Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17#include <linux/acpi.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/property.h>
23#include <linux/slab.h>
24#include <linux/string.h>
25#include <linux/types.h>
26
27#include <media/v4l2-async.h>
28#include <media/v4l2-fwnode.h>
29#include <media/v4l2-subdev.h>
30
31static const struct v4l2_fwnode_bus_conv {
32 enum v4l2_fwnode_bus_type fwnode_bus_type;
33 enum v4l2_mbus_type mbus_type;
34 const char *name;
35} buses[] = {
36 {
37 V4L2_FWNODE_BUS_TYPE_GUESS,
38 V4L2_MBUS_UNKNOWN,
39 "not specified",
40 }, {
41 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
42 V4L2_MBUS_CSI2_CPHY,
43 "MIPI CSI-2 C-PHY",
44 }, {
45 V4L2_FWNODE_BUS_TYPE_CSI1,
46 V4L2_MBUS_CSI1,
47 "MIPI CSI-1",
48 }, {
49 V4L2_FWNODE_BUS_TYPE_CCP2,
50 V4L2_MBUS_CCP2,
51 "compact camera port 2",
52 }, {
53 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
54 V4L2_MBUS_CSI2_DPHY,
55 "MIPI CSI-2 D-PHY",
56 }, {
57 V4L2_FWNODE_BUS_TYPE_PARALLEL,
58 V4L2_MBUS_PARALLEL,
59 "parallel",
60 }, {
61 V4L2_FWNODE_BUS_TYPE_BT656,
62 V4L2_MBUS_BT656,
63 "Bt.656",
64 }, {
65 V4L2_FWNODE_BUS_TYPE_DPI,
66 V4L2_MBUS_DPI,
67 "DPI",
68 }
69};
70
71static const struct v4l2_fwnode_bus_conv *
72get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
73{
74 unsigned int i;
75
76 for (i = 0; i < ARRAY_SIZE(buses); i++)
77 if (buses[i].fwnode_bus_type == type)
78 return &buses[i];
79
80 return NULL;
81}
82
83static enum v4l2_mbus_type
84v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
85{
86 const struct v4l2_fwnode_bus_conv *conv =
87 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
88
89 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
90}
91
92static const char *
93v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
94{
95 const struct v4l2_fwnode_bus_conv *conv =
96 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
97
98 return conv ? conv->name : "not found";
99}
100
101static const struct v4l2_fwnode_bus_conv *
102get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
103{
104 unsigned int i;
105
106 for (i = 0; i < ARRAY_SIZE(buses); i++)
107 if (buses[i].mbus_type == type)
108 return &buses[i];
109
110 return NULL;
111}
112
113static const char *
114v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
115{
116 const struct v4l2_fwnode_bus_conv *conv =
117 get_v4l2_fwnode_bus_conv_by_mbus(type);
118
119 return conv ? conv->name : "not found";
120}
121
122static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
123 struct v4l2_fwnode_endpoint *vep,
124 enum v4l2_mbus_type bus_type)
125{
126 struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
127 bool have_clk_lane = false, have_data_lanes = false,
128 have_lane_polarities = false;
129 unsigned int flags = 0, lanes_used = 0;
130 u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
131 u32 clock_lane = 0;
132 unsigned int num_data_lanes = 0;
133 bool use_default_lane_mapping = false;
134 unsigned int i;
135 u32 v;
136 int rval;
137
138 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
139 bus_type == V4L2_MBUS_CSI2_CPHY) {
140 use_default_lane_mapping = true;
141
142 num_data_lanes = min_t(u32, bus->num_data_lanes,
143 V4L2_MBUS_CSI2_MAX_DATA_LANES);
144
145 clock_lane = bus->clock_lane;
146 if (clock_lane)
147 use_default_lane_mapping = false;
148
149 for (i = 0; i < num_data_lanes; i++) {
150 array[i] = bus->data_lanes[i];
151 if (array[i])
152 use_default_lane_mapping = false;
153 }
154
155 if (use_default_lane_mapping)
156 pr_debug("no lane mapping given, using defaults\n");
157 }
158
159 rval = fwnode_property_count_u32(fwnode, "data-lanes");
160 if (rval > 0) {
161 num_data_lanes =
162 min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
163
164 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
165 num_data_lanes);
166
167 have_data_lanes = true;
168 if (use_default_lane_mapping) {
169 pr_debug("data-lanes property exists; disabling default mapping\n");
170 use_default_lane_mapping = false;
171 }
172 }
173
174 for (i = 0; i < num_data_lanes; i++) {
175 if (lanes_used & BIT(array[i])) {
176 if (have_data_lanes || !use_default_lane_mapping)
177 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
178 array[i]);
179 use_default_lane_mapping = true;
180 }
181 lanes_used |= BIT(array[i]);
182
183 if (have_data_lanes)
184 pr_debug("lane %u position %u\n", i, array[i]);
185 }
186
187 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
188 if (rval > 0) {
