Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
 
  24#include <linux/seq_file.h>
  25#include <linux/ratelimit.h>
 
 
 
  26#include "md.h"
  27#include "raid10.h"
  28#include "raid0.h"
  29#include "bitmap.h"
  30
  31/*
  32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  33 * The layout of data is defined by
  34 *    chunk_size
  35 *    raid_disks
  36 *    near_copies (stored in low byte of layout)
  37 *    far_copies (stored in second byte of layout)
  38 *    far_offset (stored in bit 16 of layout )
 
 
  39 *
  40 * The data to be stored is divided into chunks using chunksize.
  41 * Each device is divided into far_copies sections.
  42 * In each section, chunks are laid out in a style similar to raid0, but
  43 * near_copies copies of each chunk is stored (each on a different drive).
  44 * The starting device for each section is offset near_copies from the starting
  45 * device of the previous section.
  46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  47 * drive.
  48 * near_copies and far_copies must be at least one, and their product is at most
  49 * raid_disks.
  50 *
  51 * If far_offset is true, then the far_copies are handled a bit differently.
  52 * The copies are still in different stripes, but instead of be very far apart
  53 * on disk, there are adjacent stripes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54 */
  55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56/*
  57 * Number of guaranteed r10bios in case of extreme VM load:
 
  58 */
  59#define	NR_RAID10_BIOS 256
  60
  61static void allow_barrier(conf_t *conf);
  62static void lower_barrier(conf_t *conf);
  63
  64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  65{
  66	conf_t *conf = data;
  67	int size = offsetof(struct r10bio_s, devs[conf->copies]);
  68
  69	/* allocate a r10bio with room for raid_disks entries in the bios array */
 
  70	return kzalloc(size, gfp_flags);
  71}
  72
  73static void r10bio_pool_free(void *r10_bio, void *data)
  74{
  75	kfree(r10_bio);
  76}
  77
  78/* Maximum size of each resync request */
  79#define RESYNC_BLOCK_SIZE (64*1024)
  80#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  81/* amount of memory to reserve for resync requests */
  82#define RESYNC_WINDOW (1024*1024)
  83/* maximum number of concurrent requests, memory permitting */
  84#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 
 
  85
  86/*
  87 * When performing a resync, we need to read and compare, so
  88 * we need as many pages are there are copies.
  89 * When performing a recovery, we need 2 bios, one for read,
  90 * one for write (we recover only one drive per r10buf)
  91 *
  92 */
  93static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  94{
  95	conf_t *conf = data;
  96	struct page *page;
  97	r10bio_t *r10_bio;
  98	struct bio *bio;
  99	int i, j;
 100	int nalloc;
 
 101
 102	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 103	if (!r10_bio)
 104		return NULL;
 105
 106	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
 
 107		nalloc = conf->copies; /* resync */
 108	else
 109		nalloc = 2; /* recovery */
 110
 
 
 
 
 
 
 
 
 
 111	/*
 112	 * Allocate bios.
 113	 */
 114	for (j = nalloc ; j-- ; ) {
 115		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 116		if (!bio)
 117			goto out_free_bio;
 118		r10_bio->devs[j].bio = bio;
 
 
 
 
 
 
 119	}
 120	/*
 121	 * Allocate RESYNC_PAGES data pages and attach them
 122	 * where needed.
 123	 */
 124	for (j = 0 ; j < nalloc; j++) {
 
 
 
 
 
 
 
 125		bio = r10_bio->devs[j].bio;
 126		for (i = 0; i < RESYNC_PAGES; i++) {
 127			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
 128						&conf->mddev->recovery)) {
 129				/* we can share bv_page's during recovery */
 130				struct bio *rbio = r10_bio->devs[0].bio;
 131				page = rbio->bi_io_vec[i].bv_page;
 132				get_page(page);
 133			} else
 134				page = alloc_page(gfp_flags);
 135			if (unlikely(!page))
 136				goto out_free_pages;
 
 
 
 
 137
 138			bio->bi_io_vec[i].bv_page = page;
 
 
 
 
 139		}
 140	}
 141
 142	return r10_bio;
 143
 144out_free_pages:
 145	for ( ; i > 0 ; i--)
 146		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 147	while (j--)
 148		for (i = 0; i < RESYNC_PAGES ; i++)
 149			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 150	j = -1;
 151out_free_bio:
 152	while ( ++j < nalloc )
 153		bio_put(r10_bio->devs[j].bio);
 154	r10bio_pool_free(r10_bio, conf);
 
 
 
 
 
 
 155	return NULL;
 156}
 157
 158static void r10buf_pool_free(void *__r10_bio, void *data)
 159{
 160	int i;
 161	conf_t *conf = data;
 162	r10bio_t *r10bio = __r10_bio;
 163	int j;
 
 164
 165	for (j=0; j < conf->copies; j++) {
 166		struct bio *bio = r10bio->devs[j].bio;
 
 167		if (bio) {
 168			for (i = 0; i < RESYNC_PAGES; i++) {
 169				safe_put_page(bio->bi_io_vec[i].bv_page);
 170				bio->bi_io_vec[i].bv_page = NULL;
 171			}
 172			bio_put(bio);
 173		}
 
 
 
 
 174	}
 175	r10bio_pool_free(r10bio, conf);
 
 
 
 
 176}
 177
 178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
 179{
 180	int i;
 181
 182	for (i = 0; i < conf->copies; i++) {
 183		struct bio **bio = & r10_bio->devs[i].bio;
 184		if (!BIO_SPECIAL(*bio))
 185			bio_put(*bio);
 186		*bio = NULL;
 
 
 
 
 187	}
 188}
 189
 190static void free_r10bio(r10bio_t *r10_bio)
 191{
 192	conf_t *conf = r10_bio->mddev->private;
 193
 194	put_all_bios(conf, r10_bio);
 195	mempool_free(r10_bio, conf->r10bio_pool);
 196}
 197
 198static void put_buf(r10bio_t *r10_bio)
 199{
 200	conf_t *conf = r10_bio->mddev->private;
 201
 202	mempool_free(r10_bio, conf->r10buf_pool);
 203
 204	lower_barrier(conf);
 205}
 206
 207static void reschedule_retry(r10bio_t *r10_bio)
 208{
 209	unsigned long flags;
 210	mddev_t *mddev = r10_bio->mddev;
 211	conf_t *conf = mddev->private;
 212
 213	spin_lock_irqsave(&conf->device_lock, flags);
 214	list_add(&r10_bio->retry_list, &conf->retry_list);
 215	conf->nr_queued ++;
 216	spin_unlock_irqrestore(&conf->device_lock, flags);
 217
 218	/* wake up frozen array... */
 219	wake_up(&conf->wait_barrier);
 220
 221	md_wakeup_thread(mddev->thread);
 222}
 223
 224/*
 225 * raid_end_bio_io() is called when we have finished servicing a mirrored
 226 * operation and are ready to return a success/failure code to the buffer
 227 * cache layer.
 228 */
 229static void raid_end_bio_io(r10bio_t *r10_bio)
 230{
 231	struct bio *bio = r10_bio->master_bio;
 232	int done;
 233	conf_t *conf = r10_bio->mddev->private;
 234
 235	if (bio->bi_phys_segments) {
 236		unsigned long flags;
 237		spin_lock_irqsave(&conf->device_lock, flags);
 238		bio->bi_phys_segments--;
 239		done = (bio->bi_phys_segments == 0);
 240		spin_unlock_irqrestore(&conf->device_lock, flags);
 241	} else
 242		done = 1;
 243	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 244		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 245	if (done) {
 246		bio_endio(bio, 0);
 247		/*
 248		 * Wake up any possible resync thread that waits for the device
 249		 * to go idle.
 250		 */
 251		allow_barrier(conf);
 252	}
 253	free_r10bio(r10_bio);
 254}
 255
 256/*
 257 * Update disk head position estimator based on IRQ completion info.
 258 */
 259static inline void update_head_pos(int slot, r10bio_t *r10_bio)
 260{
 261	conf_t *conf = r10_bio->mddev->private;
 262
 263	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 264		r10_bio->devs[slot].addr + (r10_bio->sectors);
 265}
 266
 267/*
 268 * Find the disk number which triggered given bio
 269 */
 270static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
 271			 struct bio *bio, int *slotp)
 272{
 273	int slot;
 
 274
 275	for (slot = 0; slot < conf->copies; slot++)
 276		if (r10_bio->devs[slot].bio == bio)
 277			break;
 
 
 
 
 
 278
 279	BUG_ON(slot == conf->copies);
 280	update_head_pos(slot, r10_bio);
 281
 282	if (slotp)
 283		*slotp = slot;
 
 
 284	return r10_bio->devs[slot].devnum;
 285}
 286
 287static void raid10_end_read_request(struct bio *bio, int error)
 288{
 289	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 290	r10bio_t *r10_bio = bio->bi_private;
 291	int slot, dev;
 292	conf_t *conf = r10_bio->mddev->private;
 293
 294
 295	slot = r10_bio->read_slot;
 296	dev = r10_bio->devs[slot].devnum;
 297	/*
 298	 * this branch is our 'one mirror IO has finished' event handler:
 299	 */
 300	update_head_pos(slot, r10_bio);
 301
 302	if (uptodate) {
 303		/*
 304		 * Set R10BIO_Uptodate in our master bio, so that
 305		 * we will return a good error code to the higher
 306		 * levels even if IO on some other mirrored buffer fails.
 307		 *
 308		 * The 'master' represents the composite IO operation to
 309		 * user-side. So if something waits for IO, then it will
 310		 * wait for the 'master' bio.
 311		 */
 312		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 313		raid_end_bio_io(r10_bio);
 314		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 315	} else {
 316		/*
 317		 * oops, read error - keep the refcount on the rdev
 318		 */
 319		char b[BDEVNAME_SIZE];
 320		printk_ratelimited(KERN_ERR
 321				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 322				   mdname(conf->mddev),
 323				   bdevname(conf->mirrors[dev].rdev->bdev, b),
 324				   (unsigned long long)r10_bio->sector);
 325		set_bit(R10BIO_ReadError, &r10_bio->state);
 326		reschedule_retry(r10_bio);
 327	}
 328}
 329
 330static void close_write(r10bio_t *r10_bio)
 331{
 332	/* clear the bitmap if all writes complete successfully */
 333	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 334			r10_bio->sectors,
 335			!test_bit(R10BIO_Degraded, &r10_bio->state),
 336			0);
 337	md_write_end(r10_bio->mddev);
 338}
 339
 340static void one_write_done(r10bio_t *r10_bio)
 341{
 342	if (atomic_dec_and_test(&r10_bio->remaining)) {
 343		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 344			reschedule_retry(r10_bio);
 345		else {
 346			close_write(r10_bio);
 347			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 348				reschedule_retry(r10_bio);
 349			else
 350				raid_end_bio_io(r10_bio);
 351		}
 352	}
 353}
 354
 355static void raid10_end_write_request(struct bio *bio, int error)
 356{
 357	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 358	r10bio_t *r10_bio = bio->bi_private;
 359	int dev;
 360	int dec_rdev = 1;
 361	conf_t *conf = r10_bio->mddev->private;
 362	int slot;
 363
 364	dev = find_bio_disk(conf, r10_bio, bio, &slot);
 365
 
 
 
 
 
 
 
 
 
 
 
 
 366	/*
 367	 * this branch is our 'one mirror IO has finished' event handler:
 368	 */
 369	if (!uptodate) {
 370		set_bit(WriteErrorSeen,	&conf->mirrors[dev].rdev->flags);
 371		set_bit(R10BIO_WriteError, &r10_bio->state);
 372		dec_rdev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373	} else {
 374		/*
 375		 * Set R10BIO_Uptodate in our master bio, so that
 376		 * we will return a good error code for to the higher
 377		 * levels even if IO on some other mirrored buffer fails.
 378		 *
 379		 * The 'master' represents the composite IO operation to
 380		 * user-side. So if something waits for IO, then it will
 381		 * wait for the 'master' bio.
 382		 */
 383		sector_t first_bad;
 384		int bad_sectors;
 385
 386		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 387
 388		/* Maybe we can clear some bad blocks. */
 389		if (is_badblock(conf->mirrors[dev].rdev,
 390				r10_bio->devs[slot].addr,
 391				r10_bio->sectors,
 392				&first_bad, &bad_sectors)) {
 393			bio_put(bio);
 394			r10_bio->devs[slot].bio = IO_MADE_GOOD;
 
 
 
 395			dec_rdev = 0;
 396			set_bit(R10BIO_MadeGood, &r10_bio->state);
 397		}
 398	}
 399
 400	/*
 401	 *
 402	 * Let's see if all mirrored write operations have finished
 403	 * already.
 404	 */
 405	one_write_done(r10_bio);
 406	if (dec_rdev)
 407		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 
 
 408}
 409
 410
 411/*
 412 * RAID10 layout manager
 413 * As well as the chunksize and raid_disks count, there are two
 414 * parameters: near_copies and far_copies.
 415 * near_copies * far_copies must be <= raid_disks.
 416 * Normally one of these will be 1.
 417 * If both are 1, we get raid0.
 418 * If near_copies == raid_disks, we get raid1.
 419 *
 420 * Chunks are laid out in raid0 style with near_copies copies of the
 421 * first chunk, followed by near_copies copies of the next chunk and
 422 * so on.
 423 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 424 * as described above, we start again with a device offset of near_copies.
 425 * So we effectively have another copy of the whole array further down all
 426 * the drives, but with blocks on different drives.
 427 * With this layout, and block is never stored twice on the one device.
 428 *
 429 * raid10_find_phys finds the sector offset of a given virtual sector
 430 * on each device that it is on.
 431 *
 432 * raid10_find_virt does the reverse mapping, from a device and a
 433 * sector offset to a virtual address
 434 */
 435
 436static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
 437{
 438	int n,f;
 439	sector_t sector;
 440	sector_t chunk;
 441	sector_t stripe;
 442	int dev;
 443
 444	int slot = 0;
 
 
 
 
 
 
 
 445
 446	/* now calculate first sector/dev */
 447	chunk = r10bio->sector >> conf->chunk_shift;
 448	sector = r10bio->sector & conf->chunk_mask;
 449
 450	chunk *= conf->near_copies;
 451	stripe = chunk;
 452	dev = sector_div(stripe, conf->raid_disks);
 453	if (conf->far_offset)
 454		stripe *= conf->far_copies;
 455
 456	sector += stripe << conf->chunk_shift;
 457
 458	/* and calculate all the others */
 459	for (n=0; n < conf->near_copies; n++) {
 460		int d = dev;
 
 461		sector_t s = sector;
 462		r10bio->devs[slot].addr = sector;
 463		r10bio->devs[slot].devnum = d;
 
 464		slot++;
 465
 466		for (f = 1; f < conf->far_copies; f++) {
 467			d += conf->near_copies;
 468			if (d >= conf->raid_disks)
 469				d -= conf->raid_disks;
 470			s += conf->stride;
 
 
 
 
 
 
 
 
 
 471			r10bio->devs[slot].devnum = d;
 472			r10bio->devs[slot].addr = s;
 473			slot++;
 474		}
 475		dev++;
 476		if (dev >= conf->raid_disks) {
 477			dev = 0;
 478			sector += (conf->chunk_mask + 1);
 479		}
 480	}
 481	BUG_ON(slot != conf->copies);
 482}
 483
 484static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485{
 486	sector_t offset, chunk, vchunk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	offset = sector & conf->chunk_mask;
 489	if (conf->far_offset) {
 490		int fc;
 491		chunk = sector >> conf->chunk_shift;
 492		fc = sector_div(chunk, conf->far_copies);
 493		dev -= fc * conf->near_copies;
 494		if (dev < 0)
 495			dev += conf->raid_disks;
 496	} else {
 497		while (sector >= conf->stride) {
 498			sector -= conf->stride;
 499			if (dev < conf->near_copies)
 500				dev += conf->raid_disks - conf->near_copies;
 501			else
 502				dev -= conf->near_copies;
 503		}
 504		chunk = sector >> conf->chunk_shift;
 505	}
 506	vchunk = chunk * conf->raid_disks + dev;
 507	sector_div(vchunk, conf->near_copies);
 508	return (vchunk << conf->chunk_shift) + offset;
 509}
 510
 511/**
 512 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 513 *	@q: request queue
 514 *	@bvm: properties of new bio
 515 *	@biovec: the request that could be merged to it.
 516 *
 517 *	Return amount of bytes we can accept at this offset
 518 *      If near_copies == raid_disk, there are no striping issues,
 519 *      but in that case, the function isn't called at all.
 520 */
 521static int raid10_mergeable_bvec(struct request_queue *q,
 522				 struct bvec_merge_data *bvm,
 523				 struct bio_vec *biovec)
 524{
 525	mddev_t *mddev = q->queuedata;
 526	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 527	int max;
 528	unsigned int chunk_sectors = mddev->chunk_sectors;
 529	unsigned int bio_sectors = bvm->bi_size >> 9;
 530
 531	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
 532	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
 533	if (max <= biovec->bv_len && bio_sectors == 0)
 534		return biovec->bv_len;
 535	else
 536		return max;
 537}
 538
 539/*
 540 * This routine returns the disk from which the requested read should
 541 * be done. There is a per-array 'next expected sequential IO' sector
 542 * number - if this matches on the next IO then we use the last disk.
 543 * There is also a per-disk 'last know head position' sector that is
 544 * maintained from IRQ contexts, both the normal and the resync IO
 545 * completion handlers update this position correctly. If there is no
 546 * perfect sequential match then we pick the disk whose head is closest.
 547 *
 548 * If there are 2 mirrors in the same 2 devices, performance degrades
 549 * because position is mirror, not device based.
 550 *
 551 * The rdev for the device selected will have nr_pending incremented.
 552 */
 553
 554/*
 555 * FIXME: possibly should rethink readbalancing and do it differently
 556 * depending on near_copies / far_copies geometry.
 557 */
 558static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
 
 
 559{
 560	const sector_t this_sector = r10_bio->sector;
 561	int disk, slot;
 562	int sectors = r10_bio->sectors;
 563	int best_good_sectors;
 564	sector_t new_distance, best_dist;
 565	mdk_rdev_t *rdev;
 566	int do_balance;
 567	int best_slot;
 
 
 
 568
 569	raid10_find_phys(conf, r10_bio);
 570	rcu_read_lock();
 571retry:
 572	sectors = r10_bio->sectors;
 573	best_slot = -1;
 
 574	best_dist = MaxSector;
 575	best_good_sectors = 0;
 576	do_balance = 1;
 
 577	/*
 578	 * Check if we can balance. We can balance on the whole
 579	 * device if no resync is going on (recovery is ok), or below
 580	 * the resync window. We take the first readable disk when
 581	 * above the resync window.
 582	 */
 583	if (conf->mddev->recovery_cp < MaxSector
 584	    && (this_sector + sectors >= conf->next_resync))
 
 
 
 585		do_balance = 0;
 586
 587	for (slot = 0; slot < conf->copies ; slot++) {
 588		sector_t first_bad;
 589		int bad_sectors;
 590		sector_t dev_sector;
 
 
 591
 592		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 593			continue;
 594		disk = r10_bio->devs[slot].devnum;
 595		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 596		if (rdev == NULL)
 
 
 
 
 597			continue;
 598		if (!test_bit(In_sync, &rdev->flags))
 
 599			continue;
 600
 601		dev_sector = r10_bio->devs[slot].addr;
 602		if (is_badblock(rdev, dev_sector, sectors,
 603				&first_bad, &bad_sectors)) {
 604			if (best_dist < MaxSector)
 605				/* Already have a better slot */
 606				continue;
 607			if (first_bad <= dev_sector) {
 608				/* Cannot read here.  If this is the
 609				 * 'primary' device, then we must not read
 610				 * beyond 'bad_sectors' from another device.
 611				 */
 612				bad_sectors -= (dev_sector - first_bad);
 613				if (!do_balance && sectors > bad_sectors)
 614					sectors = bad_sectors;
 615				if (best_good_sectors > sectors)
 616					best_good_sectors = sectors;
 617			} else {
 618				sector_t good_sectors =
 619					first_bad - dev_sector;
 620				if (good_sectors > best_good_sectors) {
 621					best_good_sectors = good_sectors;
 622					best_slot = slot;
 
 623				}
 624				if (!do_balance)
 625					/* Must read from here */
 626					break;
 627			}
 628			continue;
 629		} else
 630			best_good_sectors = sectors;
 631
 632		if (!do_balance)
 633			break;
 634
 
 
 
 
 
 
 
 
 
 
 
 
 635		/* This optimisation is debatable, and completely destroys
 636		 * sequential read speed for 'far copies' arrays.  So only
 637		 * keep it for 'near' arrays, and review those later.
 638		 */
 639		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 640			break;
 641
 642		/* for far > 1 always use the lowest address */
 643		if (conf->far_copies > 1)
 644			new_distance = r10_bio->devs[slot].addr;
 645		else
 646			new_distance = abs(r10_bio->devs[slot].addr -
 647					   conf->mirrors[disk].head_position);
 
 648		if (new_distance < best_dist) {
 649			best_dist = new_distance;
 650			best_slot = slot;
 
 
 
 
 
 
 
 
 
 
 651		}
 652	}
 653	if (slot == conf->copies)
 654		slot = best_slot;
 655
 656	if (slot >= 0) {
 657		disk = r10_bio->devs[slot].devnum;
 658		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 659		if (!rdev)
 660			goto retry;
 661		atomic_inc(&rdev->nr_pending);
 662		if (test_bit(Faulty, &rdev->flags)) {
 663			/* Cannot risk returning a device that failed
 664			 * before we inc'ed nr_pending
 665			 */
 666			rdev_dec_pending(rdev, conf->mddev);
 667			goto retry;
 668		}
 669		r10_bio->read_slot = slot;
 670	} else
 671		disk = -1;
 672	rcu_read_unlock();
 673	*max_sectors = best_good_sectors;
 674
 675	return disk;
 676}
 677
 678static int raid10_congested(void *data, int bits)
 679{
 680	mddev_t *mddev = data;
 681	conf_t *conf = mddev->private;
 682	int i, ret = 0;
 683
 684	if (mddev_congested(mddev, bits))
 
 685		return 1;
 
 686	rcu_read_lock();
 687	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
 688		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 689		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 690			struct request_queue *q = bdev_get_queue(rdev->bdev);
 691
 692			ret |= bdi_congested(&q->backing_dev_info, bits);
 693		}
 694	}
 695	rcu_read_unlock();
 696	return ret;
 697}
 698
 699static void flush_pending_writes(conf_t *conf)
 700{
 701	/* Any writes that have been queued but are awaiting
 702	 * bitmap updates get flushed here.
 703	 */
 704	spin_lock_irq(&conf->device_lock);
 705
 706	if (conf->pending_bio_list.head) {
 
 707		struct bio *bio;
 
 708		bio = bio_list_get(&conf->pending_bio_list);
 
 709		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 710		/* flush any pending bitmap writes to disk
 711		 * before proceeding w/ I/O */
 712		bitmap_unplug(conf->mddev->bitmap);
 
 713
 714		while (bio) { /* submit pending writes */
 715			struct bio *next = bio->bi_next;
 
 716			bio->bi_next = NULL;
 717			generic_make_request(bio);
 
 
 
 
 
 
 
 
 718			bio = next;
 719		}
 
 720	} else
 721		spin_unlock_irq(&conf->device_lock);
 722}
 723
 724/* Barriers....
 725 * Sometimes we need to suspend IO while we do something else,
 726 * either some resync/recovery, or reconfigure the array.
 727 * To do this we raise a 'barrier'.
 728 * The 'barrier' is a counter that can be raised multiple times
 729 * to count how many activities are happening which preclude
 730 * normal IO.
 731 * We can only raise the barrier if there is no pending IO.
 732 * i.e. if nr_pending == 0.
 733 * We choose only to raise the barrier if no-one is waiting for the
 734 * barrier to go down.  This means that as soon as an IO request
 735 * is ready, no other operations which require a barrier will start
 736 * until the IO request has had a chance.
 737 *
 738 * So: regular IO calls 'wait_barrier'.  When that returns there
 739 *    is no backgroup IO happening,  It must arrange to call
 740 *    allow_barrier when it has finished its IO.
 741 * backgroup IO calls must call raise_barrier.  Once that returns
 742 *    there is no normal IO happeing.  It must arrange to call
 743 *    lower_barrier when the particular background IO completes.
 744 */
 745
 746static void raise_barrier(conf_t *conf, int force)
 747{
 748	BUG_ON(force && !conf->barrier);
 749	spin_lock_irq(&conf->resync_lock);
 750
 751	/* Wait until no block IO is waiting (unless 'force') */
 752	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 753			    conf->resync_lock, );
 754
 755	/* block any new IO from starting */
 756	conf->barrier++;
 757
 758	/* Now wait for all pending IO to complete */
 759	wait_event_lock_irq(conf->wait_barrier,
 760			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 761			    conf->resync_lock, );
 762
 763	spin_unlock_irq(&conf->resync_lock);
 764}
 765
 766static void lower_barrier(conf_t *conf)
 767{
 768	unsigned long flags;
 769	spin_lock_irqsave(&conf->resync_lock, flags);
 770	conf->barrier--;
 771	spin_unlock_irqrestore(&conf->resync_lock, flags);
 772	wake_up(&conf->wait_barrier);
 773}
 774
 775static void wait_barrier(conf_t *conf)
 776{
 777	spin_lock_irq(&conf->resync_lock);
 778	if (conf->barrier) {
 779		conf->nr_waiting++;
 780		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 781				    conf->resync_lock,
 782				    );
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783		conf->nr_waiting--;
 
 
 784	}
 785	conf->nr_pending++;
 786	spin_unlock_irq(&conf->resync_lock);
 787}
 788
 789static void allow_barrier(conf_t *conf)
 790{
 791	unsigned long flags;
 792	spin_lock_irqsave(&conf->resync_lock, flags);
 793	conf->nr_pending--;
 794	spin_unlock_irqrestore(&conf->resync_lock, flags);
 795	wake_up(&conf->wait_barrier);
 796}
 797
 798static void freeze_array(conf_t *conf)
 799{
 800	/* stop syncio and normal IO and wait for everything to
 801	 * go quiet.
 802	 * We increment barrier and nr_waiting, and then
 803	 * wait until nr_pending match nr_queued+1
 804	 * This is called in the context of one normal IO request
 805	 * that has failed. Thus any sync request that might be pending
 806	 * will be blocked by nr_pending, and we need to wait for
 807	 * pending IO requests to complete or be queued for re-try.
 808	 * Thus the number queued (nr_queued) plus this request (1)
 809	 * must match the number of pending IOs (nr_pending) before
 810	 * we continue.
 811	 */
 812	spin_lock_irq(&conf->resync_lock);
 
 813	conf->barrier++;
 814	conf->nr_waiting++;
 815	wait_event_lock_irq(conf->wait_barrier,
 816			    conf->nr_pending == conf->nr_queued+1,
 817			    conf->resync_lock,
 818			    flush_pending_writes(conf));
 819
 
 820	spin_unlock_irq(&conf->resync_lock);
 821}
 822
 823static void unfreeze_array(conf_t *conf)
 824{
 825	/* reverse the effect of the freeze */
 826	spin_lock_irq(&conf->resync_lock);
 827	conf->barrier--;
 828	conf->nr_waiting--;
 829	wake_up(&conf->wait_barrier);
 830	spin_unlock_irq(&conf->resync_lock);
 831}
 832
 833static int make_request(mddev_t *mddev, struct bio * bio)
 
 834{
 835	conf_t *conf = mddev->private;
 836	mirror_info_t *mirror;
 837	r10bio_t *r10_bio;
 838	struct bio *read_bio;
 839	int i;
 840	int chunk_sects = conf->chunk_mask + 1;
 841	const int rw = bio_data_dir(bio);
 842	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 843	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
 844	unsigned long flags;
 845	mdk_rdev_t *blocked_rdev;
 846	int plugged;
 847	int sectors_handled;
 848	int max_sectors;
 849
 850	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
 851		md_flush_request(mddev, bio);
 852		return 0;
 853	}
 854
 855	/* If this request crosses a chunk boundary, we need to
 856	 * split it.  This will only happen for 1 PAGE (or less) requests.
 857	 */
 858	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
 859		      > chunk_sects &&
 860		    conf->near_copies < conf->raid_disks)) {
 861		struct bio_pair *bp;
 862		/* Sanity check -- queue functions should prevent this happening */
 863		if (bio->bi_vcnt != 1 ||
 864		    bio->bi_idx != 0)
 865			goto bad_map;
 866		/* This is a one page bio that upper layers
 867		 * refuse to split for us, so we need to split it.
 868		 */
 869		bp = bio_split(bio,
 870			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
 871
 872		/* Each of these 'make_request' calls will call 'wait_barrier'.
 873		 * If the first succeeds but the second blocks due to the resync
 874		 * thread raising the barrier, we will deadlock because the
 875		 * IO to the underlying device will be queued in generic_make_request
 876		 * and will never complete, so will never reduce nr_pending.
 877		 * So increment nr_waiting here so no new raise_barriers will
 878		 * succeed, and so the second wait_barrier cannot block.
 879		 */
 880		spin_lock_irq(&conf->resync_lock);
 881		conf->nr_waiting++;
 882		spin_unlock_irq(&conf->resync_lock);
 883
 884		if (make_request(mddev, &bp->bio1))
 885			generic_make_request(&bp->bio1);
 886		if (make_request(mddev, &bp->bio2))
 887			generic_make_request(&bp->bio2);
 
 
 
 888
 889		spin_lock_irq(&conf->resync_lock);
 890		conf->nr_waiting--;
 
 
 
 891		wake_up(&conf->wait_barrier);
 892		spin_unlock_irq(&conf->resync_lock);
 
 
 
 893
 894		bio_pair_release(bp);
 895		return 0;
 896	bad_map:
 897		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
 898		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
 899		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
 900
 901		bio_io_error(bio);
 902		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 903	}
 
 
 904
 905	md_write_start(mddev, bio);
 906
 907	/*
 908	 * Register the new request and wait if the reconstruction
 909	 * thread has put up a bar for new requests.
 910	 * Continue immediately if no resync is active currently.
 911	 */
 
 
 912	wait_barrier(conf);
 
 
 
 
 
 
 
 
 
 
 
 
 913
 914	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 915
 916	r10_bio->master_bio = bio;
 917	r10_bio->sectors = bio->bi_size >> 9;
 918
 919	r10_bio->mddev = mddev;
 920	r10_bio->sector = bio->bi_sector;
 921	r10_bio->state = 0;
 922
 923	/* We might need to issue multiple reads to different
 924	 * devices if there are bad blocks around, so we keep
 925	 * track of the number of reads in bio->bi_phys_segments.
 926	 * If this is 0, there is only one r10_bio and no locking
 927	 * will be needed when the request completes.  If it is
 928	 * non-zero, then it is the number of not-completed requests.
 929	 */
 930	bio->bi_phys_segments = 0;
 931	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 932
 933	if (rw == READ) {
 934		/*
 935		 * read balancing logic:
 
 
 
 
 936		 */
 937		int disk;
 938		int slot;
 
 
 
 
 939
 940read_again:
 941		disk = read_balance(conf, r10_bio, &max_sectors);
 942		slot = r10_bio->read_slot;
 943		if (disk < 0) {
 944			raid_end_bio_io(r10_bio);
 945			return 0;
 
 
 
 946		}
 947		mirror = conf->mirrors + disk;
 
 948
 949		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 950		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
 951			    max_sectors);
 952
 953		r10_bio->devs[slot].bio = read_bio;
 954
 955		read_bio->bi_sector = r10_bio->devs[slot].addr +
 956			mirror->rdev->data_offset;
 957		read_bio->bi_bdev = mirror->rdev->bdev;
 958		read_bio->bi_end_io = raid10_end_read_request;
 959		read_bio->bi_rw = READ | do_sync;
 960		read_bio->bi_private = r10_bio;
 961
 962		if (max_sectors < r10_bio->sectors) {
 963			/* Could not read all from this device, so we will
 964			 * need another r10_bio.
 965			 */
 966			sectors_handled = (r10_bio->sectors + max_sectors
 967					   - bio->bi_sector);
 968			r10_bio->sectors = max_sectors;
 969			spin_lock_irq(&conf->device_lock);
 970			if (bio->bi_phys_segments == 0)
 971				bio->bi_phys_segments = 2;
 972			else
 973				bio->bi_phys_segments++;
 974			spin_unlock(&conf->device_lock);
 975			/* Cannot call generic_make_request directly
 976			 * as that will be queued in __generic_make_request
 977			 * and subsequent mempool_alloc might block
 978			 * waiting for it.  so hand bio over to raid10d.
 979			 */
 980			reschedule_retry(r10_bio);
 981
 982			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 983
 984			r10_bio->master_bio = bio;
 985			r10_bio->sectors = ((bio->bi_size >> 9)
 986					    - sectors_handled);
 987			r10_bio->state = 0;
 988			r10_bio->mddev = mddev;
 989			r10_bio->sector = bio->bi_sector + sectors_handled;
 990			goto read_again;
 991		} else
 992			generic_make_request(read_bio);
 993		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	}
 
