Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
 
  24#include <linux/seq_file.h>
  25#include <linux/ratelimit.h>
 
 
 
  26#include "md.h"
  27#include "raid10.h"
  28#include "raid0.h"
  29#include "bitmap.h"
  30
  31/*
  32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  33 * The layout of data is defined by
  34 *    chunk_size
  35 *    raid_disks
  36 *    near_copies (stored in low byte of layout)
  37 *    far_copies (stored in second byte of layout)
  38 *    far_offset (stored in bit 16 of layout )
 
 
  39 *
  40 * The data to be stored is divided into chunks using chunksize.
  41 * Each device is divided into far_copies sections.
  42 * In each section, chunks are laid out in a style similar to raid0, but
  43 * near_copies copies of each chunk is stored (each on a different drive).
  44 * The starting device for each section is offset near_copies from the starting
  45 * device of the previous section.
  46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  47 * drive.
  48 * near_copies and far_copies must be at least one, and their product is at most
  49 * raid_disks.
  50 *
  51 * If far_offset is true, then the far_copies are handled a bit differently.
  52 * The copies are still in different stripes, but instead of be very far apart
  53 * on disk, there are adjacent stripes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54 */
  55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56/*
  57 * Number of guaranteed r10bios in case of extreme VM load:
 
  58 */
  59#define	NR_RAID10_BIOS 256
  60
  61static void allow_barrier(conf_t *conf);
  62static void lower_barrier(conf_t *conf);
  63
  64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  65{
  66	conf_t *conf = data;
  67	int size = offsetof(struct r10bio_s, devs[conf->copies]);
  68
  69	/* allocate a r10bio with room for raid_disks entries in the bios array */
 
  70	return kzalloc(size, gfp_flags);
  71}
  72
  73static void r10bio_pool_free(void *r10_bio, void *data)
  74{
  75	kfree(r10_bio);
  76}
  77
  78/* Maximum size of each resync request */
  79#define RESYNC_BLOCK_SIZE (64*1024)
  80#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  81/* amount of memory to reserve for resync requests */
  82#define RESYNC_WINDOW (1024*1024)
  83/* maximum number of concurrent requests, memory permitting */
  84#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 
 
  85
  86/*
  87 * When performing a resync, we need to read and compare, so
  88 * we need as many pages are there are copies.
  89 * When performing a recovery, we need 2 bios, one for read,
  90 * one for write (we recover only one drive per r10buf)
  91 *
  92 */
  93static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  94{
  95	conf_t *conf = data;
  96	struct page *page;
  97	r10bio_t *r10_bio;
  98	struct bio *bio;
  99	int i, j;
 100	int nalloc;
 
 101
 102	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 103	if (!r10_bio)
 104		return NULL;
 105
 106	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
 
 107		nalloc = conf->copies; /* resync */
 108	else
 109		nalloc = 2; /* recovery */
 110
 
 
 
 
 
 
 
 
 
 111	/*
 112	 * Allocate bios.
 113	 */
 114	for (j = nalloc ; j-- ; ) {
 115		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 116		if (!bio)
 117			goto out_free_bio;
 118		r10_bio->devs[j].bio = bio;
 
 
 
 
 
 
 119	}
 120	/*
 121	 * Allocate RESYNC_PAGES data pages and attach them
 122	 * where needed.
 123	 */
 124	for (j = 0 ; j < nalloc; j++) {
 
 
 
 
 
 
 
 125		bio = r10_bio->devs[j].bio;
 126		for (i = 0; i < RESYNC_PAGES; i++) {
 127			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
 128						&conf->mddev->recovery)) {
 129				/* we can share bv_page's during recovery */
 130				struct bio *rbio = r10_bio->devs[0].bio;
 131				page = rbio->bi_io_vec[i].bv_page;
 132				get_page(page);
 133			} else
 134				page = alloc_page(gfp_flags);
 135			if (unlikely(!page))
 136				goto out_free_pages;
 
 
 
 
 137
 138			bio->bi_io_vec[i].bv_page = page;
 
 
 
 
 139		}
 140	}
 141
 142	return r10_bio;
 143
 144out_free_pages:
 145	for ( ; i > 0 ; i--)
 146		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 147	while (j--)
 148		for (i = 0; i < RESYNC_PAGES ; i++)
 149			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 150	j = -1;
 151out_free_bio:
 152	while ( ++j < nalloc )
 153		bio_put(r10_bio->devs[j].bio);
 154	r10bio_pool_free(r10_bio, conf);
 
 
 
 
 
 
 155	return NULL;
 156}
 157
 158static void r10buf_pool_free(void *__r10_bio, void *data)
 159{
 160	int i;
 161	conf_t *conf = data;
 162	r10bio_t *r10bio = __r10_bio;
 163	int j;
 
 164
 165	for (j=0; j < conf->copies; j++) {
 166		struct bio *bio = r10bio->devs[j].bio;
 
 167		if (bio) {
 168			for (i = 0; i < RESYNC_PAGES; i++) {
 169				safe_put_page(bio->bi_io_vec[i].bv_page);
 170				bio->bi_io_vec[i].bv_page = NULL;
 171			}
 172			bio_put(bio);
 173		}
 
 
 
 
 174	}
 175	r10bio_pool_free(r10bio, conf);
 
 
 
 
 176}
 177
 178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
 179{
 180	int i;
 181
 182	for (i = 0; i < conf->copies; i++) {
 183		struct bio **bio = & r10_bio->devs[i].bio;
 184		if (!BIO_SPECIAL(*bio))
 185			bio_put(*bio);
 186		*bio = NULL;
 
 
 
 
 187	}
 188}
 189
 190static void free_r10bio(r10bio_t *r10_bio)
 191{
 192	conf_t *conf = r10_bio->mddev->private;
 193
 194	put_all_bios(conf, r10_bio);
 195	mempool_free(r10_bio, conf->r10bio_pool);
 196}
 197
 198static void put_buf(r10bio_t *r10_bio)
 199{
 200	conf_t *conf = r10_bio->mddev->private;
 201
 202	mempool_free(r10_bio, conf->r10buf_pool);
 203
 204	lower_barrier(conf);
 205}
 206
 207static void reschedule_retry(r10bio_t *r10_bio)
 208{
 209	unsigned long flags;
 210	mddev_t *mddev = r10_bio->mddev;
 211	conf_t *conf = mddev->private;
 212
 213	spin_lock_irqsave(&conf->device_lock, flags);
 214	list_add(&r10_bio->retry_list, &conf->retry_list);
 215	conf->nr_queued ++;
 216	spin_unlock_irqrestore(&conf->device_lock, flags);
 217
 218	/* wake up frozen array... */
 219	wake_up(&conf->wait_barrier);
 220
 221	md_wakeup_thread(mddev->thread);
 222}
 223
 224/*
 225 * raid_end_bio_io() is called when we have finished servicing a mirrored
 226 * operation and are ready to return a success/failure code to the buffer
 227 * cache layer.
 228 */
 229static void raid_end_bio_io(r10bio_t *r10_bio)
 230{
 231	struct bio *bio = r10_bio->master_bio;
 232	int done;
 233	conf_t *conf = r10_bio->mddev->private;
 234
 235	if (bio->bi_phys_segments) {
 236		unsigned long flags;
 237		spin_lock_irqsave(&conf->device_lock, flags);
 238		bio->bi_phys_segments--;
 239		done = (bio->bi_phys_segments == 0);
 240		spin_unlock_irqrestore(&conf->device_lock, flags);
 241	} else
 242		done = 1;
 243	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 244		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 245	if (done) {
 246		bio_endio(bio, 0);
 247		/*
 248		 * Wake up any possible resync thread that waits for the device
 249		 * to go idle.
 250		 */
 251		allow_barrier(conf);
 252	}
 253	free_r10bio(r10_bio);
 254}
 255
 256/*
 257 * Update disk head position estimator based on IRQ completion info.
 258 */
 259static inline void update_head_pos(int slot, r10bio_t *r10_bio)
 260{
 261	conf_t *conf = r10_bio->mddev->private;
 262
 263	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 264		r10_bio->devs[slot].addr + (r10_bio->sectors);
 265}
 266
 267/*
 268 * Find the disk number which triggered given bio
 269 */
 270static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
 271			 struct bio *bio, int *slotp)
 272{
 273	int slot;
 
 274
 275	for (slot = 0; slot < conf->copies; slot++)
 276		if (r10_bio->devs[slot].bio == bio)
 277			break;
 
 
 
 
 
 278
 279	BUG_ON(slot == conf->copies);
 280	update_head_pos(slot, r10_bio);
 281
 282	if (slotp)
 283		*slotp = slot;
 
 
 284	return r10_bio->devs[slot].devnum;
 285}
 286
 287static void raid10_end_read_request(struct bio *bio, int error)
 288{
 289	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 290	r10bio_t *r10_bio = bio->bi_private;
 291	int slot, dev;
 292	conf_t *conf = r10_bio->mddev->private;
 293
 294
 295	slot = r10_bio->read_slot;
 296	dev = r10_bio->devs[slot].devnum;
 297	/*
 298	 * this branch is our 'one mirror IO has finished' event handler:
 299	 */
 300	update_head_pos(slot, r10_bio);
 301
 302	if (uptodate) {
 303		/*
 304		 * Set R10BIO_Uptodate in our master bio, so that
 305		 * we will return a good error code to the higher
 306		 * levels even if IO on some other mirrored buffer fails.
 307		 *
 308		 * The 'master' represents the composite IO operation to
 309		 * user-side. So if something waits for IO, then it will
 310		 * wait for the 'master' bio.
 311		 */
 312		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 313		raid_end_bio_io(r10_bio);
 314		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 315	} else {
 316		/*
 317		 * oops, read error - keep the refcount on the rdev
 318		 */
 319		char b[BDEVNAME_SIZE];
 320		printk_ratelimited(KERN_ERR
 321				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 322				   mdname(conf->mddev),
 323				   bdevname(conf->mirrors[dev].rdev->bdev, b),
 324				   (unsigned long long)r10_bio->sector);
 325		set_bit(R10BIO_ReadError, &r10_bio->state);
 326		reschedule_retry(r10_bio);
 327	}
 328}
 329
 330static void close_write(r10bio_t *r10_bio)
 331{
 332	/* clear the bitmap if all writes complete successfully */
 333	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 334			r10_bio->sectors,
 335			!test_bit(R10BIO_Degraded, &r10_bio->state),
 336			0);
 337	md_write_end(r10_bio->mddev);
 338}
 339
 340static void one_write_done(r10bio_t *r10_bio)
 341{
 342	if (atomic_dec_and_test(&r10_bio->remaining)) {
 343		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 344			reschedule_retry(r10_bio);
 345		else {
 346			close_write(r10_bio);
 347			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 348				reschedule_retry(r10_bio);
 349			else
 350				raid_end_bio_io(r10_bio);
 351		}
 352	}
 353}
 354
 355static void raid10_end_write_request(struct bio *bio, int error)
 356{
 357	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 358	r10bio_t *r10_bio = bio->bi_private;
 359	int dev;
 360	int dec_rdev = 1;
 361	conf_t *conf = r10_bio->mddev->private;
 362	int slot;
 363
 364	dev = find_bio_disk(conf, r10_bio, bio, &slot);
 365
 
 
 
 
 
 
 
 
 
 
 
 
 366	/*
 367	 * this branch is our 'one mirror IO has finished' event handler:
 368	 */
 369	if (!uptodate) {
 370		set_bit(WriteErrorSeen,	&conf->mirrors[dev].rdev->flags);
 371		set_bit(R10BIO_WriteError, &r10_bio->state);
 372		dec_rdev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373	} else {
 374		/*
 375		 * Set R10BIO_Uptodate in our master bio, so that
 376		 * we will return a good error code for to the higher
 377		 * levels even if IO on some other mirrored buffer fails.
 378		 *
 379		 * The 'master' represents the composite IO operation to
 380		 * user-side. So if something waits for IO, then it will
 381		 * wait for the 'master' bio.
 382		 */
 383		sector_t first_bad;
 384		int bad_sectors;
 385
 386		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 387
 388		/* Maybe we can clear some bad blocks. */
 389		if (is_badblock(conf->mirrors[dev].rdev,
 390				r10_bio->devs[slot].addr,
 391				r10_bio->sectors,
 392				&first_bad, &bad_sectors)) {
 393			bio_put(bio);
 394			r10_bio->devs[slot].bio = IO_MADE_GOOD;
 
 
 
 395			dec_rdev = 0;
 396			set_bit(R10BIO_MadeGood, &r10_bio->state);
 397		}
 398	}
 399
 400	/*
 401	 *
 402	 * Let's see if all mirrored write operations have finished
 403	 * already.
 404	 */
 405	one_write_done(r10_bio);
 406	if (dec_rdev)
 407		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 
 
 408}
 409
 410
 411/*
 412 * RAID10 layout manager
 413 * As well as the chunksize and raid_disks count, there are two
 414 * parameters: near_copies and far_copies.
 415 * near_copies * far_copies must be <= raid_disks.
 416 * Normally one of these will be 1.
 417 * If both are 1, we get raid0.
 418 * If near_copies == raid_disks, we get raid1.
 419 *
 420 * Chunks are laid out in raid0 style with near_copies copies of the
 421 * first chunk, followed by near_copies copies of the next chunk and
 422 * so on.
 423 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 424 * as described above, we start again with a device offset of near_copies.
 425 * So we effectively have another copy of the whole array further down all
 426 * the drives, but with blocks on different drives.
 427 * With this layout, and block is never stored twice on the one device.
 428 *
 429 * raid10_find_phys finds the sector offset of a given virtual sector
 430 * on each device that it is on.
 431 *
 432 * raid10_find_virt does the reverse mapping, from a device and a
 433 * sector offset to a virtual address
 434 */
 435
 436static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
 437{
 438	int n,f;
 439	sector_t sector;
 440	sector_t chunk;
 441	sector_t stripe;
 442	int dev;
 443
 444	int slot = 0;
 
 
 
 
 
 
 
 445
 446	/* now calculate first sector/dev */
 447	chunk = r10bio->sector >> conf->chunk_shift;
 448	sector = r10bio->sector & conf->chunk_mask;
 449
 450	chunk *= conf->near_copies;
 451	stripe = chunk;
 452	dev = sector_div(stripe, conf->raid_disks);
 453	if (conf->far_offset)
 454		stripe *= conf->far_copies;
 455
 456	sector += stripe << conf->chunk_shift;
 457
 458	/* and calculate all the others */
 459	for (n=0; n < conf->near_copies; n++) {
 460		int d = dev;
 
 461		sector_t s = sector;
 462		r10bio->devs[slot].addr = sector;
 463		r10bio->devs[slot].devnum = d;
 
 464		slot++;
 465
 466		for (f = 1; f < conf->far_copies; f++) {
 467			d += conf->near_copies;
 468			if (d >= conf->raid_disks)
 469				d -= conf->raid_disks;
 470			s += conf->stride;
 
 
 
 
 
 
 
 
 
 471			r10bio->devs[slot].devnum = d;
 472			r10bio->devs[slot].addr = s;
 473			slot++;
 474		}
 475		dev++;
 476		if (dev >= conf->raid_disks) {
 477			dev = 0;
 478			sector += (conf->chunk_mask + 1);
 479		}
 480	}
 481	BUG_ON(slot != conf->copies);
 482}
 483
 484static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485{
 486	sector_t offset, chunk, vchunk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	offset = sector & conf->chunk_mask;
 489	if (conf->far_offset) {
 490		int fc;
 491		chunk = sector >> conf->chunk_shift;
 492		fc = sector_div(chunk, conf->far_copies);
 493		dev -= fc * conf->near_copies;
 494		if (dev < 0)
 495			dev += conf->raid_disks;
 496	} else {
 497		while (sector >= conf->stride) {
 498			sector -= conf->stride;
 499			if (dev < conf->near_copies)
 500				dev += conf->raid_disks - conf->near_copies;
 501			else
 502				dev -= conf->near_copies;
 503		}
 504		chunk = sector >> conf->chunk_shift;
 505	}
 506	vchunk = chunk * conf->raid_disks + dev;
 507	sector_div(vchunk, conf->near_copies);
 508	return (vchunk << conf->chunk_shift) + offset;
 509}
 510
 511/**
 512 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 513 *	@q: request queue
 514 *	@bvm: properties of new bio
 515 *	@biovec: the request that could be merged to it.
 516 *
 517 *	Return amount of bytes we can accept at this offset
 518 *      If near_copies == raid_disk, there are no striping issues,
 519 *      but in that case, the function isn't called at all.
 520 */
 521static int raid10_mergeable_bvec(struct request_queue *q,
 522				 struct bvec_merge_data *bvm,
 523				 struct bio_vec *biovec)
 524{
 525	mddev_t *mddev = q->queuedata;
 526	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 527	int max;
 528	unsigned int chunk_sectors = mddev->chunk_sectors;
 529	unsigned int bio_sectors = bvm->bi_size >> 9;
 530
 531	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
 532	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
 533	if (max <= biovec->bv_len && bio_sectors == 0)
 534		return biovec->bv_len;
 535	else
 536		return max;
 537}
 538
 539/*
 540 * This routine returns the disk from which the requested read should
 541 * be done. There is a per-array 'next expected sequential IO' sector
 542 * number - if this matches on the next IO then we use the last disk.
 543 * There is also a per-disk 'last know head position' sector that is
 544 * maintained from IRQ contexts, both the normal and the resync IO
 545 * completion handlers update this position correctly. If there is no
 546 * perfect sequential match then we pick the disk whose head is closest.
 547 *
 548 * If there are 2 mirrors in the same 2 devices, performance degrades
 549 * because position is mirror, not device based.
 550 *
 551 * The rdev for the device selected will have nr_pending incremented.
 552 */
 553
 554/*
 555 * FIXME: possibly should rethink readbalancing and do it differently
 556 * depending on near_copies / far_copies geometry.
 557 */
 558static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
 
 
 559{
 560	const sector_t this_sector = r10_bio->sector;
 561	int disk, slot;
 562	int sectors = r10_bio->sectors;
 563	int best_good_sectors;
 564	sector_t new_distance, best_dist;
 565	mdk_rdev_t *rdev;
 566	int do_balance;
 567	int best_slot;
 
 
 
 568
 569	raid10_find_phys(conf, r10_bio);
 570	rcu_read_lock();
 571retry:
 572	sectors = r10_bio->sectors;
 573	best_slot = -1;
 
 574	best_dist = MaxSector;
 575	best_good_sectors = 0;
 576	do_balance = 1;
 
 577	/*
 578	 * Check if we can balance. We can balance on the whole
 579	 * device if no resync is going on (recovery is ok), or below
 580	 * the resync window. We take the first readable disk when
 581	 * above the resync window.
 582	 */
 583	if (conf->mddev->recovery_cp < MaxSector
 584	    && (this_sector + sectors >= conf->next_resync))
 
 
 
 585		do_balance = 0;
 586
 587	for (slot = 0; slot < conf->copies ; slot++) {
 588		sector_t first_bad;
 589		int bad_sectors;
 590		sector_t dev_sector;
 
 
 591
 592		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 593			continue;
 594		disk = r10_bio->devs[slot].devnum;
 595		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 596		if (rdev == NULL)
 
 
 
 
 597			continue;
 598		if (!test_bit(In_sync, &rdev->flags))
 
 599			continue;
 600
 601		dev_sector = r10_bio->devs[slot].addr;
 602		if (is_badblock(rdev, dev_sector, sectors,
 603				&first_bad, &bad_sectors)) {
 604			if (best_dist < MaxSector)
 605				/* Already have a better slot */
 606				continue;
 607			if (first_bad <= dev_sector) {
 608				/* Cannot read here.  If this is the
 609				 * 'primary' device, then we must not read
 610				 * beyond 'bad_sectors' from another device.
 611				 */
 612				bad_sectors -= (dev_sector - first_bad);
 613				if (!do_balance && sectors > bad_sectors)
 614					sectors = bad_sectors;
 615				if (best_good_sectors > sectors)
 616					best_good_sectors = sectors;
 617			} else {
 618				sector_t good_sectors =
 619					first_bad - dev_sector;
 620				if (good_sectors > best_good_sectors) {
 621					best_good_sectors = good_sectors;
 622					best_slot = slot;
 
 623				}
 624				if (!do_balance)
 625					/* Must read from here */
 626					break;
 627			}
 628			continue;
 629		} else
 630			best_good_sectors = sectors;
 631
 632		if (!do_balance)
 633			break;
 634
 
 
 
 
 
 
 
 
 
 
 
 
 635		/* This optimisation is debatable, and completely destroys
 636		 * sequential read speed for 'far copies' arrays.  So only
 637		 * keep it for 'near' arrays, and review those later.
 638		 */
 639		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 640			break;
 641
 642		/* for far > 1 always use the lowest address */
 643		if (conf->far_copies > 1)
 644			new_distance = r10_bio->devs[slot].addr;
 645		else
 646			new_distance = abs(r10_bio->devs[slot].addr -
 647					   conf->mirrors[disk].head_position);
 
 648		if (new_distance < best_dist) {
 649			best_dist = new_distance;
 650			best_slot = slot;
 
 
 
 
 
 
 
 
 
 
 651		}
 652	}
 653	if (slot == conf->copies)
 654		slot = best_slot;
 655
 656	if (slot >= 0) {
 657		disk = r10_bio->devs[slot].devnum;
 658		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 659		if (!rdev)
 660			goto retry;
 661		atomic_inc(&rdev->nr_pending);
 662		if (test_bit(Faulty, &rdev->flags)) {
 663			/* Cannot risk returning a device that failed
 664			 * before we inc'ed nr_pending
 665			 */
 666			rdev_dec_pending(rdev, conf->mddev);
 667			goto retry;
 668		}
 669		r10_bio->read_slot = slot;
 670	} else
 671		disk = -1;
 672	rcu_read_unlock();
 673	*max_sectors = best_good_sectors;
 674
 675	return disk;
 676}
 677
 678static int raid10_congested(void *data, int bits)
 679{
 680	mddev_t *mddev = data;
 681	conf_t *conf = mddev->private;
 682	int i, ret = 0;
 683
 684	if (mddev_congested(mddev, bits))
 685		return 1;
 686	rcu_read_lock();
 687	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
 688		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 689		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 690			struct request_queue *q = bdev_get_queue(rdev->bdev);
 691
 692			ret |= bdi_congested(&q->backing_dev_info, bits);
 693		}
 694	}
 695	rcu_read_unlock();
 696	return ret;
 697}
 698
 699static void flush_pending_writes(conf_t *conf)
 700{
 701	/* Any writes that have been queued but are awaiting
 702	 * bitmap updates get flushed here.
 703	 */
 704	spin_lock_irq(&conf->device_lock);
 705
 706	if (conf->pending_bio_list.head) {
 
 707		struct bio *bio;
 
 708		bio = bio_list_get(&conf->pending_bio_list);
 
 709		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 710		/* flush any pending bitmap writes to disk
 711		 * before proceeding w/ I/O */
 712		bitmap_unplug(conf->mddev->bitmap);
 
 713
 714		while (bio) { /* submit pending writes */
 715			struct bio *next = bio->bi_next;
 
 716			bio->bi_next = NULL;
 717			generic_make_request(bio);
 
 
 
 
 
 
 
 
 718			bio = next;
 719		}
 
 720	} else
 721		spin_unlock_irq(&conf->device_lock);
 722}
 723
 724/* Barriers....
 725 * Sometimes we need to suspend IO while we do something else,
 726 * either some resync/recovery, or reconfigure the array.
 727 * To do this we raise a 'barrier'.
 728 * The 'barrier' is a counter that can be raised multiple times
 729 * to count how many activities are happening which preclude
 730 * normal IO.
 731 * We can only raise the barrier if there is no pending IO.
 732 * i.e. if nr_pending == 0.
 733 * We choose only to raise the barrier if no-one is waiting for the
 734 * barrier to go down.  This means that as soon as an IO request
 735 * is ready, no other operations which require a barrier will start
 736 * until the IO request has had a chance.
 737 *
 738 * So: regular IO calls 'wait_barrier'.  When that returns there
 739 *    is no backgroup IO happening,  It must arrange to call
 740 *    allow_barrier when it has finished its IO.
 741 * backgroup IO calls must call raise_barrier.  Once that returns
 742 *    there is no normal IO happeing.  It must arrange to call
 743 *    lower_barrier when the particular background IO completes.
 744 */
 745
 746static void raise_barrier(conf_t *conf, int force)
 747{
 748	BUG_ON(force && !conf->barrier);
 749	spin_lock_irq(&conf->resync_lock);
 750
 751	/* Wait until no block IO is waiting (unless 'force') */
 752	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 753			    conf->resync_lock, );
 754
 755	/* block any new IO from starting */
 756	conf->barrier++;
 757
 758	/* Now wait for all pending IO to complete */
 759	wait_event_lock_irq(conf->wait_barrier,
 760			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 761			    conf->resync_lock, );
 762
 763	spin_unlock_irq(&conf->resync_lock);
 764}
 765
 766static void lower_barrier(conf_t *conf)
 767{
 768	unsigned long flags;
 769	spin_lock_irqsave(&conf->resync_lock, flags);
 770	conf->barrier--;
 771	spin_unlock_irqrestore(&conf->resync_lock, flags);
 772	wake_up(&conf->wait_barrier);
 773}
 774
 775static void wait_barrier(conf_t *conf)
 776{
 777	spin_lock_irq(&conf->resync_lock);
 778	if (conf->barrier) {
 
 779		conf->nr_waiting++;
 780		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 781				    conf->resync_lock,
 782				    );
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783		conf->nr_waiting--;
 
 
 784	}
 785	conf->nr_pending++;
 786	spin_unlock_irq(&conf->resync_lock);
 787}
 788
 789static void allow_barrier(conf_t *conf)
 790{
 791	unsigned long flags;
 792	spin_lock_irqsave(&conf->resync_lock, flags);
 793	conf->nr_pending--;
 794	spin_unlock_irqrestore(&conf->resync_lock, flags);
 795	wake_up(&conf->wait_barrier);
 796}
 797
 798static void freeze_array(conf_t *conf)
 799{
 800	/* stop syncio and normal IO and wait for everything to
 801	 * go quiet.
 802	 * We increment barrier and nr_waiting, and then
 803	 * wait until nr_pending match nr_queued+1
 804	 * This is called in the context of one normal IO request
 805	 * that has failed. Thus any sync request that might be pending
 806	 * will be blocked by nr_pending, and we need to wait for
 807	 * pending IO requests to complete or be queued for re-try.
 808	 * Thus the number queued (nr_queued) plus this request (1)
 809	 * must match the number of pending IOs (nr_pending) before
 810	 * we continue.
 811	 */
 812	spin_lock_irq(&conf->resync_lock);
 
 813	conf->barrier++;
 814	conf->nr_waiting++;
 815	wait_event_lock_irq(conf->wait_barrier,
 816			    conf->nr_pending == conf->nr_queued+1,
 817			    conf->resync_lock,
 818			    flush_pending_writes(conf));
 819
 
 820	spin_unlock_irq(&conf->resync_lock);
 821}
 822
 823static void unfreeze_array(conf_t *conf)
 824{
 825	/* reverse the effect of the freeze */
 826	spin_lock_irq(&conf->resync_lock);
 827	conf->barrier--;
 828	conf->nr_waiting--;
 829	wake_up(&conf->wait_barrier);
 830	spin_unlock_irq(&conf->resync_lock);
 831}
 832
 833static int make_request(mddev_t *mddev, struct bio * bio)
 
 834{
 835	conf_t *conf = mddev->private;
 836	mirror_info_t *mirror;
 837	r10bio_t *r10_bio;
 838	struct bio *read_bio;
 839	int i;
 840	int chunk_sects = conf->chunk_mask + 1;
 841	const int rw = bio_data_dir(bio);
 842	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 843	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
 844	unsigned long flags;
 845	mdk_rdev_t *blocked_rdev;
 846	int plugged;
 847	int sectors_handled;
 848	int max_sectors;
 849
 850	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
 851		md_flush_request(mddev, bio);
 852		return 0;
 853	}
 854
 855	/* If this request crosses a chunk boundary, we need to
 856	 * split it.  This will only happen for 1 PAGE (or less) requests.
 857	 */
 858	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
 859		      > chunk_sects &&
 860		    conf->near_copies < conf->raid_disks)) {
 861		struct bio_pair *bp;
 862		/* Sanity check -- queue functions should prevent this happening */
 863		if (bio->bi_vcnt != 1 ||
 864		    bio->bi_idx != 0)
 865			goto bad_map;
 866		/* This is a one page bio that upper layers
 867		 * refuse to split for us, so we need to split it.
 868		 */
 869		bp = bio_split(bio,
 870			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
 871
 872		/* Each of these 'make_request' calls will call 'wait_barrier'.
 873		 * If the first succeeds but the second blocks due to the resync
 874		 * thread raising the barrier, we will deadlock because the
 875		 * IO to the underlying device will be queued in generic_make_request
 876		 * and will never complete, so will never reduce nr_pending.
 877		 * So increment nr_waiting here so no new raise_barriers will
 878		 * succeed, and so the second wait_barrier cannot block.
 879		 */
 880		spin_lock_irq(&conf->resync_lock);
 881		conf->nr_waiting++;
 882		spin_unlock_irq(&conf->resync_lock);
 883
 884		if (make_request(mddev, &bp->bio1))
 885			generic_make_request(&bp->bio1);
 886		if (make_request(mddev, &bp->bio2))
 887			generic_make_request(&bp->bio2);
 
 
 
 888
 889		spin_lock_irq(&conf->resync_lock);
 890		conf->nr_waiting--;
 
 
 
 891		wake_up(&conf->wait_barrier);
 892		spin_unlock_irq(&conf->resync_lock);
 
 
 
 893
 894		bio_pair_release(bp);
 895		return 0;
 896	bad_map:
 897		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
 898		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
 899		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
 900
 901		bio_io_error(bio);
 902		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 903	}
 
 
 904
 905	md_write_start(mddev, bio);
 906
 907	/*
 908	 * Register the new request and wait if the reconstruction
 909	 * thread has put up a bar for new requests.
 910	 * Continue immediately if no resync is active currently.
 911	 */
 
 
 912	wait_barrier(conf);
 
 
 
 
 
 
 
 
 
 
 
 
 913
 914	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 915
 916	r10_bio->master_bio = bio;
 917	r10_bio->sectors = bio->bi_size >> 9;
 918
 919	r10_bio->mddev = mddev;
 920	r10_bio->sector = bio->bi_sector;
 921	r10_bio->state = 0;
 922
 923	/* We might need to issue multiple reads to different
 924	 * devices if there are bad blocks around, so we keep
 925	 * track of the number of reads in bio->bi_phys_segments.
 926	 * If this is 0, there is only one r10_bio and no locking
 927	 * will be needed when the request completes.  If it is
 928	 * non-zero, then it is the number of not-completed requests.
 929	 */
 930	bio->bi_phys_segments = 0;
 931	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 932
 933	if (rw == READ) {
 934		/*
 935		 * read balancing logic:
 
 
 
 
 936		 */
 937		int disk;
 938		int slot;
 
 
 
 
 939
 940read_again:
 941		disk = read_balance(conf, r10_bio, &max_sectors);
 942		slot = r10_bio->read_slot;
 943		if (disk < 0) {
 944			raid_end_bio_io(r10_bio);
 945			return 0;
 
 
 
 946		}
 947		mirror = conf->mirrors + disk;
 
 948
 949		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 950		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
 951			    max_sectors);
 952
 953		r10_bio->devs[slot].bio = read_bio;
 954
 955		read_bio->bi_sector = r10_bio->devs[slot].addr +
 956			mirror->rdev->data_offset;
 957		read_bio->bi_bdev = mirror->rdev->bdev;
 958		read_bio->bi_end_io = raid10_end_read_request;
 959		read_bio->bi_rw = READ | do_sync;
 960		read_bio->bi_private = r10_bio;
 961
 962		if (max_sectors < r10_bio->sectors) {
 963			/* Could not read all from this device, so we will
 964			 * need another r10_bio.
 965			 */
 966			sectors_handled = (r10_bio->sectors + max_sectors
 967					   - bio->bi_sector);
 968			r10_bio->sectors = max_sectors;
 969			spin_lock_irq(&conf->device_lock);
 970			if (bio->bi_phys_segments == 0)
 971				bio->bi_phys_segments = 2;
 972			else
 973				bio->bi_phys_segments++;
 974			spin_unlock(&conf->device_lock);
 975			/* Cannot call generic_make_request directly
 976			 * as that will be queued in __generic_make_request
 977			 * and subsequent mempool_alloc might block
 978			 * waiting for it.  so hand bio over to raid10d.
 979			 */
 980			reschedule_retry(r10_bio);
 981
 982			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 983
 984			r10_bio->master_bio = bio;
 985			r10_bio->sectors = ((bio->bi_size >> 9)
 986					    - sectors_handled);
 987			r10_bio->state = 0;
 988			r10_bio->mddev = mddev;
 989			r10_bio->sector = bio->bi_sector + sectors_handled;
 990			goto read_again;
 991		} else
 992			generic_make_request(read_bio);
 993		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	}
 