189 if (rval != 1 + num_data_lanes /* clock+data */) {
190 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
191 1 + num_data_lanes, rval);
192 return -EINVAL;
193 }
194
195 have_lane_polarities = true;
196 }
197
198 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
199 clock_lane = v;
200 pr_debug("clock lane position %u\n", v);
201 have_clk_lane = true;
202 }
203
204 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
205 !use_default_lane_mapping) {
206 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
207 v);
208 use_default_lane_mapping = true;
209 }
210
211 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
212 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
213 pr_debug("non-continuous clock\n");
214 }
215
216 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
217 bus_type == V4L2_MBUS_CSI2_CPHY ||
218 lanes_used || have_clk_lane || flags) {
219 /* Only D-PHY has a clock lane. */
220 unsigned int dfl_data_lane_index =
221 bus_type == V4L2_MBUS_CSI2_DPHY;
222
223 bus->flags = flags;
224 if (bus_type == V4L2_MBUS_UNKNOWN)
225 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
226 bus->num_data_lanes = num_data_lanes;
227
228 if (use_default_lane_mapping) {
229 bus->clock_lane = 0;
230 for (i = 0; i < num_data_lanes; i++)
231 bus->data_lanes[i] = dfl_data_lane_index + i;
232 } else {
233 bus->clock_lane = clock_lane;
234 for (i = 0; i < num_data_lanes; i++)
235 bus->data_lanes[i] = array[i];
236 }
237
238 if (have_lane_polarities) {
239 fwnode_property_read_u32_array(fwnode,
240 "lane-polarities", array,
241 1 + num_data_lanes);
242
243 for (i = 0; i < 1 + num_data_lanes; i++) {
244 bus->lane_polarities[i] = array[i];
245 pr_debug("lane %u polarity %sinverted",
246 i, array[i] ? "" : "not ");
247 }
248 } else {
249 pr_debug("no lane polarities defined, assuming not inverted\n");
250 }
251 }
252
253 return 0;
254}
255
256#define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
257 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
258 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
259 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
260 V4L2_MBUS_FIELD_EVEN_HIGH | \
261 V4L2_MBUS_FIELD_EVEN_LOW)
262
263static void
264v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
265 struct v4l2_fwnode_endpoint *vep,
266 enum v4l2_mbus_type bus_type)
267{
268 struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
269 unsigned int flags = 0;
270 u32 v;
271
272 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
273 flags = bus->flags;
274
275 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
276 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
277 V4L2_MBUS_HSYNC_ACTIVE_LOW);
278 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
279 V4L2_MBUS_HSYNC_ACTIVE_LOW;
280 pr_debug("hsync-active %s\n", v ? "high" : "low");
281 }
282
283 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
284 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
285 V4L2_MBUS_VSYNC_ACTIVE_LOW);
286 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
287 V4L2_MBUS_VSYNC_ACTIVE_LOW;
288 pr_debug("vsync-active %s\n", v ? "high" : "low");
289 }
290
291 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
292 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
293 V4L2_MBUS_FIELD_EVEN_LOW);
294 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
295 V4L2_MBUS_FIELD_EVEN_LOW;
296 pr_debug("field-even-active %s\n", v ? "high" : "low");
297 }
298
299 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
300 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
301 V4L2_MBUS_PCLK_SAMPLE_FALLING |
302 V4L2_MBUS_PCLK_SAMPLE_DUALEDGE);
303 switch (v) {
304 case 0:
305 flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
306 pr_debug("pclk-sample low\n");
307 break;
308 case 1:
309 flags |= V4L2_MBUS_PCLK_SAMPLE_RISING;
310 pr_debug("pclk-sample high\n");
311 break;
312 case 2:
313 flags |= V4L2_MBUS_PCLK_SAMPLE_DUALEDGE;
314 pr_debug("pclk-sample dual edge\n");
315 break;
316 default:
317 pr_warn("invalid argument for pclk-sample");
318 break;
319 }
320 }
321
322 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
323 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
324 V4L2_MBUS_DATA_ACTIVE_LOW);
325 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
326 V4L2_MBUS_DATA_ACTIVE_LOW;
327 pr_debug("data-active %s\n", v ? "high" : "low");
328 }
329
330 if (fwnode_property_present(fwnode, "slave-mode")) {
331 pr_debug("slave mode\n");
