Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/cleanup.h>
  12#include <linux/kernel.h>
  13#include <linux/jiffies.h>
  14#include <linux/mman.h>
  15#include <linux/debugfs.h>
  16#include <linux/delay.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/kthread.h>
  21#include <linux/completion.h>
  22#include <linux/count_zeros.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/memory.h>
  25#include <linux/notifier.h>
  26#include <linux/percpu_counter.h>
  27#include <linux/page_reporting.h>
  28#include <linux/sizes.h>
  29
  30#include <linux/hyperv.h>
  31#include <asm/hyperv-tlfs.h>
  32
  33#include <asm/mshyperv.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include "hv_trace_balloon.h"
  37
  38/*
  39 * We begin with definitions supporting the Dynamic Memory protocol
  40 * with the host.
  41 *
  42 * Begin protocol definitions.
  43 */
  44
  45/*
  46 * Protocol versions. The low word is the minor version, the high word the major
  47 * version.
  48 *
  49 * History:
  50 * Initial version 1.0
  51 * Changed to 0.1 on 2009/03/25
  52 * Changes to 0.2 on 2009/05/14
  53 * Changes to 0.3 on 2009/12/03
  54 * Changed to 1.0 on 2011/04/05
  55 */
  56
  57#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  58#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  59#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  60
  61enum {
  62	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  63	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  64	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  65
  66	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  67	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  68	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  69
  70	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  71};
  72
  73/*
  74 * Message Types
  75 */
  76
  77enum dm_message_type {
  78	/*
  79	 * Version 0.3
  80	 */
  81	DM_ERROR			= 0,
  82	DM_VERSION_REQUEST		= 1,
  83	DM_VERSION_RESPONSE		= 2,
  84	DM_CAPABILITIES_REPORT		= 3,
  85	DM_CAPABILITIES_RESPONSE	= 4,
  86	DM_STATUS_REPORT		= 5,
  87	DM_BALLOON_REQUEST		= 6,
  88	DM_BALLOON_RESPONSE		= 7,
  89	DM_UNBALLOON_REQUEST		= 8,
  90	DM_UNBALLOON_RESPONSE		= 9,
  91	DM_MEM_HOT_ADD_REQUEST		= 10,
  92	DM_MEM_HOT_ADD_RESPONSE		= 11,
  93	DM_VERSION_03_MAX		= 11,
  94	/*
  95	 * Version 1.0.
  96	 */
  97	DM_INFO_MESSAGE			= 12,
  98	DM_VERSION_1_MAX		= 12
  99};
 100
 101/*
 102 * Structures defining the dynamic memory management
 103 * protocol.
 104 */
 105
 106union dm_version {
 107	struct {
 108		__u16 minor_version;
 109		__u16 major_version;
 110	};
 111	__u32 version;
 112} __packed;
 113
 114union dm_caps {
 115	struct {
 116		__u64 balloon:1;
 117		__u64 hot_add:1;
 118		/*
 119		 * To support guests that may have alignment
 120		 * limitations on hot-add, the guest can specify
 121		 * its alignment requirements; a value of n
 122		 * represents an alignment of 2^n in mega bytes.
 123		 */
 124		__u64 hot_add_alignment:4;
 125		__u64 reservedz:58;
 126	} cap_bits;
 127	__u64 caps;
 128} __packed;
 129
 130union dm_mem_page_range {
 131	struct  {
 132		/*
 133		 * The PFN number of the first page in the range.
 134		 * 40 bits is the architectural limit of a PFN
 135		 * number for AMD64.
 136		 */
 137		__u64 start_page:40;
 138		/*
 139		 * The number of pages in the range.
 140		 */
 141		__u64 page_cnt:24;
 142	} finfo;
 143	__u64  page_range;
 144} __packed;
 145
 146/*
 147 * The header for all dynamic memory messages:
 148 *
 149 * type: Type of the message.
 150 * size: Size of the message in bytes; including the header.
 151 * trans_id: The guest is responsible for manufacturing this ID.
 152 */
 153
 154struct dm_header {
 155	__u16 type;
 156	__u16 size;
 157	__u32 trans_id;
 158} __packed;
 159
 160/*
 161 * A generic message format for dynamic memory.
 162 * Specific message formats are defined later in the file.
 163 */
 164
 165struct dm_message {
 166	struct dm_header hdr;
 167	__u8 data[]; /* enclosed message */
 168} __packed;
 169
 170/*
 171 * Specific message types supporting the dynamic memory protocol.
 172 */
 173
 174/*
 175 * Version negotiation message. Sent from the guest to the host.
 176 * The guest is free to try different versions until the host
 177 * accepts the version.
 178 *
 179 * dm_version: The protocol version requested.
 180 * is_last_attempt: If TRUE, this is the last version guest will request.
 181 * reservedz: Reserved field, set to zero.
 182 */
 183
 184struct dm_version_request {
 185	struct dm_header hdr;
 186	union dm_version version;
 187	__u32 is_last_attempt:1;
 188	__u32 reservedz:31;
 189} __packed;
 190
 191/*
 192 * Version response message; Host to Guest and indicates
 193 * if the host has accepted the version sent by the guest.
 194 *
 195 * is_accepted: If TRUE, host has accepted the version and the guest
 196 * should proceed to the next stage of the protocol. FALSE indicates that
 197 * guest should re-try with a different version.
 198 *
 199 * reservedz: Reserved field, set to zero.
 200 */
 201
 202struct dm_version_response {
 203	struct dm_header hdr;
 204	__u64 is_accepted:1;
 205	__u64 reservedz:63;
 206} __packed;
 207
 208/*
 209 * Message reporting capabilities. This is sent from the guest to the
 210 * host.
 211 */
 212
 213struct dm_capabilities {
 214	struct dm_header hdr;
 215	union dm_caps caps;
 216	__u64 min_page_cnt;
 217	__u64 max_page_number;
 218} __packed;
 219
 220/*
 221 * Response to the capabilities message. This is sent from the host to the
 222 * guest. This message notifies if the host has accepted the guest's
 223 * capabilities. If the host has not accepted, the guest must shutdown
 224 * the service.
 225 *
 226 * is_accepted: Indicates if the host has accepted guest's capabilities.
 227 * reservedz: Must be 0.
 228 */
 229
 230struct dm_capabilities_resp_msg {
 231	struct dm_header hdr;
 232	__u64 is_accepted:1;
 233	__u64 reservedz:63;
 234} __packed;
 235
 236/*
 237 * This message is used to report memory pressure from the guest.
 238 * This message is not part of any transaction and there is no
 239 * response to this message.
 240 *
 241 * num_avail: Available memory in pages.
 242 * num_committed: Committed memory in pages.
 243 * page_file_size: The accumulated size of all page files
 244 *		   in the system in pages.
 245 * zero_free: The number of zero and free pages.
 246 * page_file_writes: The writes to the page file in pages.
 247 * io_diff: An indicator of file cache efficiency or page file activity,
 248 *	    calculated as File Cache Page Fault Count - Page Read Count.
 249 *	    This value is in pages.
 250 *
 251 * Some of these metrics are Windows specific and fortunately
 252 * the algorithm on the host side that computes the guest memory
 253 * pressure only uses num_committed value.
 254 */
 255
 256struct dm_status {
 257	struct dm_header hdr;
 258	__u64 num_avail;
 259	__u64 num_committed;
 260	__u64 page_file_size;
 261	__u64 zero_free;
 262	__u32 page_file_writes;
 263	__u32 io_diff;
 264} __packed;
 265
 266/*
 267 * Message to ask the guest to allocate memory - balloon up message.
 268 * This message is sent from the host to the guest. The guest may not be
 269 * able to allocate as much memory as requested.
 270 *
 271 * num_pages: number of pages to allocate.
 272 */
 273
 274struct dm_balloon {
 275	struct dm_header hdr;
 276	__u32 num_pages;
 277	__u32 reservedz;
 278} __packed;
 279
 280/*
 281 * Balloon response message; this message is sent from the guest
 282 * to the host in response to the balloon message.
 283 *
 284 * reservedz: Reserved; must be set to zero.
 285 * more_pages: If FALSE, this is the last message of the transaction.
 286 * if TRUE there will be at least one more message from the guest.