 995
 996	/*
 997	 * WRITE:
 998	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	/* first select target devices under rcu_lock and
1000	 * inc refcount on their rdev.  Record them by setting
1001	 * bios[x] to bio
1002	 * If there are known/acknowledged bad blocks on any device
1003	 * on which we have seen a write error, we want to avoid
1004	 * writing to those blocks.  This potentially requires several
1005	 * writes to write around the bad blocks.  Each set of writes
1006	 * gets its own r10_bio with a set of bios attached.  The number
1007	 * of r10_bios is recored in bio->bi_phys_segments just as with
1008	 * the read case.
1009	 */
1010	plugged = mddev_check_plugged(mddev);
1011
 
1012	raid10_find_phys(conf, r10_bio);
1013retry_write:
1014	blocked_rdev = NULL;
1015	rcu_read_lock();
1016	max_sectors = r10_bio->sectors;
1017
1018	for (i = 0;  i < conf->copies; i++) {
1019		int d = r10_bio->devs[i].devnum;
1020		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
 
 
 
 
1021		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1022			atomic_inc(&rdev->nr_pending);
1023			blocked_rdev = rdev;
1024			break;
1025		}
 
 
 
 
 
 
 
 
 
 
1026		r10_bio->devs[i].bio = NULL;
1027		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
 
1028			set_bit(R10BIO_Degraded, &r10_bio->state);
1029			continue;
1030		}
1031		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1032			sector_t first_bad;
1033			sector_t dev_sector = r10_bio->devs[i].addr;
1034			int bad_sectors;
1035			int is_bad;
1036
1037			is_bad = is_badblock(rdev, dev_sector,
1038					     max_sectors,
1039					     &first_bad, &bad_sectors);
1040			if (is_bad < 0) {
1041				/* Mustn't write here until the bad block
1042				 * is acknowledged
1043				 */
1044				atomic_inc(&rdev->nr_pending);
1045				set_bit(BlockedBadBlocks, &rdev->flags);
1046				blocked_rdev = rdev;
1047				break;
1048			}
1049			if (is_bad && first_bad <= dev_sector) {
1050				/* Cannot write here at all */
1051				bad_sectors -= (dev_sector - first_bad);
1052				if (bad_sectors < max_sectors)
1053					/* Mustn't write more than bad_sectors
1054					 * to other devices yet
1055					 */
1056					max_sectors = bad_sectors;
1057				/* We don't set R10BIO_Degraded as that
1058				 * only applies if the disk is missing,
1059				 * so it might be re-added, and we want to
1060				 * know to recover this chunk.
1061				 * In this case the device is here, and the
1062				 * fact that this chunk is not in-sync is
1063				 * recorded in the bad block log.
1064				 */
1065				continue;
1066			}
1067			if (is_bad) {
1068				int good_sectors = first_bad - dev_sector;
1069				if (good_sectors < max_sectors)
1070					max_sectors = good_sectors;
1071			}
1072		}
1073		r10_bio->devs[i].bio = bio;
1074		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
1075	}
1076	rcu_read_unlock();
1077
1078	if (unlikely(blocked_rdev)) {
1079		/* Have to wait for this device to get unblocked, then retry */
1080		int j;
1081		int d;
1082
1083		for (j = 0; j < i; j++)
1084			if (r10_bio->devs[j].bio) {
1085				d = r10_bio->devs[j].devnum;
1086				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1087			}
 
 
 
 
 
 
 
 
 
 
 
 
1088		allow_barrier(conf);
 
1089		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1090		wait_barrier(conf);
1091		goto retry_write;
1092	}
1093
1094	if (max_sectors < r10_bio->sectors) {
1095		/* We are splitting this into multiple parts, so
1096		 * we need to prepare for allocating another r10_bio.
1097		 */
1098		r10_bio->sectors = max_sectors;
1099		spin_lock_irq(&conf->device_lock);
1100		if (bio->bi_phys_segments == 0)
1101			bio->bi_phys_segments = 2;
1102		else
1103			bio->bi_phys_segments++;
1104		spin_unlock_irq(&conf->device_lock);
 
 
 
 
1105	}
1106	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1107
1108	atomic_set(&r10_bio->remaining, 1);
1109	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1110
1111	for (i = 0; i < conf->copies; i++) {
1112		struct bio *mbio;
1113		int d = r10_bio->devs[i].devnum;
1114		if (!r10_bio->devs[i].bio)
1115			continue;
 
 
 
1116
1117		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1118		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1119			    max_sectors);
1120		r10_bio->devs[i].bio = mbio;
1121
1122		mbio->bi_sector	= (r10_bio->devs[i].addr+
1123				   conf->mirrors[d].rdev->data_offset);
1124		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1125		mbio->bi_end_io	= raid10_end_write_request;
1126		mbio->bi_rw = WRITE | do_sync | do_fua;
1127		mbio->bi_private = r10_bio;
1128
1129		atomic_inc(&r10_bio->remaining);
1130		spin_lock_irqsave(&conf->device_lock, flags);
1131		bio_list_add(&conf->pending_bio_list, mbio);
1132		spin_unlock_irqrestore(&conf->device_lock, flags);
1133	}
1134
1135	/* Don't remove the bias on 'remaining' (one_write_done) until
1136	 * after checking if we need to go around again.
1137	 */
1138
1139	if (sectors_handled < (bio->bi_size >> 9)) {
1140		one_write_done(r10_bio);
1141		/* We need another r10_bio.  It has already been counted
1142		 * in bio->bi_phys_segments.
1143		 */
1144		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1145
1146		r10_bio->master_bio = bio;
1147		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
 
 
 
1148
1149		r10_bio->mddev = mddev;
1150		r10_bio->sector = bio->bi_sector + sectors_handled;
1151		r10_bio->state = 0;
1152		goto retry_write;
 
 
 
 
 
 
1153	}
1154	one_write_done(r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155
1156	/* In case raid10d snuck in to freeze_array */
1157	wake_up(&conf->wait_barrier);
1158
1159	if (do_sync || !mddev->bitmap || !plugged)
1160		md_wakeup_thread(mddev->thread);
1161	return 0;
1162}
1163
1164static void status(struct seq_file *seq, mddev_t *mddev)
1165{
1166	conf_t *conf = mddev->private;
1167	int i;
1168
1169	if (conf->near_copies < conf->raid_disks)
1170		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1171	if (conf->near_copies > 1)
1172		seq_printf(seq, " %d near-copies", conf->near_copies);
1173	if (conf->far_copies > 1) {
1174		if (conf->far_offset)
1175			seq_printf(seq, " %d offset-copies", conf->far_copies);
1176		else
1177			seq_printf(seq, " %d far-copies", conf->far_copies);
 
 
1178	}
1179	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1180					conf->raid_disks - mddev->degraded);
1181	for (i = 0; i < conf->raid_disks; i++)
1182		seq_printf(seq, "%s",
1183			      conf->mirrors[i].rdev &&
1184			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
 
 
1185	seq_printf(seq, "]");
1186}
1187
1188/* check if there are enough drives for
1189 * every block to appear on atleast one.
1190 * Don't consider the device numbered 'ignore'
1191 * as we might be about to remove it.
1192 */
1193static int enough(conf_t *conf, int ignore)
1194{
1195	int first = 0;
 
 
 
 
 
 
 
 
 
1196
 
1197	do {
1198		int n = conf->copies;
1199		int cnt = 0;
 
1200		while (n--) {
1201			if (conf->mirrors[first].rdev &&
1202			    first != ignore)
 
 
1203				cnt++;
1204			first = (first+1) % conf->raid_disks;
1205		}
1206		if (cnt == 0)
1207			return 0;
 
1208	} while (first != 0);
1209	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210}
1211
1212static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1213{
1214	char b[BDEVNAME_SIZE];
1215	conf_t *conf = mddev->private;
 
1216
1217	/*
1218	 * If it is not operational, then we have already marked it as dead
1219	 * else if it is the last working disks, ignore the error, let the
1220	 * next level up know.
1221	 * else mark the drive as failed
1222	 */
1223	if (test_bit(In_sync, &rdev->flags)
1224	    && !enough(conf, rdev->raid_disk))
 
1225		/*
1226		 * Don't fail the drive, just return an IO error.
1227		 */
1228		return;
1229	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1230		unsigned long flags;
1231		spin_lock_irqsave(&conf->device_lock, flags);
1232		mddev->degraded++;
1233		spin_unlock_irqrestore(&conf->device_lock, flags);
1234		/*
1235		 * if recovery is running, make sure it aborts.
1236		 */
1237		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1238	}
 
 
 
 
 
 
1239	set_bit(Blocked, &rdev->flags);
1240	set_bit(Faulty, &rdev->flags);
1241	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1242	printk(KERN_ALERT
1243	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1244	       "md/raid10:%s: Operation continuing on %d devices.\n",
1245	       mdname(mddev), bdevname(rdev->bdev, b),
1246	       mdname(mddev), conf->raid_disks - mddev->degraded);
 
1247}
1248
1249static void print_conf(conf_t *conf)
1250{
1251	int i;
1252	mirror_info_t *tmp;
1253
1254	printk(KERN_DEBUG "RAID10 conf printout:\n");
1255	if (!conf) {
1256		printk(KERN_DEBUG "(!conf)\n");
1257		return;
1258	}
1259	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1260		conf->raid_disks);
1261
1262	for (i = 0; i < conf->raid_disks; i++) {
 
 
1263		char b[BDEVNAME_SIZE];
1264		tmp = conf->mirrors + i;
1265		if (tmp->rdev)
1266			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1267				i, !test_bit(In_sync, &tmp->rdev->flags),
1268			        !test_bit(Faulty, &tmp->rdev->flags),
1269				bdevname(tmp->rdev->bdev,b));
1270	}
1271}
1272
1273static void close_sync(conf_t *conf)
1274{
1275	wait_barrier(conf);
1276	allow_barrier(conf);
1277
1278	mempool_destroy(conf->r10buf_pool);
1279	conf->r10buf_pool = NULL;
1280}
1281
1282static int raid10_spare_active(mddev_t *mddev)
1283{
1284	int i;
1285	conf_t *conf = mddev->private;
1286	mirror_info_t *tmp;
1287	int count = 0;
1288	unsigned long flags;
1289
1290	/*
1291	 * Find all non-in_sync disks within the RAID10 configuration
1292	 * and mark them in_sync
1293	 */
1294	for (i = 0; i < conf->raid_disks; i++) {
1295		tmp = conf->mirrors + i;
1296		if (tmp->rdev
1297		    && !test_bit(Faulty, &tmp->rdev->flags)
1298		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299			count++;
1300			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1301		}
1302	}
1303	spin_lock_irqsave(&conf->device_lock, flags);
1304	mddev->degraded -= count;
1305	spin_unlock_irqrestore(&conf->device_lock, flags);
1306
1307	print_conf(conf);
1308	return count;
1309}
1310
1311
1312static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1313{
1314	conf_t *conf = mddev->private;
1315	int err = -EEXIST;
1316	int mirror;
1317	int first = 0;
1318	int last = conf->raid_disks - 1;
1319
1320	if (mddev->recovery_cp < MaxSector)
1321		/* only hot-add to in-sync arrays, as recovery is
1322		 * very different from resync
1323		 */
1324		return -EBUSY;
1325	if (!enough(conf, -1))
1326		return -EINVAL;
1327
 
 
 
1328	if (rdev->raid_disk >= 0)
1329		first = last = rdev->raid_disk;
1330
1331	if (rdev->saved_raid_disk >= first &&
 
1332	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1333		mirror = rdev->saved_raid_disk;
1334	else
1335		mirror = first;
1336	for ( ; mirror <= last ; mirror++) {
1337		mirror_info_t *p = &conf->mirrors[mirror];
1338		if (p->recovery_disabled == mddev->recovery_disabled)
1339			continue;
1340		if (!p->rdev)
1341			continue;
1342
1343		disk_stack_limits(mddev->gendisk, rdev->bdev,
1344				  rdev->data_offset << 9);
1345		/* as we don't honour merge_bvec_fn, we must
1346		 * never risk violating it, so limit
1347		 * ->max_segments to one lying with a single
1348		 * page, as a one page request is never in
1349		 * violation.
1350		 */
1351		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1352			blk_queue_max_segments(mddev->queue, 1);
1353			blk_queue_segment_boundary(mddev->queue,
1354						   PAGE_CACHE_SIZE - 1);
1355		}
1356
 
 
 
 
1357		p->head_position = 0;
 
1358		rdev->raid_disk = mirror;
1359		err = 0;
1360		if (rdev->saved_raid_disk != mirror)
1361			conf->fullsync = 1;
1362		rcu_assign_pointer(p->rdev, rdev);
1363		break;
1364	}
 
 
1365
1366	md_integrity_add_rdev(rdev, mddev);
1367	print_conf(conf);
1368	return err;
1369}
1370
1371static int raid10_remove_disk(mddev_t *mddev, int number)
1372{
1373	conf_t *conf = mddev->private;
1374	int err = 0;
1375	mdk_rdev_t *rdev;
1376	mirror_info_t *p = conf->mirrors+ number;
 
1377
1378	print_conf(conf);
1379	rdev = p->rdev;
1380	if (rdev) {
1381		if (test_bit(In_sync, &rdev->flags) ||
1382		    atomic_read(&rdev->nr_pending)) {
1383			err = -EBUSY;
1384			goto abort;
1385		}
1386		/* Only remove faulty devices in recovery
1387		 * is not possible.
1388		 */
1389		if (!test_bit(Faulty, &rdev->flags) &&
1390		    mddev->recovery_disabled != p->recovery_disabled &&
1391		    enough(conf, -1)) {
1392			err = -EBUSY;
1393			goto abort;
1394		}
1395		p->rdev = NULL;
 
 
 
 
 
 
 
 
1396		synchronize_rcu();
1397		if (atomic_read(&rdev->nr_pending)) {
1398			/* lost the race, try later */
1399			err = -EBUSY;
1400			p->rdev = rdev;
1401			goto abort;
1402		}
1403		err = md_integrity_register(mddev);
1404	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1405abort:
1406
1407	print_conf(conf);
1408	return err;
1409}
1410
1411
1412static void end_sync_read(struct bio *bio, int error)
1413{
1414	r10bio_t *r10_bio = bio->bi_private;
1415	conf_t *conf = r10_bio->mddev->private;
1416	int d;
1417
1418	d = find_bio_disk(conf, r10_bio, bio, NULL);
1419
1420	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1421		set_bit(R10BIO_Uptodate, &r10_bio->state);
1422	else
1423		/* The write handler will notice the lack of
1424		 * R10BIO_Uptodate and record any errors etc
1425		 */
1426		atomic_add(r10_bio->sectors,
1427			   &conf->mirrors[d].rdev->corrected_errors);
1428
1429	/* for reconstruct, we always reschedule after a read.
1430	 * for resync, only after all reads
1431	 */
1432	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1433	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1434	    atomic_dec_and_test(&r10_bio->remaining)) {
1435		/* we have read all the blocks,
1436		 * do the comparison in process context in raid10d
1437		 */
1438		reschedule_retry(r10_bio);
1439	}
1440}
1441
1442static void end_sync_request(r10bio_t *r10_bio)
 
 
 
 
 
 
 
 
 
1443{
1444	mddev_t *mddev = r10_bio->mddev;
 
 
 
 
 
 
 
 
1445
1446	while (atomic_dec_and_test(&r10_bio->remaining)) {
1447		if (r10_bio->master_bio == NULL) {
1448			/* the primary of several recovery bios */
1449			sector_t s = r10_bio->sectors;
1450			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1451			    test_bit(R10BIO_WriteError, &r10_bio->state))
1452				reschedule_retry(r10_bio);
1453			else
1454				put_buf(r10_bio);
1455			md_done_sync(mddev, s, 1);
1456			break;
1457		} else {
1458			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1459			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1460			    test_bit(R10BIO_WriteError, &r10_bio->state))
1461				reschedule_retry(r10_bio);
1462			else
1463				put_buf(r10_bio);
1464			r10_bio = r10_bio2;
1465		}
1466	}
1467}
1468
1469static void end_sync_write(struct bio *bio, int error)
1470{
1471	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1472	r10bio_t *r10_bio = bio->bi_private;
1473	mddev_t *mddev = r10_bio->mddev;
1474	conf_t *conf = mddev->private;
1475	int d;
1476	sector_t first_bad;
1477	int bad_sectors;
1478	int slot;
 
 
1479
1480	d = find_bio_disk(conf, r10_bio, bio, &slot);
 
 
 
 
1481
1482	if (!uptodate) {
1483		set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1484		set_bit(R10BIO_WriteError, &r10_bio->state);
1485	} else if (is_badblock(conf->mirrors[d].rdev,
 
 
 
 
 
 
 
1486			     r10_bio->devs[slot].addr,
1487			     r10_bio->sectors,
1488			     &first_bad, &bad_sectors))
1489		set_bit(R10BIO_MadeGood, &r10_bio->state);
1490
1491	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1492
1493	end_sync_request(r10_bio);
1494}
1495
1496/*
1497 * Note: sync and recover and handled very differently for raid10
1498 * This code is for resync.
1499 * For resync, we read through virtual addresses and read all blocks.
1500 * If there is any error, we schedule a write.  The lowest numbered
1501 * drive is authoritative.
1502 * However requests come for physical address, so we need to map.
1503 * For every physical address there are raid_disks/copies virtual addresses,
1504 * which is always are least one, but is not necessarly an integer.
1505 * This means that a physical address can span multiple chunks, so we may
1506 * have to submit multiple io requests for a single sync request.
1507 */
1508/*
1509 * We check if all blocks are in-sync and only write to blocks that
1510 * aren't in sync
1511 */
1512static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1513{
1514	conf_t *conf = mddev->private;
1515	int i, first;
1516	struct bio *tbio, *fbio;
 
 
1517
1518	atomic_set(&r10_bio->remaining, 1);
1519
1520	/* find the first device with a block */
1521	for (i=0; i<conf->copies; i++)
1522		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1523			break;
1524
1525	if (i == conf->copies)
1526		goto done;
1527
1528	first = i;
1529	fbio = r10_bio->devs[i].bio;
 
 
 
1530
 
1531	/* now find blocks with errors */
1532	for (i=0 ; i < conf->copies ; i++) {
1533		int  j, d;
1534		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
 
1535
1536		tbio = r10_bio->devs[i].bio;
1537
1538		if (tbio->bi_end_io != end_sync_read)
1539			continue;
1540		if (i == first)
1541			continue;
1542		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
 
 
 
 
1543			/* We know that the bi_io_vec layout is the same for
1544			 * both 'first' and 'i', so we just compare them.
1545			 * All vec entries are PAGE_SIZE;
1546			 */
1547			for (j = 0; j < vcnt; j++)
1548				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1549					   page_address(tbio->bi_io_vec[j].bv_page),
1550					   PAGE_SIZE))
 
 
 
 
1551					break;
 
 
1552			if (j == vcnt)
1553				continue;
1554			mddev->resync_mismatches += r10_bio->sectors;
1555			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1556				/* Don't fix anything. */
1557				continue;
 
 
 
 
1558		}
1559		/* Ok, we need to write this bio, either to correct an
1560		 * inconsistency or to correct an unreadable block.
1561		 * First we need to fixup bv_offset, bv_len and
1562		 * bi_vecs, as the read request might have corrupted these
1563		 */
1564		tbio->bi_vcnt = vcnt;
1565		tbio->bi_size = r10_bio->sectors << 9;
1566		tbio->bi_idx = 0;
1567		tbio->bi_phys_segments = 0;
1568		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1569		tbio->bi_flags |= 1 << BIO_UPTODATE;
1570		tbio->bi_next = NULL;
1571		tbio->bi_rw = WRITE;
1572		tbio->bi_private = r10_bio;
1573		tbio->bi_sector = r10_bio->devs[i].addr;
1574
1575		for (j=0; j < vcnt ; j++) {
1576			tbio->bi_io_vec[j].bv_offset = 0;
1577			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1578
1579			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1580			       page_address(fbio->bi_io_vec[j].bv_page),
1581			       PAGE_SIZE);
1582		}
1583		tbio->bi_end_io = end_sync_write;
 
 
 
1584
1585		d = r10_bio->devs[i].devnum;
1586		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1587		atomic_inc(&r10_bio->remaining);
1588		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1589
1590		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1591		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592		generic_make_request(tbio);
1593	}
1594
1595done:
1596	if (atomic_dec_and_test(&r10_bio->remaining)) {
1597		md_done_sync(mddev, r10_bio->sectors, 1);
1598		put_buf(r10_bio);
1599	}
1600}
1601
1602/*
1603 * Now for the recovery code.
1604 * Recovery happens across physical sectors.
1605 * We recover all non-is_sync drives by finding the virtual address of
1606 * each, and then choose a working drive that also has that virt address.
1607 * There is a separate r10_bio for each non-in_sync drive.
1608 * Only the first two slots are in use. The first for reading,
1609 * The second for writing.
1610 *
1611 */
1612static void fix_recovery_read_error(r10bio_t *r10_bio)
1613{
1614	/* We got a read error during recovery.
1615	 * We repeat the read in smaller page-sized sections.
1616	 * If a read succeeds, write it to the new device or record
1617	 * a bad block if we cannot.
1618	 * If a read fails, record a bad block on both old and
1619	 * new devices.
1620	 */
1621	mddev_t *mddev = r10_bio->mddev;
1622	conf_t *conf = mddev->private;
1623	struct bio *bio = r10_bio->devs[0].bio;
1624	sector_t sect = 0;
1625	int sectors = r10_bio->sectors;
1626	int idx = 0;
1627	int dr = r10_bio->devs[0].devnum;
1628	int dw = r10_bio->devs[1].devnum;
 
1629
1630	while (sectors) {
1631		int s = sectors;
1632		mdk_rdev_t *rdev;
1633		sector_t addr;
1634		int ok;
1635
1636		if (s > (PAGE_SIZE>>9))
1637			s = PAGE_SIZE >> 9;
1638
1639		rdev = conf->mirrors[dr].rdev;
1640		addr = r10_bio->devs[0].addr + sect,
1641		ok = sync_page_io(rdev,
1642				  addr,
1643				  s << 9,
1644				  bio->bi_io_vec[idx].bv_page,
1645				  READ, false);
1646		if (ok) {
1647			rdev = conf->mirrors[dw].rdev;
1648			addr = r10_bio->devs[1].addr + sect;
1649			ok = sync_page_io(rdev,
1650					  addr,
1651					  s << 9,
1652					  bio->bi_io_vec[idx].bv_page,
1653					  WRITE, false);
1654			if (!ok)
1655				set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
 
1656		}
1657		if (!ok) {
1658			/* We don't worry if we cannot set a bad block -
1659			 * it really is bad so there is no loss in not
1660			 * recording it yet
1661			 */
1662			rdev_set_badblocks(rdev, addr, s, 0);
1663
1664			if (rdev != conf->mirrors[dw].rdev) {
1665				/* need bad block on destination too */
1666				mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1667				addr = r10_bio->devs[1].addr + sect;
1668				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1669				if (!ok) {
1670					/* just abort the recovery */
1671					printk(KERN_NOTICE
1672					       "md/raid10:%s: recovery aborted"
1673					       " due to read error\n",
1674					       mdname(mddev));
1675
1676					conf->mirrors[dw].recovery_disabled
1677						= mddev->recovery_disabled;
1678					set_bit(MD_RECOVERY_INTR,
1679						&mddev->recovery);
1680					break;
1681				}
1682			}
1683		}
1684
1685		sectors -= s;
1686		sect += s;
1687		idx++;
1688	}
1689}
1690
1691static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1692{
1693	conf_t *conf = mddev->private;
1694	int d;
1695	struct bio *wbio;
1696
1697	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1698		fix_recovery_read_error(r10_bio);
1699		end_sync_request(r10_bio);
1700		return;
1701	}
1702
1703	/*
1704	 * share the pages with the first bio
1705	 * and submit the write request
1706	 */
1707	wbio = r10_bio->devs[1].bio;
1708	d = r10_bio->devs[1].devnum;
1709
1710	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1711	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1712	generic_make_request(wbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713}
1714
1715
1716/*
1717 * Used by fix_read_error() to decay the per rdev read_errors.
1718 * We halve the read error count for every hour that has elapsed
1719 * since the last recorded read error.
1720 *
1721 */
1722static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1723{
1724	struct timespec cur_time_mon;
1725	unsigned long hours_since_last;
1726	unsigned int read_errors = atomic_read(&rdev->read_errors);
1727
1728	ktime_get_ts(&cur_time_mon);
1729
1730	if (rdev->last_read_error.tv_sec == 0 &&
1731	    rdev->last_read_error.tv_nsec == 0) {
1732		/* first time we've seen a read error */
1733		rdev->last_read_error = cur_time_mon;
1734		return;
1735	}
1736
1737	hours_since_last = (cur_time_mon.tv_sec -
1738			    rdev->last_read_error.tv_sec) / 3600;
1739
1740	rdev->last_read_error = cur_time_mon;
1741
1742	/*
1743	 * if hours_since_last is > the number of bits in read_errors
1744	 * just set read errors to 0. We do this to avoid
1745	 * overflowing the shift of read_errors by hours_since_last.
1746	 */
1747	if (hours_since_last >= 8 * sizeof(read_errors))
1748		atomic_set(&rdev->read_errors, 0);
1749	else
1750		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1751}
1752
1753static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1754			    int sectors, struct page *page, int rw)
1755{
1756	sector_t first_bad;
1757	int bad_sectors;
1758
1759	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1760	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1761		return -1;
1762	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1763		/* success */
1764		return 1;
1765	if (rw == WRITE)
1766		set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
1767	/* need to record an error - either for the block or the device */
1768	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1769		md_error(rdev->mddev, rdev);
1770	return 0;
1771}
1772
1773/*
1774 * This is a kernel thread which:
1775 *
1776 *	1.	Retries failed read operations on working mirrors.
1777 *	2.	Updates the raid superblock when problems encounter.
1778 *	3.	Performs writes following reads for array synchronising.
1779 */
1780
1781static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1782{
1783	int sect = 0; /* Offset from r10_bio->sector */
1784	int sectors = r10_bio->sectors;
1785	mdk_rdev_t*rdev;
1786	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1787	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1788
1789	/* still own a reference to this rdev, so it cannot
1790	 * have been cleared recently.
1791	 */
1792	rdev = conf->mirrors[d].rdev;
1793
1794	if (test_bit(Faulty, &rdev->flags))
1795		/* drive has already been failed, just ignore any
1796		   more fix_read_error() attempts */
1797		return;
1798
1799	check_decay_read_errors(mddev, rdev);
1800	atomic_inc(&rdev->read_errors);
1801	if (atomic_read(&rdev->read_errors) > max_read_errors) {
1802		char b[BDEVNAME_SIZE];
1803		bdevname(rdev->bdev, b);
1804
1805		printk(KERN_NOTICE
1806		       "md/raid10:%s: %s: Raid device exceeded "
1807		       "read_error threshold [cur %d:max %d]\n",
1808		       mdname(mddev), b,
1809		       atomic_read(&rdev->read_errors), max_read_errors);
1810		printk(KERN_NOTICE
1811		       "md/raid10:%s: %s: Failing raid device\n",
1812		       mdname(mddev), b);
1813		md_error(mddev, conf->mirrors[d].rdev);
1814		return;
1815	}
1816
1817	while(sectors) {
1818		int s = sectors;
1819		int sl = r10_bio->read_slot;
1820		int success = 0;
1821		int start;
1822
1823		if (s > (PAGE_SIZE>>9))
1824			s = PAGE_SIZE >> 9;
1825
1826		rcu_read_lock();
1827		do {
1828			sector_t first_bad;
1829			int bad_sectors;
1830
1831			d = r10_bio->devs[sl].devnum;
1832			rdev = rcu_dereference(conf->mirrors[d].rdev);
1833			if (rdev &&
1834			    test_bit(In_sync, &rdev->flags) &&
 
1835			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1836					&first_bad, &bad_sectors) == 0) {
1837				atomic_inc(&rdev->nr_pending);
1838				rcu_read_unlock();
1839				success = sync_page_io(rdev,
1840						       r10_bio->devs[sl].addr +
1841						       sect,
1842						       s<<9,
1843						       conf->tmppage, READ, false);
 
1844				rdev_dec_pending(rdev, mddev);
1845				rcu_read_lock();
1846				if (success)
1847					break;
1848			}
1849			sl++;
1850			if (sl == conf->copies)
1851				sl = 0;
1852		} while (!success && sl != r10_bio->read_slot);
1853		rcu_read_unlock();
1854
1855		if (!success) {
1856			/* Cannot read from anywhere, just mark the block
1857			 * as bad on the first device to discourage future
1858			 * reads.
1859			 */
1860			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1861			rdev = conf->mirrors[dn].rdev;
1862
1863			if (!rdev_set_badblocks(
1864				    rdev,
1865				    r10_bio->devs[r10_bio->read_slot].addr
1866				    + sect,
1867				    s, 0))
1868				md_error(mddev, rdev);
 
 
 
1869			break;
1870		}
1871
1872		start = sl;
1873		/* write it back and re-read */
1874		rcu_read_lock();
1875		while (sl != r10_bio->read_slot) {
1876			char b[BDEVNAME_SIZE];
1877
1878			if (sl==0)
1879				sl = conf->copies;
1880			sl--;
1881			d = r10_bio->devs[sl].devnum;
1882			rdev = rcu_dereference(conf->mirrors[d].rdev);
1883			if (!rdev ||
 
1884			    !test_bit(In_sync, &rdev->flags))
1885				continue;
1886
1887			atomic_inc(&rdev->nr_pending);
1888			rcu_read_unlock();
1889			if (r10_sync_page_io(rdev,
1890					     r10_bio->devs[sl].addr +
1891					     sect,
1892					     s<<9, conf->tmppage, WRITE)
1893			    == 0) {
1894				/* Well, this device is dead */
1895				printk(KERN_NOTICE
1896				       "md/raid10:%s: read correction "
1897				       "write failed"
1898				       " (%d sectors at %llu on %s)\n",
1899				       mdname(mddev), s,
1900				       (unsigned long long)(
1901					       sect + rdev->data_offset),
1902				       bdevname(rdev->bdev, b));
1903				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1904				       "drive\n",
1905				       mdname(mddev),
1906				       bdevname(rdev->bdev, b));
1907			}
1908			rdev_dec_pending(rdev, mddev);
1909			rcu_read_lock();
1910		}
1911		sl = start;
1912		while (sl != r10_bio->read_slot) {
1913			char b[BDEVNAME_SIZE];
1914
1915			if (sl==0)
1916				sl = conf->copies;
1917			sl--;
1918			d = r10_bio->devs[sl].devnum;
1919			rdev = rcu_dereference(conf->mirrors[d].rdev);
1920			if (!rdev ||
 
1921			    !test_bit(In_sync, &rdev->flags))
1922				continue;
1923
1924			atomic_inc(&rdev->nr_pending);
1925			rcu_read_unlock();
1926			switch (r10_sync_page_io(rdev,
1927					     r10_bio->devs[sl].addr +
1928					     sect,
1929					     s<<9, conf->tmppage,
1930						 READ)) {
1931			case 0:
1932				/* Well, this device is dead */
1933				printk(KERN_NOTICE
1934				       "md/raid10:%s: unable to read back "
1935				       "corrected sectors"
1936				       " (%d sectors at %llu on %s)\n",
1937				       mdname(mddev), s,
1938				       (unsigned long long)(
1939					       sect + rdev->data_offset),
 
1940				       bdevname(rdev->bdev, b));
1941				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1942				       "drive\n",
1943				       mdname(mddev),
1944				       bdevname(rdev->bdev, b));
1945				break;
1946			case 1:
1947				printk(KERN_INFO
1948				       "md/raid10:%s: read error corrected"
1949				       " (%d sectors at %llu on %s)\n",
1950				       mdname(mddev), s,
1951				       (unsigned long long)(
1952					       sect + rdev->data_offset),
 