 995
 996	/*
 997	 * WRITE:
 998	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	/* first select target devices under rcu_lock and
1000	 * inc refcount on their rdev.  Record them by setting
1001	 * bios[x] to bio
1002	 * If there are known/acknowledged bad blocks on any device
1003	 * on which we have seen a write error, we want to avoid
1004	 * writing to those blocks.  This potentially requires several
1005	 * writes to write around the bad blocks.  Each set of writes
1006	 * gets its own r10_bio with a set of bios attached.  The number
1007	 * of r10_bios is recored in bio->bi_phys_segments just as with
1008	 * the read case.
1009	 */
1010	plugged = mddev_check_plugged(mddev);
1011
 
1012	raid10_find_phys(conf, r10_bio);
1013retry_write:
1014	blocked_rdev = NULL;
1015	rcu_read_lock();
1016	max_sectors = r10_bio->sectors;
1017
1018	for (i = 0;  i < conf->copies; i++) {
1019		int d = r10_bio->devs[i].devnum;
1020		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
 
 
 
 
1021		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1022			atomic_inc(&rdev->nr_pending);
1023			blocked_rdev = rdev;
1024			break;
1025		}
 
 
 
 
 
 
 
 
 
 
1026		r10_bio->devs[i].bio = NULL;
1027		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
 
1028			set_bit(R10BIO_Degraded, &r10_bio->state);
1029			continue;
1030		}
1031		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1032			sector_t first_bad;
1033			sector_t dev_sector = r10_bio->devs[i].addr;
1034			int bad_sectors;
1035			int is_bad;
1036
1037			is_bad = is_badblock(rdev, dev_sector,
1038					     max_sectors,
1039					     &first_bad, &bad_sectors);
1040			if (is_bad < 0) {
1041				/* Mustn't write here until the bad block
1042				 * is acknowledged
1043				 */
1044				atomic_inc(&rdev->nr_pending);
1045				set_bit(BlockedBadBlocks, &rdev->flags);
1046				blocked_rdev = rdev;
1047				break;
1048			}
1049			if (is_bad && first_bad <= dev_sector) {
1050				/* Cannot write here at all */
1051				bad_sectors -= (dev_sector - first_bad);
1052				if (bad_sectors < max_sectors)
1053					/* Mustn't write more than bad_sectors
1054					 * to other devices yet
1055					 */
1056					max_sectors = bad_sectors;
1057				/* We don't set R10BIO_Degraded as that
1058				 * only applies if the disk is missing,
1059				 * so it might be re-added, and we want to
1060				 * know to recover this chunk.
1061				 * In this case the device is here, and the
1062				 * fact that this chunk is not in-sync is
1063				 * recorded in the bad block log.
1064				 */
1065				continue;
1066			}
1067			if (is_bad) {
1068				int good_sectors = first_bad - dev_sector;
1069				if (good_sectors < max_sectors)
1070					max_sectors = good_sectors;
1071			}
1072		}
1073		r10_bio->devs[i].bio = bio;
1074		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
1075	}
1076	rcu_read_unlock();
1077
1078	if (unlikely(blocked_rdev)) {
1079		/* Have to wait for this device to get unblocked, then retry */
1080		int j;
1081		int d;
1082
1083		for (j = 0; j < i; j++)
1084			if (r10_bio->devs[j].bio) {
1085				d = r10_bio->devs[j].devnum;
1086				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1087			}
 
 
 
 
 
 
 
 
 
 
 
 
1088		allow_barrier(conf);
 
1089		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1090		wait_barrier(conf);
1091		goto retry_write;
1092	}
1093
1094	if (max_sectors < r10_bio->sectors) {
1095		/* We are splitting this into multiple parts, so
1096		 * we need to prepare for allocating another r10_bio.
1097		 */
1098		r10_bio->sectors = max_sectors;
1099		spin_lock_irq(&conf->device_lock);
1100		if (bio->bi_phys_segments == 0)
1101			bio->bi_phys_segments = 2;
1102		else
1103			bio->bi_phys_segments++;
1104		spin_unlock_irq(&conf->device_lock);
 
 
 
 
1105	}
1106	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1107
1108	atomic_set(&r10_bio->remaining, 1);
1109	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1110
1111	for (i = 0; i < conf->copies; i++) {
1112		struct bio *mbio;
1113		int d = r10_bio->devs[i].devnum;
1114		if (!r10_bio->devs[i].bio)
1115			continue;
 
 
 
1116
1117		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1118		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1119			    max_sectors);
1120		r10_bio->devs[i].bio = mbio;
1121
1122		mbio->bi_sector	= (r10_bio->devs[i].addr+
1123				   conf->mirrors[d].rdev->data_offset);
1124		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1125		mbio->bi_end_io	= raid10_end_write_request;
1126		mbio->bi_rw = WRITE | do_sync | do_fua;
1127		mbio->bi_private = r10_bio;
1128
1129		atomic_inc(&r10_bio->remaining);
1130		spin_lock_irqsave(&conf->device_lock, flags);
1131		bio_list_add(&conf->pending_bio_list, mbio);
1132		spin_unlock_irqrestore(&conf->device_lock, flags);
1133	}
1134
1135	/* Don't remove the bias on 'remaining' (one_write_done) until
1136	 * after checking if we need to go around again.
1137	 */
1138
1139	if (sectors_handled < (bio->bi_size >> 9)) {
1140		one_write_done(r10_bio);
1141		/* We need another r10_bio.  It has already been counted
1142		 * in bio->bi_phys_segments.
1143		 */
1144		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1145
1146		r10_bio->master_bio = bio;
1147		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
 
 
 
1148
1149		r10_bio->mddev = mddev;
1150		r10_bio->sector = bio->bi_sector + sectors_handled;
1151		r10_bio->state = 0;
1152		goto retry_write;
1153	}
1154	one_write_done(r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155
1156	/* In case raid10d snuck in to freeze_array */
1157	wake_up(&conf->wait_barrier);
1158
1159	if (do_sync || !mddev->bitmap || !plugged)
1160		md_wakeup_thread(mddev->thread);
1161	return 0;
1162}
1163
1164static void status(struct seq_file *seq, mddev_t *mddev)
1165{
1166	conf_t *conf = mddev->private;
1167	int i;
1168
1169	if (conf->near_copies < conf->raid_disks)
1170		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1171	if (conf->near_copies > 1)
1172		seq_printf(seq, " %d near-copies", conf->near_copies);
1173	if (conf->far_copies > 1) {
1174		if (conf->far_offset)
1175			seq_printf(seq, " %d offset-copies", conf->far_copies);
1176		else
1177			seq_printf(seq, " %d far-copies", conf->far_copies);
 
 
1178	}
1179	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1180					conf->raid_disks - mddev->degraded);
1181	for (i = 0; i < conf->raid_disks; i++)
1182		seq_printf(seq, "%s",
1183			      conf->mirrors[i].rdev &&
1184			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
 
 
1185	seq_printf(seq, "]");
1186}
1187
1188/* check if there are enough drives for
1189 * every block to appear on atleast one.
1190 * Don't consider the device numbered 'ignore'
1191 * as we might be about to remove it.
1192 */
1193static int enough(conf_t *conf, int ignore)
1194{
1195	int first = 0;
 
 
 
 
 
 
 
 
 
1196
 
1197	do {
1198		int n = conf->copies;
1199		int cnt = 0;
 
1200		while (n--) {
1201			if (conf->mirrors[first].rdev &&
1202			    first != ignore)
 
 
1203				cnt++;
1204			first = (first+1) % conf->raid_disks;
1205		}
1206		if (cnt == 0)
1207			return 0;
 
1208	} while (first != 0);
1209	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210}
1211
1212static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1213{
1214	char b[BDEVNAME_SIZE];
1215	conf_t *conf = mddev->private;
 
1216
1217	/*
1218	 * If it is not operational, then we have already marked it as dead
1219	 * else if it is the last working disks, ignore the error, let the
1220	 * next level up know.
1221	 * else mark the drive as failed
1222	 */
1223	if (test_bit(In_sync, &rdev->flags)
1224	    && !enough(conf, rdev->raid_disk))
 
1225		/*
1226		 * Don't fail the drive, just return an IO error.
1227		 */
1228		return;
1229	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1230		unsigned long flags;
1231		spin_lock_irqsave(&conf->device_lock, flags);
1232		mddev->degraded++;
1233		spin_unlock_irqrestore(&conf->device_lock, flags);
1234		/*
1235		 * if recovery is running, make sure it aborts.
1236		 */
1237		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1238	}
 
 
 
 
 
 
1239	set_bit(Blocked, &rdev->flags);
1240	set_bit(Faulty, &rdev->flags);
1241	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1242	printk(KERN_ALERT
1243	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1244	       "md/raid10:%s: Operation continuing on %d devices.\n",
1245	       mdname(mddev), bdevname(rdev->bdev, b),
1246	       mdname(mddev), conf->raid_disks - mddev->degraded);
 
1247}
1248
1249static void print_conf(conf_t *conf)
1250{
1251	int i;
1252	mirror_info_t *tmp;
1253
1254	printk(KERN_DEBUG "RAID10 conf printout:\n");
1255	if (!conf) {
1256		printk(KERN_DEBUG "(!conf)\n");
1257		return;
1258	}
1259	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1260		conf->raid_disks);
1261
1262	for (i = 0; i < conf->raid_disks; i++) {
 
 
1263		char b[BDEVNAME_SIZE];
1264		tmp = conf->mirrors + i;
1265		if (tmp->rdev)
1266			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1267				i, !test_bit(In_sync, &tmp->rdev->flags),
1268			        !test_bit(Faulty, &tmp->rdev->flags),
1269				bdevname(tmp->rdev->bdev,b));
1270	}
1271}
1272
1273static void close_sync(conf_t *conf)
1274{
1275	wait_barrier(conf);
1276	allow_barrier(conf);
1277
1278	mempool_destroy(conf->r10buf_pool);
1279	conf->r10buf_pool = NULL;
1280}
1281
1282static int raid10_spare_active(mddev_t *mddev)
1283{
1284	int i;
1285	conf_t *conf = mddev->private;
1286	mirror_info_t *tmp;
1287	int count = 0;
1288	unsigned long flags;
1289
1290	/*
1291	 * Find all non-in_sync disks within the RAID10 configuration
1292	 * and mark them in_sync
1293	 */
1294	for (i = 0; i < conf->raid_disks; i++) {
1295		tmp = conf->mirrors + i;
1296		if (tmp->rdev
1297		    && !test_bit(Faulty, &tmp->rdev->flags)
1298		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299			count++;
1300			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1301		}
1302	}
1303	spin_lock_irqsave(&conf->device_lock, flags);
1304	mddev->degraded -= count;
1305	spin_unlock_irqrestore(&conf->device_lock, flags);
1306
1307	print_conf(conf);
1308	return count;
1309}
1310
1311
1312static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1313{
1314	conf_t *conf = mddev->private;
1315	int err = -EEXIST;
1316	int mirror;
1317	int first = 0;
1318	int last = conf->raid_disks - 1;
1319
1320	if (mddev->recovery_cp < MaxSector)
1321		/* only hot-add to in-sync arrays, as recovery is
1322		 * very different from resync
1323		 */
1324		return -EBUSY;
1325	if (!enough(conf, -1))
1326		return -EINVAL;
1327
 
 
 
1328	if (rdev->raid_disk >= 0)
1329		first = last = rdev->raid_disk;
1330
1331	if (rdev->saved_raid_disk >= first &&
 
1332	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1333		mirror = rdev->saved_raid_disk;
1334	else
1335		mirror = first;
1336	for ( ; mirror <= last ; mirror++) {
1337		mirror_info_t *p = &conf->mirrors[mirror];
1338		if (p->recovery_disabled == mddev->recovery_disabled)
1339			continue;
1340		if (!p->rdev)
1341			continue;
1342
1343		disk_stack_limits(mddev->gendisk, rdev->bdev,
1344				  rdev->data_offset << 9);
1345		/* as we don't honour merge_bvec_fn, we must
1346		 * never risk violating it, so limit
1347		 * ->max_segments to one lying with a single
1348		 * page, as a one page request is never in
1349		 * violation.
1350		 */
1351		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1352			blk_queue_max_segments(mddev->queue, 1);
1353			blk_queue_segment_boundary(mddev->queue,
1354						   PAGE_CACHE_SIZE - 1);
1355		}
1356
 
 
 
 
1357		p->head_position = 0;
 
1358		rdev->raid_disk = mirror;
1359		err = 0;
1360		if (rdev->saved_raid_disk != mirror)
1361			conf->fullsync = 1;
1362		rcu_assign_pointer(p->rdev, rdev);
1363		break;
1364	}
 
 
1365
1366	md_integrity_add_rdev(rdev, mddev);
1367	print_conf(conf);
1368	return err;
1369}
1370
1371static int raid10_remove_disk(mddev_t *mddev, int number)
1372{
1373	conf_t *conf = mddev->private;
1374	int err = 0;
1375	mdk_rdev_t *rdev;
1376	mirror_info_t *p = conf->mirrors+ number;
 
1377
1378	print_conf(conf);
1379	rdev = p->rdev;
1380	if (rdev) {
1381		if (test_bit(In_sync, &rdev->flags) ||
1382		    atomic_read(&rdev->nr_pending)) {
1383			err = -EBUSY;
1384			goto abort;
1385		}
1386		/* Only remove faulty devices in recovery
1387		 * is not possible.
1388		 */
1389		if (!test_bit(Faulty, &rdev->flags) &&
1390		    mddev->recovery_disabled != p->recovery_disabled &&
1391		    enough(conf, -1)) {
1392			err = -EBUSY;
1393			goto abort;
1394		}
1395		p->rdev = NULL;
 
 
 
 
 
 
 
 
1396		synchronize_rcu();
1397		if (atomic_read(&rdev->nr_pending)) {
1398			/* lost the race, try later */
1399			err = -EBUSY;
1400			p->rdev = rdev;
1401			goto abort;
1402		}
1403		err = md_integrity_register(mddev);
1404	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1405abort:
1406
1407	print_conf(conf);
1408	return err;
1409}
1410
1411
1412static void end_sync_read(struct bio *bio, int error)
1413{
1414	r10bio_t *r10_bio = bio->bi_private;
1415	conf_t *conf = r10_bio->mddev->private;
1416	int d;
1417
1418	d = find_bio_disk(conf, r10_bio, bio, NULL);
1419
1420	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1421		set_bit(R10BIO_Uptodate, &r10_bio->state);
1422	else
1423		/* The write handler will notice the lack of
1424		 * R10BIO_Uptodate and record any errors etc
1425		 */
1426		atomic_add(r10_bio->sectors,
1427			   &conf->mirrors[d].rdev->corrected_errors);
1428
1429	/* for reconstruct, we always reschedule after a read.
1430	 * for resync, only after all reads
1431	 */
1432	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1433	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1434	    atomic_dec_and_test(&r10_bio->remaining)) {
1435		/* we have read all the blocks,
1436		 * do the comparison in process context in raid10d
1437		 */
1438		reschedule_retry(r10_bio);
1439	}
1440}
1441
1442static void end_sync_request(r10bio_t *r10_bio)
1443{
1444	mddev_t *mddev = r10_bio->mddev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445
1446	while (atomic_dec_and_test(&r10_bio->remaining)) {
1447		if (r10_bio->master_bio == NULL) {
1448			/* the primary of several recovery bios */
1449			sector_t s = r10_bio->sectors;
1450			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1451			    test_bit(R10BIO_WriteError, &r10_bio->state))
1452				reschedule_retry(r10_bio);
1453			else
1454				put_buf(r10_bio);
1455			md_done_sync(mddev, s, 1);
1456			break;
1457		} else {
1458			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1459			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1460			    test_bit(R10BIO_WriteError, &r10_bio->state))
1461				reschedule_retry(r10_bio);
1462			else
1463				put_buf(r10_bio);
1464			r10_bio = r10_bio2;
1465		}
1466	}
1467}
1468
1469static void end_sync_write(struct bio *bio, int error)
1470{
1471	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1472	r10bio_t *r10_bio = bio->bi_private;
1473	mddev_t *mddev = r10_bio->mddev;
1474	conf_t *conf = mddev->private;
1475	int d;
1476	sector_t first_bad;
1477	int bad_sectors;
1478	int slot;
 
 
1479
1480	d = find_bio_disk(conf, r10_bio, bio, &slot);
 
 
 
 
1481
1482	if (!uptodate) {
1483		set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1484		set_bit(R10BIO_WriteError, &r10_bio->state);
1485	} else if (is_badblock(conf->mirrors[d].rdev,
 
 
 
 
 
 
 
1486			     r10_bio->devs[slot].addr,
1487			     r10_bio->sectors,
1488			     &first_bad, &bad_sectors))
1489		set_bit(R10BIO_MadeGood, &r10_bio->state);
1490
1491	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1492
1493	end_sync_request(r10_bio);
1494}
1495
1496/*
1497 * Note: sync and recover and handled very differently for raid10
1498 * This code is for resync.
1499 * For resync, we read through virtual addresses and read all blocks.
1500 * If there is any error, we schedule a write.  The lowest numbered
1501 * drive is authoritative.
1502 * However requests come for physical address, so we need to map.
1503 * For every physical address there are raid_disks/copies virtual addresses,
1504 * which is always are least one, but is not necessarly an integer.
1505 * This means that a physical address can span multiple chunks, so we may
1506 * have to submit multiple io requests for a single sync request.
1507 */
1508/*
1509 * We check if all blocks are in-sync and only write to blocks that
1510 * aren't in sync
1511 */
1512static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1513{
1514	conf_t *conf = mddev->private;
1515	int i, first;
1516	struct bio *tbio, *fbio;
 
 
1517
1518	atomic_set(&r10_bio->remaining, 1);
1519
1520	/* find the first device with a block */
1521	for (i=0; i<conf->copies; i++)
1522		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1523			break;
1524
1525	if (i == conf->copies)
1526		goto done;
1527
1528	first = i;
1529	fbio = r10_bio->devs[i].bio;
 
 
 
1530
 
1531	/* now find blocks with errors */
1532	for (i=0 ; i < conf->copies ; i++) {
1533		int  j, d;
1534		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
 
1535
1536		tbio = r10_bio->devs[i].bio;
1537
1538		if (tbio->bi_end_io != end_sync_read)
1539			continue;
1540		if (i == first)
1541			continue;
1542		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
 
 
 
 
1543			/* We know that the bi_io_vec layout is the same for
1544			 * both 'first' and 'i', so we just compare them.
1545			 * All vec entries are PAGE_SIZE;
1546			 */
1547			for (j = 0; j < vcnt; j++)
1548				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1549					   page_address(tbio->bi_io_vec[j].bv_page),
1550					   PAGE_SIZE))
 
 
 
 
1551					break;
 
 
1552			if (j == vcnt)
1553				continue;
1554			mddev->resync_mismatches += r10_bio->sectors;
1555			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1556				/* Don't fix anything. */
1557				continue;
 
 
 
 
1558		}
1559		/* Ok, we need to write this bio, either to correct an
1560		 * inconsistency or to correct an unreadable block.
1561		 * First we need to fixup bv_offset, bv_len and
1562		 * bi_vecs, as the read request might have corrupted these
1563		 */
1564		tbio->bi_vcnt = vcnt;
1565		tbio->bi_size = r10_bio->sectors << 9;
1566		tbio->bi_idx = 0;
1567		tbio->bi_phys_segments = 0;
1568		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1569		tbio->bi_flags |= 1 << BIO_UPTODATE;
1570		tbio->bi_next = NULL;
1571		tbio->bi_rw = WRITE;
1572		tbio->bi_private = r10_bio;
1573		tbio->bi_sector = r10_bio->devs[i].addr;
1574
1575		for (j=0; j < vcnt ; j++) {
1576			tbio->bi_io_vec[j].bv_offset = 0;
1577			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1578
1579			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1580			       page_address(fbio->bi_io_vec[j].bv_page),
1581			       PAGE_SIZE);
1582		}
1583		tbio->bi_end_io = end_sync_write;
 
 
 
1584
1585		d = r10_bio->devs[i].devnum;
1586		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1587		atomic_inc(&r10_bio->remaining);
1588		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
 
 
 
 
 
 
 
 
 
 
 
 
 
1589
1590		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1591		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1592		generic_make_request(tbio);
 
 
 
 
 
 
 
 
1593	}
1594
1595done:
1596	if (atomic_dec_and_test(&r10_bio->remaining)) {
1597		md_done_sync(mddev, r10_bio->sectors, 1);
1598		put_buf(r10_bio);
1599	}
1600}
1601
1602/*
1603 * Now for the recovery code.
1604 * Recovery happens across physical sectors.
1605 * We recover all non-is_sync drives by finding the virtual address of
1606 * each, and then choose a working drive that also has that virt address.
1607 * There is a separate r10_bio for each non-in_sync drive.
1608 * Only the first two slots are in use. The first for reading,
1609 * The second for writing.
1610 *
1611 */
1612static void fix_recovery_read_error(r10bio_t *r10_bio)
1613{
1614	/* We got a read error during recovery.
1615	 * We repeat the read in smaller page-sized sections.
1616	 * If a read succeeds, write it to the new device or record
1617	 * a bad block if we cannot.
1618	 * If a read fails, record a bad block on both old and
1619	 * new devices.
1620	 */
1621	mddev_t *mddev = r10_bio->mddev;
1622	conf_t *conf = mddev->private;
1623	struct bio *bio = r10_bio->devs[0].bio;
1624	sector_t sect = 0;
1625	int sectors = r10_bio->sectors;
1626	int idx = 0;
1627	int dr = r10_bio->devs[0].devnum;
1628	int dw = r10_bio->devs[1].devnum;
 
1629
1630	while (sectors) {
1631		int s = sectors;
1632		mdk_rdev_t *rdev;
1633		sector_t addr;
1634		int ok;
1635
1636		if (s > (PAGE_SIZE>>9))
1637			s = PAGE_SIZE >> 9;
1638
1639		rdev = conf->mirrors[dr].rdev;
1640		addr = r10_bio->devs[0].addr + sect,
1641		ok = sync_page_io(rdev,
1642				  addr,
1643				  s << 9,
1644				  bio->bi_io_vec[idx].bv_page,
1645				  READ, false);
1646		if (ok) {
1647			rdev = conf->mirrors[dw].rdev;
1648			addr = r10_bio->devs[1].addr + sect;
1649			ok = sync_page_io(rdev,
1650					  addr,
1651					  s << 9,
1652					  bio->bi_io_vec[idx].bv_page,
1653					  WRITE, false);
1654			if (!ok)
1655				set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
 
1656		}
1657		if (!ok) {
1658			/* We don't worry if we cannot set a bad block -
1659			 * it really is bad so there is no loss in not
1660			 * recording it yet
1661			 */
1662			rdev_set_badblocks(rdev, addr, s, 0);
1663
1664			if (rdev != conf->mirrors[dw].rdev) {
1665				/* need bad block on destination too */
1666				mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1667				addr = r10_bio->devs[1].addr + sect;
1668				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1669				if (!ok) {
1670					/* just abort the recovery */
1671					printk(KERN_NOTICE
1672					       "md/raid10:%s: recovery aborted"
1673					       " due to read error\n",
1674					       mdname(mddev));
1675
1676					conf->mirrors[dw].recovery_disabled
1677						= mddev->recovery_disabled;
1678					set_bit(MD_RECOVERY_INTR,
1679						&mddev->recovery);
1680					break;
1681				}
1682			}
1683		}
1684
1685		sectors -= s;
1686		sect += s;
1687		idx++;
1688	}
1689}
1690
1691static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1692{
1693	conf_t *conf = mddev->private;
1694	int d;
1695	struct bio *wbio;
1696
1697	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1698		fix_recovery_read_error(r10_bio);
1699		end_sync_request(r10_bio);
1700		return;
1701	}
1702
1703	/*
1704	 * share the pages with the first bio
1705	 * and submit the write request
1706	 */
1707	wbio = r10_bio->devs[1].bio;
1708	d = r10_bio->devs[1].devnum;
1709
1710	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1711	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1712	generic_make_request(wbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713}
1714
1715
1716/*
1717 * Used by fix_read_error() to decay the per rdev read_errors.
1718 * We halve the read error count for every hour that has elapsed
1719 * since the last recorded read error.
1720 *
1721 */
1722static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1723{
1724	struct timespec cur_time_mon;
1725	unsigned long hours_since_last;
1726	unsigned int read_errors = atomic_read(&rdev->read_errors);
1727
1728	ktime_get_ts(&cur_time_mon);
1729
1730	if (rdev->last_read_error.tv_sec == 0 &&
1731	    rdev->last_read_error.tv_nsec == 0) {
1732		/* first time we've seen a read error */
1733		rdev->last_read_error = cur_time_mon;
1734		return;
1735	}
1736
1737	hours_since_last = (cur_time_mon.tv_sec -
1738			    rdev->last_read_error.tv_sec) / 3600;
1739
1740	rdev->last_read_error = cur_time_mon;
1741
1742	/*
1743	 * if hours_since_last is > the number of bits in read_errors
1744	 * just set read errors to 0. We do this to avoid
1745	 * overflowing the shift of read_errors by hours_since_last.
1746	 */
1747	if (hours_since_last >= 8 * sizeof(read_errors))
1748		atomic_set(&rdev->read_errors, 0);
1749	else
1750		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1751}
1752
1753static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1754			    int sectors, struct page *page, int rw)
1755{
1756	sector_t first_bad;
1757	int bad_sectors;
1758
1759	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1760	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1761		return -1;
1762	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1763		/* success */
1764		return 1;
1765	if (rw == WRITE)
1766		set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
1767	/* need to record an error - either for the block or the device */
1768	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1769		md_error(rdev->mddev, rdev);
1770	return 0;
1771}
1772
1773/*
1774 * This is a kernel thread which:
1775 *
1776 *	1.	Retries failed read operations on working mirrors.
1777 *	2.	Updates the raid superblock when problems encounter.
1778 *	3.	Performs writes following reads for array synchronising.
1779 */
1780
1781static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1782{
1783	int sect = 0; /* Offset from r10_bio->sector */
1784	int sectors = r10_bio->sectors;
1785	mdk_rdev_t*rdev;
1786	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1787	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1788
1789	/* still own a reference to this rdev, so it cannot
1790	 * have been cleared recently.
1791	 */
1792	rdev = conf->mirrors[d].rdev;
1793
1794	if (test_bit(Faulty, &rdev->flags))
1795		/* drive has already been failed, just ignore any
1796		   more fix_read_error() attempts */
1797		return;
1798
1799	check_decay_read_errors(mddev, rdev);
1800	atomic_inc(&rdev->read_errors);
1801	if (atomic_read(&rdev->read_errors) > max_read_errors) {
1802		char b[BDEVNAME_SIZE];
1803		bdevname(rdev->bdev, b);
1804
1805		printk(KERN_NOTICE
1806		       "md/raid10:%s: %s: Raid device exceeded "
1807		       "read_error threshold [cur %d:max %d]\n",
1808		       mdname(mddev), b,
1809		       atomic_read(&rdev->read_errors), max_read_errors);
1810		printk(KERN_NOTICE
1811		       "md/raid10:%s: %s: Failing raid device\n",
1812		       mdname(mddev), b);
1813		md_error(mddev, conf->mirrors[d].rdev);
1814		return;
1815	}
1816
1817	while(sectors) {
1818		int s = sectors;
1819		int sl = r10_bio->read_slot;
1820		int success = 0;
1821		int start;
1822
1823		if (s > (PAGE_SIZE>>9))
1824			s = PAGE_SIZE >> 9;
1825
1826		rcu_read_lock();
1827		do {
1828			sector_t first_bad;
1829			int bad_sectors;
1830
1831			d = r10_bio->devs[sl].devnum;
1832			rdev = rcu_dereference(conf->mirrors[d].rdev);
1833			if (rdev &&
1834			    test_bit(In_sync, &rdev->flags) &&
 
1835			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1836					&first_bad, &bad_sectors) == 0) {
1837				atomic_inc(&rdev->nr_pending);
1838				rcu_read_unlock();
1839				success = sync_page_io(rdev,
1840						       r10_bio->devs[sl].addr +
1841						       sect,
1842						       s<<9,
1843						       conf->tmppage, READ, false);
 
1844				rdev_dec_pending(rdev, mddev);
1845				rcu_read_lock();
1846				if (success)
1847					break;
1848			}
1849			sl++;
1850			if (sl == conf->copies)
1851				sl = 0;
1852		} while (!success && sl != r10_bio->read_slot);
1853		rcu_read_unlock();
1854
1855		if (!success) {
1856			/* Cannot read from anywhere, just mark the block
1857			 * as bad on the first device to discourage future
1858			 * reads.
1859			 */
1860			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1861			rdev = conf->mirrors[dn].rdev;
1862
1863			if (!rdev_set_badblocks(
1864				    rdev,
1865				    r10_bio->devs[r10_bio->read_slot].addr
1866				    + sect,
1867				    s, 0))
1868				md_error(mddev, rdev);
 
 
 
1869			break;
1870		}
1871
1872		start = sl;
1873		/* write it back and re-read */
1874		rcu_read_lock();
1875		while (sl != r10_bio->read_slot) {
1876			char b[BDEVNAME_SIZE];
1877
1878			if (sl==0)
1879				sl = conf->copies;
1880			sl--;
1881			d = r10_bio->devs[sl].devnum;
1882			rdev = rcu_dereference(conf->mirrors[d].rdev);
1883			if (!rdev ||
 
1884			    !test_bit(In_sync, &rdev->flags))
1885				continue;
1886
1887			atomic_inc(&rdev->nr_pending);
1888			rcu_read_unlock();
1889			if (r10_sync_page_io(rdev,
1890					     r10_bio->devs[sl].addr +
1891					     sect,
1892					     s<<9, conf->tmppage, WRITE)
1893			    == 0) {
1894				/* Well, this device is dead */
1895				printk(KERN_NOTICE
1896				       "md/raid10:%s: read correction "
1897				       "write failed"
1898				       " (%d sectors at %llu on %s)\n",
1899				       mdname(mddev), s,
1900				       (unsigned long long)(
1901					       sect + rdev->data_offset),
1902				       bdevname(rdev->bdev, b));
1903				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1904				       "drive\n",
1905				       mdname(mddev),
1906				       bdevname(rdev->bdev, b));
1907			}
1908			rdev_dec_pending(rdev, mddev);
1909			rcu_read_lock();
1910		}
1911		sl = start;
1912		while (sl != r10_bio->read_slot) {
1913			char b[BDEVNAME_SIZE];
1914
1915			if (sl==0)
1916				sl = conf->copies;
1917			sl--;
1918			d = r10_bio->devs[sl].devnum;
1919			rdev = rcu_dereference(conf->mirrors[d].rdev);
1920			if (!rdev ||
 
1921			    !test_bit(In_sync, &rdev->flags))
1922				continue;
1923
1924			atomic_inc(&rdev->nr_pending);
1925			rcu_read_unlock();
1926			switch (r10_sync_page_io(rdev,
1927					     r10_bio->devs[sl].addr +
1928					     sect,
1929					     s<<9, conf->tmppage,
1930						 READ)) {
1931			case 0:
1932				/* Well, this device is dead */
1933				printk(KERN_NOTICE
1934				       "md/raid10:%s: unable to read back "
1935				       "corrected sectors"
1936				       " (%d sectors at %llu on %s)\n",
1937				       mdname(mddev), s,
1938				       (unsigned long long)(
1939					       sect + rdev->data_offset),
 
1940				       bdevname(rdev->bdev, b));
1941				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1942				       "drive\n",
1943				       mdname(mddev),
1944				       bdevname(rdev->bdev, b));
1945				break;
1946			case 1:
1947				printk(KERN_INFO
1948				       "md/raid10:%s: read error corrected"
1949				       " (%d sectors at %llu on %s)\n",
1950				       mdname(mddev), s,
1951				       (unsigned long long)(
1952					       sect + rdev->data_offset),
 
