Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Suspend support specific for i386/x86-64.
  3 *
  4 * Distribute under GPLv2
  5 *
  6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  9 */
 10
 11#include <linux/suspend.h>
 
 12#include <linux/smp.h>
 
 
 
 
 13
 14#include <asm/pgtable.h>
 15#include <asm/proto.h>
 16#include <asm/mtrr.h>
 17#include <asm/page.h>
 18#include <asm/mce.h>
 19#include <asm/xcr.h>
 20#include <asm/suspend.h>
 
 21#include <asm/debugreg.h>
 
 
 
 22
 23#ifdef CONFIG_X86_32
 24static struct saved_context saved_context;
 25
 26unsigned long saved_context_ebx;
 27unsigned long saved_context_esp, saved_context_ebp;
 28unsigned long saved_context_esi, saved_context_edi;
 29unsigned long saved_context_eflags;
 30#else
 31/* CONFIG_X86_64 */
 32struct saved_context saved_context;
 33#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35/**
 36 *	__save_processor_state - save CPU registers before creating a
 37 *		hibernation image and before restoring the memory state from it
 38 *	@ctxt - structure to store the registers contents in
 39 *
 40 *	NOTE: If there is a CPU register the modification of which by the
 41 *	boot kernel (ie. the kernel used for loading the hibernation image)
 42 *	might affect the operations of the restored target kernel (ie. the one
 43 *	saved in the hibernation image), then its contents must be saved by this
 44 *	function.  In other words, if kernel A is hibernated and different
 45 *	kernel B is used for loading the hibernation image into memory, the
 46 *	kernel A's __save_processor_state() function must save all registers
 47 *	needed by kernel A, so that it can operate correctly after the resume
 48 *	regardless of what kernel B does in the meantime.
 49 */
 50static void __save_processor_state(struct saved_context *ctxt)
 51{
 52#ifdef CONFIG_X86_32
 53	mtrr_save_fixed_ranges(NULL);
 54#endif
 55	kernel_fpu_begin();
 56
 57	/*
 58	 * descriptor tables
 59	 */
 60#ifdef CONFIG_X86_32
 61	store_gdt(&ctxt->gdt);
 62	store_idt(&ctxt->idt);
 63#else
 64/* CONFIG_X86_64 */
 65	store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
 66	store_idt((struct desc_ptr *)&ctxt->idt_limit);
 67#endif
 
 
 
 
 
 68	store_tr(ctxt->tr);
 69
 70	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 71	/*
 72	 * segment registers
 73	 */
 74#ifdef CONFIG_X86_32
 75	savesegment(es, ctxt->es);
 76	savesegment(fs, ctxt->fs);
 77	savesegment(gs, ctxt->gs);
 78	savesegment(ss, ctxt->ss);
 79#else
 80/* CONFIG_X86_64 */
 81	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
 82	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
 83	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
 84	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
 85	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
 86
 87	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 88	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
 89	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
 90	mtrr_save_fixed_ranges(NULL);
 91
 92	rdmsrl(MSR_EFER, ctxt->efer);
 93#endif
 94
 95	/*
 96	 * control registers
 97	 */
 98	ctxt->cr0 = read_cr0();
 99	ctxt->cr2 = read_cr2();
100	ctxt->cr3 = read_cr3();
101#ifdef CONFIG_X86_32
102	ctxt->cr4 = read_cr4_safe();
103#else
104/* CONFIG_X86_64 */
105	ctxt->cr4 = read_cr4();
106	ctxt->cr8 = read_cr8();
107#endif
108	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
109					       &ctxt->misc_enable);
 
110}
111
112/* Needed by apm.c */
113void save_processor_state(void)
114{
115	__save_processor_state(&saved_context);
116	save_sched_clock_state();
117}
118#ifdef CONFIG_X86_32
119EXPORT_SYMBOL(save_processor_state);
120#endif
121
122static void do_fpu_end(void)
123{
124	/*
125	 * Restore FPU regs if necessary.
126	 */
127	kernel_fpu_end();
128}
129
130static void fix_processor_context(void)
131{
132	int cpu = smp_processor_id();
133	struct tss_struct *t = &per_cpu(init_tss, cpu);
 
 
 
134
135	set_tss_desc(cpu, t);	/*
136				 * This just modifies memory; should not be
137				 * necessary. But... This is necessary, because
138				 * 386 hardware has concept of busy TSS or some
139				 * similar stupidity.
140				 */
 
 
141
142#ifdef CONFIG_X86_64
143	get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9;
 
 
144
145	syscall_init();				/* This sets MSR_*STAR and related */
 
 
 
