Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is part of STM32 ADC driver
   4 *
   5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/iio/iio.h>
  14#include <linux/iio/buffer.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/iopoll.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28
  29#include "stm32-adc-core.h"
  30
  31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
  32#define STM32H7_LINCALFACT_NUM		6
  33
  34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
  35#define STM32H7_BOOST_CLKRATE		20000000UL
  36
  37#define STM32_ADC_CH_MAX		20	/* max number of channels */
  38#define STM32_ADC_CH_SZ			10	/* max channel name size */
  39#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
  40#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
  41#define STM32_ADC_TIMEOUT_US		100000
  42#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
  43#define STM32_ADC_HW_STOP_DELAY_MS	100
  44
  45#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
  46
  47/* External trigger enable */
  48enum stm32_adc_exten {
  49	STM32_EXTEN_SWTRIG,
  50	STM32_EXTEN_HWTRIG_RISING_EDGE,
  51	STM32_EXTEN_HWTRIG_FALLING_EDGE,
  52	STM32_EXTEN_HWTRIG_BOTH_EDGES,
  53};
  54
  55/* extsel - trigger mux selection value */
  56enum stm32_adc_extsel {
  57	STM32_EXT0,
  58	STM32_EXT1,
  59	STM32_EXT2,
  60	STM32_EXT3,
  61	STM32_EXT4,
  62	STM32_EXT5,
  63	STM32_EXT6,
  64	STM32_EXT7,
  65	STM32_EXT8,
  66	STM32_EXT9,
  67	STM32_EXT10,
  68	STM32_EXT11,
  69	STM32_EXT12,
  70	STM32_EXT13,
  71	STM32_EXT14,
  72	STM32_EXT15,
  73	STM32_EXT16,
  74	STM32_EXT17,
  75	STM32_EXT18,
  76	STM32_EXT19,
  77	STM32_EXT20,
  78};
  79
  80/**
  81 * struct stm32_adc_trig_info - ADC trigger info
  82 * @name:		name of the trigger, corresponding to its source
  83 * @extsel:		trigger selection
  84 */
  85struct stm32_adc_trig_info {
  86	const char *name;
  87	enum stm32_adc_extsel extsel;
  88};
  89
  90/**
  91 * struct stm32_adc_calib - optional adc calibration data
  92 * @calfact_s: Calibration offset for single ended channels
  93 * @calfact_d: Calibration offset in differential
  94 * @lincalfact: Linearity calibration factor
  95 * @calibrated: Indicates calibration status
  96 */
  97struct stm32_adc_calib {
  98	u32			calfact_s;
  99	u32			calfact_d;
 100	u32			lincalfact[STM32H7_LINCALFACT_NUM];
 101	bool			calibrated;
 102};
 103
 104/**
 105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 106 * @reg:		register offset
 107 * @mask:		bitfield mask
 108 * @shift:		left shift
 109 */
 110struct stm32_adc_regs {
 111	int reg;
 112	int mask;
 113	int shift;
 114};
 115
 116/**
 117 * struct stm32_adc_regspec - stm32 registers definition
 118 * @dr:			data register offset
 119 * @ier_eoc:		interrupt enable register & eocie bitfield
 120 * @ier_ovr:		interrupt enable register & overrun bitfield
 121 * @isr_eoc:		interrupt status register & eoc bitfield
 122 * @isr_ovr:		interrupt status register & overrun bitfield
 123 * @sqr:		reference to sequence registers array
 124 * @exten:		trigger control register & bitfield
 125 * @extsel:		trigger selection register & bitfield
 126 * @res:		resolution selection register & bitfield
 127 * @smpr:		smpr1 & smpr2 registers offset array
 128 * @smp_bits:		smpr1 & smpr2 index and bitfields
 129 */
 130struct stm32_adc_regspec {
 131	const u32 dr;
 132	const struct stm32_adc_regs ier_eoc;
 133	const struct stm32_adc_regs ier_ovr;
 134	const struct stm32_adc_regs isr_eoc;
 135	const struct stm32_adc_regs isr_ovr;
 136	const struct stm32_adc_regs *sqr;
 137	const struct stm32_adc_regs exten;
 138	const struct stm32_adc_regs extsel;
 139	const struct stm32_adc_regs res;
 140	const u32 smpr[2];
 141	const struct stm32_adc_regs *smp_bits;
 142};
 143
 144struct stm32_adc;
 145
 146/**
 147 * struct stm32_adc_cfg - stm32 compatible configuration data
 148 * @regs:		registers descriptions
 149 * @adc_info:		per instance input channels definitions
 150 * @trigs:		external trigger sources
 151 * @clk_required:	clock is required
 152 * @has_vregready:	vregready status flag presence
 153 * @prepare:		optional prepare routine (power-up, enable)
 154 * @start_conv:		routine to start conversions
 155 * @stop_conv:		routine to stop conversions
 156 * @unprepare:		optional unprepare routine (disable, power-down)
 157 * @smp_cycles:		programmable sampling time (ADC clock cycles)
 158 */
 159struct stm32_adc_cfg {
 160	const struct stm32_adc_regspec	*regs;
 161	const struct stm32_adc_info	*adc_info;
 162	struct stm32_adc_trig_info	*trigs;
 163	bool clk_required;
 164	bool has_vregready;
 165	int (*prepare)(struct iio_dev *);
 166	void (*start_conv)(struct iio_dev *, bool dma);
 167	void (*stop_conv)(struct iio_dev *);
 168	void (*unprepare)(struct iio_dev *);
 169	const unsigned int *smp_cycles;
 170};
 171
 172/**
 173 * struct stm32_adc - private data of each ADC IIO instance
 174 * @common:		reference to ADC block common data
 175 * @offset:		ADC instance register offset in ADC block
 176 * @cfg:		compatible configuration data
 177 * @completion:		end of single conversion completion
 178 * @buffer:		data buffer
 179 * @clk:		clock for this adc instance
 180 * @irq:		interrupt for this adc instance
 181 * @lock:		spinlock
 182 * @bufi:		data buffer index
 183 * @num_conv:		expected number of scan conversions
 184 * @res:		data resolution (e.g. RES bitfield value)
 185 * @trigger_polarity:	external trigger polarity (e.g. exten)
 186 * @dma_chan:		dma channel
 187 * @rx_buf:		dma rx buffer cpu address
 188 * @rx_dma_buf:		dma rx buffer bus address
 189 * @rx_buf_sz:		dma rx buffer size
 190 * @difsel:		bitmask to set single-ended/differential channel
 191 * @pcsel:		bitmask to preselect channels on some devices
 192 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
 193 * @cal:		optional calibration data on some devices
 194 * @chan_name:		channel name array
 195 */
 196struct stm32_adc {
 197	struct stm32_adc_common	*common;
 198	u32			offset;
 199	const struct stm32_adc_cfg	*cfg;
 200	struct completion	completion;
 201	u16			buffer[STM32_ADC_MAX_SQ];
 202	struct clk		*clk;
 203	int			irq;
 204	spinlock_t		lock;		/* interrupt lock */
 205	unsigned int		bufi;
 206	unsigned int		num_conv;
 207	u32			res;
 208	u32			trigger_polarity;
 209	struct dma_chan		*dma_chan;
 210	u8			*rx_buf;
 211	dma_addr_t		rx_dma_buf;
 212	unsigned int		rx_buf_sz;
 213	u32			difsel;
 214	u32			pcsel;
 215	u32			smpr_val[2];
 216	struct stm32_adc_calib	cal;
 217	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
 218};
 219
 220struct stm32_adc_diff_channel {
 221	u32 vinp;
 222	u32 vinn;
 223};
 224
 225/**
 226 * struct stm32_adc_info - stm32 ADC, per instance config data
 227 * @max_channels:	Number of channels
 228 * @resolutions:	available resolutions
 229 * @num_res:		number of available resolutions
 230 */
 231struct stm32_adc_info {
 232	int max_channels;
 233	const unsigned int *resolutions;
 234	const unsigned int num_res;
 235};
 236
 237static const unsigned int stm32f4_adc_resolutions[] = {
 238	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
 239	12, 10, 8, 6,
 240};
 241
 242/* stm32f4 can have up to 16 channels */
 243static const struct stm32_adc_info stm32f4_adc_info = {
 244	.max_channels = 16,
 245	.resolutions = stm32f4_adc_resolutions,
 246	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 247};
 248
 249static const unsigned int stm32h7_adc_resolutions[] = {
 250	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
 251	16, 14, 12, 10, 8,
 252};
 253
 254/* stm32h7 can have up to 20 channels */
 255static const struct stm32_adc_info stm32h7_adc_info = {
 256	.max_channels = STM32_ADC_CH_MAX,
 257	.resolutions = stm32h7_adc_resolutions,
 258	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