1953				       bdevname(rdev->bdev, b));
1954				atomic_add(s, &rdev->corrected_errors);
1955			}
1956
1957			rdev_dec_pending(rdev, mddev);
1958			rcu_read_lock();
1959		}
1960		rcu_read_unlock();
1961
1962		sectors -= s;
1963		sect += s;
1964	}
1965}
1966
1967static void bi_complete(struct bio *bio, int error)
1968{
1969	complete((struct completion *)bio->bi_private);
1970}
1971
1972static int submit_bio_wait(int rw, struct bio *bio)
1973{
1974	struct completion event;
1975	rw |= REQ_SYNC;
1976
1977	init_completion(&event);
1978	bio->bi_private = &event;
1979	bio->bi_end_io = bi_complete;
1980	submit_bio(rw, bio);
1981	wait_for_completion(&event);
1982
1983	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1984}
1985
1986static int narrow_write_error(r10bio_t *r10_bio, int i)
1987{
1988	struct bio *bio = r10_bio->master_bio;
1989	mddev_t *mddev = r10_bio->mddev;
1990	conf_t *conf = mddev->private;
1991	mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1992	/* bio has the data to be written to slot 'i' where
1993	 * we just recently had a write error.
1994	 * We repeatedly clone the bio and trim down to one block,
1995	 * then try the write.  Where the write fails we record
1996	 * a bad block.
1997	 * It is conceivable that the bio doesn't exactly align with
1998	 * blocks.  We must handle this.
1999	 *
2000	 * We currently own a reference to the rdev.
2001	 */
2002
2003	int block_sectors;
2004	sector_t sector;
2005	int sectors;
2006	int sect_to_write = r10_bio->sectors;
2007	int ok = 1;
2008
2009	if (rdev->badblocks.shift < 0)
2010		return 0;
2011
2012	block_sectors = 1 << rdev->badblocks.shift;
 
2013	sector = r10_bio->sector;
2014	sectors = ((r10_bio->sector + block_sectors)
2015		   & ~(sector_t)(block_sectors - 1))
2016		- sector;
2017
2018	while (sect_to_write) {
2019		struct bio *wbio;
 
2020		if (sectors > sect_to_write)
2021			sectors = sect_to_write;
2022		/* Write at 'sector' for 'sectors' */
2023		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2024		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2025		wbio->bi_sector = (r10_bio->devs[i].addr+
2026				   rdev->data_offset+
2027				   (sector - r10_bio->sector));
2028		wbio->bi_bdev = rdev->bdev;
2029		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
2030			/* Failure! */
2031			ok = rdev_set_badblocks(rdev, sector,
2032						sectors, 0)
2033				&& ok;
2034
2035		bio_put(wbio);
2036		sect_to_write -= sectors;
2037		sector += sectors;
2038		sectors = block_sectors;
2039	}
2040	return ok;
2041}
2042
2043static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2044{
2045	int slot = r10_bio->read_slot;
2046	int mirror = r10_bio->devs[slot].devnum;
2047	struct bio *bio;
2048	conf_t *conf = mddev->private;
2049	mdk_rdev_t *rdev;
2050	char b[BDEVNAME_SIZE];
2051	unsigned long do_sync;
2052	int max_sectors;
2053
2054	/* we got a read error. Maybe the drive is bad.  Maybe just
2055	 * the block and we can fix it.
2056	 * We freeze all other IO, and try reading the block from
2057	 * other devices.  When we find one, we re-write
2058	 * and check it that fixes the read error.
2059	 * This is all done synchronously while the array is
2060	 * frozen.
2061	 */
2062	if (mddev->ro == 0) {
2063		freeze_array(conf);
2064		fix_read_error(conf, mddev, r10_bio);
2065		unfreeze_array(conf);
2066	}
2067	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2068
2069	bio = r10_bio->devs[slot].bio;
2070	bdevname(bio->bi_bdev, b);
2071	r10_bio->devs[slot].bio =
2072		mddev->ro ? IO_BLOCKED : NULL;
2073read_more:
2074	mirror = read_balance(conf, r10_bio, &max_sectors);
2075	if (mirror == -1) {
2076		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2077		       " read error for block %llu\n",
2078		       mdname(mddev), b,
2079		       (unsigned long long)r10_bio->sector);
2080		raid_end_bio_io(r10_bio);
2081		bio_put(bio);
2082		return;
2083	}
2084
2085	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2086	if (bio)
2087		bio_put(bio);
2088	slot = r10_bio->read_slot;
2089	rdev = conf->mirrors[mirror].rdev;
2090	printk_ratelimited(
2091		KERN_ERR
2092		"md/raid10:%s: %s: redirecting"
2093		"sector %llu to another mirror\n",
2094		mdname(mddev),
2095		bdevname(rdev->bdev, b),
2096		(unsigned long long)r10_bio->sector);
2097	bio = bio_clone_mddev(r10_bio->master_bio,
2098			      GFP_NOIO, mddev);
2099	md_trim_bio(bio,
2100		    r10_bio->sector - bio->bi_sector,
2101		    max_sectors);
2102	r10_bio->devs[slot].bio = bio;
2103	bio->bi_sector = r10_bio->devs[slot].addr
2104		+ rdev->data_offset;
2105	bio->bi_bdev = rdev->bdev;
2106	bio->bi_rw = READ | do_sync;
2107	bio->bi_private = r10_bio;
2108	bio->bi_end_io = raid10_end_read_request;
2109	if (max_sectors < r10_bio->sectors) {
2110		/* Drat - have to split this up more */
2111		struct bio *mbio = r10_bio->master_bio;
2112		int sectors_handled =
2113			r10_bio->sector + max_sectors
2114			- mbio->bi_sector;
2115		r10_bio->sectors = max_sectors;
2116		spin_lock_irq(&conf->device_lock);
2117		if (mbio->bi_phys_segments == 0)
2118			mbio->bi_phys_segments = 2;
2119		else
2120			mbio->bi_phys_segments++;
2121		spin_unlock_irq(&conf->device_lock);
2122		generic_make_request(bio);
2123		bio = NULL;
2124
2125		r10_bio = mempool_alloc(conf->r10bio_pool,
2126					GFP_NOIO);
2127		r10_bio->master_bio = mbio;
2128		r10_bio->sectors = (mbio->bi_size >> 9)
2129			- sectors_handled;
2130		r10_bio->state = 0;
2131		set_bit(R10BIO_ReadError,
2132			&r10_bio->state);
2133		r10_bio->mddev = mddev;
2134		r10_bio->sector = mbio->bi_sector
2135			+ sectors_handled;
2136
2137		goto read_more;
2138	} else
2139		generic_make_request(bio);
 
 
 
 
 
2140}
2141
2142static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2143{
2144	/* Some sort of write request has finished and it
2145	 * succeeded in writing where we thought there was a
2146	 * bad block.  So forget the bad block.
2147	 * Or possibly if failed and we need to record
2148	 * a bad block.
2149	 */
2150	int m;
2151	mdk_rdev_t *rdev;
2152
2153	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2154	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2155		for (m = 0; m < conf->copies; m++) {
2156			int dev = r10_bio->devs[m].devnum;
2157			rdev = conf->mirrors[dev].rdev;
2158			if (r10_bio->devs[m].bio == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159				continue;
2160			if (test_bit(BIO_UPTODATE,
2161				     &r10_bio->devs[m].bio->bi_flags)) {
2162				rdev_clear_badblocks(
2163					rdev,
2164					r10_bio->devs[m].addr,
2165					r10_bio->sectors);
2166			} else {
2167				if (!rdev_set_badblocks(
2168					    rdev,
2169					    r10_bio->devs[m].addr,
2170					    r10_bio->sectors, 0))
2171					md_error(conf->mddev, rdev);
2172			}
2173		}
2174		put_buf(r10_bio);
2175	} else {
 
2176		for (m = 0; m < conf->copies; m++) {
2177			int dev = r10_bio->devs[m].devnum;
2178			struct bio *bio = r10_bio->devs[m].bio;
2179			rdev = conf->mirrors[dev].rdev;
2180			if (bio == IO_MADE_GOOD) {
2181				rdev_clear_badblocks(
2182					rdev,
2183					r10_bio->devs[m].addr,
2184					r10_bio->sectors);
2185				rdev_dec_pending(rdev, conf->mddev);
2186			} else if (bio != NULL &&
2187				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2188				if (!narrow_write_error(r10_bio, m)) {
2189					md_error(conf->mddev, rdev);
2190					set_bit(R10BIO_Degraded,
2191						&r10_bio->state);
2192				}
2193				rdev_dec_pending(rdev, conf->mddev);
2194			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195		}
2196		if (test_bit(R10BIO_WriteError,
2197			     &r10_bio->state))
2198			close_write(r10_bio);
2199		raid_end_bio_io(r10_bio);
2200	}
2201}
2202
2203static void raid10d(mddev_t *mddev)
2204{
2205	r10bio_t *r10_bio;
 
2206	unsigned long flags;
2207	conf_t *conf = mddev->private;
2208	struct list_head *head = &conf->retry_list;
2209	struct blk_plug plug;
2210
2211	md_check_recovery(mddev);
2212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213	blk_start_plug(&plug);
2214	for (;;) {
2215
2216		flush_pending_writes(conf);
2217
2218		spin_lock_irqsave(&conf->device_lock, flags);
2219		if (list_empty(head)) {
2220			spin_unlock_irqrestore(&conf->device_lock, flags);
2221			break;
2222		}
2223		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2224		list_del(head->prev);
2225		conf->nr_queued--;
2226		spin_unlock_irqrestore(&conf->device_lock, flags);
2227
2228		mddev = r10_bio->mddev;
2229		conf = mddev->private;
2230		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2231		    test_bit(R10BIO_WriteError, &r10_bio->state))
2232			handle_write_completed(conf, r10_bio);
 
 
2233		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2234			sync_request_write(mddev, r10_bio);
2235		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2236			recovery_request_write(mddev, r10_bio);
2237		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2238			handle_read_error(mddev, r10_bio);
2239		else {
2240			/* just a partial read to be scheduled from a
2241			 * separate context
2242			 */
2243			int slot = r10_bio->read_slot;
2244			generic_make_request(r10_bio->devs[slot].bio);
2245		}
2246
2247		cond_resched();
2248		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2249			md_check_recovery(mddev);
2250	}
2251	blk_finish_plug(&plug);
2252}
2253
2254
2255static int init_resync(conf_t *conf)
2256{
2257	int buffs;
2258
2259	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2260	BUG_ON(conf->r10buf_pool);
2261	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2262	if (!conf->r10buf_pool)
2263		return -ENOMEM;
 
 
 
 
 
2264	conf->next_resync = 0;
2265	return 0;
2266}
2267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268/*
2269 * perform a "sync" on one "block"
2270 *
2271 * We need to make sure that no normal I/O request - particularly write
2272 * requests - conflict with active sync requests.
2273 *
2274 * This is achieved by tracking pending requests and a 'barrier' concept
2275 * that can be installed to exclude normal IO requests.
2276 *
2277 * Resync and recovery are handled very differently.
2278 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2279 *
2280 * For resync, we iterate over virtual addresses, read all copies,
2281 * and update if there are differences.  If only one copy is live,
2282 * skip it.
2283 * For recovery, we iterate over physical addresses, read a good
2284 * value for each non-in_sync drive, and over-write.
2285 *
2286 * So, for recovery we may have several outstanding complex requests for a
2287 * given address, one for each out-of-sync device.  We model this by allocating
2288 * a number of r10_bio structures, one for each out-of-sync device.
2289 * As we setup these structures, we collect all bio's together into a list
2290 * which we then process collectively to add pages, and then process again
2291 * to pass to generic_make_request.
2292 *
2293 * The r10_bio structures are linked using a borrowed master_bio pointer.
2294 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2295 * has its remaining count decremented to 0, the whole complex operation
2296 * is complete.
2297 *
2298 */
2299
2300static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2301			     int *skipped, int go_faster)
2302{
2303	conf_t *conf = mddev->private;
2304	r10bio_t *r10_bio;
2305	struct bio *biolist = NULL, *bio;
2306	sector_t max_sector, nr_sectors;
2307	int i;
2308	int max_sync;
2309	sector_t sync_blocks;
2310	sector_t sectors_skipped = 0;
2311	int chunks_skipped = 0;
 
 
2312
2313	if (!conf->r10buf_pool)
2314		if (init_resync(conf))
2315			return 0;
2316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317 skipped:
2318	max_sector = mddev->dev_sectors;
2319	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 
2320		max_sector = mddev->resync_max_sectors;
2321	if (sector_nr >= max_sector) {
 
 
 
2322		/* If we aborted, we need to abort the
2323		 * sync on the 'current' bitmap chucks (there can
2324		 * be several when recovering multiple devices).
2325		 * as we may have started syncing it but not finished.
2326		 * We can find the current address in
2327		 * mddev->curr_resync, but for recovery,
2328		 * we need to convert that to several
2329		 * virtual addresses.
2330		 */
 
 
 
 
 
 
2331		if (mddev->curr_resync < max_sector) { /* aborted */
2332			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2333				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2334						&sync_blocks, 1);
2335			else for (i=0; i<conf->raid_disks; i++) {
2336				sector_t sect =
2337					raid10_find_virt(conf, mddev->curr_resync, i);
2338				bitmap_end_sync(mddev->bitmap, sect,
2339						&sync_blocks, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2340			}
2341		} else /* completed sync */
2342			conf->fullsync = 0;
2343
2344		bitmap_close_sync(mddev->bitmap);
2345		close_sync(conf);
2346		*skipped = 1;
2347		return sectors_skipped;
2348	}
2349	if (chunks_skipped >= conf->raid_disks) {
 
 
 
 
2350		/* if there has been nothing to do on any drive,
2351		 * then there is nothing to do at all..
2352		 */
2353		*skipped = 1;
2354		return (max_sector - sector_nr) + sectors_skipped;
2355	}
2356
2357	if (max_sector > mddev->resync_max)
2358		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2359
2360	/* make sure whole request will fit in a chunk - if chunks
2361	 * are meaningful
2362	 */
2363	if (conf->near_copies < conf->raid_disks &&
2364	    max_sector > (sector_nr | conf->chunk_mask))
2365		max_sector = (sector_nr | conf->chunk_mask) + 1;
 
2366	/*
2367	 * If there is non-resync activity waiting for us then
2368	 * put in a delay to throttle resync.
2369	 */
2370	if (!go_faster && conf->nr_waiting)
2371		msleep_interruptible(1000);
2372
2373	/* Again, very different code for resync and recovery.
2374	 * Both must result in an r10bio with a list of bios that
2375	 * have bi_end_io, bi_sector, bi_bdev set,
2376	 * and bi_private set to the r10bio.
2377	 * For recovery, we may actually create several r10bios
2378	 * with 2 bios in each, that correspond to the bios in the main one.
2379	 * In this case, the subordinate r10bios link back through a
2380	 * borrowed master_bio pointer, and the counter in the master
2381	 * includes a ref from each subordinate.
2382	 */
2383	/* First, we decide what to do and set ->bi_end_io
2384	 * To end_sync_read if we want to read, and
2385	 * end_sync_write if we will want to write.
2386	 */
2387
2388	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2389	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2390		/* recovery... the complicated one */
2391		int j;
2392		r10_bio = NULL;
2393
2394		for (i=0 ; i<conf->raid_disks; i++) {
2395			int still_degraded;
2396			r10bio_t *rb2;
2397			sector_t sect;
2398			int must_sync;
2399			int any_working;
 
 
 
 
 
 
 
 
2400
2401			if (conf->mirrors[i].rdev == NULL ||
2402			    test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
 
 
 
 
 
 
 
 
2403				continue;
 
2404
2405			still_degraded = 0;
2406			/* want to reconstruct this device */
2407			rb2 = r10_bio;
2408			sect = raid10_find_virt(conf, sector_nr, i);
2409			/* Unless we are doing a full sync, we only need
2410			 * to recover the block if it is set in the bitmap
 
 
 
 
 
 
 
 
 
 
2411			 */
2412			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2413						      &sync_blocks, 1);
2414			if (sync_blocks < max_sync)
2415				max_sync = sync_blocks;
2416			if (!must_sync &&
 
2417			    !conf->fullsync) {
2418				/* yep, skip the sync_blocks here, but don't assume
2419				 * that there will never be anything to do here
2420				 */
2421				chunks_skipped = -1;
 
2422				continue;
2423			}
 
 
 
 
2424
2425			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2426			raise_barrier(conf, rb2 != NULL);
2427			atomic_set(&r10_bio->remaining, 0);
2428
2429			r10_bio->master_bio = (struct bio*)rb2;
2430			if (rb2)
2431				atomic_inc(&rb2->remaining);
2432			r10_bio->mddev = mddev;
2433			set_bit(R10BIO_IsRecover, &r10_bio->state);
2434			r10_bio->sector = sect;
2435
2436			raid10_find_phys(conf, r10_bio);
2437
2438			/* Need to check if the array will still be
2439			 * degraded
2440			 */
2441			for (j=0; j<conf->raid_disks; j++)
2442				if (conf->mirrors[j].rdev == NULL ||
2443				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
 
 
2444					still_degraded = 1;
2445					break;
2446				}
 
2447
2448			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2449						      &sync_blocks, still_degraded);
2450
2451			any_working = 0;
2452			for (j=0; j<conf->copies;j++) {
2453				int k;
2454				int d = r10_bio->devs[j].devnum;
2455				sector_t from_addr, to_addr;
2456				mdk_rdev_t *rdev;
 
2457				sector_t sector, first_bad;
2458				int bad_sectors;
2459				if (!conf->mirrors[d].rdev ||
2460				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2461					continue;
2462				/* This is where we read from */
2463				any_working = 1;
2464				rdev = conf->mirrors[d].rdev;
2465				sector = r10_bio->devs[j].addr;
2466
2467				if (is_badblock(rdev, sector, max_sync,
2468						&first_bad, &bad_sectors)) {
2469					if (first_bad > sector)
2470						max_sync = first_bad - sector;
2471					else {
2472						bad_sectors -= (sector
2473								- first_bad);
2474						if (max_sync > bad_sectors)
2475							max_sync = bad_sectors;
2476						continue;
2477					}
2478				}
2479				bio = r10_bio->devs[0].bio;
2480				bio->bi_next = biolist;
2481				biolist = bio;
2482				bio->bi_private = r10_bio;
2483				bio->bi_end_io = end_sync_read;
2484				bio->bi_rw = READ;
 
 
2485				from_addr = r10_bio->devs[j].addr;
2486				bio->bi_sector = from_addr +
2487					conf->mirrors[d].rdev->data_offset;
2488				bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2489				atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2490				atomic_inc(&r10_bio->remaining);
2491				/* and we write to 'i' */
2492
2493				for (k=0; k<conf->copies; k++)
2494					if (r10_bio->devs[k].devnum == i)
2495						break;
2496				BUG_ON(k == conf->copies);
2497				bio = r10_bio->devs[1].bio;
2498				bio->bi_next = biolist;
2499				biolist = bio;
2500				bio->bi_private = r10_bio;
2501				bio->bi_end_io = end_sync_write;
2502				bio->bi_rw = WRITE;
2503				to_addr = r10_bio->devs[k].addr;
2504				bio->bi_sector = to_addr +
2505					conf->mirrors[i].rdev->data_offset;
2506				bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2507
2508				r10_bio->devs[0].devnum = d;
2509				r10_bio->devs[0].addr = from_addr;
2510				r10_bio->devs[1].devnum = i;
2511				r10_bio->devs[1].addr = to_addr;
2512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513				break;
2514			}
 
2515			if (j == conf->copies) {
2516				/* Cannot recover, so abort the recovery or
2517				 * record a bad block */
2518				put_buf(r10_bio);
2519				if (rb2)
2520					atomic_dec(&rb2->remaining);
2521				r10_bio = rb2;
2522				if (any_working) {
2523					/* problem is that there are bad blocks
2524					 * on other device(s)
2525					 */
2526					int k;
2527					for (k = 0; k < conf->copies; k++)
2528						if (r10_bio->devs[k].devnum == i)
2529							break;
2530					if (!rdev_set_badblocks(
2531						    conf->mirrors[i].rdev,
 
 
 
 
 
 
 
 
2532						    r10_bio->devs[k].addr,
2533						    max_sync, 0))
2534						any_working = 0;
2535				}
2536				if (!any_working)  {
2537					if (!test_and_set_bit(MD_RECOVERY_INTR,
2538							      &mddev->recovery))
2539						printk(KERN_INFO "md/raid10:%s: insufficient "
2540						       "working devices for recovery.\n",
2541						       mdname(mddev));
2542					conf->mirrors[i].recovery_disabled
2543						= mddev->recovery_disabled;
2544				}
 
 
 
 
 
 
 
2545				break;
2546			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547		}
2548		if (biolist == NULL) {
2549			while (r10_bio) {
2550				r10bio_t *rb2 = r10_bio;
2551				r10_bio = (r10bio_t*) rb2->master_bio;
2552				rb2->master_bio = NULL;
2553				put_buf(rb2);
2554			}
2555			goto giveup;
2556		}
2557	} else {
2558		/* resync. Schedule a read for every block at this virt offset */
2559		int count = 0;
2560
2561		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
 
 
 
 
 
 
 
 
2562
2563		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2564				       &sync_blocks, mddev->degraded) &&
2565		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2566						 &mddev->recovery)) {
2567			/* We can skip this block */
2568			*skipped = 1;
2569			return sync_blocks + sectors_skipped;
2570		}
2571		if (sync_blocks < max_sync)
2572			max_sync = sync_blocks;
2573		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2574
2575		r10_bio->mddev = mddev;
2576		atomic_set(&r10_bio->remaining, 0);
2577		raise_barrier(conf, 0);
2578		conf->next_resync = sector_nr;
2579
2580		r10_bio->master_bio = NULL;
2581		r10_bio->sector = sector_nr;
2582		set_bit(R10BIO_IsSync, &r10_bio->state);
2583		raid10_find_phys(conf, r10_bio);
2584		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2585
2586		for (i=0; i<conf->copies; i++) {
2587			int d = r10_bio->devs[i].devnum;
2588			sector_t first_bad, sector;
2589			int bad_sectors;
 
 
 
 
2590
2591			bio = r10_bio->devs[i].bio;
2592			bio->bi_end_io = NULL;
2593			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2594			if (conf->mirrors[d].rdev == NULL ||
2595			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
 
2596				continue;
 
2597			sector = r10_bio->devs[i].addr;
2598			if (is_badblock(conf->mirrors[d].rdev,
2599					sector, max_sync,
2600					&first_bad, &bad_sectors)) {
2601				if (first_bad > sector)
2602					max_sync = first_bad - sector;
2603				else {
2604					bad_sectors -= (sector - first_bad);
2605					if (max_sync > bad_sectors)
2606						max_sync = max_sync;
 
2607					continue;
2608				}
2609			}
2610			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2611			atomic_inc(&r10_bio->remaining);
2612			bio->bi_next = biolist;
2613			biolist = bio;
2614			bio->bi_private = r10_bio;
2615			bio->bi_end_io = end_sync_read;
2616			bio->bi_rw = READ;
2617			bio->bi_sector = sector +
2618				conf->mirrors[d].rdev->data_offset;
2619			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620			count++;
 
2621		}
2622
2623		if (count < 2) {
2624			for (i=0; i<conf->copies; i++) {
2625				int d = r10_bio->devs[i].devnum;
2626				if (r10_bio->devs[i].bio->bi_end_io)
2627					rdev_dec_pending(conf->mirrors[d].rdev,
2628							 mddev);
 
 
 
 
 
2629			}
2630			put_buf(r10_bio);
2631			biolist = NULL;
2632			goto giveup;
2633		}
2634	}
2635
2636	for (bio = biolist; bio ; bio=bio->bi_next) {
2637
2638		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2639		if (bio->bi_end_io)
2640			bio->bi_flags |= 1 << BIO_UPTODATE;
2641		bio->bi_vcnt = 0;
2642		bio->bi_idx = 0;
2643		bio->bi_phys_segments = 0;
2644		bio->bi_size = 0;
2645	}
2646
2647	nr_sectors = 0;
2648	if (sector_nr + max_sync < max_sector)
2649		max_sector = sector_nr + max_sync;
2650	do {
2651		struct page *page;
2652		int len = PAGE_SIZE;
2653		if (sector_nr + (len>>9) > max_sector)
2654			len = (max_sector - sector_nr) << 9;
2655		if (len == 0)
2656			break;
2657		for (bio= biolist ; bio ; bio=bio->bi_next) {
2658			struct bio *bio2;
2659			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2660			if (bio_add_page(bio, page, len, 0))
2661				continue;
2662
2663			/* stop here */
2664			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2665			for (bio2 = biolist;
2666			     bio2 && bio2 != bio;
2667			     bio2 = bio2->bi_next) {
2668				/* remove last page from this bio */
2669				bio2->bi_vcnt--;
2670				bio2->bi_size -= len;
2671				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2672			}
2673			goto bio_full;
2674		}
2675		nr_sectors += len>>9;
2676		sector_nr += len>>9;
2677	} while (biolist->bi_vcnt < RESYNC_PAGES);
2678 bio_full:
2679	r10_bio->sectors = nr_sectors;
2680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681	while (biolist) {
2682		bio = biolist;
2683		biolist = biolist->bi_next;
2684
2685		bio->bi_next = NULL;
2686		r10_bio = bio->bi_private;
2687		r10_bio->sectors = nr_sectors;
2688
2689		if (bio->bi_end_io == end_sync_read) {
2690			md_sync_acct(bio->bi_bdev, nr_sectors);
2691			generic_make_request(bio);
 
2692		}
2693	}
2694
2695	if (sectors_skipped)
2696		/* pretend they weren't skipped, it makes
2697		 * no important difference in this case
2698		 */
2699		md_done_sync(mddev, sectors_skipped, 1);
2700
2701	return sectors_skipped + nr_sectors;
2702 giveup:
2703	/* There is nowhere to write, so all non-sync
2704	 * drives must be failed or in resync, all drives
2705	 * have a bad block, so try the next chunk...
2706	 */
2707	if (sector_nr + max_sync < max_sector)
2708		max_sector = sector_nr + max_sync;
2709
2710	sectors_skipped += (max_sector - sector_nr);
2711	chunks_skipped ++;
2712	sector_nr = max_sector;
2713	goto skipped;
2714}
2715
2716static sector_t
2717raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2718{
2719	sector_t size;
2720	conf_t *conf = mddev->private;
2721
2722	if (!raid_disks)
2723		raid_disks = conf->raid_disks;
 
2724	if (!sectors)
2725		sectors = conf->dev_sectors;
2726
2727	size = sectors >> conf->chunk_shift;
2728	sector_div(size, conf->far_copies);
2729	size = size * raid_disks;
2730	sector_div(size, conf->near_copies);
2731
2732	return size << conf->chunk_shift;
2733}
2734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735
2736static conf_t *setup_conf(mddev_t *mddev)
 
2737{
2738	conf_t *conf = NULL;
2739	int nc, fc, fo;
2740	sector_t stride, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741	int err = -EINVAL;
 
 
2742
2743	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2744	    !is_power_of_2(mddev->new_chunk_sectors)) {
2745		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2746		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2747		       mdname(mddev), PAGE_SIZE);
2748		goto out;
2749	}
2750
2751	nc = mddev->new_layout & 255;
2752	fc = (mddev->new_layout >> 8) & 255;
2753	fo = mddev->new_layout & (1<<16);
2754
2755	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2756	    (mddev->new_layout >> 17)) {
2757		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2758		       mdname(mddev), mddev->new_layout);
2759		goto out;
2760	}
2761
2762	err = -ENOMEM;
2763	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2764	if (!conf)
2765		goto out;
2766
2767	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
 
 
2768				GFP_KERNEL);
2769	if (!conf->mirrors)
2770		goto out;
2771
2772	conf->tmppage = alloc_page(GFP_KERNEL);
2773	if (!conf->tmppage)
2774		goto out;
2775
2776
2777	conf->raid_disks = mddev->raid_disks;
2778	conf->near_copies = nc;
2779	conf->far_copies = fc;
2780	conf->copies = nc*fc;
2781	conf->far_offset = fo;
2782	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2783	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2784
2785	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2786					   r10bio_pool_free, conf);
2787	if (!conf->r10bio_pool)
2788		goto out;
2789
2790	size = mddev->dev_sectors >> conf->chunk_shift;
2791	sector_div(size, fc);
2792	size = size * conf->raid_disks;
2793	sector_div(size, nc);
2794	/* 'size' is now the number of chunks in the array */
2795	/* calculate "used chunks per device" in 'stride' */
2796	stride = size * conf->copies;
2797
2798	/* We need to round up when dividing by raid_disks to
2799	 * get the stride size.
2800	 */
2801	stride += conf->raid_disks - 1;
2802	sector_div(stride, conf->raid_disks);
2803
2804	conf->dev_sectors = stride << conf->chunk_shift;
2805
2806	if (fo)
2807		stride = 1;
2808	else
2809		sector_div(stride, fc);
2810	conf->stride = stride << conf->chunk_shift;
2811
2812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813	spin_lock_init(&conf->device_lock);
2814	INIT_LIST_HEAD(&conf->retry_list);
 
2815
2816	spin_lock_init(&conf->resync_lock);
2817	init_waitqueue_head(&conf->wait_barrier);
 
2818
2819	conf->thread = md_register_thread(raid10d, mddev, NULL);
 
2820	if (!conf->thread)
2821		goto out;
2822
2823	conf->mddev = mddev;
2824	return conf;
2825
2826 out:
2827	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2828	       mdname(mddev));
2829	if (conf) {
2830		if (conf->r10bio_pool)
2831			mempool_destroy(conf->r10bio_pool);
2832		kfree(conf->mirrors);
2833		safe_put_page(conf->tmppage);
 
2834		kfree(conf);
2835	}
2836	return ERR_PTR(err);
2837}
2838
2839static int run(mddev_t *mddev)
2840{
2841	conf_t *conf;
2842	int i, disk_idx, chunk_size;
2843	mirror_info_t *disk;
2844	mdk_rdev_t *rdev;
2845	sector_t size;
 
 
 
2846
2847	/*
2848	 * copy the already verified devices into our private RAID10
2849	 * bookkeeping area. [whatever we allocate in run(),
2850	 * should be freed in stop()]
2851	 */
2852
2853	if (mddev->private == NULL) {
2854		conf = setup_conf(mddev);
2855		if (IS_ERR(conf))
2856			return PTR_ERR(conf);
2857		mddev->private = conf;
2858	}
2859	conf = mddev->private;
2860	if (!conf)
2861		goto out;
2862
 
 
 
 
 
 
 
 
 
 
 
 
2863	mddev->thread = conf->thread;
2864	conf->thread = NULL;
2865
2866	chunk_size = mddev->chunk_sectors << 9;
2867	blk_queue_io_min(mddev->queue, chunk_size);
2868	if (conf->raid_disks % conf->near_copies)
2869		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2870	else
2871		blk_queue_io_opt(mddev->queue, chunk_size *
2872				 (conf->raid_disks / conf->near_copies));
 
 
 
 
 
 
2873
2874	list_for_each_entry(rdev, &mddev->disks, same_set) {
 
2875
2876		disk_idx = rdev->raid_disk;
2877		if (disk_idx >= conf->raid_disks
2878		    || disk_idx < 0)
 
 
2879			continue;
2880		disk = conf->mirrors + disk_idx;
2881
2882		disk->rdev = rdev;
2883		disk_stack_limits(mddev->gendisk, rdev->bdev,
2884				  rdev->data_offset << 9);
2885		/* as we don't honour merge_bvec_fn, we must never risk
2886		 * violating it, so limit max_segments to 1 lying
2887		 * within a single page.
2888		 */
2889		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2890			blk_queue_max_segments(mddev->queue, 1);
2891			blk_queue_segment_boundary(mddev->queue,
2892						   PAGE_CACHE_SIZE - 1);
2893		}
 
 
 
 
 
 
 
 
 
 
 
2894
2895		disk->head_position = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2896	}
2897	/* need to check that every block has at least one working mirror */
2898	if (!enough(conf, -1)) {
2899		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2900		       mdname(mddev));
2901		goto out_free_conf;
2902	}
2903
 