332 flags &= ~V4L2_MBUS_MASTER;
333 flags |= V4L2_MBUS_SLAVE;
334 } else {
335 flags &= ~V4L2_MBUS_SLAVE;
336 flags |= V4L2_MBUS_MASTER;
337 }
338
339 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
340 bus->bus_width = v;
341 pr_debug("bus-width %u\n", v);
342 }
343
344 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
345 bus->data_shift = v;
346 pr_debug("data-shift %u\n", v);
347 }
348
349 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
350 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
351 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
352 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
353 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
354 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
355 }
356
357 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
358 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
359 V4L2_MBUS_DATA_ENABLE_LOW);
360 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
361 V4L2_MBUS_DATA_ENABLE_LOW;
362 pr_debug("data-enable-active %s\n", v ? "high" : "low");
363 }
364
365 switch (bus_type) {
366 default:
367 bus->flags = flags;
368 if (flags & PARALLEL_MBUS_FLAGS)
369 vep->bus_type = V4L2_MBUS_PARALLEL;
370 else
371 vep->bus_type = V4L2_MBUS_BT656;
372 break;
373 case V4L2_MBUS_PARALLEL:
374 vep->bus_type = V4L2_MBUS_PARALLEL;
375 bus->flags = flags;
376 break;
377 case V4L2_MBUS_BT656:
378 vep->bus_type = V4L2_MBUS_BT656;
379 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
380 break;
381 }
382}
383
384static void
385v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
386 struct v4l2_fwnode_endpoint *vep,
387 enum v4l2_mbus_type bus_type)
388{
389 struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
390 u32 v;
391
392 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
393 bus->clock_inv = v;
394 pr_debug("clock-inv %u\n", v);
395 }
396
397 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
398 bus->strobe = v;
399 pr_debug("strobe %u\n", v);
400 }
401
402 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
403 bus->data_lane = v;
404 pr_debug("data-lanes %u\n", v);
405 }
406
407 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
408 bus->clock_lane = v;
409 pr_debug("clock-lanes %u\n", v);
410 }
411
412 if (bus_type == V4L2_MBUS_CCP2)
413 vep->bus_type = V4L2_MBUS_CCP2;
414 else
415 vep->bus_type = V4L2_MBUS_CSI1;
416}
417
418static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
419 struct v4l2_fwnode_endpoint *vep)
420{
421 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
422 enum v4l2_mbus_type mbus_type;
423 int rval;
424
425 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
426
427 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
428 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
429 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
430 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
431 vep->bus_type);
432 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
433 if (mbus_type == V4L2_MBUS_INVALID) {
434 pr_debug("unsupported bus type %u\n", bus_type);
435 return -EINVAL;
436 }
437
438 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
439 if (mbus_type != V4L2_MBUS_UNKNOWN &&
440 vep->bus_type != mbus_type) {
441 pr_debug("expecting bus type %s\n",
442 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
443 return -ENXIO;
444 }
445 } else {
446 vep->bus_type = mbus_type;
447 }
448
449 switch (vep->bus_type) {
450 case V4L2_MBUS_UNKNOWN:
451 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
452 V4L2_MBUS_UNKNOWN);
453 if (rval)
454 return rval;
455
456 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
457 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
458 V4L2_MBUS_UNKNOWN);
459
460 pr_debug("assuming media bus type %s (%u)\n",
461 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
462 vep->bus_type);
463
464 break;
465 case V4L2_MBUS_CCP2:
466 case V4L2_MBUS_CSI1:
467 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
468
469 break;
470 case V4L2_MBUS_CSI2_DPHY:
471 case V4L2_MBUS_CSI2_CPHY:
472 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
473 vep->bus_type);
474 if (rval)
475 return rval;
476
477 break;
478 case V4L2_MBUS_PARALLEL:
479 case V4L2_MBUS_BT656:
480 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
481 vep->bus_type);
482
483 break;
484 default:
485 pr_warn("unsupported bus type %u\n", mbus_type);
486 return -EINVAL;
487 }
488
489 fwnode_graph_parse_endpoint(fwnode, &vep->base);
490
