Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/jiffies.h>
  13#include <linux/mman.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/kthread.h>
  19#include <linux/completion.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/memory.h>
  22#include <linux/notifier.h>
  23#include <linux/percpu_counter.h>
  24
  25#include <linux/hyperv.h>
  26#include <asm/hyperv-tlfs.h>
  27
  28#include <asm/mshyperv.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include "hv_trace_balloon.h"
  32
  33/*
  34 * We begin with definitions supporting the Dynamic Memory protocol
  35 * with the host.
  36 *
  37 * Begin protocol definitions.
  38 */
  39
  40
  41
  42/*
  43 * Protocol versions. The low word is the minor version, the high word the major
  44 * version.
  45 *
  46 * History:
  47 * Initial version 1.0
  48 * Changed to 0.1 on 2009/03/25
  49 * Changes to 0.2 on 2009/05/14
  50 * Changes to 0.3 on 2009/12/03
  51 * Changed to 1.0 on 2011/04/05
  52 */
  53
  54#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  55#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  56#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  57
  58enum {
  59	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  60	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  61	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  62
  63	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  64	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  65	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  66
  67	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  68};
  69
  70
  71
  72/*
  73 * Message Types
  74 */
  75
  76enum dm_message_type {
  77	/*
  78	 * Version 0.3
  79	 */
  80	DM_ERROR			= 0,
  81	DM_VERSION_REQUEST		= 1,
  82	DM_VERSION_RESPONSE		= 2,
  83	DM_CAPABILITIES_REPORT		= 3,
  84	DM_CAPABILITIES_RESPONSE	= 4,
  85	DM_STATUS_REPORT		= 5,
  86	DM_BALLOON_REQUEST		= 6,
  87	DM_BALLOON_RESPONSE		= 7,
  88	DM_UNBALLOON_REQUEST		= 8,
  89	DM_UNBALLOON_RESPONSE		= 9,
  90	DM_MEM_HOT_ADD_REQUEST		= 10,
  91	DM_MEM_HOT_ADD_RESPONSE		= 11,
  92	DM_VERSION_03_MAX		= 11,
  93	/*
  94	 * Version 1.0.
  95	 */
  96	DM_INFO_MESSAGE			= 12,
  97	DM_VERSION_1_MAX		= 12
  98};
  99
 100
 101/*
 102 * Structures defining the dynamic memory management
 103 * protocol.
 104 */
 105
 106union dm_version {
 107	struct {
 108		__u16 minor_version;
 109		__u16 major_version;
 110	};
 111	__u32 version;
 112} __packed;
 113
 114
 115union dm_caps {
 116	struct {
 117		__u64 balloon:1;
 118		__u64 hot_add:1;
 119		/*
 120		 * To support guests that may have alignment
 121		 * limitations on hot-add, the guest can specify
 122		 * its alignment requirements; a value of n
 123		 * represents an alignment of 2^n in mega bytes.
 124		 */
 125		__u64 hot_add_alignment:4;
 126		__u64 reservedz:58;
 127	} cap_bits;
 128	__u64 caps;
 129} __packed;
 130
 131union dm_mem_page_range {
 132	struct  {
 133		/*
 134		 * The PFN number of the first page in the range.
 135		 * 40 bits is the architectural limit of a PFN
 136		 * number for AMD64.
 137		 */
 138		__u64 start_page:40;
 139		/*
 140		 * The number of pages in the range.
 141		 */
 142		__u64 page_cnt:24;
 143	} finfo;
 144	__u64  page_range;
 145} __packed;
 146
 147
 148
 149/*
 150 * The header for all dynamic memory messages:
 151 *
 152 * type: Type of the message.
 153 * size: Size of the message in bytes; including the header.
 154 * trans_id: The guest is responsible for manufacturing this ID.
 155 */
 156
 157struct dm_header {
 158	__u16 type;
 159	__u16 size;
 160	__u32 trans_id;
 161} __packed;
 162
 163/*
 164 * A generic message format for dynamic memory.
 165 * Specific message formats are defined later in the file.
 166 */
 167
 168struct dm_message {
 169	struct dm_header hdr;
 170	__u8 data[]; /* enclosed message */
 171} __packed;
 172
 173
 174/*
 175 * Specific message types supporting the dynamic memory protocol.
 176 */
 177
 178/*
 179 * Version negotiation message. Sent from the guest to the host.
 180 * The guest is free to try different versions until the host
 181 * accepts the version.
 182 *
 183 * dm_version: The protocol version requested.
 184 * is_last_attempt: If TRUE, this is the last version guest will request.
 185 * reservedz: Reserved field, set to zero.
 186 */
 187
 188struct dm_version_request {
 189	struct dm_header hdr;
 190	union dm_version version;
 191	__u32 is_last_attempt:1;
 192	__u32 reservedz:31;
 193} __packed;
 194
 195/*
 196 * Version response message; Host to Guest and indicates
 197 * if the host has accepted the version sent by the guest.
 198 *
 199 * is_accepted: If TRUE, host has accepted the version and the guest
 200 * should proceed to the next stage of the protocol. FALSE indicates that
 201 * guest should re-try with a different version.
 202 *
 203 * reservedz: Reserved field, set to zero.
 204 */
 205
 206struct dm_version_response {
 207	struct dm_header hdr;
 208	__u64 is_accepted:1;
 209	__u64 reservedz:63;
 210} __packed;
 211
 212/*
 213 * Message reporting capabilities. This is sent from the guest to the
 214 * host.
 215 */
 216
 217struct dm_capabilities {
 218	struct dm_header hdr;
 219	union dm_caps caps;
 220	__u64 min_page_cnt;
 221	__u64 max_page_number;
 222} __packed;
 223
 224/*
 225 * Response to the capabilities message. This is sent from the host to the
 226 * guest. This message notifies if the host has accepted the guest's
 227 * capabilities. If the host has not accepted, the guest must shutdown
 228 * the service.
 229 *
 230 * is_accepted: Indicates if the host has accepted guest's capabilities.
 231 * reservedz: Must be 0.
 232 */
 233
 234struct dm_capabilities_resp_msg {
 235	struct dm_header hdr;
 236	__u64 is_accepted:1;
 237	__u64 reservedz:63;
 238} __packed;
 239
 240/*
 241 * This message is used to report memory pressure from the guest.
 242 * This message is not part of any transaction and there is no
 243 * response to this message.
 244 *
 245 * num_avail: Available memory in pages.
 246 * num_committed: Committed memory in pages.
 247 * page_file_size: The accumulated size of all page files
 248 *		   in the system in pages.
 249 * zero_free: The nunber of zero and free pages.
 250 * page_file_writes: The writes to the page file in pages.
 251 * io_diff: An indicator of file cache efficiency or page file activity,
 252 *	    calculated as File Cache Page Fault Count - Page Read Count.
 253 *	    This value is in pages.
 254 *
 255 * Some of these metrics are Windows specific and fortunately
 256 * the algorithm on the host side that computes the guest memory
 257 * pressure only uses num_committed value.