 
 
 
 
 
 
 
 
 
2904	mddev->degraded = 0;
2905	for (i = 0; i < conf->raid_disks; i++) {
 
 
 
2906
2907		disk = conf->mirrors + i;
2908
 
 
 
 
 
 
 
2909		if (!disk->rdev ||
2910		    !test_bit(In_sync, &disk->rdev->flags)) {
2911			disk->head_position = 0;
2912			mddev->degraded++;
2913			if (disk->rdev)
 
2914				conf->fullsync = 1;
2915		}
 
 
 
 
 
 
 
 
2916	}
2917
2918	if (mddev->recovery_cp != MaxSector)
2919		printk(KERN_NOTICE "md/raid10:%s: not clean"
2920		       " -- starting background reconstruction\n",
2921		       mdname(mddev));
2922	printk(KERN_INFO
2923		"md/raid10:%s: active with %d out of %d devices\n",
2924		mdname(mddev), conf->raid_disks - mddev->degraded,
2925		conf->raid_disks);
2926	/*
2927	 * Ok, everything is just fine now
2928	 */
2929	mddev->dev_sectors = conf->dev_sectors;
2930	size = raid10_size(mddev, 0, 0);
2931	md_set_array_sectors(mddev, size);
2932	mddev->resync_max_sectors = size;
 
2933
2934	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2935	mddev->queue->backing_dev_info.congested_data = mddev;
2936
2937	/* Calculate max read-ahead size.
2938	 * We need to readahead at least twice a whole stripe....
2939	 * maybe...
2940	 */
2941	{
2942		int stripe = conf->raid_disks *
2943			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2944		stripe /= conf->near_copies;
2945		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2946			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2947	}
2948
2949	if (conf->near_copies < conf->raid_disks)
2950		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
 
 
 
 
 
 
2951
2952	if (md_integrity_register(mddev))
2953		goto out_free_conf;
2954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955	return 0;
2956
2957out_free_conf:
2958	md_unregister_thread(&mddev->thread);
2959	if (conf->r10bio_pool)
2960		mempool_destroy(conf->r10bio_pool);
2961	safe_put_page(conf->tmppage);
2962	kfree(conf->mirrors);
2963	kfree(conf);
2964	mddev->private = NULL;
2965out:
2966	return -EIO;
2967}
2968
2969static int stop(mddev_t *mddev)
2970{
2971	conf_t *conf = mddev->private;
2972
2973	raise_barrier(conf, 0);
2974	lower_barrier(conf);
2975
2976	md_unregister_thread(&mddev->thread);
2977	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2978	if (conf->r10bio_pool)
2979		mempool_destroy(conf->r10bio_pool);
2980	kfree(conf->mirrors);
 
 
 
2981	kfree(conf);
2982	mddev->private = NULL;
2983	return 0;
2984}
2985
2986static void raid10_quiesce(mddev_t *mddev, int state)
2987{
2988	conf_t *conf = mddev->private;
2989
2990	switch(state) {
2991	case 1:
2992		raise_barrier(conf, 0);
2993		break;
2994	case 0:
2995		lower_barrier(conf);
2996		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2997	}
 
 
 
 
 
 
 
 
 
 
2998}
2999
3000static void *raid10_takeover_raid0(mddev_t *mddev)
3001{
3002	mdk_rdev_t *rdev;
3003	conf_t *conf;
3004
3005	if (mddev->degraded > 0) {
3006		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3007		       mdname(mddev));
3008		return ERR_PTR(-EINVAL);
3009	}
 
3010
3011	/* Set new parameters */
3012	mddev->new_level = 10;
3013	/* new layout: far_copies = 1, near_copies = 2 */
3014	mddev->new_layout = (1<<8) + 2;
3015	mddev->new_chunk_sectors = mddev->chunk_sectors;
3016	mddev->delta_disks = mddev->raid_disks;
3017	mddev->raid_disks *= 2;
3018	/* make sure it will be not marked as dirty */
3019	mddev->recovery_cp = MaxSector;
 
3020
3021	conf = setup_conf(mddev);
3022	if (!IS_ERR(conf)) {
3023		list_for_each_entry(rdev, &mddev->disks, same_set)
3024			if (rdev->raid_disk >= 0)
3025				rdev->new_raid_disk = rdev->raid_disk * 2;
 
 
3026		conf->barrier = 1;
3027	}
3028
3029	return conf;
3030}
3031
3032static void *raid10_takeover(mddev_t *mddev)
3033{
3034	struct raid0_private_data *raid0_priv;
3035
3036	/* raid10 can take over:
3037	 *  raid0 - providing it has only two drives
3038	 */
3039	if (mddev->level == 0) {
3040		/* for raid0 takeover only one zone is supported */
3041		raid0_priv = mddev->private;
3042		if (raid0_priv->nr_strip_zones > 1) {
3043			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3044			       " with more than one zone.\n",
3045			       mdname(mddev));
3046			return ERR_PTR(-EINVAL);
3047		}
3048		return raid10_takeover_raid0(mddev);
 
 
3049	}
3050	return ERR_PTR(-EINVAL);
3051}
3052
3053static struct mdk_personality raid10_personality =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054{
3055	.name		= "raid10",
3056	.level		= 10,
3057	.owner		= THIS_MODULE,
3058	.make_request	= make_request,
3059	.run		= run,
3060	.stop		= stop,
3061	.status		= status,
3062	.error_handler	= error,
3063	.hot_add_disk	= raid10_add_disk,
3064	.hot_remove_disk= raid10_remove_disk,
3065	.spare_active	= raid10_spare_active,
3066	.sync_request	= sync_request,
3067	.quiesce	= raid10_quiesce,
3068	.size		= raid10_size,
 
3069	.takeover	= raid10_takeover,
 
 
 
 
3070};
3071
3072static int __init raid_init(void)
3073{
3074	return register_md_personality(&raid10_personality);
3075}
3076
3077static void raid_exit(void)
3078{
3079	unregister_md_personality(&raid10_personality);
3080}
3081
3082module_init(raid_init);
3083module_exit(raid_exit);
3084MODULE_LICENSE("GPL");
3085MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3086MODULE_ALIAS("md-personality-9"); /* RAID10 */
3087MODULE_ALIAS("md-raid10");
3088MODULE_ALIAS("md-level-10");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
 
 
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88	return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93	struct r10conf *conf = data;
  94	int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96	/* allocate a r10bio with room for raid_disks entries in the
  97	 * bios array */
  98	return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 
 
 
 
 
 
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct r10conf *conf = data;
 119	struct r10bio *r10_bio;
 
 120	struct bio *bio;
 121	int j;
 122	int nalloc, nalloc_rp;
 123	struct resync_pages *rps;
 124
 125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126	if (!r10_bio)
 127		return NULL;
 128
 129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131		nalloc = conf->copies; /* resync */
 132	else
 133		nalloc = 2; /* recovery */
 134
 135	/* allocate once for all bios */
 136	if (!conf->have_replacement)
 137		nalloc_rp = nalloc;
 138	else
 139		nalloc_rp = nalloc * 2;
 140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141	if (!rps)
 142		goto out_free_r10bio;
 143
 144	/*
 145	 * Allocate bios.
 146	 */
 147	for (j = nalloc ; j-- ; ) {
 148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149		if (!bio)
 150			goto out_free_bio;
 151		r10_bio->devs[j].bio = bio;
 152		if (!conf->have_replacement)
 153			continue;
 154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155		if (!bio)
 156			goto out_free_bio;
 157		r10_bio->devs[j].repl_bio = bio;
 158	}
 159	/*
 160	 * Allocate RESYNC_PAGES data pages and attach them
 161	 * where needed.
 162	 */
 163	for (j = 0; j < nalloc; j++) {
 164		struct bio *rbio = r10_bio->devs[j].repl_bio;
 165		struct resync_pages *rp, *rp_repl;
 166
 167		rp = &rps[j];
 168		if (rbio)
 169			rp_repl = &rps[nalloc + j];
 170
 171		bio = r10_bio->devs[j].bio;
 172
 173		if (!j || test_bit(MD_RECOVERY_SYNC,
 174				   &conf->mddev->recovery)) {
 175			if (resync_alloc_pages(rp, gfp_flags))
 
 
 
 
 
 
 176				goto out_free_pages;
 177		} else {
 178			memcpy(rp, &rps[0], sizeof(*rp));
 179			resync_get_all_pages(rp);
 180		}
 181
 182		rp->raid_bio = r10_bio;
 183		bio->bi_private = rp;
 184		if (rbio) {
 185			memcpy(rp_repl, rp, sizeof(*rp));
 186			rbio->bi_private = rp_repl;
 187		}
 188	}
 189
 190	return r10_bio;
 191
 192out_free_pages:
 193	while (--j >= 0)
 194		resync_free_pages(&rps[j]);
 195
 196	j = 0;
 
 
 197out_free_bio:
 198	for ( ; j < nalloc; j++) {
 199		if (r10_bio->devs[j].bio)
 200			bio_put(r10_bio->devs[j].bio);
 201		if (r10_bio->devs[j].repl_bio)
 202			bio_put(r10_bio->devs[j].repl_bio);
 203	}
 204	kfree(rps);
 205out_free_r10bio:
 206	rbio_pool_free(r10_bio, conf);
 207	return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212	struct r10conf *conf = data;
 213	struct r10bio *r10bio = __r10_bio;
 
 214	int j;
 215	struct resync_pages *rp = NULL;
 216
 217	for (j = conf->copies; j--; ) {
 218		struct bio *bio = r10bio->devs[j].bio;
 219
 220		if (bio) {
 221			rp = get_resync_pages(bio);
 222			resync_free_pages(rp);
 
 
 223			bio_put(bio);
 224		}
 225
 226		bio = r10bio->devs[j].repl_bio;
 227		if (bio)
 228			bio_put(bio);
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->copies; i++) {
 242		struct bio **bio = & r10_bio->devs[i].bio;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246		bio = &r10_bio->devs[i].repl_bio;
 247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255	struct r10conf *conf = r10_bio->mddev->private;
 256
 257	put_all_bios(conf, r10_bio);
 258	mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263	struct r10conf *conf = r10_bio->mddev->private;
 264
 265	mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267	lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272	unsigned long flags;
 273	struct mddev *mddev = r10_bio->mddev;
 274	struct r10conf *conf = mddev->private;
 275
 276	spin_lock_irqsave(&conf->device_lock, flags);
 277	list_add(&r10_bio->retry_list, &conf->retry_list);
 278	conf->nr_queued ++;
 279	spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281	/* wake up frozen array... */
 282	wake_up(&conf->wait_barrier);
 283
 284	md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294	struct bio *bio = r10_bio->master_bio;
 295	struct r10conf *conf = r10_bio->mddev->private;
 
 296
 
 
 
 
 
 
 
 
 297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298		bio->bi_status = BLK_STS_IOERR;
 299
 300	bio_endio(bio);
 301	/*
 302	 * Wake up any possible resync thread that waits for the device
 303	 * to go idle.
 304	 */
 305	allow_barrier(conf);
 306
 307	free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315	struct r10conf *conf = r10_bio->mddev->private;
 316
 317	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318		r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325			 struct bio *bio, int *slotp, int *replp)
 326{
 327	int slot;
 328	int repl = 0;
 329
 330	for (slot = 0; slot < conf->copies; slot++) {
 331		if (r10_bio->devs[slot].bio == bio)
 332			break;
 333		if (r10_bio->devs[slot].repl_bio == bio) {
 334			repl = 1;
 335			break;
 336		}
 337	}
 338
 339	BUG_ON(slot == conf->copies);
 340	update_head_pos(slot, r10_bio);
 341
 342	if (slotp)
 343		*slotp = slot;
 344	if (replp)
 345		*replp = repl;
 346	return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351	int uptodate = !bio->bi_status;
 352	struct r10bio *r10_bio = bio->bi_private;
 353	int slot;
 354	struct md_rdev *rdev;
 355	struct r10conf *conf = r10_bio->mddev->private;
 356
 357	slot = r10_bio->read_slot;
 358	rdev = r10_bio->devs[slot].rdev;
 359	/*
 360	 * this branch is our 'one mirror IO has finished' event handler:
 361	 */
 362	update_head_pos(slot, r10_bio);
 363
 364	if (uptodate) {
 365		/*
 366		 * Set R10BIO_Uptodate in our master bio, so that
 367		 * we will return a good error code to the higher
 368		 * levels even if IO on some other mirrored buffer fails.
 369		 *
 370		 * The 'master' represents the composite IO operation to
 371		 * user-side. So if something waits for IO, then it will
 372		 * wait for the 'master' bio.
 373		 */
 374		set_bit(R10BIO_Uptodate, &r10_bio->state);
 375	} else {
 376		/* If all other devices that store this block have
 377		 * failed, we want to return the error upwards rather
 378		 * than fail the last device.  Here we redefine
 379		 * "uptodate" to mean "Don't want to retry"
 380		 */
 381		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382			     rdev->raid_disk))
 383			uptodate = 1;
 384	}
 385	if (uptodate) {
 386		raid_end_bio_io(r10_bio);
 387		rdev_dec_pending(rdev, conf->mddev);
 388	} else {
 389		/*
 390		 * oops, read error - keep the refcount on the rdev
 391		 */
 392		char b[BDEVNAME_SIZE];
 393		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 
 394				   mdname(conf->mddev),
 395				   bdevname(rdev->bdev, b),
 396				   (unsigned long long)r10_bio->sector);
 397		set_bit(R10BIO_ReadError, &r10_bio->state);
 398		reschedule_retry(r10_bio);
 399	}
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404	/* clear the bitmap if all writes complete successfully */
 405	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406			   r10_bio->sectors,
 407			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 408			   0);
 409	md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414	if (atomic_dec_and_test(&r10_bio->remaining)) {
 415		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416			reschedule_retry(r10_bio);
 417		else {
 418			close_write(r10_bio);
 419			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420				reschedule_retry(r10_bio);
 421			else
 422				raid_end_bio_io(r10_bio);
 423		}
 424	}
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 429	struct r10bio *r10_bio = bio->bi_private;
 
 430	int dev;
 431	int dec_rdev = 1;
 432	struct r10conf *conf = r10_bio->mddev->private;
 433	int slot, repl;
 434	struct md_rdev *rdev = NULL;
 435	struct bio *to_put = NULL;
 436	bool discard_error;
 437
 438	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442	if (repl)
 443		rdev = conf->mirrors[dev].replacement;
 444	if (!rdev) {
 445		smp_rmb();
 446		repl = 0;
 447		rdev = conf->mirrors[dev].rdev;
 448	}
 449	/*
 450	 * this branch is our 'one mirror IO has finished' event handler:
 451	 */
 452	if (bio->bi_status && !discard_error) {
 453		if (repl)
 454			/* Never record new bad blocks to replacement,
 455			 * just fail it.
 456			 */
 457			md_error(rdev->mddev, rdev);
 458		else {
 459			set_bit(WriteErrorSeen,	&rdev->flags);
 460			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461				set_bit(MD_RECOVERY_NEEDED,
 462					&rdev->mddev->recovery);
 463
 464			dec_rdev = 0;
 465			if (test_bit(FailFast, &rdev->flags) &&
 466			    (bio->bi_opf & MD_FAILFAST)) {
 467				md_error(rdev->mddev, rdev);
 468			}
 469
 470			/*
 471			 * When the device is faulty, it is not necessary to
 472			 * handle write error.
 473			 * For failfast, this is the only remaining device,
 474			 * We need to retry the write without FailFast.
 475			 */
 476			if (!test_bit(Faulty, &rdev->flags))
 477				set_bit(R10BIO_WriteError, &r10_bio->state);
 478			else {
 479				r10_bio->devs[slot].bio = NULL;
 480				to_put = bio;
 481				dec_rdev = 1;
 482			}
 483		}
 484	} else {
 485		/*
 486		 * Set R10BIO_Uptodate in our master bio, so that
 487		 * we will return a good error code for to the higher
 488		 * levels even if IO on some other mirrored buffer fails.
 489		 *
 490		 * The 'master' represents the composite IO operation to
 491		 * user-side. So if something waits for IO, then it will
 492		 * wait for the 'master' bio.
 493		 */
 494		sector_t first_bad;
 495		int bad_sectors;
 496
 497		/*
 498		 * Do not set R10BIO_Uptodate if the current device is
 499		 * rebuilding or Faulty. This is because we cannot use
 500		 * such device for properly reading the data back (we could
 501		 * potentially use it, if the current write would have felt
 502		 * before rdev->recovery_offset, but for simplicity we don't
 503		 * check this here.
 504		 */
 505		if (test_bit(In_sync, &rdev->flags) &&
 506		    !test_bit(Faulty, &rdev->flags))
 507			set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509		/* Maybe we can clear some bad blocks. */
 510		if (is_badblock(rdev,
 511				r10_bio->devs[slot].addr,
 512				r10_bio->sectors,
 513				&first_bad, &bad_sectors) && !discard_error) {
 514			bio_put(bio);
 515			if (repl)
 516				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517			else
 518				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519			dec_rdev = 0;
 520			set_bit(R10BIO_MadeGood, &r10_bio->state);
 521		}
 522	}
 523
 524	/*
 525	 *
 526	 * Let's see if all mirrored write operations have finished
 527	 * already.
 528	 */
 529	one_write_done(r10_bio);
 530	if (dec_rdev)
 531		rdev_dec_pending(rdev, conf->mddev);
 532	if (to_put)
 533		bio_put(to_put);
 534}
 535
 
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563	int n,f;
 564	sector_t sector;
 565	sector_t chunk;
 566	sector_t stripe;
 567	int dev;
 
 568	int slot = 0;
 569	int last_far_set_start, last_far_set_size;
 570
 571	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572	last_far_set_start *= geo->far_set_size;
 573
 574	last_far_set_size = geo->far_set_size;
 575	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577	/* now calculate first sector/dev */
 578	chunk = r10bio->sector >> geo->chunk_shift;
 579	sector = r10bio->sector & geo->chunk_mask;
 580
 581	chunk *= geo->near_copies;
 582	stripe = chunk;
 583	dev = sector_div(stripe, geo->raid_disks);
 584	if (geo->far_offset)
 585		stripe *= geo->far_copies;
 586
 587	sector += stripe << geo->chunk_shift;
 588
 589	/* and calculate all the others */
 590	for (n = 0; n < geo->near_copies; n++) {
 591		int d = dev;
 592		int set;
 593		sector_t s = sector;
 
 594		r10bio->devs[slot].devnum = d;
 595		r10bio->devs[slot].addr = s;
 596		slot++;
 597
 598		for (f = 1; f < geo->far_copies; f++) {
 599			set = d / geo->far_set_size;
 600			d += geo->near_copies;
 601
 602			if ((geo->raid_disks % geo->far_set_size) &&
 603			    (d > last_far_set_start)) {
 604				d -= last_far_set_start;
 605				d %= last_far_set_size;
 606				d += last_far_set_start;
 607			} else {
 608				d %= geo->far_set_size;
 609				d += geo->far_set_size * set;
 610			}
 611			s += geo->stride;
 612			r10bio->devs[slot].devnum = d;
 613			r10bio->devs[slot].addr = s;
 614			slot++;
 615		}
 616		dev++;
 617		if (dev >= geo->raid_disks) {
 618			dev = 0;
 619			sector += (geo->chunk_mask + 1);
 620		}
 621	}
 
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626	struct geom *geo = &conf->geo;
 627
 628	if (conf->reshape_progress != MaxSector &&
 629	    ((r10bio->sector >= conf->reshape_progress) !=
 630	     conf->mddev->reshape_backwards)) {
 631		set_bit(R10BIO_Previous, &r10bio->state);
 632		geo = &conf->prev;
 633	} else
 634		clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636	__raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641	sector_t offset, chunk, vchunk;
 642	/* Never use conf->prev as this is only called during resync
 643	 * or recovery, so reshape isn't happening
 644	 */
 645	struct geom *geo = &conf->geo;
 646	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647	int far_set_size = geo->far_set_size;
 648	int last_far_set_start;
 649
 650	if (geo->raid_disks % geo->far_set_size) {
 651		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652		last_far_set_start *= geo->far_set_size;
 653
 654		if (dev >= last_far_set_start) {
 655			far_set_size = geo->far_set_size;
 656			far_set_size += (geo->raid_disks % geo->far_set_size);
 657			far_set_start = last_far_set_start;
 658		}
 659	}
 660
 661	offset = sector & geo->chunk_mask;
 662	if (geo->far_offset) {
 663		int fc;
 664		chunk = sector >> geo->chunk_shift;
 665		fc = sector_div(chunk, geo->far_copies);
 666		dev -= fc * geo->near_copies;
 667		if (dev < far_set_start)
 668			dev += far_set_size;
 669	} else {
 670		while (sector >= geo->stride) {
 671			sector -= geo->stride;
 672			if (dev < (geo->near_copies + far_set_start))
 673				dev += far_set_size - geo->near_copies;
 674			else
 675				dev -= geo->near_copies;
 676		}
 677		chunk = sector >> geo->chunk_shift;
 678	}
 679	vchunk = chunk * geo->raid_disks + dev;
 680	sector_div(vchunk, geo->near_copies);
 681	return (vchunk << geo->chunk_shift) + offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682}
 683
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704				    struct r10bio *r10_bio,
 705				    int *max_sectors)
 706{
 707	const sector_t this_sector = r10_bio->sector;
 708	int disk, slot;
 709	int sectors = r10_bio->sectors;
 710	int best_good_sectors;
 711	sector_t new_distance, best_dist;
 712	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713	int do_balance;
 714	int best_dist_slot, best_pending_slot;
 715	bool has_nonrot_disk = false;
 716	unsigned int min_pending;
 717	struct geom *geo = &conf->geo;
 718
 719	raid10_find_phys(conf, r10_bio);
 720	rcu_read_lock();
 721	best_dist_slot = -1;
 722	min_pending = UINT_MAX;
 723	best_dist_rdev = NULL;
 724	best_pending_rdev = NULL;
 725	best_dist = MaxSector;
 726	best_good_sectors = 0;
 727	do_balance = 1;
 728	clear_bit(R10BIO_FailFast, &r10_bio->state);
 729	/*
 730	 * Check if we can balance. We can balance on the whole
 731	 * device if no resync is going on (recovery is ok), or below
 732	 * the resync window. We take the first readable disk when
 733	 * above the resync window.
 734	 */
 735	if ((conf->mddev->recovery_cp < MaxSector
 736	     && (this_sector + sectors >= conf->next_resync)) ||
 737	    (mddev_is_clustered(conf->mddev) &&
 738	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739					    this_sector + sectors)))
 740		do_balance = 0;
 741
 742	for (slot = 0; slot < conf->copies ; slot++) {
 743		sector_t first_bad;
 744		int bad_sectors;
 745		sector_t dev_sector;
 746		unsigned int pending;
 747		bool nonrot;
 748
 749		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750			continue;
 751		disk = r10_bio->devs[slot].devnum;
 752		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 754		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756		if (rdev == NULL ||
 757		    test_bit(Faulty, &rdev->flags))
 758			continue;
 759		if (!test_bit(In_sync, &rdev->flags) &&
 760		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761			continue;
 762
 763		dev_sector = r10_bio->devs[slot].addr;
 764		if (is_badblock(rdev, dev_sector, sectors,
 765				&first_bad, &bad_sectors)) {
 766			if (best_dist < MaxSector)
 767				/* Already have a better slot */
 768				continue;
 769			if (first_bad <= dev_sector) {
 770				/* Cannot read here.  If this is the
 771				 * 'primary' device, then we must not read
 772				 * beyond 'bad_sectors' from another device.
 773				 */
 774				bad_sectors -= (dev_sector - first_bad);
 775				if (!do_balance && sectors > bad_sectors)
 776					sectors = bad_sectors;
 777				if (best_good_sectors > sectors)
 778					best_good_sectors = sectors;
 779			} else {
 780				sector_t good_sectors =
 781					first_bad - dev_sector;
 782				if (good_sectors > best_good_sectors) {
 783					best_good_sectors = good_sectors;
 784					best_dist_slot = slot;
 785					best_dist_rdev = rdev;
 786				}
 787				if (!do_balance)
 788					/* Must read from here */
 789					break;
 790			}
 791			continue;
 792		} else
 793			best_good_sectors = sectors;
 794
 795		if (!do_balance)
 796			break;
 797
 798		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799		has_nonrot_disk |= nonrot;
 800		pending = atomic_read(&rdev->nr_pending);
 801		if (min_pending > pending && nonrot) {
 802			min_pending = pending;
 803			best_pending_slot = slot;
 804			best_pending_rdev = rdev;
 805		}
 806
 807		if (best_dist_slot >= 0)
 808			/* At least 2 disks to choose from so failfast is OK */
 809			set_bit(R10BIO_FailFast, &r10_bio->state);
 810		/* This optimisation is debatable, and completely destroys
 811		 * sequential read speed for 'far copies' arrays.  So only
 812		 * keep it for 'near' arrays, and review those later.
 813		 */
 814		if (geo->near_copies > 1 && !pending)
 815			new_distance = 0;
 816
 817		/* for far > 1 always use the lowest address */
 818		else if (geo->far_copies > 1)
 819			new_distance = r10_bio->devs[slot].addr;
 820		else
 821			new_distance = abs(r10_bio->devs[slot].addr -
 822					   conf->mirrors[disk].head_position);
 823
 824		if (new_distance < best_dist) {
 825			best_dist = new_distance;
 826			best_dist_slot = slot;
 827			best_dist_rdev = rdev;
 828		}
 829	}
 830	if (slot >= conf->copies) {
 831		if (has_nonrot_disk) {
 832			slot = best_pending_slot;
 833			rdev = best_pending_rdev;
 834		} else {
 835			slot = best_dist_slot;
 836			rdev = best_dist_rdev;
 837		}
 838	}
 
 
 839
 840	if (slot >= 0) {
 
 
 
 
 841		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 842		r10_bio->read_slot = slot;
 843	} else
 844		rdev = NULL;
 845	rcu_read_unlock();
 846	*max_sectors = best_good_sectors;
 847
 848	return rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849}
 850
 851static void flush_pending_writes(struct r10conf *conf)
 852{
 853	/* Any writes that have been queued but are awaiting
 854	 * bitmap updates get flushed here.
 855	 */
 856	spin_lock_irq(&conf->device_lock);
 857
 858	if (conf->pending_bio_list.head) {
 859		struct blk_plug plug;
 860		struct bio *bio;
 861
 862		bio = bio_list_get(&conf->pending_bio_list);
 863		conf->pending_count = 0;
 864		spin_unlock_irq(&conf->device_lock);
 865
 866		/*
 867		 * As this is called in a wait_event() loop (see freeze_array),
 868		 * current->state might be TASK_UNINTERRUPTIBLE which will
 869		 * cause a warning when we prepare to wait again.  As it is
 870		 * rare that this path is taken, it is perfectly safe to force
 871		 * us to go around the wait_event() loop again, so the warning
 872		 * is a false-positive. Silence the warning by resetting
 873		 * thread state
 874		 */
 875		__set_current_state(TASK_RUNNING);
 876
 877		blk_start_plug(&plug);
 878		/* flush any pending bitmap writes to disk
 879		 * before proceeding w/ I/O */
 880		md_bitmap_unplug(conf->mddev->bitmap);
 881		wake_up(&conf->wait_barrier);
 882
 883		while (bio) { /* submit pending writes */
 884			struct bio *next = bio->bi_next;
 885			struct md_rdev *rdev = (void*)bio->bi_disk;
 886			bio->bi_next = NULL;
 887			bio_set_dev(bio, rdev->bdev);
 888			if (test_bit(Faulty, &rdev->flags)) {
 889				bio_io_error(bio);
 890			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 891					    !blk_queue_discard(bio->bi_disk->queue)))
 892				/* Just ignore it */
 893				bio_endio(bio);
 894			else
 895				submit_bio_noacct(bio);
 896			bio = next;
 897		}
 898		blk_finish_plug(&plug);
 899	} else
 900		spin_unlock_irq(&conf->device_lock);
 901}
 902
 903/* Barriers....
 904 * Sometimes we need to suspend IO while we do something else,
 905 * either some resync/recovery, or reconfigure the array.
 906 * To do this we raise a 'barrier'.
 907 * The 'barrier' is a counter that can be raised multiple times
 908 * to count how many activities are happening which preclude
 909 * normal IO.
 910 * We can only raise the barrier if there is no pending IO.
 911 * i.e. if nr_pending == 0.
 912 * We choose only to raise the barrier if no-one is waiting for the
 913 * barrier to go down.  This means that as soon as an IO request
 914 * is ready, no other operations which require a barrier will start
 915 * until the IO request has had a chance.
 916 *
 917 * So: regular IO calls 'wait_barrier'.  When that returns there
 918 *    is no backgroup IO happening,  It must arrange to call
 919 *    allow_barrier when it has finished its IO.
 920 * backgroup IO calls must call raise_barrier.  Once that returns
 921 *    there is no normal IO happeing.  It must arrange to call
 922 *    lower_barrier when the particular background IO completes.
 923 */
 924
 925static void raise_barrier(struct r10conf *conf, int force)
 926{
 927	BUG_ON(force && !conf->barrier);
 928	spin_lock_irq(&conf->resync_lock);
 929
 930	/* Wait until no block IO is waiting (unless 'force') */
 931	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 932			    conf->resync_lock);
 933
 934	/* block any new IO from starting */
 935	conf->barrier++;
 936
 937	/* Now wait for all pending IO to complete */
 938	wait_event_lock_irq(conf->wait_barrier,
 939			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 940			    conf->resync_lock);
 941
 942	spin_unlock_irq(&conf->resync_lock);
 943}
 944
 945static void lower_barrier(struct r10conf *conf)
 946{
 947	unsigned long flags;
 948	spin_lock_irqsave(&conf->resync_lock, flags);
 949	conf->barrier--;
 950	spin_unlock_irqrestore(&conf->resync_lock, flags);
 951	wake_up(&conf->wait_barrier);
 952}
 953
 954static void wait_barrier(struct r10conf *conf)
 955{
 956	spin_lock_irq(&conf->resync_lock);
 957	if (conf->barrier) {
 958		struct bio_list *bio_list = current->bio_list;
 959		conf->nr_waiting++;
 960		/* Wait for the barrier to drop.
 961		 * However if there are already pending
 962		 * requests (preventing the barrier from
 963		 * rising completely), and the
 964		 * pre-process bio queue isn't empty,
 965		 * then don't wait, as we need to empty
 966		 * that queue to get the nr_pending
 967		 * count down.
 968		 */
 969		raid10_log(conf->mddev, "wait barrier");
 970		wait_event_lock_irq(conf->wait_barrier,
 971				    !conf->barrier ||
 972				    (atomic_read(&conf->nr_pending) &&
 973				     bio_list &&
 974				     (!bio_list_empty(&bio_list[0]) ||
 975				      !bio_list_empty(&bio_list[1]))) ||
 976				     /* move on if recovery thread is
 977				      * blocked by us
 978				      */
 979				     (conf->mddev->thread->tsk == current &&
 980				      test_bit(MD_RECOVERY_RUNNING,
 981					       &conf->mddev->recovery) &&
 982				      conf->nr_queued > 0),
 983				    conf->resync_lock);
 984		conf->nr_waiting--;
 985		if (!conf->nr_waiting)
 986			wake_up(&conf->wait_barrier);
 987	}
 988	atomic_inc(&conf->nr_pending);
 989	spin_unlock_irq(&conf->resync_lock);
 990}
 991
 992static void allow_barrier(struct r10conf *conf)
 993{
 994	if ((atomic_dec_and_test(&conf->nr_pending)) ||
 995			(conf->array_freeze_pending))
 996		wake_up(&conf->wait_barrier);
 
