Loading...
1/*
2 * Suspend support specific for i386/x86-64.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
10
11#include <linux/suspend.h>
12#include <linux/smp.h>
13
14#include <asm/pgtable.h>
15#include <asm/proto.h>
16#include <asm/mtrr.h>
17#include <asm/page.h>
18#include <asm/mce.h>
19#include <asm/xcr.h>
20#include <asm/suspend.h>
21#include <asm/debugreg.h>
22
23#ifdef CONFIG_X86_32
24static struct saved_context saved_context;
25
26unsigned long saved_context_ebx;
27unsigned long saved_context_esp, saved_context_ebp;
28unsigned long saved_context_esi, saved_context_edi;
29unsigned long saved_context_eflags;
30#else
31/* CONFIG_X86_64 */
32struct saved_context saved_context;
33#endif
34
35/**
36 * __save_processor_state - save CPU registers before creating a
37 * hibernation image and before restoring the memory state from it
38 * @ctxt - structure to store the registers contents in
39 *
40 * NOTE: If there is a CPU register the modification of which by the
41 * boot kernel (ie. the kernel used for loading the hibernation image)
42 * might affect the operations of the restored target kernel (ie. the one
43 * saved in the hibernation image), then its contents must be saved by this
44 * function. In other words, if kernel A is hibernated and different
45 * kernel B is used for loading the hibernation image into memory, the
46 * kernel A's __save_processor_state() function must save all registers
47 * needed by kernel A, so that it can operate correctly after the resume
48 * regardless of what kernel B does in the meantime.
49 */
50static void __save_processor_state(struct saved_context *ctxt)
51{
52#ifdef CONFIG_X86_32
53 mtrr_save_fixed_ranges(NULL);
54#endif
55 kernel_fpu_begin();
56
57 /*
58 * descriptor tables
59 */
60#ifdef CONFIG_X86_32
61 store_gdt(&ctxt->gdt);
62 store_idt(&ctxt->idt);
63#else
64/* CONFIG_X86_64 */
65 store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
66 store_idt((struct desc_ptr *)&ctxt->idt_limit);
67#endif
68 store_tr(ctxt->tr);
69
70 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
71 /*
72 * segment registers
73 */
74#ifdef CONFIG_X86_32
75 savesegment(es, ctxt->es);
76 savesegment(fs, ctxt->fs);
77 savesegment(gs, ctxt->gs);
78 savesegment(ss, ctxt->ss);
79#else
80/* CONFIG_X86_64 */
81 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
82 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
83 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
84 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
85 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
86
87 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
88 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
89 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
90 mtrr_save_fixed_ranges(NULL);
91
92 rdmsrl(MSR_EFER, ctxt->efer);
93#endif
94
95 /*
96 * control registers
97 */
98 ctxt->cr0 = read_cr0();
99 ctxt->cr2 = read_cr2();
100 ctxt->cr3 = read_cr3();
101#ifdef CONFIG_X86_32
102 ctxt->cr4 = read_cr4_safe();
103#else
104/* CONFIG_X86_64 */
105 ctxt->cr4 = read_cr4();
106 ctxt->cr8 = read_cr8();
107#endif
108 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
109 &ctxt->misc_enable);
110}
111
112/* Needed by apm.c */
113void save_processor_state(void)
114{
115 __save_processor_state(&saved_context);
116 save_sched_clock_state();
117}
118#ifdef CONFIG_X86_32
119EXPORT_SYMBOL(save_processor_state);
120#endif
121
122static void do_fpu_end(void)
123{
124 /*
125 * Restore FPU regs if necessary.
126 */
127 kernel_fpu_end();
128}
129
130static void fix_processor_context(void)
131{
132 int cpu = smp_processor_id();
133 struct tss_struct *t = &per_cpu(init_tss, cpu);
134
135 set_tss_desc(cpu, t); /*
136 * This just modifies memory; should not be
137 * necessary. But... This is necessary, because
138 * 386 hardware has concept of busy TSS or some
139 * similar stupidity.