491 return 0;
492}
493
494int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
495 struct v4l2_fwnode_endpoint *vep)
496{
497 int ret;
498
499 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
500
501 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
502
503 return ret;
504}
505EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
506
507void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
508{
509 if (IS_ERR_OR_NULL(vep))
510 return;
511
512 kfree(vep->link_frequencies);
513 vep->link_frequencies = NULL;
514}
515EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
516
517int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
518 struct v4l2_fwnode_endpoint *vep)
519{
520 int rval;
521
522 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
523 if (rval < 0)
524 return rval;
525
526 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
527 if (rval > 0) {
528 unsigned int i;
529
530 vep->link_frequencies =
531 kmalloc_array(rval, sizeof(*vep->link_frequencies),
532 GFP_KERNEL);
533 if (!vep->link_frequencies)
534 return -ENOMEM;
535
536 vep->nr_of_link_frequencies = rval;
537
538 rval = fwnode_property_read_u64_array(fwnode,
539 "link-frequencies",
540 vep->link_frequencies,
541 vep->nr_of_link_frequencies);
542 if (rval < 0) {
543 v4l2_fwnode_endpoint_free(vep);
544 return rval;
545 }
546
547 for (i = 0; i < vep->nr_of_link_frequencies; i++)
548 pr_debug("link-frequencies %u value %llu\n", i,
549 vep->link_frequencies[i]);
550 }
551
552 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
553
554 return 0;
555}
556EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
557
558int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
559 struct v4l2_fwnode_link *link)
560{
561 struct fwnode_endpoint fwep;
562
563 memset(link, 0, sizeof(*link));
564
565 fwnode_graph_parse_endpoint(fwnode, &fwep);
566 link->local_id = fwep.id;
567 link->local_port = fwep.port;
568 link->local_node = fwnode_graph_get_port_parent(fwnode);
569
570 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
571 if (!fwnode) {
572 fwnode_handle_put(fwnode);
573 return -ENOLINK;
574 }
575
576 fwnode_graph_parse_endpoint(fwnode, &fwep);
577 link->remote_id = fwep.id;
578 link->remote_port = fwep.port;
579 link->remote_node = fwnode_graph_get_port_parent(fwnode);
580
581 return 0;
582}
583EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
584
585void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
586{
587 fwnode_handle_put(link->local_node);
588 fwnode_handle_put(link->remote_node);
589}
590EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
591
592static const struct v4l2_fwnode_connector_conv {
593 enum v4l2_connector_type type;
594 const char *compatible;
595} connectors[] = {
596 {
597 .type = V4L2_CONN_COMPOSITE,
598 .compatible = "composite-video-connector",
599 }, {
600 .type = V4L2_CONN_SVIDEO,
601 .compatible = "svideo-connector",
602 },
603};
604
605static enum v4l2_connector_type
606v4l2_fwnode_string_to_connector_type(const char *con_str)
607{
608 unsigned int i;
609
610 for (i = 0; i < ARRAY_SIZE(connectors); i++)
611 if (!strcmp(con_str, connectors[i].compatible))
612 return connectors[i].type;
613
614 return V4L2_CONN_UNKNOWN;
615}
616
617static void
618v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
619 struct v4l2_fwnode_connector *vc)
620{
621 u32 stds;
622 int ret;
623
624 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
625
626 /* The property is optional. */
627 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
628}
629
630void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
631{
632 struct v4l2_connector_link *link, *tmp;
633
634 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
635 return;
636
637 list_for_each_entry_safe(link, tmp, &connector->links, head) {
638 v4l2_fwnode_put_link(&link->fwnode_link);
639 list_del(&link->head);
640 kfree(link);
641 }
642
643 kfree(connector->label);
644 connector->label = NULL;
645 connector->type = V4L2_CONN_UNKNOWN;
646}
647EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
648
649static enum v4l2_connector_type
650v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
651{
652 const char *type_name;
653 int err;
654
655 if (!fwnode)
656 return V4L2_CONN_UNKNOWN;
657
658 /* The connector-type is stored within the compatible string. */
659 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
660 if (err)
661 return V4L2_CONN_UNKNOWN;
662
663 return v4l2_fwnode_string_to_connector_type(type_name);