 287 *
 288 * range_count: The number of ranges in the range array.
 289 *
 290 * range_array: An array of page ranges returned to the host.
 291 *
 292 */
 293
 294struct dm_balloon_response {
 295	struct dm_header hdr;
 296	__u32 reservedz;
 297	__u32 more_pages:1;
 298	__u32 range_count:31;
 299	union dm_mem_page_range range_array[];
 300} __packed;
 301
 302/*
 303 * Un-balloon message; this message is sent from the host
 304 * to the guest to give guest more memory.
 305 *
 306 * more_pages: If FALSE, this is the last message of the transaction.
 307 * if TRUE there will be at least one more message from the guest.
 308 *
 309 * reservedz: Reserved; must be set to zero.
 310 *
 311 * range_count: The number of ranges in the range array.
 312 *
 313 * range_array: An array of page ranges returned to the host.
 314 *
 315 */
 316
 317struct dm_unballoon_request {
 318	struct dm_header hdr;
 319	__u32 more_pages:1;
 320	__u32 reservedz:31;
 321	__u32 range_count;
 322	union dm_mem_page_range range_array[];
 323} __packed;
 324
 325/*
 326 * Un-balloon response message; this message is sent from the guest
 327 * to the host in response to an unballoon request.
 328 *
 329 */
 330
 331struct dm_unballoon_response {
 332	struct dm_header hdr;
 333} __packed;
 334
 335/*
 336 * Hot add request message. Message sent from the host to the guest.
 337 *
 338 * mem_range: Memory range to hot add.
 339 *
 340 */
 341
 342struct dm_hot_add {
 343	struct dm_header hdr;
 344	union dm_mem_page_range range;
 345} __packed;
 346
 347/*
 348 * Hot add response message.
 349 * This message is sent by the guest to report the status of a hot add request.
 350 * If page_count is less than the requested page count, then the host should
 351 * assume all further hot add requests will fail, since this indicates that
 352 * the guest has hit an upper physical memory barrier.
 353 *
 354 * Hot adds may also fail due to low resources; in this case, the guest must
 355 * not complete this message until the hot add can succeed, and the host must
 356 * not send a new hot add request until the response is sent.
 357 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 358 * times it fails the request.
 359 *
 360 *
 361 * page_count: number of pages that were successfully hot added.
 362 *
 363 * result: result of the operation 1: success, 0: failure.
 364 *
 365 */
 366
 367struct dm_hot_add_response {
 368	struct dm_header hdr;
 369	__u32 page_count;
 370	__u32 result;
 371} __packed;
 372
 373/*
 374 * Types of information sent from host to the guest.
 375 */
 376
 377enum dm_info_type {
 378	INFO_TYPE_MAX_PAGE_CNT = 0,
 379	MAX_INFO_TYPE
 380};
 381
 382/*
 383 * Header for the information message.
 384 */
 385
 386struct dm_info_header {
 387	enum dm_info_type type;
 388	__u32 data_size;
 389} __packed;
 390
 391/*
 392 * This message is sent from the host to the guest to pass
 393 * some relevant information (win8 addition).
 394 *
 395 * reserved: no used.
 396 * info_size: size of the information blob.
 397 * info: information blob.
 398 */
 399
 400struct dm_info_msg {
 401	struct dm_header hdr;
 402	__u32 reserved;
 403	__u32 info_size;
 404	__u8  info[];
 405};
 406
 407/*
 408 * End protocol definitions.
 409 */
 410
 411/*
 412 * State to manage hot adding memory into the guest.
 413 * The range start_pfn : end_pfn specifies the range
 414 * that the host has asked us to hot add. The range
 415 * start_pfn : ha_end_pfn specifies the range that we have
 416 * currently hot added. We hot add in chunks equal to the
 417 * memory block size; it is possible that we may not be able
 418 * to bring online all the pages in the region. The range
 419 * covered_start_pfn:covered_end_pfn defines the pages that can
 420 * be brought online.
 421 */
 422
 423struct hv_hotadd_state {
 424	struct list_head list;
 425	unsigned long start_pfn;
 426	unsigned long covered_start_pfn;
 427	unsigned long covered_end_pfn;
 428	unsigned long ha_end_pfn;
 429	unsigned long end_pfn;
 430	/*
 431	 * A list of gaps.
 432	 */
 433	struct list_head gap_list;
 434};
 435
 436struct hv_hotadd_gap {
 437	struct list_head list;
 438	unsigned long start_pfn;
 439	unsigned long end_pfn;
 440};
 441
 442struct balloon_state {
 443	__u32 num_pages;
 444	struct work_struct wrk;
 445};
 446
 447struct hot_add_wrk {
 448	union dm_mem_page_range ha_page_range;
 449	union dm_mem_page_range ha_region_range;
 450	struct work_struct wrk;
 451};
 452
 453static bool allow_hibernation;
 454static bool hot_add = true;
 455static bool do_hot_add;
 456/*
 457 * Delay reporting memory pressure by
 458 * the specified number of seconds.
 459 */
 460static uint pressure_report_delay = 45;
 461extern unsigned int page_reporting_order;
 462#define HV_MAX_FAILURES	2
 463
 464/*
 465 * The last time we posted a pressure report to host.
 466 */
 467static unsigned long last_post_time;
 468
 469static int hv_hypercall_multi_failure;
 470
 471module_param(hot_add, bool, 0644);
 472MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 473
 474module_param(pressure_report_delay, uint, 0644);
 475MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 476static atomic_t trans_id = ATOMIC_INIT(0);
 477
 478static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
 479
 480/*
 481 * Driver specific state.
 482 */
 483
 484enum hv_dm_state {
 485	DM_INITIALIZING = 0,
 486	DM_INITIALIZED,
 487	DM_BALLOON_UP,
 488	DM_BALLOON_DOWN,
 489	DM_HOT_ADD,
 490	DM_INIT_ERROR
 491};
 492
 493static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 494static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 495
 496static unsigned long ha_pages_in_chunk;
 497#define HA_BYTES_IN_CHUNK (ha_pages_in_chunk << PAGE_SHIFT)
 498
 499#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 500
 501struct hv_dynmem_device {
 502	struct hv_device *dev;
 503	enum hv_dm_state state;
 504	struct completion host_event;
 505	struct completion config_event;
 506
 507	/*
 508	 * Number of pages we have currently ballooned out.
 509	 */
 510	unsigned int num_pages_ballooned;
 511	unsigned int num_pages_onlined;
 512	unsigned int num_pages_added;
 513
 514	/*
 515	 * State to manage the ballooning (up) operation.
 516	 */
 517	struct balloon_state balloon_wrk;
 518
 519	/*
 520	 * State to execute the "hot-add" operation.
 521	 */
 522	struct hot_add_wrk ha_wrk;
 523
 524	/*
 525	 * This state tracks if the host has specified a hot-add
 526	 * region.
 527	 */
 528	bool host_specified_ha_region;
 529
 530	/*
 531	 * State to synchronize hot-add.
 532	 */
 533	struct completion  ol_waitevent;
 534	/*
 535	 * This thread handles hot-add
 536	 * requests from the host as well as notifying
 537	 * the host with regards to memory pressure in
 538	 * the guest.
 539	 */
 540	struct task_struct *thread;
 541
 542	/*
 543	 * Protects ha_region_list, num_pages_onlined counter and individual
 544	 * regions from ha_region_list.
 545	 */
 546	spinlock_t ha_lock;
 547
 548	/*
 549	 * A list of hot-add regions.
 550	 */
 551	struct list_head ha_region_list;
 552
 553	/*
 554	 * We start with the highest version we can support
 555	 * and downgrade based on the host; we save here the
 556	 * next version to try.
 557	 */
 558	__u32 next_version;
 559
 560	/*
 561	 * The negotiated version agreed by host.