 259};
 260
 261/*
 262 * stm32f4_sq - describe regular sequence registers
 263 * - L: sequence len (register & bit field)
 264 * - SQ1..SQ16: sequence entries (register & bit field)
 265 */
 266static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
 267	/* L: len bit field description to be kept as first element */
 268	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
 269	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 270	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
 271	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
 272	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
 273	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
 274	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
 275	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
 276	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
 277	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
 278	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
 279	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
 280	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
 281	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
 282	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
 283	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
 284	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
 285	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
 286};
 287
 288/* STM32F4 external trigger sources for all instances */
 289static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
 290	{ TIM1_CH1, STM32_EXT0 },
 291	{ TIM1_CH2, STM32_EXT1 },
 292	{ TIM1_CH3, STM32_EXT2 },
 293	{ TIM2_CH2, STM32_EXT3 },
 294	{ TIM2_CH3, STM32_EXT4 },
 295	{ TIM2_CH4, STM32_EXT5 },
 296	{ TIM2_TRGO, STM32_EXT6 },
 297	{ TIM3_CH1, STM32_EXT7 },
 298	{ TIM3_TRGO, STM32_EXT8 },
 299	{ TIM4_CH4, STM32_EXT9 },
 300	{ TIM5_CH1, STM32_EXT10 },
 301	{ TIM5_CH2, STM32_EXT11 },
 302	{ TIM5_CH3, STM32_EXT12 },
 303	{ TIM8_CH1, STM32_EXT13 },
 304	{ TIM8_TRGO, STM32_EXT14 },
 305	{}, /* sentinel */
 306};
 307
 308/*
 309 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 310 * Sorted so it can be indexed by channel number.
 311 */
 312static const struct stm32_adc_regs stm32f4_smp_bits[] = {
 313	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
 314	{ 1, GENMASK(2, 0), 0 },
 315	{ 1, GENMASK(5, 3), 3 },
 316	{ 1, GENMASK(8, 6), 6 },
 317	{ 1, GENMASK(11, 9), 9 },
 318	{ 1, GENMASK(14, 12), 12 },
 319	{ 1, GENMASK(17, 15), 15 },
 320	{ 1, GENMASK(20, 18), 18 },
 321	{ 1, GENMASK(23, 21), 21 },
 322	{ 1, GENMASK(26, 24), 24 },
 323	{ 1, GENMASK(29, 27), 27 },
 324	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
 325	{ 0, GENMASK(2, 0), 0 },
 326	{ 0, GENMASK(5, 3), 3 },
 327	{ 0, GENMASK(8, 6), 6 },
 328	{ 0, GENMASK(11, 9), 9 },
 329	{ 0, GENMASK(14, 12), 12 },
 330	{ 0, GENMASK(17, 15), 15 },
 331	{ 0, GENMASK(20, 18), 18 },
 332	{ 0, GENMASK(23, 21), 21 },
 333	{ 0, GENMASK(26, 24), 24 },
 334};
 335
 336/* STM32F4 programmable sampling time (ADC clock cycles) */
 337static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 338	3, 15, 28, 56, 84, 112, 144, 480,
 339};
 340
 341static const struct stm32_adc_regspec stm32f4_adc_regspec = {
 342	.dr = STM32F4_ADC_DR,
 343	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
 344	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
 345	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
 346	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
 347	.sqr = stm32f4_sq,
 348	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
 349	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
 350		    STM32F4_EXTSEL_SHIFT },
 351	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
 352	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
 353	.smp_bits = stm32f4_smp_bits,
 354};
 355
 356static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
 357	/* L: len bit field description to be kept as first element */
 358	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
 359	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 360	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
 361	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
 362	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
 363	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
 364	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
 365	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
 366	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
 367	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
 368	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
 369	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
 370	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
 371	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
 372	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
 373	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
 374	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
 375	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
 376};
 377
 378/* STM32H7 external trigger sources for all instances */
 379static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
 380	{ TIM1_CH1, STM32_EXT0 },
 381	{ TIM1_CH2, STM32_EXT1 },
 382	{ TIM1_CH3, STM32_EXT2 },
 383	{ TIM2_CH2, STM32_EXT3 },
 384	{ TIM3_TRGO, STM32_EXT4 },
 385	{ TIM4_CH4, STM32_EXT5 },
 386	{ TIM8_TRGO, STM32_EXT7 },
 387	{ TIM8_TRGO2, STM32_EXT8 },
 388	{ TIM1_TRGO, STM32_EXT9 },
 389	{ TIM1_TRGO2, STM32_EXT10 },
 390	{ TIM2_TRGO, STM32_EXT11 },
 391	{ TIM4_TRGO, STM32_EXT12 },
 392	{ TIM6_TRGO, STM32_EXT13 },
 393	{ TIM15_TRGO, STM32_EXT14 },
 394	{ TIM3_CH4, STM32_EXT15 },
 395	{ LPTIM1_OUT, STM32_EXT18 },
 396	{ LPTIM2_OUT, STM32_EXT19 },
 397	{ LPTIM3_OUT, STM32_EXT20 },
 398	{},
 399};
 400
 401/*
 402 * stm32h7_smp_bits - describe sampling time register index & bit fields
 403 * Sorted so it can be indexed by channel number.
 404 */
 405static const struct stm32_adc_regs stm32h7_smp_bits[] = {
 406	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
 407	{ 0, GENMASK(2, 0), 0 },
 408	{ 0, GENMASK(5, 3), 3 },
 409	{ 0, GENMASK(8, 6), 6 },
 410	{ 0, GENMASK(11, 9), 9 },
 411	{ 0, GENMASK(14, 12), 12 },
 412	{ 0, GENMASK(17, 15), 15 },
 413	{ 0, GENMASK(20, 18), 18 },
 414	{ 0, GENMASK(23, 21), 21 },
 415	{ 0, GENMASK(26, 24), 24 },
 416	{ 0, GENMASK(29, 27), 27 },
 417	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
 418	{ 1, GENMASK(2, 0), 0 },
 419	{ 1, GENMASK(5, 3), 3 },
 420	{ 1, GENMASK(8, 6), 6 },
 421	{ 1, GENMASK(11, 9), 9 },
 422	{ 1, GENMASK(14, 12), 12 },
 423	{ 1, GENMASK(17, 15), 15 },
 424	{ 1, GENMASK(20, 18), 18 },
 425	{ 1, GENMASK(23, 21), 21 },
 426	{ 1, GENMASK(26, 24), 24 },
 427	{ 1, GENMASK(29, 27), 27 },
 428};
 429
 430/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
 431static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 432	1, 2, 8, 16, 32, 64, 387, 810,
 433};
 434
 435static const struct stm32_adc_regspec stm32h7_adc_regspec = {
 436	.dr = STM32H7_ADC_DR,
 437	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 438	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
 439	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 440	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
 441	.sqr = stm32h7_sq,
 442	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 443	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 444		    STM32H7_EXTSEL_SHIFT },
 445	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 446	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 447	.smp_bits = stm32h7_smp_bits,
 448};
 449
 450/**
 451 * STM32 ADC registers access routines
 452 * @adc: stm32 adc instance
 453 * @reg: reg offset in adc instance
 454 *
 455 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 456 * for adc1, adc2 and adc3.