146#endif
147	load_TR_desc();				/* This does ltr */
148	load_LDT(&current->active_mm->context);	/* This does lldt */
 
 
 
 
 
 
149}
150
151/**
152 *	__restore_processor_state - restore the contents of CPU registers saved
153 *		by __save_processor_state()
154 *	@ctxt - structure to load the registers contents from
 
 
 
155 */
156static void __restore_processor_state(struct saved_context *ctxt)
157{
 
 
158	if (ctxt->misc_enable_saved)
159		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
160	/*
161	 * control registers
162	 */
163	/* cr4 was introduced in the Pentium CPU */
164#ifdef CONFIG_X86_32
165	if (ctxt->cr4)
166		write_cr4(ctxt->cr4);
167#else
168/* CONFIG X86_64 */
169	wrmsrl(MSR_EFER, ctxt->efer);
170	write_cr8(ctxt->cr8);
171	write_cr4(ctxt->cr4);
172#endif
173	write_cr3(ctxt->cr3);
174	write_cr2(ctxt->cr2);
175	write_cr0(ctxt->cr0);
176
 
 
 
177	/*
178	 * now restore the descriptor tables to their proper values
179	 * ltr is done i fix_processor_context().
180	 */
181#ifdef CONFIG_X86_32
182	load_gdt(&ctxt->gdt);
183	load_idt(&ctxt->idt);
 
 
 
 
 
 
 
184#else
185/* CONFIG_X86_64 */
186	load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
187	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
188#endif
189
 
 
 
190	/*
191	 * segment registers
 
192	 */
193#ifdef CONFIG_X86_32
 
194	loadsegment(es, ctxt->es);
195	loadsegment(fs, ctxt->fs);
196	loadsegment(gs, ctxt->gs);
197	loadsegment(ss, ctxt->ss);
198
199	/*
200	 * sysenter MSRs
 
 
201	 */
202	if (boot_cpu_has(X86_FEATURE_SEP))
203		enable_sep_cpu();
204#else
205/* CONFIG_X86_64 */
206	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
207	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
208	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
209	load_gs_index(ctxt->gs);
210	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
211
212	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
213	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
214	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
 
215#endif
216
217	/*
218	 * restore XCR0 for xsave capable cpu's.
219	 */
220	if (cpu_has_xsave)
221		xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
222
223	fix_processor_context();
224
225	do_fpu_end();
 
 
226	mtrr_bp_restore();
 
 
 
 
 
 
227}
228
229/* Needed by apm.c */
230void restore_processor_state(void)
231{
232	__restore_processor_state(&saved_context);
233	restore_sched_clock_state();
234}
235#ifdef CONFIG_X86_32
236EXPORT_SYMBOL(restore_processor_state);
237#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Suspend support specific for i386/x86-64.
  4 *
 
 
  5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  8 */
  9
 10#include <linux/suspend.h>
 11#include <linux/export.h>
 12#include <linux/smp.h>
 13#include <linux/perf_event.h>
 14#include <linux/tboot.h>
 15#include <linux/dmi.h>
 16#include <linux/pgtable.h>
 17
 
 18#include <asm/proto.h>
 19#include <asm/mtrr.h>
 20#include <asm/page.h>
 21#include <asm/mce.h>
 
 22#include <asm/suspend.h>
 23#include <asm/fpu/internal.h>
 24#include <asm/debugreg.h>
 25#include <asm/cpu.h>
 26#include <asm/mmu_context.h>
 27#include <asm/cpu_device_id.h>
 28
 29#ifdef CONFIG_X86_32
 30__visible unsigned long saved_context_ebx;
 31__visible unsigned long saved_context_esp, saved_context_ebp;
 32__visible unsigned long saved_context_esi, saved_context_edi;
 33__visible unsigned long saved_context_eflags;
 
 
 
 
 