 
 997}
 998
 999static void freeze_array(struct r10conf *conf, int extra)
1000{
1001	/* stop syncio and normal IO and wait for everything to
1002	 * go quiet.
1003	 * We increment barrier and nr_waiting, and then
1004	 * wait until nr_pending match nr_queued+extra
1005	 * This is called in the context of one normal IO request
1006	 * that has failed. Thus any sync request that might be pending
1007	 * will be blocked by nr_pending, and we need to wait for
1008	 * pending IO requests to complete or be queued for re-try.
1009	 * Thus the number queued (nr_queued) plus this request (extra)
1010	 * must match the number of pending IOs (nr_pending) before
1011	 * we continue.
1012	 */
1013	spin_lock_irq(&conf->resync_lock);
1014	conf->array_freeze_pending++;
1015	conf->barrier++;
1016	conf->nr_waiting++;
1017	wait_event_lock_irq_cmd(conf->wait_barrier,
1018				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019				conf->resync_lock,
1020				flush_pending_writes(conf));
1021
1022	conf->array_freeze_pending--;
1023	spin_unlock_irq(&conf->resync_lock);
1024}
1025
1026static void unfreeze_array(struct r10conf *conf)
1027{
1028	/* reverse the effect of the freeze */
1029	spin_lock_irq(&conf->resync_lock);
1030	conf->barrier--;
1031	conf->nr_waiting--;
1032	wake_up(&conf->wait_barrier);
1033	spin_unlock_irq(&conf->resync_lock);
1034}
1035
1036static sector_t choose_data_offset(struct r10bio *r10_bio,
1037				   struct md_rdev *rdev)
1038{
1039	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040	    test_bit(R10BIO_Previous, &r10_bio->state))
1041		return rdev->data_offset;
1042	else
1043		return rdev->new_data_offset;
1044}
 
 
 
 
 
 
 
 
 
 
 
 
 
1045
1046struct raid10_plug_cb {
1047	struct blk_plug_cb	cb;
1048	struct bio_list		pending;
1049	int			pending_cnt;
1050};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051
1052static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053{
1054	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055						   cb);
1056	struct mddev *mddev = plug->cb.data;
1057	struct r10conf *conf = mddev->private;
1058	struct bio *bio;
1059
1060	if (from_schedule || current->bio_list) {
1061		spin_lock_irq(&conf->device_lock);
1062		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063		conf->pending_count += plug->pending_cnt;
1064		spin_unlock_irq(&conf->device_lock);
1065		wake_up(&conf->wait_barrier);
1066		md_wakeup_thread(mddev->thread);
1067		kfree(plug);
1068		return;
1069	}
1070
1071	/* we aren't scheduling, so we can do the write-out directly. */
1072	bio = bio_list_get(&plug->pending);
1073	md_bitmap_unplug(mddev->bitmap);
1074	wake_up(&conf->wait_barrier);
 
 
1075
1076	while (bio) { /* submit pending writes */
1077		struct bio *next = bio->bi_next;
1078		struct md_rdev *rdev = (void*)bio->bi_disk;
1079		bio->bi_next = NULL;
1080		bio_set_dev(bio, rdev->bdev);
1081		if (test_bit(Faulty, &rdev->flags)) {
1082			bio_io_error(bio);
1083		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084				    !blk_queue_discard(bio->bi_disk->queue)))
1085			/* Just ignore it */
1086			bio_endio(bio);
1087		else
1088			submit_bio_noacct(bio);
1089		bio = next;
1090	}
1091	kfree(plug);
1092}
1093
1094/*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099 */
1100static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101				 struct bio *bio, sector_t sectors)
1102{
1103	wait_barrier(conf);
1104	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1106	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107		raid10_log(conf->mddev, "wait reshape");
1108		allow_barrier(conf);
1109		wait_event(conf->wait_barrier,
1110			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1112			   sectors);
1113		wait_barrier(conf);
1114	}
1115}
1116
1117static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118				struct r10bio *r10_bio)
1119{
1120	struct r10conf *conf = mddev->private;
1121	struct bio *read_bio;
1122	const int op = bio_op(bio);
1123	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124	int max_sectors;
1125	struct md_rdev *rdev;
1126	char b[BDEVNAME_SIZE];
1127	int slot = r10_bio->read_slot;
1128	struct md_rdev *err_rdev = NULL;
1129	gfp_t gfp = GFP_NOIO;
 
 
 
 
 
1130
1131	if (r10_bio->devs[slot].rdev) {
1132		/*
1133		 * This is an error retry, but we cannot
1134		 * safely dereference the rdev in the r10_bio,
1135		 * we must use the one in conf.
1136		 * If it has already been disconnected (unlikely)
1137		 * we lose the device name in error messages.
1138		 */
1139		int disk;
1140		/*
1141		 * As we are blocking raid10, it is a little safer to
1142		 * use __GFP_HIGH.
1143		 */
1144		gfp = GFP_NOIO | __GFP_HIGH;
1145
1146		rcu_read_lock();
1147		disk = r10_bio->devs[slot].devnum;
1148		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149		if (err_rdev)
1150			bdevname(err_rdev->bdev, b);
1151		else {
1152			strcpy(b, "???");
1153			/* This never gets dereferenced */
1154			err_rdev = r10_bio->devs[slot].rdev;
1155		}
1156		rcu_read_unlock();
1157	}
1158
1159	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160	rdev = read_balance(conf, r10_bio, &max_sectors);
1161	if (!rdev) {
1162		if (err_rdev) {
1163			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164					    mdname(mddev), b,
1165					    (unsigned long long)r10_bio->sector);
1166		}
1167		raid_end_bio_io(r10_bio);
1168		return;
1169	}
1170	if (err_rdev)
1171		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172				   mdname(mddev),
1173				   bdevname(rdev->bdev, b),
1174				   (unsigned long long)r10_bio->sector);
1175	if (max_sectors < bio_sectors(bio)) {
1176		struct bio *split = bio_split(bio, max_sectors,
1177					      gfp, &conf->bio_split);
1178		bio_chain(split, bio);
1179		allow_barrier(conf);
1180		submit_bio_noacct(bio);
1181		wait_barrier(conf);
1182		bio = split;
1183		r10_bio->master_bio = bio;
1184		r10_bio->sectors = max_sectors;
1185	}
1186	slot = r10_bio->read_slot;
 
 
 
 
1187
1188	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190	r10_bio->devs[slot].bio = read_bio;
1191	r10_bio->devs[slot].rdev = rdev;
1192
1193	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194		choose_data_offset(r10_bio, rdev);
1195	bio_set_dev(read_bio, rdev->bdev);
1196	read_bio->bi_end_io = raid10_end_read_request;
1197	bio_set_op_attrs(read_bio, op, do_sync);
1198	if (test_bit(FailFast, &rdev->flags) &&
1199	    test_bit(R10BIO_FailFast, &r10_bio->state))
1200	        read_bio->bi_opf |= MD_FAILFAST;
1201	read_bio->bi_private = r10_bio;
1202
1203	if (mddev->gendisk)
1204	        trace_block_bio_remap(read_bio->bi_disk->queue,
1205	                              read_bio, disk_devt(mddev->gendisk),
1206	                              r10_bio->sector);
1207	submit_bio_noacct(read_bio);
1208	return;
1209}
1210
1211static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212				  struct bio *bio, bool replacement,
1213				  int n_copy)
1214{
1215	const int op = bio_op(bio);
1216	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218	unsigned long flags;
1219	struct blk_plug_cb *cb;
1220	struct raid10_plug_cb *plug = NULL;
1221	struct r10conf *conf = mddev->private;
1222	struct md_rdev *rdev;
1223	int devnum = r10_bio->devs[n_copy].devnum;
1224	struct bio *mbio;
1225
1226	if (replacement) {
1227		rdev = conf->mirrors[devnum].replacement;
1228		if (rdev == NULL) {
1229			/* Replacement just got moved to main 'rdev' */
1230			smp_mb();
1231			rdev = conf->mirrors[devnum].rdev;
1232		}
1233	} else
1234		rdev = conf->mirrors[devnum].rdev;
1235
1236	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237	if (replacement)
1238		r10_bio->devs[n_copy].repl_bio = mbio;
1239	else
1240		r10_bio->devs[n_copy].bio = mbio;
1241
1242	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1243				   choose_data_offset(r10_bio, rdev));
1244	bio_set_dev(mbio, rdev->bdev);
1245	mbio->bi_end_io	= raid10_end_write_request;
1246	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247	if (!replacement && test_bit(FailFast,
1248				     &conf->mirrors[devnum].rdev->flags)
1249			 && enough(conf, devnum))
1250		mbio->bi_opf |= MD_FAILFAST;
1251	mbio->bi_private = r10_bio;
1252
1253	if (conf->mddev->gendisk)
1254		trace_block_bio_remap(mbio->bi_disk->queue,
1255				      mbio, disk_devt(conf->mddev->gendisk),
1256				      r10_bio->sector);
1257	/* flush_pending_writes() needs access to the rdev so...*/
1258	mbio->bi_disk = (void *)rdev;
1259
1260	atomic_inc(&r10_bio->remaining);
1261
1262	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263	if (cb)
1264		plug = container_of(cb, struct raid10_plug_cb, cb);
1265	else
1266		plug = NULL;
1267	if (plug) {
1268		bio_list_add(&plug->pending, mbio);
1269		plug->pending_cnt++;
1270	} else {
1271		spin_lock_irqsave(&conf->device_lock, flags);
1272		bio_list_add(&conf->pending_bio_list, mbio);
1273		conf->pending_count++;
1274		spin_unlock_irqrestore(&conf->device_lock, flags);
1275		md_wakeup_thread(mddev->thread);
1276	}
1277}
1278
1279static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280				 struct r10bio *r10_bio)
1281{
1282	struct r10conf *conf = mddev->private;
1283	int i;
1284	struct md_rdev *blocked_rdev;
1285	sector_t sectors;
1286	int max_sectors;
1287
1288	if ((mddev_is_clustered(mddev) &&
1289	     md_cluster_ops->area_resyncing(mddev, WRITE,
1290					    bio->bi_iter.bi_sector,
1291					    bio_end_sector(bio)))) {
1292		DEFINE_WAIT(w);
1293		for (;;) {
1294			prepare_to_wait(&conf->wait_barrier,
1295					&w, TASK_IDLE);
1296			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298				break;
1299			schedule();
1300		}
1301		finish_wait(&conf->wait_barrier, &w);
1302	}
1303
1304	sectors = r10_bio->sectors;
1305	regular_request_wait(mddev, conf, bio, sectors);
1306	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307	    (mddev->reshape_backwards
1308	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312		/* Need to update reshape_position in metadata */
1313		mddev->reshape_position = conf->reshape_progress;
1314		set_mask_bits(&mddev->sb_flags, 0,
1315			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316		md_wakeup_thread(mddev->thread);
1317		raid10_log(conf->mddev, "wait reshape metadata");
1318		wait_event(mddev->sb_wait,
1319			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321		conf->reshape_safe = mddev->reshape_position;
1322	}
1323
1324	if (conf->pending_count >= max_queued_requests) {
1325		md_wakeup_thread(mddev->thread);
1326		raid10_log(mddev, "wait queued");
1327		wait_event(conf->wait_barrier,
1328			   conf->pending_count < max_queued_requests);
1329	}
1330	/* first select target devices under rcu_lock and
1331	 * inc refcount on their rdev.  Record them by setting
1332	 * bios[x] to bio
1333	 * If there are known/acknowledged bad blocks on any device
1334	 * on which we have seen a write error, we want to avoid
1335	 * writing to those blocks.  This potentially requires several
1336	 * writes to write around the bad blocks.  Each set of writes
1337	 * gets its own r10_bio with a set of bios attached.
 
 
1338	 */
 
1339
1340	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341	raid10_find_phys(conf, r10_bio);
1342retry_write:
1343	blocked_rdev = NULL;
1344	rcu_read_lock();
1345	max_sectors = r10_bio->sectors;
1346
1347	for (i = 0;  i < conf->copies; i++) {
1348		int d = r10_bio->devs[i].devnum;
1349		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350		struct md_rdev *rrdev = rcu_dereference(
1351			conf->mirrors[d].replacement);
1352		if (rdev == rrdev)
1353			rrdev = NULL;
1354		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355			atomic_inc(&rdev->nr_pending);
1356			blocked_rdev = rdev;
1357			break;
1358		}
1359		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360			atomic_inc(&rrdev->nr_pending);
1361			blocked_rdev = rrdev;
1362			break;
1363		}
1364		if (rdev && (test_bit(Faulty, &rdev->flags)))
1365			rdev = NULL;
1366		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367			rrdev = NULL;
1368
1369		r10_bio->devs[i].bio = NULL;
1370		r10_bio->devs[i].repl_bio = NULL;
1371
1372		if (!rdev && !rrdev) {
1373			set_bit(R10BIO_Degraded, &r10_bio->state);
1374			continue;
1375		}
1376		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377			sector_t first_bad;
1378			sector_t dev_sector = r10_bio->devs[i].addr;
1379			int bad_sectors;
1380			int is_bad;
1381
1382			is_bad = is_badblock(rdev, dev_sector, max_sectors,
 
1383					     &first_bad, &bad_sectors);
1384			if (is_bad < 0) {
1385				/* Mustn't write here until the bad block
1386				 * is acknowledged
1387				 */
1388				atomic_inc(&rdev->nr_pending);
1389				set_bit(BlockedBadBlocks, &rdev->flags);
1390				blocked_rdev = rdev;
1391				break;
1392			}
1393			if (is_bad && first_bad <= dev_sector) {
1394				/* Cannot write here at all */
1395				bad_sectors -= (dev_sector - first_bad);
1396				if (bad_sectors < max_sectors)
1397					/* Mustn't write more than bad_sectors
1398					 * to other devices yet
1399					 */
1400					max_sectors = bad_sectors;
1401				/* We don't set R10BIO_Degraded as that
1402				 * only applies if the disk is missing,
1403				 * so it might be re-added, and we want to
1404				 * know to recover this chunk.
1405				 * In this case the device is here, and the
1406				 * fact that this chunk is not in-sync is
1407				 * recorded in the bad block log.
1408				 */
1409				continue;
1410			}
1411			if (is_bad) {
1412				int good_sectors = first_bad - dev_sector;
1413				if (good_sectors < max_sectors)
1414					max_sectors = good_sectors;
1415			}
1416		}
1417		if (rdev) {
1418			r10_bio->devs[i].bio = bio;
1419			atomic_inc(&rdev->nr_pending);
1420		}
1421		if (rrdev) {
1422			r10_bio->devs[i].repl_bio = bio;
1423			atomic_inc(&rrdev->nr_pending);
1424		}
1425	}
1426	rcu_read_unlock();
1427
1428	if (unlikely(blocked_rdev)) {
1429		/* Have to wait for this device to get unblocked, then retry */
1430		int j;
1431		int d;
1432
1433		for (j = 0; j < i; j++) {
1434			if (r10_bio->devs[j].bio) {
1435				d = r10_bio->devs[j].devnum;
1436				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437			}
1438			if (r10_bio->devs[j].repl_bio) {
1439				struct md_rdev *rdev;
1440				d = r10_bio->devs[j].devnum;
1441				rdev = conf->mirrors[d].replacement;
1442				if (!rdev) {
1443					/* Race with remove_disk */
1444					smp_mb();
1445					rdev = conf->mirrors[d].rdev;
1446				}
1447				rdev_dec_pending(rdev, mddev);
1448			}
1449		}
1450		allow_barrier(conf);
1451		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453		wait_barrier(conf);
1454		goto retry_write;
1455	}
1456
1457	if (max_sectors < r10_bio->sectors)
 
 
 
1458		r10_bio->sectors = max_sectors;
1459
1460	if (r10_bio->sectors < bio_sectors(bio)) {
1461		struct bio *split = bio_split(bio, r10_bio->sectors,
1462					      GFP_NOIO, &conf->bio_split);
1463		bio_chain(split, bio);
1464		allow_barrier(conf);
1465		submit_bio_noacct(bio);
1466		wait_barrier(conf);
1467		bio = split;
1468		r10_bio->master_bio = bio;
1469	}
 
1470
1471	atomic_set(&r10_bio->remaining, 1);
1472	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474	for (i = 0; i < conf->copies; i++) {
1475		if (r10_bio->devs[i].bio)
1476			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477		if (r10_bio->devs[i].repl_bio)
1478			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479	}
1480	one_write_done(r10_bio);
1481}
1482
1483static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484{
1485	struct r10conf *conf = mddev->private;
1486	struct r10bio *r10_bio;
 
 
 
 
 
 
 
1487
1488	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
 
 
 
 
1489
1490	r10_bio->master_bio = bio;
1491	r10_bio->sectors = sectors;
 
1492
1493	r10_bio->mddev = mddev;
1494	r10_bio->sector = bio->bi_iter.bi_sector;
1495	r10_bio->state = 0;
1496	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
 
 
1497
1498	if (bio_data_dir(bio) == READ)
1499		raid10_read_request(mddev, bio, r10_bio);
1500	else
1501		raid10_write_request(mddev, bio, r10_bio);
1502}
1503
1504static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1505{
1506	struct r10conf *conf = mddev->private;
1507	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1508	int chunk_sects = chunk_mask + 1;
1509	int sectors = bio_sectors(bio);
1510
1511	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1512	    && md_flush_request(mddev, bio))
1513		return true;
1514
1515	if (!md_write_start(mddev, bio))
1516		return false;
1517
1518	/*
1519	 * If this request crosses a chunk boundary, we need to split
1520	 * it.
1521	 */
1522	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1523		     sectors > chunk_sects
1524		     && (conf->geo.near_copies < conf->geo.raid_disks
1525			 || conf->prev.near_copies <
1526			 conf->prev.raid_disks)))
1527		sectors = chunk_sects -
1528			(bio->bi_iter.bi_sector &
1529			 (chunk_sects - 1));
1530	__make_request(mddev, bio, sectors);
1531
1532	/* In case raid10d snuck in to freeze_array */
1533	wake_up(&conf->wait_barrier);
1534	return true;
 
 
 
1535}
1536
1537static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1538{
1539	struct r10conf *conf = mddev->private;
1540	int i;
1541
1542	if (conf->geo.near_copies < conf->geo.raid_disks)
1543		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544	if (conf->geo.near_copies > 1)
1545		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546	if (conf->geo.far_copies > 1) {
1547		if (conf->geo.far_offset)
1548			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549		else
1550			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551		if (conf->geo.far_set_size != conf->geo.raid_disks)
1552			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1553	}
1554	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1555					conf->geo.raid_disks - mddev->degraded);
1556	rcu_read_lock();
1557	for (i = 0; i < conf->geo.raid_disks; i++) {
1558		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1560	}
1561	rcu_read_unlock();
1562	seq_printf(seq, "]");
1563}
1564
1565/* check if there are enough drives for
1566 * every block to appear on atleast one.
1567 * Don't consider the device numbered 'ignore'
1568 * as we might be about to remove it.
1569 */
1570static int _enough(struct r10conf *conf, int previous, int ignore)
1571{
1572	int first = 0;
1573	int has_enough = 0;
1574	int disks, ncopies;
1575	if (previous) {
1576		disks = conf->prev.raid_disks;
1577		ncopies = conf->prev.near_copies;
1578	} else {
1579		disks = conf->geo.raid_disks;
1580		ncopies = conf->geo.near_copies;
1581	}
1582
1583	rcu_read_lock();
1584	do {
1585		int n = conf->copies;
1586		int cnt = 0;
1587		int this = first;
1588		while (n--) {
1589			struct md_rdev *rdev;
1590			if (this != ignore &&
1591			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1592			    test_bit(In_sync, &rdev->flags))
1593				cnt++;
1594			this = (this+1) % disks;
1595		}
1596		if (cnt == 0)
1597			goto out;
1598		first = (first + ncopies) % disks;
1599	} while (first != 0);
1600	has_enough = 1;
1601out:
1602	rcu_read_unlock();
1603	return has_enough;
1604}
1605
1606static int enough(struct r10conf *conf, int ignore)
1607{
1608	/* when calling 'enough', both 'prev' and 'geo' must
1609	 * be stable.
1610	 * This is ensured if ->reconfig_mutex or ->device_lock
1611	 * is held.
1612	 */
1613	return _enough(conf, 0, ignore) &&
1614		_enough(conf, 1, ignore);
1615}
1616
1617static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1618{
1619	char b[BDEVNAME_SIZE];
1620	struct r10conf *conf = mddev->private;
1621	unsigned long flags;
1622
1623	/*
1624	 * If it is not operational, then we have already marked it as dead
1625	 * else if it is the last working disks with "fail_last_dev == false",
1626	 * ignore the error, let the next level up know.
1627	 * else mark the drive as failed
1628	 */
1629	spin_lock_irqsave(&conf->device_lock, flags);
1630	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1631	    && !enough(conf, rdev->raid_disk)) {
1632		/*
1633		 * Don't fail the drive, just return an IO error.
1634		 */
 
 
 
 
 
1635		spin_unlock_irqrestore(&conf->device_lock, flags);
1636		return;
 
 
 
1637	}
1638	if (test_and_clear_bit(In_sync, &rdev->flags))
1639		mddev->degraded++;
1640	/*
1641	 * If recovery is running, make sure it aborts.
1642	 */
1643	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1644	set_bit(Blocked, &rdev->flags);
1645	set_bit(Faulty, &rdev->flags);
1646	set_mask_bits(&mddev->sb_flags, 0,
1647		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648	spin_unlock_irqrestore(&conf->device_lock, flags);
1649	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1650		"md/raid10:%s: Operation continuing on %d devices.\n",
1651		mdname(mddev), bdevname(rdev->bdev, b),
1652		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1653}
1654
1655static void print_conf(struct r10conf *conf)
1656{
1657	int i;
1658	struct md_rdev *rdev;
1659
1660	pr_debug("RAID10 conf printout:\n");
1661	if (!conf) {
1662		pr_debug("(!conf)\n");
1663		return;
1664	}
1665	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1666		 conf->geo.raid_disks);
1667
1668	/* This is only called with ->reconfix_mutex held, so
1669	 * rcu protection of rdev is not needed */
1670	for (i = 0; i < conf->geo.raid_disks; i++) {
1671		char b[BDEVNAME_SIZE];
1672		rdev = conf->mirrors[i].rdev;
1673		if (rdev)
1674			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1675				 i, !test_bit(In_sync, &rdev->flags),
1676				 !test_bit(Faulty, &rdev->flags),
1677				 bdevname(rdev->bdev,b));
1678	}
1679}
1680
1681static void close_sync(struct r10conf *conf)
1682{
1683	wait_barrier(conf);
1684	allow_barrier(conf);
1685
1686	mempool_exit(&conf->r10buf_pool);
 
1687}
1688
1689static int raid10_spare_active(struct mddev *mddev)
1690{
1691	int i;
1692	struct r10conf *conf = mddev->private;
1693	struct raid10_info *tmp;
1694	int count = 0;
1695	unsigned long flags;
1696
1697	/*
1698	 * Find all non-in_sync disks within the RAID10 configuration
1699	 * and mark them in_sync
1700	 */
1701	for (i = 0; i < conf->geo.raid_disks; i++) {
1702		tmp = conf->mirrors + i;
1703		if (tmp->replacement
1704		    && tmp->replacement->recovery_offset == MaxSector
1705		    && !test_bit(Faulty, &tmp->replacement->flags)
1706		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1707			/* Replacement has just become active */
1708			if (!tmp->rdev
1709			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1710				count++;
1711			if (tmp->rdev) {
1712				/* Replaced device not technically faulty,
1713				 * but we need to be sure it gets removed
1714				 * and never re-added.
1715				 */
1716				set_bit(Faulty, &tmp->rdev->flags);
1717				sysfs_notify_dirent_safe(
1718					tmp->rdev->sysfs_state);
1719			}
1720			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1721		} else if (tmp->rdev
1722			   && tmp->rdev->recovery_offset == MaxSector
1723			   && !test_bit(Faulty, &tmp->rdev->flags)
1724			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1725			count++;
1726			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1727		}
1728	}
1729	spin_lock_irqsave(&conf->device_lock, flags);
1730	mddev->degraded -= count;
1731	spin_unlock_irqrestore(&conf->device_lock, flags);
1732
1733	print_conf(conf);
1734	return count;
1735}
1736
1737static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 
1738{
1739	struct r10conf *conf = mddev->private;
1740	int err = -EEXIST;
1741	int mirror;
1742	int first = 0;
1743	int last = conf->geo.raid_disks - 1;
1744
1745	if (mddev->recovery_cp < MaxSector)
1746		/* only hot-add to in-sync arrays, as recovery is
1747		 * very different from resync
1748		 */
1749		return -EBUSY;
1750	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1751		return -EINVAL;
1752
1753	if (md_integrity_add_rdev(rdev, mddev))
1754		return -ENXIO;
1755
1756	if (rdev->raid_disk >= 0)
1757		first = last = rdev->raid_disk;
1758
1759	if (rdev->saved_raid_disk >= first &&
1760	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1761	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762		mirror = rdev->saved_raid_disk;
1763	else
1764		mirror = first;
1765	for ( ; mirror <= last ; mirror++) {
1766		struct raid10_info *p = &conf->mirrors[mirror];
1767		if (p->recovery_disabled == mddev->recovery_disabled)
1768			continue;
1769		if (p->rdev) {
1770			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1771			    p->replacement != NULL)
1772				continue;
1773			clear_bit(In_sync, &rdev->flags);
1774			set_bit(Replacement, &rdev->flags);
1775			rdev->raid_disk = mirror;
1776			err = 0;
1777			if (mddev->gendisk)
1778				disk_stack_limits(mddev->gendisk, rdev->bdev,
1779						  rdev->data_offset << 9);
1780			conf->fullsync = 1;
1781			rcu_assign_pointer(p->replacement, rdev);
1782			break;
 
1783		}
1784
1785		if (mddev->gendisk)
1786			disk_stack_limits(mddev->gendisk, rdev->bdev,
1787					  rdev->data_offset << 9);
1788
1789		p->head_position = 0;
1790		p->recovery_disabled = mddev->recovery_disabled - 1;
1791		rdev->raid_disk = mirror;
1792		err = 0;
1793		if (rdev->saved_raid_disk != mirror)
1794			conf->fullsync = 1;
1795		rcu_assign_pointer(p->rdev, rdev);
1796		break;
1797	}
1798	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1799		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1800
 
1801	print_conf(conf);
1802	return err;
1803}
1804
1805static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806{
1807	struct r10conf *conf = mddev->private;
1808	int err = 0;
1809	int number = rdev->raid_disk;
1810	struct md_rdev **rdevp;
1811	struct raid10_info *p = conf->mirrors + number;
1812
1813	print_conf(conf);
1814	if (rdev == p->rdev)
1815		rdevp = &p->rdev;
1816	else if (rdev == p->replacement)
1817		rdevp = &p->replacement;
1818	else
1819		return 0;
1820
1821	if (test_bit(In_sync, &rdev->flags) ||
1822	    atomic_read(&rdev->nr_pending)) {
1823		err = -EBUSY;
1824		goto abort;
1825	}
1826	/* Only remove non-faulty devices if recovery
1827	 * is not possible.
1828	 */
1829	if (!test_bit(Faulty, &rdev->flags) &&
1830	    mddev->recovery_disabled != p->recovery_disabled &&
1831	    (!p->replacement || p->replacement == rdev) &&
1832	    number < conf->geo.raid_disks &&
1833	    enough(conf, -1)) {
1834		err = -EBUSY;
1835		goto abort;
1836	}
1837	*rdevp = NULL;
1838	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1839		synchronize_rcu();
1840		if (atomic_read(&rdev->nr_pending)) {
1841			/* lost the race, try later */
1842			err = -EBUSY;
1843			*rdevp = rdev;
1844			goto abort;
1845		}
 
1846	}
1847	if (p->replacement) {
1848		/* We must have just cleared 'rdev' */
1849		p->rdev = p->replacement;
1850		clear_bit(Replacement, &p->replacement->flags);
1851		smp_mb(); /* Make sure other CPUs may see both as identical
1852			   * but will never see neither -- if they are careful.
1853			   */
1854		p->replacement = NULL;
1855	}
1856
1857	clear_bit(WantReplacement, &rdev->flags);
1858	err = md_integrity_register(mddev);
1859
1860abort:
1861
1862	print_conf(conf);
1863	return err;
1864}
1865
1866static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
 
1867{
1868	struct r10conf *conf = r10_bio->mddev->private;
 
 
1869
1870	if (!bio->bi_status)
 
 
1871		set_bit(R10BIO_Uptodate, &r10_bio->state);
1872	else
1873		/* The write handler will notice the lack of
1874		 * R10BIO_Uptodate and record any errors etc
1875		 */
1876		atomic_add(r10_bio->sectors,
1877			   &conf->mirrors[d].rdev->corrected_errors);
1878
1879	/* for reconstruct, we always reschedule after a read.
1880	 * for resync, only after all reads
1881	 */
1882	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1883	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1884	    atomic_dec_and_test(&r10_bio->remaining)) {
1885		/* we have read all the blocks,
1886		 * do the comparison in process context in raid10d
1887		 */
1888		reschedule_retry(r10_bio);
1889	}
1890}
1891
1892static void end_sync_read(struct bio *bio)
1893{
1894	struct r10bio *r10_bio = get_resync_r10bio(bio);
1895	struct r10conf *conf = r10_bio->mddev->private;
1896	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1897
1898	__end_sync_read(r10_bio, bio, d);
1899}
1900
1901static void end_reshape_read(struct bio *bio)
1902{
1903	/* reshape read bio isn't allocated from r10buf_pool */
1904	struct r10bio *r10_bio = bio->bi_private;
1905
1906	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1907}
1908
1909static void end_sync_request(struct r10bio *r10_bio)
1910{
1911	struct mddev *mddev = r10_bio->mddev;
1912
1913	while (atomic_dec_and_test(&r10_bio->remaining)) {
1914		if (r10_bio->master_bio == NULL) {
1915			/* the primary of several recovery bios */
1916			sector_t s = r10_bio->sectors;
1917			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1918			    test_bit(R10BIO_WriteError, &r10_bio->state))
1919				reschedule_retry(r10_bio);
1920			else
1921				put_buf(r10_bio);
1922			md_done_sync(mddev, s, 1);
1923			break;
1924		} else {
1925			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1926			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1927			    test_bit(R10BIO_WriteError, &r10_bio->state))
1928				reschedule_retry(r10_bio);
1929			else
1930				put_buf(r10_bio);
1931			r10_bio = r10_bio2;
1932		}
1933	}
1934}
1935
1936static void end_sync_write(struct bio *bio)
1937{
1938	struct r10bio *r10_bio = get_resync_r10bio(bio);
1939	struct mddev *mddev = r10_bio->mddev;
1940	struct r10conf *conf = mddev->private;
 
1941	int d;
1942	sector_t first_bad;
1943	int bad_sectors;
1944	int slot;
1945	int repl;
1946	struct md_rdev *rdev = NULL;
1947
1948	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1949	if (repl)
1950		rdev = conf->mirrors[d].replacement;
1951	else
1952		rdev = conf->mirrors[d].rdev;
1953
1954	if (bio->bi_status) {
1955		if (repl)
1956			md_error(mddev, rdev);
1957		else {
1958			set_bit(WriteErrorSeen, &rdev->flags);
1959			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1960				set_bit(MD_RECOVERY_NEEDED,
1961					&rdev->mddev->recovery);
1962			set_bit(R10BIO_WriteError, &r10_bio->state);
1963		}
1964	} else if (is_badblock(rdev,
1965			     r10_bio->devs[slot].addr,
1966			     r10_bio->sectors,
1967			     &first_bad, &bad_sectors))
1968		set_bit(R10BIO_MadeGood, &r10_bio->state);
1969
1970	rdev_dec_pending(rdev, mddev);
1971
1972	end_sync_request(r10_bio);
1973}
1974
1975/*
1976 * Note: sync and recover and handled very differently for raid10
1977 * This code is for resync.
1978 * For resync, we read through virtual addresses and read all blocks.
1979 * If there is any error, we schedule a write.  The lowest numbered
1980 * drive is authoritative.
1981 * However requests come for physical address, so we need to map.
1982 * For every physical address there are raid_disks/copies virtual addresses,
1983 * which is always are least one, but is not necessarly an integer.
1984 * This means that a physical address can span multiple chunks, so we may
1985 * have to submit multiple io requests for a single sync request.
1986 */
1987/*
1988 * We check if all blocks are in-sync and only write to blocks that
1989 * aren't in sync
1990 */
1991static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1992{
1993	struct r10conf *conf = mddev->private;
1994	int i, first;
1995	struct bio *tbio, *fbio;
1996	int vcnt;
1997	struct page **tpages, **fpages;
1998
1999	atomic_set(&r10_bio->remaining, 1);
2000
2001	/* find the first device with a block */
2002	for (i=0; i<conf->copies; i++)
2003		if (!r10_bio->devs[i].bio->bi_status)
2004			break;
2005
2006	if (i == conf->copies)
2007		goto done;
2008
2009	first = i;
2010	fbio = r10_bio->devs[i].bio;
2011	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2012	fbio->bi_iter.bi_idx = 0;
2013	fpages = get_resync_pages(fbio)->pages;
2014
2015	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2016	/* now find blocks with errors */
2017	for (i=0 ; i < conf->copies ; i++) {
2018		int  j, d;
2019		struct md_rdev *rdev;
2020		struct resync_pages *rp;
2021
2022		tbio = r10_bio->devs[i].bio;
2023
2024		if (tbio->bi_end_io != end_sync_read)
2025			continue;
2026		if (i == first)
2027			continue;
2028
2029		tpages = get_resync_pages(tbio)->pages;
2030		d = r10_bio->devs[i].devnum;
2031		rdev = conf->mirrors[d].rdev;
2032		if (!r10_bio->devs[i].bio->bi_status) {
2033			/* We know that the bi_io_vec layout is the same for
2034			 * both 'first' and 'i', so we just compare them.
2035			 * All vec entries are PAGE_SIZE;
2036			 */
2037			int sectors = r10_bio->sectors;
2038			for (j = 0; j < vcnt; j++) {
2039				int len = PAGE_SIZE;
2040				if (sectors < (len / 512))
2041					len = sectors * 512;
2042				if (memcmp(page_address(fpages[j]),
2043					   page_address(tpages[j]),
2044					   len))
2045					break;
2046				sectors -= len/512;
2047			}
2048			if (j == vcnt)
2049				continue;
2050			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2051			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2052				/* Don't fix anything. */
2053				continue;
2054		} else if (test_bit(FailFast, &rdev->flags)) {
2055			/* Just give up on this device */
2056			md_error(rdev->mddev, rdev);
2057			continue;
2058		}
2059		/* Ok, we need to write this bio, either to correct an
2060		 * inconsistency or to correct an unreadable block.
2061		 * First we need to fixup bv_offset, bv_len and
2062		 * bi_vecs, as the read request might have corrupted these
2063		 */
2064		rp = get_resync_pages(tbio);
2065		bio_reset(tbio);
2066
2067		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2068
2069		rp->raid_bio = r10_bio;
2070		tbio->bi_private = rp;
2071		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
 
