv %u\n", v);
 389	}
 390
 391	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
 392		bus->strobe = v;
 393		pr_debug("strobe %u\n", v);
 394	}
 395
 396	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
 397		bus->data_lane = v;
 398		pr_debug("data-lanes %u\n", v);
 399	}
 400
 401	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
 402		bus->clock_lane = v;
 403		pr_debug("clock-lanes %u\n", v);
 404	}
 405
 406	if (bus_type == V4L2_MBUS_CCP2)
 407		vep->bus_type = V4L2_MBUS_CCP2;
 408	else
 409		vep->bus_type = V4L2_MBUS_CSI1;
 410}
 411
 412static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
 413					struct v4l2_fwnode_endpoint *vep)
 414{
 415	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
 416	enum v4l2_mbus_type mbus_type;
 417	int rval;
 418
 419	if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
 420		/* Zero fields from bus union to until the end */
 421		memset(&vep->bus, 0,
 422		       sizeof(*vep) - offsetof(typeof(*vep), bus));
 423	}
 424
 425	pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
 426
 427	/*
 428	 * Zero the fwnode graph endpoint memory in case we don't end up parsing
 429	 * the endpoint.
 430	 */
 431	memset(&vep->base, 0, sizeof(vep->base));
 432
 433	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
 434	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
 435		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
 436		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
 437		 vep->bus_type);
 438	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
 439
 440	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
 441		if (mbus_type != V4L2_MBUS_UNKNOWN &&
 442		    vep->bus_type != mbus_type) {
 443			pr_debug("expecting bus type %s\n",
 444				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
 445			return -ENXIO;
 446		}
 447	} else {
 448		vep->bus_type = mbus_type;
 449	}
 450
 451	switch (vep->bus_type) {
 452	case V4L2_MBUS_UNKNOWN:
 453		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
 454							   V4L2_MBUS_UNKNOWN);
 455		if (rval)
 456			return rval;
 457
 458		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
 459			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
 460								V4L2_MBUS_UNKNOWN);
 461
 462		pr_debug("assuming media bus type %s (%u)\n",
 463			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
 464			 vep->bus_type);
 465
 466		break;
 467	case V4L2_MBUS_CCP2:
 468	case V4L2_MBUS_CSI1:
 469		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
 470
 471		break;
 472	case V4L2_MBUS_CSI2_DPHY:
 473	case V4L2_MBUS_CSI2_CPHY:
 474		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
 475							   vep->bus_type);
 476		if (rval)
 477			return rval;
 478
 479		break;
 480	case V4L2_MBUS_PARALLEL:
 481	case V4L2_MBUS_BT656:
 482		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
 483							vep->bus_type);
 484
 485		break;
 486	default:
 487		pr_warn("unsupported bus type %u\n", mbus_type);
 488		return -EINVAL;
 489	}
 490
 491	fwnode_graph_parse_endpoint(fwnode, &vep->base);
 492
 493	return 0;
 494}
 495
 496int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
 497			       struct v4l2_fwnode_endpoint *vep)
 498{
 499	int ret;
 500
 501	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
 502
 503	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
 504
 505	return ret;
 506}
 507EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
 508
 509void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
 510{
 511	if (IS_ERR_OR_NULL(vep))
 512		return;
 513
 514	kfree(vep->link_frequencies);
 515	vep->link_frequencies = NULL;
 516}
 517EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
 518
 519int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
 520				     struct v4l2_fwnode_endpoint *vep)
 521{
 522	int rval;
 523
 524	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
 525	if (rval < 0)
 526		return rval;
 527
 528	rval = fwnode_property_count_u64(fwnode, "link-frequencies");
 529	if (rval > 0) {
 530		unsigned int i;
 531
 532		vep->link_frequencies =
 533			kmalloc_array(rval, sizeof(*vep->link_frequencies),