 34#endif
 35struct saved_context saved_context;
 36
 37static void msr_save_context(struct saved_context *ctxt)
 38{
 39	struct saved_msr *msr = ctxt->saved_msrs.array;
 40	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 41
 42	while (msr < end) {
 43		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
 44		msr++;
 45	}
 46}
 47
 48static void msr_restore_context(struct saved_context *ctxt)
 49{
 50	struct saved_msr *msr = ctxt->saved_msrs.array;
 51	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 52
 53	while (msr < end) {
 54		if (msr->valid)
 55			wrmsrl(msr->info.msr_no, msr->info.reg.q);
 56		msr++;
 57	}
 58}
 59
 60/**
 61 *	__save_processor_state - save CPU registers before creating a
 62 *		hibernation image and before restoring the memory state from it
 63 *	@ctxt - structure to store the registers contents in
 64 *
 65 *	NOTE: If there is a CPU register the modification of which by the
 66 *	boot kernel (ie. the kernel used for loading the hibernation image)
 67 *	might affect the operations of the restored target kernel (ie. the one
 68 *	saved in the hibernation image), then its contents must be saved by this
 69 *	function.  In other words, if kernel A is hibernated and different
 70 *	kernel B is used for loading the hibernation image into memory, the
 71 *	kernel A's __save_processor_state() function must save all registers
 72 *	needed by kernel A, so that it can operate correctly after the resume
 73 *	regardless of what kernel B does in the meantime.
 74 */
 75static void __save_processor_state(struct saved_context *ctxt)
 76{
 77#ifdef CONFIG_X86_32
 78	mtrr_save_fixed_ranges(NULL);
 79#endif
 80	kernel_fpu_begin();
 81
 82	/*
 83	 * descriptor tables
 84	 */
 
 
 85	store_idt(&ctxt->idt);
 86
 87	/*
 88	 * We save it here, but restore it only in the hibernate case.
 89	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 90	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 91	 * 'pmode_gdt' in wakeup_start.
 92	 */
 93	ctxt->gdt_desc.size = GDT_SIZE - 1;
 94	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
 95
 96	store_tr(ctxt->tr);
 97
 98	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 99	/*
100	 * segment registers
101	 */
102#ifdef CONFIG_X86_32_LAZY_GS
 
 
103	savesegment(gs, ctxt->gs);
104#endif
105#ifdef CONFIG_X86_64
106	savesegment(gs, ctxt->gs);
107	savesegment(fs, ctxt->fs);
108	savesegment(ds, ctxt->ds);
109	savesegment(es, ctxt->es);
 
 
110
111	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
112	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
113	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
114	mtrr_save_fixed_ranges(NULL);
115
116	rdmsrl(MSR_EFER, ctxt->efer);
117#endif
118
119	/*
120	 * control registers
121	 */
122	ctxt->cr0 = read_cr0();
123	ctxt->cr2 = read_cr2();
124	ctxt->cr3 = __read_cr3();
125	ctxt->cr4 = __read_cr4();
 
 
 
 
 
 
126	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
127					       &ctxt->misc_enable);
128	msr_save_context(ctxt);
129}
130
131/* Needed by apm.c */
132void save_processor_state(void)
133{
134	__save_processor_state(&saved_context);
135	x86_platform.save_sched_clock_state();
136}
137#ifdef CONFIG_X86_32
138EXPORT_SYMBOL(save_processor_state);
139#endif
140
141static void do_fpu_end(void)
142{
143	/*
144	 * Restore FPU regs if necessary.
145	 */
146	kernel_fpu_end();
147}
148
149static void fix_processor_context(void)
150{
151	int cpu = smp_processor_id();
152#ifdef CONFIG_X86_64
153	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
154	tss_desc tss;
155#endif
156
157	/*
158	 * We need to reload TR, which requires that we change the
159	 * GDT entry to indicate "available" first.
160	 *
161	 * XXX: This could probably all be replaced by a call to
162	 * force_reload_TR().
163	 */
164	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
165
166#ifdef CONFIG_X86_64
167	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
168	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
169	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
170
171	syscall_init();				/* This sets MSR_*STAR and related */
172#else
173	if (boot_cpu_has(X86_FEATURE_SEP))
174		enable_sep_cpu();
175#endif
176	load_TR_desc();				/* This does ltr */
177	load_mm_ldt(current->active_mm);	/* This does lldt */
178	initialize_tlbstate_and_flush();
179
180	fpu__resume_cpu();
181
182	/* The processor is back on the direct GDT, load back the fixmap */
183	load_fixmap_gdt(cpu);
184}
185
186/**
187 * __restore_processor_state - restore the contents of CPU registers saved
188 *                             by __save_processor_state()
189 * @ctxt - structure to load the registers contents from
190 *
191 * The asm code that gets us here will have restored a usable GDT, although
192 * it will be pointing to the wrong alias.
193 */
194static void notrace __restore_processor_state(struct saved_context *ctxt)
195{
196	struct cpuinfo_x86 *c;
197
198	if (ctxt->misc_enable_saved)
199		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
200	/*
201	 * control registers
202	 */
203	/* cr4 was introduced in the Pentium CPU */
204#ifdef CONFIG_X86_32
205	if (ctxt->cr4)
206		__write_cr4(ctxt->cr4);
207#else
208/* CONFIG X86_64 */
209	wrmsrl(MSR_EFER, ctxt->efer);
210	__write_cr4(ctxt->cr4);
 