 562	 */
 563	__u32 version;
 564
 565	struct page_reporting_dev_info pr_dev_info;
 566
 567	/*
 568	 * Maximum number of pages that can be hot_add-ed
 569	 */
 570	__u64 max_dynamic_page_count;
 571};
 572
 573static struct hv_dynmem_device dm_device;
 574
 575static void post_status(struct hv_dynmem_device *dm);
 576
 577static void enable_page_reporting(void);
 578
 579static void disable_page_reporting(void);
 580
 581#ifdef CONFIG_MEMORY_HOTPLUG
 582static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 583				     unsigned long pfn)
 584{
 585	struct hv_hotadd_gap *gap;
 586
 587	/* The page is not backed. */
 588	if (pfn < has->covered_start_pfn || pfn >= has->covered_end_pfn)
 589		return false;
 590
 591	/* Check for gaps. */
 592	list_for_each_entry(gap, &has->gap_list, list) {
 593		if (pfn >= gap->start_pfn && pfn < gap->end_pfn)
 594			return false;
 595	}
 596
 597	return true;
 598}
 599
 600static unsigned long hv_page_offline_check(unsigned long start_pfn,
 601					   unsigned long nr_pages)
 602{
 603	unsigned long pfn = start_pfn, count = 0;
 604	struct hv_hotadd_state *has;
 605	bool found;
 606
 607	while (pfn < start_pfn + nr_pages) {
 608		/*
 609		 * Search for HAS which covers the pfn and when we find one
 610		 * count how many consequitive PFNs are covered.
 611		 */
 612		found = false;
 613		list_for_each_entry(has, &dm_device.ha_region_list, list) {
 614			while ((pfn >= has->start_pfn) &&
 615			       (pfn < has->end_pfn) &&
 616			       (pfn < start_pfn + nr_pages)) {
 617				found = true;
 618				if (has_pfn_is_backed(has, pfn))
 619					count++;
 620				pfn++;
 621			}
 622		}
 623
 624		/*
 625		 * This PFN is not in any HAS (e.g. we're offlining a region
 626		 * which was present at boot), no need to account for it. Go
 627		 * to the next one.
 628		 */
 629		if (!found)
 630			pfn++;
 631	}
 632
 633	return count;
 634}
 635
 636static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 637			      void *v)
 638{
 639	struct memory_notify *mem = (struct memory_notify *)v;
 640	unsigned long pfn_count;
 641
 642	switch (val) {
 643	case MEM_ONLINE:
 644	case MEM_CANCEL_ONLINE:
 645		complete(&dm_device.ol_waitevent);
 646		break;
 647
 648	case MEM_OFFLINE:
 649		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
 650			pfn_count = hv_page_offline_check(mem->start_pfn,
 651							  mem->nr_pages);
 652			if (pfn_count <= dm_device.num_pages_onlined) {
 653				dm_device.num_pages_onlined -= pfn_count;
 654			} else {
 655				/*
 656				 * We're offlining more pages than we
 657				 * managed to online. This is
 658				 * unexpected. In any case don't let
 659				 * num_pages_onlined wrap around zero.
 660				 */
 661				WARN_ON_ONCE(1);
 662				dm_device.num_pages_onlined = 0;
 663			}
 664		}
 665		break;
 666	case MEM_GOING_ONLINE:
 667	case MEM_GOING_OFFLINE:
 668	case MEM_CANCEL_OFFLINE:
 669		break;
 670	}
 671	return NOTIFY_OK;
 672}
 673
 674static struct notifier_block hv_memory_nb = {
 675	.notifier_call = hv_memory_notifier,
 676	.priority = 0
 677};
 678
 679/* Check if the particular page is backed and can be onlined and online it. */
 680static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 681{
 682	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 683		if (!PageOffline(pg))
 684			__SetPageOffline(pg);
 685		return;
 686	} else if (!PageOffline(pg))
 687		return;
 688
 689	/* This frame is currently backed; online the page. */
 690	generic_online_page(pg, 0);
 691
 692	lockdep_assert_held(&dm_device.ha_lock);
 693	dm_device.num_pages_onlined++;
 694}
 695
 696static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 697				unsigned long start_pfn, unsigned long size)
 698{
 699	int i;
 700
 701	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 702	for (i = 0; i < size; i++)
 703		hv_page_online_one(has, pfn_to_page(start_pfn + i));
 704}
 705
 706static void hv_mem_hot_add(unsigned long start, unsigned long size,
 707				unsigned long pfn_count,
 708				struct hv_hotadd_state *has)
 709{
 710	int ret = 0;
 711	int i, nid;
 712	unsigned long start_pfn;
 713	unsigned long processed_pfn;
 714	unsigned long total_pfn = pfn_count;
 715
 716	for (i = 0; i < (size/ha_pages_in_chunk); i++) {
 717		start_pfn = start + (i * ha_pages_in_chunk);
 718
 719		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
 720			has->ha_end_pfn += ha_pages_in_chunk;
 721			processed_pfn = umin(total_pfn, ha_pages_in_chunk);
 722			total_pfn -= processed_pfn;
 723			has->covered_end_pfn += processed_pfn;
 724		}
 725
 726		reinit_completion(&dm_device.ol_waitevent);
 727
 728		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 729		ret = add_memory(nid, PFN_PHYS((start_pfn)),
 730				 HA_BYTES_IN_CHUNK, MHP_MERGE_RESOURCE);
 731
 732		if (ret) {
 733			pr_err("hot_add memory failed error is %d\n", ret);
 734			if (ret == -EEXIST) {
 735				/*
 736				 * This error indicates that the error
 737				 * is not a transient failure. This is the
 738				 * case where the guest's physical address map
 739				 * precludes hot adding memory. Stop all further
 740				 * memory hot-add.
 741				 */
 742				do_hot_add = false;
 743			}
 744			scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
 745				has->ha_end_pfn -= ha_pages_in_chunk;
 746				has->covered_end_pfn -=  processed_pfn;
 747			}
 748			break;
 749		}
 750
 751		/*
 752		 * Wait for memory to get onlined. If the kernel onlined the
 753		 * memory when adding it, this will return directly. Otherwise,
 754		 * it will wait for user space to online the memory. This helps
 755		 * to avoid adding memory faster than it is getting onlined. As
 756		 * adding succeeded, it is ok to proceed even if the memory was
 757		 * not onlined in time.
 758		 */
 759		wait_for_completion_timeout(&dm_device.ol_waitevent, secs_to_jiffies(5));
 760		post_status(&dm_device);
 761	}
 762}
 763
 764static void hv_online_page(struct page *pg, unsigned int order)
 765{
 766	struct hv_hotadd_state *has;
 767	unsigned long pfn = page_to_pfn(pg);
 768
 769	guard(spinlock_irqsave)(&dm_device.ha_lock);
 770	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 771		/* The page belongs to a different HAS. */
 772		if (pfn < has->start_pfn ||
 773		    (pfn + (1UL << order) > has->end_pfn))
 774			continue;
 775
 776		hv_bring_pgs_online(has, pfn, 1UL << order);
 777		break;
 778	}
 779}
 780
 781static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 782{
 783	struct hv_hotadd_state *has;
 784	struct hv_hotadd_gap *gap;
 785	unsigned long residual;
 786	int ret = 0;
 787
 788	guard(spinlock_irqsave)(&dm_device.ha_lock);
 789	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 790		/*
 791		 * If the pfn range we are dealing with is not in the current
 792		 * "hot add block", move on.
 793		 */
 794		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 795			continue;
 796
 797		/*
 798		 * If the current start pfn is not where the covered_end
 799		 * is, create a gap and update covered_end_pfn.
 800		 */
 801		if (has->covered_end_pfn != start_pfn) {
 802			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 803			if (!gap) {
 804				ret = -ENOMEM;
 805				break;
 806			}
 807
 808			INIT_LIST_HEAD(&gap->list);
 809			gap->start_pfn = has->covered_end_pfn;
 810			gap->end_pfn = start_pfn;
 811			list_add_tail(&gap->list, &has->gap_list);
 812
 813			has->covered_end_pfn = start_pfn;
 814		}
 815
 816		/*
 817		 * If the current hot add-request extends beyond
 818		 * our current limit; extend it.