664}
665
666int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
667 struct v4l2_fwnode_connector *connector)
668{
669 struct fwnode_handle *connector_node;
670 enum v4l2_connector_type connector_type;
671 const char *label;
672 int err;
673
674 if (!fwnode)
675 return -EINVAL;
676
677 memset(connector, 0, sizeof(*connector));
678
679 INIT_LIST_HEAD(&connector->links);
680
681 connector_node = fwnode_graph_get_port_parent(fwnode);
682 connector_type = v4l2_fwnode_get_connector_type(connector_node);
683 if (connector_type == V4L2_CONN_UNKNOWN) {
684 fwnode_handle_put(connector_node);
685 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
686 connector_type = v4l2_fwnode_get_connector_type(connector_node);
687 }
688
689 if (connector_type == V4L2_CONN_UNKNOWN) {
690 pr_err("Unknown connector type\n");
691 err = -ENOTCONN;
692 goto out;
693 }
694
695 connector->type = connector_type;
696 connector->name = fwnode_get_name(connector_node);
697 err = fwnode_property_read_string(connector_node, "label", &label);
698 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
699
700 /* Parse the connector specific properties. */
701 switch (connector->type) {
702 case V4L2_CONN_COMPOSITE:
703 case V4L2_CONN_SVIDEO:
704 v4l2_fwnode_connector_parse_analog(connector_node, connector);
705 break;
706 /* Avoid compiler warnings */
707 case V4L2_CONN_UNKNOWN:
708 break;
709 }
710
711out:
712 fwnode_handle_put(connector_node);
713
714 return err;
715}
716EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
717
718int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
719 struct v4l2_fwnode_connector *connector)
720{
721 struct fwnode_handle *connector_ep;
722 struct v4l2_connector_link *link;
723 int err;
724
725 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
726 return -EINVAL;
727
728 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
729 if (!connector_ep)
730 return -ENOTCONN;
731
732 link = kzalloc(sizeof(*link), GFP_KERNEL);
733 if (!link) {
734 err = -ENOMEM;
735 goto err;
736 }
737
738 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
739 if (err)
740 goto err;
741
742 fwnode_handle_put(connector_ep);
743
744 list_add(&link->head, &connector->links);
745 connector->nr_of_links++;
746
747 return 0;
748
749err:
750 kfree(link);
751 fwnode_handle_put(connector_ep);
752
753 return err;
754}
755EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
756
757int v4l2_fwnode_device_parse(struct device *dev,
758 struct v4l2_fwnode_device_properties *props)
759{
760 struct fwnode_handle *fwnode = dev_fwnode(dev);
761 u32 val;
762 int ret;
763
764 memset(props, 0, sizeof(*props));
765
766 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
767 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
768 if (!ret) {
769 switch (val) {
770 case V4L2_FWNODE_ORIENTATION_FRONT:
771 case V4L2_FWNODE_ORIENTATION_BACK:
772 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
773 break;
774 default:
775 dev_warn(dev, "Unsupported device orientation: %u\n", val);
776 return -EINVAL;
777 }
778
779 props->orientation = val;
780 dev_dbg(dev, "device orientation: %u\n", val);
781 }
782
783 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
784 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
785 if (!ret) {
786 if (val >= 360) {
787 dev_warn(dev, "Unsupported device rotation: %u\n", val);
788 return -EINVAL;
789 }
790
791 props->rotation = val;
792 dev_dbg(dev, "device rotation: %u\n", val);
793 }
794
795 return 0;
796}
797EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
798
799static int
800v4l2_async_nf_fwnode_parse_endpoint(struct device *dev,
801 struct v4l2_async_notifier *notifier,
802 struct fwnode_handle *endpoint,
803 unsigned int asd_struct_size,
804 parse_endpoint_func parse_endpoint)
805{
806 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
807 struct v4l2_async_subdev *asd;
808 int ret;
809
810 asd = kzalloc(asd_struct_size, GFP_KERNEL);
811 if (!asd)
812 return -ENOMEM;
813
814 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
815 asd->match.fwnode =
816 fwnode_graph_get_remote_port_parent(endpoint);
817 if (!asd->match.fwnode) {
818 dev_dbg(dev, "no remote endpoint found\n");
819 ret = -ENOTCONN;
820 goto out_err;
821 }
822
823 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
824 if (ret) {
825 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
826 ret);
827 goto out_err;
828 }
829
830 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