 
 
 
 
 
 
 
 
 
 
2072		tbio->bi_end_io = end_sync_write;
2073		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2074
2075		bio_copy_data(tbio, fbio);
2076
 
2077		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2078		atomic_inc(&r10_bio->remaining);
2079		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2080
2081		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2082			tbio->bi_opf |= MD_FAILFAST;
2083		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2084		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2085		submit_bio_noacct(tbio);
2086	}
2087
2088	/* Now write out to any replacement devices
2089	 * that are active
2090	 */
2091	for (i = 0; i < conf->copies; i++) {
2092		int d;
2093
2094		tbio = r10_bio->devs[i].repl_bio;
2095		if (!tbio || !tbio->bi_end_io)
2096			continue;
2097		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2098		    && r10_bio->devs[i].bio != fbio)
2099			bio_copy_data(tbio, fbio);
2100		d = r10_bio->devs[i].devnum;
2101		atomic_inc(&r10_bio->remaining);
2102		md_sync_acct(conf->mirrors[d].replacement->bdev,
2103			     bio_sectors(tbio));
2104		submit_bio_noacct(tbio);
2105	}
2106
2107done:
2108	if (atomic_dec_and_test(&r10_bio->remaining)) {
2109		md_done_sync(mddev, r10_bio->sectors, 1);
2110		put_buf(r10_bio);
2111	}
2112}
2113
2114/*
2115 * Now for the recovery code.
2116 * Recovery happens across physical sectors.
2117 * We recover all non-is_sync drives by finding the virtual address of
2118 * each, and then choose a working drive that also has that virt address.
2119 * There is a separate r10_bio for each non-in_sync drive.
2120 * Only the first two slots are in use. The first for reading,
2121 * The second for writing.
2122 *
2123 */
2124static void fix_recovery_read_error(struct r10bio *r10_bio)
2125{
2126	/* We got a read error during recovery.
2127	 * We repeat the read in smaller page-sized sections.
2128	 * If a read succeeds, write it to the new device or record
2129	 * a bad block if we cannot.
2130	 * If a read fails, record a bad block on both old and
2131	 * new devices.
2132	 */
2133	struct mddev *mddev = r10_bio->mddev;
2134	struct r10conf *conf = mddev->private;
2135	struct bio *bio = r10_bio->devs[0].bio;
2136	sector_t sect = 0;
2137	int sectors = r10_bio->sectors;
2138	int idx = 0;
2139	int dr = r10_bio->devs[0].devnum;
2140	int dw = r10_bio->devs[1].devnum;
2141	struct page **pages = get_resync_pages(bio)->pages;
2142
2143	while (sectors) {
2144		int s = sectors;
2145		struct md_rdev *rdev;
2146		sector_t addr;
2147		int ok;
2148
2149		if (s > (PAGE_SIZE>>9))
2150			s = PAGE_SIZE >> 9;
2151
2152		rdev = conf->mirrors[dr].rdev;
2153		addr = r10_bio->devs[0].addr + sect,
2154		ok = sync_page_io(rdev,
2155				  addr,
2156				  s << 9,
2157				  pages[idx],
2158				  REQ_OP_READ, 0, false);
2159		if (ok) {
2160			rdev = conf->mirrors[dw].rdev;
2161			addr = r10_bio->devs[1].addr + sect;
2162			ok = sync_page_io(rdev,
2163					  addr,
2164					  s << 9,
2165					  pages[idx],
2166					  REQ_OP_WRITE, 0, false);
2167			if (!ok) {
2168				set_bit(WriteErrorSeen, &rdev->flags);
2169				if (!test_and_set_bit(WantReplacement,
2170						      &rdev->flags))
2171					set_bit(MD_RECOVERY_NEEDED,
2172						&rdev->mddev->recovery);
2173			}
2174		}
2175		if (!ok) {
2176			/* We don't worry if we cannot set a bad block -
2177			 * it really is bad so there is no loss in not
2178			 * recording it yet
2179			 */
2180			rdev_set_badblocks(rdev, addr, s, 0);
2181
2182			if (rdev != conf->mirrors[dw].rdev) {
2183				/* need bad block on destination too */
2184				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2185				addr = r10_bio->devs[1].addr + sect;
2186				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2187				if (!ok) {
2188					/* just abort the recovery */
2189					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2190						  mdname(mddev));
 
 
2191
2192					conf->mirrors[dw].recovery_disabled
2193						= mddev->recovery_disabled;
2194					set_bit(MD_RECOVERY_INTR,
2195						&mddev->recovery);
2196					break;
2197				}
2198			}
2199		}
2200
2201		sectors -= s;
2202		sect += s;
2203		idx++;
2204	}
2205}
2206
2207static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2208{
2209	struct r10conf *conf = mddev->private;
2210	int d;
2211	struct bio *wbio, *wbio2;
2212
2213	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2214		fix_recovery_read_error(r10_bio);
2215		end_sync_request(r10_bio);
2216		return;
2217	}
2218
2219	/*
2220	 * share the pages with the first bio
2221	 * and submit the write request
2222	 */
 
2223	d = r10_bio->devs[1].devnum;
2224	wbio = r10_bio->devs[1].bio;
2225	wbio2 = r10_bio->devs[1].repl_bio;
2226	/* Need to test wbio2->bi_end_io before we call
2227	 * submit_bio_noacct as if the former is NULL,
2228	 * the latter is free to free wbio2.
2229	 */
2230	if (wbio2 && !wbio2->bi_end_io)
2231		wbio2 = NULL;
2232	if (wbio->bi_end_io) {
2233		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2234		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2235		submit_bio_noacct(wbio);
2236	}
2237	if (wbio2) {
2238		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2239		md_sync_acct(conf->mirrors[d].replacement->bdev,
2240			     bio_sectors(wbio2));
2241		submit_bio_noacct(wbio2);
2242	}
2243}
2244
 
2245/*
2246 * Used by fix_read_error() to decay the per rdev read_errors.
2247 * We halve the read error count for every hour that has elapsed
2248 * since the last recorded read error.
2249 *
2250 */
2251static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2252{
2253	long cur_time_mon;
2254	unsigned long hours_since_last;
2255	unsigned int read_errors = atomic_read(&rdev->read_errors);
2256
2257	cur_time_mon = ktime_get_seconds();
2258
2259	if (rdev->last_read_error == 0) {
 
2260		/* first time we've seen a read error */
2261		rdev->last_read_error = cur_time_mon;
2262		return;
2263	}
2264
2265	hours_since_last = (long)(cur_time_mon -
2266			    rdev->last_read_error) / 3600;
2267
2268	rdev->last_read_error = cur_time_mon;
2269
2270	/*
2271	 * if hours_since_last is > the number of bits in read_errors
2272	 * just set read errors to 0. We do this to avoid
2273	 * overflowing the shift of read_errors by hours_since_last.
2274	 */
2275	if (hours_since_last >= 8 * sizeof(read_errors))
2276		atomic_set(&rdev->read_errors, 0);
2277	else
2278		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2279}
2280
2281static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2282			    int sectors, struct page *page, int rw)
2283{
2284	sector_t first_bad;
2285	int bad_sectors;
2286
2287	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2288	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2289		return -1;
2290	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2291		/* success */
2292		return 1;
2293	if (rw == WRITE) {
2294		set_bit(WriteErrorSeen, &rdev->flags);
2295		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2296			set_bit(MD_RECOVERY_NEEDED,
2297				&rdev->mddev->recovery);
2298	}
2299	/* need to record an error - either for the block or the device */
2300	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2301		md_error(rdev->mddev, rdev);
2302	return 0;
2303}
2304
2305/*
2306 * This is a kernel thread which:
2307 *
2308 *	1.	Retries failed read operations on working mirrors.
2309 *	2.	Updates the raid superblock when problems encounter.
2310 *	3.	Performs writes following reads for array synchronising.
2311 */
2312
2313static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2314{
2315	int sect = 0; /* Offset from r10_bio->sector */
2316	int sectors = r10_bio->sectors;
2317	struct md_rdev *rdev;
2318	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2319	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2320
2321	/* still own a reference to this rdev, so it cannot
2322	 * have been cleared recently.
2323	 */
2324	rdev = conf->mirrors[d].rdev;
2325
2326	if (test_bit(Faulty, &rdev->flags))
2327		/* drive has already been failed, just ignore any
2328		   more fix_read_error() attempts */
2329		return;
2330
2331	check_decay_read_errors(mddev, rdev);
2332	atomic_inc(&rdev->read_errors);
2333	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2334		char b[BDEVNAME_SIZE];
2335		bdevname(rdev->bdev, b);
2336
2337		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338			  mdname(mddev), b,
2339			  atomic_read(&rdev->read_errors), max_read_errors);
2340		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341			  mdname(mddev), b);
2342		md_error(mddev, rdev);
2343		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
 
 
2344		return;
2345	}
2346
2347	while(sectors) {
2348		int s = sectors;
2349		int sl = r10_bio->read_slot;
2350		int success = 0;
2351		int start;
2352
2353		if (s > (PAGE_SIZE>>9))
2354			s = PAGE_SIZE >> 9;
2355
2356		rcu_read_lock();
2357		do {
2358			sector_t first_bad;
2359			int bad_sectors;
2360
2361			d = r10_bio->devs[sl].devnum;
2362			rdev = rcu_dereference(conf->mirrors[d].rdev);
2363			if (rdev &&
2364			    test_bit(In_sync, &rdev->flags) &&
2365			    !test_bit(Faulty, &rdev->flags) &&
2366			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2367					&first_bad, &bad_sectors) == 0) {
2368				atomic_inc(&rdev->nr_pending);
2369				rcu_read_unlock();
2370				success = sync_page_io(rdev,
2371						       r10_bio->devs[sl].addr +
2372						       sect,
2373						       s<<9,
2374						       conf->tmppage,
2375						       REQ_OP_READ, 0, false);
2376				rdev_dec_pending(rdev, mddev);
2377				rcu_read_lock();
2378				if (success)
2379					break;
2380			}
2381			sl++;
2382			if (sl == conf->copies)
2383				sl = 0;
2384		} while (!success && sl != r10_bio->read_slot);
2385		rcu_read_unlock();
2386
2387		if (!success) {
2388			/* Cannot read from anywhere, just mark the block
2389			 * as bad on the first device to discourage future
2390			 * reads.
2391			 */
2392			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2393			rdev = conf->mirrors[dn].rdev;
2394
2395			if (!rdev_set_badblocks(
2396				    rdev,
2397				    r10_bio->devs[r10_bio->read_slot].addr
2398				    + sect,
2399				    s, 0)) {
2400				md_error(mddev, rdev);
2401				r10_bio->devs[r10_bio->read_slot].bio
2402					= IO_BLOCKED;
2403			}
2404			break;
2405		}
2406
2407		start = sl;
2408		/* write it back and re-read */
2409		rcu_read_lock();
2410		while (sl != r10_bio->read_slot) {
2411			char b[BDEVNAME_SIZE];
2412
2413			if (sl==0)
2414				sl = conf->copies;
2415			sl--;
2416			d = r10_bio->devs[sl].devnum;
2417			rdev = rcu_dereference(conf->mirrors[d].rdev);
2418			if (!rdev ||
2419			    test_bit(Faulty, &rdev->flags) ||
2420			    !test_bit(In_sync, &rdev->flags))
2421				continue;
2422
2423			atomic_inc(&rdev->nr_pending);
2424			rcu_read_unlock();
2425			if (r10_sync_page_io(rdev,
2426					     r10_bio->devs[sl].addr +
2427					     sect,
2428					     s, conf->tmppage, WRITE)
2429			    == 0) {
2430				/* Well, this device is dead */
2431				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432					  mdname(mddev), s,
2433					  (unsigned long long)(
2434						  sect +
2435						  choose_data_offset(r10_bio,
2436								     rdev)),
2437					  bdevname(rdev->bdev, b));
2438				pr_notice("md/raid10:%s: %s: failing drive\n",
2439					  mdname(mddev),
2440					  bdevname(rdev->bdev, b));
 
 
2441			}
2442			rdev_dec_pending(rdev, mddev);
2443			rcu_read_lock();
2444		}
2445		sl = start;
2446		while (sl != r10_bio->read_slot) {
2447			char b[BDEVNAME_SIZE];
2448
2449			if (sl==0)
2450				sl = conf->copies;
2451			sl--;
2452			d = r10_bio->devs[sl].devnum;
2453			rdev = rcu_dereference(conf->mirrors[d].rdev);
2454			if (!rdev ||
2455			    test_bit(Faulty, &rdev->flags) ||
2456			    !test_bit(In_sync, &rdev->flags))
2457				continue;
2458
2459			atomic_inc(&rdev->nr_pending);
2460			rcu_read_unlock();
2461			switch (r10_sync_page_io(rdev,
2462					     r10_bio->devs[sl].addr +
2463					     sect,
2464					     s, conf->tmppage,
2465						 READ)) {
2466			case 0:
2467				/* Well, this device is dead */
2468				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
 
 
 
2469				       mdname(mddev), s,
2470				       (unsigned long long)(
2471					       sect +
2472					       choose_data_offset(r10_bio, rdev)),
2473				       bdevname(rdev->bdev, b));
2474				pr_notice("md/raid10:%s: %s: failing drive\n",
 
2475				       mdname(mddev),
2476				       bdevname(rdev->bdev, b));
2477				break;
2478			case 1:
2479				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
 
 
2480				       mdname(mddev), s,
2481				       (unsigned long long)(
2482					       sect +
2483					       choose_data_offset(r10_bio, rdev)),
2484				       bdevname(rdev->bdev, b));
2485				atomic_add(s, &rdev->corrected_errors);
2486			}
2487
2488			rdev_dec_pending(rdev, mddev);
2489			rcu_read_lock();
2490		}
2491		rcu_read_unlock();
2492
2493		sectors -= s;
2494		sect += s;
2495	}
2496}
2497
2498static int narrow_write_error(struct r10bio *r10_bio, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499{
2500	struct bio *bio = r10_bio->master_bio;
2501	struct mddev *mddev = r10_bio->mddev;
2502	struct r10conf *conf = mddev->private;
2503	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2504	/* bio has the data to be written to slot 'i' where
2505	 * we just recently had a write error.
2506	 * We repeatedly clone the bio and trim down to one block,
2507	 * then try the write.  Where the write fails we record
2508	 * a bad block.
2509	 * It is conceivable that the bio doesn't exactly align with
2510	 * blocks.  We must handle this.
2511	 *
2512	 * We currently own a reference to the rdev.
2513	 */
2514
2515	int block_sectors;
2516	sector_t sector;
2517	int sectors;
2518	int sect_to_write = r10_bio->sectors;
2519	int ok = 1;
2520
2521	if (rdev->badblocks.shift < 0)
2522		return 0;
2523
2524	block_sectors = roundup(1 << rdev->badblocks.shift,
2525				bdev_logical_block_size(rdev->bdev) >> 9);
2526	sector = r10_bio->sector;
2527	sectors = ((r10_bio->sector + block_sectors)
2528		   & ~(sector_t)(block_sectors - 1))
2529		- sector;
2530
2531	while (sect_to_write) {
2532		struct bio *wbio;
2533		sector_t wsector;
2534		if (sectors > sect_to_write)
2535			sectors = sect_to_write;
2536		/* Write at 'sector' for 'sectors' */
2537		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2538		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2539		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2540		wbio->bi_iter.bi_sector = wsector +
2541				   choose_data_offset(r10_bio, rdev);
2542		bio_set_dev(wbio, rdev->bdev);
2543		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2544
2545		if (submit_bio_wait(wbio) < 0)
2546			/* Failure! */
2547			ok = rdev_set_badblocks(rdev, wsector,
2548						sectors, 0)
2549				&& ok;
2550
2551		bio_put(wbio);
2552		sect_to_write -= sectors;
2553		sector += sectors;
2554		sectors = block_sectors;
2555	}
2556	return ok;
2557}
2558
2559static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2560{
2561	int slot = r10_bio->read_slot;
 
2562	struct bio *bio;
2563	struct r10conf *conf = mddev->private;
2564	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
 
 
 
2565
2566	/* we got a read error. Maybe the drive is bad.  Maybe just
2567	 * the block and we can fix it.
2568	 * We freeze all other IO, and try reading the block from
2569	 * other devices.  When we find one, we re-write
2570	 * and check it that fixes the read error.
2571	 * This is all done synchronously while the array is
2572	 * frozen.
2573	 */
 
 
 
 
 
 
 
2574	bio = r10_bio->devs[slot].bio;
2575	bio_put(bio);
2576	r10_bio->devs[slot].bio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2577
2578	if (mddev->ro)
2579		r10_bio->devs[slot].bio = IO_BLOCKED;
2580	else if (!test_bit(FailFast, &rdev->flags)) {
2581		freeze_array(conf, 1);
2582		fix_read_error(conf, mddev, r10_bio);
2583		unfreeze_array(conf);
 
 
 
 
 
 
 
2584	} else
2585		md_error(mddev, rdev);
2586
2587	rdev_dec_pending(rdev, mddev);
2588	allow_barrier(conf);
2589	r10_bio->state = 0;
2590	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2591}
2592
2593static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2594{
2595	/* Some sort of write request has finished and it
2596	 * succeeded in writing where we thought there was a
2597	 * bad block.  So forget the bad block.
2598	 * Or possibly if failed and we need to record
2599	 * a bad block.
2600	 */
2601	int m;
2602	struct md_rdev *rdev;
2603
2604	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2605	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2606		for (m = 0; m < conf->copies; m++) {
2607			int dev = r10_bio->devs[m].devnum;
2608			rdev = conf->mirrors[dev].rdev;
2609			if (r10_bio->devs[m].bio == NULL ||
2610				r10_bio->devs[m].bio->bi_end_io == NULL)
2611				continue;
2612			if (!r10_bio->devs[m].bio->bi_status) {
2613				rdev_clear_badblocks(
2614					rdev,
2615					r10_bio->devs[m].addr,
2616					r10_bio->sectors, 0);
2617			} else {
2618				if (!rdev_set_badblocks(
2619					    rdev,
2620					    r10_bio->devs[m].addr,
2621					    r10_bio->sectors, 0))
2622					md_error(conf->mddev, rdev);
2623			}
2624			rdev = conf->mirrors[dev].replacement;
2625			if (r10_bio->devs[m].repl_bio == NULL ||
2626				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2627				continue;
2628
2629			if (!r10_bio->devs[m].repl_bio->bi_status) {
2630				rdev_clear_badblocks(
2631					rdev,
2632					r10_bio->devs[m].addr,
2633					r10_bio->sectors, 0);
2634			} else {
2635				if (!rdev_set_badblocks(
2636					    rdev,
2637					    r10_bio->devs[m].addr,
2638					    r10_bio->sectors, 0))
2639					md_error(conf->mddev, rdev);
2640			}
2641		}
2642		put_buf(r10_bio);
2643	} else {
2644		bool fail = false;
2645		for (m = 0; m < conf->copies; m++) {
2646			int dev = r10_bio->devs[m].devnum;
2647			struct bio *bio = r10_bio->devs[m].bio;
2648			rdev = conf->mirrors[dev].rdev;
2649			if (bio == IO_MADE_GOOD) {
2650				rdev_clear_badblocks(
2651					rdev,
2652					r10_bio->devs[m].addr,
2653					r10_bio->sectors, 0);
2654				rdev_dec_pending(rdev, conf->mddev);
2655			} else if (bio != NULL && bio->bi_status) {
2656				fail = true;
2657				if (!narrow_write_error(r10_bio, m)) {
2658					md_error(conf->mddev, rdev);
2659					set_bit(R10BIO_Degraded,
2660						&r10_bio->state);
2661				}
2662				rdev_dec_pending(rdev, conf->mddev);
2663			}
2664			bio = r10_bio->devs[m].repl_bio;
2665			rdev = conf->mirrors[dev].replacement;
2666			if (rdev && bio == IO_MADE_GOOD) {
2667				rdev_clear_badblocks(
2668					rdev,
2669					r10_bio->devs[m].addr,
2670					r10_bio->sectors, 0);
2671				rdev_dec_pending(rdev, conf->mddev);
2672			}
2673		}
2674		if (fail) {
2675			spin_lock_irq(&conf->device_lock);
2676			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2677			conf->nr_queued++;
2678			spin_unlock_irq(&conf->device_lock);
2679			/*
2680			 * In case freeze_array() is waiting for condition
2681			 * nr_pending == nr_queued + extra to be true.
2682			 */
2683			wake_up(&conf->wait_barrier);
2684			md_wakeup_thread(conf->mddev->thread);
2685		} else {
2686			if (test_bit(R10BIO_WriteError,
2687				     &r10_bio->state))
2688				close_write(r10_bio);
2689			raid_end_bio_io(r10_bio);
2690		}
 
 
 
 
2691	}
2692}
2693
2694static void raid10d(struct md_thread *thread)
2695{
2696	struct mddev *mddev = thread->mddev;
2697	struct r10bio *r10_bio;
2698	unsigned long flags;
2699	struct r10conf *conf = mddev->private;
2700	struct list_head *head = &conf->retry_list;
2701	struct blk_plug plug;
2702
2703	md_check_recovery(mddev);
2704
2705	if (!list_empty_careful(&conf->bio_end_io_list) &&
2706	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2707		LIST_HEAD(tmp);
2708		spin_lock_irqsave(&conf->device_lock, flags);
2709		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2710			while (!list_empty(&conf->bio_end_io_list)) {
2711				list_move(conf->bio_end_io_list.prev, &tmp);
2712				conf->nr_queued--;
2713			}
2714		}
2715		spin_unlock_irqrestore(&conf->device_lock, flags);
2716		while (!list_empty(&tmp)) {
2717			r10_bio = list_first_entry(&tmp, struct r10bio,
2718						   retry_list);
2719			list_del(&r10_bio->retry_list);
2720			if (mddev->degraded)
2721				set_bit(R10BIO_Degraded, &r10_bio->state);
2722
2723			if (test_bit(R10BIO_WriteError,
2724				     &r10_bio->state))
2725				close_write(r10_bio);
2726			raid_end_bio_io(r10_bio);
2727		}
2728	}
2729
2730	blk_start_plug(&plug);
2731	for (;;) {
2732
2733		flush_pending_writes(conf);
2734
2735		spin_lock_irqsave(&conf->device_lock, flags);
2736		if (list_empty(head)) {
2737			spin_unlock_irqrestore(&conf->device_lock, flags);
2738			break;
2739		}
2740		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2741		list_del(head->prev);
2742		conf->nr_queued--;
2743		spin_unlock_irqrestore(&conf->device_lock, flags);
2744
2745		mddev = r10_bio->mddev;
2746		conf = mddev->private;
2747		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2748		    test_bit(R10BIO_WriteError, &r10_bio->state))
2749			handle_write_completed(conf, r10_bio);
2750		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2751			reshape_request_write(mddev, r10_bio);
2752		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2753			sync_request_write(mddev, r10_bio);
2754		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2755			recovery_request_write(mddev, r10_bio);
2756		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2757			handle_read_error(mddev, r10_bio);
2758		else
2759			WARN_ON_ONCE(1);
 
 
 
 
 
2760
2761		cond_resched();
2762		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2763			md_check_recovery(mddev);
2764	}
2765	blk_finish_plug(&plug);
2766}
2767
2768static int init_resync(struct r10conf *conf)
 
2769{
2770	int ret, buffs, i;
2771
2772	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2773	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2774	conf->have_replacement = 0;
2775	for (i = 0; i < conf->geo.raid_disks; i++)
2776		if (conf->mirrors[i].replacement)
2777			conf->have_replacement = 1;
2778	ret = mempool_init(&conf->r10buf_pool, buffs,
2779			   r10buf_pool_alloc, r10buf_pool_free, conf);
2780	if (ret)
2781		return ret;
2782	conf->next_resync = 0;
2783	return 0;
2784}
2785
2786static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2787{
2788	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2789	struct rsync_pages *rp;
2790	struct bio *bio;
2791	int nalloc;
2792	int i;
2793
2794	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2795	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2796		nalloc = conf->copies; /* resync */
2797	else
2798		nalloc = 2; /* recovery */
2799
2800	for (i = 0; i < nalloc; i++) {
2801		bio = r10bio->devs[i].bio;
2802		rp = bio->bi_private;
2803		bio_reset(bio);
2804		bio->bi_private = rp;
2805		bio = r10bio->devs[i].repl_bio;
2806		if (bio) {
2807			rp = bio->bi_private;
2808			bio_reset(bio);
2809			bio->bi_private = rp;
2810		}
2811	}
2812	return r10bio;
2813}
2814
2815/*
2816 * Set cluster_sync_high since we need other nodes to add the
2817 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818 */
2819static void raid10_set_cluster_sync_high(struct r10conf *conf)
2820{
2821	sector_t window_size;
2822	int extra_chunk, chunks;
2823
2824	/*
2825	 * First, here we define "stripe" as a unit which across
2826	 * all member devices one time, so we get chunks by use
2827	 * raid_disks / near_copies. Otherwise, if near_copies is
2828	 * close to raid_disks, then resync window could increases
2829	 * linearly with the increase of raid_disks, which means
2830	 * we will suspend a really large IO window while it is not
2831	 * necessary. If raid_disks is not divisible by near_copies,
2832	 * an extra chunk is needed to ensure the whole "stripe" is
2833	 * covered.
2834	 */
2835
2836	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2837	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2838		extra_chunk = 0;
2839	else
2840		extra_chunk = 1;
2841	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2842
2843	/*
2844	 * At least use a 32M window to align with raid1's resync window
2845	 */
2846	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2847			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2848
2849	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2850}
2851
2852/*
2853 * perform a "sync" on one "block"
2854 *
2855 * We need to make sure that no normal I/O request - particularly write
2856 * requests - conflict with active sync requests.
2857 *
2858 * This is achieved by tracking pending requests and a 'barrier' concept
2859 * that can be installed to exclude normal IO requests.
2860 *
2861 * Resync and recovery are handled very differently.
2862 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863 *
2864 * For resync, we iterate over virtual addresses, read all copies,
2865 * and update if there are differences.  If only one copy is live,
2866 * skip it.
2867 * For recovery, we iterate over physical addresses, read a good
2868 * value for each non-in_sync drive, and over-write.
2869 *
2870 * So, for recovery we may have several outstanding complex requests for a
2871 * given address, one for each out-of-sync device.  We model this by allocating
2872 * a number of r10_bio structures, one for each out-of-sync device.
2873 * As we setup these structures, we collect all bio's together into a list
2874 * which we then process collectively to add pages, and then process again
2875 * to pass to submit_bio_noacct.
2876 *
2877 * The r10_bio structures are linked using a borrowed master_bio pointer.
2878 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2879 * has its remaining count decremented to 0, the whole complex operation
2880 * is complete.
2881 *
2882 */
2883
2884static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2885			     int *skipped)
2886{
2887	struct r10conf *conf = mddev->private;
2888	struct r10bio *r10_bio;
2889	struct bio *biolist = NULL, *bio;
2890	sector_t max_sector, nr_sectors;
2891	int i;
2892	int max_sync;
2893	sector_t sync_blocks;
2894	sector_t sectors_skipped = 0;
2895	int chunks_skipped = 0;
2896	sector_t chunk_mask = conf->geo.chunk_mask;
2897	int page_idx = 0;
2898
2899	if (!mempool_initialized(&conf->r10buf_pool))
2900		if (init_resync(conf))
2901			return 0;
2902
2903	/*
2904	 * Allow skipping a full rebuild for incremental assembly
2905	 * of a clean array, like RAID1 does.
2906	 */
2907	if (mddev->bitmap == NULL &&
2908	    mddev->recovery_cp == MaxSector &&
2909	    mddev->reshape_position == MaxSector &&
2910	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2912	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2913	    conf->fullsync == 0) {
2914		*skipped = 1;
2915		return mddev->dev_sectors - sector_nr;
2916	}
2917
2918 skipped:
2919	max_sector = mddev->dev_sectors;
2920	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2921	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2922		max_sector = mddev->resync_max_sectors;
2923	if (sector_nr >= max_sector) {
2924		conf->cluster_sync_low = 0;
2925		conf->cluster_sync_high = 0;
2926
2927		/* If we aborted, we need to abort the
2928		 * sync on the 'current' bitmap chucks (there can
2929		 * be several when recovering multiple devices).
2930		 * as we may have started syncing it but not finished.
2931		 * We can find the current address in
2932		 * mddev->curr_resync, but for recovery,
2933		 * we need to convert that to several
2934		 * virtual addresses.
2935		 */
2936		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937			end_reshape(conf);
2938			close_sync(conf);
2939			return 0;
2940		}
2941
2942		if (mddev->curr_resync < max_sector) { /* aborted */
2943			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945						   &sync_blocks, 1);
2946			else for (i = 0; i < conf->geo.raid_disks; i++) {
2947				sector_t sect =
2948					raid10_find_virt(conf, mddev->curr_resync, i);
2949				md_bitmap_end_sync(mddev->bitmap, sect,
2950						   &sync_blocks, 1);
2951			}
2952		} else {
2953			/* completed sync */
2954			if ((!mddev->bitmap || conf->fullsync)
2955			    && conf->have_replacement
2956			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957				/* Completed a full sync so the replacements
2958				 * are now fully recovered.
2959				 */
2960				rcu_read_lock();
2961				for (i = 0; i < conf->geo.raid_disks; i++) {
2962					struct md_rdev *rdev =
2963						rcu_dereference(conf->mirrors[i].replacement);
2964					if (rdev)
2965						rdev->recovery_offset = MaxSector;
2966				}
2967				rcu_read_unlock();
2968			}
 