 819		 */
 820		if ((start_pfn + pfn_cnt) > has->end_pfn) {
 821			/* Extend the region by multiples of ha_pages_in_chunk */
 822			residual = (start_pfn + pfn_cnt - has->end_pfn);
 823			has->end_pfn += ALIGN(residual, ha_pages_in_chunk);
 824		}
 825
 826		ret = 1;
 827		break;
 828	}
 829
 830	return ret;
 831}
 832
 833static unsigned long handle_pg_range(unsigned long pg_start,
 834				     unsigned long pg_count)
 835{
 836	unsigned long start_pfn = pg_start;
 837	unsigned long pfn_cnt = pg_count;
 838	unsigned long size;
 839	struct hv_hotadd_state *has;
 840	unsigned long pgs_ol = 0;
 841	unsigned long old_covered_state;
 842	unsigned long res = 0, flags;
 843
 844	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 845		 pg_start);
 846
 847	spin_lock_irqsave(&dm_device.ha_lock, flags);
 848	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 849		/*
 850		 * If the pfn range we are dealing with is not in the current
 851		 * "hot add block", move on.
 852		 */
 853		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 854			continue;
 855
 856		old_covered_state = has->covered_end_pfn;
 857
 858		if (start_pfn < has->ha_end_pfn) {
 859			/*
 860			 * This is the case where we are backing pages
 861			 * in an already hot added region. Bring
 862			 * these pages online first.
 863			 */
 864			pgs_ol = has->ha_end_pfn - start_pfn;
 865			if (pgs_ol > pfn_cnt)
 866				pgs_ol = pfn_cnt;
 867
 868			has->covered_end_pfn +=  pgs_ol;
 869			pfn_cnt -= pgs_ol;
 870			/*
 871			 * Check if the corresponding memory block is already
 872			 * online. It is possible to observe struct pages still
 873			 * being uninitialized here so check section instead.
 874			 * In case the section is online we need to bring the
 875			 * rest of pfns (which were not backed previously)
 876			 * online too.
 877			 */
 878			if (start_pfn > has->start_pfn &&
 879			    online_section_nr(pfn_to_section_nr(start_pfn)))
 880				hv_bring_pgs_online(has, start_pfn, pgs_ol);
 881		}
 882
 883		if (has->ha_end_pfn < has->end_pfn && pfn_cnt > 0) {
 884			/*
 885			 * We have some residual hot add range
 886			 * that needs to be hot added; hot add
 887			 * it now. Hot add a multiple of
 888			 * ha_pages_in_chunk that fully covers the pages
 889			 * we have.
 890			 */
 891			size = (has->end_pfn - has->ha_end_pfn);
 892			if (pfn_cnt <= size) {
 893				size = ALIGN(pfn_cnt, ha_pages_in_chunk);
 894			} else {
 895				pfn_cnt = size;
 896			}
 897			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 898			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 899			spin_lock_irqsave(&dm_device.ha_lock, flags);
 900		}
 901		/*
 902		 * If we managed to online any pages that were given to us,
 903		 * we declare success.
 904		 */
 905		res = has->covered_end_pfn - old_covered_state;
 906		break;
 907	}
 908	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 909
 910	return res;
 911}
 912
 913static unsigned long process_hot_add(unsigned long pg_start,
 914					unsigned long pfn_cnt,
 915					unsigned long rg_start,
 916					unsigned long rg_size)
 917{
 918	struct hv_hotadd_state *ha_region = NULL;
 919	int covered;
 920
 921	if (pfn_cnt == 0)
 922		return 0;
 923
 924	if (!dm_device.host_specified_ha_region) {
 925		covered = pfn_covered(pg_start, pfn_cnt);
 926		if (covered < 0)
 927			return 0;
 928
 929		if (covered)
 930			goto do_pg_range;
 931	}
 932
 933	/*
 934	 * If the host has specified a hot-add range; deal with it first.
 935	 */
 936
 937	if (rg_size != 0) {
 938		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 939		if (!ha_region)
 940			return 0;
 941
 942		INIT_LIST_HEAD(&ha_region->list);
 943		INIT_LIST_HEAD(&ha_region->gap_list);
 944
 945		ha_region->start_pfn = rg_start;
 946		ha_region->ha_end_pfn = rg_start;
 947		ha_region->covered_start_pfn = pg_start;
 948		ha_region->covered_end_pfn = pg_start;
 949		ha_region->end_pfn = rg_start + rg_size;
 950
 951		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
 952			list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 953		}
 954	}
 955
 956do_pg_range:
 957	/*
 958	 * Process the page range specified; bringing them
 959	 * online if possible.
 960	 */
 961	return handle_pg_range(pg_start, pfn_cnt);
 962}
 963
 964#endif
 965
 966static void hot_add_req(struct work_struct *dummy)
 967{
 968	struct dm_hot_add_response resp;
 969#ifdef CONFIG_MEMORY_HOTPLUG
 970	unsigned long pg_start, pfn_cnt;
 971	unsigned long rg_start, rg_sz;
 972#endif
 973	struct hv_dynmem_device *dm = &dm_device;
 974
 975	memset(&resp, 0, sizeof(struct dm_hot_add_response));
 976	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 977	resp.hdr.size = sizeof(struct dm_hot_add_response);
 978
 979#ifdef CONFIG_MEMORY_HOTPLUG
 980	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 981	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 982
 983	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
 984	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
 985
 986	if (rg_start == 0 && !dm->host_specified_ha_region) {
 987		/*
 988		 * The host has not specified the hot-add region.
 989		 * Based on the hot-add page range being specified,
 990		 * compute a hot-add region that can cover the pages
 991		 * that need to be hot-added while ensuring the alignment
 992		 * and size requirements of Linux as it relates to hot-add.
 993		 */
 994		rg_start = ALIGN_DOWN(pg_start, ha_pages_in_chunk);
 995		rg_sz = ALIGN(pfn_cnt, ha_pages_in_chunk);
 996	}
 997
 998	if (do_hot_add)
 999		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1000						  rg_start, rg_sz);
1001
1002	dm->num_pages_added += resp.page_count;
1003#endif
1004	/*
1005	 * The result field of the response structure has the
1006	 * following semantics:
1007	 *
1008	 * 1. If all or some pages hot-added: Guest should return success.
1009	 *
1010	 * 2. If no pages could be hot-added:
1011	 *
1012	 * If the guest returns success, then the host
1013	 * will not attempt any further hot-add operations. This
1014	 * signifies a permanent failure.
1015	 *
1016	 * If the guest returns failure, then this failure will be
1017	 * treated as a transient failure and the host may retry the
1018	 * hot-add operation after some delay.
1019	 */
1020	if (resp.page_count > 0)
1021		resp.result = 1;
1022	else if (!do_hot_add)
1023		resp.result = 1;
1024	else
1025		resp.result = 0;
1026
1027	if (!do_hot_add || resp.page_count == 0) {
1028		if (!allow_hibernation)
1029			pr_err("Memory hot add failed\n");
1030		else
1031			pr_info("Ignore hot-add request!\n");
1032	}
1033
1034	dm->state = DM_INITIALIZED;
1035	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1036	vmbus_sendpacket(dm->dev->channel, &resp,
1037			sizeof(struct dm_hot_add_response),
1038			(unsigned long)NULL,
1039			VM_PKT_DATA_INBAND, 0);
1040}
1041
1042static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1043{
1044	struct dm_info_header *info_hdr;
1045
1046	info_hdr = (struct dm_info_header *)msg->info;
1047
1048	switch (info_hdr->type) {
1049	case INFO_TYPE_MAX_PAGE_CNT:
1050		if (info_hdr->data_size == sizeof(__u64)) {
1051			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1052
1053			pr_info("Max. dynamic memory size: %llu MB\n",
1054				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1055			dm->max_dynamic_page_count = *max_page_count;
1056		}
1057
1058		break;
1059	default:
1060		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1061	}
1062}
1063
1064static unsigned long compute_balloon_floor(void)
1065{
1066	unsigned long min_pages;
1067	unsigned long nr_pages = totalram_pages();
1068#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1069	/* Simple continuous piecewiese linear function:
1070	 *  max MiB -> min MiB  gradient
1071	 *       0         0
1072	 *      16        16
1073	 *      32        24
1074	 *     128        72    (1/2)
1075	 *     512       168    (1/4)
1076	 *    2048       360    (1/8)
1077	 *    8192       744    (1/16)
1078	 *   32768      1512	(1/32)
1079	 */
1080	if (nr_pages < MB2PAGES(128))
1081		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1082	else if (nr_pages < MB2PAGES(512))
1083		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1084	else if (nr_pages < MB2PAGES(2048))
1085		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1086	else if (nr_pages < MB2PAGES(8192))
1087		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1088	else
1089		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1090#undef MB2PAGES
1091	return min_pages;
1092}
1093
1094/*
1095 * Compute total committed memory pages
1096 */
1097
1098static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1099{
1100	return vm_memory_committed() +
1101		dm->num_pages_ballooned +
1102		(dm->num_pages_added > dm->num_pages_onlined ?