 457 */
 458static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
 459{
 460	return readl_relaxed(adc->common->base + adc->offset + reg);
 461}
 462
 463#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
 464
 465#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
 466	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
 467			   cond, sleep_us, timeout_us)
 468
 469static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
 470{
 471	return readw_relaxed(adc->common->base + adc->offset + reg);
 472}
 473
 474static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
 475{
 476	writel_relaxed(val, adc->common->base + adc->offset + reg);
 477}
 478
 479static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 480{
 481	unsigned long flags;
 482
 483	spin_lock_irqsave(&adc->lock, flags);
 484	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
 485	spin_unlock_irqrestore(&adc->lock, flags);
 486}
 487
 488static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 489{
 490	unsigned long flags;
 491
 492	spin_lock_irqsave(&adc->lock, flags);
 493	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
 494	spin_unlock_irqrestore(&adc->lock, flags);
 495}
 496
 497/**
 498 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 499 * @adc: stm32 adc instance
 500 */
 501static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
 502{
 503	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
 504			   adc->cfg->regs->ier_eoc.mask);
 505};
 506
 507/**
 508 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 509 * @adc: stm32 adc instance
 510 */
 511static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
 512{
 513	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
 514			   adc->cfg->regs->ier_eoc.mask);
 515}
 516
 517static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
 518{
 519	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
 520			   adc->cfg->regs->ier_ovr.mask);
 521}
 522
 523static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
 524{
 525	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
 526			   adc->cfg->regs->ier_ovr.mask);
 527}
 528
 529static void stm32_adc_set_res(struct stm32_adc *adc)
 530{
 531	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
 532	u32 val;
 533
 534	val = stm32_adc_readl(adc, res->reg);
 535	val = (val & ~res->mask) | (adc->res << res->shift);
 536	stm32_adc_writel(adc, res->reg, val);
 537}
 538
 539static int stm32_adc_hw_stop(struct device *dev)
 540{
 541	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 542	struct stm32_adc *adc = iio_priv(indio_dev);
 543
 544	if (adc->cfg->unprepare)
 545		adc->cfg->unprepare(indio_dev);
 546
 547	if (adc->clk)
 548		clk_disable_unprepare(adc->clk);
 549
 550	return 0;
 551}
 552
 553static int stm32_adc_hw_start(struct device *dev)
 554{
 555	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 556	struct stm32_adc *adc = iio_priv(indio_dev);
 557	int ret;
 558
 559	if (adc->clk) {
 560		ret = clk_prepare_enable(adc->clk);
 561		if (ret)
 562			return ret;
 563	}
 564
 565	stm32_adc_set_res(adc);
 566
 567	if (adc->cfg->prepare) {
 568		ret = adc->cfg->prepare(indio_dev);
 569		if (ret)
 570			goto err_clk_dis;
 571	}
 572
 573	return 0;
 574
 575err_clk_dis:
 576	if (adc->clk)
 577		clk_disable_unprepare(adc->clk);
 578
 579	return ret;
 580}
 581
 582/**
 583 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 584 * @indio_dev: IIO device instance
 585 * @dma: use dma to transfer conversion result
 586 *
 587 * Start conversions for regular channels.
 588 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 589 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 590 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 591 */
 592static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 593{
 594	struct stm32_adc *adc = iio_priv(indio_dev);
 595
 596	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 597
 598	if (dma)
 599		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
 600				   STM32F4_DMA | STM32F4_DDS);
 601
 602	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
 603
 604	/* Wait for Power-up time (tSTAB from datasheet) */
 605	usleep_range(2, 3);
 606
 607	/* Software start ? (e.g. trigger detection disabled ?) */
 608	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
 609		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
 610}
 611
 612static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
 613{
 614	struct stm32_adc *adc = iio_priv(indio_dev);
 615
 616	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
 617	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
 618
 619	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 620	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
 621			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
 622}
 623
 624static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 625{
 626	struct stm32_adc *adc = iio_priv(indio_dev);
 627	enum stm32h7_adc_dmngt dmngt;
 628	unsigned long flags;
 629	u32 val;
 630
 631	if (dma)
 632		dmngt = STM32H7_DMNGT_DMA_CIRC;
 633	else
 634		dmngt = STM32H7_DMNGT_DR_ONLY;
 635
 636	spin_lock_irqsave(&adc->lock, flags);
 637	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
 638	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
 639	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
 640	spin_unlock_irqrestore(&adc->lock, flags);
 641
 642	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 643}
 644
 645static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
 646{
 647	struct stm32_adc *adc = iio_priv(indio_dev);
 648	int ret;
 649	u32 val;
 650
 651	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
 652
 653	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 654					   !(val & (STM32H7_ADSTART)),
 655					   100, STM32_ADC_TIMEOUT_US);
 656	if (ret)
 657		dev_warn(&indio_dev->dev, "stop failed\n");
 658
 659	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
 660}
 661
 662static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
 663{
 664	struct stm32_adc *adc = iio_priv(indio_dev);
 665	int ret;
 666	u32 val;
 667
 668	/* Exit deep power down, then enable ADC voltage regulator */
 669	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 670	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
 671
 672	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
 673		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 674
 675	/* Wait for startup time */
 676	if (!adc->cfg->has_vregready) {
 677		usleep_range(10, 20);
 678		return 0;
 679	}
 680
 681	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 682					   val & STM32MP1_VREGREADY, 100,
 683					   STM32_ADC_TIMEOUT_US);
 684	if (ret) {
 685		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 686		dev_err(&indio_dev->dev, "Failed to exit power down\n");
 687	}
 688
 689	return ret;
 690}
 691
 692static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
 693{
 694	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 695
 696	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
 697	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 698}
 699
 700static int stm32h7_adc_enable(struct iio_dev *indio_dev)
 701{
 702	struct stm32_adc *adc = iio_priv(indio_dev);
 703	int ret;
 704	u32 val;
 705
 706	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 707
 708	/* Poll for ADRDY to be set (after adc startup time) */
 709	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 710					   val & STM32H7_ADRDY,
 711					   100, STM32_ADC_TIMEOUT_US);
 712	if (ret) {
 713		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 714		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
 715	} else {
 716		/* Clear ADRDY by writing one */
 717		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
 718	}
 719
 720	return ret;
 721}
 722
 723static void stm32h7_adc_disable(struct iio_dev *indio_dev)
 724{
 725	struct stm32_adc *adc = iio_priv(indio_dev);
 726	int ret;
 727	u32 val;
 728
 729	/* Disable ADC and wait until it's effectively disabled */
 730	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 731	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 732					   !(val & STM32H7_ADEN), 100,
 733					   STM32_ADC_TIMEOUT_US);
 734	if (ret)
 735		dev_warn(&indio_dev->dev, "Failed to disable\n");
 736}
 737
 738/**
 739 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 740 * @indio_dev: IIO device instance
 741 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
 742 */
 743static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
 744{
 745	struct stm32_adc *adc = iio_priv(indio_dev);
 746	int i, ret;
 747	u32 lincalrdyw_mask, val;
 748
 749	/* Read linearity calibration */
 750	lincalrdyw_mask = STM32H7_LINCALRDYW6;
 751	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 752		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
 753		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 754
 755		/* Poll: wait calib data to be ready in CALFACT2 register */
 756		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 757						   !(val & lincalrdyw_mask),
 758						   100, STM32_ADC_TIMEOUT_US);
 759		if (ret) {
 760			dev_err(&indio_dev->dev, "Failed to read calfact\n");
 761			return ret;
 762		}
 763
 764		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 765		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
 766		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
 767
 768		lincalrdyw_mask >>= 1;
 769	}
 770
 771	/* Read offset calibration */
 772	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
 773	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
 774	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
 775	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
 776	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
 777	adc->cal.calibrated = true;
 778
 779	return 0;
 780}
 781
 782/**
 783 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 784 * @indio_dev: IIO device instance
 785 * Note: ADC must be enabled, with no on-going conversions.