 258 */
 259
 260struct dm_status {
 261	struct dm_header hdr;
 262	__u64 num_avail;
 263	__u64 num_committed;
 264	__u64 page_file_size;
 265	__u64 zero_free;
 266	__u32 page_file_writes;
 267	__u32 io_diff;
 268} __packed;
 269
 270
 271/*
 272 * Message to ask the guest to allocate memory - balloon up message.
 273 * This message is sent from the host to the guest. The guest may not be
 274 * able to allocate as much memory as requested.
 275 *
 276 * num_pages: number of pages to allocate.
 277 */
 278
 279struct dm_balloon {
 280	struct dm_header hdr;
 281	__u32 num_pages;
 282	__u32 reservedz;
 283} __packed;
 284
 285
 286/*
 287 * Balloon response message; this message is sent from the guest
 288 * to the host in response to the balloon message.
 289 *
 290 * reservedz: Reserved; must be set to zero.
 291 * more_pages: If FALSE, this is the last message of the transaction.
 292 * if TRUE there will atleast one more message from the guest.
 293 *
 294 * range_count: The number of ranges in the range array.
 295 *
 296 * range_array: An array of page ranges returned to the host.
 297 *
 298 */
 299
 300struct dm_balloon_response {
 301	struct dm_header hdr;
 302	__u32 reservedz;
 303	__u32 more_pages:1;
 304	__u32 range_count:31;
 305	union dm_mem_page_range range_array[];
 306} __packed;
 307
 308/*
 309 * Un-balloon message; this message is sent from the host
 310 * to the guest to give guest more memory.
 311 *
 312 * more_pages: If FALSE, this is the last message of the transaction.
 313 * if TRUE there will atleast one more message from the guest.
 314 *
 315 * reservedz: Reserved; must be set to zero.
 316 *
 317 * range_count: The number of ranges in the range array.
 318 *
 319 * range_array: An array of page ranges returned to the host.
 320 *
 321 */
 322
 323struct dm_unballoon_request {
 324	struct dm_header hdr;
 325	__u32 more_pages:1;
 326	__u32 reservedz:31;
 327	__u32 range_count;
 328	union dm_mem_page_range range_array[];
 329} __packed;
 330
 331/*
 332 * Un-balloon response message; this message is sent from the guest
 333 * to the host in response to an unballoon request.
 334 *
 335 */
 336
 337struct dm_unballoon_response {
 338	struct dm_header hdr;
 339} __packed;
 340
 341
 342/*
 343 * Hot add request message. Message sent from the host to the guest.
 344 *
 345 * mem_range: Memory range to hot add.
 346 *
 347 */
 348
 349struct dm_hot_add {
 350	struct dm_header hdr;
 351	union dm_mem_page_range range;
 352} __packed;
 353
 354/*
 355 * Hot add response message.
 356 * This message is sent by the guest to report the status of a hot add request.
 357 * If page_count is less than the requested page count, then the host should
 358 * assume all further hot add requests will fail, since this indicates that
 359 * the guest has hit an upper physical memory barrier.
 360 *
 361 * Hot adds may also fail due to low resources; in this case, the guest must
 362 * not complete this message until the hot add can succeed, and the host must
 363 * not send a new hot add request until the response is sent.
 364 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 365 * times it fails the request.
 366 *
 367 *
 368 * page_count: number of pages that were successfully hot added.
 369 *
 370 * result: result of the operation 1: success, 0: failure.
 371 *
 372 */
 373
 374struct dm_hot_add_response {
 375	struct dm_header hdr;
 376	__u32 page_count;
 377	__u32 result;
 378} __packed;
 379
 380/*
 381 * Types of information sent from host to the guest.
 382 */
 383
 384enum dm_info_type {
 385	INFO_TYPE_MAX_PAGE_CNT = 0,
 386	MAX_INFO_TYPE
 387};
 388
 389
 390/*
 391 * Header for the information message.
 392 */
 393
 394struct dm_info_header {
 395	enum dm_info_type type;
 396	__u32 data_size;
 397} __packed;
 398
 399/*
 400 * This message is sent from the host to the guest to pass
 401 * some relevant information (win8 addition).
 402 *
 403 * reserved: no used.
 404 * info_size: size of the information blob.
 405 * info: information blob.
 406 */
 407
 408struct dm_info_msg {
 409	struct dm_header hdr;
 410	__u32 reserved;
 411	__u32 info_size;
 412	__u8  info[];
 413};
 414
 415/*
 416 * End protocol definitions.
 417 */
 418
 419/*
 420 * State to manage hot adding memory into the guest.
 421 * The range start_pfn : end_pfn specifies the range
 422 * that the host has asked us to hot add. The range
 423 * start_pfn : ha_end_pfn specifies the range that we have
 424 * currently hot added. We hot add in multiples of 128M
 425 * chunks; it is possible that we may not be able to bring
 426 * online all the pages in the region. The range
 427 * covered_start_pfn:covered_end_pfn defines the pages that can
 428 * be brough online.
 429 */
 430
 431struct hv_hotadd_state {
 432	struct list_head list;
 433	unsigned long start_pfn;
 434	unsigned long covered_start_pfn;
 435	unsigned long covered_end_pfn;
 436	unsigned long ha_end_pfn;
 437	unsigned long end_pfn;
 438	/*
 439	 * A list of gaps.
 440	 */
 441	struct list_head gap_list;
 442};
 443
 444struct hv_hotadd_gap {
 445	struct list_head list;
 446	unsigned long start_pfn;
 447	unsigned long end_pfn;
 448};
 449
 450struct balloon_state {
 451	__u32 num_pages;
 452	struct work_struct wrk;
 453};
 454
 455struct hot_add_wrk {
 456	union dm_mem_page_range ha_page_range;
 457	union dm_mem_page_range ha_region_range;
 458	struct work_struct wrk;
 459};
 460
 461static bool allow_hibernation;
 462static bool hot_add = true;
 463static bool do_hot_add;
 464/*
 465 * Delay reporting memory pressure by
 466 * the specified number of seconds.
 467 */
 468static uint pressure_report_delay = 45;
 469
 470/*
 471 * The last time we posted a pressure report to host.
 472 */
 473static unsigned long last_post_time;
 474
 475module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 476MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 477
 478module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 479MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 480static atomic_t trans_id = ATOMIC_INIT(0);
 481
 482static int dm_ring_size = 20 * 1024;
 483
 484/*
 485 * Driver specific state.
 486 */
 487
 488enum hv_dm_state {
 489	DM_INITIALIZING = 0,
 490	DM_INITIALIZED,
 491	DM_BALLOON_UP,
 492	DM_BALLOON_DOWN,
 493	DM_HOT_ADD,
 494	DM_INIT_ERROR
 495};
 496
 497
 498static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 499static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 500#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 501#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
 502
 503struct hv_dynmem_device {
 504	struct hv_device *dev;
 505	enum hv_dm_state state;
 506	struct completion host_event;
 507	struct completion config_event;
 508
 509	/*
 510	 * Number of pages we have currently ballooned out.