1953				       bdevname(rdev->bdev, b));
1954				atomic_add(s, &rdev->corrected_errors);
1955			}
1956
1957			rdev_dec_pending(rdev, mddev);
1958			rcu_read_lock();
1959		}
1960		rcu_read_unlock();
1961
1962		sectors -= s;
1963		sect += s;
1964	}
1965}
1966
1967static void bi_complete(struct bio *bio, int error)
1968{
1969	complete((struct completion *)bio->bi_private);
1970}
1971
1972static int submit_bio_wait(int rw, struct bio *bio)
1973{
1974	struct completion event;
1975	rw |= REQ_SYNC;
1976
1977	init_completion(&event);
1978	bio->bi_private = &event;
1979	bio->bi_end_io = bi_complete;
1980	submit_bio(rw, bio);
1981	wait_for_completion(&event);
1982
1983	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1984}
1985
1986static int narrow_write_error(r10bio_t *r10_bio, int i)
1987{
1988	struct bio *bio = r10_bio->master_bio;
1989	mddev_t *mddev = r10_bio->mddev;
1990	conf_t *conf = mddev->private;
1991	mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1992	/* bio has the data to be written to slot 'i' where
1993	 * we just recently had a write error.
1994	 * We repeatedly clone the bio and trim down to one block,
1995	 * then try the write.  Where the write fails we record
1996	 * a bad block.
1997	 * It is conceivable that the bio doesn't exactly align with
1998	 * blocks.  We must handle this.
1999	 *
2000	 * We currently own a reference to the rdev.
2001	 */
2002
2003	int block_sectors;
2004	sector_t sector;
2005	int sectors;
2006	int sect_to_write = r10_bio->sectors;
2007	int ok = 1;
2008
2009	if (rdev->badblocks.shift < 0)
2010		return 0;
2011
2012	block_sectors = 1 << rdev->badblocks.shift;
 
2013	sector = r10_bio->sector;
2014	sectors = ((r10_bio->sector + block_sectors)
2015		   & ~(sector_t)(block_sectors - 1))
2016		- sector;
2017
2018	while (sect_to_write) {
2019		struct bio *wbio;
 
2020		if (sectors > sect_to_write)
2021			sectors = sect_to_write;
2022		/* Write at 'sector' for 'sectors' */
2023		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2024		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2025		wbio->bi_sector = (r10_bio->devs[i].addr+
2026				   rdev->data_offset+
2027				   (sector - r10_bio->sector));
2028		wbio->bi_bdev = rdev->bdev;
2029		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
2030			/* Failure! */
2031			ok = rdev_set_badblocks(rdev, sector,
2032						sectors, 0)
2033				&& ok;
2034
2035		bio_put(wbio);
2036		sect_to_write -= sectors;
2037		sector += sectors;
2038		sectors = block_sectors;
2039	}
2040	return ok;
2041}
2042
2043static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2044{
2045	int slot = r10_bio->read_slot;
2046	int mirror = r10_bio->devs[slot].devnum;
2047	struct bio *bio;
2048	conf_t *conf = mddev->private;
2049	mdk_rdev_t *rdev;
2050	char b[BDEVNAME_SIZE];
2051	unsigned long do_sync;
2052	int max_sectors;
2053
2054	/* we got a read error. Maybe the drive is bad.  Maybe just
2055	 * the block and we can fix it.
2056	 * We freeze all other IO, and try reading the block from
2057	 * other devices.  When we find one, we re-write
2058	 * and check it that fixes the read error.
2059	 * This is all done synchronously while the array is
2060	 * frozen.
2061	 */
2062	if (mddev->ro == 0) {
2063		freeze_array(conf);
2064		fix_read_error(conf, mddev, r10_bio);
2065		unfreeze_array(conf);
2066	}
2067	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2068
2069	bio = r10_bio->devs[slot].bio;
2070	bdevname(bio->bi_bdev, b);
2071	r10_bio->devs[slot].bio =
2072		mddev->ro ? IO_BLOCKED : NULL;
2073read_more:
2074	mirror = read_balance(conf, r10_bio, &max_sectors);
2075	if (mirror == -1) {
2076		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2077		       " read error for block %llu\n",
2078		       mdname(mddev), b,
2079		       (unsigned long long)r10_bio->sector);
2080		raid_end_bio_io(r10_bio);
2081		bio_put(bio);
2082		return;
2083	}
2084
2085	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2086	if (bio)
2087		bio_put(bio);
2088	slot = r10_bio->read_slot;
2089	rdev = conf->mirrors[mirror].rdev;
2090	printk_ratelimited(
2091		KERN_ERR
2092		"md/raid10:%s: %s: redirecting"
2093		"sector %llu to another mirror\n",
2094		mdname(mddev),
2095		bdevname(rdev->bdev, b),
2096		(unsigned long long)r10_bio->sector);
2097	bio = bio_clone_mddev(r10_bio->master_bio,
2098			      GFP_NOIO, mddev);
2099	md_trim_bio(bio,
2100		    r10_bio->sector - bio->bi_sector,
2101		    max_sectors);
2102	r10_bio->devs[slot].bio = bio;
2103	bio->bi_sector = r10_bio->devs[slot].addr
2104		+ rdev->data_offset;
2105	bio->bi_bdev = rdev->bdev;
2106	bio->bi_rw = READ | do_sync;
2107	bio->bi_private = r10_bio;
2108	bio->bi_end_io = raid10_end_read_request;
2109	if (max_sectors < r10_bio->sectors) {
2110		/* Drat - have to split this up more */
2111		struct bio *mbio = r10_bio->master_bio;
2112		int sectors_handled =
2113			r10_bio->sector + max_sectors
2114			- mbio->bi_sector;
2115		r10_bio->sectors = max_sectors;
2116		spin_lock_irq(&conf->device_lock);
2117		if (mbio->bi_phys_segments == 0)
2118			mbio->bi_phys_segments = 2;
2119		else
2120			mbio->bi_phys_segments++;
2121		spin_unlock_irq(&conf->device_lock);
2122		generic_make_request(bio);
2123		bio = NULL;
2124
2125		r10_bio = mempool_alloc(conf->r10bio_pool,
2126					GFP_NOIO);
2127		r10_bio->master_bio = mbio;
2128		r10_bio->sectors = (mbio->bi_size >> 9)
2129			- sectors_handled;
2130		r10_bio->state = 0;
2131		set_bit(R10BIO_ReadError,
2132			&r10_bio->state);
2133		r10_bio->mddev = mddev;
2134		r10_bio->sector = mbio->bi_sector
2135			+ sectors_handled;
2136
2137		goto read_more;
2138	} else
2139		generic_make_request(bio);
 
 
 
 
 
2140}
2141
2142static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2143{
2144	/* Some sort of write request has finished and it
2145	 * succeeded in writing where we thought there was a
2146	 * bad block.  So forget the bad block.
2147	 * Or possibly if failed and we need to record
2148	 * a bad block.
2149	 */
2150	int m;
2151	mdk_rdev_t *rdev;
2152
2153	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2154	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2155		for (m = 0; m < conf->copies; m++) {
2156			int dev = r10_bio->devs[m].devnum;
2157			rdev = conf->mirrors[dev].rdev;
2158			if (r10_bio->devs[m].bio == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159				continue;
2160			if (test_bit(BIO_UPTODATE,
2161				     &r10_bio->devs[m].bio->bi_flags)) {
2162				rdev_clear_badblocks(
2163					rdev,
2164					r10_bio->devs[m].addr,
2165					r10_bio->sectors);
2166			} else {
2167				if (!rdev_set_badblocks(
2168					    rdev,
2169					    r10_bio->devs[m].addr,
2170					    r10_bio->sectors, 0))
2171					md_error(conf->mddev, rdev);
2172			}
2173		}
2174		put_buf(r10_bio);
2175	} else {
 
2176		for (m = 0; m < conf->copies; m++) {
2177			int dev = r10_bio->devs[m].devnum;
2178			struct bio *bio = r10_bio->devs[m].bio;
2179			rdev = conf->mirrors[dev].rdev;
2180			if (bio == IO_MADE_GOOD) {
2181				rdev_clear_badblocks(
2182					rdev,
2183					r10_bio->devs[m].addr,
2184					r10_bio->sectors);
2185				rdev_dec_pending(rdev, conf->mddev);
2186			} else if (bio != NULL &&
2187				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2188				if (!narrow_write_error(r10_bio, m)) {
2189					md_error(conf->mddev, rdev);
2190					set_bit(R10BIO_Degraded,
2191						&r10_bio->state);
2192				}
2193				rdev_dec_pending(rdev, conf->mddev);
2194			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195		}
2196		if (test_bit(R10BIO_WriteError,
2197			     &r10_bio->state))
2198			close_write(r10_bio);
2199		raid_end_bio_io(r10_bio);
2200	}
2201}
2202
2203static void raid10d(mddev_t *mddev)
2204{
2205	r10bio_t *r10_bio;
 
2206	unsigned long flags;
2207	conf_t *conf = mddev->private;
2208	struct list_head *head = &conf->retry_list;
2209	struct blk_plug plug;
2210
2211	md_check_recovery(mddev);
2212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213	blk_start_plug(&plug);
2214	for (;;) {
2215
2216		flush_pending_writes(conf);
2217
2218		spin_lock_irqsave(&conf->device_lock, flags);
2219		if (list_empty(head)) {
2220			spin_unlock_irqrestore(&conf->device_lock, flags);
2221			break;
2222		}
2223		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2224		list_del(head->prev);
2225		conf->nr_queued--;
2226		spin_unlock_irqrestore(&conf->device_lock, flags);
2227
2228		mddev = r10_bio->mddev;
2229		conf = mddev->private;
2230		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2231		    test_bit(R10BIO_WriteError, &r10_bio->state))
2232			handle_write_completed(conf, r10_bio);
 
 
2233		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2234			sync_request_write(mddev, r10_bio);
2235		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2236			recovery_request_write(mddev, r10_bio);
2237		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2238			handle_read_error(mddev, r10_bio);
2239		else {
2240			/* just a partial read to be scheduled from a
2241			 * separate context
2242			 */
2243			int slot = r10_bio->read_slot;
2244			generic_make_request(r10_bio->devs[slot].bio);
2245		}
2246
2247		cond_resched();
2248		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2249			md_check_recovery(mddev);
2250	}
2251	blk_finish_plug(&plug);
2252}
2253
2254
2255static int init_resync(conf_t *conf)
2256{
2257	int buffs;
2258
2259	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2260	BUG_ON(conf->r10buf_pool);
2261	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2262	if (!conf->r10buf_pool)
2263		return -ENOMEM;
 
 
 
 
 
2264	conf->next_resync = 0;
2265	return 0;
2266}
2267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268/*
2269 * perform a "sync" on one "block"
2270 *
2271 * We need to make sure that no normal I/O request - particularly write
2272 * requests - conflict with active sync requests.
2273 *
2274 * This is achieved by tracking pending requests and a 'barrier' concept
2275 * that can be installed to exclude normal IO requests.
2276 *
2277 * Resync and recovery are handled very differently.
2278 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2279 *
2280 * For resync, we iterate over virtual addresses, read all copies,
2281 * and update if there are differences.  If only one copy is live,
2282 * skip it.
2283 * For recovery, we iterate over physical addresses, read a good
2284 * value for each non-in_sync drive, and over-write.
2285 *
2286 * So, for recovery we may have several outstanding complex requests for a
2287 * given address, one for each out-of-sync device.  We model this by allocating
2288 * a number of r10_bio structures, one for each out-of-sync device.
2289 * As we setup these structures, we collect all bio's together into a list
2290 * which we then process collectively to add pages, and then process again
2291 * to pass to generic_make_request.
2292 *
2293 * The r10_bio structures are linked using a borrowed master_bio pointer.
2294 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2295 * has its remaining count decremented to 0, the whole complex operation
2296 * is complete.
2297 *
2298 */
2299
2300static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2301			     int *skipped, int go_faster)
2302{
2303	conf_t *conf = mddev->private;
2304	r10bio_t *r10_bio;
2305	struct bio *biolist = NULL, *bio;
2306	sector_t max_sector, nr_sectors;
2307	int i;
2308	int max_sync;
2309	sector_t sync_blocks;
2310	sector_t sectors_skipped = 0;
2311	int chunks_skipped = 0;
 
 
2312
2313	if (!conf->r10buf_pool)
2314		if (init_resync(conf))
2315			return 0;
2316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317 skipped:
2318	max_sector = mddev->dev_sectors;
2319	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 
2320		max_sector = mddev->resync_max_sectors;
2321	if (sector_nr >= max_sector) {
 
 
 
2322		/* If we aborted, we need to abort the
2323		 * sync on the 'current' bitmap chucks (there can
2324		 * be several when recovering multiple devices).
2325		 * as we may have started syncing it but not finished.
2326		 * We can find the current address in
2327		 * mddev->curr_resync, but for recovery,
2328		 * we need to convert that to several
2329		 * virtual addresses.
2330		 */
 
 
 
 
 
 
2331		if (mddev->curr_resync < max_sector) { /* aborted */
2332			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2333				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2334						&sync_blocks, 1);
2335			else for (i=0; i<conf->raid_disks; i++) {
2336				sector_t sect =
2337					raid10_find_virt(conf, mddev->curr_resync, i);
2338				bitmap_end_sync(mddev->bitmap, sect,
2339						&sync_blocks, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2340			}
2341		} else /* completed sync */
2342			conf->fullsync = 0;
2343
2344		bitmap_close_sync(mddev->bitmap);
2345		close_sync(conf);
2346		*skipped = 1;
2347		return sectors_skipped;
2348	}
2349	if (chunks_skipped >= conf->raid_disks) {
 
 
 
 
2350		/* if there has been nothing to do on any drive,
2351		 * then there is nothing to do at all..
2352		 */
2353		*skipped = 1;
2354		return (max_sector - sector_nr) + sectors_skipped;
2355	}
2356
2357	if (max_sector > mddev->resync_max)
2358		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2359
2360	/* make sure whole request will fit in a chunk - if chunks
2361	 * are meaningful
2362	 */
2363	if (conf->near_copies < conf->raid_disks &&
2364	    max_sector > (sector_nr | conf->chunk_mask))
2365		max_sector = (sector_nr | conf->chunk_mask) + 1;
 
2366	/*
2367	 * If there is non-resync activity waiting for us then
2368	 * put in a delay to throttle resync.
2369	 */
2370	if (!go_faster && conf->nr_waiting)
2371		msleep_interruptible(1000);
2372
2373	/* Again, very different code for resync and recovery.
2374	 * Both must result in an r10bio with a list of bios that
2375	 * have bi_end_io, bi_sector, bi_bdev set,
2376	 * and bi_private set to the r10bio.
2377	 * For recovery, we may actually create several r10bios
2378	 * with 2 bios in each, that correspond to the bios in the main one.
2379	 * In this case, the subordinate r10bios link back through a
2380	 * borrowed master_bio pointer, and the counter in the master
2381	 * includes a ref from each subordinate.
2382	 */
2383	/* First, we decide what to do and set ->bi_end_io
2384	 * To end_sync_read if we want to read, and
2385	 * end_sync_write if we will want to write.
2386	 */
2387
2388	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2389	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2390		/* recovery... the complicated one */
2391		int j;
2392		r10_bio = NULL;
2393
2394		for (i=0 ; i<conf->raid_disks; i++) {
2395			int still_degraded;
2396			r10bio_t *rb2;
2397			sector_t sect;
2398			int must_sync;
2399			int any_working;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400
2401			if (conf->mirrors[i].rdev == NULL ||
2402			    test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
2403				continue;
 
2404
2405			still_degraded = 0;
2406			/* want to reconstruct this device */
2407			rb2 = r10_bio;
2408			sect = raid10_find_virt(conf, sector_nr, i);
2409			/* Unless we are doing a full sync, we only need
2410			 * to recover the block if it is set in the bitmap
 
 
 
 
 
 
 
 
 
 
2411			 */
2412			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2413						      &sync_blocks, 1);
2414			if (sync_blocks < max_sync)
2415				max_sync = sync_blocks;
2416			if (!must_sync &&
 
2417			    !conf->fullsync) {
2418				/* yep, skip the sync_blocks here, but don't assume
2419				 * that there will never be anything to do here
2420				 */
2421				chunks_skipped = -1;
 
2422				continue;
2423			}
 
 
 
 
2424
2425			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2426			raise_barrier(conf, rb2 != NULL);
2427			atomic_set(&r10_bio->remaining, 0);
2428
2429			r10_bio->master_bio = (struct bio*)rb2;
2430			if (rb2)
2431				atomic_inc(&rb2->remaining);
2432			r10_bio->mddev = mddev;
2433			set_bit(R10BIO_IsRecover, &r10_bio->state);
2434			r10_bio->sector = sect;
2435
2436			raid10_find_phys(conf, r10_bio);
2437
2438			/* Need to check if the array will still be
2439			 * degraded
2440			 */
2441			for (j=0; j<conf->raid_disks; j++)
2442				if (conf->mirrors[j].rdev == NULL ||
2443				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
 
 
2444					still_degraded = 1;
2445					break;
2446				}
 
2447
2448			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2449						      &sync_blocks, still_degraded);
2450
2451			any_working = 0;
2452			for (j=0; j<conf->copies;j++) {
2453				int k;
2454				int d = r10_bio->devs[j].devnum;
2455				sector_t from_addr, to_addr;
2456				mdk_rdev_t *rdev;
 
2457				sector_t sector, first_bad;
2458				int bad_sectors;
2459				if (!conf->mirrors[d].rdev ||
2460				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2461					continue;
2462				/* This is where we read from */
2463				any_working = 1;
2464				rdev = conf->mirrors[d].rdev;
2465				sector = r10_bio->devs[j].addr;
2466
2467				if (is_badblock(rdev, sector, max_sync,
2468						&first_bad, &bad_sectors)) {
2469					if (first_bad > sector)
2470						max_sync = first_bad - sector;
2471					else {
2472						bad_sectors -= (sector
2473								- first_bad);
2474						if (max_sync > bad_sectors)
2475							max_sync = bad_sectors;
2476						continue;
2477					}
2478				}
2479				bio = r10_bio->devs[0].bio;
2480				bio->bi_next = biolist;
2481				biolist = bio;
2482				bio->bi_private = r10_bio;
2483				bio->bi_end_io = end_sync_read;
2484				bio->bi_rw = READ;
 
 
2485				from_addr = r10_bio->devs[j].addr;
2486				bio->bi_sector = from_addr +
2487					conf->mirrors[d].rdev->data_offset;
2488				bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2489				atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2490				atomic_inc(&r10_bio->remaining);
2491				/* and we write to 'i' */
2492
2493				for (k=0; k<conf->copies; k++)
2494					if (r10_bio->devs[k].devnum == i)
2495						break;
2496				BUG_ON(k == conf->copies);
2497				bio = r10_bio->devs[1].bio;
2498				bio->bi_next = biolist;
2499				biolist = bio;
2500				bio->bi_private = r10_bio;
2501				bio->bi_end_io = end_sync_write;
2502				bio->bi_rw = WRITE;
2503				to_addr = r10_bio->devs[k].addr;
2504				bio->bi_sector = to_addr +
2505					conf->mirrors[i].rdev->data_offset;
2506				bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2507
2508				r10_bio->devs[0].devnum = d;
2509				r10_bio->devs[0].addr = from_addr;
2510				r10_bio->devs[1].devnum = i;
2511				r10_bio->devs[1].addr = to_addr;
2512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513				break;
2514			}
 
2515			if (j == conf->copies) {
2516				/* Cannot recover, so abort the recovery or
2517				 * record a bad block */
2518				put_buf(r10_bio);
2519				if (rb2)
2520					atomic_dec(&rb2->remaining);
2521				r10_bio = rb2;
2522				if (any_working) {
2523					/* problem is that there are bad blocks
2524					 * on other device(s)
2525					 */
2526					int k;
2527					for (k = 0; k < conf->copies; k++)
2528						if (r10_bio->devs[k].devnum == i)
2529							break;
2530					if (!rdev_set_badblocks(
2531						    conf->mirrors[i].rdev,
 
 
 
 
 
 
 
 
2532						    r10_bio->devs[k].addr,
2533						    max_sync, 0))
2534						any_working = 0;
2535				}
2536				if (!any_working)  {
2537					if (!test_and_set_bit(MD_RECOVERY_INTR,
2538							      &mddev->recovery))
2539						printk(KERN_INFO "md/raid10:%s: insufficient "
2540						       "working devices for recovery.\n",
2541						       mdname(mddev));
2542					conf->mirrors[i].recovery_disabled
2543						= mddev->recovery_disabled;
2544				}
 
 
 
 
 
 
 
2545				break;
2546			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547		}
2548		if (biolist == NULL) {
2549			while (r10_bio) {
2550				r10bio_t *rb2 = r10_bio;
2551				r10_bio = (r10bio_t*) rb2->master_bio;
2552				rb2->master_bio = NULL;
2553				put_buf(rb2);
2554			}
2555			goto giveup;
2556		}
2557	} else {
2558		/* resync. Schedule a read for every block at this virt offset */
2559		int count = 0;
2560
2561		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
 
 
 
 
 
 
 
 
2562
2563		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2564				       &sync_blocks, mddev->degraded) &&
2565		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2566						 &mddev->recovery)) {
2567			/* We can skip this block */
2568			*skipped = 1;
2569			return sync_blocks + sectors_skipped;
2570		}
2571		if (sync_blocks < max_sync)
2572			max_sync = sync_blocks;
2573		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2574
2575		r10_bio->mddev = mddev;
2576		atomic_set(&r10_bio->remaining, 0);
2577		raise_barrier(conf, 0);
2578		conf->next_resync = sector_nr;
2579
2580		r10_bio->master_bio = NULL;
2581		r10_bio->sector = sector_nr;
2582		set_bit(R10BIO_IsSync, &r10_bio->state);
2583		raid10_find_phys(conf, r10_bio);
2584		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2585
2586		for (i=0; i<conf->copies; i++) {
2587			int d = r10_bio->devs[i].devnum;
2588			sector_t first_bad, sector;
2589			int bad_sectors;
 
 
 
 
2590
2591			bio = r10_bio->devs[i].bio;
2592			bio->bi_end_io = NULL;
2593			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2594			if (conf->mirrors[d].rdev == NULL ||
2595			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
 
2596				continue;
 
2597			sector = r10_bio->devs[i].addr;
2598			if (is_badblock(conf->mirrors[d].rdev,
2599					sector, max_sync,
2600					&first_bad, &bad_sectors)) {
2601				if (first_bad > sector)
2602					max_sync = first_bad - sector;
2603				else {
2604					bad_sectors -= (sector - first_bad);
2605					if (max_sync > bad_sectors)
2606						max_sync = max_sync;
 
2607					continue;
2608				}
2609			}
2610			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2611			atomic_inc(&r10_bio->remaining);
2612			bio->bi_next = biolist;
2613			biolist = bio;
2614			bio->bi_private = r10_bio;
2615			bio->bi_end_io = end_sync_read;
2616			bio->bi_rw = READ;
2617			bio->bi_sector = sector +
2618				conf->mirrors[d].rdev->data_offset;
2619			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620			count++;
 
2621		}
2622
2623		if (count < 2) {
2624			for (i=0; i<conf->copies; i++) {
2625				int d = r10_bio->devs[i].devnum;
2626				if (r10_bio->devs[i].bio->bi_end_io)
2627					rdev_dec_pending(conf->mirrors[d].rdev,
2628							 mddev);
 
 
 
 
 
2629			}
2630			put_buf(r10_bio);
2631			biolist = NULL;
2632			goto giveup;
2633		}
2634	}
2635
2636	for (bio = biolist; bio ; bio=bio->bi_next) {
2637
2638		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2639		if (bio->bi_end_io)
2640			bio->bi_flags |= 1 << BIO_UPTODATE;
2641		bio->bi_vcnt = 0;
2642		bio->bi_idx = 0;
2643		bio->bi_phys_segments = 0;
2644		bio->bi_size = 0;
2645	}
2646
2647	nr_sectors = 0;
2648	if (sector_nr + max_sync < max_sector)
2649		max_sector = sector_nr + max_sync;
2650	do {
2651		struct page *page;
2652		int len = PAGE_SIZE;
2653		if (sector_nr + (len>>9) > max_sector)
2654			len = (max_sector - sector_nr) << 9;
2655		if (len == 0)
2656			break;
2657		for (bio= biolist ; bio ; bio=bio->bi_next) {
2658			struct bio *bio2;
2659			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2660			if (bio_add_page(bio, page, len, 0))
2661				continue;
2662
2663			/* stop here */
2664			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2665			for (bio2 = biolist;
2666			     bio2 && bio2 != bio;
2667			     bio2 = bio2->bi_next) {
2668				/* remove last page from this bio */
2669				bio2->bi_vcnt--;
2670				bio2->bi_size -= len;
2671				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2672			}
2673			goto bio_full;
2674		}
2675		nr_sectors += len>>9;
2676		sector_nr += len>>9;
2677	} while (biolist->bi_vcnt < RESYNC_PAGES);
2678 bio_full:
2679	r10_bio->sectors = nr_sectors;
2680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681	while (biolist) {
2682		bio = biolist;
2683		biolist = biolist->bi_next;
2684
2685		bio->bi_next = NULL;
2686		r10_bio = bio->bi_private;
2687		r10_bio->sectors = nr_sectors;
2688
2689		if (bio->bi_end_io == end_sync_read) {
2690			md_sync_acct(bio->bi_bdev, nr_sectors);
 
2691			generic_make_request(bio);
2692		}
2693	}
2694
2695	if (sectors_skipped)
2696		/* pretend they weren't skipped, it makes
2697		 * no important difference in this case
2698		 */
2699		md_done_sync(mddev, sectors_skipped, 1);
2700
2701	return sectors_skipped + nr_sectors;
2702 giveup:
2703	/* There is nowhere to write, so all non-sync
2704	 * drives must be failed or in resync, all drives
2705	 * have a bad block, so try the next chunk...
2706	 */
2707	if (sector_nr + max_sync < max_sector)
2708		max_sector = sector_nr + max_sync;
2709
2710	sectors_skipped += (max_sector - sector_nr);
2711	chunks_skipped ++;
2712	sector_nr = max_sector;
2713	goto skipped;
2714}
2715
2716static sector_t
2717raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2718{
2719	sector_t size;
2720	conf_t *conf = mddev->private;
2721
2722	if (!raid_disks)
2723		raid_disks = conf->raid_disks;
 
2724	if (!sectors)
2725		sectors = conf->dev_sectors;
2726
2727	size = sectors >> conf->chunk_shift;
2728	sector_div(size, conf->far_copies);
2729	size = size * raid_disks;
2730	sector_div(size, conf->near_copies);
2731
2732	return size << conf->chunk_shift;
2733}
2734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735
2736static conf_t *setup_conf(mddev_t *mddev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737{
2738	conf_t *conf = NULL;
2739	int nc, fc, fo;
2740	sector_t stride, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741	int err = -EINVAL;
 
 
 
 
2742
2743	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2744	    !is_power_of_2(mddev->new_chunk_sectors)) {
2745		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2746		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2747		       mdname(mddev), PAGE_SIZE);
2748		goto out;
2749	}
2750
2751	nc = mddev->new_layout & 255;
2752	fc = (mddev->new_layout >> 8) & 255;
2753	fo = mddev->new_layout & (1<<16);
2754
2755	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2756	    (mddev->new_layout >> 17)) {
2757		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2758		       mdname(mddev), mddev->new_layout);
2759		goto out;
2760	}
2761
2762	err = -ENOMEM;
2763	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2764	if (!conf)
2765		goto out;
2766
2767	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
 
 
2768				GFP_KERNEL);
2769	if (!conf->mirrors)
2770		goto out;
2771
2772	conf->tmppage = alloc_page(GFP_KERNEL);
2773	if (!conf->tmppage)
2774		goto out;
2775
2776
2777	conf->raid_disks = mddev->raid_disks;
2778	conf->near_copies = nc;
2779	conf->far_copies = fc;
2780	conf->copies = nc*fc;
2781	conf->far_offset = fo;
2782	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2783	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2784
2785	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2786					   r10bio_pool_free, conf);
2787	if (!conf->r10bio_pool)
2788		goto out;
2789
2790	size = mddev->dev_sectors >> conf->chunk_shift;
2791	sector_div(size, fc);
2792	size = size * conf->raid_disks;
2793	sector_div(size, nc);
2794	/* 'size' is now the number of chunks in the array */
2795	/* calculate "used chunks per device" in 'stride' */
2796	stride = size * conf->copies;
2797
2798	/* We need to round up when dividing by raid_disks to
2799	 * get the stride size.
2800	 */
2801	stride += conf->raid_disks - 1;
2802	sector_div(stride, conf->raid_disks);
2803
2804	conf->dev_sectors = stride << conf->chunk_shift;
2805
2806	if (fo)
2807		stride = 1;
2808	else
2809		sector_div(stride, fc);
2810	conf->stride = stride << conf->chunk_shift;
2811
2812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813	spin_lock_init(&conf->device_lock);
2814	INIT_LIST_HEAD(&conf->retry_list);
 
2815
2816	spin_lock_init(&conf->resync_lock);
2817	init_waitqueue_head(&conf->wait_barrier);
 
2818
2819	conf->thread = md_register_thread(raid10d, mddev, NULL);
 
2820	if (!conf->thread)
2821		goto out;
2822
2823	conf->mddev = mddev;
2824	return conf;
2825
2826 out:
2827	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2828	       mdname(mddev));
2829	if (conf) {
2830		if (conf->r10bio_pool)
2831			mempool_destroy(conf->r10bio_pool);
2832		kfree(conf->mirrors);
2833		safe_put_page(conf->tmppage);
 
2834		kfree(conf);
2835	}
2836	return ERR_PTR(err);
2837}
2838
2839static int run(mddev_t *mddev)
2840{
2841	conf_t *conf;
2842	int i, disk_idx, chunk_size;
2843	mirror_info_t *disk;
2844	mdk_rdev_t *rdev;
2845	sector_t size;
 
 
 
2846
2847	/*
2848	 * copy the already verified devices into our private RAID10
2849	 * bookkeeping area. [whatever we allocate in run(),
2850	 * should be freed in stop()]
2851	 */
2852
2853	if (mddev->private == NULL) {
2854		conf = setup_conf(mddev);
2855		if (IS_ERR(conf))
2856			return PTR_ERR(conf);
2857		mddev->private = conf;
2858	}
2859	conf = mddev->private;
2860	if (!conf)
2861		goto out;
2862
 
 
 
 
 
 
 
 
 
 
 
 
2863	mddev->thread = conf->thread;
2864	conf->thread = NULL;
2865
2866	chunk_size = mddev->chunk_sectors << 9;
2867	blk_queue_io_min(mddev->queue, chunk_size);
2868	if (conf->raid_disks % conf->near_copies)
2869		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2870	else
2871		blk_queue_io_opt(mddev->queue, chunk_size *
2872				 (conf->raid_disks / conf->near_copies));
 
 
 
 
 
 
2873
2874	list_for_each_entry(rdev, &mddev->disks, same_set) {
 
2875
2876		disk_idx = rdev->raid_disk;
2877		if (disk_idx >= conf->raid_disks
2878		    || disk_idx < 0)
 
 
2879			continue;
2880		disk = conf->mirrors + disk_idx;
2881
2882		disk->rdev = rdev;
2883		disk_stack_limits(mddev->gendisk, rdev->bdev,
2884				  rdev->data_offset << 9);
2885		/* as we don't honour merge_bvec_fn, we must never risk
2886		 * violating it, so limit max_segments to 1 lying
2887		 * within a single page.
2888		 */
2889		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2890			blk_queue_max_segments(mddev->queue, 1);
2891			blk_queue_segment_boundary(mddev->queue,
2892						   PAGE_CACHE_SIZE - 1);
2893		}
 
 
 
 
 
 
 
 
 
 
 
2894
2895		disk->head_position = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2896	}
2897	/* need to check that every block has at least one working mirror */
2898	if (!enough(conf, -1)) {
2899		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2900		       mdname(mddev));
2901		goto out_free_conf;
2902	}
2903
 
 
 
 
 
 
 
 
 