2969			conf->fullsync = 0;
2970		}
2971		md_bitmap_close_sync(mddev->bitmap);
2972		close_sync(conf);
2973		*skipped = 1;
2974		return sectors_skipped;
2975	}
2976
2977	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978		return reshape_request(mddev, sector_nr, skipped);
2979
2980	if (chunks_skipped >= conf->geo.raid_disks) {
2981		/* if there has been nothing to do on any drive,
2982		 * then there is nothing to do at all..
2983		 */
2984		*skipped = 1;
2985		return (max_sector - sector_nr) + sectors_skipped;
2986	}
2987
2988	if (max_sector > mddev->resync_max)
2989		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990
2991	/* make sure whole request will fit in a chunk - if chunks
2992	 * are meaningful
2993	 */
2994	if (conf->geo.near_copies < conf->geo.raid_disks &&
2995	    max_sector > (sector_nr | chunk_mask))
2996		max_sector = (sector_nr | chunk_mask) + 1;
2997
2998	/*
2999	 * If there is non-resync activity waiting for a turn, then let it
3000	 * though before starting on this new sync request.
3001	 */
3002	if (conf->nr_waiting)
3003		schedule_timeout_uninterruptible(1);
3004
3005	/* Again, very different code for resync and recovery.
3006	 * Both must result in an r10bio with a list of bios that
3007	 * have bi_end_io, bi_sector, bi_disk set,
3008	 * and bi_private set to the r10bio.
3009	 * For recovery, we may actually create several r10bios
3010	 * with 2 bios in each, that correspond to the bios in the main one.
3011	 * In this case, the subordinate r10bios link back through a
3012	 * borrowed master_bio pointer, and the counter in the master
3013	 * includes a ref from each subordinate.
3014	 */
3015	/* First, we decide what to do and set ->bi_end_io
3016	 * To end_sync_read if we want to read, and
3017	 * end_sync_write if we will want to write.
3018	 */
3019
3020	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3021	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3022		/* recovery... the complicated one */
3023		int j;
3024		r10_bio = NULL;
3025
3026		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3027			int still_degraded;
3028			struct r10bio *rb2;
3029			sector_t sect;
3030			int must_sync;
3031			int any_working;
3032			int need_recover = 0;
3033			int need_replace = 0;
3034			struct raid10_info *mirror = &conf->mirrors[i];
3035			struct md_rdev *mrdev, *mreplace;
3036
3037			rcu_read_lock();
3038			mrdev = rcu_dereference(mirror->rdev);
3039			mreplace = rcu_dereference(mirror->replacement);
3040
3041			if (mrdev != NULL &&
3042			    !test_bit(Faulty, &mrdev->flags) &&
3043			    !test_bit(In_sync, &mrdev->flags))
3044				need_recover = 1;
3045			if (mreplace != NULL &&
3046			    !test_bit(Faulty, &mreplace->flags))
3047				need_replace = 1;
3048
3049			if (!need_recover && !need_replace) {
3050				rcu_read_unlock();
3051				continue;
3052			}
3053
3054			still_degraded = 0;
3055			/* want to reconstruct this device */
3056			rb2 = r10_bio;
3057			sect = raid10_find_virt(conf, sector_nr, i);
3058			if (sect >= mddev->resync_max_sectors) {
3059				/* last stripe is not complete - don't
3060				 * try to recover this sector.
3061				 */
3062				rcu_read_unlock();
3063				continue;
3064			}
3065			if (mreplace && test_bit(Faulty, &mreplace->flags))
3066				mreplace = NULL;
3067			/* Unless we are doing a full sync, or a replacement
3068			 * we only need to recover the block if it is set in
3069			 * the bitmap
3070			 */
3071			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3072							 &sync_blocks, 1);
3073			if (sync_blocks < max_sync)
3074				max_sync = sync_blocks;
3075			if (!must_sync &&
3076			    mreplace == NULL &&
3077			    !conf->fullsync) {
3078				/* yep, skip the sync_blocks here, but don't assume
3079				 * that there will never be anything to do here
3080				 */
3081				chunks_skipped = -1;
3082				rcu_read_unlock();
3083				continue;
3084			}
3085			atomic_inc(&mrdev->nr_pending);
3086			if (mreplace)
3087				atomic_inc(&mreplace->nr_pending);
3088			rcu_read_unlock();
3089
3090			r10_bio = raid10_alloc_init_r10buf(conf);
3091			r10_bio->state = 0;
3092			raise_barrier(conf, rb2 != NULL);
3093			atomic_set(&r10_bio->remaining, 0);
3094
3095			r10_bio->master_bio = (struct bio*)rb2;
3096			if (rb2)
3097				atomic_inc(&rb2->remaining);
3098			r10_bio->mddev = mddev;
3099			set_bit(R10BIO_IsRecover, &r10_bio->state);
3100			r10_bio->sector = sect;
3101
3102			raid10_find_phys(conf, r10_bio);
3103
3104			/* Need to check if the array will still be
3105			 * degraded
3106			 */
3107			rcu_read_lock();
3108			for (j = 0; j < conf->geo.raid_disks; j++) {
3109				struct md_rdev *rdev = rcu_dereference(
3110					conf->mirrors[j].rdev);
3111				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3112					still_degraded = 1;
3113					break;
3114				}
3115			}
3116
3117			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3118							 &sync_blocks, still_degraded);
3119
3120			any_working = 0;
3121			for (j=0; j<conf->copies;j++) {
3122				int k;
3123				int d = r10_bio->devs[j].devnum;
3124				sector_t from_addr, to_addr;
3125				struct md_rdev *rdev =
3126					rcu_dereference(conf->mirrors[d].rdev);
3127				sector_t sector, first_bad;
3128				int bad_sectors;
3129				if (!rdev ||
3130				    !test_bit(In_sync, &rdev->flags))
3131					continue;
3132				/* This is where we read from */
3133				any_working = 1;
 
3134				sector = r10_bio->devs[j].addr;
3135
3136				if (is_badblock(rdev, sector, max_sync,
3137						&first_bad, &bad_sectors)) {
3138					if (first_bad > sector)
3139						max_sync = first_bad - sector;
3140					else {
3141						bad_sectors -= (sector
3142								- first_bad);
3143						if (max_sync > bad_sectors)
3144							max_sync = bad_sectors;
3145						continue;
3146					}
3147				}
3148				bio = r10_bio->devs[0].bio;
3149				bio->bi_next = biolist;
3150				biolist = bio;
 
3151				bio->bi_end_io = end_sync_read;
3152				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3153				if (test_bit(FailFast, &rdev->flags))
3154					bio->bi_opf |= MD_FAILFAST;
3155				from_addr = r10_bio->devs[j].addr;
3156				bio->bi_iter.bi_sector = from_addr +
3157					rdev->data_offset;
3158				bio_set_dev(bio, rdev->bdev);
3159				atomic_inc(&rdev->nr_pending);
3160				/* and we write to 'i' (if not in_sync) */
 
3161
3162				for (k=0; k<conf->copies; k++)
3163					if (r10_bio->devs[k].devnum == i)
3164						break;
3165				BUG_ON(k == conf->copies);
 
 
 
 
 
 
3166				to_addr = r10_bio->devs[k].addr;
 
 
 
 
3167				r10_bio->devs[0].devnum = d;
3168				r10_bio->devs[0].addr = from_addr;
3169				r10_bio->devs[1].devnum = i;
3170				r10_bio->devs[1].addr = to_addr;
3171
3172				if (need_recover) {
3173					bio = r10_bio->devs[1].bio;
3174					bio->bi_next = biolist;
3175					biolist = bio;
3176					bio->bi_end_io = end_sync_write;
3177					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3178					bio->bi_iter.bi_sector = to_addr
3179						+ mrdev->data_offset;
3180					bio_set_dev(bio, mrdev->bdev);
3181					atomic_inc(&r10_bio->remaining);
3182				} else
3183					r10_bio->devs[1].bio->bi_end_io = NULL;
3184
3185				/* and maybe write to replacement */
3186				bio = r10_bio->devs[1].repl_bio;
3187				if (bio)
3188					bio->bi_end_io = NULL;
3189				/* Note: if need_replace, then bio
3190				 * cannot be NULL as r10buf_pool_alloc will
3191				 * have allocated it.
3192				 */
3193				if (!need_replace)
3194					break;
3195				bio->bi_next = biolist;
3196				biolist = bio;
3197				bio->bi_end_io = end_sync_write;
3198				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3199				bio->bi_iter.bi_sector = to_addr +
3200					mreplace->data_offset;
3201				bio_set_dev(bio, mreplace->bdev);
3202				atomic_inc(&r10_bio->remaining);
3203				break;
3204			}
3205			rcu_read_unlock();
3206			if (j == conf->copies) {
3207				/* Cannot recover, so abort the recovery or
3208				 * record a bad block */
 
 
 
 
3209				if (any_working) {
3210					/* problem is that there are bad blocks
3211					 * on other device(s)
3212					 */
3213					int k;
3214					for (k = 0; k < conf->copies; k++)
3215						if (r10_bio->devs[k].devnum == i)
3216							break;
3217					if (!test_bit(In_sync,
3218						      &mrdev->flags)
3219					    && !rdev_set_badblocks(
3220						    mrdev,
3221						    r10_bio->devs[k].addr,
3222						    max_sync, 0))
3223						any_working = 0;
3224					if (mreplace &&
3225					    !rdev_set_badblocks(
3226						    mreplace,
3227						    r10_bio->devs[k].addr,
3228						    max_sync, 0))
3229						any_working = 0;
3230				}
3231				if (!any_working)  {
3232					if (!test_and_set_bit(MD_RECOVERY_INTR,
3233							      &mddev->recovery))
3234						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
 
3235						       mdname(mddev));
3236					mirror->recovery_disabled
3237						= mddev->recovery_disabled;
3238				}
3239				put_buf(r10_bio);
3240				if (rb2)
3241					atomic_dec(&rb2->remaining);
3242				r10_bio = rb2;
3243				rdev_dec_pending(mrdev, mddev);
3244				if (mreplace)
3245					rdev_dec_pending(mreplace, mddev);
3246				break;
3247			}
3248			rdev_dec_pending(mrdev, mddev);
3249			if (mreplace)
3250				rdev_dec_pending(mreplace, mddev);
3251			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3252				/* Only want this if there is elsewhere to
3253				 * read from. 'j' is currently the first
3254				 * readable copy.
3255				 */
3256				int targets = 1;
3257				for (; j < conf->copies; j++) {
3258					int d = r10_bio->devs[j].devnum;
3259					if (conf->mirrors[d].rdev &&
3260					    test_bit(In_sync,
3261						      &conf->mirrors[d].rdev->flags))
3262						targets++;
3263				}
3264				if (targets == 1)
3265					r10_bio->devs[0].bio->bi_opf
3266						&= ~MD_FAILFAST;
3267			}
3268		}
3269		if (biolist == NULL) {
3270			while (r10_bio) {
3271				struct r10bio *rb2 = r10_bio;
3272				r10_bio = (struct r10bio*) rb2->master_bio;
3273				rb2->master_bio = NULL;
3274				put_buf(rb2);
3275			}
3276			goto giveup;
3277		}
3278	} else {
3279		/* resync. Schedule a read for every block at this virt offset */
3280		int count = 0;
3281
3282		/*
3283		 * Since curr_resync_completed could probably not update in
3284		 * time, and we will set cluster_sync_low based on it.
3285		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3286		 * safety reason, which ensures curr_resync_completed is
3287		 * updated in bitmap_cond_end_sync.
3288		 */
3289		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3290					mddev_is_clustered(mddev) &&
3291					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3292
3293		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3294					  &sync_blocks, mddev->degraded) &&
3295		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3296						 &mddev->recovery)) {
3297			/* We can skip this block */
3298			*skipped = 1;
3299			return sync_blocks + sectors_skipped;
3300		}
3301		if (sync_blocks < max_sync)
3302			max_sync = sync_blocks;
3303		r10_bio = raid10_alloc_init_r10buf(conf);
3304		r10_bio->state = 0;
3305
3306		r10_bio->mddev = mddev;
3307		atomic_set(&r10_bio->remaining, 0);
3308		raise_barrier(conf, 0);
3309		conf->next_resync = sector_nr;
3310
3311		r10_bio->master_bio = NULL;
3312		r10_bio->sector = sector_nr;
3313		set_bit(R10BIO_IsSync, &r10_bio->state);
3314		raid10_find_phys(conf, r10_bio);
3315		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3316
3317		for (i = 0; i < conf->copies; i++) {
3318			int d = r10_bio->devs[i].devnum;
3319			sector_t first_bad, sector;
3320			int bad_sectors;
3321			struct md_rdev *rdev;
3322
3323			if (r10_bio->devs[i].repl_bio)
3324				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3325
3326			bio = r10_bio->devs[i].bio;
3327			bio->bi_status = BLK_STS_IOERR;
3328			rcu_read_lock();
3329			rdev = rcu_dereference(conf->mirrors[d].rdev);
3330			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3331				rcu_read_unlock();
3332				continue;
3333			}
3334			sector = r10_bio->devs[i].addr;
3335			if (is_badblock(rdev, sector, max_sync,
 
3336					&first_bad, &bad_sectors)) {
3337				if (first_bad > sector)
3338					max_sync = first_bad - sector;
3339				else {
3340					bad_sectors -= (sector - first_bad);
3341					if (max_sync > bad_sectors)
3342						max_sync = bad_sectors;
3343					rcu_read_unlock();
3344					continue;
3345				}
3346			}
3347			atomic_inc(&rdev->nr_pending);
3348			atomic_inc(&r10_bio->remaining);
3349			bio->bi_next = biolist;
3350			biolist = bio;
 
3351			bio->bi_end_io = end_sync_read;
3352			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3353			if (test_bit(FailFast, &rdev->flags))
3354				bio->bi_opf |= MD_FAILFAST;
3355			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3356			bio_set_dev(bio, rdev->bdev);
3357			count++;
3358
3359			rdev = rcu_dereference(conf->mirrors[d].replacement);
3360			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3361				rcu_read_unlock();
3362				continue;
3363			}
3364			atomic_inc(&rdev->nr_pending);
3365
3366			/* Need to set up for writing to the replacement */
3367			bio = r10_bio->devs[i].repl_bio;
3368			bio->bi_status = BLK_STS_IOERR;
3369
3370			sector = r10_bio->devs[i].addr;
3371			bio->bi_next = biolist;
3372			biolist = bio;
3373			bio->bi_end_io = end_sync_write;
3374			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3375			if (test_bit(FailFast, &rdev->flags))
3376				bio->bi_opf |= MD_FAILFAST;
3377			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3378			bio_set_dev(bio, rdev->bdev);
3379			count++;
3380			rcu_read_unlock();
3381		}
3382
3383		if (count < 2) {
3384			for (i=0; i<conf->copies; i++) {
3385				int d = r10_bio->devs[i].devnum;
3386				if (r10_bio->devs[i].bio->bi_end_io)
3387					rdev_dec_pending(conf->mirrors[d].rdev,
3388							 mddev);
3389				if (r10_bio->devs[i].repl_bio &&
3390				    r10_bio->devs[i].repl_bio->bi_end_io)
3391					rdev_dec_pending(
3392						conf->mirrors[d].replacement,
3393						mddev);
3394			}
3395			put_buf(r10_bio);
3396			biolist = NULL;
3397			goto giveup;
3398		}
3399	}
3400
 
 
 
 
 
 
 
 
 
 
 
3401	nr_sectors = 0;
3402	if (sector_nr + max_sync < max_sector)
3403		max_sector = sector_nr + max_sync;
3404	do {
3405		struct page *page;
3406		int len = PAGE_SIZE;
3407		if (sector_nr + (len>>9) > max_sector)
3408			len = (max_sector - sector_nr) << 9;
3409		if (len == 0)
3410			break;
3411		for (bio= biolist ; bio ; bio=bio->bi_next) {
3412			struct resync_pages *rp = get_resync_pages(bio);
3413			page = resync_fetch_page(rp, page_idx);
3414			/*
3415			 * won't fail because the vec table is big enough
3416			 * to hold all these pages
3417			 */
3418			bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
3419		}
3420		nr_sectors += len>>9;
3421		sector_nr += len>>9;
3422	} while (++page_idx < RESYNC_PAGES);
 
3423	r10_bio->sectors = nr_sectors;
3424
3425	if (mddev_is_clustered(mddev) &&
3426	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3427		/* It is resync not recovery */
3428		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3429			conf->cluster_sync_low = mddev->curr_resync_completed;
3430			raid10_set_cluster_sync_high(conf);
3431			/* Send resync message */
3432			md_cluster_ops->resync_info_update(mddev,
3433						conf->cluster_sync_low,
3434						conf->cluster_sync_high);
3435		}
3436	} else if (mddev_is_clustered(mddev)) {
3437		/* This is recovery not resync */
3438		sector_t sect_va1, sect_va2;
3439		bool broadcast_msg = false;
3440
3441		for (i = 0; i < conf->geo.raid_disks; i++) {
3442			/*
3443			 * sector_nr is a device address for recovery, so we
3444			 * need translate it to array address before compare
3445			 * with cluster_sync_high.
3446			 */
3447			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3448
3449			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3450				broadcast_msg = true;
3451				/*
3452				 * curr_resync_completed is similar as
3453				 * sector_nr, so make the translation too.
3454				 */
3455				sect_va2 = raid10_find_virt(conf,
3456					mddev->curr_resync_completed, i);
3457
3458				if (conf->cluster_sync_low == 0 ||
3459				    conf->cluster_sync_low > sect_va2)
3460					conf->cluster_sync_low = sect_va2;
3461			}
3462		}
3463		if (broadcast_msg) {
3464			raid10_set_cluster_sync_high(conf);
3465			md_cluster_ops->resync_info_update(mddev,
3466						conf->cluster_sync_low,
3467						conf->cluster_sync_high);
3468		}
3469	}
3470
3471	while (biolist) {
3472		bio = biolist;
3473		biolist = biolist->bi_next;
3474
3475		bio->bi_next = NULL;
3476		r10_bio = get_resync_r10bio(bio);
3477		r10_bio->sectors = nr_sectors;
3478
3479		if (bio->bi_end_io == end_sync_read) {
3480			md_sync_acct_bio(bio, nr_sectors);
3481			bio->bi_status = 0;
3482			submit_bio_noacct(bio);
3483		}
3484	}
3485
3486	if (sectors_skipped)
3487		/* pretend they weren't skipped, it makes
3488		 * no important difference in this case
3489		 */
3490		md_done_sync(mddev, sectors_skipped, 1);
3491
3492	return sectors_skipped + nr_sectors;
3493 giveup:
3494	/* There is nowhere to write, so all non-sync
3495	 * drives must be failed or in resync, all drives
3496	 * have a bad block, so try the next chunk...
3497	 */
3498	if (sector_nr + max_sync < max_sector)
3499		max_sector = sector_nr + max_sync;
3500
3501	sectors_skipped += (max_sector - sector_nr);
3502	chunks_skipped ++;
3503	sector_nr = max_sector;
3504	goto skipped;
3505}
3506
3507static sector_t
3508raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3509{
3510	sector_t size;
3511	struct r10conf *conf = mddev->private;
3512
3513	if (!raid_disks)
3514		raid_disks = min(conf->geo.raid_disks,
3515				 conf->prev.raid_disks);
3516	if (!sectors)
3517		sectors = conf->dev_sectors;
3518
3519	size = sectors >> conf->geo.chunk_shift;
3520	sector_div(size, conf->geo.far_copies);
3521	size = size * raid_disks;
3522	sector_div(size, conf->geo.near_copies);
3523
3524	return size << conf->geo.chunk_shift;
3525}
3526
3527static void calc_sectors(struct r10conf *conf, sector_t size)
3528{
3529	/* Calculate the number of sectors-per-device that will
3530	 * actually be used, and set conf->dev_sectors and
3531	 * conf->stride
3532	 */
3533
3534	size = size >> conf->geo.chunk_shift;
3535	sector_div(size, conf->geo.far_copies);
3536	size = size * conf->geo.raid_disks;
3537	sector_div(size, conf->geo.near_copies);
3538	/* 'size' is now the number of chunks in the array */
3539	/* calculate "used chunks per device" */
3540	size = size * conf->copies;
3541
3542	/* We need to round up when dividing by raid_disks to
3543	 * get the stride size.
3544	 */
3545	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3546
3547	conf->dev_sectors = size << conf->geo.chunk_shift;
3548
3549	if (conf->geo.far_offset)
3550		conf->geo.stride = 1 << conf->geo.chunk_shift;
3551	else {
3552		sector_div(size, conf->geo.far_copies);
3553		conf->geo.stride = size << conf->geo.chunk_shift;
3554	}
3555}
3556
3557enum geo_type {geo_new, geo_old, geo_start};
3558static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3559{
 
3560	int nc, fc, fo;
3561	int layout, chunk, disks;
3562	switch (new) {
3563	case geo_old:
3564		layout = mddev->layout;
3565		chunk = mddev->chunk_sectors;
3566		disks = mddev->raid_disks - mddev->delta_disks;
3567		break;
3568	case geo_new:
3569		layout = mddev->new_layout;
3570		chunk = mddev->new_chunk_sectors;
3571		disks = mddev->raid_disks;
3572		break;
3573	default: /* avoid 'may be unused' warnings */
3574	case geo_start: /* new when starting reshape - raid_disks not
3575			 * updated yet. */
3576		layout = mddev->new_layout;
3577		chunk = mddev->new_chunk_sectors;
3578		disks = mddev->raid_disks + mddev->delta_disks;
3579		break;
3580	}
3581	if (layout >> 19)
3582		return -1;
3583	if (chunk < (PAGE_SIZE >> 9) ||
3584	    !is_power_of_2(chunk))
3585		return -2;
3586	nc = layout & 255;
3587	fc = (layout >> 8) & 255;
3588	fo = layout & (1<<16);
3589	geo->raid_disks = disks;
3590	geo->near_copies = nc;
3591	geo->far_copies = fc;
3592	geo->far_offset = fo;
3593	switch (layout >> 17) {
3594	case 0:	/* original layout.  simple but not always optimal */
3595		geo->far_set_size = disks;
3596		break;
3597	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3598		 * actually using this, but leave code here just in case.*/
3599		geo->far_set_size = disks/fc;
3600		WARN(geo->far_set_size < fc,
3601		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602		break;
3603	case 2: /* "improved" layout fixed to match documentation */
3604		geo->far_set_size = fc * nc;
3605		break;
3606	default: /* Not a valid layout */
3607		return -1;
3608	}
3609	geo->chunk_mask = chunk - 1;
3610	geo->chunk_shift = ffz(~chunk);
3611	return nc*fc;
3612}
3613
3614static struct r10conf *setup_conf(struct mddev *mddev)
3615{
3616	struct r10conf *conf = NULL;
3617	int err = -EINVAL;
3618	struct geom geo;
3619	int copies;
3620
3621	copies = setup_geo(&geo, mddev, geo_new);
3622
3623	if (copies == -2) {
3624		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3625			mdname(mddev), PAGE_SIZE);
3626		goto out;
3627	}
3628
3629	if (copies < 2 || copies > mddev->raid_disks) {
3630		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3631			mdname(mddev), mddev->new_layout);
 
 
 
 
 
3632		goto out;
3633	}
3634
3635	err = -ENOMEM;
3636	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3637	if (!conf)
3638		goto out;
3639
3640	/* FIXME calc properly */
3641	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3642				sizeof(struct raid10_info),
3643				GFP_KERNEL);
3644	if (!conf->mirrors)
3645		goto out;
3646
3647	conf->tmppage = alloc_page(GFP_KERNEL);
3648	if (!conf->tmppage)
3649		goto out;
3650
3651	conf->geo = geo;
3652	conf->copies = copies;
3653	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3654			   rbio_pool_free, conf);
3655	if (err)
 
 
 
 
 
 
 
3656		goto out;
3657
3658	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3659	if (err)
3660		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3661
3662	calc_sectors(conf, mddev->dev_sectors);
3663	if (mddev->reshape_position == MaxSector) {
3664		conf->prev = conf->geo;
3665		conf->reshape_progress = MaxSector;
3666	} else {
3667		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3668			err = -EINVAL;
3669			goto out;
3670		}
3671		conf->reshape_progress = mddev->reshape_position;
3672		if (conf->prev.far_offset)
3673			conf->prev.stride = 1 << conf->prev.chunk_shift;
3674		else
3675			/* far_copies must be 1 */
3676			conf->prev.stride = conf->dev_sectors;
3677	}
3678	conf->reshape_safe = conf->reshape_progress;
3679	spin_lock_init(&conf->device_lock);
3680	INIT_LIST_HEAD(&conf->retry_list);
3681	INIT_LIST_HEAD(&conf->bio_end_io_list);
3682
3683	spin_lock_init(&conf->resync_lock);
3684	init_waitqueue_head(&conf->wait_barrier);
3685	atomic_set(&conf->nr_pending, 0);
3686
3687	err = -ENOMEM;
3688	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3689	if (!conf->thread)
3690		goto out;
3691
3692	conf->mddev = mddev;
3693	return conf;
3694
3695 out:
 
 
3696	if (conf) {
3697		mempool_exit(&conf->r10bio_pool);
 
3698		kfree(conf->mirrors);
3699		safe_put_page(conf->tmppage);
3700		bioset_exit(&conf->bio_split);
3701		kfree(conf);
3702	}
3703	return ERR_PTR(err);
3704}
3705
3706static int raid10_run(struct mddev *mddev)
3707{
3708	struct r10conf *conf;
3709	int i, disk_idx, chunk_size;
3710	struct raid10_info *disk;
3711	struct md_rdev *rdev;
3712	sector_t size;
3713	sector_t min_offset_diff = 0;
3714	int first = 1;
3715	bool discard_supported = false;
3716
3717	if (mddev_init_writes_pending(mddev) < 0)
3718		return -ENOMEM;
 
 
 
3719
3720	if (mddev->private == NULL) {
3721		conf = setup_conf(mddev);
3722		if (IS_ERR(conf))
3723			return PTR_ERR(conf);
3724		mddev->private = conf;
3725	}
3726	conf = mddev->private;
3727	if (!conf)
3728		goto out;
3729
3730	if (mddev_is_clustered(conf->mddev)) {
3731		int fc, fo;
3732
3733		fc = (mddev->layout >> 8) & 255;
3734		fo = mddev->layout & (1<<16);
3735		if (fc > 1 || fo > 0) {
3736			pr_err("only near layout is supported by clustered"
3737				" raid10\n");
3738			goto out_free_conf;
3739		}
3740	}
3741
3742	mddev->thread = conf->thread;
3743	conf->thread = NULL;
3744
3745	chunk_size = mddev->chunk_sectors << 9;
3746	if (mddev->queue) {
3747		blk_queue_max_discard_sectors(mddev->queue,
3748					      mddev->chunk_sectors);
3749		blk_queue_max_write_same_sectors(mddev->queue, 0);
3750		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3751		blk_queue_io_min(mddev->queue, chunk_size);
3752		if (conf->geo.raid_disks % conf->geo.near_copies)
3753			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3754		else
3755			blk_queue_io_opt(mddev->queue, chunk_size *
3756					 (conf->geo.raid_disks / conf->geo.near_copies));
3757	}
3758
3759	rdev_for_each(rdev, mddev) {
3760		long long diff;
3761
3762		disk_idx = rdev->raid_disk;
3763		if (disk_idx < 0)
3764			continue;
3765		if (disk_idx >= conf->geo.raid_disks &&
3766		    disk_idx >= conf->prev.raid_disks)
3767			continue;
3768		disk = conf->mirrors + disk_idx;
3769
3770		if (test_bit(Replacement, &rdev->flags)) {
3771			if (disk->replacement)
3772				goto out_free_conf;
3773			disk->replacement = rdev;
3774		} else {
3775			if (disk->rdev)
3776				goto out_free_conf;
3777			disk->rdev = rdev;
 
 
 
3778		}
3779		diff = (rdev->new_data_offset - rdev->data_offset);
3780		if (!mddev->reshape_backwards)
3781			diff = -diff;
3782		if (diff < 0)
3783			diff = 0;
3784		if (first || diff < min_offset_diff)
3785			min_offset_diff = diff;
3786
3787		if (mddev->gendisk)
3788			disk_stack_limits(mddev->gendisk, rdev->bdev,
3789					  rdev->data_offset << 9);
3790
3791		disk->head_position = 0;
3792
3793		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3794			discard_supported = true;
3795		first = 0;
3796	}
3797
3798	if (mddev->queue) {
3799		if (discard_supported)
3800			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3801						mddev->queue);
3802		else
3803			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3804						  mddev->queue);
3805	}
3806	/* need to check that every block has at least one working mirror */
3807	if (!enough(conf, -1)) {
3808		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3809		       mdname(mddev));
3810		goto out_free_conf;
3811	}
3812
3813	if (conf->reshape_progress != MaxSector) {
3814		/* must ensure that shape change is supported */
3815		if (conf->geo.far_copies != 1 &&
3816		    conf->geo.far_offset == 0)
3817			goto out_free_conf;
3818		if (conf->prev.far_copies != 1 &&
3819		    conf->prev.far_offset == 0)
3820			goto out_free_conf;
3821	}
3822
3823	mddev->degraded = 0;
3824	for (i = 0;
3825	     i < conf->geo.raid_disks
3826		     || i < conf->prev.raid_disks;
3827	     i++) {
3828
3829		disk = conf->mirrors + i;
3830
3831		if (!disk->rdev && disk->replacement) {
3832			/* The replacement is all we have - use it */
3833			disk->rdev = disk->replacement;
3834			disk->replacement = NULL;
3835			clear_bit(Replacement, &disk->rdev->flags);
3836		}
3837
3838		if (!disk->rdev ||
3839		    !test_bit(In_sync, &disk->rdev->flags)) {
3840			disk->head_position = 0;
3841			mddev->degraded++;
3842			if (disk->rdev &&
3843			    disk->rdev->saved_raid_disk < 0)
3844				conf->fullsync = 1;
3845		}
3846
3847		if (disk->replacement &&
3848		    !test_bit(In_sync, &disk->replacement->flags) &&
3849		    disk->replacement->saved_raid_disk < 0) {
3850			conf->fullsync = 1;
3851		}
3852
3853		disk->recovery_disabled = mddev->recovery_disabled - 1;
3854	}
3855
3856	if (mddev->recovery_cp != MaxSector)
3857		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3858			  mdname(mddev));
3859	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3860		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3861		conf->geo.raid_disks);
 
 
3862	/*
3863	 * Ok, everything is just fine now
3864	 */
3865	mddev->dev_sectors = conf->dev_sectors;
3866	size = raid10_size(mddev, 0, 0);
3867	md_set_array_sectors(mddev, size);
3868	mddev->resync_max_sectors = size;
3869	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3870
3871	if (mddev->queue) {
3872		int stripe = conf->geo.raid_disks *
 
 
 
 
 
 
 
3873			((mddev->chunk_sectors << 9) / PAGE_SIZE);
 
 
 
 
3874
3875		/* Calculate max read-ahead size.
3876		 * We need to readahead at least twice a whole stripe....
3877		 * maybe...
3878		 */
3879		stripe /= conf->geo.near_copies;
3880		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3881			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3882	}
3883
3884	if (md_integrity_register(mddev))
3885		goto out_free_conf;
3886
3887	if (conf->reshape_progress != MaxSector) {
3888		unsigned long before_length, after_length;
3889
3890		before_length = ((1 << conf->prev.chunk_shift) *
3891				 conf->prev.far_copies);
3892		after_length = ((1 << conf->geo.chunk_shift) *
3893				conf->geo.far_copies);
3894
3895		if (max(before_length, after_length) > min_offset_diff) {
3896			/* This cannot work */
3897			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3898			goto out_free_conf;
3899		}
3900		conf->offset_diff = min_offset_diff;
3901
3902		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3903		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3904		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3905		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3906		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3907							"reshape");
3908		if (!mddev->sync_thread)
3909			goto out_free_conf;
3910	}
3911
3912	return 0;
3913
3914out_free_conf:
3915	md_unregister_thread(&mddev->thread);
3916	mempool_exit(&conf->r10bio_pool);
 
3917	safe_put_page(conf->tmppage);
3918	kfree(conf->mirrors);
3919	kfree(conf);
3920	mddev->private = NULL;
3921out:
3922	return -EIO;
3923}
3924
3925static void raid10_free(struct mddev *mddev, void *priv)
3926{
3927	struct r10conf *conf = priv;
3928
3929	mempool_exit(&conf->r10bio_pool);
3930	safe_put_page(conf->tmppage);
 
 
 
 
 
3931	kfree(conf->mirrors);
3932	kfree(conf->mirrors_old);
3933	kfree(conf->mirrors_new);
3934	bioset_exit(&conf->bio_split);
3935	kfree(conf);
 
 
3936}
3937
3938static void raid10_quiesce(struct mddev *mddev, int quiesce)
3939{
3940	struct r10conf *conf = mddev->private;
3941
3942	if (quiesce)
 