 511	 */
 512	unsigned int num_pages_ballooned;
 513	unsigned int num_pages_onlined;
 514	unsigned int num_pages_added;
 515
 516	/*
 517	 * State to manage the ballooning (up) operation.
 518	 */
 519	struct balloon_state balloon_wrk;
 520
 521	/*
 522	 * State to execute the "hot-add" operation.
 523	 */
 524	struct hot_add_wrk ha_wrk;
 525
 526	/*
 527	 * This state tracks if the host has specified a hot-add
 528	 * region.
 529	 */
 530	bool host_specified_ha_region;
 531
 532	/*
 533	 * State to synchronize hot-add.
 534	 */
 535	struct completion  ol_waitevent;
 536	/*
 537	 * This thread handles hot-add
 538	 * requests from the host as well as notifying
 539	 * the host with regards to memory pressure in
 540	 * the guest.
 541	 */
 542	struct task_struct *thread;
 543
 544	/*
 545	 * Protects ha_region_list, num_pages_onlined counter and individual
 546	 * regions from ha_region_list.
 547	 */
 548	spinlock_t ha_lock;
 549
 550	/*
 551	 * A list of hot-add regions.
 552	 */
 553	struct list_head ha_region_list;
 554
 555	/*
 556	 * We start with the highest version we can support
 557	 * and downgrade based on the host; we save here the
 558	 * next version to try.
 559	 */
 560	__u32 next_version;
 561
 562	/*
 563	 * The negotiated version agreed by host.
 564	 */
 565	__u32 version;
 566};
 567
 568static struct hv_dynmem_device dm_device;
 569
 570static void post_status(struct hv_dynmem_device *dm);
 571
 572#ifdef CONFIG_MEMORY_HOTPLUG
 573static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 574				     unsigned long pfn)
 575{
 576	struct hv_hotadd_gap *gap;
 577
 578	/* The page is not backed. */
 579	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
 580		return false;
 581
 582	/* Check for gaps. */
 583	list_for_each_entry(gap, &has->gap_list, list) {
 584		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
 585			return false;
 586	}
 587
 588	return true;
 589}
 590
 591static unsigned long hv_page_offline_check(unsigned long start_pfn,
 592					   unsigned long nr_pages)
 593{
 594	unsigned long pfn = start_pfn, count = 0;
 595	struct hv_hotadd_state *has;
 596	bool found;
 597
 598	while (pfn < start_pfn + nr_pages) {
 599		/*
 600		 * Search for HAS which covers the pfn and when we find one
 601		 * count how many consequitive PFNs are covered.
 602		 */
 603		found = false;
 604		list_for_each_entry(has, &dm_device.ha_region_list, list) {
 605			while ((pfn >= has->start_pfn) &&
 606			       (pfn < has->end_pfn) &&
 607			       (pfn < start_pfn + nr_pages)) {
 608				found = true;
 609				if (has_pfn_is_backed(has, pfn))
 610					count++;
 611				pfn++;
 612			}
 613		}
 614
 615		/*
 616		 * This PFN is not in any HAS (e.g. we're offlining a region
 617		 * which was present at boot), no need to account for it. Go
 618		 * to the next one.
 619		 */
 620		if (!found)
 621			pfn++;
 622	}
 623
 624	return count;
 625}
 626
 627static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 628			      void *v)
 629{
 630	struct memory_notify *mem = (struct memory_notify *)v;
 631	unsigned long flags, pfn_count;
 632
 633	switch (val) {
 634	case MEM_ONLINE:
 635	case MEM_CANCEL_ONLINE:
 636		complete(&dm_device.ol_waitevent);
 637		break;
 638
 639	case MEM_OFFLINE:
 640		spin_lock_irqsave(&dm_device.ha_lock, flags);
 641		pfn_count = hv_page_offline_check(mem->start_pfn,
 642						  mem->nr_pages);
 643		if (pfn_count <= dm_device.num_pages_onlined) {
 644			dm_device.num_pages_onlined -= pfn_count;
 645		} else {
 646			/*
 647			 * We're offlining more pages than we managed to online.
 648			 * This is unexpected. In any case don't let
 649			 * num_pages_onlined wrap around zero.
 650			 */
 651			WARN_ON_ONCE(1);
 652			dm_device.num_pages_onlined = 0;
 653		}
 654		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 655		break;
 656	case MEM_GOING_ONLINE:
 657	case MEM_GOING_OFFLINE:
 658	case MEM_CANCEL_OFFLINE:
 659		break;
 660	}
 661	return NOTIFY_OK;
 662}
 663
 664static struct notifier_block hv_memory_nb = {
 665	.notifier_call = hv_memory_notifier,
 666	.priority = 0
 667};
 668
 669/* Check if the particular page is backed and can be onlined and online it. */
 670static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 671{
 672	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 673		if (!PageOffline(pg))
 674			__SetPageOffline(pg);
 675		return;
 676	}
 677	if (PageOffline(pg))
 678		__ClearPageOffline(pg);
 679
 680	/* This frame is currently backed; online the page. */
 681	generic_online_page(pg, 0);
 682
 683	lockdep_assert_held(&dm_device.ha_lock);
 684	dm_device.num_pages_onlined++;
 685}
 686
 687static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 688				unsigned long start_pfn, unsigned long size)
 689{
 690	int i;
 691
 692	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 693	for (i = 0; i < size; i++)
 694		hv_page_online_one(has, pfn_to_page(start_pfn + i));
 695}
 696
 697static void hv_mem_hot_add(unsigned long start, unsigned long size,
 698				unsigned long pfn_count,
 699				struct hv_hotadd_state *has)
 700{
 701	int ret = 0;
 702	int i, nid;
 703	unsigned long start_pfn;
 704	unsigned long processed_pfn;
 705	unsigned long total_pfn = pfn_count;
 706	unsigned long flags;
 707
 708	for (i = 0; i < (size/HA_CHUNK); i++) {
 709		start_pfn = start + (i * HA_CHUNK);
 710
 711		spin_lock_irqsave(&dm_device.ha_lock, flags);
 712		has->ha_end_pfn +=  HA_CHUNK;
 713
 714		if (total_pfn > HA_CHUNK) {
 715			processed_pfn = HA_CHUNK;
 716			total_pfn -= HA_CHUNK;
 717		} else {
 718			processed_pfn = total_pfn;
 719			total_pfn = 0;
 720		}
 721
 722		has->covered_end_pfn +=  processed_pfn;
 723		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 724
 725		reinit_completion(&dm_device.ol_waitevent);
 726
 727		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 728		ret = add_memory(nid, PFN_PHYS((start_pfn)),
 729				(HA_CHUNK << PAGE_SHIFT));
 730
 731		if (ret) {
 732			pr_err("hot_add memory failed error is %d\n", ret);
 733			if (ret == -EEXIST) {
 734				/*
 735				 * This error indicates that the error
 736				 * is not a transient failure. This is the
 737				 * case where the guest's physical address map
 738				 * precludes hot adding memory. Stop all further
 739				 * memory hot-add.