 
2904	mddev->degraded = 0;
2905	for (i = 0; i < conf->raid_disks; i++) {
 
 
 
2906
2907		disk = conf->mirrors + i;
2908
 
 
 
 
 
 
 
2909		if (!disk->rdev ||
2910		    !test_bit(In_sync, &disk->rdev->flags)) {
2911			disk->head_position = 0;
2912			mddev->degraded++;
2913			if (disk->rdev)
 
2914				conf->fullsync = 1;
2915		}
 
 
 
 
 
 
 
 
2916	}
2917
2918	if (mddev->recovery_cp != MaxSector)
2919		printk(KERN_NOTICE "md/raid10:%s: not clean"
2920		       " -- starting background reconstruction\n",
2921		       mdname(mddev));
2922	printk(KERN_INFO
2923		"md/raid10:%s: active with %d out of %d devices\n",
2924		mdname(mddev), conf->raid_disks - mddev->degraded,
2925		conf->raid_disks);
2926	/*
2927	 * Ok, everything is just fine now
2928	 */
2929	mddev->dev_sectors = conf->dev_sectors;
2930	size = raid10_size(mddev, 0, 0);
2931	md_set_array_sectors(mddev, size);
2932	mddev->resync_max_sectors = size;
 
2933
2934	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2935	mddev->queue->backing_dev_info.congested_data = mddev;
2936
2937	/* Calculate max read-ahead size.
2938	 * We need to readahead at least twice a whole stripe....
2939	 * maybe...
2940	 */
2941	{
2942		int stripe = conf->raid_disks *
2943			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2944		stripe /= conf->near_copies;
2945		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2946			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2947	}
2948
2949	if (conf->near_copies < conf->raid_disks)
2950		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
 
 
 
 
 
 
2951
2952	if (md_integrity_register(mddev))
2953		goto out_free_conf;
2954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955	return 0;
2956
2957out_free_conf:
2958	md_unregister_thread(&mddev->thread);
2959	if (conf->r10bio_pool)
2960		mempool_destroy(conf->r10bio_pool);
2961	safe_put_page(conf->tmppage);
2962	kfree(conf->mirrors);
2963	kfree(conf);
2964	mddev->private = NULL;
2965out:
2966	return -EIO;
2967}
2968
2969static int stop(mddev_t *mddev)
2970{
2971	conf_t *conf = mddev->private;
2972
2973	raise_barrier(conf, 0);
2974	lower_barrier(conf);
2975
2976	md_unregister_thread(&mddev->thread);
2977	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2978	if (conf->r10bio_pool)
2979		mempool_destroy(conf->r10bio_pool);
2980	kfree(conf->mirrors);
 
 
 
2981	kfree(conf);
2982	mddev->private = NULL;
2983	return 0;
2984}
2985
2986static void raid10_quiesce(mddev_t *mddev, int state)
2987{
2988	conf_t *conf = mddev->private;
2989
2990	switch(state) {
2991	case 1:
2992		raise_barrier(conf, 0);
2993		break;
2994	case 0:
2995		lower_barrier(conf);
2996		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2997	}
 
 
 
 
 
 
 
 
 
 
2998}
2999
3000static void *raid10_takeover_raid0(mddev_t *mddev)
3001{
3002	mdk_rdev_t *rdev;
3003	conf_t *conf;
3004
3005	if (mddev->degraded > 0) {
3006		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3007		       mdname(mddev));
3008		return ERR_PTR(-EINVAL);
3009	}
 
3010
3011	/* Set new parameters */
3012	mddev->new_level = 10;
3013	/* new layout: far_copies = 1, near_copies = 2 */
3014	mddev->new_layout = (1<<8) + 2;
3015	mddev->new_chunk_sectors = mddev->chunk_sectors;
3016	mddev->delta_disks = mddev->raid_disks;
3017	mddev->raid_disks *= 2;
3018	/* make sure it will be not marked as dirty */
3019	mddev->recovery_cp = MaxSector;
 
3020
3021	conf = setup_conf(mddev);
3022	if (!IS_ERR(conf)) {
3023		list_for_each_entry(rdev, &mddev->disks, same_set)
3024			if (rdev->raid_disk >= 0)
3025				rdev->new_raid_disk = rdev->raid_disk * 2;
 
 
3026		conf->barrier = 1;
3027	}
3028
3029	return conf;
3030}
3031
3032static void *raid10_takeover(mddev_t *mddev)
3033{
3034	struct raid0_private_data *raid0_priv;
3035
3036	/* raid10 can take over:
3037	 *  raid0 - providing it has only two drives
3038	 */
3039	if (mddev->level == 0) {
3040		/* for raid0 takeover only one zone is supported */
3041		raid0_priv = mddev->private;
3042		if (raid0_priv->nr_strip_zones > 1) {
3043			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3044			       " with more than one zone.\n",
3045			       mdname(mddev));
3046			return ERR_PTR(-EINVAL);
3047		}
3048		return raid10_takeover_raid0(mddev);
 
 
3049	}
3050	return ERR_PTR(-EINVAL);
3051}
3052
3053static struct mdk_personality raid10_personality =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054{
3055	.name		= "raid10",
3056	.level		= 10,
3057	.owner		= THIS_MODULE,
3058	.make_request	= make_request,
3059	.run		= run,
3060	.stop		= stop,
3061	.status		= status,
3062	.error_handler	= error,
3063	.hot_add_disk	= raid10_add_disk,
3064	.hot_remove_disk= raid10_remove_disk,
3065	.spare_active	= raid10_spare_active,
3066	.sync_request	= sync_request,
3067	.quiesce	= raid10_quiesce,
3068	.size		= raid10_size,
 
3069	.takeover	= raid10_takeover,
 
 
 
 
 
3070};
3071
3072static int __init raid_init(void)
3073{
3074	return register_md_personality(&raid10_personality);
3075}
3076
3077static void raid_exit(void)
3078{
3079	unregister_md_personality(&raid10_personality);
3080}
3081
3082module_init(raid_init);
3083module_exit(raid_exit);
3084MODULE_LICENSE("GPL");
3085MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3086MODULE_ALIAS("md-personality-9"); /* RAID10 */
3087MODULE_ALIAS("md-raid10");
3088MODULE_ALIAS("md-level-10");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
 
 
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88	return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93	struct r10conf *conf = data;
  94	int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96	/* allocate a r10bio with room for raid_disks entries in the
  97	 * bios array */
  98	return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 
 
 
 
 
 
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct r10conf *conf = data;
 119	struct r10bio *r10_bio;
 
 120	struct bio *bio;
 121	int j;
 122	int nalloc, nalloc_rp;
 123	struct resync_pages *rps;
 124
 125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126	if (!r10_bio)
 127		return NULL;
 128
 129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131		nalloc = conf->copies; /* resync */
 132	else
 133		nalloc = 2; /* recovery */
 134
 135	/* allocate once for all bios */
 136	if (!conf->have_replacement)
 137		nalloc_rp = nalloc;
 138	else
 139		nalloc_rp = nalloc * 2;
 140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141	if (!rps)
 142		goto out_free_r10bio;
 143
 144	/*
 145	 * Allocate bios.
 146	 */
 147	for (j = nalloc ; j-- ; ) {
 148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149		if (!bio)
 150			goto out_free_bio;
 151		r10_bio->devs[j].bio = bio;
 152		if (!conf->have_replacement)
 153			continue;
 154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155		if (!bio)
 156			goto out_free_bio;
 157		r10_bio->devs[j].repl_bio = bio;
 158	}
 159	/*
 160	 * Allocate RESYNC_PAGES data pages and attach them
 161	 * where needed.
 162	 */
 163	for (j = 0; j < nalloc; j++) {
 164		struct bio *rbio = r10_bio->devs[j].repl_bio;
 165		struct resync_pages *rp, *rp_repl;
 166
 167		rp = &rps[j];
 168		if (rbio)
 169			rp_repl = &rps[nalloc + j];
 170
 171		bio = r10_bio->devs[j].bio;
 172
 173		if (!j || test_bit(MD_RECOVERY_SYNC,
 174				   &conf->mddev->recovery)) {
 175			if (resync_alloc_pages(rp, gfp_flags))
 
 
 
 
 
 
 176				goto out_free_pages;
 177		} else {
 178			memcpy(rp, &rps[0], sizeof(*rp));
 179			resync_get_all_pages(rp);
 180		}
 181
 182		rp->raid_bio = r10_bio;
 183		bio->bi_private = rp;
 184		if (rbio) {
 185			memcpy(rp_repl, rp, sizeof(*rp));
 186			rbio->bi_private = rp_repl;
 187		}
 188	}
 189
 190	return r10_bio;
 191
 192out_free_pages:
 193	while (--j >= 0)
 194		resync_free_pages(&rps[j * 2]);
 195
 196	j = 0;
 
 
 197out_free_bio:
 198	for ( ; j < nalloc; j++) {
 199		if (r10_bio->devs[j].bio)
 200			bio_put(r10_bio->devs[j].bio);
 201		if (r10_bio->devs[j].repl_bio)
 202			bio_put(r10_bio->devs[j].repl_bio);
 203	}
 204	kfree(rps);
 205out_free_r10bio:
 206	rbio_pool_free(r10_bio, conf);
 207	return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212	struct r10conf *conf = data;
 213	struct r10bio *r10bio = __r10_bio;
 
 214	int j;
 215	struct resync_pages *rp = NULL;
 216
 217	for (j = conf->copies; j--; ) {
 218		struct bio *bio = r10bio->devs[j].bio;
 219
 220		if (bio) {
 221			rp = get_resync_pages(bio);
 222			resync_free_pages(rp);
 
 
 223			bio_put(bio);
 224		}
 225
 226		bio = r10bio->devs[j].repl_bio;
 227		if (bio)
 228			bio_put(bio);
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->copies; i++) {
 242		struct bio **bio = & r10_bio->devs[i].bio;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246		bio = &r10_bio->devs[i].repl_bio;
 247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255	struct r10conf *conf = r10_bio->mddev->private;
 256
 257	put_all_bios(conf, r10_bio);
 258	mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263	struct r10conf *conf = r10_bio->mddev->private;
 264
 265	mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267	lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272	unsigned long flags;
 273	struct mddev *mddev = r10_bio->mddev;
 274	struct r10conf *conf = mddev->private;
 275
 276	spin_lock_irqsave(&conf->device_lock, flags);
 277	list_add(&r10_bio->retry_list, &conf->retry_list);
 278	conf->nr_queued ++;
 279	spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281	/* wake up frozen array... */
 282	wake_up(&conf->wait_barrier);
 283
 284	md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294	struct bio *bio = r10_bio->master_bio;
 295	struct r10conf *conf = r10_bio->mddev->private;
 
 296
 
 
 
 
 
 
 
 
 297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298		bio->bi_status = BLK_STS_IOERR;
 299
 300	bio_endio(bio);
 301	/*
 302	 * Wake up any possible resync thread that waits for the device
 303	 * to go idle.
 304	 */
 305	allow_barrier(conf);
 306
 307	free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315	struct r10conf *conf = r10_bio->mddev->private;
 316
 317	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318		r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325			 struct bio *bio, int *slotp, int *replp)
 326{
 327	int slot;
 328	int repl = 0;
 329
 330	for (slot = 0; slot < conf->copies; slot++) {
 331		if (r10_bio->devs[slot].bio == bio)
 332			break;
 333		if (r10_bio->devs[slot].repl_bio == bio) {
 334			repl = 1;
 335			break;
 336		}
 337	}
 338
 339	BUG_ON(slot == conf->copies);
 340	update_head_pos(slot, r10_bio);
 341
 342	if (slotp)
 343		*slotp = slot;
 344	if (replp)
 345		*replp = repl;
 346	return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351	int uptodate = !bio->bi_status;
 352	struct r10bio *r10_bio = bio->bi_private;
 353	int slot;
 354	struct md_rdev *rdev;
 355	struct r10conf *conf = r10_bio->mddev->private;
 356
 357	slot = r10_bio->read_slot;
 358	rdev = r10_bio->devs[slot].rdev;
 359	/*
 360	 * this branch is our 'one mirror IO has finished' event handler:
 361	 */
 362	update_head_pos(slot, r10_bio);
 363
 364	if (uptodate) {
 365		/*
 366		 * Set R10BIO_Uptodate in our master bio, so that
 367		 * we will return a good error code to the higher
 368		 * levels even if IO on some other mirrored buffer fails.
 369		 *
 370		 * The 'master' represents the composite IO operation to
 371		 * user-side. So if something waits for IO, then it will
 372		 * wait for the 'master' bio.
 373		 */
 374		set_bit(R10BIO_Uptodate, &r10_bio->state);
 375	} else {
 376		/* If all other devices that store this block have
 377		 * failed, we want to return the error upwards rather
 378		 * than fail the last device.  Here we redefine
 379		 * "uptodate" to mean "Don't want to retry"
 380		 */
 381		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382			     rdev->raid_disk))
 383			uptodate = 1;
 384	}
 385	if (uptodate) {
 386		raid_end_bio_io(r10_bio);
 387		rdev_dec_pending(rdev, conf->mddev);
 388	} else {
 389		/*
 390		 * oops, read error - keep the refcount on the rdev
 391		 */
 392		char b[BDEVNAME_SIZE];
 393		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 
 394				   mdname(conf->mddev),
 395				   bdevname(rdev->bdev, b),
 396				   (unsigned long long)r10_bio->sector);
 397		set_bit(R10BIO_ReadError, &r10_bio->state);
 398		reschedule_retry(r10_bio);
 399	}
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404	/* clear the bitmap if all writes complete successfully */
 405	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406			   r10_bio->sectors,
 407			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 408			   0);
 409	md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414	if (atomic_dec_and_test(&r10_bio->remaining)) {
 415		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416			reschedule_retry(r10_bio);
 417		else {
 418			close_write(r10_bio);
 419			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420				reschedule_retry(r10_bio);
 421			else
 422				raid_end_bio_io(r10_bio);
 423		}
 424	}
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 429	struct r10bio *r10_bio = bio->bi_private;
 
 430	int dev;
 431	int dec_rdev = 1;
 432	struct r10conf *conf = r10_bio->mddev->private;
 433	int slot, repl;
 434	struct md_rdev *rdev = NULL;
 435	struct bio *to_put = NULL;
 436	bool discard_error;
 437
 438	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442	if (repl)
 443		rdev = conf->mirrors[dev].replacement;
 444	if (!rdev) {
 445		smp_rmb();
 446		repl = 0;
 447		rdev = conf->mirrors[dev].rdev;
 448	}
 449	/*
 450	 * this branch is our 'one mirror IO has finished' event handler:
 451	 */
 452	if (bio->bi_status && !discard_error) {
 453		if (repl)
 454			/* Never record new bad blocks to replacement,
 455			 * just fail it.
 456			 */
 457			md_error(rdev->mddev, rdev);
 458		else {
 459			set_bit(WriteErrorSeen,	&rdev->flags);
 460			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461				set_bit(MD_RECOVERY_NEEDED,
 462					&rdev->mddev->recovery);
 463
 464			dec_rdev = 0;
 465			if (test_bit(FailFast, &rdev->flags) &&
 466			    (bio->bi_opf & MD_FAILFAST)) {
 467				md_error(rdev->mddev, rdev);
 468			}
 469
 470			/*
 471			 * When the device is faulty, it is not necessary to
 472			 * handle write error.
 473			 * For failfast, this is the only remaining device,
 474			 * We need to retry the write without FailFast.
 475			 */
 476			if (!test_bit(Faulty, &rdev->flags))
 477				set_bit(R10BIO_WriteError, &r10_bio->state);
 478			else {
 479				r10_bio->devs[slot].bio = NULL;
 480				to_put = bio;
 481				dec_rdev = 1;
 482			}
 483		}
 484	} else {
 485		/*
 486		 * Set R10BIO_Uptodate in our master bio, so that
 487		 * we will return a good error code for to the higher
 488		 * levels even if IO on some other mirrored buffer fails.
 489		 *
 490		 * The 'master' represents the composite IO operation to
 491		 * user-side. So if something waits for IO, then it will
 492		 * wait for the 'master' bio.
 493		 */
 494		sector_t first_bad;
 495		int bad_sectors;
 496
 497		/*
 498		 * Do not set R10BIO_Uptodate if the current device is
 499		 * rebuilding or Faulty. This is because we cannot use
 500		 * such device for properly reading the data back (we could
 501		 * potentially use it, if the current write would have felt
 502		 * before rdev->recovery_offset, but for simplicity we don't
 503		 * check this here.
 504		 */
 505		if (test_bit(In_sync, &rdev->flags) &&
 506		    !test_bit(Faulty, &rdev->flags))
 507			set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509		/* Maybe we can clear some bad blocks. */
 510		if (is_badblock(rdev,
 511				r10_bio->devs[slot].addr,
 512				r10_bio->sectors,
 513				&first_bad, &bad_sectors) && !discard_error) {
 514			bio_put(bio);
 515			if (repl)
 516				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517			else
 518				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519			dec_rdev = 0;
 520			set_bit(R10BIO_MadeGood, &r10_bio->state);
 521		}
 522	}
 523
 524	/*
 525	 *
 526	 * Let's see if all mirrored write operations have finished
 527	 * already.
 528	 */
 529	one_write_done(r10_bio);
 530	if (dec_rdev)
 531		rdev_dec_pending(rdev, conf->mddev);
 532	if (to_put)
 533		bio_put(to_put);
 534}
 535
 
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563	int n,f;
 564	sector_t sector;
 565	sector_t chunk;
 566	sector_t stripe;
 567	int dev;
 
 568	int slot = 0;
 569	int last_far_set_start, last_far_set_size;
 570
 571	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572	last_far_set_start *= geo->far_set_size;
 573
 574	last_far_set_size = geo->far_set_size;
 575	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577	/* now calculate first sector/dev */
 578	chunk = r10bio->sector >> geo->chunk_shift;
 579	sector = r10bio->sector & geo->chunk_mask;
 580
 581	chunk *= geo->near_copies;
 582	stripe = chunk;
 583	dev = sector_div(stripe, geo->raid_disks);
 584	if (geo->far_offset)
 585		stripe *= geo->far_copies;
 586
 587	sector += stripe << geo->chunk_shift;
 588
 589	/* and calculate all the others */
 590	for (n = 0; n < geo->near_copies; n++) {
 591		int d = dev;
 592		int set;
 593		sector_t s = sector;
 
 594		r10bio->devs[slot].devnum = d;
 595		r10bio->devs[slot].addr = s;
 596		slot++;
 597
 598		for (f = 1; f < geo->far_copies; f++) {
 599			set = d / geo->far_set_size;
 600			d += geo->near_copies;
 601
 602			if ((geo->raid_disks % geo->far_set_size) &&
 603			    (d > last_far_set_start)) {
 604				d -= last_far_set_start;
 605				d %= last_far_set_size;
 606				d += last_far_set_start;
 607			} else {
 608				d %= geo->far_set_size;
 609				d += geo->far_set_size * set;
 610			}
 611			s += geo->stride;
 612			r10bio->devs[slot].devnum = d;
 613			r10bio->devs[slot].addr = s;
 614			slot++;
 615		}
 616		dev++;
 617		if (dev >= geo->raid_disks) {
 618			dev = 0;
 619			sector += (geo->chunk_mask + 1);
 620		}
 621	}
 
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626	struct geom *geo = &conf->geo;
 627
 628	if (conf->reshape_progress != MaxSector &&
 629	    ((r10bio->sector >= conf->reshape_progress) !=
 630	     conf->mddev->reshape_backwards)) {
 631		set_bit(R10BIO_Previous, &r10bio->state);
 632		geo = &conf->prev;
 633	} else
 634		clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636	__raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641	sector_t offset, chunk, vchunk;
 642	/* Never use conf->prev as this is only called during resync
 643	 * or recovery, so reshape isn't happening
 644	 */
 645	struct geom *geo = &conf->geo;
 646	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647	int far_set_size = geo->far_set_size;
 648	int last_far_set_start;
 649
 650	if (geo->raid_disks % geo->far_set_size) {
 651		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652		last_far_set_start *= geo->far_set_size;
 653
 654		if (dev >= last_far_set_start) {
 655			far_set_size = geo->far_set_size;
 656			far_set_size += (geo->raid_disks % geo->far_set_size);
 657			far_set_start = last_far_set_start;
 658		}
 659	}
 660
 661	offset = sector & geo->chunk_mask;
 662	if (geo->far_offset) {
 663		int fc;
 664		chunk = sector >> geo->chunk_shift;
 665		fc = sector_div(chunk, geo->far_copies);
 666		dev -= fc * geo->near_copies;
 667		if (dev < far_set_start)
 668			dev += far_set_size;
 669	} else {
 670		while (sector >= geo->stride) {
 671			sector -= geo->stride;
 672			if (dev < (geo->near_copies + far_set_start))
 673				dev += far_set_size - geo->near_copies;
 674			else
 675				dev -= geo->near_copies;
 676		}
 677		chunk = sector >> geo->chunk_shift;
 678	}
 679	vchunk = chunk * geo->raid_disks + dev;
 680	sector_div(vchunk, geo->near_copies);
 681	return (vchunk << geo->chunk_shift) + offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682}
 683
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704				    struct r10bio *r10_bio,
 705				    int *max_sectors)
 706{
 707	const sector_t this_sector = r10_bio->sector;
 708	int disk, slot;
 709	int sectors = r10_bio->sectors;
 710	int best_good_sectors;
 711	sector_t new_distance, best_dist;
 712	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713	int do_balance;
 714	int best_dist_slot, best_pending_slot;
 715	bool has_nonrot_disk = false;
 716	unsigned int min_pending;
 717	struct geom *geo = &conf->geo;
 718
 719	raid10_find_phys(conf, r10_bio);
 720	rcu_read_lock();
 721	best_dist_slot = -1;
 722	min_pending = UINT_MAX;
 723	best_dist_rdev = NULL;
 724	best_pending_rdev = NULL;
 725	best_dist = MaxSector;
 726	best_good_sectors = 0;
 727	do_balance = 1;
 728	clear_bit(R10BIO_FailFast, &r10_bio->state);
 729	/*
 730	 * Check if we can balance. We can balance on the whole
 731	 * device if no resync is going on (recovery is ok), or below
 732	 * the resync window. We take the first readable disk when
 733	 * above the resync window.
 734	 */
 735	if ((conf->mddev->recovery_cp < MaxSector
 736	     && (this_sector + sectors >= conf->next_resync)) ||
 737	    (mddev_is_clustered(conf->mddev) &&
 738	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739					    this_sector + sectors)))
 740		do_balance = 0;
 741
 742	for (slot = 0; slot < conf->copies ; slot++) {
 743		sector_t first_bad;
 744		int bad_sectors;
 745		sector_t dev_sector;
 746		unsigned int pending;
 747		bool nonrot;
 748
 749		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750			continue;
 751		disk = r10_bio->devs[slot].devnum;
 752		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 754		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756		if (rdev == NULL ||
 757		    test_bit(Faulty, &rdev->flags))
 758			continue;
 759		if (!test_bit(In_sync, &rdev->flags) &&
 760		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761			continue;
 762
 763		dev_sector = r10_bio->devs[slot].addr;
 764		if (is_badblock(rdev, dev_sector, sectors,
 765				&first_bad, &bad_sectors)) {
 766			if (best_dist < MaxSector)
 767				/* Already have a better slot */
 768				continue;
 769			if (first_bad <= dev_sector) {
 770				/* Cannot read here.  If this is the
 771				 * 'primary' device, then we must not read
 772				 * beyond 'bad_sectors' from another device.
 773				 */
 774				bad_sectors -= (dev_sector - first_bad);
 775				if (!do_balance && sectors > bad_sectors)
 776					sectors = bad_sectors;
 777				if (best_good_sectors > sectors)
 778					best_good_sectors = sectors;
 779			} else {
 780				sector_t good_sectors =
 781					first_bad - dev_sector;
 782				if (good_sectors > best_good_sectors) {
 783					best_good_sectors = good_sectors;
 784					best_dist_slot = slot;
 785					best_dist_rdev = rdev;
 786				}
 787				if (!do_balance)
 788					/* Must read from here */
 789					break;
 790			}
 791			continue;
 792		} else
 793			best_good_sectors = sectors;
 794
 795		if (!do_balance)
 796			break;
 797
 798		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799		has_nonrot_disk |= nonrot;
 800		pending = atomic_read(&rdev->nr_pending);
 801		if (min_pending > pending && nonrot) {
 802			min_pending = pending;
 803			best_pending_slot = slot;
 804			best_pending_rdev = rdev;
 805		}
 806
 807		if (best_dist_slot >= 0)
 808			/* At least 2 disks to choose from so failfast is OK */
 809			set_bit(R10BIO_FailFast, &r10_bio->state);
 810		/* This optimisation is debatable, and completely destroys
 811		 * sequential read speed for 'far copies' arrays.  So only
 812		 * keep it for 'near' arrays, and review those later.
 813		 */
 814		if (geo->near_copies > 1 && !pending)
 815			new_distance = 0;
 816
 817		/* for far > 1 always use the lowest address */
 818		else if (geo->far_copies > 1)
 819			new_distance = r10_bio->devs[slot].addr;
 820		else
 821			new_distance = abs(r10_bio->devs[slot].addr -
 822					   conf->mirrors[disk].head_position);
 823
 824		if (new_distance < best_dist) {
 825			best_dist = new_distance;
 826			best_dist_slot = slot;
 827			best_dist_rdev = rdev;
 828		}
 829	}
 830	if (slot >= conf->copies) {
 831		if (has_nonrot_disk) {
 832			slot = best_pending_slot;
 833			rdev = best_pending_rdev;
 834		} else {
 835			slot = best_dist_slot;
 836			rdev = best_dist_rdev;
 837		}
 838	}
 
 
 839
 840	if (slot >= 0) {
 
 
 
 
 841		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 842		r10_bio->read_slot = slot;
 843	} else
 844		rdev = NULL;
 845	rcu_read_unlock();
 846	*max_sectors = best_good_sectors;
 847
 848	return rdev;
 849}
 850
 851static int raid10_congested(struct mddev *mddev, int bits)
 852{
 853	struct r10conf *conf = mddev->private;
 
 854	int i, ret = 0;
 855
 856	if ((bits & (1 << WB_async_congested)) &&
 857	    conf->pending_count >= max_queued_requests)
 858		return 1;
 859
 860	rcu_read_lock();
 861	for (i = 0;
 862	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 863		     && ret == 0;
 864	     i++) {
 865		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 866		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 867			struct request_queue *q = bdev_get_queue(rdev->bdev);
 868
 869			ret |= bdi_congested(q->backing_dev_info, bits);
 870		}
 871	}
 872	rcu_read_unlock();
 873	return ret;
 874}
 875
 876static void flush_pending_writes(struct r10conf *conf)
 877{
 878	/* Any writes that have been queued but are awaiting
 879	 * bitmap updates get flushed here.
 880	 */
 881	spin_lock_irq(&conf->device_lock);
 882
 883	if (conf->pending_bio_list.head) {
 884		struct blk_plug plug;
 885		struct bio *bio;
 886
 887		bio = bio_list_get(&conf->pending_bio_list);
 888		conf->pending_count = 0;
 889		spin_unlock_irq(&conf->device_lock);
 890
 891		/*
 892		 * As this is called in a wait_event() loop (see freeze_array),
 893		 * current->state might be TASK_UNINTERRUPTIBLE which will
 894		 * cause a warning when we prepare to wait again.  As it is
 895		 * rare that this path is taken, it is perfectly safe to force
 896		 * us to go around the wait_event() loop again, so the warning
 897		 * is a false-positive. Silence the warning by resetting
 898		 * thread state
 899		 */
 900		__set_current_state(TASK_RUNNING);
 901
 902		blk_start_plug(&plug);
 903		/* flush any pending bitmap writes to disk
 904		 * before proceeding w/ I/O */
 905		md_bitmap_unplug(conf->mddev->bitmap);
 906		wake_up(&conf->wait_barrier);
 907
 908		while (bio) { /* submit pending writes */
 909			struct bio *next = bio->bi_next;
 910			struct md_rdev *rdev = (void*)bio->bi_disk;
 911			bio->bi_next = NULL;
 912			bio_set_dev(bio, rdev->bdev);
 913			if (test_bit(Faulty, &rdev->flags)) {
 914				bio_io_error(bio);
 915			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 916					    !blk_queue_discard(bio->bi_disk->queue)))
 917				/* Just ignore it */
 918				bio_endio(bio);
 919			else
 920				generic_make_request(bio);
 921			bio = next;
 922		}
 923		blk_finish_plug(&plug);
 924	} else
 925		spin_unlock_irq(&conf->device_lock);
 926}
 927
 928/* Barriers....
 929 * Sometimes we need to suspend IO while we do something else,
 930 * either some resync/recovery, or reconfigure the array.
 931 * To do this we raise a 'barrier'.
 932 * The 'barrier' is a counter that can be raised multiple times
 933 * to count how many activities are happening which preclude
 934 * normal IO.
 935 * We can only raise the barrier if there is no pending IO.
 936 * i.e. if nr_pending == 0.
 937 * We choose only to raise the barrier if no-one is waiting for the
 938 * barrier to go down.  This means that as soon as an IO request
 939 * is ready, no other operations which require a barrier will start
 940 * until the IO request has had a chance.
 941 *
 942 * So: regular IO calls 'wait_barrier'.  When that returns there
 943 *    is no backgroup IO happening,  It must arrange to call
 944 *    allow_barrier when it has finished its IO.
 945 * backgroup IO calls must call raise_barrier.  Once that returns
 946 *    there is no normal IO happeing.  It must arrange to call
 947 *    lower_barrier when the particular background IO completes.
 948 */
 949
 950static void raise_barrier(struct r10conf *conf, int force)
 951{
 952	BUG_ON(force && !conf->barrier);
 953	spin_lock_irq(&conf->resync_lock);
 954
 955	/* Wait until no block IO is waiting (unless 'force') */
 956	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 957			    conf->resync_lock);
 958
 959	/* block any new IO from starting */
 960	conf->barrier++;
 961
 962	/* Now wait for all pending IO to complete */
 963	wait_event_lock_irq(conf->wait_barrier,
 964			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 965			    conf->resync_lock);
 966
 967	spin_unlock_irq(&conf->resync_lock);
 968}
 969
 970static void lower_barrier(struct r10conf *conf)
 971{
 972	unsigned long flags;
 973	spin_lock_irqsave(&conf->resync_lock, flags);
 974	conf->barrier--;
 975	spin_unlock_irqrestore(&conf->resync_lock, flags);
 976	wake_up(&conf->wait_barrier);
 977}
 978
 979static void wait_barrier(struct r10conf *conf)
 980{
 981	spin_lock_irq(&conf->resync_lock);
 982	if (conf->barrier) {
 983		conf->nr_waiting++;
 984		/* Wait for the barrier to drop.
 985		 * However if there are already pending
 986		 * requests (preventing the barrier from
 987		 * rising completely), and the
 988		 * pre-process bio queue isn't empty,
 989		 * then don't wait, as we need to empty
 990		 * that queue to get the nr_pending
 991		 * count down.
 992		 */
 993		raid10_log(conf->mddev, "wait barrier");
 994		wait_event_lock_irq(conf->wait_barrier,
 995				    !conf->barrier ||
 996				    (atomic_read(&conf->nr_pending) &&
 997				     current->bio_list &&
 998				     (!bio_list_empty(&current->bio_list[0]) ||
 999				      !bio_list_empty(&current->bio_list[1]))),
1000				    conf->resync_lock);
1001		conf->nr_waiting--;
1002		if (!conf->nr_waiting)
1003			wake_up(&conf->wait_barrier);
1004	}
1005	atomic_inc(&conf->nr_pending);
1006	spin_unlock_irq(&conf->resync_lock);
1007}
1008
1009static void allow_barrier(struct r10conf *conf)
1010{
1011	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012			(conf->array_freeze_pending))
1013		wake_up(&conf->wait_barrier);
 