1103		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1104		compute_balloon_floor();
1105}
1106
1107/*
1108 * Post our status as it relates memory pressure to the
1109 * host. Host expects the guests to post this status
1110 * periodically at 1 second intervals.
1111 *
1112 * The metrics specified in this protocol are very Windows
1113 * specific and so we cook up numbers here to convey our memory
1114 * pressure.
1115 */
1116
1117static void post_status(struct hv_dynmem_device *dm)
1118{
1119	struct dm_status status;
1120	unsigned long now = jiffies;
1121	unsigned long last_post = last_post_time;
1122	unsigned long num_pages_avail, num_pages_committed;
1123
1124	if (pressure_report_delay > 0) {
1125		--pressure_report_delay;
1126		return;
1127	}
1128
1129	if (!time_after(now, (last_post_time + HZ)))
1130		return;
1131
1132	memset(&status, 0, sizeof(struct dm_status));
1133	status.hdr.type = DM_STATUS_REPORT;
1134	status.hdr.size = sizeof(struct dm_status);
1135	status.hdr.trans_id = atomic_inc_return(&trans_id);
1136
1137	/*
1138	 * The host expects the guest to report free and committed memory.
1139	 * Furthermore, the host expects the pressure information to include
1140	 * the ballooned out pages. For a given amount of memory that we are
1141	 * managing we need to compute a floor below which we should not
1142	 * balloon. Compute this and add it to the pressure report.
1143	 * We also need to report all offline pages (num_pages_added -
1144	 * num_pages_onlined) as committed to the host, otherwise it can try
1145	 * asking us to balloon them out.
1146	 */
1147	num_pages_avail = si_mem_available();
1148	num_pages_committed = get_pages_committed(dm);
1149
1150	trace_balloon_status(num_pages_avail, num_pages_committed,
1151			     vm_memory_committed(), dm->num_pages_ballooned,
1152			     dm->num_pages_added, dm->num_pages_onlined);
1153
1154	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1155	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1156	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1157
1158	/*
1159	 * If our transaction ID is no longer current, just don't
1160	 * send the status. This can happen if we were interrupted
1161	 * after we picked our transaction ID.
1162	 */
1163	if (status.hdr.trans_id != atomic_read(&trans_id))
1164		return;
1165
1166	/*
1167	 * If the last post time that we sampled has changed,
1168	 * we have raced, don't post the status.
1169	 */
1170	if (last_post != last_post_time)
1171		return;
1172
1173	last_post_time = jiffies;
1174	vmbus_sendpacket(dm->dev->channel, &status,
1175				sizeof(struct dm_status),
1176				(unsigned long)NULL,
1177				VM_PKT_DATA_INBAND, 0);
1178}
1179
1180static void free_balloon_pages(struct hv_dynmem_device *dm,
1181			       union dm_mem_page_range *range_array)
1182{
1183	int num_pages = range_array->finfo.page_cnt;
1184	__u64 start_frame = range_array->finfo.start_page;
1185	struct page *pg;
1186	int i;
1187
1188	for (i = 0; i < num_pages; i++) {
1189		pg = pfn_to_page(i + start_frame);
1190		__ClearPageOffline(pg);
1191		__free_page(pg);
1192		dm->num_pages_ballooned--;
1193		adjust_managed_page_count(pg, 1);
1194	}
1195}
1196
1197static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1198					unsigned int num_pages,
1199					struct dm_balloon_response *bl_resp,
1200					int alloc_unit)
1201{
1202	unsigned int i, j;
1203	struct page *pg;
1204
1205	for (i = 0; i < num_pages / alloc_unit; i++) {
1206		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1207			HV_HYP_PAGE_SIZE)
1208			return i * alloc_unit;
1209
1210		/*
1211		 * We execute this code in a thread context. Furthermore,
1212		 * we don't want the kernel to try too hard.
1213		 */
1214		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1215				__GFP_NOMEMALLOC | __GFP_NOWARN,
1216				get_order(alloc_unit << PAGE_SHIFT));
1217
1218		if (!pg)
1219			return i * alloc_unit;
1220
1221		dm->num_pages_ballooned += alloc_unit;
1222
1223		/*
1224		 * If we allocatted 2M pages; split them so we
1225		 * can free them in any order we get.
1226		 */
1227
1228		if (alloc_unit != 1)
1229			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1230
1231		/* mark all pages offline */
1232		for (j = 0; j < alloc_unit; j++) {
1233			__SetPageOffline(pg + j);
1234			adjust_managed_page_count(pg + j, -1);
1235		}
1236
1237		bl_resp->range_count++;
1238		bl_resp->range_array[i].finfo.start_page =
1239			page_to_pfn(pg);
1240		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1241		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1242	}
1243
1244	return i * alloc_unit;
1245}
1246
1247static void balloon_up(struct work_struct *dummy)
1248{
1249	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1250	unsigned int num_ballooned = 0;
1251	struct dm_balloon_response *bl_resp;
1252	int alloc_unit;
1253	int ret;
1254	bool done = false;
1255	int i;
1256	long avail_pages;
1257	unsigned long floor;
1258
1259	/*
1260	 * We will attempt 2M allocations. However, if we fail to
1261	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1262	 */
1263	alloc_unit = PAGES_IN_2M;
1264
1265	avail_pages = si_mem_available();
1266	floor = compute_balloon_floor();
1267
1268	/* Refuse to balloon below the floor. */
1269	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1270		pr_info("Balloon request will be partially fulfilled. %s\n",
1271			avail_pages < num_pages ? "Not enough memory." :
1272			"Balloon floor reached.");
1273
1274		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1275	}
1276
1277	while (!done) {
1278		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1279		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1280		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1281		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1282		bl_resp->more_pages = 1;
1283
1284		num_pages -= num_ballooned;
1285		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1286						    bl_resp, alloc_unit);
1287
1288		if (alloc_unit != 1 && num_ballooned == 0) {
1289			alloc_unit = 1;
1290			continue;
1291		}
1292
1293		if (num_ballooned == 0 || num_ballooned == num_pages) {
1294			pr_debug("Ballooned %u out of %u requested pages.\n",
1295				 num_pages, dm_device.balloon_wrk.num_pages);
1296
1297			bl_resp->more_pages = 0;
1298			done = true;
1299			dm_device.state = DM_INITIALIZED;
1300		}
1301
1302		/*
1303		 * We are pushing a lot of data through the channel;
1304		 * deal with transient failures caused because of the
1305		 * lack of space in the ring buffer.
1306		 */
1307
1308		do {
1309			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1310			ret = vmbus_sendpacket(dm_device.dev->channel,
1311						bl_resp,
1312						bl_resp->hdr.size,
1313						(unsigned long)NULL,
1314						VM_PKT_DATA_INBAND, 0);
1315
1316			if (ret == -EAGAIN)
1317				msleep(20);
1318			post_status(&dm_device);
1319		} while (ret == -EAGAIN);
1320
1321		if (ret) {
1322			/*
1323			 * Free up the memory we allocatted.