 786 */
 787static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
 788{
 789	struct stm32_adc *adc = iio_priv(indio_dev);
 790	int i, ret;
 791	u32 lincalrdyw_mask, val;
 792
 793	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
 794		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
 795	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
 796
 797	lincalrdyw_mask = STM32H7_LINCALRDYW6;
 798	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 799		/*
 800		 * Write saved calibration data to shadow registers:
 801		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
 802		 * data write. Then poll to wait for complete transfer.
 803		 */
 804		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
 805		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
 806		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 807		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 808						   val & lincalrdyw_mask,
 809						   100, STM32_ADC_TIMEOUT_US);
 810		if (ret) {
 811			dev_err(&indio_dev->dev, "Failed to write calfact\n");
 812			return ret;
 813		}
 814
 815		/*
 816		 * Read back calibration data, has two effects:
 817		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
 818		 *   for next time calibration needs to be restored.
 819		 * - BTW, bit clear triggers a read, then check data has been
 820		 *   correctly written.
 821		 */
 822		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 823		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 824						   !(val & lincalrdyw_mask),
 825						   100, STM32_ADC_TIMEOUT_US);
 826		if (ret) {
 827			dev_err(&indio_dev->dev, "Failed to read calfact\n");
 828			return ret;
 829		}
 830		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 831		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
 832			dev_err(&indio_dev->dev, "calfact not consistent\n");
 833			return -EIO;
 834		}
 835
 836		lincalrdyw_mask >>= 1;
 837	}
 838
 839	return 0;
 840}
 841
 842/**
 843 * Fixed timeout value for ADC calibration.
 844 * worst cases:
 845 * - low clock frequency
 846 * - maximum prescalers
 847 * Calibration requires:
 848 * - 131,072 ADC clock cycle for the linear calibration
 849 * - 20 ADC clock cycle for the offset calibration
 850 *
 851 * Set to 100ms for now
 852 */
 853#define STM32H7_ADC_CALIB_TIMEOUT_US		100000
 854
 855/**
 856 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
 857 * @indio_dev: IIO device instance
 858 * Note: Must be called once ADC is out of power down.
 859 */
 860static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
 861{
 862	struct stm32_adc *adc = iio_priv(indio_dev);
 863	int ret;
 864	u32 val;
 865
 866	if (adc->cal.calibrated)
 867		return true;
 868
 869	/*
 870	 * Select calibration mode:
 871	 * - Offset calibration for single ended inputs
 872	 * - No linearity calibration (do it later, before reading it)
 873	 */
 874	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
 875	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
 876
 877	/* Start calibration, then wait for completion */
 878	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 879	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 880					   !(val & STM32H7_ADCAL), 100,
 881					   STM32H7_ADC_CALIB_TIMEOUT_US);
 882	if (ret) {
 883		dev_err(&indio_dev->dev, "calibration failed\n");
 884		goto out;
 885	}
 886
 887	/*
 888	 * Select calibration mode, then start calibration:
 889	 * - Offset calibration for differential input
 890	 * - Linearity calibration (needs to be done only once for single/diff)
 891	 *   will run simultaneously with offset calibration.
 892	 */
 893	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
 894			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 895	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 896	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 897					   !(val & STM32H7_ADCAL), 100,
 898					   STM32H7_ADC_CALIB_TIMEOUT_US);
 899	if (ret) {
 900		dev_err(&indio_dev->dev, "calibration failed\n");
 901		goto out;
 902	}
 903
 904out:
 905	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
 906			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 907
 908	return ret;
 909}
 910
 911/**
 912 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 913 * @indio_dev: IIO device instance
 914 * Leave power down mode.
 915 * Configure channels as single ended or differential before enabling ADC.
 916 * Enable ADC.
 917 * Restore calibration data.
 918 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
 919 * - Only one input is selected for single ended (e.g. 'vinp')
 920 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
 921 */
 922static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
 923{
 924	struct stm32_adc *adc = iio_priv(indio_dev);
 925	int calib, ret;
 926
 927	ret = stm32h7_adc_exit_pwr_down(indio_dev);
 928	if (ret)
 929		return ret;
 930
 931	ret = stm32h7_adc_selfcalib(indio_dev);
 932	if (ret < 0)
 933		goto pwr_dwn;
 934	calib = ret;
 935
 936	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
 937
 938	ret = stm32h7_adc_enable(indio_dev);
 939	if (ret)
 940		goto pwr_dwn;
 941
 942	/* Either restore or read calibration result for future reference */
 943	if (calib)
 944		ret = stm32h7_adc_restore_selfcalib(indio_dev);
 945	else
 946		ret = stm32h7_adc_read_selfcalib(indio_dev);
 947	if (ret)
 948		goto disable;
 949
 950	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
 951
 952	return 0;
 953
 954disable:
 955	stm32h7_adc_disable(indio_dev);
 956pwr_dwn:
 957	stm32h7_adc_enter_pwr_down(adc);
 958
 959	return ret;
 960}
 961
 962static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
 963{
 964	struct stm32_adc *adc = iio_priv(indio_dev);
 965
 966	stm32h7_adc_disable(indio_dev);
 967	stm32h7_adc_enter_pwr_down(adc);
 968}
 969
 970/**
 971 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
 972 * @indio_dev: IIO device
 973 * @scan_mask: channels to be converted
 974 *
 975 * Conversion sequence :
 976 * Apply sampling time settings for all channels.
 977 * Configure ADC scan sequence based on selected channels in scan_mask.
 978 * Add channels to SQR registers, from scan_mask LSB to MSB, then
 979 * program sequence len.
 980 */
 981static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
 982				   const unsigned long *scan_mask)
 983{
 984	struct stm32_adc *adc = iio_priv(indio_dev);
 985	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
 986	const struct iio_chan_spec *chan;
 987	u32 val, bit;
 988	int i = 0;
 989
 990	/* Apply sampling time settings */
 991	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
 992	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
 993
 994	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
 995		chan = indio_dev->channels + bit;
 996		/*
 997		 * Assign one channel per SQ entry in regular
 998		 * sequence, starting with SQ1.
 999		 */
1000		i++;
1001		if (i > STM32_ADC_MAX_SQ)
1002			return -EINVAL;
1003
1004		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1005			__func__, chan->channel, i);
1006
1007		val = stm32_adc_readl(adc, sqr[i].reg);
1008		val &= ~sqr[i].mask;
1009		val |= chan->channel << sqr[i].shift;
1010		stm32_adc_writel(adc, sqr[i].reg, val);
1011	}
1012
1013	if (!i)
1014		return -EINVAL;
1015
1016	/* Sequence len */
1017	val = stm32_adc_readl(adc, sqr[0].reg);
1018	val &= ~sqr[0].mask;
1019	val |= ((i - 1) << sqr[0].shift);
1020	stm32_adc_writel(adc, sqr[0].reg, val);
1021
1022	return 0;
1023}
1024
1025/**
1026 * stm32_adc_get_trig_extsel() - Get external trigger selection
1027 * @indio_dev: IIO device structure
1028 * @trig: trigger
1029 *
1030 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1031 */
1032static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1033				     struct iio_trigger *trig)
1034{
1035	struct stm32_adc *adc = iio_priv(indio_dev);
1036	int i;
1037
1038	/* lookup triggers registered by stm32 timer trigger driver */
1039	for (i = 0; adc->cfg->trigs[i].name; i++) {
1040		/**
1041		 * Checking both stm32 timer trigger type and trig name
1042		 * should be safe against arbitrary trigger names.