211#endif
212	write_cr3(ctxt->cr3);
213	write_cr2(ctxt->cr2);
214	write_cr0(ctxt->cr0);
215
216	/* Restore the IDT. */
217	load_idt(&ctxt->idt);
218
219	/*
220	 * Just in case the asm code got us here with the SS, DS, or ES
221	 * out of sync with the GDT, update them.
222	 */
223	loadsegment(ss, __KERNEL_DS);
224	loadsegment(ds, __USER_DS);
225	loadsegment(es, __USER_DS);
226
227	/*
228	 * Restore percpu access.  Percpu access can happen in exception
229	 * handlers or in complicated helpers like load_gs_index().
230	 */
231#ifdef CONFIG_X86_64
232	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
233#else
234	loadsegment(fs, __KERNEL_PERCPU);
235	loadsegment(gs, __KERNEL_STACK_CANARY);
 
236#endif
237
238	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239	fix_processor_context();
240
241	/*
242	 * Now that we have descriptor tables fully restored and working
243	 * exception handling, restore the usermode segments.
244	 */
245#ifdef CONFIG_X86_64
246	loadsegment(ds, ctxt->es);
247	loadsegment(es, ctxt->es);
248	loadsegment(fs, ctxt->fs);
249	load_gs_index(ctxt->gs);
 
250
251	/*
252	 * Restore FSBASE and GSBASE after restoring the selectors, since
253	 * restoring the selectors clobbers the bases.  Keep in mind
254	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
255	 */
 
 
 
 
 
 
 
 
 
 
256	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
257	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
258#elif defined(CONFIG_X86_32_LAZY_GS)
259	loadsegment(gs, ctxt->gs);
260#endif
261
 
 
 
 
 
 
 
 
262	do_fpu_end();
263	tsc_verify_tsc_adjust(true);
264	x86_platform.restore_sched_clock_state();
265	mtrr_bp_restore();
266	perf_restore_debug_store();
267	msr_restore_context(ctxt);
268
269	c = &cpu_data(smp_processor_id());
270	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
271		init_ia32_feat_ctl(c);
272}
273
274/* Needed by apm.c */
275void notrace restore_processor_state(void)
276{
277	__restore_processor_state(&saved_context);
 