1324			 */
1325			pr_err("Balloon response failed\n");
1326
1327			for (i = 0; i < bl_resp->range_count; i++)
1328				free_balloon_pages(&dm_device,
1329						   &bl_resp->range_array[i]);
1330
1331			done = true;
1332		}
1333	}
1334}
1335
1336static void balloon_down(struct hv_dynmem_device *dm,
1337			 struct dm_unballoon_request *req)
1338{
1339	union dm_mem_page_range *range_array = req->range_array;
1340	int range_count = req->range_count;
1341	struct dm_unballoon_response resp;
1342	int i;
1343	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1344
1345	for (i = 0; i < range_count; i++) {
1346		free_balloon_pages(dm, &range_array[i]);
1347		complete(&dm_device.config_event);
1348	}
1349
1350	pr_debug("Freed %u ballooned pages.\n",
1351		 prev_pages_ballooned - dm->num_pages_ballooned);
1352
1353	if (req->more_pages == 1)
1354		return;
1355
1356	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1357	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1358	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1359	resp.hdr.size = sizeof(struct dm_unballoon_response);
1360
1361	vmbus_sendpacket(dm_device.dev->channel, &resp,
1362				sizeof(struct dm_unballoon_response),
1363				(unsigned long)NULL,
1364				VM_PKT_DATA_INBAND, 0);
1365
1366	dm->state = DM_INITIALIZED;
1367}
1368
1369static void balloon_onchannelcallback(void *context);
1370
1371static int dm_thread_func(void *dm_dev)
1372{
1373	struct hv_dynmem_device *dm = dm_dev;
1374
1375	while (!kthread_should_stop()) {
1376		wait_for_completion_interruptible_timeout(&dm_device.config_event,
1377								secs_to_jiffies(1));
1378		/*
1379		 * The host expects us to post information on the memory
1380		 * pressure every second.
1381		 */
1382		reinit_completion(&dm_device.config_event);
1383		post_status(dm);
1384		/*
1385		 * disable free page reporting if multiple hypercall
1386		 * failure flag set. It is not done in the page_reporting
1387		 * callback context as that causes a deadlock between
1388		 * page_reporting_process() and page_reporting_unregister()
1389		 */
1390		if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1391			pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1392			disable_page_reporting();
1393			/* Reset the flag after disabling reporting */
1394			hv_hypercall_multi_failure = 0;
1395		}
1396	}
1397
1398	return 0;
1399}
1400
1401static void version_resp(struct hv_dynmem_device *dm,
1402			 struct dm_version_response *vresp)
1403{
1404	struct dm_version_request version_req;
1405	int ret;
1406
1407	if (vresp->is_accepted) {
1408		/*
1409		 * We are done; wakeup the
1410		 * context waiting for version
1411		 * negotiation.
1412		 */
1413		complete(&dm->host_event);
1414		return;
1415	}
1416	/*
1417	 * If there are more versions to try, continue
1418	 * with negotiations; if not
1419	 * shutdown the service since we are not able
1420	 * to negotiate a suitable version number
1421	 * with the host.
1422	 */
1423	if (dm->next_version == 0)
1424		goto version_error;
1425
1426	memset(&version_req, 0, sizeof(struct dm_version_request));
1427	version_req.hdr.type = DM_VERSION_REQUEST;
1428	version_req.hdr.size = sizeof(struct dm_version_request);
1429	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1430	version_req.version.version = dm->next_version;
1431	dm->version = version_req.version.version;
1432
1433	/*
1434	 * Set the next version to try in case current version fails.
1435	 * Win7 protocol ought to be the last one to try.
1436	 */
1437	switch (version_req.version.version) {
1438	case DYNMEM_PROTOCOL_VERSION_WIN8:
1439		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1440		version_req.is_last_attempt = 0;
1441		break;
1442	default:
1443		dm->next_version = 0;
1444		version_req.is_last_attempt = 1;
1445	}
1446
1447	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1448				sizeof(struct dm_version_request),
1449				(unsigned long)NULL,
1450				VM_PKT_DATA_INBAND, 0);
1451
1452	if (ret)
1453		goto version_error;
1454
1455	return;
1456
1457version_error:
1458	dm->state = DM_INIT_ERROR;
1459	complete(&dm->host_event);
1460}
1461
1462static void cap_resp(struct hv_dynmem_device *dm,
1463		     struct dm_capabilities_resp_msg *cap_resp)
1464{
1465	if (!cap_resp->is_accepted) {
1466		pr_err("Capabilities not accepted by host\n");
1467		dm->state = DM_INIT_ERROR;
1468	}
1469	complete(&dm->host_event);
1470}
1471
1472static void balloon_onchannelcallback(void *context)
1473{
1474	struct hv_device *dev = context;
1475	u32 recvlen;
1476	u64 requestid;
1477	struct dm_message *dm_msg;
1478	struct dm_header *dm_hdr;
1479	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1480	struct dm_balloon *bal_msg;
1481	struct dm_hot_add *ha_msg;
1482	union dm_mem_page_range *ha_pg_range;
1483	union dm_mem_page_range *ha_region;
1484
1485	memset(recv_buffer, 0, sizeof(recv_buffer));
1486	vmbus_recvpacket(dev->channel, recv_buffer,
1487			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1488
1489	if (recvlen > 0) {
1490		dm_msg = (struct dm_message *)recv_buffer;
1491		dm_hdr = &dm_msg->hdr;
1492
1493		switch (dm_hdr->type) {
1494		case DM_VERSION_RESPONSE:
1495			version_resp(dm,
1496				     (struct dm_version_response *)dm_msg);
1497			break;
1498
1499		case DM_CAPABILITIES_RESPONSE:
1500			cap_resp(dm,
1501				 (struct dm_capabilities_resp_msg *)dm_msg);
1502			break;
1503
1504		case DM_BALLOON_REQUEST:
1505			if (allow_hibernation) {
1506				pr_info("Ignore balloon-up request!\n");
1507				break;
1508			}
1509
1510			if (dm->state == DM_BALLOON_UP)
1511				pr_warn("Currently ballooning\n");
1512			bal_msg = (struct dm_balloon *)recv_buffer;
1513			dm->state = DM_BALLOON_UP;
1514			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1515			schedule_work(&dm_device.balloon_wrk.wrk);
1516			break;
1517
1518		case DM_UNBALLOON_REQUEST:
1519			if (allow_hibernation) {
1520				pr_info("Ignore balloon-down request!\n");
1521				break;
1522			}
1523
1524			dm->state = DM_BALLOON_DOWN;
1525			balloon_down(dm,
1526				     (struct dm_unballoon_request *)recv_buffer);
1527			break;
1528
1529		case DM_MEM_HOT_ADD_REQUEST:
1530			if (dm->state == DM_HOT_ADD)
1531				pr_warn("Currently hot-adding\n");
1532			dm->state = DM_HOT_ADD;
1533			ha_msg = (struct dm_hot_add *)recv_buffer;
1534			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1535				/*
1536				 * This is a normal hot-add request specifying
1537				 * hot-add memory.
1538				 */
1539				dm->host_specified_ha_region = false;
1540				ha_pg_range = &ha_msg->range;
1541				dm->ha_wrk.ha_page_range = *ha_pg_range;
1542				dm->ha_wrk.ha_region_range.page_range = 0;
1543			} else {
1544				/*
1545				 * Host is specifying that we first hot-add
1546				 * a region and then partially populate this
1547				 * region.
1548				 */
1549				dm->host_specified_ha_region = true;
1550				ha_pg_range = &ha_msg->range;
1551				ha_region = &ha_pg_range[1];
1552				dm->ha_wrk.ha_page_range = *ha_pg_range;
1553				dm->ha_wrk.ha_region_range = *ha_region;
1554			}
1555			schedule_work(&dm_device.ha_wrk.wrk);
1556			break;
1557
1558		case DM_INFO_MESSAGE:
1559			process_info(dm, (struct dm_info_msg *)dm_msg);
1560			break;
1561
1562		default:
1563			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1564		}
1565	}
1566}
1567
1568#define HV_LARGE_REPORTING_ORDER	9
1569#define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1570		HV_LARGE_REPORTING_ORDER)
1571static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1572			       struct scatterlist *sgl, unsigned int nents)
1573{
1574	unsigned long flags;
1575	struct hv_memory_hint *hint;
1576	int i, order;
1577	u64 status;
1578	struct scatterlist *sg;
1579
1580	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1581	WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1582	local_irq_save(flags);
1583	hint = *this_cpu_ptr(hyperv_pcpu_input_arg);
1584	if (!hint) {
1585		local_irq_restore(flags);
1586		return -ENOSPC;
1587	}
1588
1589	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1590	hint->reserved = 0;
1591	for_each_sg(sgl, sg, nents, i) {
1592		union hv_gpa_page_range *range;
1593
1594		range = &hint->ranges[i];
1595		range->address_space = 0;
1596		order = get_order(sg->length);
1597		/*
1598		 * Hyper-V expects the additional_pages field in the units
1599		 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1600		 * This is dictated by the values of the fields page.largesize
1601		 * and page_size.