 534				      GFP_KERNEL);
 535		if (!vep->link_frequencies)
 536			return -ENOMEM;
 537
 538		vep->nr_of_link_frequencies = rval;
 539
 540		rval = fwnode_property_read_u64_array(fwnode,
 541						      "link-frequencies",
 542						      vep->link_frequencies,
 543						      vep->nr_of_link_frequencies);
 544		if (rval < 0) {
 545			v4l2_fwnode_endpoint_free(vep);
 546			return rval;
 547		}
 548
 549		for (i = 0; i < vep->nr_of_link_frequencies; i++)
 550			pr_info("link-frequencies %u value %llu\n", i,
 551				vep->link_frequencies[i]);
 552	}
 553
 554	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
 555
 556	return 0;
 557}
 558EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
 559
 560int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
 561			   struct v4l2_fwnode_link *link)
 562{
 563	struct fwnode_endpoint fwep;
 564
 565	memset(link, 0, sizeof(*link));
 566
 567	fwnode_graph_parse_endpoint(fwnode, &fwep);
 568	link->local_id = fwep.id;
 569	link->local_port = fwep.port;
 570	link->local_node = fwnode_graph_get_port_parent(fwnode);
 571
 572	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
 573	if (!fwnode) {
 574		fwnode_handle_put(fwnode);
 575		return -ENOLINK;
 576	}
 577
 578	fwnode_graph_parse_endpoint(fwnode, &fwep);
 579	link->remote_id = fwep.id;
 580	link->remote_port = fwep.port;
 581	link->remote_node = fwnode_graph_get_port_parent(fwnode);
 582
 583	return 0;
 584}
 585EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
 586
 587void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
 588{
 589	fwnode_handle_put(link->local_node);
 590	fwnode_handle_put(link->remote_node);
 591}
 592EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
 593
 594static const struct v4l2_fwnode_connector_conv {
 595	enum v4l2_connector_type type;
 596	const char *compatible;
 597} connectors[] = {
 598	{
 599		.type = V4L2_CONN_COMPOSITE,
 600		.compatible = "composite-video-connector",
 601	}, {
 602		.type = V4L2_CONN_SVIDEO,
 603		.compatible = "svideo-connector",
 604	},
 605};
 606
 607static enum v4l2_connector_type
 608v4l2_fwnode_string_to_connector_type(const char *con_str)
 609{
 610	unsigned int i;
 611
 612	for (i = 0; i < ARRAY_SIZE(connectors); i++)
 613		if (!strcmp(con_str, connectors[i].compatible))
 614			return connectors[i].type;
 615
 616	return V4L2_CONN_UNKNOWN;
 617}
 618
 619static void
 620v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
 621				   struct v4l2_fwnode_connector *vc)
 622{
 623	u32 stds;
 624	int ret;
 625
 626	ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
 627
 628	/* The property is optional. */
 629	vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
 630}
 631
 632void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
 633{
 634	struct v4l2_connector_link *link, *tmp;
 635
 636	if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
 637		return;
 638
 639	list_for_each_entry_safe(link, tmp, &connector->links, head) {
 640		v4l2_fwnode_put_link(&link->fwnode_link);
 641		list_del(&link->head);
 642		kfree(link);
 643	}
 644
 645	kfree(connector->label);
 646	connector->label = NULL;
 647	connector->type = V4L2_CONN_UNKNOWN;
 648}
 649EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
 650
 651static enum v4l2_connector_type
 652v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
 653{
 654	const char *type_name;
 655	int err;
 656
 657	if (!fwnode)
 658		return V4L2_CONN_UNKNOWN;
 659
 660	/* The connector-type is stored within the compatible string. */
 661	err = fwnode_property_read_string(fwnode, "compatible", &type_name);
 662	if (err)
 663		return V4L2_CONN_UNKNOWN;
 664
 665	return v4l2_fwnode_string_to_connector_type(type_name);
 666}
 667
 668int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
 669				struct v4l2_fwnode_connector *connector)
 670{
 671	struct fwnode_handle *connector_node;
 672	enum v4l2_connector_type connector_type;
 673	const char *label;
 674	int err;
 675
 676	if (!fwnode)
 677		return -EINVAL;
 678
 679	memset(connector, 0, sizeof(*connector));
 680
 681	INIT_LIST_HEAD(&connector->links);