1043		 */
1044		if ((is_stm32_timer_trigger(trig) ||
1045		     is_stm32_lptim_trigger(trig)) &&
1046		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1047			return adc->cfg->trigs[i].extsel;
1048		}
1049	}
1050
1051	return -EINVAL;
1052}
1053
1054/**
1055 * stm32_adc_set_trig() - Set a regular trigger
1056 * @indio_dev: IIO device
1057 * @trig: IIO trigger
1058 *
1059 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1060 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1061 * - if HW trigger enabled, set source & polarity
1062 */
1063static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1064			      struct iio_trigger *trig)
1065{
1066	struct stm32_adc *adc = iio_priv(indio_dev);
1067	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1068	unsigned long flags;
1069	int ret;
1070
1071	if (trig) {
1072		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1073		if (ret < 0)
1074			return ret;
1075
1076		/* set trigger source and polarity (default to rising edge) */
1077		extsel = ret;
1078		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1079	}
1080
1081	spin_lock_irqsave(&adc->lock, flags);
1082	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1083	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1084	val |= exten << adc->cfg->regs->exten.shift;
1085	val |= extsel << adc->cfg->regs->extsel.shift;
1086	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1087	spin_unlock_irqrestore(&adc->lock, flags);
1088
1089	return 0;
1090}
1091
1092static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1093				  const struct iio_chan_spec *chan,
1094				  unsigned int type)
1095{
1096	struct stm32_adc *adc = iio_priv(indio_dev);
1097
1098	adc->trigger_polarity = type;
1099
1100	return 0;
1101}
1102
1103static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1104				  const struct iio_chan_spec *chan)
1105{
1106	struct stm32_adc *adc = iio_priv(indio_dev);
1107
1108	return adc->trigger_polarity;
1109}
1110
1111static const char * const stm32_trig_pol_items[] = {
1112	"rising-edge", "falling-edge", "both-edges",
1113};
1114
1115static const struct iio_enum stm32_adc_trig_pol = {
1116	.items = stm32_trig_pol_items,
1117	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1118	.get = stm32_adc_get_trig_pol,
1119	.set = stm32_adc_set_trig_pol,
1120};
1121
1122/**
1123 * stm32_adc_single_conv() - Performs a single conversion
1124 * @indio_dev: IIO device
1125 * @chan: IIO channel
1126 * @res: conversion result
1127 *
1128 * The function performs a single conversion on a given channel:
1129 * - Apply sampling time settings
1130 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1131 * - Use SW trigger
1132 * - Start conversion, then wait for interrupt completion.
1133 */
1134static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1135				 const struct iio_chan_spec *chan,
1136				 int *res)
1137{
1138	struct stm32_adc *adc = iio_priv(indio_dev);
1139	struct device *dev = indio_dev->dev.parent;
1140	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1141	long timeout;
1142	u32 val;
1143	int ret;
1144
1145	reinit_completion(&adc->completion);
1146
1147	adc->bufi = 0;
1148
1149	ret = pm_runtime_get_sync(dev);
1150	if (ret < 0) {
1151		pm_runtime_put_noidle(dev);
1152		return ret;
1153	}
1154
1155	/* Apply sampling time settings */
1156	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1157	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1158
1159	/* Program chan number in regular sequence (SQ1) */
1160	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1161	val &= ~regs->sqr[1].mask;
1162	val |= chan->channel << regs->sqr[1].shift;
1163	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1164
1165	/* Set regular sequence len (0 for 1 conversion) */
1166	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1167
1168	/* Trigger detection disabled (conversion can be launched in SW) */
1169	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1170
1171	stm32_adc_conv_irq_enable(adc);
1172
1173	adc->cfg->start_conv(indio_dev, false);
1174
1175	timeout = wait_for_completion_interruptible_timeout(
1176					&adc->completion, STM32_ADC_TIMEOUT);
1177	if (timeout == 0) {
1178		ret = -ETIMEDOUT;
1179	} else if (timeout < 0) {
1180		ret = timeout;
1181	} else {
1182		*res = adc->buffer[0];
1183		ret = IIO_VAL_INT;
1184	}
1185
1186	adc->cfg->stop_conv(indio_dev);
1187
1188	stm32_adc_conv_irq_disable(adc);
1189
1190	pm_runtime_mark_last_busy(dev);
1191	pm_runtime_put_autosuspend(dev);
1192
1193	return ret;
1194}
1195
1196static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1197			      struct iio_chan_spec const *chan,
1198			      int *val, int *val2, long mask)
1199{
1200	struct stm32_adc *adc = iio_priv(indio_dev);
1201	int ret;
1202
1203	switch (mask) {
1204	case IIO_CHAN_INFO_RAW:
1205		ret = iio_device_claim_direct_mode(indio_dev);
1206		if (ret)
1207			return ret;
1208		if (chan->type == IIO_VOLTAGE)
1209			ret = stm32_adc_single_conv(indio_dev, chan, val);
1210		else
1211			ret = -EINVAL;
1212		iio_device_release_direct_mode(indio_dev);
1213		return ret;
1214
1215	case IIO_CHAN_INFO_SCALE:
1216		if (chan->differential) {
1217			*val = adc->common->vref_mv * 2;
1218			*val2 = chan->scan_type.realbits;
1219		} else {
1220			*val = adc->common->vref_mv;
1221			*val2 = chan->scan_type.realbits;
1222		}
1223		return IIO_VAL_FRACTIONAL_LOG2;
1224
1225	case IIO_CHAN_INFO_OFFSET:
1226		if (chan->differential)
1227			/* ADC_full_scale / 2 */
1228			*val = -((1 << chan->scan_type.realbits) / 2);
1229		else
1230			*val = 0;
1231		return IIO_VAL_INT;
1232
1233	default:
1234		return -EINVAL;
1235	}
1236}
1237
1238static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1239{
1240	struct iio_dev *indio_dev = data;
1241	struct stm32_adc *adc = iio_priv(indio_dev);
1242	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1243	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1244
1245	if (status & regs->isr_ovr.mask)
1246		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1247
1248	return IRQ_HANDLED;
1249}
1250
1251static irqreturn_t stm32_adc_isr(int irq, void *data)
1252{
1253	struct iio_dev *indio_dev = data;
1254	struct stm32_adc *adc = iio_priv(indio_dev);
1255	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1256	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1257
1258	if (status & regs->isr_ovr.mask) {
1259		/*
1260		 * Overrun occurred on regular conversions: data for wrong
1261		 * channel may be read. Unconditionally disable interrupts
1262		 * to stop processing data and print error message.
1263		 * Restarting the capture can be done by disabling, then
1264		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1265		 */
1266		stm32_adc_ovr_irq_disable(adc);
1267		stm32_adc_conv_irq_disable(adc);
1268		return IRQ_WAKE_THREAD;
1269	}
1270
1271	if (status & regs->isr_eoc.mask) {
1272		/* Reading DR also clears EOC status flag */
1273		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1274		if (iio_buffer_enabled(indio_dev)) {
1275			adc->bufi++;
1276			if (adc->bufi >= adc->num_conv) {
1277				stm32_adc_conv_irq_disable(adc);
1278				iio_trigger_poll(indio_dev->trig);
1279			}
1280		} else {
1281			complete(&adc->completion);
1282		}
1283		return IRQ_HANDLED;
1284	}
1285
1286	return IRQ_NONE;
1287}
1288
1289/**
1290 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1291 * @indio_dev: IIO device
1292 * @trig: new trigger
1293 *
1294 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1295 * driver, -EINVAL otherwise.
1296 */
1297static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1298				      struct iio_trigger *trig)
1299{
1300	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1301}
1302
1303static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1304{
1305	struct stm32_adc *adc = iio_priv(indio_dev);
1306	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1307	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1308
1309	/*
1310	 * dma cyclic transfers are used, buffer is split into two periods.
1311	 * There should be :
1312	 * - always one buffer (period) dma is working on
1313	 * - one buffer (period) driver can push with iio_trigger_poll().