1602		 * This code however, only uses 4Kbytes and 2Mbytes units
1603		 * and not 1Gbytes unit.
1604		 */
1605
1606		/* page reporting for pages 2MB or higher */
1607		if (order >= HV_LARGE_REPORTING_ORDER) {
1608			range->page.largepage = 1;
1609			range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1610			range->base_large_pfn = page_to_hvpfn(
1611					sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1612			range->page.additional_pages =
1613				(sg->length / HV_LARGE_REPORTING_LEN) - 1;
1614		} else {
1615			/* Page reporting for pages below 2MB */
1616			range->page.basepfn = page_to_hvpfn(sg_page(sg));
1617			range->page.largepage = false;
1618			range->page.additional_pages =
1619				(sg->length / HV_HYP_PAGE_SIZE) - 1;
1620		}
1621	}
1622
1623	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1624				     hint, NULL);
1625	local_irq_restore(flags);
1626	if (!hv_result_success(status)) {
1627		pr_err("Cold memory discard hypercall failed with status %llx\n",
1628		       status);
1629		if (hv_hypercall_multi_failure > 0)
1630			hv_hypercall_multi_failure++;
1631
1632		if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1633			pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1634			pr_err("Defaulting to page_reporting_order %d\n",
1635			       pageblock_order);
1636			page_reporting_order = pageblock_order;
1637			hv_hypercall_multi_failure++;
1638			return -EINVAL;
1639		}
1640
1641		return -EINVAL;
1642	}
1643
1644	return 0;
1645}
1646
1647static void enable_page_reporting(void)
1648{
1649	int ret;
1650
1651	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1652		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1653		return;
1654	}
1655
1656	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1657	dm_device.pr_dev_info.report = hv_free_page_report;
1658	/*
1659	 * We let the page_reporting_order parameter decide the order
1660	 * in the page_reporting code
1661	 */
1662	dm_device.pr_dev_info.order = 0;
1663	ret = page_reporting_register(&dm_device.pr_dev_info);
1664	if (ret < 0) {
1665		dm_device.pr_dev_info.report = NULL;
1666		pr_err("Failed to enable cold memory discard: %d\n", ret);
1667	} else {
1668		pr_info("Cold memory discard hint enabled with order %d\n",
1669			page_reporting_order);
1670	}
1671}
1672
1673static void disable_page_reporting(void)
1674{
1675	if (dm_device.pr_dev_info.report) {
1676		page_reporting_unregister(&dm_device.pr_dev_info);
1677		dm_device.pr_dev_info.report = NULL;
1678	}
1679}
1680
1681static int ballooning_enabled(void)
1682{
1683	/*
1684	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1685	 * since currently it's unclear to us whether an unballoon request can
1686	 * make sure all page ranges are guest page size aligned.
1687	 */
1688	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1689		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1690		return 0;
1691	}
1692
1693	return 1;
1694}
1695
1696static int hot_add_enabled(void)
1697{
1698	/*
1699	 * Disable hot add on ARM64, because we currently rely on
1700	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1701	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1702	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1703	 * add_memory().
1704	 */
1705	if (IS_ENABLED(CONFIG_ARM64)) {
1706		pr_info("Memory hot add disabled on ARM64\n");
1707		return 0;
1708	}
1709
1710	return 1;
1711}
1712
1713static int balloon_connect_vsp(struct hv_device *dev)
1714{
1715	struct dm_version_request version_req;
1716	struct dm_capabilities cap_msg;
1717	unsigned long t;
1718	int ret;
1719
1720	/*
1721	 * max_pkt_size should be large enough for one vmbus packet header plus
1722	 * our receive buffer size. Hyper-V sends messages up to
1723	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1724	 */
1725	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1726
1727	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1728			 balloon_onchannelcallback, dev);
1729	if (ret)
1730		return ret;
1731
1732	/*
1733	 * Initiate the hand shake with the host and negotiate
1734	 * a version that the host can support. We start with the
1735	 * highest version number and go down if the host cannot
1736	 * support it.
1737	 */
1738	memset(&version_req, 0, sizeof(struct dm_version_request));
1739	version_req.hdr.type = DM_VERSION_REQUEST;
1740	version_req.hdr.size = sizeof(struct dm_version_request);
1741	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1742	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1743	version_req.is_last_attempt = 0;
1744	dm_device.version = version_req.version.version;
1745
1746	ret = vmbus_sendpacket(dev->channel, &version_req,
1747			       sizeof(struct dm_version_request),
1748			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1749	if (ret)
1750		goto out;
1751
1752	t = wait_for_completion_timeout(&dm_device.host_event, secs_to_jiffies(5));
1753	if (t == 0) {
1754		ret = -ETIMEDOUT;
1755		goto out;
1756	}
1757
1758	/*
1759	 * If we could not negotiate a compatible version with the host
1760	 * fail the probe function.
1761	 */
1762	if (dm_device.state == DM_INIT_ERROR) {
1763		ret = -EPROTO;
1764		goto out;
1765	}
1766
1767	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1768		DYNMEM_MAJOR_VERSION(dm_device.version),
1769		DYNMEM_MINOR_VERSION(dm_device.version));
1770
1771	/*
1772	 * Now submit our capabilities to the host.
1773	 */
1774	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1775	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1776	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1777	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1778
1779	/*
1780	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1781	 * currently still requires the bits to be set, so we have to add code
1782	 * to fail the host's hot-add and balloon up/down requests, if any.
1783	 */
1784	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1785	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1786
1787	/*
1788	 * Specify our alignment requirements for memory hot-add. The value is
1789	 * the log base 2 of the number of megabytes in a chunk. For example,
1790	 * with 256 MiB chunks, the value is 8. The number of MiB in a chunk
1791	 * must be a power of 2.
1792	 */
1793	cap_msg.caps.cap_bits.hot_add_alignment =
1794					ilog2(HA_BYTES_IN_CHUNK / SZ_1M);
1795
1796	/*
1797	 * Currently the host does not use these
1798	 * values and we set them to what is done in the
1799	 * Windows driver.
1800	 */
1801	cap_msg.min_page_cnt = 0;
1802	cap_msg.max_page_number = -1;
1803
1804	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1805			       sizeof(struct dm_capabilities),
1806			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1807	if (ret)
1808		goto out;
1809
1810	t = wait_for_completion_timeout(&dm_device.host_event, secs_to_jiffies(5));
1811	if (t == 0) {
1812		ret = -ETIMEDOUT;
1813		goto out;
1814	}
1815
1816	/*
1817	 * If the host does not like our capabilities,
1818	 * fail the probe function.
1819	 */
1820	if (dm_device.state == DM_INIT_ERROR) {
1821		ret = -EPROTO;
1822		goto out;
1823	}
1824
1825	return 0;
1826out:
1827	vmbus_close(dev->channel);
1828	return ret;
1829}
1830
1831/*
1832 * DEBUGFS Interface
1833 */
1834#ifdef CONFIG_DEBUG_FS
1835
1836/**
1837 * hv_balloon_debug_show - shows statistics of balloon operations.
1838 * @f: pointer to the &struct seq_file.
1839 * @offset: ignored.
1840 *
1841 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1842 *
1843 * Return: zero on success or an error code.