 682
 683	connector_node = fwnode_graph_get_port_parent(fwnode);
 684	connector_type = v4l2_fwnode_get_connector_type(connector_node);
 685	if (connector_type == V4L2_CONN_UNKNOWN) {
 686		fwnode_handle_put(connector_node);
 687		connector_node = fwnode_graph_get_remote_port_parent(fwnode);
 688		connector_type = v4l2_fwnode_get_connector_type(connector_node);
 689	}
 690
 691	if (connector_type == V4L2_CONN_UNKNOWN) {
 692		pr_err("Unknown connector type\n");
 693		err = -ENOTCONN;
 694		goto out;
 695	}
 696
 697	connector->type = connector_type;
 698	connector->name = fwnode_get_name(connector_node);
 699	err = fwnode_property_read_string(connector_node, "label", &label);
 700	connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
 701
 702	/* Parse the connector specific properties. */
 703	switch (connector->type) {
 704	case V4L2_CONN_COMPOSITE:
 705	case V4L2_CONN_SVIDEO:
 706		v4l2_fwnode_connector_parse_analog(connector_node, connector);
 707		break;
 708	/* Avoid compiler warnings */
 709	case V4L2_CONN_UNKNOWN:
 710		break;
 711	}
 712
 713out:
 714	fwnode_handle_put(connector_node);
 715
 716	return err;
 717}
 718EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
 719
 720int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
 721				   struct v4l2_fwnode_connector *connector)
 722{
 723	struct fwnode_handle *connector_ep;
 724	struct v4l2_connector_link *link;
 725	int err;
 726
 727	if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
 728		return -EINVAL;
 729
 730	connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
 731	if (!connector_ep)
 732		return -ENOTCONN;
 733
 734	link = kzalloc(sizeof(*link), GFP_KERNEL);
 735	if (!link) {
 736		err = -ENOMEM;
 737		goto err;
 738	}
 739
 740	err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
 741	if (err)
 742		goto err;
 743
 744	fwnode_handle_put(connector_ep);
 745
 746	list_add(&link->head, &connector->links);
 747	connector->nr_of_links++;
 748
 749	return 0;
 750
 751err:
 752	kfree(link);
 753	fwnode_handle_put(connector_ep);
 754
 755	return err;
 756}
 757EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
 758
 759int v4l2_fwnode_device_parse(struct device *dev,
 760			     struct v4l2_fwnode_device_properties *props)
 761{
 762	struct fwnode_handle *fwnode = dev_fwnode(dev);
 763	u32 val;
 764	int ret;
 765
 766	memset(props, 0, sizeof(*props));
 767
 768	props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
 769	ret = fwnode_property_read_u32(fwnode, "orientation", &val);
 770	if (!ret) {
 771		switch (val) {
 772		case V4L2_FWNODE_ORIENTATION_FRONT:
 773		case V4L2_FWNODE_ORIENTATION_BACK:
 774		case V4L2_FWNODE_ORIENTATION_EXTERNAL:
 775			break;
 776		default:
 777			dev_warn(dev, "Unsupported device orientation: %u\n", val);
 778			return -EINVAL;
 779		}
 780
 781		props->orientation = val;
 782		dev_dbg(dev, "device orientation: %u\n", val);
 783	}
 784
 785	props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
 786	ret = fwnode_property_read_u32(fwnode, "rotation", &val);
 787	if (!ret) {
 788		if (val >= 360) {
 789			dev_warn(dev, "Unsupported device rotation: %u\n", val);
 790			return -EINVAL;
 791		}
 792
 793		props->rotation = val;
 794		dev_dbg(dev, "device rotation: %u\n", val);
 795	}
 796
 797	return 0;
 798}
 799EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
 800
 801static int
 802v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
 803					  struct v4l2_async_notifier *notifier,
 804					  struct fwnode_handle *endpoint,
 805					  unsigned int asd_struct_size,
 806					  parse_endpoint_func parse_endpoint)
 807{
 808	struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
 809	struct v4l2_async_subdev *asd;
 810	int ret;
 811
 812	asd = kzalloc(asd_struct_size, GFP_KERNEL);
 813	if (!asd)
 814		return -ENOMEM;
 815
 816	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
 817	asd->match.fwnode =
 818		fwnode_graph_get_remote_port_parent(endpoint);
 819	if (!asd->match.fwnode) {
 820		dev_dbg(dev, "no remote endpoint found\n");
 821		ret = -ENOTCONN;
 822		goto out_err;
 823	}
 824