1314	 */
1315	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1316	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1317
1318	return 0;
1319}
1320
1321static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1322				      const unsigned long *scan_mask)
1323{
1324	struct stm32_adc *adc = iio_priv(indio_dev);
1325	struct device *dev = indio_dev->dev.parent;
1326	int ret;
1327
1328	ret = pm_runtime_get_sync(dev);
1329	if (ret < 0) {
1330		pm_runtime_put_noidle(dev);
1331		return ret;
1332	}
1333
1334	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1335
1336	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1337	pm_runtime_mark_last_busy(dev);
1338	pm_runtime_put_autosuspend(dev);
1339
1340	return ret;
1341}
1342
1343static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1344			      const struct of_phandle_args *iiospec)
1345{
1346	int i;
1347
1348	for (i = 0; i < indio_dev->num_channels; i++)
1349		if (indio_dev->channels[i].channel == iiospec->args[0])
1350			return i;
1351
1352	return -EINVAL;
1353}
1354
1355/**
1356 * stm32_adc_debugfs_reg_access - read or write register value
1357 * @indio_dev: IIO device structure
1358 * @reg: register offset
1359 * @writeval: value to write
1360 * @readval: value to read
1361 *
1362 * To read a value from an ADC register:
1363 *   echo [ADC reg offset] > direct_reg_access
1364 *   cat direct_reg_access
1365 *
1366 * To write a value in a ADC register:
1367 *   echo [ADC_reg_offset] [value] > direct_reg_access
1368 */
1369static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1370					unsigned reg, unsigned writeval,
1371					unsigned *readval)
1372{
1373	struct stm32_adc *adc = iio_priv(indio_dev);
1374	struct device *dev = indio_dev->dev.parent;
1375	int ret;
1376
1377	ret = pm_runtime_get_sync(dev);
1378	if (ret < 0) {
1379		pm_runtime_put_noidle(dev);
1380		return ret;
1381	}
1382
1383	if (!readval)
1384		stm32_adc_writel(adc, reg, writeval);
1385	else
1386		*readval = stm32_adc_readl(adc, reg);
1387
1388	pm_runtime_mark_last_busy(dev);
1389	pm_runtime_put_autosuspend(dev);
1390
1391	return 0;
1392}
1393
1394static const struct iio_info stm32_adc_iio_info = {
1395	.read_raw = stm32_adc_read_raw,
1396	.validate_trigger = stm32_adc_validate_trigger,
1397	.hwfifo_set_watermark = stm32_adc_set_watermark,
1398	.update_scan_mode = stm32_adc_update_scan_mode,
1399	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1400	.of_xlate = stm32_adc_of_xlate,
1401};
1402
1403static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1404{
1405	struct dma_tx_state state;
1406	enum dma_status status;
1407
1408	status = dmaengine_tx_status(adc->dma_chan,
1409				     adc->dma_chan->cookie,
1410				     &state);
1411	if (status == DMA_IN_PROGRESS) {
1412		/* Residue is size in bytes from end of buffer */
1413		unsigned int i = adc->rx_buf_sz - state.residue;
1414		unsigned int size;
1415
1416		/* Return available bytes */
1417		if (i >= adc->bufi)
1418			size = i - adc->bufi;
1419		else
1420			size = adc->rx_buf_sz + i - adc->bufi;
1421
1422		return size;
1423	}
1424
1425	return 0;
1426}
1427
1428static void stm32_adc_dma_buffer_done(void *data)
1429{
1430	struct iio_dev *indio_dev = data;
1431	struct stm32_adc *adc = iio_priv(indio_dev);
1432	int residue = stm32_adc_dma_residue(adc);
1433
1434	/*
1435	 * In DMA mode the trigger services of IIO are not used
1436	 * (e.g. no call to iio_trigger_poll).
1437	 * Calling irq handler associated to the hardware trigger is not
1438	 * relevant as the conversions have already been done. Data
1439	 * transfers are performed directly in DMA callback instead.
1440	 * This implementation avoids to call trigger irq handler that
1441	 * may sleep, in an atomic context (DMA irq handler context).
1442	 */
1443	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1444
1445	while (residue >= indio_dev->scan_bytes) {
1446		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1447
1448		iio_push_to_buffers(indio_dev, buffer);
1449
1450		residue -= indio_dev->scan_bytes;
1451		adc->bufi += indio_dev->scan_bytes;
1452		if (adc->bufi >= adc->rx_buf_sz)
1453			adc->bufi = 0;
1454	}
1455}
1456
1457static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1458{
1459	struct stm32_adc *adc = iio_priv(indio_dev);
1460	struct dma_async_tx_descriptor *desc;
1461	dma_cookie_t cookie;
1462	int ret;
1463
1464	if (!adc->dma_chan)
1465		return 0;
1466
1467	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1468		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1469
1470	/* Prepare a DMA cyclic transaction */
1471	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1472					 adc->rx_dma_buf,
1473					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1474					 DMA_DEV_TO_MEM,
1475					 DMA_PREP_INTERRUPT);
1476	if (!desc)
1477		return -EBUSY;
1478
1479	desc->callback = stm32_adc_dma_buffer_done;
1480	desc->callback_param = indio_dev;
1481
1482	cookie = dmaengine_submit(desc);
1483	ret = dma_submit_error(cookie);
1484	if (ret) {
1485		dmaengine_terminate_sync(adc->dma_chan);
1486		return ret;
1487	}
1488
1489	/* Issue pending DMA requests */
1490	dma_async_issue_pending(adc->dma_chan);
1491
1492	return 0;
1493}
1494
1495static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1496{
1497	struct stm32_adc *adc = iio_priv(indio_dev);
1498	struct device *dev = indio_dev->dev.parent;
1499	int ret;
1500
1501	ret = pm_runtime_get_sync(dev);
1502	if (ret < 0) {
1503		pm_runtime_put_noidle(dev);
1504		return ret;
1505	}
1506
1507	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1508	if (ret) {
1509		dev_err(&indio_dev->dev, "Can't set trigger\n");
1510		goto err_pm_put;
1511	}
1512
1513	ret = stm32_adc_dma_start(indio_dev);
1514	if (ret) {
1515		dev_err(&indio_dev->dev, "Can't start dma\n");
1516		goto err_clr_trig;
1517	}
1518
1519	/* Reset adc buffer index */
1520	adc->bufi = 0;
1521
1522	stm32_adc_ovr_irq_enable(adc);
1523
1524	if (!adc->dma_chan)
1525		stm32_adc_conv_irq_enable(adc);
1526
1527	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1528
1529	return 0;
1530
1531err_clr_trig:
1532	stm32_adc_set_trig(indio_dev, NULL);
1533err_pm_put:
1534	pm_runtime_mark_last_busy(dev);
1535	pm_runtime_put_autosuspend(dev);
1536
1537	return ret;
1538}
1539
1540static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1541{
1542	struct stm32_adc *adc = iio_priv(indio_dev);
1543	struct device *dev = indio_dev->dev.parent;
1544
1545	adc->cfg->stop_conv(indio_dev);
1546	if (!adc->dma_chan)
1547		stm32_adc_conv_irq_disable(adc);
1548
1549	stm32_adc_ovr_irq_disable(adc);
1550
1551	if (adc->dma_chan)
1552		dmaengine_terminate_sync(adc->dma_chan);
1553
1554	if (stm32_adc_set_trig(indio_dev, NULL))
1555		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1556
1557	pm_runtime_mark_last_busy(dev);
1558	pm_runtime_put_autosuspend(dev);
1559
1560	return 0;
1561}
1562
1563static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1564	.postenable = &stm32_adc_buffer_postenable,
1565	.predisable = &stm32_adc_buffer_predisable,
1566};
1567
1568static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1569{
1570	struct iio_poll_func *pf = p;
1571	struct iio_dev *indio_dev = pf->indio_dev;
1572	struct stm32_adc *adc = iio_priv(indio_dev);
1573
1574	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1575
1576	if (!adc->dma_chan) {
1577		/* reset buffer index */
1578		adc->bufi = 0;
1579		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1580						   pf->timestamp);
1581	} else {
1582		int residue = stm32_adc_dma_residue(adc);
1583
1584		while (residue >= indio_dev->scan_bytes) {
1585			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1586