 
1014}
1015
1016static void freeze_array(struct r10conf *conf, int extra)
1017{
1018	/* stop syncio and normal IO and wait for everything to
1019	 * go quiet.
1020	 * We increment barrier and nr_waiting, and then
1021	 * wait until nr_pending match nr_queued+extra
1022	 * This is called in the context of one normal IO request
1023	 * that has failed. Thus any sync request that might be pending
1024	 * will be blocked by nr_pending, and we need to wait for
1025	 * pending IO requests to complete or be queued for re-try.
1026	 * Thus the number queued (nr_queued) plus this request (extra)
1027	 * must match the number of pending IOs (nr_pending) before
1028	 * we continue.
1029	 */
1030	spin_lock_irq(&conf->resync_lock);
1031	conf->array_freeze_pending++;
1032	conf->barrier++;
1033	conf->nr_waiting++;
1034	wait_event_lock_irq_cmd(conf->wait_barrier,
1035				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036				conf->resync_lock,
1037				flush_pending_writes(conf));
1038
1039	conf->array_freeze_pending--;
1040	spin_unlock_irq(&conf->resync_lock);
1041}
1042
1043static void unfreeze_array(struct r10conf *conf)
1044{
1045	/* reverse the effect of the freeze */
1046	spin_lock_irq(&conf->resync_lock);
1047	conf->barrier--;
1048	conf->nr_waiting--;
1049	wake_up(&conf->wait_barrier);
1050	spin_unlock_irq(&conf->resync_lock);
1051}
1052
1053static sector_t choose_data_offset(struct r10bio *r10_bio,
1054				   struct md_rdev *rdev)
1055{
1056	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057	    test_bit(R10BIO_Previous, &r10_bio->state))
1058		return rdev->data_offset;
1059	else
1060		return rdev->new_data_offset;
1061}
 
 
 
 
 
 
 
 
 
 
 
 
 
1062
1063struct raid10_plug_cb {
1064	struct blk_plug_cb	cb;
1065	struct bio_list		pending;
1066	int			pending_cnt;
1067};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070{
1071	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072						   cb);
1073	struct mddev *mddev = plug->cb.data;
1074	struct r10conf *conf = mddev->private;
1075	struct bio *bio;
1076
1077	if (from_schedule || current->bio_list) {
1078		spin_lock_irq(&conf->device_lock);
1079		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080		conf->pending_count += plug->pending_cnt;
1081		spin_unlock_irq(&conf->device_lock);
1082		wake_up(&conf->wait_barrier);
1083		md_wakeup_thread(mddev->thread);
1084		kfree(plug);
1085		return;
1086	}
1087
1088	/* we aren't scheduling, so we can do the write-out directly. */
1089	bio = bio_list_get(&plug->pending);
1090	md_bitmap_unplug(mddev->bitmap);
1091	wake_up(&conf->wait_barrier);
 
 
1092
1093	while (bio) { /* submit pending writes */
1094		struct bio *next = bio->bi_next;
1095		struct md_rdev *rdev = (void*)bio->bi_disk;
1096		bio->bi_next = NULL;
1097		bio_set_dev(bio, rdev->bdev);
1098		if (test_bit(Faulty, &rdev->flags)) {
1099			bio_io_error(bio);
1100		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101				    !blk_queue_discard(bio->bi_disk->queue)))
1102			/* Just ignore it */
1103			bio_endio(bio);
1104		else
1105			generic_make_request(bio);
1106		bio = next;
1107	}
1108	kfree(plug);
1109}
1110
1111/*
1112 * 1. Register the new request and wait if the reconstruction thread has put
1113 * up a bar for new requests. Continue immediately if no resync is active
1114 * currently.
1115 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116 */
1117static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118				 struct bio *bio, sector_t sectors)
1119{
1120	wait_barrier(conf);
1121	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1123	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124		raid10_log(conf->mddev, "wait reshape");
1125		allow_barrier(conf);
1126		wait_event(conf->wait_barrier,
1127			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1129			   sectors);
1130		wait_barrier(conf);
1131	}
1132}
1133
1134static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135				struct r10bio *r10_bio)
1136{
1137	struct r10conf *conf = mddev->private;
1138	struct bio *read_bio;
1139	const int op = bio_op(bio);
1140	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141	int max_sectors;
1142	struct md_rdev *rdev;
1143	char b[BDEVNAME_SIZE];
1144	int slot = r10_bio->read_slot;
1145	struct md_rdev *err_rdev = NULL;
1146	gfp_t gfp = GFP_NOIO;
 
 
 
 
 
1147
1148	if (r10_bio->devs[slot].rdev) {
1149		/*
1150		 * This is an error retry, but we cannot
1151		 * safely dereference the rdev in the r10_bio,
1152		 * we must use the one in conf.
1153		 * If it has already been disconnected (unlikely)
1154		 * we lose the device name in error messages.
1155		 */
1156		int disk;
1157		/*
1158		 * As we are blocking raid10, it is a little safer to
1159		 * use __GFP_HIGH.
1160		 */
1161		gfp = GFP_NOIO | __GFP_HIGH;
1162
1163		rcu_read_lock();
1164		disk = r10_bio->devs[slot].devnum;
1165		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166		if (err_rdev)
1167			bdevname(err_rdev->bdev, b);
1168		else {
1169			strcpy(b, "???");
1170			/* This never gets dereferenced */
1171			err_rdev = r10_bio->devs[slot].rdev;
1172		}
1173		rcu_read_unlock();
1174	}
1175
1176	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177	rdev = read_balance(conf, r10_bio, &max_sectors);
1178	if (!rdev) {
1179		if (err_rdev) {
1180			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181					    mdname(mddev), b,
1182					    (unsigned long long)r10_bio->sector);
1183		}
1184		raid_end_bio_io(r10_bio);
1185		return;
1186	}
1187	if (err_rdev)
1188		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189				   mdname(mddev),
1190				   bdevname(rdev->bdev, b),
1191				   (unsigned long long)r10_bio->sector);
1192	if (max_sectors < bio_sectors(bio)) {
1193		struct bio *split = bio_split(bio, max_sectors,
1194					      gfp, &conf->bio_split);
1195		bio_chain(split, bio);
1196		allow_barrier(conf);
1197		generic_make_request(bio);
1198		wait_barrier(conf);
1199		bio = split;
1200		r10_bio->master_bio = bio;
1201		r10_bio->sectors = max_sectors;
1202	}
1203	slot = r10_bio->read_slot;
 
 
 
 
1204
1205	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1206
1207	r10_bio->devs[slot].bio = read_bio;
1208	r10_bio->devs[slot].rdev = rdev;
1209
1210	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211		choose_data_offset(r10_bio, rdev);
1212	bio_set_dev(read_bio, rdev->bdev);
1213	read_bio->bi_end_io = raid10_end_read_request;
1214	bio_set_op_attrs(read_bio, op, do_sync);
1215	if (test_bit(FailFast, &rdev->flags) &&
1216	    test_bit(R10BIO_FailFast, &r10_bio->state))
1217	        read_bio->bi_opf |= MD_FAILFAST;
1218	read_bio->bi_private = r10_bio;
1219
1220	if (mddev->gendisk)
1221	        trace_block_bio_remap(read_bio->bi_disk->queue,
1222	                              read_bio, disk_devt(mddev->gendisk),
1223	                              r10_bio->sector);
1224	generic_make_request(read_bio);
1225	return;
1226}
1227
1228static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229				  struct bio *bio, bool replacement,
1230				  int n_copy)
1231{
1232	const int op = bio_op(bio);
1233	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235	unsigned long flags;
1236	struct blk_plug_cb *cb;
1237	struct raid10_plug_cb *plug = NULL;
1238	struct r10conf *conf = mddev->private;
1239	struct md_rdev *rdev;
1240	int devnum = r10_bio->devs[n_copy].devnum;
1241	struct bio *mbio;
1242
1243	if (replacement) {
1244		rdev = conf->mirrors[devnum].replacement;
1245		if (rdev == NULL) {
1246			/* Replacement just got moved to main 'rdev' */
1247			smp_mb();
1248			rdev = conf->mirrors[devnum].rdev;
1249		}
1250	} else
1251		rdev = conf->mirrors[devnum].rdev;
1252
1253	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254	if (replacement)
1255		r10_bio->devs[n_copy].repl_bio = mbio;
1256	else
1257		r10_bio->devs[n_copy].bio = mbio;
1258
1259	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1260				   choose_data_offset(r10_bio, rdev));
1261	bio_set_dev(mbio, rdev->bdev);
1262	mbio->bi_end_io	= raid10_end_write_request;
1263	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264	if (!replacement && test_bit(FailFast,
1265				     &conf->mirrors[devnum].rdev->flags)
1266			 && enough(conf, devnum))
1267		mbio->bi_opf |= MD_FAILFAST;
1268	mbio->bi_private = r10_bio;
1269
1270	if (conf->mddev->gendisk)
1271		trace_block_bio_remap(mbio->bi_disk->queue,
1272				      mbio, disk_devt(conf->mddev->gendisk),
1273				      r10_bio->sector);
1274	/* flush_pending_writes() needs access to the rdev so...*/
1275	mbio->bi_disk = (void *)rdev;
1276
1277	atomic_inc(&r10_bio->remaining);
1278
1279	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280	if (cb)
1281		plug = container_of(cb, struct raid10_plug_cb, cb);
1282	else
1283		plug = NULL;
1284	if (plug) {
1285		bio_list_add(&plug->pending, mbio);
1286		plug->pending_cnt++;
1287	} else {
1288		spin_lock_irqsave(&conf->device_lock, flags);
1289		bio_list_add(&conf->pending_bio_list, mbio);
1290		conf->pending_count++;
1291		spin_unlock_irqrestore(&conf->device_lock, flags);
1292		md_wakeup_thread(mddev->thread);
1293	}
1294}
1295
1296static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297				 struct r10bio *r10_bio)
1298{
1299	struct r10conf *conf = mddev->private;
1300	int i;
1301	struct md_rdev *blocked_rdev;
1302	sector_t sectors;
1303	int max_sectors;
1304
1305	if ((mddev_is_clustered(mddev) &&
1306	     md_cluster_ops->area_resyncing(mddev, WRITE,
1307					    bio->bi_iter.bi_sector,
1308					    bio_end_sector(bio)))) {
1309		DEFINE_WAIT(w);
1310		for (;;) {
1311			prepare_to_wait(&conf->wait_barrier,
1312					&w, TASK_IDLE);
1313			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315				break;
1316			schedule();
1317		}
1318		finish_wait(&conf->wait_barrier, &w);
1319	}
1320
1321	sectors = r10_bio->sectors;
1322	regular_request_wait(mddev, conf, bio, sectors);
1323	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324	    (mddev->reshape_backwards
1325	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329		/* Need to update reshape_position in metadata */
1330		mddev->reshape_position = conf->reshape_progress;
1331		set_mask_bits(&mddev->sb_flags, 0,
1332			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333		md_wakeup_thread(mddev->thread);
1334		raid10_log(conf->mddev, "wait reshape metadata");
1335		wait_event(mddev->sb_wait,
1336			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337
1338		conf->reshape_safe = mddev->reshape_position;
1339	}
1340
1341	if (conf->pending_count >= max_queued_requests) {
1342		md_wakeup_thread(mddev->thread);
1343		raid10_log(mddev, "wait queued");
1344		wait_event(conf->wait_barrier,
1345			   conf->pending_count < max_queued_requests);
1346	}
1347	/* first select target devices under rcu_lock and
1348	 * inc refcount on their rdev.  Record them by setting
1349	 * bios[x] to bio
1350	 * If there are known/acknowledged bad blocks on any device
1351	 * on which we have seen a write error, we want to avoid
1352	 * writing to those blocks.  This potentially requires several
1353	 * writes to write around the bad blocks.  Each set of writes
1354	 * gets its own r10_bio with a set of bios attached.
 
 
1355	 */
 
1356
1357	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358	raid10_find_phys(conf, r10_bio);
1359retry_write:
1360	blocked_rdev = NULL;
1361	rcu_read_lock();
1362	max_sectors = r10_bio->sectors;
1363
1364	for (i = 0;  i < conf->copies; i++) {
1365		int d = r10_bio->devs[i].devnum;
1366		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367		struct md_rdev *rrdev = rcu_dereference(
1368			conf->mirrors[d].replacement);
1369		if (rdev == rrdev)
1370			rrdev = NULL;
1371		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372			atomic_inc(&rdev->nr_pending);
1373			blocked_rdev = rdev;
1374			break;
1375		}
1376		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377			atomic_inc(&rrdev->nr_pending);
1378			blocked_rdev = rrdev;
1379			break;
1380		}
1381		if (rdev && (test_bit(Faulty, &rdev->flags)))
1382			rdev = NULL;
1383		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1384			rrdev = NULL;
1385
1386		r10_bio->devs[i].bio = NULL;
1387		r10_bio->devs[i].repl_bio = NULL;
1388
1389		if (!rdev && !rrdev) {
1390			set_bit(R10BIO_Degraded, &r10_bio->state);
1391			continue;
1392		}
1393		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394			sector_t first_bad;
1395			sector_t dev_sector = r10_bio->devs[i].addr;
1396			int bad_sectors;
1397			int is_bad;
1398
1399			is_bad = is_badblock(rdev, dev_sector, max_sectors,
 
1400					     &first_bad, &bad_sectors);
1401			if (is_bad < 0) {
1402				/* Mustn't write here until the bad block
1403				 * is acknowledged
1404				 */
1405				atomic_inc(&rdev->nr_pending);
1406				set_bit(BlockedBadBlocks, &rdev->flags);
1407				blocked_rdev = rdev;
1408				break;
1409			}
1410			if (is_bad && first_bad <= dev_sector) {
1411				/* Cannot write here at all */
1412				bad_sectors -= (dev_sector - first_bad);
1413				if (bad_sectors < max_sectors)
1414					/* Mustn't write more than bad_sectors
1415					 * to other devices yet
1416					 */
1417					max_sectors = bad_sectors;
1418				/* We don't set R10BIO_Degraded as that
1419				 * only applies if the disk is missing,
1420				 * so it might be re-added, and we want to
1421				 * know to recover this chunk.
1422				 * In this case the device is here, and the
1423				 * fact that this chunk is not in-sync is
1424				 * recorded in the bad block log.
1425				 */
1426				continue;
1427			}
1428			if (is_bad) {
1429				int good_sectors = first_bad - dev_sector;
1430				if (good_sectors < max_sectors)
1431					max_sectors = good_sectors;
1432			}
1433		}
1434		if (rdev) {
1435			r10_bio->devs[i].bio = bio;
1436			atomic_inc(&rdev->nr_pending);
1437		}
1438		if (rrdev) {
1439			r10_bio->devs[i].repl_bio = bio;
1440			atomic_inc(&rrdev->nr_pending);
1441		}
1442	}
1443	rcu_read_unlock();
1444
1445	if (unlikely(blocked_rdev)) {
1446		/* Have to wait for this device to get unblocked, then retry */
1447		int j;
1448		int d;
1449
1450		for (j = 0; j < i; j++) {
1451			if (r10_bio->devs[j].bio) {
1452				d = r10_bio->devs[j].devnum;
1453				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454			}
1455			if (r10_bio->devs[j].repl_bio) {
1456				struct md_rdev *rdev;
1457				d = r10_bio->devs[j].devnum;
1458				rdev = conf->mirrors[d].replacement;
1459				if (!rdev) {
1460					/* Race with remove_disk */
1461					smp_mb();
1462					rdev = conf->mirrors[d].rdev;
1463				}
1464				rdev_dec_pending(rdev, mddev);
1465			}
1466		}
1467		allow_barrier(conf);
1468		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470		wait_barrier(conf);
1471		goto retry_write;
1472	}
1473
1474	if (max_sectors < r10_bio->sectors)
 
 
 
1475		r10_bio->sectors = max_sectors;
1476
1477	if (r10_bio->sectors < bio_sectors(bio)) {
1478		struct bio *split = bio_split(bio, r10_bio->sectors,
1479					      GFP_NOIO, &conf->bio_split);
1480		bio_chain(split, bio);
1481		allow_barrier(conf);
1482		generic_make_request(bio);
1483		wait_barrier(conf);
1484		bio = split;
1485		r10_bio->master_bio = bio;
1486	}
 
1487
1488	atomic_set(&r10_bio->remaining, 1);
1489	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490
1491	for (i = 0; i < conf->copies; i++) {
1492		if (r10_bio->devs[i].bio)
1493			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494		if (r10_bio->devs[i].repl_bio)
1495			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1496	}
1497	one_write_done(r10_bio);
1498}
1499
1500static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501{
1502	struct r10conf *conf = mddev->private;
1503	struct r10bio *r10_bio;
 
 
 
 
 
 
 
1504
1505	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
 
 
 
 
1506
1507	r10_bio->master_bio = bio;
1508	r10_bio->sectors = sectors;
 
1509
1510	r10_bio->mddev = mddev;
1511	r10_bio->sector = bio->bi_iter.bi_sector;
1512	r10_bio->state = 0;
1513	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
 
 
1514
1515	if (bio_data_dir(bio) == READ)
1516		raid10_read_request(mddev, bio, r10_bio);
1517	else
1518		raid10_write_request(mddev, bio, r10_bio);
1519}
1520
1521static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522{
1523	struct r10conf *conf = mddev->private;
1524	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525	int chunk_sects = chunk_mask + 1;
1526	int sectors = bio_sectors(bio);
1527
1528	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1529		md_flush_request(mddev, bio);
1530		return true;
1531	}
1532
1533	if (!md_write_start(mddev, bio))
1534		return false;
1535
1536	/*
1537	 * If this request crosses a chunk boundary, we need to split
1538	 * it.
1539	 */
1540	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1541		     sectors > chunk_sects
1542		     && (conf->geo.near_copies < conf->geo.raid_disks
1543			 || conf->prev.near_copies <
1544			 conf->prev.raid_disks)))
1545		sectors = chunk_sects -
1546			(bio->bi_iter.bi_sector &
1547			 (chunk_sects - 1));
1548	__make_request(mddev, bio, sectors);
1549
1550	/* In case raid10d snuck in to freeze_array */
1551	wake_up(&conf->wait_barrier);
1552	return true;
 
 
 
1553}
1554
1555static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1556{
1557	struct r10conf *conf = mddev->private;
1558	int i;
1559
1560	if (conf->geo.near_copies < conf->geo.raid_disks)
1561		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1562	if (conf->geo.near_copies > 1)
1563		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1564	if (conf->geo.far_copies > 1) {
1565		if (conf->geo.far_offset)
1566			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1567		else
1568			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1569		if (conf->geo.far_set_size != conf->geo.raid_disks)
1570			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1571	}
1572	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1573					conf->geo.raid_disks - mddev->degraded);
1574	rcu_read_lock();
1575	for (i = 0; i < conf->geo.raid_disks; i++) {
1576		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1577		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1578	}
1579	rcu_read_unlock();
1580	seq_printf(seq, "]");
1581}
1582
1583/* check if there are enough drives for
1584 * every block to appear on atleast one.
1585 * Don't consider the device numbered 'ignore'
1586 * as we might be about to remove it.
1587 */
1588static int _enough(struct r10conf *conf, int previous, int ignore)
1589{
1590	int first = 0;
1591	int has_enough = 0;
1592	int disks, ncopies;
1593	if (previous) {
1594		disks = conf->prev.raid_disks;
1595		ncopies = conf->prev.near_copies;
1596	} else {
1597		disks = conf->geo.raid_disks;
1598		ncopies = conf->geo.near_copies;
1599	}
1600
1601	rcu_read_lock();
1602	do {
1603		int n = conf->copies;
1604		int cnt = 0;
1605		int this = first;
1606		while (n--) {
1607			struct md_rdev *rdev;
1608			if (this != ignore &&
1609			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1610			    test_bit(In_sync, &rdev->flags))
1611				cnt++;
1612			this = (this+1) % disks;
1613		}
1614		if (cnt == 0)
1615			goto out;
1616		first = (first + ncopies) % disks;
1617	} while (first != 0);
1618	has_enough = 1;
1619out:
1620	rcu_read_unlock();
1621	return has_enough;
1622}
1623
1624static int enough(struct r10conf *conf, int ignore)
1625{
1626	/* when calling 'enough', both 'prev' and 'geo' must
1627	 * be stable.
1628	 * This is ensured if ->reconfig_mutex or ->device_lock
1629	 * is held.
1630	 */
1631	return _enough(conf, 0, ignore) &&
1632		_enough(conf, 1, ignore);
1633}
1634
1635static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1636{
1637	char b[BDEVNAME_SIZE];
1638	struct r10conf *conf = mddev->private;
1639	unsigned long flags;
1640
1641	/*
1642	 * If it is not operational, then we have already marked it as dead
1643	 * else if it is the last working disks with "fail_last_dev == false",
1644	 * ignore the error, let the next level up know.
1645	 * else mark the drive as failed
1646	 */
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1649	    && !enough(conf, rdev->raid_disk)) {
1650		/*
1651		 * Don't fail the drive, just return an IO error.
1652		 */
 
 
 
 
 
1653		spin_unlock_irqrestore(&conf->device_lock, flags);
1654		return;
 
 
 
1655	}
1656	if (test_and_clear_bit(In_sync, &rdev->flags))
1657		mddev->degraded++;
1658	/*
1659	 * If recovery is running, make sure it aborts.
1660	 */
1661	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1662	set_bit(Blocked, &rdev->flags);
1663	set_bit(Faulty, &rdev->flags);
1664	set_mask_bits(&mddev->sb_flags, 0,
1665		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1666	spin_unlock_irqrestore(&conf->device_lock, flags);
1667	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1668		"md/raid10:%s: Operation continuing on %d devices.\n",
1669		mdname(mddev), bdevname(rdev->bdev, b),
1670		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1671}
1672
1673static void print_conf(struct r10conf *conf)
1674{
1675	int i;
1676	struct md_rdev *rdev;
1677
1678	pr_debug("RAID10 conf printout:\n");
1679	if (!conf) {
1680		pr_debug("(!conf)\n");
1681		return;
1682	}
1683	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1684		 conf->geo.raid_disks);
1685
1686	/* This is only called with ->reconfix_mutex held, so
1687	 * rcu protection of rdev is not needed */
1688	for (i = 0; i < conf->geo.raid_disks; i++) {
1689		char b[BDEVNAME_SIZE];
1690		rdev = conf->mirrors[i].rdev;
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 bdevname(rdev->bdev,b));
1696	}
1697}
1698
1699static void close_sync(struct r10conf *conf)
1700{
1701	wait_barrier(conf);
1702	allow_barrier(conf);
1703
1704	mempool_exit(&conf->r10buf_pool);
 
1705}
1706
1707static int raid10_spare_active(struct mddev *mddev)
1708{
1709	int i;
1710	struct r10conf *conf = mddev->private;
1711	struct raid10_info *tmp;
1712	int count = 0;
1713	unsigned long flags;
1714
1715	/*
1716	 * Find all non-in_sync disks within the RAID10 configuration
1717	 * and mark them in_sync
1718	 */
1719	for (i = 0; i < conf->geo.raid_disks; i++) {
1720		tmp = conf->mirrors + i;
1721		if (tmp->replacement
1722		    && tmp->replacement->recovery_offset == MaxSector
1723		    && !test_bit(Faulty, &tmp->replacement->flags)
1724		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1725			/* Replacement has just become active */
1726			if (!tmp->rdev
1727			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1728				count++;
1729			if (tmp->rdev) {
1730				/* Replaced device not technically faulty,
1731				 * but we need to be sure it gets removed
1732				 * and never re-added.
1733				 */
1734				set_bit(Faulty, &tmp->rdev->flags);
1735				sysfs_notify_dirent_safe(
1736					tmp->rdev->sysfs_state);
1737			}
1738			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1739		} else if (tmp->rdev
1740			   && tmp->rdev->recovery_offset == MaxSector
1741			   && !test_bit(Faulty, &tmp->rdev->flags)
1742			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1743			count++;
1744			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1745		}
1746	}
1747	spin_lock_irqsave(&conf->device_lock, flags);
1748	mddev->degraded -= count;
1749	spin_unlock_irqrestore(&conf->device_lock, flags);
1750
1751	print_conf(conf);
1752	return count;
1753}
1754
1755static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 
1756{
1757	struct r10conf *conf = mddev->private;
1758	int err = -EEXIST;
1759	int mirror;
1760	int first = 0;
1761	int last = conf->geo.raid_disks - 1;
1762
1763	if (mddev->recovery_cp < MaxSector)
1764		/* only hot-add to in-sync arrays, as recovery is
1765		 * very different from resync
1766		 */
1767		return -EBUSY;
1768	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1769		return -EINVAL;
1770
1771	if (md_integrity_add_rdev(rdev, mddev))
1772		return -ENXIO;
1773
1774	if (rdev->raid_disk >= 0)
1775		first = last = rdev->raid_disk;
1776
1777	if (rdev->saved_raid_disk >= first &&
1778	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1779	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780		mirror = rdev->saved_raid_disk;
1781	else
1782		mirror = first;
1783	for ( ; mirror <= last ; mirror++) {
1784		struct raid10_info *p = &conf->mirrors[mirror];
1785		if (p->recovery_disabled == mddev->recovery_disabled)
1786			continue;
1787		if (p->rdev) {
1788			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1789			    p->replacement != NULL)
1790				continue;
1791			clear_bit(In_sync, &rdev->flags);
1792			set_bit(Replacement, &rdev->flags);
1793			rdev->raid_disk = mirror;
1794			err = 0;
1795			if (mddev->gendisk)
1796				disk_stack_limits(mddev->gendisk, rdev->bdev,
1797						  rdev->data_offset << 9);
1798			conf->fullsync = 1;
1799			rcu_assign_pointer(p->replacement, rdev);
1800			break;
 
1801		}
1802
1803		if (mddev->gendisk)
1804			disk_stack_limits(mddev->gendisk, rdev->bdev,
1805					  rdev->data_offset << 9);
1806
1807		p->head_position = 0;
1808		p->recovery_disabled = mddev->recovery_disabled - 1;
1809		rdev->raid_disk = mirror;
1810		err = 0;
1811		if (rdev->saved_raid_disk != mirror)
1812			conf->fullsync = 1;
1813		rcu_assign_pointer(p->rdev, rdev);
1814		break;
1815	}
1816	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1817		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1818
 
1819	print_conf(conf);
1820	return err;
1821}
1822
1823static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1824{
1825	struct r10conf *conf = mddev->private;
1826	int err = 0;
1827	int number = rdev->raid_disk;
1828	struct md_rdev **rdevp;
1829	struct raid10_info *p = conf->mirrors + number;
1830
1831	print_conf(conf);
1832	if (rdev == p->rdev)
1833		rdevp = &p->rdev;
1834	else if (rdev == p->replacement)
1835		rdevp = &p->replacement;
1836	else
1837		return 0;
1838
1839	if (test_bit(In_sync, &rdev->flags) ||
1840	    atomic_read(&rdev->nr_pending)) {
1841		err = -EBUSY;
1842		goto abort;
1843	}
1844	/* Only remove non-faulty devices if recovery
1845	 * is not possible.
1846	 */
1847	if (!test_bit(Faulty, &rdev->flags) &&
1848	    mddev->recovery_disabled != p->recovery_disabled &&
1849	    (!p->replacement || p->replacement == rdev) &&
1850	    number < conf->geo.raid_disks &&
1851	    enough(conf, -1)) {
1852		err = -EBUSY;
1853		goto abort;
1854	}
1855	*rdevp = NULL;
1856	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857		synchronize_rcu();
1858		if (atomic_read(&rdev->nr_pending)) {
1859			/* lost the race, try later */
1860			err = -EBUSY;
1861			*rdevp = rdev;
1862			goto abort;
1863		}
 
1864	}
1865	if (p->replacement) {
1866		/* We must have just cleared 'rdev' */
1867		p->rdev = p->replacement;
1868		clear_bit(Replacement, &p->replacement->flags);
1869		smp_mb(); /* Make sure other CPUs may see both as identical
1870			   * but will never see neither -- if they are careful.
1871			   */
1872		p->replacement = NULL;
1873	}
1874
1875	clear_bit(WantReplacement, &rdev->flags);
1876	err = md_integrity_register(mddev);
1877
1878abort:
1879
1880	print_conf(conf);
1881	return err;
1882}
1883
1884static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
 
1885{
1886	struct r10conf *conf = r10_bio->mddev->private;
 
 
1887
1888	if (!bio->bi_status)
 
 
1889		set_bit(R10BIO_Uptodate, &r10_bio->state);
1890	else
1891		/* The write handler will notice the lack of
1892		 * R10BIO_Uptodate and record any errors etc
1893		 */
1894		atomic_add(r10_bio->sectors,
1895			   &conf->mirrors[d].rdev->corrected_errors);
1896
1897	/* for reconstruct, we always reschedule after a read.
1898	 * for resync, only after all reads
1899	 */
1900	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1901	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1902	    atomic_dec_and_test(&r10_bio->remaining)) {
1903		/* we have read all the blocks,
1904		 * do the comparison in process context in raid10d
1905		 */
1906		reschedule_retry(r10_bio);
1907	}
1908}
1909
1910static void end_sync_read(struct bio *bio)
1911{
1912	struct r10bio *r10_bio = get_resync_r10bio(bio);
1913	struct r10conf *conf = r10_bio->mddev->private;
1914	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1915
1916	__end_sync_read(r10_bio, bio, d);
1917}
1918
1919static void end_reshape_read(struct bio *bio)
1920{
1921	/* reshape read bio isn't allocated from r10buf_pool */
1922	struct r10bio *r10_bio = bio->bi_private;
1923
1924	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1925}
1926
1927static void end_sync_request(struct r10bio *r10_bio)
1928{
1929	struct mddev *mddev = r10_bio->mddev;
1930
1931	while (atomic_dec_and_test(&r10_bio->remaining)) {
1932		if (r10_bio->master_bio == NULL) {
1933			/* the primary of several recovery bios */
1934			sector_t s = r10_bio->sectors;
1935			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1936			    test_bit(R10BIO_WriteError, &r10_bio->state))
1937				reschedule_retry(r10_bio);
1938			else
1939				put_buf(r10_bio);
1940			md_done_sync(mddev, s, 1);
1941			break;
1942		} else {
1943			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1944			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1945			    test_bit(R10BIO_WriteError, &r10_bio->state))
1946				reschedule_retry(r10_bio);
1947			else
1948				put_buf(r10_bio);
1949			r10_bio = r10_bio2;
1950		}
1951	}
1952}
1953
1954static void end_sync_write(struct bio *bio)
1955{
1956	struct r10bio *r10_bio = get_resync_r10bio(bio);
1957	struct mddev *mddev = r10_bio->mddev;
1958	struct r10conf *conf = mddev->private;
 
1959	int d;
1960	sector_t first_bad;
1961	int bad_sectors;
1962	int slot;
1963	int repl;
1964	struct md_rdev *rdev = NULL;
1965
1966	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1967	if (repl)
1968		rdev = conf->mirrors[d].replacement;
1969	else
1970		rdev = conf->mirrors[d].rdev;
1971
1972	if (bio->bi_status) {
1973		if (repl)
1974			md_error(mddev, rdev);
1975		else {
1976			set_bit(WriteErrorSeen, &rdev->flags);
1977			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1978				set_bit(MD_RECOVERY_NEEDED,
1979					&rdev->mddev->recovery);
1980			set_bit(R10BIO_WriteError, &r10_bio->state);
1981		}
1982	} else if (is_badblock(rdev,
1983			     r10_bio->devs[slot].addr,
1984			     r10_bio->sectors,
1985			     &first_bad, &bad_sectors))
1986		set_bit(R10BIO_MadeGood, &r10_bio->state);
1987
1988	rdev_dec_pending(rdev, mddev);
1989
1990	end_sync_request(r10_bio);
1991}
1992
1993/*
1994 * Note: sync and recover and handled very differently for raid10
1995 * This code is for resync.
1996 * For resync, we read through virtual addresses and read all blocks.
1997 * If there is any error, we schedule a write.  The lowest numbered
1998 * drive is authoritative.
1999 * However requests come for physical address, so we need to map.
2000 * For every physical address there are raid_disks/copies virtual addresses,
2001 * which is always are least one, but is not necessarly an integer.
2002 * This means that a physical address can span multiple chunks, so we may
2003 * have to submit multiple io requests for a single sync request.
2004 */
2005/*
2006 * We check if all blocks are in-sync and only write to blocks that
2007 * aren't in sync
2008 */
2009static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2010{
2011	struct r10conf *conf = mddev->private;
2012	int i, first;
2013	struct bio *tbio, *fbio;
2014	int vcnt;
2015	struct page **tpages, **fpages;
2016
2017	atomic_set(&r10_bio->remaining, 1);
2018
2019	/* find the first device with a block */
2020	for (i=0; i<conf->copies; i++)
2021		if (!r10_bio->devs[i].bio->bi_status)
2022			break;
2023
2024	if (i == conf->copies)
2025		goto done;
2026
2027	first = i;
2028	fbio = r10_bio->devs[i].bio;
2029	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2030	fbio->bi_iter.bi_idx = 0;
2031	fpages = get_resync_pages(fbio)->pages;
2032
2033	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2034	/* now find blocks with errors */
2035	for (i=0 ; i < conf->copies ; i++) {
2036		int  j, d;
2037		struct md_rdev *rdev;
2038		struct resync_pages *rp;
2039
2040		tbio = r10_bio->devs[i].bio;
2041
2042		if (tbio->bi_end_io != end_sync_read)
2043			continue;
2044		if (i == first)
2045			continue;
2046
2047		tpages = get_resync_pages(tbio)->pages;
2048		d = r10_bio->devs[i].devnum;
2049		rdev = conf->mirrors[d].rdev;
2050		if (!r10_bio->devs[i].bio->bi_status) {
2051			/* We know that the bi_io_vec layout is the same for
2052			 * both 'first' and 'i', so we just compare them.
2053			 * All vec entries are PAGE_SIZE;
2054			 */
2055			int sectors = r10_bio->sectors;
2056			for (j = 0; j < vcnt; j++) {
2057				int len = PAGE_SIZE;
2058				if (sectors < (len / 512))
2059					len = sectors * 512;
2060				if (memcmp(page_address(fpages[j]),
2061					   page_address(tpages[j]),
2062					   len))
2063					break;
2064				sectors -= len/512;
2065			}
2066			if (j == vcnt)
2067				continue;
2068			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2069			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2070				/* Don't fix anything. */
2071				continue;
2072		} else if (test_bit(FailFast, &rdev->flags)) {
2073			/* Just give up on this device */
2074			md_error(rdev->mddev, rdev);
2075			continue;
2076		}
2077		/* Ok, we need to write this bio, either to correct an
2078		 * inconsistency or to correct an unreadable block.
2079		 * First we need to fixup bv_offset, bv_len and
2080		 * bi_vecs, as the read request might have corrupted these
2081		 */
2082		rp = get_resync_pages(tbio);
2083		bio_reset(tbio);
2084
2085		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2086
2087		rp->raid_bio = r10_bio;
2088		tbio->bi_private = rp;
2089		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
 