 825	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
 826	if (ret) {
 827		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
 828			 ret);
 829		goto out_err;
 830	}
 831
 832	ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
 833	if (ret == -ENOTCONN)
 834		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
 835			vep.base.id);
 836	else if (ret < 0)
 837		dev_warn(dev,
 838			 "driver could not parse port@%u/endpoint@%u (%d)\n",
 839			 vep.base.port, vep.base.id, ret);
 840	v4l2_fwnode_endpoint_free(&vep);
 841	if (ret < 0)
 842		goto out_err;
 843
 844	ret = v4l2_async_notifier_add_subdev(notifier, asd);
 845	if (ret < 0) {
 846		/* not an error if asd already exists */
 847		if (ret == -EEXIST)
 848			ret = 0;
 849		goto out_err;
 850	}
 851
 852	return 0;
 853
 854out_err:
 855	fwnode_handle_put(asd->match.fwnode);
 856	kfree(asd);
 857
 858	return ret == -ENOTCONN ? 0 : ret;
 859}
 860
 861static int
 862__v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
 863				      struct v4l2_async_notifier *notifier,
 864				      size_t asd_struct_size,
 865				      unsigned int port,
 866				      bool has_port,
 867				      parse_endpoint_func parse_endpoint)
 868{
 869	struct fwnode_handle *fwnode;
 870	int ret = 0;
 871
 872	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
 873		return -EINVAL;
 874
 875	fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
 876		struct fwnode_handle *dev_fwnode;
 877		bool is_available;
 878
 879		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
 880		is_available = fwnode_device_is_available(dev_fwnode);
 881		fwnode_handle_put(dev_fwnode);
 882		if (!is_available)
 883			continue;
 884
 885		if (has_port) {
 886			struct fwnode_endpoint ep;
 887
 888			ret = fwnode_graph_parse_endpoint(fwnode, &ep);
 889			if (ret)
 890				break;
 891
 892			if (ep.port != port)
 893				continue;
 894		}
 895
 896		ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
 897								notifier,
 898								fwnode,
 899								asd_struct_size,
 900								parse_endpoint);
 901		if (ret < 0)
 902			break;
 903	}
 904
 905	fwnode_handle_put(fwnode);
 906
 907	return ret;
 908}
 909
 910int
 911v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
 912					   struct v4l2_async_notifier *notifier,
 913					   size_t asd_struct_size,
 914					   parse_endpoint_func parse_endpoint)
 915{
 916	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
 917						     asd_struct_size, 0,
 918						     false, parse_endpoint);
 919}
 920EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
 921
 922int
 923v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
 924						   struct v4l2_async_notifier *notifier,
 925						   size_t asd_struct_size,
 926						   unsigned int port,
 927						   parse_endpoint_func parse_endpoint)
 928{
 929	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
 930						     asd_struct_size,
 931						     port, true,
 932						     parse_endpoint);
 933}
 934EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
 935
 936/*
 937 * v4l2_fwnode_reference_parse - parse references for async sub-devices
 938 * @dev: the device node the properties of which are parsed for references
 939 * @notifier: the async notifier where the async subdevs will be added
 940 * @prop: the name of the property
 941 *
 942 * Return: 0 on success
 943 *	   -ENOENT if no entries were found
 944 *	   -ENOMEM if memory allocation failed
 945 *	   -EINVAL if property parsing failed
 946 */
 947static int v4l2_fwnode_reference_parse(struct device *dev,
 948				       struct v4l2_async_notifier *notifier,
 949				       const char *prop)
 950{
 951	struct fwnode_reference_args args;
 952	unsigned int index;
 953	int ret;
 954
 955	for (index = 0;
 956	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
 957							prop, NULL, 0,
 958							index, &args));
 959	     index++)
 960		fwnode_handle_put(args.fwnode);
 961
 962	if (!index)
 963		return -ENOENT;
 964
 965	/*
 966	 * Note that right now both -ENODATA and -ENOENT may signal
 967	 * out-of-bounds access. Return the error in cases other than that.