278}
279#ifdef CONFIG_X86_32
280EXPORT_SYMBOL(restore_processor_state);
281#endif
282
283#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
284static void resume_play_dead(void)
285{
286	play_dead_common();
287	tboot_shutdown(TB_SHUTDOWN_WFS);
288	hlt_play_dead();
289}
290
291int hibernate_resume_nonboot_cpu_disable(void)
292{
293	void (*play_dead)(void) = smp_ops.play_dead;
294	int ret;
295
296	/*
297	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
298	 * during hibernate image restoration, because it is likely that the
299	 * monitored address will be actually written to at that time and then
300	 * the "dead" CPU will attempt to execute instructions again, but the
301	 * address in its instruction pointer may not be possible to resolve
302	 * any more at that point (the page tables used by it previously may
303	 * have been overwritten by hibernate image data).
304	 *
305	 * First, make sure that we wake up all the potentially disabled SMT
306	 * threads which have been initially brought up and then put into
307	 * mwait/cpuidle sleep.
308	 * Those will be put to proper (not interfering with hibernation
309	 * resume) sleep afterwards, and the resumed kernel will decide itself
310	 * what to do with them.
311	 */
312	ret = cpuhp_smt_enable();
313	if (ret)
314		return ret;
315	smp_ops.play_dead = resume_play_dead;
316	ret = freeze_secondary_cpus(0);
317	smp_ops.play_dead = play_dead;
318	return ret;
319}
320#endif
321
322/*
323 * When bsp_check() is called in hibernate and suspend, cpu hotplug
324 * is disabled already. So it's unnessary to handle race condition between
325 * cpumask query and cpu hotplug.
326 */
327static int bsp_check(void)
328{
329	if (cpumask_first(cpu_online_mask) != 0) {
330		pr_warn("CPU0 is offline.\n");
331		return -ENODEV;
332	}
333
334	return 0;
335}
336
337static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
338			   void *ptr)
339{
340	int ret = 0;
341
342	switch (action) {
343	case PM_SUSPEND_PREPARE:
344	case PM_HIBERNATION_PREPARE:
345		ret = bsp_check();
346		break;
347#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
348	case PM_RESTORE_PREPARE:
349		/*
350		 * When system resumes from hibernation, online CPU0 because
351		 * 1. it's required for resume and
352		 * 2. the CPU was online before hibernation
353		 */
354		if (!cpu_online(0))
355			_debug_hotplug_cpu(0, 1);
356		break;
357	case PM_POST_RESTORE:
358		/*
359		 * When a resume really happens, this code won't be called.
360		 *
361		 * This code is called only when user space hibernation software
362		 * prepares for snapshot device during boot time. So we just
363		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
364		 * preparing the snapshot device.
365		 *
366		 * This works for normal boot case in our CPU0 hotplug debug
367		 * mode, i.e. CPU0 is offline and user mode hibernation
368		 * software initializes during boot time.
369		 *
370		 * If CPU0 is online and user application accesses snapshot
371		 * device after boot time, this will offline CPU0 and user may
372		 * see different CPU0 state before and after accessing
373		 * the snapshot device. But hopefully this is not a case when
374		 * user debugging CPU0 hotplug. Even if users hit this case,
375		 * they can easily online CPU0 back.
376		 *
377		 * To simplify this debug code, we only consider normal boot
378		 * case. Otherwise we need to remember CPU0's state and restore
379		 * to that state and resolve racy conditions etc.
380		 */
381		_debug_hotplug_cpu(0, 0);
382		break;
383#endif
384	default:
385		break;
386	}
387	return notifier_from_errno(ret);
388}
389
390static int __init bsp_pm_check_init(void)
391{
392	/*
393	 * Set this bsp_pm_callback as lower priority than
394	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
395	 * earlier to disable cpu hotplug before bsp online check.
396	 */
397	pm_notifier(bsp_pm_callback, -INT_MAX);
398	return 0;
399}
400
401core_initcall(bsp_pm_check_init);
402
403static int msr_build_context(const u32 *msr_id, const int num)
404{
405	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
406	struct saved_msr *msr_array;
407	int total_num;
408	int i, j;
409
410	total_num = saved_msrs->num + num;
411
412	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
413	if (!msr_array) {
414		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
415		return -ENOMEM;
416	}
417
418	if (saved_msrs->array) {
419		/*
420		 * Multiple callbacks can invoke this function, so copy any
421		 * MSR save requests from previous invocations.
422		 */
423		memcpy(msr_array, saved_msrs->array,
424		       sizeof(struct saved_msr) * saved_msrs->num);
425
426		kfree(saved_msrs->array);
427	}
428
429	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
430		msr_array[i].info.msr_no	= msr_id[j];
431		msr_array[i].valid		= false;
432		msr_array[i].info.reg.q		= 0;
433	}
434	saved_msrs->num   = total_num;
435	saved_msrs->array = msr_array;
436
437	return 0;
438}
439
440/*
441 * The following sections are a quirk framework for problematic BIOSen:
442 * Sometimes MSRs are modified by the BIOSen after suspended to
443 * RAM, this might cause unexpected behavior after wakeup.
444 * Thus we save/restore these specified MSRs across suspend/resume
445 * in order to work around it.
446 *
447 * For any further problematic BIOSen/platforms,
448 * please add your own function similar to msr_initialize_bdw.
449 */
450static int msr_initialize_bdw(const struct dmi_system_id *d)
451{
452	/* Add any extra MSR ids into this array. */
453	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
454
455	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
456	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
457}
458
459static const struct dmi_system_id msr_save_dmi_table[] = {
460	{
461	 .callback = msr_initialize_bdw,
462	 .ident = "BROADWELL BDX_EP",
463	 .matches = {
464		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
465		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
466		},
467	},
468	{}
469};
470
471static int msr_save_cpuid_features(const struct x86_cpu_id *c)
472{
473	u32 cpuid_msr_id[] = {
474		MSR_AMD64_CPUID_FN_1,
475	};
476
477	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
478		c->family);
479
480	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
481}
482
483static const struct x86_cpu_id msr_save_cpu_table[] = {
484	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
485	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
486	{}
487};
488
489typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
490static int pm_cpu_check(const struct x86_cpu_id *c)
491{
492	const struct x86_cpu_id *m;
493	int ret = 0;
494
495	m = x86_match_cpu(msr_save_cpu_table);
496	if (m) {
497		pm_cpu_match_t fn;
498
499		fn = (pm_cpu_match_t)m->driver_data;
500		ret = fn(m);
501	}
502
503	return ret;
504}
505
506static int pm_check_save_msr(void)
507{
508	dmi_check_system(msr_save_dmi_table);
509	pm_cpu_check(msr_save_cpu_table);
510
511	return 0;
512}
513
514device_initcall(pm_check_save_msr);