 740				 */
 741				do_hot_add = false;
 742			}
 743			spin_lock_irqsave(&dm_device.ha_lock, flags);
 744			has->ha_end_pfn -= HA_CHUNK;
 745			has->covered_end_pfn -=  processed_pfn;
 746			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 747			break;
 748		}
 749
 750		/*
 751		 * Wait for memory to get onlined. If the kernel onlined the
 752		 * memory when adding it, this will return directly. Otherwise,
 753		 * it will wait for user space to online the memory. This helps
 754		 * to avoid adding memory faster than it is getting onlined. As
 755		 * adding succeeded, it is ok to proceed even if the memory was
 756		 * not onlined in time.
 757		 */
 758		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
 759		post_status(&dm_device);
 760	}
 761}
 762
 763static void hv_online_page(struct page *pg, unsigned int order)
 764{
 765	struct hv_hotadd_state *has;
 766	unsigned long flags;
 767	unsigned long pfn = page_to_pfn(pg);
 768
 769	spin_lock_irqsave(&dm_device.ha_lock, flags);
 770	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 771		/* The page belongs to a different HAS. */
 772		if ((pfn < has->start_pfn) ||
 773				(pfn + (1UL << order) > has->end_pfn))
 774			continue;
 775
 776		hv_bring_pgs_online(has, pfn, 1UL << order);
 777		break;
 778	}
 779	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 780}
 781
 782static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 783{
 784	struct hv_hotadd_state *has;
 785	struct hv_hotadd_gap *gap;
 786	unsigned long residual, new_inc;
 787	int ret = 0;
 788	unsigned long flags;
 789
 790	spin_lock_irqsave(&dm_device.ha_lock, flags);
 791	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 792		/*
 793		 * If the pfn range we are dealing with is not in the current
 794		 * "hot add block", move on.
 795		 */
 796		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 797			continue;
 798
 799		/*
 800		 * If the current start pfn is not where the covered_end
 801		 * is, create a gap and update covered_end_pfn.
 802		 */
 803		if (has->covered_end_pfn != start_pfn) {
 804			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 805			if (!gap) {
 806				ret = -ENOMEM;
 807				break;
 808			}
 809
 810			INIT_LIST_HEAD(&gap->list);
 811			gap->start_pfn = has->covered_end_pfn;
 812			gap->end_pfn = start_pfn;
 813			list_add_tail(&gap->list, &has->gap_list);
 814
 815			has->covered_end_pfn = start_pfn;
 816		}
 817
 818		/*
 819		 * If the current hot add-request extends beyond
 820		 * our current limit; extend it.
 821		 */
 822		if ((start_pfn + pfn_cnt) > has->end_pfn) {
 823			residual = (start_pfn + pfn_cnt - has->end_pfn);
 824			/*
 825			 * Extend the region by multiples of HA_CHUNK.
 826			 */
 827			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 828			if (residual % HA_CHUNK)
 829				new_inc += HA_CHUNK;
 830
 831			has->end_pfn += new_inc;
 832		}
 833
 834		ret = 1;
 835		break;
 836	}
 837	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 838
 839	return ret;
 840}
 841
 842static unsigned long handle_pg_range(unsigned long pg_start,
 843					unsigned long pg_count)
 844{
 845	unsigned long start_pfn = pg_start;
 846	unsigned long pfn_cnt = pg_count;
 847	unsigned long size;
 848	struct hv_hotadd_state *has;
 849	unsigned long pgs_ol = 0;
 850	unsigned long old_covered_state;
 851	unsigned long res = 0, flags;
 852
 853	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 854		pg_start);
 855
 856	spin_lock_irqsave(&dm_device.ha_lock, flags);
 857	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 858		/*
 859		 * If the pfn range we are dealing with is not in the current
 860		 * "hot add block", move on.
 861		 */
 862		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 863			continue;
 864
 865		old_covered_state = has->covered_end_pfn;
 866
 867		if (start_pfn < has->ha_end_pfn) {
 868			/*
 869			 * This is the case where we are backing pages
 870			 * in an already hot added region. Bring
 871			 * these pages online first.
 872			 */
 873			pgs_ol = has->ha_end_pfn - start_pfn;
 874			if (pgs_ol > pfn_cnt)
 875				pgs_ol = pfn_cnt;
 876
 877			has->covered_end_pfn +=  pgs_ol;
 878			pfn_cnt -= pgs_ol;
 879			/*
 880			 * Check if the corresponding memory block is already
 881			 * online. It is possible to observe struct pages still
 882			 * being uninitialized here so check section instead.
 883			 * In case the section is online we need to bring the
 884			 * rest of pfns (which were not backed previously)
 885			 * online too.
 886			 */
 887			if (start_pfn > has->start_pfn &&
 888			    online_section_nr(pfn_to_section_nr(start_pfn)))
 889				hv_bring_pgs_online(has, start_pfn, pgs_ol);
 890
 891		}
 892
 893		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 894			/*
 895			 * We have some residual hot add range
 896			 * that needs to be hot added; hot add
 897			 * it now. Hot add a multiple of
 898			 * of HA_CHUNK that fully covers the pages
 899			 * we have.
 900			 */
 901			size = (has->end_pfn - has->ha_end_pfn);
 902			if (pfn_cnt <= size) {
 903				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 904				if (pfn_cnt % HA_CHUNK)
 905					size += HA_CHUNK;
 906			} else {
 907				pfn_cnt = size;
 908			}
 909			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 910			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 911			spin_lock_irqsave(&dm_device.ha_lock, flags);
 912		}
 913		/*
 914		 * If we managed to online any pages that were given to us,
 915		 * we declare success.
 916		 */
 917		res = has->covered_end_pfn - old_covered_state;
 918		break;
 919	}
 920	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 921
 922	return res;
 923}
 924
 925static unsigned long process_hot_add(unsigned long pg_start,
 926					unsigned long pfn_cnt,
 927					unsigned long rg_start,
 928					unsigned long rg_size)
 929{
 930	struct hv_hotadd_state *ha_region = NULL;
 931	int covered;
 932	unsigned long flags;
 933
 934	if (pfn_cnt == 0)
 935		return 0;
 936
 937	if (!dm_device.host_specified_ha_region) {
 938		covered = pfn_covered(pg_start, pfn_cnt);
 939		if (covered < 0)
 940			return 0;
 941
 942		if (covered)
 943			goto do_pg_range;
 944	}
 945
 946	/*
 947	 * If the host has specified a hot-add range; deal with it first.