 968	 */
 969	if (ret != -ENOENT && ret != -ENODATA)
 970		return ret;
 971
 972	for (index = 0;
 973	     !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
 974						 0, index, &args);
 975	     index++) {
 976		struct v4l2_async_subdev *asd;
 977
 978		asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
 979							    args.fwnode,
 980							    sizeof(*asd));
 981		fwnode_handle_put(args.fwnode);
 982		if (IS_ERR(asd)) {
 983			/* not an error if asd already exists */
 984			if (PTR_ERR(asd) == -EEXIST)
 985				continue;
 986
 987			return PTR_ERR(asd);
 988		}
 989	}
 990
 991	return 0;
 992}
 993
 994/*
 995 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
 996 *					arguments
 997 * @fwnode: fwnode to read @prop from
 998 * @notifier: notifier for @dev
 999 * @prop: the name of the property
1000 * @index: the index of the reference to get
1001 * @props: the array of integer property names
1002 * @nprops: the number of integer property names in @nprops
1003 *
1004 * First find an fwnode referred to by the reference at @index in @prop.
1005 *
1006 * Then under that fwnode, @nprops times, for each property in @props,
1007 * iteratively follow child nodes starting from fwnode such that they have the
1008 * property in @props array at the index of the child node distance from the
1009 * root node and the value of that property matching with the integer argument
1010 * of the reference, at the same index.
1011 *
1012 * The child fwnode reached at the end of the iteration is then returned to the
1013 * caller.
1014 *
1015 * The core reason for this is that you cannot refer to just any node in ACPI.
1016 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
1017 * provide a list of (property name, property value) tuples where each tuple
1018 * uniquely identifies a child node. The first tuple identifies a child directly
1019 * underneath the device fwnode, the next tuple identifies a child node
1020 * underneath the fwnode identified by the previous tuple, etc. until you
1021 * reached the fwnode you need.
1022 *
1023 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
1024 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
1025 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
1026 * data-node-references.txt and leds.txt .
1027 *
1028 *	Scope (\_SB.PCI0.I2C2)
1029 *	{
1030 *		Device (CAM0)
1031 *		{
1032 *			Name (_DSD, Package () {
1033 *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1034 *				Package () {
1035 *					Package () {
1036 *						"compatible",
1037 *						Package () { "nokia,smia" }
1038 *					},
1039 *				},
1040 *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1041 *				Package () {
1042 *					Package () { "port0", "PRT0" },
1043 *				}
1044 *			})
1045 *			Name (PRT0, Package() {
1046 *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1047 *				Package () {
1048 *					Package () { "port", 0 },
1049 *				},
1050 *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1051 *				Package () {
1052 *					Package () { "endpoint0", "EP00" },
1053 *				}
1054 *			})
1055 *			Name (EP00, Package() {
1056 *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1057 *				Package () {
1058 *					Package () { "endpoint", 0 },
1059 *					Package () {
1060 *						"remote-endpoint",
1061 *						Package() {
1062 *							\_SB.PCI0.ISP, 4, 0
1063 *						}
1064 *					},
1065 *				}
1066 *			})
1067 *		}
1068 *	}
1069 *
1070 *	Scope (\_SB.PCI0)
1071 *	{
1072 *		Device (ISP)
1073 *		{
1074 *			Name (_DSD, Package () {
1075 *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1076 *				Package () {
1077 *					Package () { "port4", "PRT4" },
1078 *				}
1079 *			})
1080 *
1081 *			Name (PRT4, Package() {
1082 *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1083 *				Package () {
1084 *					Package () { "port", 4 },
1085 *				},
1086 *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1087 *				Package () {
1088 *					Package () { "endpoint0", "EP40" },
1089 *				}
1090 *			})
1091 *
1092 *			Name (EP40, Package() {
1093 *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1094 *				Package () {
1095 *					Package () { "endpoint", 0 },
1096 *					Package () {
1097 *						"remote-endpoint",
1098 *						Package () {
1099 *							\_SB.PCI0.I2C2.CAM0,
1100 *							0, 0
1101 *						}
1102 *					},
1103 *				}
1104 *			})
1105 *		}
1106 *	}
1107 *
1108 * From the EP40 node under ISP device, you could parse the graph remote
1109 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1110 *
1111 *  @fwnode: fwnode referring to EP40 under ISP.