831 if (ret == -ENOTCONN)
832 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
833 vep.base.id);
834 else if (ret < 0)
835 dev_warn(dev,
836 "driver could not parse port@%u/endpoint@%u (%d)\n",
837 vep.base.port, vep.base.id, ret);
838 v4l2_fwnode_endpoint_free(&vep);
839 if (ret < 0)
840 goto out_err;
841
842 ret = __v4l2_async_nf_add_subdev(notifier, asd);
843 if (ret < 0) {
844 /* not an error if asd already exists */
845 if (ret == -EEXIST)
846 ret = 0;
847 goto out_err;
848 }
849
850 return 0;
851
852out_err:
853 fwnode_handle_put(asd->match.fwnode);
854 kfree(asd);
855
856 return ret == -ENOTCONN ? 0 : ret;
857}
858
859int
860v4l2_async_nf_parse_fwnode_endpoints(struct device *dev,
861 struct v4l2_async_notifier *notifier,
862 size_t asd_struct_size,
863 parse_endpoint_func parse_endpoint)
864{
865 struct fwnode_handle *fwnode;
866 int ret = 0;
867
868 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
869 return -EINVAL;
870
871 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
872 struct fwnode_handle *dev_fwnode;
873 bool is_available;
874
875 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
876 is_available = fwnode_device_is_available(dev_fwnode);
877 fwnode_handle_put(dev_fwnode);
878 if (!is_available)
879 continue;
880
881
882 ret = v4l2_async_nf_fwnode_parse_endpoint(dev, notifier,
883 fwnode,
884 asd_struct_size,
885 parse_endpoint);
886 if (ret < 0)
887 break;
888 }
889
890 fwnode_handle_put(fwnode);
891
892 return ret;
893}
894EXPORT_SYMBOL_GPL(v4l2_async_nf_parse_fwnode_endpoints);
895
896/*
897 * v4l2_fwnode_reference_parse - parse references for async sub-devices
898 * @dev: the device node the properties of which are parsed for references
899 * @notifier: the async notifier where the async subdevs will be added
900 * @prop: the name of the property
901 *
902 * Return: 0 on success
903 * -ENOENT if no entries were found
904 * -ENOMEM if memory allocation failed
905 * -EINVAL if property parsing failed
906 */
907static int v4l2_fwnode_reference_parse(struct device *dev,
908 struct v4l2_async_notifier *notifier,
909 const char *prop)
910{
911 struct fwnode_reference_args args;
912 unsigned int index;
913 int ret;
914
915 for (index = 0;
916 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
917 NULL, 0, index, &args));
918 index++) {
919 struct v4l2_async_subdev *asd;
920
921 asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
922 struct v4l2_async_subdev);
923 fwnode_handle_put(args.fwnode);
924 if (IS_ERR(asd)) {
925 /* not an error if asd already exists */
926 if (PTR_ERR(asd) == -EEXIST)
927 continue;
928
929 return PTR_ERR(asd);
930 }
931 }
932
933 /* -ENOENT here means successful parsing */
934 if (ret != -ENOENT)
935 return ret;
936
937 /* Return -ENOENT if no references were found */
938 return index ? 0 : -ENOENT;
939}
940
941/*
942 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
943 * arguments
944 * @fwnode: fwnode to read @prop from
945 * @notifier: notifier for @dev
946 * @prop: the name of the property
947 * @index: the index of the reference to get
948 * @props: the array of integer property names
949 * @nprops: the number of integer property names in @nprops
950 *
951 * First find an fwnode referred to by the reference at @index in @prop.
952 *
953 * Then under that fwnode, @nprops times, for each property in @props,
954 * iteratively follow child nodes starting from fwnode such that they have the
955 * property in @props array at the index of the child node distance from the
956 * root node and the value of that property matching with the integer argument
957 * of the reference, at the same index.
958 *
959 * The child fwnode reached at the end of the iteration is then returned to the
960 * caller.
961 *
962 * The core reason for this is that you cannot refer to just any node in ACPI.
963 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
964 * provide a list of (property name, property value) tuples where each tuple
965 * uniquely identifies a child node. The first tuple identifies a child directly
966 * underneath the device fwnode, the next tuple identifies a child node
967 * underneath the fwnode identified by the previous tuple, etc. until you
968 * reached the fwnode you need.
969 *
970 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
971 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
972 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
973 * data-node-references.txt and leds.txt .