1587			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1588							   pf->timestamp);
1589			residue -= indio_dev->scan_bytes;
1590			adc->bufi += indio_dev->scan_bytes;
1591			if (adc->bufi >= adc->rx_buf_sz)
1592				adc->bufi = 0;
1593		}
1594	}
1595
1596	iio_trigger_notify_done(indio_dev->trig);
1597
1598	/* re-enable eoc irq */
1599	if (!adc->dma_chan)
1600		stm32_adc_conv_irq_enable(adc);
1601
1602	return IRQ_HANDLED;
1603}
1604
1605static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1606	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1607	{
1608		.name = "trigger_polarity_available",
1609		.shared = IIO_SHARED_BY_ALL,
1610		.read = iio_enum_available_read,
1611		.private = (uintptr_t)&stm32_adc_trig_pol,
1612	},
1613	{},
1614};
1615
1616static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1617{
1618	struct device_node *node = indio_dev->dev.of_node;
1619	struct stm32_adc *adc = iio_priv(indio_dev);
1620	unsigned int i;
1621	u32 res;
1622
1623	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1624		res = adc->cfg->adc_info->resolutions[0];
1625
1626	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1627		if (res == adc->cfg->adc_info->resolutions[i])
1628			break;
1629	if (i >= adc->cfg->adc_info->num_res) {
1630		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1631		return -EINVAL;
1632	}
1633
1634	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1635	adc->res = i;
1636
1637	return 0;
1638}
1639
1640static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1641{
1642	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1643	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1644	unsigned int smp, r = smpr->reg;
1645
1646	/* Determine sampling time (ADC clock cycles) */
1647	period_ns = NSEC_PER_SEC / adc->common->rate;
1648	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1649		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1650			break;
1651	if (smp > STM32_ADC_MAX_SMP)
1652		smp = STM32_ADC_MAX_SMP;
1653
1654	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1655	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1656}
1657
1658static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1659				    struct iio_chan_spec *chan, u32 vinp,
1660				    u32 vinn, int scan_index, bool differential)
1661{
1662	struct stm32_adc *adc = iio_priv(indio_dev);
1663	char *name = adc->chan_name[vinp];
1664
1665	chan->type = IIO_VOLTAGE;
1666	chan->channel = vinp;
1667	if (differential) {
1668		chan->differential = 1;
1669		chan->channel2 = vinn;
1670		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1671	} else {
1672		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1673	}
1674	chan->datasheet_name = name;
1675	chan->scan_index = scan_index;
1676	chan->indexed = 1;
1677	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1678	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1679					 BIT(IIO_CHAN_INFO_OFFSET);
1680	chan->scan_type.sign = 'u';
1681	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1682	chan->scan_type.storagebits = 16;
1683	chan->ext_info = stm32_adc_ext_info;
1684
1685	/* pre-build selected channels mask */
1686	adc->pcsel |= BIT(chan->channel);
1687	if (differential) {
1688		/* pre-build diff channels mask */
1689		adc->difsel |= BIT(chan->channel);
1690		/* Also add negative input to pre-selected channels */
1691		adc->pcsel |= BIT(chan->channel2);
1692	}
1693}
1694
1695static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1696{
1697	struct device_node *node = indio_dev->dev.of_node;
1698	struct stm32_adc *adc = iio_priv(indio_dev);
1699	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1700	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1701	struct property *prop;
1702	const __be32 *cur;
1703	struct iio_chan_spec *channels;
1704	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1705	u32 val, smp = 0;
1706
1707	ret = of_property_count_u32_elems(node, "st,adc-channels");
1708	if (ret > adc_info->max_channels) {
1709		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1710		return -EINVAL;
1711	} else if (ret > 0) {
1712		num_channels += ret;
1713	}
1714
1715	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1716					      sizeof(*diff));
1717	if (ret > adc_info->max_channels) {
1718		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1719		return -EINVAL;
1720	} else if (ret > 0) {
1721		int size = ret * sizeof(*diff) / sizeof(u32);
1722
1723		num_diff = ret;
1724		num_channels += ret;
1725		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1726						 (u32 *)diff, size);
1727		if (ret)
1728			return ret;
1729	}
1730
1731	if (!num_channels) {
1732		dev_err(&indio_dev->dev, "No channels configured\n");
1733		return -ENODATA;
1734	}
1735
1736	/* Optional sample time is provided either for each, or all channels */
1737	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1738	if (ret > 1 && ret != num_channels) {
1739		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1740		return -EINVAL;
1741	}
1742
1743	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1744				sizeof(struct iio_chan_spec), GFP_KERNEL);
1745	if (!channels)
1746		return -ENOMEM;
1747
1748	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1749		if (val >= adc_info->max_channels) {
1750			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1751			return -EINVAL;
1752		}
1753
1754		/* Channel can't be configured both as single-ended & diff */
1755		for (i = 0; i < num_diff; i++) {
1756			if (val == diff[i].vinp) {
1757				dev_err(&indio_dev->dev,
1758					"channel %d miss-configured\n",	val);
1759				return -EINVAL;
1760			}
1761		}
1762		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1763					0, scan_index, false);
1764		scan_index++;
1765	}
1766
1767	for (i = 0; i < num_diff; i++) {
1768		if (diff[i].vinp >= adc_info->max_channels ||
1769		    diff[i].vinn >= adc_info->max_channels) {
1770			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1771				diff[i].vinp, diff[i].vinn);
1772			return -EINVAL;
1773		}
1774		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1775					diff[i].vinp, diff[i].vinn, scan_index,
1776					true);
1777		scan_index++;
1778	}
1779
1780	for (i = 0; i < scan_index; i++) {
1781		/*
1782		 * Using of_property_read_u32_index(), smp value will only be
1783		 * modified if valid u32 value can be decoded. This allows to
1784		 * get either no value, 1 shared value for all indexes, or one
1785		 * value per channel.
1786		 */
1787		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1788					   i, &smp);
1789		/* Prepare sampling time settings */
1790		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1791	}
1792
1793	indio_dev->num_channels = scan_index;
1794	indio_dev->channels = channels;
1795
1796	return 0;
1797}
1798
1799static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1800{
1801	struct stm32_adc *adc = iio_priv(indio_dev);
1802	struct dma_slave_config config;
1803	int ret;
1804
1805	adc->dma_chan = dma_request_chan(dev, "rx");
1806	if (IS_ERR(adc->dma_chan)) {
1807		ret = PTR_ERR(adc->dma_chan);
1808		if (ret != -ENODEV) {
1809			if (ret != -EPROBE_DEFER)
1810				dev_err(dev,
1811					"DMA channel request failed with %d\n",
1812					ret);
1813			return ret;
1814		}
1815
1816		/* DMA is optional: fall back to IRQ mode */
1817		adc->dma_chan = NULL;
1818		return 0;
1819	}
1820
1821	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1822					 STM32_DMA_BUFFER_SIZE,
1823					 &adc->rx_dma_buf, GFP_KERNEL);
1824	if (!adc->rx_buf) {
1825		ret = -ENOMEM;
1826		goto err_release;
1827	}
1828
1829	/* Configure DMA channel to read data register */
1830	memset(&config, 0, sizeof(config));
1831	config.src_addr = (dma_addr_t)adc->common->phys_base;