 948	 */
 949
 950	if (rg_size != 0) {
 951		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 952		if (!ha_region)
 953			return 0;
 954
 955		INIT_LIST_HEAD(&ha_region->list);
 956		INIT_LIST_HEAD(&ha_region->gap_list);
 957
 958		ha_region->start_pfn = rg_start;
 959		ha_region->ha_end_pfn = rg_start;
 960		ha_region->covered_start_pfn = pg_start;
 961		ha_region->covered_end_pfn = pg_start;
 962		ha_region->end_pfn = rg_start + rg_size;
 963
 964		spin_lock_irqsave(&dm_device.ha_lock, flags);
 965		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 966		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 967	}
 968
 969do_pg_range:
 970	/*
 971	 * Process the page range specified; bringing them
 972	 * online if possible.
 973	 */
 974	return handle_pg_range(pg_start, pfn_cnt);
 975}
 976
 977#endif
 978
 979static void hot_add_req(struct work_struct *dummy)
 980{
 981	struct dm_hot_add_response resp;
 982#ifdef CONFIG_MEMORY_HOTPLUG
 983	unsigned long pg_start, pfn_cnt;
 984	unsigned long rg_start, rg_sz;
 985#endif
 986	struct hv_dynmem_device *dm = &dm_device;
 987
 988	memset(&resp, 0, sizeof(struct dm_hot_add_response));
 989	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 990	resp.hdr.size = sizeof(struct dm_hot_add_response);
 991
 992#ifdef CONFIG_MEMORY_HOTPLUG
 993	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 994	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 995
 996	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
 997	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
 998
 999	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1000		unsigned long region_size;
1001		unsigned long region_start;
1002
1003		/*
1004		 * The host has not specified the hot-add region.
1005		 * Based on the hot-add page range being specified,
1006		 * compute a hot-add region that can cover the pages
1007		 * that need to be hot-added while ensuring the alignment
1008		 * and size requirements of Linux as it relates to hot-add.
1009		 */
1010		region_start = pg_start;
1011		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1012		if (pfn_cnt % HA_CHUNK)
1013			region_size += HA_CHUNK;
1014
1015		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1016
1017		rg_start = region_start;
1018		rg_sz = region_size;
1019	}
1020
1021	if (do_hot_add)
1022		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1023						rg_start, rg_sz);
1024
1025	dm->num_pages_added += resp.page_count;
1026#endif
1027	/*
1028	 * The result field of the response structure has the
1029	 * following semantics:
1030	 *
1031	 * 1. If all or some pages hot-added: Guest should return success.
1032	 *
1033	 * 2. If no pages could be hot-added:
1034	 *
1035	 * If the guest returns success, then the host
1036	 * will not attempt any further hot-add operations. This
1037	 * signifies a permanent failure.
1038	 *
1039	 * If the guest returns failure, then this failure will be
1040	 * treated as a transient failure and the host may retry the
1041	 * hot-add operation after some delay.
1042	 */
1043	if (resp.page_count > 0)
1044		resp.result = 1;
1045	else if (!do_hot_add)
1046		resp.result = 1;
1047	else
1048		resp.result = 0;
1049
1050	if (!do_hot_add || resp.page_count == 0) {
1051		if (!allow_hibernation)
1052			pr_err("Memory hot add failed\n");
1053		else
1054			pr_info("Ignore hot-add request!\n");
1055	}
1056
1057	dm->state = DM_INITIALIZED;
1058	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1059	vmbus_sendpacket(dm->dev->channel, &resp,
1060			sizeof(struct dm_hot_add_response),
1061			(unsigned long)NULL,
1062			VM_PKT_DATA_INBAND, 0);
1063}
1064
1065static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1066{
1067	struct dm_info_header *info_hdr;
1068
1069	info_hdr = (struct dm_info_header *)msg->info;
1070
1071	switch (info_hdr->type) {
1072	case INFO_TYPE_MAX_PAGE_CNT:
1073		if (info_hdr->data_size == sizeof(__u64)) {
1074			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1075
1076			pr_info("Max. dynamic memory size: %llu MB\n",
1077				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1078		}
1079
1080		break;
1081	default:
1082		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1083	}
1084}
1085
1086static unsigned long compute_balloon_floor(void)
1087{
1088	unsigned long min_pages;
1089	unsigned long nr_pages = totalram_pages();
1090#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1091	/* Simple continuous piecewiese linear function:
1092	 *  max MiB -> min MiB  gradient
1093	 *       0         0
1094	 *      16        16
1095	 *      32        24
1096	 *     128        72    (1/2)
1097	 *     512       168    (1/4)
1098	 *    2048       360    (1/8)
1099	 *    8192       744    (1/16)
1100	 *   32768      1512	(1/32)
1101	 */
1102	if (nr_pages < MB2PAGES(128))
1103		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1104	else if (nr_pages < MB2PAGES(512))
1105		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1106	else if (nr_pages < MB2PAGES(2048))
1107		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1108	else if (nr_pages < MB2PAGES(8192))
1109		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1110	else
1111		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1112#undef MB2PAGES
1113	return min_pages;
1114}
1115
1116/*
1117 * Post our status as it relates memory pressure to the
1118 * host. Host expects the guests to post this status
1119 * periodically at 1 second intervals.
1120 *
1121 * The metrics specified in this protocol are very Windows
1122 * specific and so we cook up numbers here to convey our memory
1123 * pressure.
1124 */
1125
1126static void post_status(struct hv_dynmem_device *dm)
1127{
1128	struct dm_status status;
1129	unsigned long now = jiffies;
1130	unsigned long last_post = last_post_time;
1131
1132	if (pressure_report_delay > 0) {
1133		--pressure_report_delay;
1134		return;
1135	}
1136
1137	if (!time_after(now, (last_post_time + HZ)))
1138		return;
1139
1140	memset(&status, 0, sizeof(struct dm_status));
1141	status.hdr.type = DM_STATUS_REPORT;
1142	status.hdr.size = sizeof(struct dm_status);
1143	status.hdr.trans_id = atomic_inc_return(&trans_id);
1144
1145	/*
1146	 * The host expects the guest to report free and committed memory.
1147	 * Furthermore, the host expects the pressure information to include
1148	 * the ballooned out pages. For a given amount of memory that we are
1149	 * managing we need to compute a floor below which we should not
1150	 * balloon. Compute this and add it to the pressure report.
1151	 * We also need to report all offline pages (num_pages_added -
1152	 * num_pages_onlined) as committed to the host, otherwise it can try
1153	 * asking us to balloon them out.
1154	 */
1155	status.num_avail = si_mem_available();
1156	status.num_committed = vm_memory_committed() +
1157		dm->num_pages_ballooned +
1158		(dm->num_pages_added > dm->num_pages_onlined ?
1159		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1160		compute_balloon_floor();
1161
1162	trace_balloon_status(status.num_avail, status.num_committed,
1163			     vm_memory_committed(), dm->num_pages_ballooned,
1164			     dm->num_pages_added, dm->num_pages_onlined);
1165	/*
1166	 * If our transaction ID is no longer current, just don't
1167	 * send the status. This can happen if we were interrupted
1168	 * after we picked our transaction ID.