1112 *  @prop: "remote-endpoint"
1113 *  @index: 0
1114 *  @props: "port", "endpoint"
1115 *  @nprops: 2
1116 *
1117 * And you'd get back fwnode referring to EP00 under CAM0.
1118 *
1119 * The same works the other way around: if you use EP00 under CAM0 as the
1120 * fwnode, you'll get fwnode referring to EP40 under ISP.
1121 *
1122 * The same example in DT syntax would look like this:
1123 *
1124 * cam: cam0 {
1125 *	compatible = "nokia,smia";
1126 *
1127 *	port {
1128 *		port = <0>;
1129 *		endpoint {
1130 *			endpoint = <0>;
1131 *			remote-endpoint = <&isp 4 0>;
1132 *		};
1133 *	};
1134 * };
1135 *
1136 * isp: isp {
1137 *	ports {
1138 *		port@4 {
1139 *			port = <4>;
1140 *			endpoint {
1141 *				endpoint = <0>;
1142 *				remote-endpoint = <&cam 0 0>;
1143 *			};
1144 *		};
1145 *	};
1146 * };
1147 *
1148 * Return: 0 on success
1149 *	   -ENOENT if no entries (or the property itself) were found
1150 *	   -EINVAL if property parsing otherwise failed
1151 *	   -ENOMEM if memory allocation failed
1152 */
1153static struct fwnode_handle *
1154v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1155				   const char *prop,
1156				   unsigned int index,
1157				   const char * const *props,
1158				   unsigned int nprops)
1159{
1160	struct fwnode_reference_args fwnode_args;
1161	u64 *args = fwnode_args.args;
1162	struct fwnode_handle *child;
1163	int ret;
1164
1165	/*
1166	 * Obtain remote fwnode as well as the integer arguments.
1167	 *
1168	 * Note that right now both -ENODATA and -ENOENT may signal
1169	 * out-of-bounds access. Return -ENOENT in that case.
1170	 */
1171	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1172						 index, &fwnode_args);
1173	if (ret)
1174		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1175
1176	/*
1177	 * Find a node in the tree under the referred fwnode corresponding to
1178	 * the integer arguments.
1179	 */
1180	fwnode = fwnode_args.fwnode;
1181	while (nprops--) {
1182		u32 val;
1183
1184		/* Loop over all child nodes under fwnode. */
1185		fwnode_for_each_child_node(fwnode, child) {
1186			if (fwnode_property_read_u32(child, *props, &val))
1187				continue;
1188
1189			/* Found property, see if its value matches. */
1190			if (val == *args)
1191				break;
1192		}
1193
1194		fwnode_handle_put(fwnode);
1195
1196		/* No property found; return an error here. */
1197		if (!child) {
1198			fwnode = ERR_PTR(-ENOENT);
1199			break;
1200		}
1201
1202		props++;
1203		args++;
1204		fwnode = child;
1205	}
1206
1207	return fwnode;
1208}
1209
1210struct v4l2_fwnode_int_props {
1211	const char *name;
1212	const char * const *props;
1213	unsigned int nprops;
1214};
1215
1216/*
1217 * v4l2_fwnode_reference_parse_int_props - parse references for async
1218 *					   sub-devices
1219 * @dev: struct device pointer
1220 * @notifier: notifier for @dev
1221 * @prop: the name of the property
1222 * @props: the array of integer property names
1223 * @nprops: the number of integer properties
1224 *
1225 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1226 * property @prop with integer arguments with child nodes matching in properties
1227 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1228 * accordingly.