1832	config.src_addr += adc->offset + adc->cfg->regs->dr;
1833	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1834
1835	ret = dmaengine_slave_config(adc->dma_chan, &config);
1836	if (ret)
1837		goto err_free;
1838
1839	return 0;
1840
1841err_free:
1842	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1843			  adc->rx_buf, adc->rx_dma_buf);
1844err_release:
1845	dma_release_channel(adc->dma_chan);
1846
1847	return ret;
1848}
1849
1850static int stm32_adc_probe(struct platform_device *pdev)
1851{
1852	struct iio_dev *indio_dev;
1853	struct device *dev = &pdev->dev;
1854	irqreturn_t (*handler)(int irq, void *p) = NULL;
1855	struct stm32_adc *adc;
1856	int ret;
1857
1858	if (!pdev->dev.of_node)
1859		return -ENODEV;
1860
1861	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1862	if (!indio_dev)
1863		return -ENOMEM;
1864
1865	adc = iio_priv(indio_dev);
1866	adc->common = dev_get_drvdata(pdev->dev.parent);
1867	spin_lock_init(&adc->lock);
1868	init_completion(&adc->completion);
1869	adc->cfg = (const struct stm32_adc_cfg *)
1870		of_match_device(dev->driver->of_match_table, dev)->data;
1871
1872	indio_dev->name = dev_name(&pdev->dev);
1873	indio_dev->dev.of_node = pdev->dev.of_node;
1874	indio_dev->info = &stm32_adc_iio_info;
1875	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1876
1877	platform_set_drvdata(pdev, indio_dev);
1878
1879	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1880	if (ret != 0) {
1881		dev_err(&pdev->dev, "missing reg property\n");
1882		return -EINVAL;
1883	}
1884
1885	adc->irq = platform_get_irq(pdev, 0);
1886	if (adc->irq < 0)
1887		return adc->irq;
1888
1889	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1890					stm32_adc_threaded_isr,
1891					0, pdev->name, indio_dev);
1892	if (ret) {
1893		dev_err(&pdev->dev, "failed to request IRQ\n");
1894		return ret;
1895	}
1896
1897	adc->clk = devm_clk_get(&pdev->dev, NULL);
1898	if (IS_ERR(adc->clk)) {
1899		ret = PTR_ERR(adc->clk);
1900		if (ret == -ENOENT && !adc->cfg->clk_required) {
1901			adc->clk = NULL;
1902		} else {
1903			dev_err(&pdev->dev, "Can't get clock\n");
1904			return ret;
1905		}
1906	}
1907
1908	ret = stm32_adc_of_get_resolution(indio_dev);
1909	if (ret < 0)
1910		return ret;
1911
1912	ret = stm32_adc_chan_of_init(indio_dev);
1913	if (ret < 0)
1914		return ret;
1915
1916	ret = stm32_adc_dma_request(dev, indio_dev);
1917	if (ret < 0)
1918		return ret;
1919
1920	if (!adc->dma_chan)
1921		handler = &stm32_adc_trigger_handler;
1922
1923	ret = iio_triggered_buffer_setup(indio_dev,
1924					 &iio_pollfunc_store_time, handler,
1925					 &stm32_adc_buffer_setup_ops);
1926	if (ret) {
1927		dev_err(&pdev->dev, "buffer setup failed\n");
1928		goto err_dma_disable;
1929	}
1930
1931	/* Get stm32-adc-core PM online */
1932	pm_runtime_get_noresume(dev);
1933	pm_runtime_set_active(dev);
1934	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1935	pm_runtime_use_autosuspend(dev);
1936	pm_runtime_enable(dev);
1937
1938	ret = stm32_adc_hw_start(dev);
1939	if (ret)
1940		goto err_buffer_cleanup;
1941
1942	ret = iio_device_register(indio_dev);
1943	if (ret) {
1944		dev_err(&pdev->dev, "iio dev register failed\n");
1945		goto err_hw_stop;
1946	}
1947
1948	pm_runtime_mark_last_busy(dev);
1949	pm_runtime_put_autosuspend(dev);
1950
1951	return 0;
1952
1953err_hw_stop:
1954	stm32_adc_hw_stop(dev);
1955
1956err_buffer_cleanup:
1957	pm_runtime_disable(dev);
1958	pm_runtime_set_suspended(dev);
1959	pm_runtime_put_noidle(dev);
1960	iio_triggered_buffer_cleanup(indio_dev);
1961
1962err_dma_disable:
1963	if (adc->dma_chan) {
1964		dma_free_coherent(adc->dma_chan->device->dev,
1965				  STM32_DMA_BUFFER_SIZE,
1966				  adc->rx_buf, adc->rx_dma_buf);
1967		dma_release_channel(adc->dma_chan);
1968	}
1969
1970	return ret;
1971}
1972
1973static int stm32_adc_remove(struct platform_device *pdev)
1974{
1975	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1976	struct stm32_adc *adc = iio_priv(indio_dev);
1977
1978	pm_runtime_get_sync(&pdev->dev);
1979	iio_device_unregister(indio_dev);
1980	stm32_adc_hw_stop(&pdev->dev);
1981	pm_runtime_disable(&pdev->dev);
1982	pm_runtime_set_suspended(&pdev->dev);
1983	pm_runtime_put_noidle(&pdev->dev);
1984	iio_triggered_buffer_cleanup(indio_dev);
1985	if (adc->dma_chan) {
1986		dma_free_coherent(adc->dma_chan->device->dev,
1987				  STM32_DMA_BUFFER_SIZE,
1988				  adc->rx_buf, adc->rx_dma_buf);
1989		dma_release_channel(adc->dma_chan);
1990	}
1991
1992	return 0;
1993}
1994
1995#if defined(CONFIG_PM_SLEEP)
1996static int stm32_adc_suspend(struct device *dev)
1997{
1998	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1999
2000	if (iio_buffer_enabled(indio_dev))
2001		stm32_adc_buffer_predisable(indio_dev);
2002
2003	return pm_runtime_force_suspend(dev);
2004}
2005
2006static int stm32_adc_resume(struct device *dev)
2007{
2008	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2009	int ret;
2010
2011	ret = pm_runtime_force_resume(dev);
2012	if (ret < 0)
2013		return ret;
2014
2015	if (!iio_buffer_enabled(indio_dev))
2016		return 0;
2017
2018	ret = stm32_adc_update_scan_mode(indio_dev,
2019					 indio_dev->active_scan_mask);
2020	if (ret < 0)
2021		return ret;
2022
2023	return stm32_adc_buffer_postenable(indio_dev);
2024}
2025#endif
2026
2027#if defined(CONFIG_PM)
2028static int stm32_adc_runtime_suspend(struct device *dev)
2029{
2030	return stm32_adc_hw_stop(dev);
2031}
2032
2033static int stm32_adc_runtime_resume(struct device *dev)
2034{
2035	return stm32_adc_hw_start(dev);
2036}
2037#endif
2038
2039static const struct dev_pm_ops stm32_adc_pm_ops = {
2040	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2041	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2042			   NULL)
2043};
2044
2045static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2046	.regs = &stm32f4_adc_regspec,
2047	.adc_info = &stm32f4_adc_info,
2048	.trigs = stm32f4_adc_trigs,
2049	.clk_required = true,
2050	.start_conv = stm32f4_adc_start_conv,
2051	.stop_conv = stm32f4_adc_stop_conv,
2052	.smp_cycles = stm32f4_adc_smp_cycles,
2053};
2054
2055static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2056	.regs = &stm32h7_adc_regspec,
2057	.adc_info = &stm32h7_adc_info,
2058	.trigs = stm32h7_adc_trigs,
2059	.start_conv = stm32h7_adc_start_conv,
2060	.stop_conv = stm32h7_adc_stop_conv,
2061	.prepare = stm32h7_adc_prepare,
2062	.unprepare = stm32h7_adc_unprepare,
2063	.smp_cycles = stm32h7_adc_smp_cycles,
2064};
2065
2066static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2067	.regs = &stm32h7_adc_regspec,
2068	.adc_info = &stm32h7_adc_info,
2069	.trigs = stm32h7_adc_trigs,
2070	.has_vregready = true,
2071	.start_conv = stm32h7_adc_start_conv,
2072	.stop_conv = stm32h7_adc_stop_conv,
2073	.prepare = stm32h7_adc_prepare,
2074	.unprepare = stm32h7_adc_unprepare,
2075	.smp_cycles = stm32h7_adc_smp_cycles,
2076};
2077
2078static const struct of_device_id stm32_adc_of_match[] = {
2079	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2080	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2081	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2082	{},
2083};
2084MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2085
2086static struct platform_driver stm32_adc_driver = {
2087	.probe = stm32_adc_probe,
2088	.remove = stm32_adc_remove,
2089	.driver = {
2090		.name = "stm32-adc",
2091		.of_match_table = stm32_adc_of_match,
2092		.pm = &stm32_adc_pm_ops,
2093	},
2094};
2095module_platform_driver(stm32_adc_driver);
2096
2097MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2098MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2099MODULE_LICENSE("GPL v2");
2100MODULE_ALIAS("platform:stm32-adc");