 
 
 
 
 
 
 
 
 
 
2090		tbio->bi_end_io = end_sync_write;
2091		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2092
2093		bio_copy_data(tbio, fbio);
2094
 
2095		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2096		atomic_inc(&r10_bio->remaining);
2097		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2098
2099		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2100			tbio->bi_opf |= MD_FAILFAST;
2101		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2102		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2103		generic_make_request(tbio);
2104	}
2105
2106	/* Now write out to any replacement devices
2107	 * that are active
2108	 */
2109	for (i = 0; i < conf->copies; i++) {
2110		int d;
2111
2112		tbio = r10_bio->devs[i].repl_bio;
2113		if (!tbio || !tbio->bi_end_io)
2114			continue;
2115		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2116		    && r10_bio->devs[i].bio != fbio)
2117			bio_copy_data(tbio, fbio);
2118		d = r10_bio->devs[i].devnum;
2119		atomic_inc(&r10_bio->remaining);
2120		md_sync_acct(conf->mirrors[d].replacement->bdev,
2121			     bio_sectors(tbio));
2122		generic_make_request(tbio);
2123	}
2124
2125done:
2126	if (atomic_dec_and_test(&r10_bio->remaining)) {
2127		md_done_sync(mddev, r10_bio->sectors, 1);
2128		put_buf(r10_bio);
2129	}
2130}
2131
2132/*
2133 * Now for the recovery code.
2134 * Recovery happens across physical sectors.
2135 * We recover all non-is_sync drives by finding the virtual address of
2136 * each, and then choose a working drive that also has that virt address.
2137 * There is a separate r10_bio for each non-in_sync drive.
2138 * Only the first two slots are in use. The first for reading,
2139 * The second for writing.
2140 *
2141 */
2142static void fix_recovery_read_error(struct r10bio *r10_bio)
2143{
2144	/* We got a read error during recovery.
2145	 * We repeat the read in smaller page-sized sections.
2146	 * If a read succeeds, write it to the new device or record
2147	 * a bad block if we cannot.
2148	 * If a read fails, record a bad block on both old and
2149	 * new devices.
2150	 */
2151	struct mddev *mddev = r10_bio->mddev;
2152	struct r10conf *conf = mddev->private;
2153	struct bio *bio = r10_bio->devs[0].bio;
2154	sector_t sect = 0;
2155	int sectors = r10_bio->sectors;
2156	int idx = 0;
2157	int dr = r10_bio->devs[0].devnum;
2158	int dw = r10_bio->devs[1].devnum;
2159	struct page **pages = get_resync_pages(bio)->pages;
2160
2161	while (sectors) {
2162		int s = sectors;
2163		struct md_rdev *rdev;
2164		sector_t addr;
2165		int ok;
2166
2167		if (s > (PAGE_SIZE>>9))
2168			s = PAGE_SIZE >> 9;
2169
2170		rdev = conf->mirrors[dr].rdev;
2171		addr = r10_bio->devs[0].addr + sect,
2172		ok = sync_page_io(rdev,
2173				  addr,
2174				  s << 9,
2175				  pages[idx],
2176				  REQ_OP_READ, 0, false);
2177		if (ok) {
2178			rdev = conf->mirrors[dw].rdev;
2179			addr = r10_bio->devs[1].addr + sect;
2180			ok = sync_page_io(rdev,
2181					  addr,
2182					  s << 9,
2183					  pages[idx],
2184					  REQ_OP_WRITE, 0, false);
2185			if (!ok) {
2186				set_bit(WriteErrorSeen, &rdev->flags);
2187				if (!test_and_set_bit(WantReplacement,
2188						      &rdev->flags))
2189					set_bit(MD_RECOVERY_NEEDED,
2190						&rdev->mddev->recovery);
2191			}
2192		}
2193		if (!ok) {
2194			/* We don't worry if we cannot set a bad block -
2195			 * it really is bad so there is no loss in not
2196			 * recording it yet
2197			 */
2198			rdev_set_badblocks(rdev, addr, s, 0);
2199
2200			if (rdev != conf->mirrors[dw].rdev) {
2201				/* need bad block on destination too */
2202				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2203				addr = r10_bio->devs[1].addr + sect;
2204				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2205				if (!ok) {
2206					/* just abort the recovery */
2207					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2208						  mdname(mddev));
 
 
2209
2210					conf->mirrors[dw].recovery_disabled
2211						= mddev->recovery_disabled;
2212					set_bit(MD_RECOVERY_INTR,
2213						&mddev->recovery);
2214					break;
2215				}
2216			}
2217		}
2218
2219		sectors -= s;
2220		sect += s;
2221		idx++;
2222	}
2223}
2224
2225static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2226{
2227	struct r10conf *conf = mddev->private;
2228	int d;
2229	struct bio *wbio, *wbio2;
2230
2231	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2232		fix_recovery_read_error(r10_bio);
2233		end_sync_request(r10_bio);
2234		return;
2235	}
2236
2237	/*
2238	 * share the pages with the first bio
2239	 * and submit the write request
2240	 */
 
2241	d = r10_bio->devs[1].devnum;
2242	wbio = r10_bio->devs[1].bio;
2243	wbio2 = r10_bio->devs[1].repl_bio;
2244	/* Need to test wbio2->bi_end_io before we call
2245	 * generic_make_request as if the former is NULL,
2246	 * the latter is free to free wbio2.
2247	 */
2248	if (wbio2 && !wbio2->bi_end_io)
2249		wbio2 = NULL;
2250	if (wbio->bi_end_io) {
2251		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2252		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2253		generic_make_request(wbio);
2254	}
2255	if (wbio2) {
2256		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2257		md_sync_acct(conf->mirrors[d].replacement->bdev,
2258			     bio_sectors(wbio2));
2259		generic_make_request(wbio2);
2260	}
2261}
2262
 
2263/*
2264 * Used by fix_read_error() to decay the per rdev read_errors.
2265 * We halve the read error count for every hour that has elapsed
2266 * since the last recorded read error.
2267 *
2268 */
2269static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2270{
2271	long cur_time_mon;
2272	unsigned long hours_since_last;
2273	unsigned int read_errors = atomic_read(&rdev->read_errors);
2274
2275	cur_time_mon = ktime_get_seconds();
2276
2277	if (rdev->last_read_error == 0) {
 
2278		/* first time we've seen a read error */
2279		rdev->last_read_error = cur_time_mon;
2280		return;
2281	}
2282
2283	hours_since_last = (long)(cur_time_mon -
2284			    rdev->last_read_error) / 3600;
2285
2286	rdev->last_read_error = cur_time_mon;
2287
2288	/*
2289	 * if hours_since_last is > the number of bits in read_errors
2290	 * just set read errors to 0. We do this to avoid
2291	 * overflowing the shift of read_errors by hours_since_last.
2292	 */
2293	if (hours_since_last >= 8 * sizeof(read_errors))
2294		atomic_set(&rdev->read_errors, 0);
2295	else
2296		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2297}
2298
2299static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2300			    int sectors, struct page *page, int rw)
2301{
2302	sector_t first_bad;
2303	int bad_sectors;
2304
2305	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2306	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2307		return -1;
2308	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2309		/* success */
2310		return 1;
2311	if (rw == WRITE) {
2312		set_bit(WriteErrorSeen, &rdev->flags);
2313		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2314			set_bit(MD_RECOVERY_NEEDED,
2315				&rdev->mddev->recovery);
2316	}
2317	/* need to record an error - either for the block or the device */
2318	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2319		md_error(rdev->mddev, rdev);
2320	return 0;
2321}
2322
2323/*
2324 * This is a kernel thread which:
2325 *
2326 *	1.	Retries failed read operations on working mirrors.
2327 *	2.	Updates the raid superblock when problems encounter.
2328 *	3.	Performs writes following reads for array synchronising.
2329 */
2330
2331static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2332{
2333	int sect = 0; /* Offset from r10_bio->sector */
2334	int sectors = r10_bio->sectors;
2335	struct md_rdev *rdev;
2336	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2337	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2338
2339	/* still own a reference to this rdev, so it cannot
2340	 * have been cleared recently.
2341	 */
2342	rdev = conf->mirrors[d].rdev;
2343
2344	if (test_bit(Faulty, &rdev->flags))
2345		/* drive has already been failed, just ignore any
2346		   more fix_read_error() attempts */
2347		return;
2348
2349	check_decay_read_errors(mddev, rdev);
2350	atomic_inc(&rdev->read_errors);
2351	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2352		char b[BDEVNAME_SIZE];
2353		bdevname(rdev->bdev, b);
2354
2355		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2356			  mdname(mddev), b,
2357			  atomic_read(&rdev->read_errors), max_read_errors);
2358		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2359			  mdname(mddev), b);
2360		md_error(mddev, rdev);
2361		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
 
 
2362		return;
2363	}
2364
2365	while(sectors) {
2366		int s = sectors;
2367		int sl = r10_bio->read_slot;
2368		int success = 0;
2369		int start;
2370
2371		if (s > (PAGE_SIZE>>9))
2372			s = PAGE_SIZE >> 9;
2373
2374		rcu_read_lock();
2375		do {
2376			sector_t first_bad;
2377			int bad_sectors;
2378
2379			d = r10_bio->devs[sl].devnum;
2380			rdev = rcu_dereference(conf->mirrors[d].rdev);
2381			if (rdev &&
2382			    test_bit(In_sync, &rdev->flags) &&
2383			    !test_bit(Faulty, &rdev->flags) &&
2384			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2385					&first_bad, &bad_sectors) == 0) {
2386				atomic_inc(&rdev->nr_pending);
2387				rcu_read_unlock();
2388				success = sync_page_io(rdev,
2389						       r10_bio->devs[sl].addr +
2390						       sect,
2391						       s<<9,
2392						       conf->tmppage,
2393						       REQ_OP_READ, 0, false);
2394				rdev_dec_pending(rdev, mddev);
2395				rcu_read_lock();
2396				if (success)
2397					break;
2398			}
2399			sl++;
2400			if (sl == conf->copies)
2401				sl = 0;
2402		} while (!success && sl != r10_bio->read_slot);
2403		rcu_read_unlock();
2404
2405		if (!success) {
2406			/* Cannot read from anywhere, just mark the block
2407			 * as bad on the first device to discourage future
2408			 * reads.
2409			 */
2410			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2411			rdev = conf->mirrors[dn].rdev;
2412
2413			if (!rdev_set_badblocks(
2414				    rdev,
2415				    r10_bio->devs[r10_bio->read_slot].addr
2416				    + sect,
2417				    s, 0)) {
2418				md_error(mddev, rdev);
2419				r10_bio->devs[r10_bio->read_slot].bio
2420					= IO_BLOCKED;
2421			}
2422			break;
2423		}
2424
2425		start = sl;
2426		/* write it back and re-read */
2427		rcu_read_lock();
2428		while (sl != r10_bio->read_slot) {
2429			char b[BDEVNAME_SIZE];
2430
2431			if (sl==0)
2432				sl = conf->copies;
2433			sl--;
2434			d = r10_bio->devs[sl].devnum;
2435			rdev = rcu_dereference(conf->mirrors[d].rdev);
2436			if (!rdev ||
2437			    test_bit(Faulty, &rdev->flags) ||
2438			    !test_bit(In_sync, &rdev->flags))
2439				continue;
2440
2441			atomic_inc(&rdev->nr_pending);
2442			rcu_read_unlock();
2443			if (r10_sync_page_io(rdev,
2444					     r10_bio->devs[sl].addr +
2445					     sect,
2446					     s, conf->tmppage, WRITE)
2447			    == 0) {
2448				/* Well, this device is dead */
2449				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2450					  mdname(mddev), s,
2451					  (unsigned long long)(
2452						  sect +
2453						  choose_data_offset(r10_bio,
2454								     rdev)),
2455					  bdevname(rdev->bdev, b));
2456				pr_notice("md/raid10:%s: %s: failing drive\n",
2457					  mdname(mddev),
2458					  bdevname(rdev->bdev, b));
 
 
2459			}
2460			rdev_dec_pending(rdev, mddev);
2461			rcu_read_lock();
2462		}
2463		sl = start;
2464		while (sl != r10_bio->read_slot) {
2465			char b[BDEVNAME_SIZE];
2466
2467			if (sl==0)
2468				sl = conf->copies;
2469			sl--;
2470			d = r10_bio->devs[sl].devnum;
2471			rdev = rcu_dereference(conf->mirrors[d].rdev);
2472			if (!rdev ||
2473			    test_bit(Faulty, &rdev->flags) ||
2474			    !test_bit(In_sync, &rdev->flags))
2475				continue;
2476
2477			atomic_inc(&rdev->nr_pending);
2478			rcu_read_unlock();
2479			switch (r10_sync_page_io(rdev,
2480					     r10_bio->devs[sl].addr +
2481					     sect,
2482					     s, conf->tmppage,
2483						 READ)) {
2484			case 0:
2485				/* Well, this device is dead */
2486				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
 
 
 
2487				       mdname(mddev), s,
2488				       (unsigned long long)(
2489					       sect +
2490					       choose_data_offset(r10_bio, rdev)),
2491				       bdevname(rdev->bdev, b));
2492				pr_notice("md/raid10:%s: %s: failing drive\n",
 
2493				       mdname(mddev),
2494				       bdevname(rdev->bdev, b));
2495				break;
2496			case 1:
2497				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
 
 
2498				       mdname(mddev), s,
2499				       (unsigned long long)(
2500					       sect +
2501					       choose_data_offset(r10_bio, rdev)),
2502				       bdevname(rdev->bdev, b));
2503				atomic_add(s, &rdev->corrected_errors);
2504			}
2505
2506			rdev_dec_pending(rdev, mddev);
2507			rcu_read_lock();
2508		}
2509		rcu_read_unlock();
2510
2511		sectors -= s;
2512		sect += s;
2513	}
2514}
2515
2516static int narrow_write_error(struct r10bio *r10_bio, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517{
2518	struct bio *bio = r10_bio->master_bio;
2519	struct mddev *mddev = r10_bio->mddev;
2520	struct r10conf *conf = mddev->private;
2521	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2522	/* bio has the data to be written to slot 'i' where
2523	 * we just recently had a write error.
2524	 * We repeatedly clone the bio and trim down to one block,
2525	 * then try the write.  Where the write fails we record
2526	 * a bad block.
2527	 * It is conceivable that the bio doesn't exactly align with
2528	 * blocks.  We must handle this.
2529	 *
2530	 * We currently own a reference to the rdev.
2531	 */
2532
2533	int block_sectors;
2534	sector_t sector;
2535	int sectors;
2536	int sect_to_write = r10_bio->sectors;
2537	int ok = 1;
2538
2539	if (rdev->badblocks.shift < 0)
2540		return 0;
2541
2542	block_sectors = roundup(1 << rdev->badblocks.shift,
2543				bdev_logical_block_size(rdev->bdev) >> 9);
2544	sector = r10_bio->sector;
2545	sectors = ((r10_bio->sector + block_sectors)
2546		   & ~(sector_t)(block_sectors - 1))
2547		- sector;
2548
2549	while (sect_to_write) {
2550		struct bio *wbio;
2551		sector_t wsector;
2552		if (sectors > sect_to_write)
2553			sectors = sect_to_write;
2554		/* Write at 'sector' for 'sectors' */
2555		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2556		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2557		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2558		wbio->bi_iter.bi_sector = wsector +
2559				   choose_data_offset(r10_bio, rdev);
2560		bio_set_dev(wbio, rdev->bdev);
2561		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2562
2563		if (submit_bio_wait(wbio) < 0)
2564			/* Failure! */
2565			ok = rdev_set_badblocks(rdev, wsector,
2566						sectors, 0)
2567				&& ok;
2568
2569		bio_put(wbio);
2570		sect_to_write -= sectors;
2571		sector += sectors;
2572		sectors = block_sectors;
2573	}
2574	return ok;
2575}
2576
2577static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2578{
2579	int slot = r10_bio->read_slot;
 
2580	struct bio *bio;
2581	struct r10conf *conf = mddev->private;
2582	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
 
 
 
2583
2584	/* we got a read error. Maybe the drive is bad.  Maybe just
2585	 * the block and we can fix it.
2586	 * We freeze all other IO, and try reading the block from
2587	 * other devices.  When we find one, we re-write
2588	 * and check it that fixes the read error.
2589	 * This is all done synchronously while the array is
2590	 * frozen.
2591	 */
 
 
 
 
 
 
 
2592	bio = r10_bio->devs[slot].bio;
2593	bio_put(bio);
2594	r10_bio->devs[slot].bio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
2595
2596	if (mddev->ro)
2597		r10_bio->devs[slot].bio = IO_BLOCKED;
2598	else if (!test_bit(FailFast, &rdev->flags)) {
2599		freeze_array(conf, 1);
2600		fix_read_error(conf, mddev, r10_bio);
2601		unfreeze_array(conf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602	} else
2603		md_error(mddev, rdev);
2604
2605	rdev_dec_pending(rdev, mddev);
2606	allow_barrier(conf);
2607	r10_bio->state = 0;
2608	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2609}
2610
2611static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2612{
2613	/* Some sort of write request has finished and it
2614	 * succeeded in writing where we thought there was a
2615	 * bad block.  So forget the bad block.
2616	 * Or possibly if failed and we need to record
2617	 * a bad block.
2618	 */
2619	int m;
2620	struct md_rdev *rdev;
2621
2622	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2623	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2624		for (m = 0; m < conf->copies; m++) {
2625			int dev = r10_bio->devs[m].devnum;
2626			rdev = conf->mirrors[dev].rdev;
2627			if (r10_bio->devs[m].bio == NULL ||
2628				r10_bio->devs[m].bio->bi_end_io == NULL)
2629				continue;
2630			if (!r10_bio->devs[m].bio->bi_status) {
2631				rdev_clear_badblocks(
2632					rdev,
2633					r10_bio->devs[m].addr,
2634					r10_bio->sectors, 0);
2635			} else {
2636				if (!rdev_set_badblocks(
2637					    rdev,
2638					    r10_bio->devs[m].addr,
2639					    r10_bio->sectors, 0))
2640					md_error(conf->mddev, rdev);
2641			}
2642			rdev = conf->mirrors[dev].replacement;
2643			if (r10_bio->devs[m].repl_bio == NULL ||
2644				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2645				continue;
2646
2647			if (!r10_bio->devs[m].repl_bio->bi_status) {
2648				rdev_clear_badblocks(
2649					rdev,
2650					r10_bio->devs[m].addr,
2651					r10_bio->sectors, 0);
2652			} else {
2653				if (!rdev_set_badblocks(
2654					    rdev,
2655					    r10_bio->devs[m].addr,
2656					    r10_bio->sectors, 0))
2657					md_error(conf->mddev, rdev);
2658			}
2659		}
2660		put_buf(r10_bio);
2661	} else {
2662		bool fail = false;
2663		for (m = 0; m < conf->copies; m++) {
2664			int dev = r10_bio->devs[m].devnum;
2665			struct bio *bio = r10_bio->devs[m].bio;
2666			rdev = conf->mirrors[dev].rdev;
2667			if (bio == IO_MADE_GOOD) {
2668				rdev_clear_badblocks(
2669					rdev,
2670					r10_bio->devs[m].addr,
2671					r10_bio->sectors, 0);
2672				rdev_dec_pending(rdev, conf->mddev);
2673			} else if (bio != NULL && bio->bi_status) {
2674				fail = true;
2675				if (!narrow_write_error(r10_bio, m)) {
2676					md_error(conf->mddev, rdev);
2677					set_bit(R10BIO_Degraded,
2678						&r10_bio->state);
2679				}
2680				rdev_dec_pending(rdev, conf->mddev);
2681			}
2682			bio = r10_bio->devs[m].repl_bio;
2683			rdev = conf->mirrors[dev].replacement;
2684			if (rdev && bio == IO_MADE_GOOD) {
2685				rdev_clear_badblocks(
2686					rdev,
2687					r10_bio->devs[m].addr,
2688					r10_bio->sectors, 0);
2689				rdev_dec_pending(rdev, conf->mddev);
2690			}
2691		}
2692		if (fail) {
2693			spin_lock_irq(&conf->device_lock);
2694			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2695			conf->nr_queued++;
2696			spin_unlock_irq(&conf->device_lock);
2697			/*
2698			 * In case freeze_array() is waiting for condition
2699			 * nr_pending == nr_queued + extra to be true.
2700			 */
2701			wake_up(&conf->wait_barrier);
2702			md_wakeup_thread(conf->mddev->thread);
2703		} else {
2704			if (test_bit(R10BIO_WriteError,
2705				     &r10_bio->state))
2706				close_write(r10_bio);
2707			raid_end_bio_io(r10_bio);
2708		}
 
 
 
 
2709	}
2710}
2711
2712static void raid10d(struct md_thread *thread)
2713{
2714	struct mddev *mddev = thread->mddev;
2715	struct r10bio *r10_bio;
2716	unsigned long flags;
2717	struct r10conf *conf = mddev->private;
2718	struct list_head *head = &conf->retry_list;
2719	struct blk_plug plug;
2720
2721	md_check_recovery(mddev);
2722
2723	if (!list_empty_careful(&conf->bio_end_io_list) &&
2724	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725		LIST_HEAD(tmp);
2726		spin_lock_irqsave(&conf->device_lock, flags);
2727		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2728			while (!list_empty(&conf->bio_end_io_list)) {
2729				list_move(conf->bio_end_io_list.prev, &tmp);
2730				conf->nr_queued--;
2731			}
2732		}
2733		spin_unlock_irqrestore(&conf->device_lock, flags);
2734		while (!list_empty(&tmp)) {
2735			r10_bio = list_first_entry(&tmp, struct r10bio,
2736						   retry_list);
2737			list_del(&r10_bio->retry_list);
2738			if (mddev->degraded)
2739				set_bit(R10BIO_Degraded, &r10_bio->state);
2740
2741			if (test_bit(R10BIO_WriteError,
2742				     &r10_bio->state))
2743				close_write(r10_bio);
2744			raid_end_bio_io(r10_bio);
2745		}
2746	}
2747
2748	blk_start_plug(&plug);
2749	for (;;) {
2750
2751		flush_pending_writes(conf);
2752
2753		spin_lock_irqsave(&conf->device_lock, flags);
2754		if (list_empty(head)) {
2755			spin_unlock_irqrestore(&conf->device_lock, flags);
2756			break;
2757		}
2758		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2759		list_del(head->prev);
2760		conf->nr_queued--;
2761		spin_unlock_irqrestore(&conf->device_lock, flags);
2762
2763		mddev = r10_bio->mddev;
2764		conf = mddev->private;
2765		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2766		    test_bit(R10BIO_WriteError, &r10_bio->state))
2767			handle_write_completed(conf, r10_bio);
2768		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2769			reshape_request_write(mddev, r10_bio);
2770		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2771			sync_request_write(mddev, r10_bio);
2772		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2773			recovery_request_write(mddev, r10_bio);
2774		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2775			handle_read_error(mddev, r10_bio);
2776		else
2777			WARN_ON_ONCE(1);
 
 
 
 
 
2778
2779		cond_resched();
2780		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2781			md_check_recovery(mddev);
2782	}
2783	blk_finish_plug(&plug);
2784}
2785
2786static int init_resync(struct r10conf *conf)
 
2787{
2788	int ret, buffs, i;
2789
2790	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2791	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2792	conf->have_replacement = 0;
2793	for (i = 0; i < conf->geo.raid_disks; i++)
2794		if (conf->mirrors[i].replacement)
2795			conf->have_replacement = 1;
2796	ret = mempool_init(&conf->r10buf_pool, buffs,
2797			   r10buf_pool_alloc, r10buf_pool_free, conf);
2798	if (ret)
2799		return ret;
2800	conf->next_resync = 0;
2801	return 0;
2802}
2803
2804static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2805{
2806	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2807	struct rsync_pages *rp;
2808	struct bio *bio;
2809	int nalloc;
2810	int i;
2811
2812	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2813	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2814		nalloc = conf->copies; /* resync */
2815	else
2816		nalloc = 2; /* recovery */
2817
2818	for (i = 0; i < nalloc; i++) {
2819		bio = r10bio->devs[i].bio;
2820		rp = bio->bi_private;
2821		bio_reset(bio);
2822		bio->bi_private = rp;
2823		bio = r10bio->devs[i].repl_bio;
2824		if (bio) {
2825			rp = bio->bi_private;
2826			bio_reset(bio);
2827			bio->bi_private = rp;
2828		}
2829	}
2830	return r10bio;
2831}
2832
2833/*
2834 * Set cluster_sync_high since we need other nodes to add the
2835 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2836 */
2837static void raid10_set_cluster_sync_high(struct r10conf *conf)
2838{
2839	sector_t window_size;
2840	int extra_chunk, chunks;
2841
2842	/*
2843	 * First, here we define "stripe" as a unit which across
2844	 * all member devices one time, so we get chunks by use
2845	 * raid_disks / near_copies. Otherwise, if near_copies is
2846	 * close to raid_disks, then resync window could increases
2847	 * linearly with the increase of raid_disks, which means
2848	 * we will suspend a really large IO window while it is not
2849	 * necessary. If raid_disks is not divisible by near_copies,
2850	 * an extra chunk is needed to ensure the whole "stripe" is
2851	 * covered.
2852	 */
2853
2854	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2855	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2856		extra_chunk = 0;
2857	else
2858		extra_chunk = 1;
2859	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2860
2861	/*
2862	 * At least use a 32M window to align with raid1's resync window
2863	 */
2864	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2865			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2866
2867	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2868}
2869
2870/*
2871 * perform a "sync" on one "block"
2872 *
2873 * We need to make sure that no normal I/O request - particularly write
2874 * requests - conflict with active sync requests.
2875 *
2876 * This is achieved by tracking pending requests and a 'barrier' concept
2877 * that can be installed to exclude normal IO requests.
2878 *
2879 * Resync and recovery are handled very differently.
2880 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2881 *
2882 * For resync, we iterate over virtual addresses, read all copies,
2883 * and update if there are differences.  If only one copy is live,
2884 * skip it.
2885 * For recovery, we iterate over physical addresses, read a good
2886 * value for each non-in_sync drive, and over-write.
2887 *
2888 * So, for recovery we may have several outstanding complex requests for a
2889 * given address, one for each out-of-sync device.  We model this by allocating
2890 * a number of r10_bio structures, one for each out-of-sync device.
2891 * As we setup these structures, we collect all bio's together into a list
2892 * which we then process collectively to add pages, and then process again
2893 * to pass to generic_make_request.
2894 *
2895 * The r10_bio structures are linked using a borrowed master_bio pointer.
2896 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2897 * has its remaining count decremented to 0, the whole complex operation
2898 * is complete.
2899 *
2900 */
2901
2902static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2903			     int *skipped)
2904{
2905	struct r10conf *conf = mddev->private;
2906	struct r10bio *r10_bio;
2907	struct bio *biolist = NULL, *bio;
2908	sector_t max_sector, nr_sectors;
2909	int i;
2910	int max_sync;
2911	sector_t sync_blocks;
2912	sector_t sectors_skipped = 0;
2913	int chunks_skipped = 0;
2914	sector_t chunk_mask = conf->geo.chunk_mask;
2915	int page_idx = 0;
2916
2917	if (!mempool_initialized(&conf->r10buf_pool))
2918		if (init_resync(conf))
2919			return 0;
2920
2921	/*
2922	 * Allow skipping a full rebuild for incremental assembly
2923	 * of a clean array, like RAID1 does.
2924	 */
2925	if (mddev->bitmap == NULL &&
2926	    mddev->recovery_cp == MaxSector &&
2927	    mddev->reshape_position == MaxSector &&
2928	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2929	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2930	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2931	    conf->fullsync == 0) {
2932		*skipped = 1;
2933		return mddev->dev_sectors - sector_nr;
2934	}
2935
2936 skipped:
2937	max_sector = mddev->dev_sectors;
2938	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940		max_sector = mddev->resync_max_sectors;
2941	if (sector_nr >= max_sector) {
2942		conf->cluster_sync_low = 0;
2943		conf->cluster_sync_high = 0;
2944
2945		/* If we aborted, we need to abort the
2946		 * sync on the 'current' bitmap chucks (there can
2947		 * be several when recovering multiple devices).
2948		 * as we may have started syncing it but not finished.
2949		 * We can find the current address in
2950		 * mddev->curr_resync, but for recovery,
2951		 * we need to convert that to several
2952		 * virtual addresses.
2953		 */
2954		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955			end_reshape(conf);
2956			close_sync(conf);
2957			return 0;
2958		}
2959
2960		if (mddev->curr_resync < max_sector) { /* aborted */
2961			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963						   &sync_blocks, 1);
2964			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965				sector_t sect =
2966					raid10_find_virt(conf, mddev->curr_resync, i);
2967				md_bitmap_end_sync(mddev->bitmap, sect,
2968						   &sync_blocks, 1);
2969			}
2970		} else {
2971			/* completed sync */
2972			if ((!mddev->bitmap || conf->fullsync)
2973			    && conf->have_replacement
2974			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975				/* Completed a full sync so the replacements
2976				 * are now fully recovered.
2977				 */
2978				rcu_read_lock();
2979				for (i = 0; i < conf->geo.raid_disks; i++) {
2980					struct md_rdev *rdev =
2981						rcu_dereference(conf->mirrors[i].replacement);
2982					if (rdev)
2983						rdev->recovery_offset = MaxSector;
2984				}
2985				rcu_read_unlock();
2986			}
 