974 *
975 * Scope (\_SB.PCI0.I2C2)
976 * {
977 * Device (CAM0)
978 * {
979 * Name (_DSD, Package () {
980 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
981 * Package () {
982 * Package () {
983 * "compatible",
984 * Package () { "nokia,smia" }
985 * },
986 * },
987 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
988 * Package () {
989 * Package () { "port0", "PRT0" },
990 * }
991 * })
992 * Name (PRT0, Package() {
993 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
994 * Package () {
995 * Package () { "port", 0 },
996 * },
997 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
998 * Package () {
999 * Package () { "endpoint0", "EP00" },
1000 * }
1001 * })
1002 * Name (EP00, Package() {
1003 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1004 * Package () {
1005 * Package () { "endpoint", 0 },
1006 * Package () {
1007 * "remote-endpoint",
1008 * Package() {
1009 * \_SB.PCI0.ISP, 4, 0
1010 * }
1011 * },
1012 * }
1013 * })
1014 * }
1015 * }
1016 *
1017 * Scope (\_SB.PCI0)
1018 * {
1019 * Device (ISP)
1020 * {
1021 * Name (_DSD, Package () {
1022 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1023 * Package () {
1024 * Package () { "port4", "PRT4" },
1025 * }
1026 * })
1027 *
1028 * Name (PRT4, Package() {
1029 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1030 * Package () {
1031 * Package () { "port", 4 },
1032 * },
1033 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1034 * Package () {
1035 * Package () { "endpoint0", "EP40" },
1036 * }
1037 * })
1038 *
1039 * Name (EP40, Package() {
1040 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1041 * Package () {
1042 * Package () { "endpoint", 0 },
1043 * Package () {
1044 * "remote-endpoint",
1045 * Package () {
1046 * \_SB.PCI0.I2C2.CAM0,
1047 * 0, 0
1048 * }
1049 * },
1050 * }
1051 * })
1052 * }
1053 * }
1054 *
1055 * From the EP40 node under ISP device, you could parse the graph remote
1056 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1057 *
1058 * @fwnode: fwnode referring to EP40 under ISP.
1059 * @prop: "remote-endpoint"
1060 * @index: 0
1061 * @props: "port", "endpoint"
1062 * @nprops: 2
1063 *
1064 * And you'd get back fwnode referring to EP00 under CAM0.
1065 *
1066 * The same works the other way around: if you use EP00 under CAM0 as the
1067 * fwnode, you'll get fwnode referring to EP40 under ISP.
1068 *
1069 * The same example in DT syntax would look like this:
1070 *
1071 * cam: cam0 {
1072 * compatible = "nokia,smia";
1073 *
1074 * port {
1075 * port = <0>;
1076 * endpoint {
1077 * endpoint = <0>;
1078 * remote-endpoint = <&isp 4 0>;
1079 * };
1080 * };
1081 * };
1082 *
1083 * isp: isp {
1084 * ports {
1085 * port@4 {
1086 * port = <4>;
1087 * endpoint {
1088 * endpoint = <0>;
1089 * remote-endpoint = <&cam 0 0>;
1090 * };
1091 * };
1092 * };
1093 * };
1094 *
1095 * Return: 0 on success
1096 * -ENOENT if no entries (or the property itself) were found
1097 * -EINVAL if property parsing otherwise failed
1098 * -ENOMEM if memory allocation failed
1099 */
1100static struct fwnode_handle *
1101v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1102 const char *prop,
1103 unsigned int index,
1104 const char * const *props,
1105 unsigned int nprops)
1106{
1107 struct fwnode_reference_args fwnode_args;
1108 u64 *args = fwnode_args.args;
1109 struct fwnode_handle *child;
1110 int ret;
1111
1112 /*
1113 * Obtain remote fwnode as well as the integer arguments.
1114 *
1115 * Note that right now both -ENODATA and -ENOENT may signal
1116 * out-of-bounds access. Return -ENOENT in that case.
1117 */
1118 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1119 index, &fwnode_args);
1120 if (ret)
1121 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1122
1123 /*
1124 * Find a node in the tree under the referred fwnode corresponding to
1125 * the integer arguments.
1126 */
1127 fwnode = fwnode_args.fwnode;
1128 while (nprops--) {
1129 u32 val;
1130
1131 /* Loop over all child nodes under fwnode. */
1132 fwnode_for_each_child_node(fwnode, child) {
1133 if (fwnode_property_read_u32(child, *props, &val))
1134 continue;
1135
1136 /* Found property, see if its value matches. */
1137 if (val == *args)
1138 break;
1139 }
1140
1141 fwnode_handle_put(fwnode);
1142
1143 /* No property found; return an error here. */
1144 if (!child) {
1145 fwnode = ERR_PTR(-ENOENT);
1146 break;
1147 }
1148
1149 props++;
1150 args++;
1151 fwnode = child;
1152 }
1153
1154 return fwnode;
1155}
1156
1157struct v4l2_fwnode_int_props {
1158 const char *name;
1159 const char * const *props;
1160 unsigned int nprops;
1161};
1162
1163/*
1164 * v4l2_fwnode_reference_parse_int_props - parse references for async
1165 * sub-devices
1166 * @dev: struct device pointer
1167 * @notifier: notifier for @dev
1168 * @prop: the name of the property
1169 * @props: the array of integer property names
1170 * @nprops: the number of integer properties
1171 *
1172 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1173 * property @prop with integer arguments with child nodes matching in properties
1174 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1175 * accordingly.