1169	 */
1170	if (status.hdr.trans_id != atomic_read(&trans_id))
1171		return;
1172
1173	/*
1174	 * If the last post time that we sampled has changed,
1175	 * we have raced, don't post the status.
1176	 */
1177	if (last_post != last_post_time)
1178		return;
1179
1180	last_post_time = jiffies;
1181	vmbus_sendpacket(dm->dev->channel, &status,
1182				sizeof(struct dm_status),
1183				(unsigned long)NULL,
1184				VM_PKT_DATA_INBAND, 0);
1185
1186}
1187
1188static void free_balloon_pages(struct hv_dynmem_device *dm,
1189			 union dm_mem_page_range *range_array)
1190{
1191	int num_pages = range_array->finfo.page_cnt;
1192	__u64 start_frame = range_array->finfo.start_page;
1193	struct page *pg;
1194	int i;
1195
1196	for (i = 0; i < num_pages; i++) {
1197		pg = pfn_to_page(i + start_frame);
1198		__ClearPageOffline(pg);
1199		__free_page(pg);
1200		dm->num_pages_ballooned--;
1201	}
1202}
1203
1204
1205
1206static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1207					unsigned int num_pages,
1208					struct dm_balloon_response *bl_resp,
1209					int alloc_unit)
1210{
1211	unsigned int i, j;
1212	struct page *pg;
1213
1214	for (i = 0; i < num_pages / alloc_unit; i++) {
1215		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1216			HV_HYP_PAGE_SIZE)
1217			return i * alloc_unit;
1218
1219		/*
1220		 * We execute this code in a thread context. Furthermore,
1221		 * we don't want the kernel to try too hard.
1222		 */
1223		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1224				__GFP_NOMEMALLOC | __GFP_NOWARN,
1225				get_order(alloc_unit << PAGE_SHIFT));
1226
1227		if (!pg)
1228			return i * alloc_unit;
1229
1230		dm->num_pages_ballooned += alloc_unit;
1231
1232		/*
1233		 * If we allocatted 2M pages; split them so we
1234		 * can free them in any order we get.
1235		 */
1236
1237		if (alloc_unit != 1)
1238			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1239
1240		/* mark all pages offline */
1241		for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1242			__SetPageOffline(pg + j);
1243
1244		bl_resp->range_count++;
1245		bl_resp->range_array[i].finfo.start_page =
1246			page_to_pfn(pg);
1247		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1248		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1249
1250	}
1251
1252	return i * alloc_unit;
1253}
1254
1255static void balloon_up(struct work_struct *dummy)
1256{
1257	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1258	unsigned int num_ballooned = 0;
1259	struct dm_balloon_response *bl_resp;
1260	int alloc_unit;
1261	int ret;
1262	bool done = false;
1263	int i;
1264	long avail_pages;
1265	unsigned long floor;
1266
1267	/*
1268	 * We will attempt 2M allocations. However, if we fail to
1269	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1270	 */
1271	alloc_unit = PAGES_IN_2M;
1272
1273	avail_pages = si_mem_available();
1274	floor = compute_balloon_floor();
1275
1276	/* Refuse to balloon below the floor. */
1277	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1278		pr_warn("Balloon request will be partially fulfilled. %s\n",
1279			avail_pages < num_pages ? "Not enough memory." :
1280			"Balloon floor reached.");
1281
1282		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1283	}
1284
1285	while (!done) {
1286		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1287		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1288		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1289		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1290		bl_resp->more_pages = 1;
1291
1292		num_pages -= num_ballooned;
1293		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1294						    bl_resp, alloc_unit);
1295
1296		if (alloc_unit != 1 && num_ballooned == 0) {
1297			alloc_unit = 1;
1298			continue;
1299		}
1300
1301		if (num_ballooned == 0 || num_ballooned == num_pages) {
1302			pr_debug("Ballooned %u out of %u requested pages.\n",
1303				num_pages, dm_device.balloon_wrk.num_pages);
1304
1305			bl_resp->more_pages = 0;
1306			done = true;
1307			dm_device.state = DM_INITIALIZED;
1308		}
1309
1310		/*
1311		 * We are pushing a lot of data through the channel;
1312		 * deal with transient failures caused because of the
1313		 * lack of space in the ring buffer.
1314		 */
1315
1316		do {
1317			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1318			ret = vmbus_sendpacket(dm_device.dev->channel,
1319						bl_resp,
1320						bl_resp->hdr.size,
1321						(unsigned long)NULL,
1322						VM_PKT_DATA_INBAND, 0);
1323
1324			if (ret == -EAGAIN)
1325				msleep(20);
1326			post_status(&dm_device);
1327		} while (ret == -EAGAIN);
1328
1329		if (ret) {
1330			/*
1331			 * Free up the memory we allocatted.
1332			 */
1333			pr_err("Balloon response failed\n");
1334
1335			for (i = 0; i < bl_resp->range_count; i++)
1336				free_balloon_pages(&dm_device,
1337						 &bl_resp->range_array[i]);
1338
1339			done = true;
1340		}
1341	}
1342
1343}
1344
1345static void balloon_down(struct hv_dynmem_device *dm,
1346			struct dm_unballoon_request *req)
1347{
1348	union dm_mem_page_range *range_array = req->range_array;
1349	int range_count = req->range_count;
1350	struct dm_unballoon_response resp;
1351	int i;
1352	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1353
1354	for (i = 0; i < range_count; i++) {
1355		free_balloon_pages(dm, &range_array[i]);
1356		complete(&dm_device.config_event);
1357	}
1358
1359	pr_debug("Freed %u ballooned pages.\n",
1360		prev_pages_ballooned - dm->num_pages_ballooned);
1361
1362	if (req->more_pages == 1)
1363		return;
1364
1365	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1366	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1367	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1368	resp.hdr.size = sizeof(struct dm_unballoon_response);
1369
1370	vmbus_sendpacket(dm_device.dev->channel, &resp,
1371				sizeof(struct dm_unballoon_response),
1372				(unsigned long)NULL,
1373				VM_PKT_DATA_INBAND, 0);
1374
1375	dm->state = DM_INITIALIZED;
1376}
1377
1378static void balloon_onchannelcallback(void *context);
1379
1380static int dm_thread_func(void *dm_dev)
1381{
1382	struct hv_dynmem_device *dm = dm_dev;
1383
1384	while (!kthread_should_stop()) {
1385		wait_for_completion_interruptible_timeout(
1386						&dm_device.config_event, 1*HZ);
1387		/*
1388		 * The host expects us to post information on the memory
1389		 * pressure every second.
1390		 */
1391		reinit_completion(&dm_device.config_event);
1392		post_status(dm);
1393	}
1394
1395	return 0;
1396}
1397
1398
1399static void version_resp(struct hv_dynmem_device *dm,
1400			struct dm_version_response *vresp)
1401{
1402	struct dm_version_request version_req;
1403	int ret;
1404
1405	if (vresp->is_accepted) {
1406		/*
1407		 * We are done; wakeup the
1408		 * context waiting for version
1409		 * negotiation.