2987			conf->fullsync = 0;
2988		}
2989		md_bitmap_close_sync(mddev->bitmap);
2990		close_sync(conf);
2991		*skipped = 1;
2992		return sectors_skipped;
2993	}
2994
2995	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2996		return reshape_request(mddev, sector_nr, skipped);
2997
2998	if (chunks_skipped >= conf->geo.raid_disks) {
2999		/* if there has been nothing to do on any drive,
3000		 * then there is nothing to do at all..
3001		 */
3002		*skipped = 1;
3003		return (max_sector - sector_nr) + sectors_skipped;
3004	}
3005
3006	if (max_sector > mddev->resync_max)
3007		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3008
3009	/* make sure whole request will fit in a chunk - if chunks
3010	 * are meaningful
3011	 */
3012	if (conf->geo.near_copies < conf->geo.raid_disks &&
3013	    max_sector > (sector_nr | chunk_mask))
3014		max_sector = (sector_nr | chunk_mask) + 1;
3015
3016	/*
3017	 * If there is non-resync activity waiting for a turn, then let it
3018	 * though before starting on this new sync request.
3019	 */
3020	if (conf->nr_waiting)
3021		schedule_timeout_uninterruptible(1);
3022
3023	/* Again, very different code for resync and recovery.
3024	 * Both must result in an r10bio with a list of bios that
3025	 * have bi_end_io, bi_sector, bi_disk set,
3026	 * and bi_private set to the r10bio.
3027	 * For recovery, we may actually create several r10bios
3028	 * with 2 bios in each, that correspond to the bios in the main one.
3029	 * In this case, the subordinate r10bios link back through a
3030	 * borrowed master_bio pointer, and the counter in the master
3031	 * includes a ref from each subordinate.
3032	 */
3033	/* First, we decide what to do and set ->bi_end_io
3034	 * To end_sync_read if we want to read, and
3035	 * end_sync_write if we will want to write.
3036	 */
3037
3038	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3039	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040		/* recovery... the complicated one */
3041		int j;
3042		r10_bio = NULL;
3043
3044		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3045			int still_degraded;
3046			struct r10bio *rb2;
3047			sector_t sect;
3048			int must_sync;
3049			int any_working;
3050			int need_recover = 0;
3051			int need_replace = 0;
3052			struct raid10_info *mirror = &conf->mirrors[i];
3053			struct md_rdev *mrdev, *mreplace;
3054
3055			rcu_read_lock();
3056			mrdev = rcu_dereference(mirror->rdev);
3057			mreplace = rcu_dereference(mirror->replacement);
3058
3059			if (mrdev != NULL &&
3060			    !test_bit(Faulty, &mrdev->flags) &&
3061			    !test_bit(In_sync, &mrdev->flags))
3062				need_recover = 1;
3063			if (mreplace != NULL &&
3064			    !test_bit(Faulty, &mreplace->flags))
3065				need_replace = 1;
3066
3067			if (!need_recover && !need_replace) {
3068				rcu_read_unlock();
3069				continue;
3070			}
3071
3072			still_degraded = 0;
3073			/* want to reconstruct this device */
3074			rb2 = r10_bio;
3075			sect = raid10_find_virt(conf, sector_nr, i);
3076			if (sect >= mddev->resync_max_sectors) {
3077				/* last stripe is not complete - don't
3078				 * try to recover this sector.
3079				 */
3080				rcu_read_unlock();
3081				continue;
3082			}
3083			if (mreplace && test_bit(Faulty, &mreplace->flags))
3084				mreplace = NULL;
3085			/* Unless we are doing a full sync, or a replacement
3086			 * we only need to recover the block if it is set in
3087			 * the bitmap
3088			 */
3089			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3090							 &sync_blocks, 1);
3091			if (sync_blocks < max_sync)
3092				max_sync = sync_blocks;
3093			if (!must_sync &&
3094			    mreplace == NULL &&
3095			    !conf->fullsync) {
3096				/* yep, skip the sync_blocks here, but don't assume
3097				 * that there will never be anything to do here
3098				 */
3099				chunks_skipped = -1;
3100				rcu_read_unlock();
3101				continue;
3102			}
3103			atomic_inc(&mrdev->nr_pending);
3104			if (mreplace)
3105				atomic_inc(&mreplace->nr_pending);
3106			rcu_read_unlock();
3107
3108			r10_bio = raid10_alloc_init_r10buf(conf);
3109			r10_bio->state = 0;
3110			raise_barrier(conf, rb2 != NULL);
3111			atomic_set(&r10_bio->remaining, 0);
3112
3113			r10_bio->master_bio = (struct bio*)rb2;
3114			if (rb2)
3115				atomic_inc(&rb2->remaining);
3116			r10_bio->mddev = mddev;
3117			set_bit(R10BIO_IsRecover, &r10_bio->state);
3118			r10_bio->sector = sect;
3119
3120			raid10_find_phys(conf, r10_bio);
3121
3122			/* Need to check if the array will still be
3123			 * degraded
3124			 */
3125			rcu_read_lock();
3126			for (j = 0; j < conf->geo.raid_disks; j++) {
3127				struct md_rdev *rdev = rcu_dereference(
3128					conf->mirrors[j].rdev);
3129				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3130					still_degraded = 1;
3131					break;
3132				}
3133			}
3134
3135			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3136							 &sync_blocks, still_degraded);
3137
3138			any_working = 0;
3139			for (j=0; j<conf->copies;j++) {
3140				int k;
3141				int d = r10_bio->devs[j].devnum;
3142				sector_t from_addr, to_addr;
3143				struct md_rdev *rdev =
3144					rcu_dereference(conf->mirrors[d].rdev);
3145				sector_t sector, first_bad;
3146				int bad_sectors;
3147				if (!rdev ||
3148				    !test_bit(In_sync, &rdev->flags))
3149					continue;
3150				/* This is where we read from */
3151				any_working = 1;
 
3152				sector = r10_bio->devs[j].addr;
3153
3154				if (is_badblock(rdev, sector, max_sync,
3155						&first_bad, &bad_sectors)) {
3156					if (first_bad > sector)
3157						max_sync = first_bad - sector;
3158					else {
3159						bad_sectors -= (sector
3160								- first_bad);
3161						if (max_sync > bad_sectors)
3162							max_sync = bad_sectors;
3163						continue;
3164					}
3165				}
3166				bio = r10_bio->devs[0].bio;
3167				bio->bi_next = biolist;
3168				biolist = bio;
 
3169				bio->bi_end_io = end_sync_read;
3170				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3171				if (test_bit(FailFast, &rdev->flags))
3172					bio->bi_opf |= MD_FAILFAST;
3173				from_addr = r10_bio->devs[j].addr;
3174				bio->bi_iter.bi_sector = from_addr +
3175					rdev->data_offset;
3176				bio_set_dev(bio, rdev->bdev);
3177				atomic_inc(&rdev->nr_pending);
3178				/* and we write to 'i' (if not in_sync) */
 
3179
3180				for (k=0; k<conf->copies; k++)
3181					if (r10_bio->devs[k].devnum == i)
3182						break;
3183				BUG_ON(k == conf->copies);
 
 
 
 
 
 
3184				to_addr = r10_bio->devs[k].addr;
 
 
 
 
3185				r10_bio->devs[0].devnum = d;
3186				r10_bio->devs[0].addr = from_addr;
3187				r10_bio->devs[1].devnum = i;
3188				r10_bio->devs[1].addr = to_addr;
3189
3190				if (need_recover) {
3191					bio = r10_bio->devs[1].bio;
3192					bio->bi_next = biolist;
3193					biolist = bio;
3194					bio->bi_end_io = end_sync_write;
3195					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3196					bio->bi_iter.bi_sector = to_addr
3197						+ mrdev->data_offset;
3198					bio_set_dev(bio, mrdev->bdev);
3199					atomic_inc(&r10_bio->remaining);
3200				} else
3201					r10_bio->devs[1].bio->bi_end_io = NULL;
3202
3203				/* and maybe write to replacement */
3204				bio = r10_bio->devs[1].repl_bio;
3205				if (bio)
3206					bio->bi_end_io = NULL;
3207				/* Note: if need_replace, then bio
3208				 * cannot be NULL as r10buf_pool_alloc will
3209				 * have allocated it.
3210				 */
3211				if (!need_replace)
3212					break;
3213				bio->bi_next = biolist;
3214				biolist = bio;
3215				bio->bi_end_io = end_sync_write;
3216				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3217				bio->bi_iter.bi_sector = to_addr +
3218					mreplace->data_offset;
3219				bio_set_dev(bio, mreplace->bdev);
3220				atomic_inc(&r10_bio->remaining);
3221				break;
3222			}
3223			rcu_read_unlock();
3224			if (j == conf->copies) {
3225				/* Cannot recover, so abort the recovery or
3226				 * record a bad block */
 
 
 
 
3227				if (any_working) {
3228					/* problem is that there are bad blocks
3229					 * on other device(s)
3230					 */
3231					int k;
3232					for (k = 0; k < conf->copies; k++)
3233						if (r10_bio->devs[k].devnum == i)
3234							break;
3235					if (!test_bit(In_sync,
3236						      &mrdev->flags)
3237					    && !rdev_set_badblocks(
3238						    mrdev,
3239						    r10_bio->devs[k].addr,
3240						    max_sync, 0))
3241						any_working = 0;
3242					if (mreplace &&
3243					    !rdev_set_badblocks(
3244						    mreplace,
3245						    r10_bio->devs[k].addr,
3246						    max_sync, 0))
3247						any_working = 0;
3248				}
3249				if (!any_working)  {
3250					if (!test_and_set_bit(MD_RECOVERY_INTR,
3251							      &mddev->recovery))
3252						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
 
3253						       mdname(mddev));
3254					mirror->recovery_disabled
3255						= mddev->recovery_disabled;
3256				}
3257				put_buf(r10_bio);
3258				if (rb2)
3259					atomic_dec(&rb2->remaining);
3260				r10_bio = rb2;
3261				rdev_dec_pending(mrdev, mddev);
3262				if (mreplace)
3263					rdev_dec_pending(mreplace, mddev);
3264				break;
3265			}
3266			rdev_dec_pending(mrdev, mddev);
3267			if (mreplace)
3268				rdev_dec_pending(mreplace, mddev);
3269			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3270				/* Only want this if there is elsewhere to
3271				 * read from. 'j' is currently the first
3272				 * readable copy.
3273				 */
3274				int targets = 1;
3275				for (; j < conf->copies; j++) {
3276					int d = r10_bio->devs[j].devnum;
3277					if (conf->mirrors[d].rdev &&
3278					    test_bit(In_sync,
3279						      &conf->mirrors[d].rdev->flags))
3280						targets++;
3281				}
3282				if (targets == 1)
3283					r10_bio->devs[0].bio->bi_opf
3284						&= ~MD_FAILFAST;
3285			}
3286		}
3287		if (biolist == NULL) {
3288			while (r10_bio) {
3289				struct r10bio *rb2 = r10_bio;
3290				r10_bio = (struct r10bio*) rb2->master_bio;
3291				rb2->master_bio = NULL;
3292				put_buf(rb2);
3293			}
3294			goto giveup;
3295		}
3296	} else {
3297		/* resync. Schedule a read for every block at this virt offset */
3298		int count = 0;
3299
3300		/*
3301		 * Since curr_resync_completed could probably not update in
3302		 * time, and we will set cluster_sync_low based on it.
3303		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3304		 * safety reason, which ensures curr_resync_completed is
3305		 * updated in bitmap_cond_end_sync.
3306		 */
3307		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3308					mddev_is_clustered(mddev) &&
3309					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3310
3311		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3312					  &sync_blocks, mddev->degraded) &&
3313		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3314						 &mddev->recovery)) {
3315			/* We can skip this block */
3316			*skipped = 1;
3317			return sync_blocks + sectors_skipped;
3318		}
3319		if (sync_blocks < max_sync)
3320			max_sync = sync_blocks;
3321		r10_bio = raid10_alloc_init_r10buf(conf);
3322		r10_bio->state = 0;
3323
3324		r10_bio->mddev = mddev;
3325		atomic_set(&r10_bio->remaining, 0);
3326		raise_barrier(conf, 0);
3327		conf->next_resync = sector_nr;
3328
3329		r10_bio->master_bio = NULL;
3330		r10_bio->sector = sector_nr;
3331		set_bit(R10BIO_IsSync, &r10_bio->state);
3332		raid10_find_phys(conf, r10_bio);
3333		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3334
3335		for (i = 0; i < conf->copies; i++) {
3336			int d = r10_bio->devs[i].devnum;
3337			sector_t first_bad, sector;
3338			int bad_sectors;
3339			struct md_rdev *rdev;
3340
3341			if (r10_bio->devs[i].repl_bio)
3342				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3343
3344			bio = r10_bio->devs[i].bio;
3345			bio->bi_status = BLK_STS_IOERR;
3346			rcu_read_lock();
3347			rdev = rcu_dereference(conf->mirrors[d].rdev);
3348			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3349				rcu_read_unlock();
3350				continue;
3351			}
3352			sector = r10_bio->devs[i].addr;
3353			if (is_badblock(rdev, sector, max_sync,
 
3354					&first_bad, &bad_sectors)) {
3355				if (first_bad > sector)
3356					max_sync = first_bad - sector;
3357				else {
3358					bad_sectors -= (sector - first_bad);
3359					if (max_sync > bad_sectors)
3360						max_sync = bad_sectors;
3361					rcu_read_unlock();
3362					continue;
3363				}
3364			}
3365			atomic_inc(&rdev->nr_pending);
3366			atomic_inc(&r10_bio->remaining);
3367			bio->bi_next = biolist;
3368			biolist = bio;
 
3369			bio->bi_end_io = end_sync_read;
3370			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3371			if (test_bit(FailFast, &rdev->flags))
3372				bio->bi_opf |= MD_FAILFAST;
3373			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3374			bio_set_dev(bio, rdev->bdev);
3375			count++;
3376
3377			rdev = rcu_dereference(conf->mirrors[d].replacement);
3378			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3379				rcu_read_unlock();
3380				continue;
3381			}
3382			atomic_inc(&rdev->nr_pending);
3383
3384			/* Need to set up for writing to the replacement */
3385			bio = r10_bio->devs[i].repl_bio;
3386			bio->bi_status = BLK_STS_IOERR;
3387
3388			sector = r10_bio->devs[i].addr;
3389			bio->bi_next = biolist;
3390			biolist = bio;
3391			bio->bi_end_io = end_sync_write;
3392			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3393			if (test_bit(FailFast, &rdev->flags))
3394				bio->bi_opf |= MD_FAILFAST;
3395			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3396			bio_set_dev(bio, rdev->bdev);
3397			count++;
3398			rcu_read_unlock();
3399		}
3400
3401		if (count < 2) {
3402			for (i=0; i<conf->copies; i++) {
3403				int d = r10_bio->devs[i].devnum;
3404				if (r10_bio->devs[i].bio->bi_end_io)
3405					rdev_dec_pending(conf->mirrors[d].rdev,
3406							 mddev);
3407				if (r10_bio->devs[i].repl_bio &&
3408				    r10_bio->devs[i].repl_bio->bi_end_io)
3409					rdev_dec_pending(
3410						conf->mirrors[d].replacement,
3411						mddev);
3412			}
3413			put_buf(r10_bio);
3414			biolist = NULL;
3415			goto giveup;
3416		}
3417	}
3418
 
 
 
 
 
 
 
 
 
 
 
3419	nr_sectors = 0;
3420	if (sector_nr + max_sync < max_sector)
3421		max_sector = sector_nr + max_sync;
3422	do {
3423		struct page *page;
3424		int len = PAGE_SIZE;
3425		if (sector_nr + (len>>9) > max_sector)
3426			len = (max_sector - sector_nr) << 9;
3427		if (len == 0)
3428			break;
3429		for (bio= biolist ; bio ; bio=bio->bi_next) {
3430			struct resync_pages *rp = get_resync_pages(bio);
3431			page = resync_fetch_page(rp, page_idx);
3432			/*
3433			 * won't fail because the vec table is big enough
3434			 * to hold all these pages
3435			 */
3436			bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
3437		}
3438		nr_sectors += len>>9;
3439		sector_nr += len>>9;
3440	} while (++page_idx < RESYNC_PAGES);
 
3441	r10_bio->sectors = nr_sectors;
3442
3443	if (mddev_is_clustered(mddev) &&
3444	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445		/* It is resync not recovery */
3446		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3447			conf->cluster_sync_low = mddev->curr_resync_completed;
3448			raid10_set_cluster_sync_high(conf);
3449			/* Send resync message */
3450			md_cluster_ops->resync_info_update(mddev,
3451						conf->cluster_sync_low,
3452						conf->cluster_sync_high);
3453		}
3454	} else if (mddev_is_clustered(mddev)) {
3455		/* This is recovery not resync */
3456		sector_t sect_va1, sect_va2;
3457		bool broadcast_msg = false;
3458
3459		for (i = 0; i < conf->geo.raid_disks; i++) {
3460			/*
3461			 * sector_nr is a device address for recovery, so we
3462			 * need translate it to array address before compare
3463			 * with cluster_sync_high.
3464			 */
3465			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3466
3467			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3468				broadcast_msg = true;
3469				/*
3470				 * curr_resync_completed is similar as
3471				 * sector_nr, so make the translation too.
3472				 */
3473				sect_va2 = raid10_find_virt(conf,
3474					mddev->curr_resync_completed, i);
3475
3476				if (conf->cluster_sync_low == 0 ||
3477				    conf->cluster_sync_low > sect_va2)
3478					conf->cluster_sync_low = sect_va2;
3479			}
3480		}
3481		if (broadcast_msg) {
3482			raid10_set_cluster_sync_high(conf);
3483			md_cluster_ops->resync_info_update(mddev,
3484						conf->cluster_sync_low,
3485						conf->cluster_sync_high);
3486		}
3487	}
3488
3489	while (biolist) {
3490		bio = biolist;
3491		biolist = biolist->bi_next;
3492
3493		bio->bi_next = NULL;
3494		r10_bio = get_resync_r10bio(bio);
3495		r10_bio->sectors = nr_sectors;
3496
3497		if (bio->bi_end_io == end_sync_read) {
3498			md_sync_acct_bio(bio, nr_sectors);
3499			bio->bi_status = 0;
3500			generic_make_request(bio);
3501		}
3502	}
3503
3504	if (sectors_skipped)
3505		/* pretend they weren't skipped, it makes
3506		 * no important difference in this case
3507		 */
3508		md_done_sync(mddev, sectors_skipped, 1);
3509
3510	return sectors_skipped + nr_sectors;
3511 giveup:
3512	/* There is nowhere to write, so all non-sync
3513	 * drives must be failed or in resync, all drives
3514	 * have a bad block, so try the next chunk...
3515	 */
3516	if (sector_nr + max_sync < max_sector)
3517		max_sector = sector_nr + max_sync;
3518
3519	sectors_skipped += (max_sector - sector_nr);
3520	chunks_skipped ++;
3521	sector_nr = max_sector;
3522	goto skipped;
3523}
3524
3525static sector_t
3526raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3527{
3528	sector_t size;
3529	struct r10conf *conf = mddev->private;
3530
3531	if (!raid_disks)
3532		raid_disks = min(conf->geo.raid_disks,
3533				 conf->prev.raid_disks);
3534	if (!sectors)
3535		sectors = conf->dev_sectors;
3536
3537	size = sectors >> conf->geo.chunk_shift;
3538	sector_div(size, conf->geo.far_copies);
3539	size = size * raid_disks;
3540	sector_div(size, conf->geo.near_copies);
3541
3542	return size << conf->geo.chunk_shift;
3543}
3544
3545static void calc_sectors(struct r10conf *conf, sector_t size)
3546{
3547	/* Calculate the number of sectors-per-device that will
3548	 * actually be used, and set conf->dev_sectors and
3549	 * conf->stride
3550	 */
3551
3552	size = size >> conf->geo.chunk_shift;
3553	sector_div(size, conf->geo.far_copies);
3554	size = size * conf->geo.raid_disks;
3555	sector_div(size, conf->geo.near_copies);
3556	/* 'size' is now the number of chunks in the array */
3557	/* calculate "used chunks per device" */
3558	size = size * conf->copies;
3559
3560	/* We need to round up when dividing by raid_disks to
3561	 * get the stride size.
3562	 */
3563	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3564
3565	conf->dev_sectors = size << conf->geo.chunk_shift;
3566
3567	if (conf->geo.far_offset)
3568		conf->geo.stride = 1 << conf->geo.chunk_shift;
3569	else {
3570		sector_div(size, conf->geo.far_copies);
3571		conf->geo.stride = size << conf->geo.chunk_shift;
3572	}
3573}
3574
3575enum geo_type {geo_new, geo_old, geo_start};
3576static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3577{
 
3578	int nc, fc, fo;
3579	int layout, chunk, disks;
3580	switch (new) {
3581	case geo_old:
3582		layout = mddev->layout;
3583		chunk = mddev->chunk_sectors;
3584		disks = mddev->raid_disks - mddev->delta_disks;
3585		break;
3586	case geo_new:
3587		layout = mddev->new_layout;
3588		chunk = mddev->new_chunk_sectors;
3589		disks = mddev->raid_disks;
3590		break;
3591	default: /* avoid 'may be unused' warnings */
3592	case geo_start: /* new when starting reshape - raid_disks not
3593			 * updated yet. */
3594		layout = mddev->new_layout;
3595		chunk = mddev->new_chunk_sectors;
3596		disks = mddev->raid_disks + mddev->delta_disks;
3597		break;
3598	}
3599	if (layout >> 19)
3600		return -1;
3601	if (chunk < (PAGE_SIZE >> 9) ||
3602	    !is_power_of_2(chunk))
3603		return -2;
3604	nc = layout & 255;
3605	fc = (layout >> 8) & 255;
3606	fo = layout & (1<<16);
3607	geo->raid_disks = disks;
3608	geo->near_copies = nc;
3609	geo->far_copies = fc;
3610	geo->far_offset = fo;
3611	switch (layout >> 17) {
3612	case 0:	/* original layout.  simple but not always optimal */
3613		geo->far_set_size = disks;
3614		break;
3615	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3616		 * actually using this, but leave code here just in case.*/
3617		geo->far_set_size = disks/fc;
3618		WARN(geo->far_set_size < fc,
3619		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3620		break;
3621	case 2: /* "improved" layout fixed to match documentation */
3622		geo->far_set_size = fc * nc;
3623		break;
3624	default: /* Not a valid layout */
3625		return -1;
3626	}
3627	geo->chunk_mask = chunk - 1;
3628	geo->chunk_shift = ffz(~chunk);
3629	return nc*fc;
3630}
3631
3632static struct r10conf *setup_conf(struct mddev *mddev)
3633{
3634	struct r10conf *conf = NULL;
3635	int err = -EINVAL;
3636	struct geom geo;
3637	int copies;
3638
3639	copies = setup_geo(&geo, mddev, geo_new);
3640
3641	if (copies == -2) {
3642		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3643			mdname(mddev), PAGE_SIZE);
 
 
3644		goto out;
3645	}
3646
3647	if (copies < 2 || copies > mddev->raid_disks) {
3648		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3649			mdname(mddev), mddev->new_layout);
 
 
 
 
 
3650		goto out;
3651	}
3652
3653	err = -ENOMEM;
3654	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3655	if (!conf)
3656		goto out;
3657
3658	/* FIXME calc properly */
3659	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3660				sizeof(struct raid10_info),
3661				GFP_KERNEL);
3662	if (!conf->mirrors)
3663		goto out;
3664
3665	conf->tmppage = alloc_page(GFP_KERNEL);
3666	if (!conf->tmppage)
3667		goto out;
3668
3669	conf->geo = geo;
3670	conf->copies = copies;
3671	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3672			   rbio_pool_free, conf);
3673	if (err)
 
 
 
 
 
 
 
3674		goto out;
3675
3676	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3677	if (err)
3678		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3679
3680	calc_sectors(conf, mddev->dev_sectors);
3681	if (mddev->reshape_position == MaxSector) {
3682		conf->prev = conf->geo;
3683		conf->reshape_progress = MaxSector;
3684	} else {
3685		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3686			err = -EINVAL;
3687			goto out;
3688		}
3689		conf->reshape_progress = mddev->reshape_position;
3690		if (conf->prev.far_offset)
3691			conf->prev.stride = 1 << conf->prev.chunk_shift;
3692		else
3693			/* far_copies must be 1 */
3694			conf->prev.stride = conf->dev_sectors;
3695	}
3696	conf->reshape_safe = conf->reshape_progress;
3697	spin_lock_init(&conf->device_lock);
3698	INIT_LIST_HEAD(&conf->retry_list);
3699	INIT_LIST_HEAD(&conf->bio_end_io_list);
3700
3701	spin_lock_init(&conf->resync_lock);
3702	init_waitqueue_head(&conf->wait_barrier);
3703	atomic_set(&conf->nr_pending, 0);
3704
3705	err = -ENOMEM;
3706	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707	if (!conf->thread)
3708		goto out;
3709
3710	conf->mddev = mddev;
3711	return conf;
3712
3713 out:
 
 
3714	if (conf) {
3715		mempool_exit(&conf->r10bio_pool);
 
3716		kfree(conf->mirrors);
3717		safe_put_page(conf->tmppage);
3718		bioset_exit(&conf->bio_split);
3719		kfree(conf);
3720	}
3721	return ERR_PTR(err);
3722}
3723
3724static int raid10_run(struct mddev *mddev)
3725{
3726	struct r10conf *conf;
3727	int i, disk_idx, chunk_size;
3728	struct raid10_info *disk;
3729	struct md_rdev *rdev;
3730	sector_t size;
3731	sector_t min_offset_diff = 0;
3732	int first = 1;
3733	bool discard_supported = false;
3734
3735	if (mddev_init_writes_pending(mddev) < 0)
3736		return -ENOMEM;
 
 
 
3737
3738	if (mddev->private == NULL) {
3739		conf = setup_conf(mddev);
3740		if (IS_ERR(conf))
3741			return PTR_ERR(conf);
3742		mddev->private = conf;
3743	}
3744	conf = mddev->private;
3745	if (!conf)
3746		goto out;
3747
3748	if (mddev_is_clustered(conf->mddev)) {
3749		int fc, fo;
3750
3751		fc = (mddev->layout >> 8) & 255;
3752		fo = mddev->layout & (1<<16);
3753		if (fc > 1 || fo > 0) {
3754			pr_err("only near layout is supported by clustered"
3755				" raid10\n");
3756			goto out_free_conf;
3757		}
3758	}
3759
3760	mddev->thread = conf->thread;
3761	conf->thread = NULL;
3762
3763	chunk_size = mddev->chunk_sectors << 9;
3764	if (mddev->queue) {
3765		blk_queue_max_discard_sectors(mddev->queue,
3766					      mddev->chunk_sectors);
3767		blk_queue_max_write_same_sectors(mddev->queue, 0);
3768		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3769		blk_queue_io_min(mddev->queue, chunk_size);
3770		if (conf->geo.raid_disks % conf->geo.near_copies)
3771			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3772		else
3773			blk_queue_io_opt(mddev->queue, chunk_size *
3774					 (conf->geo.raid_disks / conf->geo.near_copies));
3775	}
3776
3777	rdev_for_each(rdev, mddev) {
3778		long long diff;
3779
3780		disk_idx = rdev->raid_disk;
3781		if (disk_idx < 0)
3782			continue;
3783		if (disk_idx >= conf->geo.raid_disks &&
3784		    disk_idx >= conf->prev.raid_disks)
3785			continue;
3786		disk = conf->mirrors + disk_idx;
3787
3788		if (test_bit(Replacement, &rdev->flags)) {
3789			if (disk->replacement)
3790				goto out_free_conf;
3791			disk->replacement = rdev;
3792		} else {
3793			if (disk->rdev)
3794				goto out_free_conf;
3795			disk->rdev = rdev;
 
 
 
3796		}
3797		diff = (rdev->new_data_offset - rdev->data_offset);
3798		if (!mddev->reshape_backwards)
3799			diff = -diff;
3800		if (diff < 0)
3801			diff = 0;
3802		if (first || diff < min_offset_diff)
3803			min_offset_diff = diff;
3804
3805		if (mddev->gendisk)
3806			disk_stack_limits(mddev->gendisk, rdev->bdev,
3807					  rdev->data_offset << 9);
3808
3809		disk->head_position = 0;
3810
3811		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3812			discard_supported = true;
3813		first = 0;
3814	}
3815
3816	if (mddev->queue) {
3817		if (discard_supported)
3818			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3819						mddev->queue);
3820		else
3821			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3822						  mddev->queue);
3823	}
3824	/* need to check that every block has at least one working mirror */
3825	if (!enough(conf, -1)) {
3826		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3827		       mdname(mddev));
3828		goto out_free_conf;
3829	}
3830
3831	if (conf->reshape_progress != MaxSector) {
3832		/* must ensure that shape change is supported */
3833		if (conf->geo.far_copies != 1 &&
3834		    conf->geo.far_offset == 0)
3835			goto out_free_conf;
3836		if (conf->prev.far_copies != 1 &&
3837		    conf->prev.far_offset == 0)
3838			goto out_free_conf;
3839	}
3840
3841	mddev->degraded = 0;
3842	for (i = 0;
3843	     i < conf->geo.raid_disks
3844		     || i < conf->prev.raid_disks;
3845	     i++) {
3846
3847		disk = conf->mirrors + i;
3848
3849		if (!disk->rdev && disk->replacement) {
3850			/* The replacement is all we have - use it */
3851			disk->rdev = disk->replacement;
3852			disk->replacement = NULL;
3853			clear_bit(Replacement, &disk->rdev->flags);
3854		}
3855
3856		if (!disk->rdev ||
3857		    !test_bit(In_sync, &disk->rdev->flags)) {
3858			disk->head_position = 0;
3859			mddev->degraded++;
3860			if (disk->rdev &&
3861			    disk->rdev->saved_raid_disk < 0)
3862				conf->fullsync = 1;
3863		}
3864
3865		if (disk->replacement &&
3866		    !test_bit(In_sync, &disk->replacement->flags) &&
3867		    disk->replacement->saved_raid_disk < 0) {
3868			conf->fullsync = 1;
3869		}
3870
3871		disk->recovery_disabled = mddev->recovery_disabled - 1;
3872	}
3873
3874	if (mddev->recovery_cp != MaxSector)
3875		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3876			  mdname(mddev));
3877	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3878		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3879		conf->geo.raid_disks);
 
 
3880	/*
3881	 * Ok, everything is just fine now
3882	 */
3883	mddev->dev_sectors = conf->dev_sectors;
3884	size = raid10_size(mddev, 0, 0);
3885	md_set_array_sectors(mddev, size);
3886	mddev->resync_max_sectors = size;
3887	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3888
3889	if (mddev->queue) {
3890		int stripe = conf->geo.raid_disks *
 
 
 
 
 
 
 
3891			((mddev->chunk_sectors << 9) / PAGE_SIZE);
 
 
 
 
3892
3893		/* Calculate max read-ahead size.
3894		 * We need to readahead at least twice a whole stripe....
3895		 * maybe...
3896		 */
3897		stripe /= conf->geo.near_copies;
3898		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3899			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3900	}
3901
3902	if (md_integrity_register(mddev))
3903		goto out_free_conf;
3904
3905	if (conf->reshape_progress != MaxSector) {
3906		unsigned long before_length, after_length;
3907
3908		before_length = ((1 << conf->prev.chunk_shift) *
3909				 conf->prev.far_copies);
3910		after_length = ((1 << conf->geo.chunk_shift) *
3911				conf->geo.far_copies);
3912
3913		if (max(before_length, after_length) > min_offset_diff) {
3914			/* This cannot work */
3915			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3916			goto out_free_conf;
3917		}
3918		conf->offset_diff = min_offset_diff;
3919
3920		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3921		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3922		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3923		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3924		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3925							"reshape");
3926		if (!mddev->sync_thread)
3927			goto out_free_conf;
3928	}
3929
3930	return 0;
3931
3932out_free_conf:
3933	md_unregister_thread(&mddev->thread);
3934	mempool_exit(&conf->r10bio_pool);
 
3935	safe_put_page(conf->tmppage);
3936	kfree(conf->mirrors);
3937	kfree(conf);
3938	mddev->private = NULL;
3939out:
3940	return -EIO;
3941}
3942
3943static void raid10_free(struct mddev *mddev, void *priv)
3944{
3945	struct r10conf *conf = priv;
 
 
 
3946
3947	mempool_exit(&conf->r10bio_pool);
3948	safe_put_page(conf->tmppage);
 
 
3949	kfree(conf->mirrors);
3950	kfree(conf->mirrors_old);
3951	kfree(conf->mirrors_new);
3952	bioset_exit(&conf->bio_split);
3953	kfree(conf);
 
 
3954}
3955
3956static void raid10_quiesce(struct mddev *mddev, int quiesce)
3957{
3958	struct r10conf *conf = mddev->private;
3959
3960	if (quiesce)
 