1844 */
1845static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1846{
1847	struct hv_dynmem_device *dm = f->private;
1848	char *sname;
1849
1850	seq_printf(f, "%-22s: %u.%u\n", "host_version",
1851			DYNMEM_MAJOR_VERSION(dm->version),
1852			DYNMEM_MINOR_VERSION(dm->version));
1853
1854	seq_printf(f, "%-22s:", "capabilities");
1855	if (ballooning_enabled())
1856		seq_puts(f, " enabled");
1857
1858	if (hot_add_enabled())
1859		seq_puts(f, " hot_add");
1860
1861	seq_puts(f, "\n");
1862
1863	seq_printf(f, "%-22s: %u", "state", dm->state);
1864	switch (dm->state) {
1865	case DM_INITIALIZING:
1866			sname = "Initializing";
1867			break;
1868	case DM_INITIALIZED:
1869			sname = "Initialized";
1870			break;
1871	case DM_BALLOON_UP:
1872			sname = "Balloon Up";
1873			break;
1874	case DM_BALLOON_DOWN:
1875			sname = "Balloon Down";
1876			break;
1877	case DM_HOT_ADD:
1878			sname = "Hot Add";
1879			break;
1880	case DM_INIT_ERROR:
1881			sname = "Error";
1882			break;
1883	default:
1884			sname = "Unknown";
1885	}
1886	seq_printf(f, " (%s)\n", sname);
1887
1888	/* HV Page Size */
1889	seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1890
1891	/* Pages added with hot_add */
1892	seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1893
1894	/* pages that are "onlined"/used from pages_added */
1895	seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1896
1897	/* pages we have given back to host */
1898	seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1899
1900	seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1901		   get_pages_committed(dm));
1902
1903	seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1904		   dm->max_dynamic_page_count);
1905
1906	return 0;
1907}
1908
1909DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1910
1911static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1912{
1913	debugfs_create_file("hv-balloon", 0444, NULL, b,
1914			    &hv_balloon_debug_fops);
1915}
1916
1917static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1918{
1919	debugfs_lookup_and_remove("hv-balloon", NULL);
1920}
1921
1922#else
1923
1924static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1925{
1926}
1927
1928static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1929{
1930}
1931
1932#endif	/* CONFIG_DEBUG_FS */
1933
1934static int balloon_probe(struct hv_device *dev,
1935			 const struct hv_vmbus_device_id *dev_id)
1936{
1937	int ret;
1938
1939	allow_hibernation = hv_is_hibernation_supported();
1940	if (allow_hibernation)
1941		hot_add = false;
1942
1943#ifdef CONFIG_MEMORY_HOTPLUG
1944	/*
1945	 * Hot-add must operate in chunks that are of size equal to the
1946	 * memory block size because that's what the core add_memory()
1947	 * interface requires. The Hyper-V interface requires that the memory
1948	 * block size be a power of 2, which is guaranteed by the check in
1949	 * memory_dev_init().
1950	 */
1951	ha_pages_in_chunk = memory_block_size_bytes() / PAGE_SIZE;
1952	do_hot_add = hot_add;
1953#else
1954	/*
1955	 * Without MEMORY_HOTPLUG, the guest returns a failure status for all
1956	 * hot add requests from Hyper-V, and the chunk size is used only to
1957	 * specify alignment to Hyper-V as required by the host/guest protocol.
1958	 * Somewhat arbitrarily, use 128 MiB.
1959	 */
1960	ha_pages_in_chunk = SZ_128M / PAGE_SIZE;
1961	do_hot_add = false;
1962#endif
1963	dm_device.dev = dev;
1964	dm_device.state = DM_INITIALIZING;
1965	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1966	init_completion(&dm_device.host_event);
1967	init_completion(&dm_device.config_event);
1968	INIT_LIST_HEAD(&dm_device.ha_region_list);
1969	spin_lock_init(&dm_device.ha_lock);
1970	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1971	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1972	dm_device.host_specified_ha_region = false;
1973
1974#ifdef CONFIG_MEMORY_HOTPLUG
1975	set_online_page_callback(&hv_online_page);
1976	init_completion(&dm_device.ol_waitevent);
1977	register_memory_notifier(&hv_memory_nb);
1978#endif
1979
1980	hv_set_drvdata(dev, &dm_device);
1981
1982	ret = balloon_connect_vsp(dev);
1983	if (ret != 0)
1984		goto connect_error;
1985
1986	enable_page_reporting();
1987	dm_device.state = DM_INITIALIZED;
1988
1989	dm_device.thread =
1990		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1991	if (IS_ERR(dm_device.thread)) {
1992		ret = PTR_ERR(dm_device.thread);
1993		goto probe_error;
1994	}
1995
1996	hv_balloon_debugfs_init(&dm_device);
1997
1998	return 0;
1999
2000probe_error:
2001	dm_device.state = DM_INIT_ERROR;
2002	dm_device.thread  = NULL;
2003	disable_page_reporting();
2004	vmbus_close(dev->channel);
2005connect_error:
2006#ifdef CONFIG_MEMORY_HOTPLUG
2007	unregister_memory_notifier(&hv_memory_nb);
2008	restore_online_page_callback(&hv_online_page);
2009#endif
2010	return ret;
2011}
2012
2013static void balloon_remove(struct hv_device *dev)
2014{
2015	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2016	struct hv_hotadd_state *has, *tmp;
2017	struct hv_hotadd_gap *gap, *tmp_gap;
2018
2019	if (dm->num_pages_ballooned != 0)
2020		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2021
2022	hv_balloon_debugfs_exit(dm);
2023
2024	cancel_work_sync(&dm->balloon_wrk.wrk);
2025	cancel_work_sync(&dm->ha_wrk.wrk);
2026
2027	kthread_stop(dm->thread);
2028
2029	/*
2030	 * This is to handle the case when balloon_resume()
2031	 * call has failed and some cleanup has been done as
2032	 * a part of the error handling.
2033	 */
2034	if (dm_device.state != DM_INIT_ERROR) {
2035		disable_page_reporting();
2036		vmbus_close(dev->channel);
2037#ifdef CONFIG_MEMORY_HOTPLUG
2038		unregister_memory_notifier(&hv_memory_nb);
2039		restore_online_page_callback(&hv_online_page);
2040#endif
2041	}
2042
2043	guard(spinlock_irqsave)(&dm_device.ha_lock);
2044	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2045		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2046			list_del(&gap->list);
2047			kfree(gap);
2048		}
2049		list_del(&has->list);
2050		kfree(has);
2051	}
2052}
2053
2054static int balloon_suspend(struct hv_device *hv_dev)
2055{
2056	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2057
2058	tasklet_disable(&hv_dev->channel->callback_event);
2059
2060	cancel_work_sync(&dm->balloon_wrk.wrk);
2061	cancel_work_sync(&dm->ha_wrk.wrk);
2062
2063	if (dm->thread) {
2064		kthread_stop(dm->thread);
2065		dm->thread = NULL;
2066		vmbus_close(hv_dev->channel);
2067	}
2068
2069	tasklet_enable(&hv_dev->channel->callback_event);
2070
2071	return 0;
2072}
2073
2074static int balloon_resume(struct hv_device *dev)
2075{
2076	int ret;
2077
2078	dm_device.state = DM_INITIALIZING;
2079
2080	ret = balloon_connect_vsp(dev);
2081
2082	if (ret != 0)
2083		goto out;
2084
2085	dm_device.thread =
2086		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2087	if (IS_ERR(dm_device.thread)) {
2088		ret = PTR_ERR(dm_device.thread);
2089		dm_device.thread = NULL;
2090		goto close_channel;
2091	}
2092
2093	dm_device.state = DM_INITIALIZED;
2094	return 0;
2095close_channel:
2096	vmbus_close(dev->channel);
2097out:
2098	dm_device.state = DM_INIT_ERROR;
2099	disable_page_reporting();
2100#ifdef CONFIG_MEMORY_HOTPLUG
2101	unregister_memory_notifier(&hv_memory_nb);
2102	restore_online_page_callback(&hv_online_page);
2103#endif
2104	return ret;
2105}
2106
2107static const struct hv_vmbus_device_id id_table[] = {
2108	/* Dynamic Memory Class ID */
2109	/* 525074DC-8985-46e2-8057-A307DC18A502 */
2110	{ HV_DM_GUID, },
2111	{ },
2112};
2113
2114MODULE_DEVICE_TABLE(vmbus, id_table);
2115
2116static  struct hv_driver balloon_drv = {
2117	.name = "hv_balloon",
2118	.id_table = id_table,
2119	.probe =  balloon_probe,
2120	.remove =  balloon_remove,
2121	.suspend = balloon_suspend,
2122	.resume = balloon_resume,
2123	.driver = {
2124		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2125	},
2126};
2127
2128static int __init init_balloon_drv(void)
2129{
2130	return vmbus_driver_register(&balloon_drv);
2131}
2132
2133module_init(init_balloon_drv);
2134
2135MODULE_DESCRIPTION("Hyper-V Balloon");
2136MODULE_LICENSE("GPL");