1410		 */
1411		complete(&dm->host_event);
1412		return;
1413	}
1414	/*
1415	 * If there are more versions to try, continue
1416	 * with negotiations; if not
1417	 * shutdown the service since we are not able
1418	 * to negotiate a suitable version number
1419	 * with the host.
1420	 */
1421	if (dm->next_version == 0)
1422		goto version_error;
1423
1424	memset(&version_req, 0, sizeof(struct dm_version_request));
1425	version_req.hdr.type = DM_VERSION_REQUEST;
1426	version_req.hdr.size = sizeof(struct dm_version_request);
1427	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1428	version_req.version.version = dm->next_version;
1429	dm->version = version_req.version.version;
1430
1431	/*
1432	 * Set the next version to try in case current version fails.
1433	 * Win7 protocol ought to be the last one to try.
1434	 */
1435	switch (version_req.version.version) {
1436	case DYNMEM_PROTOCOL_VERSION_WIN8:
1437		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1438		version_req.is_last_attempt = 0;
1439		break;
1440	default:
1441		dm->next_version = 0;
1442		version_req.is_last_attempt = 1;
1443	}
1444
1445	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1446				sizeof(struct dm_version_request),
1447				(unsigned long)NULL,
1448				VM_PKT_DATA_INBAND, 0);
1449
1450	if (ret)
1451		goto version_error;
1452
1453	return;
1454
1455version_error:
1456	dm->state = DM_INIT_ERROR;
1457	complete(&dm->host_event);
1458}
1459
1460static void cap_resp(struct hv_dynmem_device *dm,
1461			struct dm_capabilities_resp_msg *cap_resp)
1462{
1463	if (!cap_resp->is_accepted) {
1464		pr_err("Capabilities not accepted by host\n");
1465		dm->state = DM_INIT_ERROR;
1466	}
1467	complete(&dm->host_event);
1468}
1469
1470static void balloon_onchannelcallback(void *context)
1471{
1472	struct hv_device *dev = context;
1473	u32 recvlen;
1474	u64 requestid;
1475	struct dm_message *dm_msg;
1476	struct dm_header *dm_hdr;
1477	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1478	struct dm_balloon *bal_msg;
1479	struct dm_hot_add *ha_msg;
1480	union dm_mem_page_range *ha_pg_range;
1481	union dm_mem_page_range *ha_region;
1482
1483	memset(recv_buffer, 0, sizeof(recv_buffer));
1484	vmbus_recvpacket(dev->channel, recv_buffer,
1485			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1486
1487	if (recvlen > 0) {
1488		dm_msg = (struct dm_message *)recv_buffer;
1489		dm_hdr = &dm_msg->hdr;
1490
1491		switch (dm_hdr->type) {
1492		case DM_VERSION_RESPONSE:
1493			version_resp(dm,
1494				 (struct dm_version_response *)dm_msg);
1495			break;
1496
1497		case DM_CAPABILITIES_RESPONSE:
1498			cap_resp(dm,
1499				 (struct dm_capabilities_resp_msg *)dm_msg);
1500			break;
1501
1502		case DM_BALLOON_REQUEST:
1503			if (allow_hibernation) {
1504				pr_info("Ignore balloon-up request!\n");
1505				break;
1506			}
1507
1508			if (dm->state == DM_BALLOON_UP)
1509				pr_warn("Currently ballooning\n");
1510			bal_msg = (struct dm_balloon *)recv_buffer;
1511			dm->state = DM_BALLOON_UP;
1512			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1513			schedule_work(&dm_device.balloon_wrk.wrk);
1514			break;
1515
1516		case DM_UNBALLOON_REQUEST:
1517			if (allow_hibernation) {
1518				pr_info("Ignore balloon-down request!\n");
1519				break;
1520			}
1521
1522			dm->state = DM_BALLOON_DOWN;
1523			balloon_down(dm,
1524				 (struct dm_unballoon_request *)recv_buffer);
1525			break;
1526
1527		case DM_MEM_HOT_ADD_REQUEST:
1528			if (dm->state == DM_HOT_ADD)
1529				pr_warn("Currently hot-adding\n");
1530			dm->state = DM_HOT_ADD;
1531			ha_msg = (struct dm_hot_add *)recv_buffer;
1532			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1533				/*
1534				 * This is a normal hot-add request specifying
1535				 * hot-add memory.
1536				 */
1537				dm->host_specified_ha_region = false;
1538				ha_pg_range = &ha_msg->range;
1539				dm->ha_wrk.ha_page_range = *ha_pg_range;
1540				dm->ha_wrk.ha_region_range.page_range = 0;
1541			} else {
1542				/*
1543				 * Host is specifying that we first hot-add
1544				 * a region and then partially populate this
1545				 * region.
1546				 */
1547				dm->host_specified_ha_region = true;
1548				ha_pg_range = &ha_msg->range;
1549				ha_region = &ha_pg_range[1];
1550				dm->ha_wrk.ha_page_range = *ha_pg_range;
1551				dm->ha_wrk.ha_region_range = *ha_region;
1552			}
1553			schedule_work(&dm_device.ha_wrk.wrk);
1554			break;
1555
1556		case DM_INFO_MESSAGE:
1557			process_info(dm, (struct dm_info_msg *)dm_msg);
1558			break;
1559
1560		default:
1561			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1562
1563		}
1564	}
1565
1566}
1567
1568static int balloon_connect_vsp(struct hv_device *dev)
1569{
1570	struct dm_version_request version_req;
1571	struct dm_capabilities cap_msg;
1572	unsigned long t;
1573	int ret;
1574
1575	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1576			 balloon_onchannelcallback, dev);
1577	if (ret)
1578		return ret;
1579
1580	/*
1581	 * Initiate the hand shake with the host and negotiate
1582	 * a version that the host can support. We start with the
1583	 * highest version number and go down if the host cannot
1584	 * support it.
1585	 */
1586	memset(&version_req, 0, sizeof(struct dm_version_request));
1587	version_req.hdr.type = DM_VERSION_REQUEST;
1588	version_req.hdr.size = sizeof(struct dm_version_request);
1589	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1590	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1591	version_req.is_last_attempt = 0;
1592	dm_device.version = version_req.version.version;
1593
1594	ret = vmbus_sendpacket(dev->channel, &version_req,
1595			       sizeof(struct dm_version_request),
1596			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1597	if (ret)
1598		goto out;
1599
1600	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1601	if (t == 0) {
1602		ret = -ETIMEDOUT;
1603		goto out;
1604	}
1605
1606	/*
1607	 * If we could not negotiate a compatible version with the host
1608	 * fail the probe function.
1609	 */
1610	if (dm_device.state == DM_INIT_ERROR) {
1611		ret = -EPROTO;
1612		goto out;
1613	}
1614
1615	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1616		DYNMEM_MAJOR_VERSION(dm_device.version),
1617		DYNMEM_MINOR_VERSION(dm_device.version));
1618
1619	/*
1620	 * Now submit our capabilities to the host.