1176 *
1177 * While it is technically possible to use this function on DT, it is only
1178 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1179 * on ACPI the references are limited to devices.
1180 *
1181 * Return: 0 on success
1182 * -ENOENT if no entries (or the property itself) were found
1183 * -EINVAL if property parsing otherwisefailed
1184 * -ENOMEM if memory allocation failed
1185 */
1186static int
1187v4l2_fwnode_reference_parse_int_props(struct device *dev,
1188 struct v4l2_async_notifier *notifier,
1189 const struct v4l2_fwnode_int_props *p)
1190{
1191 struct fwnode_handle *fwnode;
1192 unsigned int index;
1193 int ret;
1194 const char *prop = p->name;
1195 const char * const *props = p->props;
1196 unsigned int nprops = p->nprops;
1197
1198 index = 0;
1199 do {
1200 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1201 prop, index,
1202 props, nprops);
1203 if (IS_ERR(fwnode)) {
1204 /*
1205 * Note that right now both -ENODATA and -ENOENT may
1206 * signal out-of-bounds access. Return the error in
1207 * cases other than that.
1208 */
1209 if (PTR_ERR(fwnode) != -ENOENT &&
1210 PTR_ERR(fwnode) != -ENODATA)
1211 return PTR_ERR(fwnode);
1212 break;
1213 }
1214 fwnode_handle_put(fwnode);
1215 index++;
1216 } while (1);
1217
1218 for (index = 0;
1219 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1220 prop, index,
1221 props,
1222 nprops)));
1223 index++) {
1224 struct v4l2_async_subdev *asd;
1225
1226 asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1227 struct v4l2_async_subdev);
1228 fwnode_handle_put(fwnode);
1229 if (IS_ERR(asd)) {
1230 ret = PTR_ERR(asd);
1231 /* not an error if asd already exists */
1232 if (ret == -EEXIST)
1233 continue;
1234
1235 return PTR_ERR(asd);
1236 }
1237 }
1238
1239 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1240}
1241
1242/**
1243 * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1244 * sensors for async sub-devices
1245 * @dev: the device node the properties of which are parsed for references
1246 * @notifier: the async notifier where the async subdevs will be added
1247 *
1248 * Parse common sensor properties for remote devices related to the
1249 * sensor and set up async sub-devices for them.
1250 *
1251 * Any notifier populated using this function must be released with a call to
1252 * v4l2_async_nf_release() after it has been unregistered and the async
1253 * sub-devices are no longer in use, even in the case the function returned an
1254 * error.
1255 *
1256 * Return: 0 on success
1257 * -ENOMEM if memory allocation failed
1258 * -EINVAL if property parsing failed
1259 */
1260static int
1261v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1262 struct v4l2_async_notifier *notifier)
1263{
1264 static const char * const led_props[] = { "led" };
1265 static const struct v4l2_fwnode_int_props props[] = {
1266 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1267 { "lens-focus", NULL, 0 },
1268 };
1269 unsigned int i;
1270
1271 for (i = 0; i < ARRAY_SIZE(props); i++) {
1272 int ret;
1273
1274 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1275 ret = v4l2_fwnode_reference_parse_int_props(dev,
1276 notifier,
1277 &props[i]);
1278 else
1279 ret = v4l2_fwnode_reference_parse(dev, notifier,
1280 props[i].name);
1281 if (ret && ret != -ENOENT) {
1282 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1283 props[i].name, ret);
1284 return ret;
1285 }
1286 }
1287
1288 return 0;
1289}
1290
1291int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1292{
1293 struct v4l2_async_notifier *notifier;
1294 int ret;
1295
1296 if (WARN_ON(!sd->dev))
1297 return -ENODEV;
1298
1299 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1300 if (!notifier)
1301 return -ENOMEM;
1302
1303 v4l2_async_nf_init(notifier);
1304
1305 ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1306 if (ret < 0)
1307 goto out_cleanup;
1308
1309 ret = v4l2_async_subdev_nf_register(sd, notifier);
1310 if (ret < 0)
1311 goto out_cleanup;
1312
1313 ret = v4l2_async_register_subdev(sd);
1314 if (ret < 0)
1315 goto out_unregister;
1316
1317 sd->subdev_notifier = notifier;
1318
1319 return 0;
1320
1321out_unregister:
1322 v4l2_async_nf_unregister(notifier);
1323
1324out_cleanup:
1325 v4l2_async_nf_cleanup(notifier);
1326 kfree(notifier);
1327
1328 return ret;
1329}
1330EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1331
1332MODULE_LICENSE("GPL");
1333MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1334MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1335MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");