3961		raise_barrier(conf, 0);
3962	else
 
3963		lower_barrier(conf);
3964}
3965
3966static int raid10_resize(struct mddev *mddev, sector_t sectors)
3967{
3968	/* Resize of 'far' arrays is not supported.
3969	 * For 'near' and 'offset' arrays we can set the
3970	 * number of sectors used to be an appropriate multiple
3971	 * of the chunk size.
3972	 * For 'offset', this is far_copies*chunksize.
3973	 * For 'near' the multiplier is the LCM of
3974	 * near_copies and raid_disks.
3975	 * So if far_copies > 1 && !far_offset, fail.
3976	 * Else find LCM(raid_disks, near_copy)*far_copies and
3977	 * multiply by chunk_size.  Then round to this number.
3978	 * This is mostly done by raid10_size()
3979	 */
3980	struct r10conf *conf = mddev->private;
3981	sector_t oldsize, size;
3982
3983	if (mddev->reshape_position != MaxSector)
3984		return -EBUSY;
3985
3986	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3987		return -EINVAL;
3988
3989	oldsize = raid10_size(mddev, 0, 0);
3990	size = raid10_size(mddev, sectors, 0);
3991	if (mddev->external_size &&
3992	    mddev->array_sectors > size)
3993		return -EINVAL;
3994	if (mddev->bitmap) {
3995		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3996		if (ret)
3997			return ret;
3998	}
3999	md_set_array_sectors(mddev, size);
4000	if (sectors > mddev->dev_sectors &&
4001	    mddev->recovery_cp > oldsize) {
4002		mddev->recovery_cp = oldsize;
4003		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4004	}
4005	calc_sectors(conf, sectors);
4006	mddev->dev_sectors = conf->dev_sectors;
4007	mddev->resync_max_sectors = size;
4008	return 0;
4009}
4010
4011static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4012{
4013	struct md_rdev *rdev;
4014	struct r10conf *conf;
4015
4016	if (mddev->degraded > 0) {
4017		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4018			mdname(mddev));
4019		return ERR_PTR(-EINVAL);
4020	}
4021	sector_div(size, devs);
4022
4023	/* Set new parameters */
4024	mddev->new_level = 10;
4025	/* new layout: far_copies = 1, near_copies = 2 */
4026	mddev->new_layout = (1<<8) + 2;
4027	mddev->new_chunk_sectors = mddev->chunk_sectors;
4028	mddev->delta_disks = mddev->raid_disks;
4029	mddev->raid_disks *= 2;
4030	/* make sure it will be not marked as dirty */
4031	mddev->recovery_cp = MaxSector;
4032	mddev->dev_sectors = size;
4033
4034	conf = setup_conf(mddev);
4035	if (!IS_ERR(conf)) {
4036		rdev_for_each(rdev, mddev)
4037			if (rdev->raid_disk >= 0) {
4038				rdev->new_raid_disk = rdev->raid_disk * 2;
4039				rdev->sectors = size;
4040			}
4041		conf->barrier = 1;
4042	}
4043
4044	return conf;
4045}
4046
4047static void *raid10_takeover(struct mddev *mddev)
4048{
4049	struct r0conf *raid0_conf;
4050
4051	/* raid10 can take over:
4052	 *  raid0 - providing it has only two drives
4053	 */
4054	if (mddev->level == 0) {
4055		/* for raid0 takeover only one zone is supported */
4056		raid0_conf = mddev->private;
4057		if (raid0_conf->nr_strip_zones > 1) {
4058			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4059				mdname(mddev));
 
4060			return ERR_PTR(-EINVAL);
4061		}
4062		return raid10_takeover_raid0(mddev,
4063			raid0_conf->strip_zone->zone_end,
4064			raid0_conf->strip_zone->nb_dev);
4065	}
4066	return ERR_PTR(-EINVAL);
4067}
4068
4069static int raid10_check_reshape(struct mddev *mddev)
4070{
4071	/* Called when there is a request to change
4072	 * - layout (to ->new_layout)
4073	 * - chunk size (to ->new_chunk_sectors)
4074	 * - raid_disks (by delta_disks)
4075	 * or when trying to restart a reshape that was ongoing.
4076	 *
4077	 * We need to validate the request and possibly allocate
4078	 * space if that might be an issue later.
4079	 *
4080	 * Currently we reject any reshape of a 'far' mode array,
4081	 * allow chunk size to change if new is generally acceptable,
4082	 * allow raid_disks to increase, and allow
4083	 * a switch between 'near' mode and 'offset' mode.
4084	 */
4085	struct r10conf *conf = mddev->private;
4086	struct geom geo;
4087
4088	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4089		return -EINVAL;
4090
4091	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4092		/* mustn't change number of copies */
4093		return -EINVAL;
4094	if (geo.far_copies > 1 && !geo.far_offset)
4095		/* Cannot switch to 'far' mode */
4096		return -EINVAL;
4097
4098	if (mddev->array_sectors & geo.chunk_mask)
4099			/* not factor of array size */
4100			return -EINVAL;
4101
4102	if (!enough(conf, -1))
4103		return -EINVAL;
4104
4105	kfree(conf->mirrors_new);
4106	conf->mirrors_new = NULL;
4107	if (mddev->delta_disks > 0) {
4108		/* allocate new 'mirrors' list */
4109		conf->mirrors_new =
4110			kcalloc(mddev->raid_disks + mddev->delta_disks,
4111				sizeof(struct raid10_info),
4112				GFP_KERNEL);
4113		if (!conf->mirrors_new)
4114			return -ENOMEM;
4115	}
4116	return 0;
4117}
4118
4119/*
4120 * Need to check if array has failed when deciding whether to:
4121 *  - start an array
4122 *  - remove non-faulty devices
4123 *  - add a spare
4124 *  - allow a reshape
4125 * This determination is simple when no reshape is happening.
4126 * However if there is a reshape, we need to carefully check
4127 * both the before and after sections.
4128 * This is because some failed devices may only affect one
4129 * of the two sections, and some non-in_sync devices may
4130 * be insync in the section most affected by failed devices.
4131 */
4132static int calc_degraded(struct r10conf *conf)
4133{
4134	int degraded, degraded2;
4135	int i;
4136
4137	rcu_read_lock();
4138	degraded = 0;
4139	/* 'prev' section first */
4140	for (i = 0; i < conf->prev.raid_disks; i++) {
4141		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4142		if (!rdev || test_bit(Faulty, &rdev->flags))
4143			degraded++;
4144		else if (!test_bit(In_sync, &rdev->flags))
4145			/* When we can reduce the number of devices in
4146			 * an array, this might not contribute to
4147			 * 'degraded'.  It does now.
4148			 */
4149			degraded++;
4150	}
4151	rcu_read_unlock();
4152	if (conf->geo.raid_disks == conf->prev.raid_disks)
4153		return degraded;
4154	rcu_read_lock();
4155	degraded2 = 0;
4156	for (i = 0; i < conf->geo.raid_disks; i++) {
4157		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4158		if (!rdev || test_bit(Faulty, &rdev->flags))
4159			degraded2++;
4160		else if (!test_bit(In_sync, &rdev->flags)) {
4161			/* If reshape is increasing the number of devices,
4162			 * this section has already been recovered, so
4163			 * it doesn't contribute to degraded.
4164			 * else it does.
4165			 */
4166			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4167				degraded2++;
4168		}
4169	}
4170	rcu_read_unlock();
4171	if (degraded2 > degraded)
4172		return degraded2;
4173	return degraded;
4174}
4175
4176static int raid10_start_reshape(struct mddev *mddev)
4177{
4178	/* A 'reshape' has been requested. This commits
4179	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4180	 * This also checks if there are enough spares and adds them
4181	 * to the array.
4182	 * We currently require enough spares to make the final
4183	 * array non-degraded.  We also require that the difference
4184	 * between old and new data_offset - on each device - is
4185	 * enough that we never risk over-writing.
4186	 */
4187
4188	unsigned long before_length, after_length;
4189	sector_t min_offset_diff = 0;
4190	int first = 1;
4191	struct geom new;
4192	struct r10conf *conf = mddev->private;
4193	struct md_rdev *rdev;
4194	int spares = 0;
4195	int ret;
4196
4197	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4198		return -EBUSY;
4199
4200	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4201		return -EINVAL;
4202
4203	before_length = ((1 << conf->prev.chunk_shift) *
4204			 conf->prev.far_copies);
4205	after_length = ((1 << conf->geo.chunk_shift) *
4206			conf->geo.far_copies);
4207
4208	rdev_for_each(rdev, mddev) {
4209		if (!test_bit(In_sync, &rdev->flags)
4210		    && !test_bit(Faulty, &rdev->flags))
4211			spares++;
4212		if (rdev->raid_disk >= 0) {
4213			long long diff = (rdev->new_data_offset
4214					  - rdev->data_offset);
4215			if (!mddev->reshape_backwards)
4216				diff = -diff;
4217			if (diff < 0)
4218				diff = 0;
4219			if (first || diff < min_offset_diff)
4220				min_offset_diff = diff;
4221			first = 0;
4222		}
4223	}
4224
4225	if (max(before_length, after_length) > min_offset_diff)
4226		return -EINVAL;
4227
4228	if (spares < mddev->delta_disks)
4229		return -EINVAL;
4230
4231	conf->offset_diff = min_offset_diff;
4232	spin_lock_irq(&conf->device_lock);
4233	if (conf->mirrors_new) {
4234		memcpy(conf->mirrors_new, conf->mirrors,
4235		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4236		smp_mb();
4237		kfree(conf->mirrors_old);
4238		conf->mirrors_old = conf->mirrors;
4239		conf->mirrors = conf->mirrors_new;
4240		conf->mirrors_new = NULL;
4241	}
4242	setup_geo(&conf->geo, mddev, geo_start);
4243	smp_mb();
4244	if (mddev->reshape_backwards) {
4245		sector_t size = raid10_size(mddev, 0, 0);
4246		if (size < mddev->array_sectors) {
4247			spin_unlock_irq(&conf->device_lock);
4248			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4249				mdname(mddev));
4250			return -EINVAL;
4251		}
4252		mddev->resync_max_sectors = size;
4253		conf->reshape_progress = size;
4254	} else
4255		conf->reshape_progress = 0;
4256	conf->reshape_safe = conf->reshape_progress;
4257	spin_unlock_irq(&conf->device_lock);
4258
4259	if (mddev->delta_disks && mddev->bitmap) {
4260		struct mdp_superblock_1 *sb = NULL;
4261		sector_t oldsize, newsize;
4262
4263		oldsize = raid10_size(mddev, 0, 0);
4264		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4265
4266		if (!mddev_is_clustered(mddev)) {
4267			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4268			if (ret)
4269				goto abort;
4270			else
4271				goto out;
4272		}
4273
4274		rdev_for_each(rdev, mddev) {
4275			if (rdev->raid_disk > -1 &&
4276			    !test_bit(Faulty, &rdev->flags))
4277				sb = page_address(rdev->sb_page);
4278		}
4279
4280		/*
4281		 * some node is already performing reshape, and no need to
4282		 * call md_bitmap_resize again since it should be called when
4283		 * receiving BITMAP_RESIZE msg
4284		 */
4285		if ((sb && (le32_to_cpu(sb->feature_map) &
4286			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4287			goto out;
4288
4289		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4290		if (ret)
4291			goto abort;
4292
4293		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4294		if (ret) {
4295			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4296			goto abort;
4297		}
4298	}
4299out:
4300	if (mddev->delta_disks > 0) {
4301		rdev_for_each(rdev, mddev)
4302			if (rdev->raid_disk < 0 &&
4303			    !test_bit(Faulty, &rdev->flags)) {
4304				if (raid10_add_disk(mddev, rdev) == 0) {
4305					if (rdev->raid_disk >=
4306					    conf->prev.raid_disks)
4307						set_bit(In_sync, &rdev->flags);
4308					else
4309						rdev->recovery_offset = 0;
4310
4311					if (sysfs_link_rdev(mddev, rdev))
4312						/* Failure here  is OK */;
4313				}
4314			} else if (rdev->raid_disk >= conf->prev.raid_disks
4315				   && !test_bit(Faulty, &rdev->flags)) {
4316				/* This is a spare that was manually added */
4317				set_bit(In_sync, &rdev->flags);
4318			}
4319	}
4320	/* When a reshape changes the number of devices,
4321	 * ->degraded is measured against the larger of the
4322	 * pre and  post numbers.
4323	 */
4324	spin_lock_irq(&conf->device_lock);
4325	mddev->degraded = calc_degraded(conf);
4326	spin_unlock_irq(&conf->device_lock);
4327	mddev->raid_disks = conf->geo.raid_disks;
4328	mddev->reshape_position = conf->reshape_progress;
4329	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4330
4331	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4332	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4333	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4334	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4335	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4336
4337	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4338						"reshape");
4339	if (!mddev->sync_thread) {
4340		ret = -EAGAIN;
4341		goto abort;
4342	}
4343	conf->reshape_checkpoint = jiffies;
4344	md_wakeup_thread(mddev->sync_thread);
4345	md_new_event(mddev);
4346	return 0;
4347
4348abort:
4349	mddev->recovery = 0;
4350	spin_lock_irq(&conf->device_lock);
4351	conf->geo = conf->prev;
4352	mddev->raid_disks = conf->geo.raid_disks;
4353	rdev_for_each(rdev, mddev)
4354		rdev->new_data_offset = rdev->data_offset;
4355	smp_wmb();
4356	conf->reshape_progress = MaxSector;
4357	conf->reshape_safe = MaxSector;
4358	mddev->reshape_position = MaxSector;
4359	spin_unlock_irq(&conf->device_lock);
4360	return ret;
4361}
4362
4363/* Calculate the last device-address that could contain
4364 * any block from the chunk that includes the array-address 's'
4365 * and report the next address.
4366 * i.e. the address returned will be chunk-aligned and after
4367 * any data that is in the chunk containing 's'.
4368 */
4369static sector_t last_dev_address(sector_t s, struct geom *geo)
4370{
4371	s = (s | geo->chunk_mask) + 1;
4372	s >>= geo->chunk_shift;
4373	s *= geo->near_copies;
4374	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4375	s *= geo->far_copies;
4376	s <<= geo->chunk_shift;
4377	return s;
4378}
4379
4380/* Calculate the first device-address that could contain
4381 * any block from the chunk that includes the array-address 's'.
4382 * This too will be the start of a chunk
4383 */
4384static sector_t first_dev_address(sector_t s, struct geom *geo)
4385{
4386	s >>= geo->chunk_shift;
4387	s *= geo->near_copies;
4388	sector_div(s, geo->raid_disks);
4389	s *= geo->far_copies;
4390	s <<= geo->chunk_shift;
4391	return s;
4392}
4393
4394static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4395				int *skipped)
4396{
4397	/* We simply copy at most one chunk (smallest of old and new)
4398	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4399	 * or we hit a bad block or something.
4400	 * This might mean we pause for normal IO in the middle of
4401	 * a chunk, but that is not a problem as mddev->reshape_position
4402	 * can record any location.
4403	 *
4404	 * If we will want to write to a location that isn't
4405	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4406	 * we need to flush all reshape requests and update the metadata.
4407	 *
4408	 * When reshaping forwards (e.g. to more devices), we interpret
4409	 * 'safe' as the earliest block which might not have been copied
4410	 * down yet.  We divide this by previous stripe size and multiply
4411	 * by previous stripe length to get lowest device offset that we
4412	 * cannot write to yet.
4413	 * We interpret 'sector_nr' as an address that we want to write to.
4414	 * From this we use last_device_address() to find where we might
4415	 * write to, and first_device_address on the  'safe' position.
4416	 * If this 'next' write position is after the 'safe' position,
4417	 * we must update the metadata to increase the 'safe' position.
4418	 *
4419	 * When reshaping backwards, we round in the opposite direction
4420	 * and perform the reverse test:  next write position must not be
4421	 * less than current safe position.
4422	 *
4423	 * In all this the minimum difference in data offsets
4424	 * (conf->offset_diff - always positive) allows a bit of slack,
4425	 * so next can be after 'safe', but not by more than offset_diff
4426	 *
4427	 * We need to prepare all the bios here before we start any IO
4428	 * to ensure the size we choose is acceptable to all devices.
4429	 * The means one for each copy for write-out and an extra one for
4430	 * read-in.
4431	 * We store the read-in bio in ->master_bio and the others in
4432	 * ->devs[x].bio and ->devs[x].repl_bio.
4433	 */
4434	struct r10conf *conf = mddev->private;
4435	struct r10bio *r10_bio;
4436	sector_t next, safe, last;
4437	int max_sectors;
4438	int nr_sectors;
4439	int s;
4440	struct md_rdev *rdev;
4441	int need_flush = 0;
4442	struct bio *blist;
4443	struct bio *bio, *read_bio;
4444	int sectors_done = 0;
4445	struct page **pages;
4446
4447	if (sector_nr == 0) {
4448		/* If restarting in the middle, skip the initial sectors */
4449		if (mddev->reshape_backwards &&
4450		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4451			sector_nr = (raid10_size(mddev, 0, 0)
4452				     - conf->reshape_progress);
4453		} else if (!mddev->reshape_backwards &&
4454			   conf->reshape_progress > 0)
4455			sector_nr = conf->reshape_progress;
4456		if (sector_nr) {
4457			mddev->curr_resync_completed = sector_nr;
4458			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4459			*skipped = 1;
4460			return sector_nr;
4461		}
4462	}
4463
4464	/* We don't use sector_nr to track where we are up to
4465	 * as that doesn't work well for ->reshape_backwards.
4466	 * So just use ->reshape_progress.
4467	 */
4468	if (mddev->reshape_backwards) {
4469		/* 'next' is the earliest device address that we might
4470		 * write to for this chunk in the new layout
4471		 */
4472		next = first_dev_address(conf->reshape_progress - 1,
4473					 &conf->geo);
4474
4475		/* 'safe' is the last device address that we might read from
4476		 * in the old layout after a restart
4477		 */
4478		safe = last_dev_address(conf->reshape_safe - 1,
4479					&conf->prev);
4480
4481		if (next + conf->offset_diff < safe)
4482			need_flush = 1;
4483
4484		last = conf->reshape_progress - 1;
4485		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4486					       & conf->prev.chunk_mask);
4487		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4488			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4489	} else {
4490		/* 'next' is after the last device address that we
4491		 * might write to for this chunk in the new layout
4492		 */
4493		next = last_dev_address(conf->reshape_progress, &conf->geo);
4494
4495		/* 'safe' is the earliest device address that we might
4496		 * read from in the old layout after a restart
4497		 */
4498		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4499
4500		/* Need to update metadata if 'next' might be beyond 'safe'
4501		 * as that would possibly corrupt data
4502		 */
4503		if (next > safe + conf->offset_diff)
4504			need_flush = 1;
4505
4506		sector_nr = conf->reshape_progress;
4507		last  = sector_nr | (conf->geo.chunk_mask
4508				     & conf->prev.chunk_mask);
4509
4510		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4511			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4512	}
4513
4514	if (need_flush ||
4515	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4516		/* Need to update reshape_position in metadata */
4517		wait_barrier(conf);
4518		mddev->reshape_position = conf->reshape_progress;
4519		if (mddev->reshape_backwards)
4520			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4521				- conf->reshape_progress;
4522		else
4523			mddev->curr_resync_completed = conf->reshape_progress;
4524		conf->reshape_checkpoint = jiffies;
4525		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4526		md_wakeup_thread(mddev->thread);
4527		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4528			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4529		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4530			allow_barrier(conf);
4531			return sectors_done;
4532		}
4533		conf->reshape_safe = mddev->reshape_position;
4534		allow_barrier(conf);
4535	}
4536
4537	raise_barrier(conf, 0);
4538read_more:
4539	/* Now schedule reads for blocks from sector_nr to last */
4540	r10_bio = raid10_alloc_init_r10buf(conf);
4541	r10_bio->state = 0;
4542	raise_barrier(conf, 1);
4543	atomic_set(&r10_bio->remaining, 0);
4544	r10_bio->mddev = mddev;
4545	r10_bio->sector = sector_nr;
4546	set_bit(R10BIO_IsReshape, &r10_bio->state);
4547	r10_bio->sectors = last - sector_nr + 1;
4548	rdev = read_balance(conf, r10_bio, &max_sectors);
4549	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4550
4551	if (!rdev) {
4552		/* Cannot read from here, so need to record bad blocks
4553		 * on all the target devices.
4554		 */
4555		// FIXME
4556		mempool_free(r10_bio, &conf->r10buf_pool);
4557		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4558		return sectors_done;
4559	}
4560
4561	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4562
4563	bio_set_dev(read_bio, rdev->bdev);
4564	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4565			       + rdev->data_offset);
4566	read_bio->bi_private = r10_bio;
4567	read_bio->bi_end_io = end_reshape_read;
4568	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4569	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4570	read_bio->bi_status = 0;
4571	read_bio->bi_vcnt = 0;
4572	read_bio->bi_iter.bi_size = 0;
4573	r10_bio->master_bio = read_bio;
4574	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4575
4576	/*
4577	 * Broadcast RESYNC message to other nodes, so all nodes would not
4578	 * write to the region to avoid conflict.
4579	*/
4580	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4581		struct mdp_superblock_1 *sb = NULL;
4582		int sb_reshape_pos = 0;
4583
4584		conf->cluster_sync_low = sector_nr;
4585		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4586		sb = page_address(rdev->sb_page);
4587		if (sb) {
4588			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4589			/*
4590			 * Set cluster_sync_low again if next address for array
4591			 * reshape is less than cluster_sync_low. Since we can't
4592			 * update cluster_sync_low until it has finished reshape.
4593			 */
4594			if (sb_reshape_pos < conf->cluster_sync_low)
4595				conf->cluster_sync_low = sb_reshape_pos;
4596		}
4597
4598		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4599							  conf->cluster_sync_high);
4600	}
4601
4602	/* Now find the locations in the new layout */
4603	__raid10_find_phys(&conf->geo, r10_bio);
4604
4605	blist = read_bio;
4606	read_bio->bi_next = NULL;
4607
4608	rcu_read_lock();
4609	for (s = 0; s < conf->copies*2; s++) {
4610		struct bio *b;
4611		int d = r10_bio->devs[s/2].devnum;
4612		struct md_rdev *rdev2;
4613		if (s&1) {
4614			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4615			b = r10_bio->devs[s/2].repl_bio;
4616		} else {
4617			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4618			b = r10_bio->devs[s/2].bio;
4619		}
4620		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4621			continue;
4622
4623		bio_set_dev(b, rdev2->bdev);
4624		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4625			rdev2->new_data_offset;
4626		b->bi_end_io = end_reshape_write;
4627		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4628		b->bi_next = blist;
4629		blist = b;
4630	}
4631
4632	/* Now add as many pages as possible to all of these bios. */
4633
4634	nr_sectors = 0;
4635	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4636	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4637		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4638		int len = (max_sectors - s) << 9;
4639		if (len > PAGE_SIZE)
4640			len = PAGE_SIZE;
4641		for (bio = blist; bio ; bio = bio->bi_next) {
4642			/*
4643			 * won't fail because the vec table is big enough
4644			 * to hold all these pages
4645			 */
4646			bio_add_page(bio, page, len, 0);
4647		}
4648		sector_nr += len >> 9;
4649		nr_sectors += len >> 9;
4650	}
4651	rcu_read_unlock();
4652	r10_bio->sectors = nr_sectors;
4653
4654	/* Now submit the read */
4655	md_sync_acct_bio(read_bio, r10_bio->sectors);
4656	atomic_inc(&r10_bio->remaining);
4657	read_bio->bi_next = NULL;
4658	generic_make_request(read_bio);
4659	sectors_done += nr_sectors;
4660	if (sector_nr <= last)
4661		goto read_more;
4662
4663	lower_barrier(conf);
4664
4665	/* Now that we have done the whole section we can
4666	 * update reshape_progress
4667	 */
4668	if (mddev->reshape_backwards)
4669		conf->reshape_progress -= sectors_done;
4670	else
4671		conf->reshape_progress += sectors_done;
4672
4673	return sectors_done;
4674}
4675
4676static void end_reshape_request(struct r10bio *r10_bio);
4677static int handle_reshape_read_error(struct mddev *mddev,
4678				     struct r10bio *r10_bio);
4679static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4680{
4681	/* Reshape read completed.  Hopefully we have a block
4682	 * to write out.
4683	 * If we got a read error then we do sync 1-page reads from
4684	 * elsewhere until we find the data - or give up.
4685	 */
4686	struct r10conf *conf = mddev->private;
4687	int s;
4688
4689	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4690		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4691			/* Reshape has been aborted */
4692			md_done_sync(mddev, r10_bio->sectors, 0);
4693			return;
4694		}
4695
4696	/* We definitely have the data in the pages, schedule the
4697	 * writes.
4698	 */
4699	atomic_set(&r10_bio->remaining, 1);
4700	for (s = 0; s < conf->copies*2; s++) {
4701		struct bio *b;
4702		int d = r10_bio->devs[s/2].devnum;
4703		struct md_rdev *rdev;
4704		rcu_read_lock();
4705		if (s&1) {
4706			rdev = rcu_dereference(conf->mirrors[d].replacement);
4707			b = r10_bio->devs[s/2].repl_bio;
4708		} else {
4709			rdev = rcu_dereference(conf->mirrors[d].rdev);
4710			b = r10_bio->devs[s/2].bio;
4711		}
4712		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4713			rcu_read_unlock();
4714			continue;
4715		}
4716		atomic_inc(&rdev->nr_pending);
4717		rcu_read_unlock();
4718		md_sync_acct_bio(b, r10_bio->sectors);
4719		atomic_inc(&r10_bio->remaining);
4720		b->bi_next = NULL;
4721		generic_make_request(b);
4722	}
4723	end_reshape_request(r10_bio);
4724}
4725
4726static void end_reshape(struct r10conf *conf)
4727{
4728	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4729		return;
4730
4731	spin_lock_irq(&conf->device_lock);
4732	conf->prev = conf->geo;
4733	md_finish_reshape(conf->mddev);
4734	smp_wmb();
4735	conf->reshape_progress = MaxSector;
4736	conf->reshape_safe = MaxSector;
4737	spin_unlock_irq(&conf->device_lock);
4738
4739	/* read-ahead size must cover two whole stripes, which is
4740	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4741	 */
4742	if (conf->mddev->queue) {
4743		int stripe = conf->geo.raid_disks *
4744			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4745		stripe /= conf->geo.near_copies;
4746		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4747			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4748	}
4749	conf->fullsync = 0;
4750}
4751
4752static void raid10_update_reshape_pos(struct mddev *mddev)
4753{
4754	struct r10conf *conf = mddev->private;
4755	sector_t lo, hi;
4756
4757	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4758	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4759	    || mddev->reshape_position == MaxSector)
4760		conf->reshape_progress = mddev->reshape_position;
4761	else
4762		WARN_ON_ONCE(1);
4763}
4764
4765static int handle_reshape_read_error(struct mddev *mddev,
4766				     struct r10bio *r10_bio)
4767{
4768	/* Use sync reads to get the blocks from somewhere else */
4769	int sectors = r10_bio->sectors;
4770	struct r10conf *conf = mddev->private;
4771	struct r10bio *r10b;
4772	int slot = 0;
4773	int idx = 0;
4774	struct page **pages;
4775
4776	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4777	if (!r10b) {
4778		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4779		return -ENOMEM;
4780	}
4781
4782	/* reshape IOs share pages from .devs[0].bio */
4783	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4784
4785	r10b->sector = r10_bio->sector;
4786	__raid10_find_phys(&conf->prev, r10b);
4787
4788	while (sectors) {
4789		int s = sectors;
4790		int success = 0;
4791		int first_slot = slot;
4792
4793		if (s > (PAGE_SIZE >> 9))
4794			s = PAGE_SIZE >> 9;
4795
4796		rcu_read_lock();
4797		while (!success) {
4798			int d = r10b->devs[slot].devnum;
4799			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4800			sector_t addr;
4801			if (rdev == NULL ||
4802			    test_bit(Faulty, &rdev->flags) ||
4803			    !test_bit(In_sync, &rdev->flags))
4804				goto failed;
4805
4806			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4807			atomic_inc(&rdev->nr_pending);
4808			rcu_read_unlock();
4809			success = sync_page_io(rdev,
4810					       addr,
4811					       s << 9,
4812					       pages[idx],
4813					       REQ_OP_READ, 0, false);
4814			rdev_dec_pending(rdev, mddev);
4815			rcu_read_lock();
4816			if (success)
4817				break;
4818		failed:
4819			slot++;
4820			if (slot >= conf->copies)
4821				slot = 0;
4822			if (slot == first_slot)
4823				break;
4824		}
4825		rcu_read_unlock();
4826		if (!success) {
4827			/* couldn't read this block, must give up */
4828			set_bit(MD_RECOVERY_INTR,
4829				&mddev->recovery);
4830			kfree(r10b);
4831			return -EIO;
4832		}
4833		sectors -= s;
4834		idx++;
4835	}
4836	kfree(r10b);
4837	return 0;
4838}
4839
4840static void end_reshape_write(struct bio *bio)
4841{
4842	struct r10bio *r10_bio = get_resync_r10bio(bio);
4843	struct mddev *mddev = r10_bio->mddev;
4844	struct r10conf *conf = mddev->private;
4845	int d;
4846	int slot;
4847	int repl;
4848	struct md_rdev *rdev = NULL;
4849
4850	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4851	if (repl)
4852		rdev = conf->mirrors[d].replacement;
4853	if (!rdev) {
4854		smp_mb();
4855		rdev = conf->mirrors[d].rdev;
4856	}
4857
4858	if (bio->bi_status) {
4859		/* FIXME should record badblock */
4860		md_error(mddev, rdev);
4861	}
4862
4863	rdev_dec_pending(rdev, mddev);
4864	end_reshape_request(r10_bio);
4865}
4866
4867static void end_reshape_request(struct r10bio *r10_bio)
4868{
4869	if (!atomic_dec_and_test(&r10_bio->remaining))
4870		return;
4871	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4872	bio_put(r10_bio->master_bio);
4873	put_buf(r10_bio);
4874}
4875
4876static void raid10_finish_reshape(struct mddev *mddev)
4877{
4878	struct r10conf *conf = mddev->private;
4879
4880	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4881		return;
4882
4883	if (mddev->delta_disks > 0) {
4884		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4885			mddev->recovery_cp = mddev->resync_max_sectors;
4886			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4887		}
4888		mddev->resync_max_sectors = mddev->array_sectors;
4889	} else {
4890		int d;
4891		rcu_read_lock();
4892		for (d = conf->geo.raid_disks ;
4893		     d < conf->geo.raid_disks - mddev->delta_disks;
4894		     d++) {
4895			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4896			if (rdev)
4897				clear_bit(In_sync, &rdev->flags);
4898			rdev = rcu_dereference(conf->mirrors[d].replacement);
4899			if (rdev)
4900				clear_bit(In_sync, &rdev->flags);
4901		}
4902		rcu_read_unlock();
4903	}
4904	mddev->layout = mddev->new_layout;
4905	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4906	mddev->reshape_position = MaxSector;
4907	mddev->delta_disks = 0;
4908	mddev->reshape_backwards = 0;
4909}
4910
4911static struct md_personality raid10_personality =
4912{
4913	.name		= "raid10",
4914	.level		= 10,
4915	.owner		= THIS_MODULE,
4916	.make_request	= raid10_make_request,
4917	.run		= raid10_run,
4918	.free		= raid10_free,
4919	.status		= raid10_status,
4920	.error_handler	= raid10_error,
4921	.hot_add_disk	= raid10_add_disk,
4922	.hot_remove_disk= raid10_remove_disk,
4923	.spare_active	= raid10_spare_active,
4924	.sync_request	= raid10_sync_request,
4925	.quiesce	= raid10_quiesce,
4926	.size		= raid10_size,
4927	.resize		= raid10_resize,
4928	.takeover	= raid10_takeover,
4929	.check_reshape	= raid10_check_reshape,
4930	.start_reshape	= raid10_start_reshape,
4931	.finish_reshape	= raid10_finish_reshape,
4932	.update_reshape_pos = raid10_update_reshape_pos,
4933	.congested	= raid10_congested,
4934};
4935
4936static int __init raid_init(void)
4937{
4938	return register_md_personality(&raid10_personality);
4939}
4940
4941static void raid_exit(void)
4942{
4943	unregister_md_personality(&raid10_personality);
4944}
4945
4946module_init(raid_init);
4947module_exit(raid_exit);
4948MODULE_LICENSE("GPL");
4949MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4950MODULE_ALIAS("md-personality-9"); /* RAID10 */
4951MODULE_ALIAS("md-raid10");
4952MODULE_ALIAS("md-level-10");
4953
4954module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);