3943		raise_barrier(conf, 0);
3944	else
 
3945		lower_barrier(conf);
3946}
3947
3948static int raid10_resize(struct mddev *mddev, sector_t sectors)
3949{
3950	/* Resize of 'far' arrays is not supported.
3951	 * For 'near' and 'offset' arrays we can set the
3952	 * number of sectors used to be an appropriate multiple
3953	 * of the chunk size.
3954	 * For 'offset', this is far_copies*chunksize.
3955	 * For 'near' the multiplier is the LCM of
3956	 * near_copies and raid_disks.
3957	 * So if far_copies > 1 && !far_offset, fail.
3958	 * Else find LCM(raid_disks, near_copy)*far_copies and
3959	 * multiply by chunk_size.  Then round to this number.
3960	 * This is mostly done by raid10_size()
3961	 */
3962	struct r10conf *conf = mddev->private;
3963	sector_t oldsize, size;
3964
3965	if (mddev->reshape_position != MaxSector)
3966		return -EBUSY;
3967
3968	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3969		return -EINVAL;
3970
3971	oldsize = raid10_size(mddev, 0, 0);
3972	size = raid10_size(mddev, sectors, 0);
3973	if (mddev->external_size &&
3974	    mddev->array_sectors > size)
3975		return -EINVAL;
3976	if (mddev->bitmap) {
3977		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3978		if (ret)
3979			return ret;
3980	}
3981	md_set_array_sectors(mddev, size);
3982	if (sectors > mddev->dev_sectors &&
3983	    mddev->recovery_cp > oldsize) {
3984		mddev->recovery_cp = oldsize;
3985		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3986	}
3987	calc_sectors(conf, sectors);
3988	mddev->dev_sectors = conf->dev_sectors;
3989	mddev->resync_max_sectors = size;
3990	return 0;
3991}
3992
3993static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3994{
3995	struct md_rdev *rdev;
3996	struct r10conf *conf;
3997
3998	if (mddev->degraded > 0) {
3999		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4000			mdname(mddev));
4001		return ERR_PTR(-EINVAL);
4002	}
4003	sector_div(size, devs);
4004
4005	/* Set new parameters */
4006	mddev->new_level = 10;
4007	/* new layout: far_copies = 1, near_copies = 2 */
4008	mddev->new_layout = (1<<8) + 2;
4009	mddev->new_chunk_sectors = mddev->chunk_sectors;
4010	mddev->delta_disks = mddev->raid_disks;
4011	mddev->raid_disks *= 2;
4012	/* make sure it will be not marked as dirty */
4013	mddev->recovery_cp = MaxSector;
4014	mddev->dev_sectors = size;
4015
4016	conf = setup_conf(mddev);
4017	if (!IS_ERR(conf)) {
4018		rdev_for_each(rdev, mddev)
4019			if (rdev->raid_disk >= 0) {
4020				rdev->new_raid_disk = rdev->raid_disk * 2;
4021				rdev->sectors = size;
4022			}
4023		conf->barrier = 1;
4024	}
4025
4026	return conf;
4027}
4028
4029static void *raid10_takeover(struct mddev *mddev)
4030{
4031	struct r0conf *raid0_conf;
4032
4033	/* raid10 can take over:
4034	 *  raid0 - providing it has only two drives
4035	 */
4036	if (mddev->level == 0) {
4037		/* for raid0 takeover only one zone is supported */
4038		raid0_conf = mddev->private;
4039		if (raid0_conf->nr_strip_zones > 1) {
4040			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4041				mdname(mddev));
 
4042			return ERR_PTR(-EINVAL);
4043		}
4044		return raid10_takeover_raid0(mddev,
4045			raid0_conf->strip_zone->zone_end,
4046			raid0_conf->strip_zone->nb_dev);
4047	}
4048	return ERR_PTR(-EINVAL);
4049}
4050
4051static int raid10_check_reshape(struct mddev *mddev)
4052{
4053	/* Called when there is a request to change
4054	 * - layout (to ->new_layout)
4055	 * - chunk size (to ->new_chunk_sectors)
4056	 * - raid_disks (by delta_disks)
4057	 * or when trying to restart a reshape that was ongoing.
4058	 *
4059	 * We need to validate the request and possibly allocate
4060	 * space if that might be an issue later.
4061	 *
4062	 * Currently we reject any reshape of a 'far' mode array,
4063	 * allow chunk size to change if new is generally acceptable,
4064	 * allow raid_disks to increase, and allow
4065	 * a switch between 'near' mode and 'offset' mode.
4066	 */
4067	struct r10conf *conf = mddev->private;
4068	struct geom geo;
4069
4070	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4071		return -EINVAL;
4072
4073	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4074		/* mustn't change number of copies */
4075		return -EINVAL;
4076	if (geo.far_copies > 1 && !geo.far_offset)
4077		/* Cannot switch to 'far' mode */
4078		return -EINVAL;
4079
4080	if (mddev->array_sectors & geo.chunk_mask)
4081			/* not factor of array size */
4082			return -EINVAL;
4083
4084	if (!enough(conf, -1))
4085		return -EINVAL;
4086
4087	kfree(conf->mirrors_new);
4088	conf->mirrors_new = NULL;
4089	if (mddev->delta_disks > 0) {
4090		/* allocate new 'mirrors' list */
4091		conf->mirrors_new =
4092			kcalloc(mddev->raid_disks + mddev->delta_disks,
4093				sizeof(struct raid10_info),
4094				GFP_KERNEL);
4095		if (!conf->mirrors_new)
4096			return -ENOMEM;
4097	}
4098	return 0;
4099}
4100
4101/*
4102 * Need to check if array has failed when deciding whether to:
4103 *  - start an array
4104 *  - remove non-faulty devices
4105 *  - add a spare
4106 *  - allow a reshape
4107 * This determination is simple when no reshape is happening.
4108 * However if there is a reshape, we need to carefully check
4109 * both the before and after sections.
4110 * This is because some failed devices may only affect one
4111 * of the two sections, and some non-in_sync devices may
4112 * be insync in the section most affected by failed devices.
4113 */
4114static int calc_degraded(struct r10conf *conf)
4115{
4116	int degraded, degraded2;
4117	int i;
4118
4119	rcu_read_lock();
4120	degraded = 0;
4121	/* 'prev' section first */
4122	for (i = 0; i < conf->prev.raid_disks; i++) {
4123		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4124		if (!rdev || test_bit(Faulty, &rdev->flags))
4125			degraded++;
4126		else if (!test_bit(In_sync, &rdev->flags))
4127			/* When we can reduce the number of devices in
4128			 * an array, this might not contribute to
4129			 * 'degraded'.  It does now.
4130			 */
4131			degraded++;
4132	}
4133	rcu_read_unlock();
4134	if (conf->geo.raid_disks == conf->prev.raid_disks)
4135		return degraded;
4136	rcu_read_lock();
4137	degraded2 = 0;
4138	for (i = 0; i < conf->geo.raid_disks; i++) {
4139		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140		if (!rdev || test_bit(Faulty, &rdev->flags))
4141			degraded2++;
4142		else if (!test_bit(In_sync, &rdev->flags)) {
4143			/* If reshape is increasing the number of devices,
4144			 * this section has already been recovered, so
4145			 * it doesn't contribute to degraded.
4146			 * else it does.
4147			 */
4148			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4149				degraded2++;
4150		}
4151	}
4152	rcu_read_unlock();
4153	if (degraded2 > degraded)
4154		return degraded2;
4155	return degraded;
4156}
4157
4158static int raid10_start_reshape(struct mddev *mddev)
4159{
4160	/* A 'reshape' has been requested. This commits
4161	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4162	 * This also checks if there are enough spares and adds them
4163	 * to the array.
4164	 * We currently require enough spares to make the final
4165	 * array non-degraded.  We also require that the difference
4166	 * between old and new data_offset - on each device - is
4167	 * enough that we never risk over-writing.
4168	 */
4169
4170	unsigned long before_length, after_length;
4171	sector_t min_offset_diff = 0;
4172	int first = 1;
4173	struct geom new;
4174	struct r10conf *conf = mddev->private;
4175	struct md_rdev *rdev;
4176	int spares = 0;
4177	int ret;
4178
4179	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4180		return -EBUSY;
4181
4182	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4183		return -EINVAL;
4184
4185	before_length = ((1 << conf->prev.chunk_shift) *
4186			 conf->prev.far_copies);
4187	after_length = ((1 << conf->geo.chunk_shift) *
4188			conf->geo.far_copies);
4189
4190	rdev_for_each(rdev, mddev) {
4191		if (!test_bit(In_sync, &rdev->flags)
4192		    && !test_bit(Faulty, &rdev->flags))
4193			spares++;
4194		if (rdev->raid_disk >= 0) {
4195			long long diff = (rdev->new_data_offset
4196					  - rdev->data_offset);
4197			if (!mddev->reshape_backwards)
4198				diff = -diff;
4199			if (diff < 0)
4200				diff = 0;
4201			if (first || diff < min_offset_diff)
4202				min_offset_diff = diff;
4203			first = 0;
4204		}
4205	}
4206
4207	if (max(before_length, after_length) > min_offset_diff)
4208		return -EINVAL;
4209
4210	if (spares < mddev->delta_disks)
4211		return -EINVAL;
4212
4213	conf->offset_diff = min_offset_diff;
4214	spin_lock_irq(&conf->device_lock);
4215	if (conf->mirrors_new) {
4216		memcpy(conf->mirrors_new, conf->mirrors,
4217		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4218		smp_mb();
4219		kfree(conf->mirrors_old);
4220		conf->mirrors_old = conf->mirrors;
4221		conf->mirrors = conf->mirrors_new;
4222		conf->mirrors_new = NULL;
4223	}
4224	setup_geo(&conf->geo, mddev, geo_start);
4225	smp_mb();
4226	if (mddev->reshape_backwards) {
4227		sector_t size = raid10_size(mddev, 0, 0);
4228		if (size < mddev->array_sectors) {
4229			spin_unlock_irq(&conf->device_lock);
4230			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4231				mdname(mddev));
4232			return -EINVAL;
4233		}
4234		mddev->resync_max_sectors = size;
4235		conf->reshape_progress = size;
4236	} else
4237		conf->reshape_progress = 0;
4238	conf->reshape_safe = conf->reshape_progress;
4239	spin_unlock_irq(&conf->device_lock);
4240
4241	if (mddev->delta_disks && mddev->bitmap) {
4242		struct mdp_superblock_1 *sb = NULL;
4243		sector_t oldsize, newsize;
4244
4245		oldsize = raid10_size(mddev, 0, 0);
4246		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4247
4248		if (!mddev_is_clustered(mddev)) {
4249			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4250			if (ret)
4251				goto abort;
4252			else
4253				goto out;
4254		}
4255
4256		rdev_for_each(rdev, mddev) {
4257			if (rdev->raid_disk > -1 &&
4258			    !test_bit(Faulty, &rdev->flags))
4259				sb = page_address(rdev->sb_page);
4260		}
4261
4262		/*
4263		 * some node is already performing reshape, and no need to
4264		 * call md_bitmap_resize again since it should be called when
4265		 * receiving BITMAP_RESIZE msg
4266		 */
4267		if ((sb && (le32_to_cpu(sb->feature_map) &
4268			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4269			goto out;
4270
4271		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4272		if (ret)
4273			goto abort;
4274
4275		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4276		if (ret) {
4277			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4278			goto abort;
4279		}
4280	}
4281out:
4282	if (mddev->delta_disks > 0) {
4283		rdev_for_each(rdev, mddev)
4284			if (rdev->raid_disk < 0 &&
4285			    !test_bit(Faulty, &rdev->flags)) {
4286				if (raid10_add_disk(mddev, rdev) == 0) {
4287					if (rdev->raid_disk >=
4288					    conf->prev.raid_disks)
4289						set_bit(In_sync, &rdev->flags);
4290					else
4291						rdev->recovery_offset = 0;
4292
4293					/* Failure here is OK */
4294					sysfs_link_rdev(mddev, rdev);
4295				}
4296			} else if (rdev->raid_disk >= conf->prev.raid_disks
4297				   && !test_bit(Faulty, &rdev->flags)) {
4298				/* This is a spare that was manually added */
4299				set_bit(In_sync, &rdev->flags);
4300			}
4301	}
4302	/* When a reshape changes the number of devices,
4303	 * ->degraded is measured against the larger of the
4304	 * pre and  post numbers.
4305	 */
4306	spin_lock_irq(&conf->device_lock);
4307	mddev->degraded = calc_degraded(conf);
4308	spin_unlock_irq(&conf->device_lock);
4309	mddev->raid_disks = conf->geo.raid_disks;
4310	mddev->reshape_position = conf->reshape_progress;
4311	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4312
4313	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4314	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4315	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4316	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4317	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4318
4319	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4320						"reshape");
4321	if (!mddev->sync_thread) {
4322		ret = -EAGAIN;
4323		goto abort;
4324	}
4325	conf->reshape_checkpoint = jiffies;
4326	md_wakeup_thread(mddev->sync_thread);
4327	md_new_event(mddev);
4328	return 0;
4329
4330abort:
4331	mddev->recovery = 0;
4332	spin_lock_irq(&conf->device_lock);
4333	conf->geo = conf->prev;
4334	mddev->raid_disks = conf->geo.raid_disks;
4335	rdev_for_each(rdev, mddev)
4336		rdev->new_data_offset = rdev->data_offset;
4337	smp_wmb();
4338	conf->reshape_progress = MaxSector;
4339	conf->reshape_safe = MaxSector;
4340	mddev->reshape_position = MaxSector;
4341	spin_unlock_irq(&conf->device_lock);
4342	return ret;
4343}
4344
4345/* Calculate the last device-address that could contain
4346 * any block from the chunk that includes the array-address 's'
4347 * and report the next address.
4348 * i.e. the address returned will be chunk-aligned and after
4349 * any data that is in the chunk containing 's'.
4350 */
4351static sector_t last_dev_address(sector_t s, struct geom *geo)
4352{
4353	s = (s | geo->chunk_mask) + 1;
4354	s >>= geo->chunk_shift;
4355	s *= geo->near_copies;
4356	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4357	s *= geo->far_copies;
4358	s <<= geo->chunk_shift;
4359	return s;
4360}
4361
4362/* Calculate the first device-address that could contain
4363 * any block from the chunk that includes the array-address 's'.
4364 * This too will be the start of a chunk
4365 */
4366static sector_t first_dev_address(sector_t s, struct geom *geo)
4367{
4368	s >>= geo->chunk_shift;
4369	s *= geo->near_copies;
4370	sector_div(s, geo->raid_disks);
4371	s *= geo->far_copies;
4372	s <<= geo->chunk_shift;
4373	return s;
4374}
4375
4376static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4377				int *skipped)
4378{
4379	/* We simply copy at most one chunk (smallest of old and new)
4380	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4381	 * or we hit a bad block or something.
4382	 * This might mean we pause for normal IO in the middle of
4383	 * a chunk, but that is not a problem as mddev->reshape_position
4384	 * can record any location.
4385	 *
4386	 * If we will want to write to a location that isn't
4387	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4388	 * we need to flush all reshape requests and update the metadata.
4389	 *
4390	 * When reshaping forwards (e.g. to more devices), we interpret
4391	 * 'safe' as the earliest block which might not have been copied
4392	 * down yet.  We divide this by previous stripe size and multiply
4393	 * by previous stripe length to get lowest device offset that we
4394	 * cannot write to yet.
4395	 * We interpret 'sector_nr' as an address that we want to write to.
4396	 * From this we use last_device_address() to find where we might
4397	 * write to, and first_device_address on the  'safe' position.
4398	 * If this 'next' write position is after the 'safe' position,
4399	 * we must update the metadata to increase the 'safe' position.
4400	 *
4401	 * When reshaping backwards, we round in the opposite direction
4402	 * and perform the reverse test:  next write position must not be
4403	 * less than current safe position.
4404	 *
4405	 * In all this the minimum difference in data offsets
4406	 * (conf->offset_diff - always positive) allows a bit of slack,
4407	 * so next can be after 'safe', but not by more than offset_diff
4408	 *
4409	 * We need to prepare all the bios here before we start any IO
4410	 * to ensure the size we choose is acceptable to all devices.
4411	 * The means one for each copy for write-out and an extra one for
4412	 * read-in.
4413	 * We store the read-in bio in ->master_bio and the others in
4414	 * ->devs[x].bio and ->devs[x].repl_bio.
4415	 */
4416	struct r10conf *conf = mddev->private;
4417	struct r10bio *r10_bio;
4418	sector_t next, safe, last;
4419	int max_sectors;
4420	int nr_sectors;
4421	int s;
4422	struct md_rdev *rdev;
4423	int need_flush = 0;
4424	struct bio *blist;
4425	struct bio *bio, *read_bio;
4426	int sectors_done = 0;
4427	struct page **pages;
4428
4429	if (sector_nr == 0) {
4430		/* If restarting in the middle, skip the initial sectors */
4431		if (mddev->reshape_backwards &&
4432		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4433			sector_nr = (raid10_size(mddev, 0, 0)
4434				     - conf->reshape_progress);
4435		} else if (!mddev->reshape_backwards &&
4436			   conf->reshape_progress > 0)
4437			sector_nr = conf->reshape_progress;
4438		if (sector_nr) {
4439			mddev->curr_resync_completed = sector_nr;
4440			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4441			*skipped = 1;
4442			return sector_nr;
4443		}
4444	}
4445
4446	/* We don't use sector_nr to track where we are up to
4447	 * as that doesn't work well for ->reshape_backwards.
4448	 * So just use ->reshape_progress.
4449	 */
4450	if (mddev->reshape_backwards) {
4451		/* 'next' is the earliest device address that we might
4452		 * write to for this chunk in the new layout
4453		 */
4454		next = first_dev_address(conf->reshape_progress - 1,
4455					 &conf->geo);
4456
4457		/* 'safe' is the last device address that we might read from
4458		 * in the old layout after a restart
4459		 */
4460		safe = last_dev_address(conf->reshape_safe - 1,
4461					&conf->prev);
4462
4463		if (next + conf->offset_diff < safe)
4464			need_flush = 1;
4465
4466		last = conf->reshape_progress - 1;
4467		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4468					       & conf->prev.chunk_mask);
4469		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4470			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4471	} else {
4472		/* 'next' is after the last device address that we
4473		 * might write to for this chunk in the new layout
4474		 */
4475		next = last_dev_address(conf->reshape_progress, &conf->geo);
4476
4477		/* 'safe' is the earliest device address that we might
4478		 * read from in the old layout after a restart
4479		 */
4480		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4481
4482		/* Need to update metadata if 'next' might be beyond 'safe'
4483		 * as that would possibly corrupt data
4484		 */
4485		if (next > safe + conf->offset_diff)
4486			need_flush = 1;
4487
4488		sector_nr = conf->reshape_progress;
4489		last  = sector_nr | (conf->geo.chunk_mask
4490				     & conf->prev.chunk_mask);
4491
4492		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4493			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4494	}
4495
4496	if (need_flush ||
4497	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4498		/* Need to update reshape_position in metadata */
4499		wait_barrier(conf);
4500		mddev->reshape_position = conf->reshape_progress;
4501		if (mddev->reshape_backwards)
4502			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4503				- conf->reshape_progress;
4504		else
4505			mddev->curr_resync_completed = conf->reshape_progress;
4506		conf->reshape_checkpoint = jiffies;
4507		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4508		md_wakeup_thread(mddev->thread);
4509		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4510			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4511		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4512			allow_barrier(conf);
4513			return sectors_done;
4514		}
4515		conf->reshape_safe = mddev->reshape_position;
4516		allow_barrier(conf);
4517	}
4518
4519	raise_barrier(conf, 0);
4520read_more:
4521	/* Now schedule reads for blocks from sector_nr to last */
4522	r10_bio = raid10_alloc_init_r10buf(conf);
4523	r10_bio->state = 0;
4524	raise_barrier(conf, 1);
4525	atomic_set(&r10_bio->remaining, 0);
4526	r10_bio->mddev = mddev;
4527	r10_bio->sector = sector_nr;
4528	set_bit(R10BIO_IsReshape, &r10_bio->state);
4529	r10_bio->sectors = last - sector_nr + 1;
4530	rdev = read_balance(conf, r10_bio, &max_sectors);
4531	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4532
4533	if (!rdev) {
4534		/* Cannot read from here, so need to record bad blocks
4535		 * on all the target devices.
4536		 */
4537		// FIXME
4538		mempool_free(r10_bio, &conf->r10buf_pool);
4539		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4540		return sectors_done;
4541	}
4542
4543	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4544
4545	bio_set_dev(read_bio, rdev->bdev);
4546	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4547			       + rdev->data_offset);
4548	read_bio->bi_private = r10_bio;
4549	read_bio->bi_end_io = end_reshape_read;
4550	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4551	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4552	read_bio->bi_status = 0;
4553	read_bio->bi_vcnt = 0;
4554	read_bio->bi_iter.bi_size = 0;
4555	r10_bio->master_bio = read_bio;
4556	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4557
4558	/*
4559	 * Broadcast RESYNC message to other nodes, so all nodes would not
4560	 * write to the region to avoid conflict.
4561	*/
4562	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4563		struct mdp_superblock_1 *sb = NULL;
4564		int sb_reshape_pos = 0;
4565
4566		conf->cluster_sync_low = sector_nr;
4567		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4568		sb = page_address(rdev->sb_page);
4569		if (sb) {
4570			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4571			/*
4572			 * Set cluster_sync_low again if next address for array
4573			 * reshape is less than cluster_sync_low. Since we can't
4574			 * update cluster_sync_low until it has finished reshape.
4575			 */
4576			if (sb_reshape_pos < conf->cluster_sync_low)
4577				conf->cluster_sync_low = sb_reshape_pos;
4578		}
4579
4580		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4581							  conf->cluster_sync_high);
4582	}
4583
4584	/* Now find the locations in the new layout */
4585	__raid10_find_phys(&conf->geo, r10_bio);
4586
4587	blist = read_bio;
4588	read_bio->bi_next = NULL;
4589
4590	rcu_read_lock();
4591	for (s = 0; s < conf->copies*2; s++) {
4592		struct bio *b;
4593		int d = r10_bio->devs[s/2].devnum;
4594		struct md_rdev *rdev2;
4595		if (s&1) {
4596			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4597			b = r10_bio->devs[s/2].repl_bio;
4598		} else {
4599			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4600			b = r10_bio->devs[s/2].bio;
4601		}
4602		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4603			continue;
4604
4605		bio_set_dev(b, rdev2->bdev);
4606		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4607			rdev2->new_data_offset;
4608		b->bi_end_io = end_reshape_write;
4609		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4610		b->bi_next = blist;
4611		blist = b;
4612	}
4613
4614	/* Now add as many pages as possible to all of these bios. */
4615
4616	nr_sectors = 0;
4617	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4618	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4619		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4620		int len = (max_sectors - s) << 9;
4621		if (len > PAGE_SIZE)
4622			len = PAGE_SIZE;
4623		for (bio = blist; bio ; bio = bio->bi_next) {
4624			/*
4625			 * won't fail because the vec table is big enough
4626			 * to hold all these pages
4627			 */
4628			bio_add_page(bio, page, len, 0);
4629		}
4630		sector_nr += len >> 9;
4631		nr_sectors += len >> 9;
4632	}
4633	rcu_read_unlock();
4634	r10_bio->sectors = nr_sectors;
4635
4636	/* Now submit the read */
4637	md_sync_acct_bio(read_bio, r10_bio->sectors);
4638	atomic_inc(&r10_bio->remaining);
4639	read_bio->bi_next = NULL;
4640	submit_bio_noacct(read_bio);
4641	sectors_done += nr_sectors;
4642	if (sector_nr <= last)
4643		goto read_more;
4644
4645	lower_barrier(conf);
4646
4647	/* Now that we have done the whole section we can
4648	 * update reshape_progress
4649	 */
4650	if (mddev->reshape_backwards)
4651		conf->reshape_progress -= sectors_done;
4652	else
4653		conf->reshape_progress += sectors_done;
4654
4655	return sectors_done;
4656}
4657
4658static void end_reshape_request(struct r10bio *r10_bio);
4659static int handle_reshape_read_error(struct mddev *mddev,
4660				     struct r10bio *r10_bio);
4661static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4662{
4663	/* Reshape read completed.  Hopefully we have a block
4664	 * to write out.
4665	 * If we got a read error then we do sync 1-page reads from
4666	 * elsewhere until we find the data - or give up.
4667	 */
4668	struct r10conf *conf = mddev->private;
4669	int s;
4670
4671	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4672		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4673			/* Reshape has been aborted */
4674			md_done_sync(mddev, r10_bio->sectors, 0);
4675			return;
4676		}
4677
4678	/* We definitely have the data in the pages, schedule the
4679	 * writes.
4680	 */
4681	atomic_set(&r10_bio->remaining, 1);
4682	for (s = 0; s < conf->copies*2; s++) {
4683		struct bio *b;
4684		int d = r10_bio->devs[s/2].devnum;
4685		struct md_rdev *rdev;
4686		rcu_read_lock();
4687		if (s&1) {
4688			rdev = rcu_dereference(conf->mirrors[d].replacement);
4689			b = r10_bio->devs[s/2].repl_bio;
4690		} else {
4691			rdev = rcu_dereference(conf->mirrors[d].rdev);
4692			b = r10_bio->devs[s/2].bio;
4693		}
4694		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4695			rcu_read_unlock();
4696			continue;
4697		}
4698		atomic_inc(&rdev->nr_pending);
4699		rcu_read_unlock();
4700		md_sync_acct_bio(b, r10_bio->sectors);
4701		atomic_inc(&r10_bio->remaining);
4702		b->bi_next = NULL;
4703		submit_bio_noacct(b);
4704	}
4705	end_reshape_request(r10_bio);
4706}
4707
4708static void end_reshape(struct r10conf *conf)
4709{
4710	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4711		return;
4712
4713	spin_lock_irq(&conf->device_lock);
4714	conf->prev = conf->geo;
4715	md_finish_reshape(conf->mddev);
4716	smp_wmb();
4717	conf->reshape_progress = MaxSector;
4718	conf->reshape_safe = MaxSector;
4719	spin_unlock_irq(&conf->device_lock);
4720
4721	/* read-ahead size must cover two whole stripes, which is
4722	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4723	 */
4724	if (conf->mddev->queue) {
4725		int stripe = conf->geo.raid_disks *
4726			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4727		stripe /= conf->geo.near_copies;
4728		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4729			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4730	}
4731	conf->fullsync = 0;
4732}
4733
4734static void raid10_update_reshape_pos(struct mddev *mddev)
4735{
4736	struct r10conf *conf = mddev->private;
4737	sector_t lo, hi;
4738
4739	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4740	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4741	    || mddev->reshape_position == MaxSector)
4742		conf->reshape_progress = mddev->reshape_position;
4743	else
4744		WARN_ON_ONCE(1);
4745}
4746
4747static int handle_reshape_read_error(struct mddev *mddev,
4748				     struct r10bio *r10_bio)
4749{
4750	/* Use sync reads to get the blocks from somewhere else */
4751	int sectors = r10_bio->sectors;
4752	struct r10conf *conf = mddev->private;
4753	struct r10bio *r10b;
4754	int slot = 0;
4755	int idx = 0;
4756	struct page **pages;
4757
4758	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4759	if (!r10b) {
4760		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761		return -ENOMEM;
4762	}
4763
4764	/* reshape IOs share pages from .devs[0].bio */
4765	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4766
4767	r10b->sector = r10_bio->sector;
4768	__raid10_find_phys(&conf->prev, r10b);
4769
4770	while (sectors) {
4771		int s = sectors;
4772		int success = 0;
4773		int first_slot = slot;
4774
4775		if (s > (PAGE_SIZE >> 9))
4776			s = PAGE_SIZE >> 9;
4777
4778		rcu_read_lock();
4779		while (!success) {
4780			int d = r10b->devs[slot].devnum;
4781			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782			sector_t addr;
4783			if (rdev == NULL ||
4784			    test_bit(Faulty, &rdev->flags) ||
4785			    !test_bit(In_sync, &rdev->flags))
4786				goto failed;
4787
4788			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4789			atomic_inc(&rdev->nr_pending);
4790			rcu_read_unlock();
4791			success = sync_page_io(rdev,
4792					       addr,
4793					       s << 9,
4794					       pages[idx],
4795					       REQ_OP_READ, 0, false);
4796			rdev_dec_pending(rdev, mddev);
4797			rcu_read_lock();
4798			if (success)
4799				break;
4800		failed:
4801			slot++;
4802			if (slot >= conf->copies)
4803				slot = 0;
4804			if (slot == first_slot)
4805				break;
4806		}
4807		rcu_read_unlock();
4808		if (!success) {
4809			/* couldn't read this block, must give up */
4810			set_bit(MD_RECOVERY_INTR,
4811				&mddev->recovery);
4812			kfree(r10b);
4813			return -EIO;
4814		}
4815		sectors -= s;
4816		idx++;
4817	}
4818	kfree(r10b);
4819	return 0;
4820}
4821
4822static void end_reshape_write(struct bio *bio)
4823{
4824	struct r10bio *r10_bio = get_resync_r10bio(bio);
4825	struct mddev *mddev = r10_bio->mddev;
4826	struct r10conf *conf = mddev->private;
4827	int d;
4828	int slot;
4829	int repl;
4830	struct md_rdev *rdev = NULL;
4831
4832	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4833	if (repl)
4834		rdev = conf->mirrors[d].replacement;
4835	if (!rdev) {
4836		smp_mb();
4837		rdev = conf->mirrors[d].rdev;
4838	}
4839
4840	if (bio->bi_status) {
4841		/* FIXME should record badblock */
4842		md_error(mddev, rdev);
4843	}
4844
4845	rdev_dec_pending(rdev, mddev);
4846	end_reshape_request(r10_bio);
4847}
4848
4849static void end_reshape_request(struct r10bio *r10_bio)
4850{
4851	if (!atomic_dec_and_test(&r10_bio->remaining))
4852		return;
4853	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4854	bio_put(r10_bio->master_bio);
4855	put_buf(r10_bio);
4856}
4857
4858static void raid10_finish_reshape(struct mddev *mddev)
4859{
4860	struct r10conf *conf = mddev->private;
4861
4862	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4863		return;
4864
4865	if (mddev->delta_disks > 0) {
4866		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4867			mddev->recovery_cp = mddev->resync_max_sectors;
4868			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869		}
4870		mddev->resync_max_sectors = mddev->array_sectors;
4871	} else {
4872		int d;
4873		rcu_read_lock();
4874		for (d = conf->geo.raid_disks ;
4875		     d < conf->geo.raid_disks - mddev->delta_disks;
4876		     d++) {
4877			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4878			if (rdev)
4879				clear_bit(In_sync, &rdev->flags);
4880			rdev = rcu_dereference(conf->mirrors[d].replacement);
4881			if (rdev)
4882				clear_bit(In_sync, &rdev->flags);
4883		}
4884		rcu_read_unlock();
4885	}
4886	mddev->layout = mddev->new_layout;
4887	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4888	mddev->reshape_position = MaxSector;
4889	mddev->delta_disks = 0;
4890	mddev->reshape_backwards = 0;
4891}
4892
4893static struct md_personality raid10_personality =
4894{
4895	.name		= "raid10",
4896	.level		= 10,
4897	.owner		= THIS_MODULE,
4898	.make_request	= raid10_make_request,
4899	.run		= raid10_run,
4900	.free		= raid10_free,
4901	.status		= raid10_status,
4902	.error_handler	= raid10_error,
4903	.hot_add_disk	= raid10_add_disk,
4904	.hot_remove_disk= raid10_remove_disk,
4905	.spare_active	= raid10_spare_active,
4906	.sync_request	= raid10_sync_request,
4907	.quiesce	= raid10_quiesce,
4908	.size		= raid10_size,
4909	.resize		= raid10_resize,
4910	.takeover	= raid10_takeover,
4911	.check_reshape	= raid10_check_reshape,
4912	.start_reshape	= raid10_start_reshape,
4913	.finish_reshape	= raid10_finish_reshape,
4914	.update_reshape_pos = raid10_update_reshape_pos,
4915};
4916
4917static int __init raid_init(void)
4918{
4919	return register_md_personality(&raid10_personality);
4920}
4921
4922static void raid_exit(void)
4923{
4924	unregister_md_personality(&raid10_personality);
4925}
4926
4927module_init(raid_init);
4928module_exit(raid_exit);
4929MODULE_LICENSE("GPL");
4930MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4931MODULE_ALIAS("md-personality-9"); /* RAID10 */
4932MODULE_ALIAS("md-raid10");
4933MODULE_ALIAS("md-level-10");
4934
4935module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);