1621	 */
1622	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1623	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1624	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1625	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1626
1627	/*
1628	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1629	 * currently still requires the bits to be set, so we have to add code
1630	 * to fail the host's hot-add and balloon up/down requests, if any.
1631	 */
1632	cap_msg.caps.cap_bits.balloon = 1;
1633	cap_msg.caps.cap_bits.hot_add = 1;
1634
1635	/*
1636	 * Specify our alignment requirements as it relates
1637	 * memory hot-add. Specify 128MB alignment.
1638	 */
1639	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1640
1641	/*
1642	 * Currently the host does not use these
1643	 * values and we set them to what is done in the
1644	 * Windows driver.
1645	 */
1646	cap_msg.min_page_cnt = 0;
1647	cap_msg.max_page_number = -1;
1648
1649	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1650			       sizeof(struct dm_capabilities),
1651			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1652	if (ret)
1653		goto out;
1654
1655	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1656	if (t == 0) {
1657		ret = -ETIMEDOUT;
1658		goto out;
1659	}
1660
1661	/*
1662	 * If the host does not like our capabilities,
1663	 * fail the probe function.
1664	 */
1665	if (dm_device.state == DM_INIT_ERROR) {
1666		ret = -EPROTO;
1667		goto out;
1668	}
1669
1670	return 0;
1671out:
1672	vmbus_close(dev->channel);
1673	return ret;
1674}
1675
1676static int balloon_probe(struct hv_device *dev,
1677			 const struct hv_vmbus_device_id *dev_id)
1678{
1679	int ret;
1680
1681	allow_hibernation = hv_is_hibernation_supported();
1682	if (allow_hibernation)
1683		hot_add = false;
1684
1685#ifdef CONFIG_MEMORY_HOTPLUG
1686	do_hot_add = hot_add;
1687#else
1688	do_hot_add = false;
1689#endif
1690	dm_device.dev = dev;
1691	dm_device.state = DM_INITIALIZING;
1692	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1693	init_completion(&dm_device.host_event);
1694	init_completion(&dm_device.config_event);
1695	INIT_LIST_HEAD(&dm_device.ha_region_list);
1696	spin_lock_init(&dm_device.ha_lock);
1697	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1698	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1699	dm_device.host_specified_ha_region = false;
1700
1701#ifdef CONFIG_MEMORY_HOTPLUG
1702	set_online_page_callback(&hv_online_page);
1703	init_completion(&dm_device.ol_waitevent);
1704	register_memory_notifier(&hv_memory_nb);
1705#endif
1706
1707	hv_set_drvdata(dev, &dm_device);
1708
1709	ret = balloon_connect_vsp(dev);
1710	if (ret != 0)
1711		return ret;
1712
1713	dm_device.state = DM_INITIALIZED;
1714
1715	dm_device.thread =
1716		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1717	if (IS_ERR(dm_device.thread)) {
1718		ret = PTR_ERR(dm_device.thread);
1719		goto probe_error;
1720	}
1721
1722	return 0;
1723
1724probe_error:
1725	dm_device.state = DM_INIT_ERROR;
1726	dm_device.thread  = NULL;
1727	vmbus_close(dev->channel);
1728#ifdef CONFIG_MEMORY_HOTPLUG
1729	unregister_memory_notifier(&hv_memory_nb);
1730	restore_online_page_callback(&hv_online_page);
1731#endif
1732	return ret;
1733}
1734
1735static int balloon_remove(struct hv_device *dev)
1736{
1737	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1738	struct hv_hotadd_state *has, *tmp;
1739	struct hv_hotadd_gap *gap, *tmp_gap;
1740	unsigned long flags;
1741
1742	if (dm->num_pages_ballooned != 0)
1743		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1744
1745	cancel_work_sync(&dm->balloon_wrk.wrk);
1746	cancel_work_sync(&dm->ha_wrk.wrk);
1747
1748	kthread_stop(dm->thread);
1749	vmbus_close(dev->channel);
1750#ifdef CONFIG_MEMORY_HOTPLUG
1751	unregister_memory_notifier(&hv_memory_nb);
1752	restore_online_page_callback(&hv_online_page);
1753#endif
1754	spin_lock_irqsave(&dm_device.ha_lock, flags);
1755	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1756		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1757			list_del(&gap->list);
1758			kfree(gap);
1759		}
1760		list_del(&has->list);
1761		kfree(has);
1762	}
1763	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1764
1765	return 0;
1766}
1767
1768static int balloon_suspend(struct hv_device *hv_dev)
1769{
1770	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1771
1772	tasklet_disable(&hv_dev->channel->callback_event);
1773
1774	cancel_work_sync(&dm->balloon_wrk.wrk);
1775	cancel_work_sync(&dm->ha_wrk.wrk);
1776
1777	if (dm->thread) {
1778		kthread_stop(dm->thread);
1779		dm->thread = NULL;
1780		vmbus_close(hv_dev->channel);
1781	}
1782
1783	tasklet_enable(&hv_dev->channel->callback_event);
1784
1785	return 0;
1786
1787}
1788
1789static int balloon_resume(struct hv_device *dev)
1790{
1791	int ret;
1792
1793	dm_device.state = DM_INITIALIZING;
1794
1795	ret = balloon_connect_vsp(dev);
1796
1797	if (ret != 0)
1798		goto out;
1799
1800	dm_device.thread =
1801		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1802	if (IS_ERR(dm_device.thread)) {
1803		ret = PTR_ERR(dm_device.thread);
1804		dm_device.thread = NULL;
1805		goto close_channel;
1806	}
1807
1808	dm_device.state = DM_INITIALIZED;
1809	return 0;
1810close_channel:
1811	vmbus_close(dev->channel);
1812out:
1813	dm_device.state = DM_INIT_ERROR;
1814#ifdef CONFIG_MEMORY_HOTPLUG
1815	unregister_memory_notifier(&hv_memory_nb);
1816	restore_online_page_callback(&hv_online_page);
1817#endif
1818	return ret;
1819}
1820
1821static const struct hv_vmbus_device_id id_table[] = {
1822	/* Dynamic Memory Class ID */
1823	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1824	{ HV_DM_GUID, },
1825	{ },
1826};
1827
1828MODULE_DEVICE_TABLE(vmbus, id_table);
1829
1830static  struct hv_driver balloon_drv = {
1831	.name = "hv_balloon",
1832	.id_table = id_table,
1833	.probe =  balloon_probe,
1834	.remove =  balloon_remove,
1835	.suspend = balloon_suspend,
1836	.resume = balloon_resume,
1837	.driver = {
1838		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1839	},
1840};
1841
1842static int __init init_balloon_drv(void)
1843{
1844
1845	return vmbus_driver_register(&balloon_drv);
1846}
1847
1848module_init(init_balloon_drv);
1849
1850MODULE_DESCRIPTION("Hyper-V Balloon");
1851MODULE_LICENSE("GPL");