1229 *
1230 * While it is technically possible to use this function on DT, it is only
1231 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1232 * on ACPI the references are limited to devices.
1233 *
1234 * Return: 0 on success
1235 *	   -ENOENT if no entries (or the property itself) were found
1236 *	   -EINVAL if property parsing otherwisefailed
1237 *	   -ENOMEM if memory allocation failed
1238 */
1239static int
1240v4l2_fwnode_reference_parse_int_props(struct device *dev,
1241				      struct v4l2_async_notifier *notifier,
1242				      const struct v4l2_fwnode_int_props *p)
1243{
1244	struct fwnode_handle *fwnode;
1245	unsigned int index;
1246	int ret;
1247	const char *prop = p->name;
1248	const char * const *props = p->props;
1249	unsigned int nprops = p->nprops;
1250
1251	index = 0;
1252	do {
1253		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1254							    prop, index,
1255							    props, nprops);
1256		if (IS_ERR(fwnode)) {
1257			/*
1258			 * Note that right now both -ENODATA and -ENOENT may
1259			 * signal out-of-bounds access. Return the error in
1260			 * cases other than that.
1261			 */
1262			if (PTR_ERR(fwnode) != -ENOENT &&
1263			    PTR_ERR(fwnode) != -ENODATA)
1264				return PTR_ERR(fwnode);
1265			break;
1266		}
1267		fwnode_handle_put(fwnode);
1268		index++;
1269	} while (1);
1270
1271	for (index = 0;
1272	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1273								  prop, index,
1274								  props,
1275								  nprops)));
1276	     index++) {
1277		struct v4l2_async_subdev *asd;
1278
1279		asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1280							    sizeof(*asd));
1281		fwnode_handle_put(fwnode);
1282		if (IS_ERR(asd)) {
1283			ret = PTR_ERR(asd);
1284			/* not an error if asd already exists */
1285			if (ret == -EEXIST)
1286				continue;
1287
1288			return PTR_ERR(asd);
1289		}
1290	}
1291
1292	return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1293}
1294
1295int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1296						   struct v4l2_async_notifier *notifier)
1297{
1298	static const char * const led_props[] = { "led" };
1299	static const struct v4l2_fwnode_int_props props[] = {
1300		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1301		{ "lens-focus", NULL, 0 },
1302	};
1303	unsigned int i;
1304
1305	for (i = 0; i < ARRAY_SIZE(props); i++) {
1306		int ret;
1307
1308		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1309			ret = v4l2_fwnode_reference_parse_int_props(dev,
1310								    notifier,
1311								    &props[i]);
1312		else
1313			ret = v4l2_fwnode_reference_parse(dev, notifier,
1314							  props[i].name);
1315		if (ret && ret != -ENOENT) {
1316			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1317				 props[i].name, ret);
1318			return ret;
1319		}
1320	}
1321
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1325
1326int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1327{
1328	struct v4l2_async_notifier *notifier;
1329	int ret;
1330
1331	if (WARN_ON(!sd->dev))
1332		return -ENODEV;
1333
1334	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1335	if (!notifier)
1336		return -ENOMEM;
1337
1338	v4l2_async_notifier_init(notifier);
1339
1340	ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1341							     notifier);
1342	if (ret < 0)
1343		goto out_cleanup;
1344
1345	ret = v4l2_async_subdev_notifier_register(sd, notifier);
1346	if (ret < 0)
1347		goto out_cleanup;
1348
1349	ret = v4l2_async_register_subdev(sd);
1350	if (ret < 0)
1351		goto out_unregister;
1352
1353	sd->subdev_notifier = notifier;
1354
1355	return 0;
1356
1357out_unregister:
1358	v4l2_async_notifier_unregister(notifier);
1359
1360out_cleanup:
1361	v4l2_async_notifier_cleanup(notifier);
1362	kfree(notifier);
1363
1364	return ret;
1365}
1366EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1367
1368MODULE_LICENSE("GPL");
1369MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1370MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1371MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");