140 */
141
142#ifdef CONFIG_X86_64
143 get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9;
144
145 syscall_init(); /* This sets MSR_*STAR and related */
146#endif
147 load_TR_desc(); /* This does ltr */
148 load_LDT(¤t->active_mm->context); /* This does lldt */
149}
150
151/**
152 * __restore_processor_state - restore the contents of CPU registers saved
153 * by __save_processor_state()
154 * @ctxt - structure to load the registers contents from
155 */
156static void __restore_processor_state(struct saved_context *ctxt)
157{
158 if (ctxt->misc_enable_saved)
159 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
160 /*
161 * control registers
162 */
163 /* cr4 was introduced in the Pentium CPU */
164#ifdef CONFIG_X86_32
165 if (ctxt->cr4)
166 write_cr4(ctxt->cr4);
167#else
168/* CONFIG X86_64 */
169 wrmsrl(MSR_EFER, ctxt->efer);
170 write_cr8(ctxt->cr8);
171 write_cr4(ctxt->cr4);
172#endif
173 write_cr3(ctxt->cr3);
174 write_cr2(ctxt->cr2);
175 write_cr0(ctxt->cr0);
176
177 /*
178 * now restore the descriptor tables to their proper values
179 * ltr is done i fix_processor_context().
180 */
181#ifdef CONFIG_X86_32
182 load_gdt(&ctxt->gdt);
183 load_idt(&ctxt->idt);
184#else
185/* CONFIG_X86_64 */
186 load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
187 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
188#endif
189
190 /*
191 * segment registers
192 */
193#ifdef CONFIG_X86_32
194 loadsegment(es, ctxt->es);
195 loadsegment(fs, ctxt->fs);
196 loadsegment(gs, ctxt->gs);
197 loadsegment(ss, ctxt->ss);
198
199 /*
200 * sysenter MSRs
201 */
202 if (boot_cpu_has(X86_FEATURE_SEP))
203 enable_sep_cpu();
204#else
205/* CONFIG_X86_64 */
206 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
207 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
208 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
209 load_gs_index(ctxt->gs);
210 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
211
212 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
213 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
214 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
215#endif
216
217 /*
218 * restore XCR0 for xsave capable cpu's.
219 */
220 if (cpu_has_xsave)
221 xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
222
223 fix_processor_context();
224
225 do_fpu_end();
226 mtrr_bp_restore();
227}
228
229/* Needed by apm.c */
230void restore_processor_state(void)
231{
232 __restore_processor_state(&saved_context);
233 restore_sched_clock_state();
234}
235#ifdef CONFIG_X86_32
236EXPORT_SYMBOL(restore_processor_state);
237#endif
1/*
2 * Suspend support specific for i386/x86-64.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
10
11#include <linux/suspend.h>
12#include <linux/export.h>
13#include <linux/smp.h>
14#include <linux/perf_event.h>
15
16#include <asm/pgtable.h>
17#include <asm/proto.h>
18#include <asm/mtrr.h>
19#include <asm/page.h>
20#include <asm/mce.h>
21#include <asm/suspend.h>
22#include <asm/fpu/internal.h>
23#include <asm/debugreg.h>
24#include <asm/cpu.h>
25#include <asm/mmu_context.h>
26#include <linux/dmi.h>
27
28#ifdef CONFIG_X86_32
29__visible unsigned long saved_context_ebx;
30__visible unsigned long saved_context_esp, saved_context_ebp;
31__visible unsigned long saved_context_esi, saved_context_edi;
32__visible unsigned long saved_context_eflags;
33#endif
34struct saved_context saved_context;
35
36static void msr_save_context(struct saved_context *ctxt)
37{
38 struct saved_msr *msr = ctxt->saved_msrs.array;
39 struct saved_msr *end = msr + ctxt->saved_msrs.num;
40
41 while (msr < end) {
42 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
43 msr++;
44 }
45}
46
47static void msr_restore_context(struct saved_context *ctxt)
48{
49 struct saved_msr *msr = ctxt->saved_msrs.array;
50 struct saved_msr *end = msr + ctxt->saved_msrs.num;
51
52 while (msr < end) {
53 if (msr->valid)
54 wrmsrl(msr->info.msr_no, msr->info.reg.q);
55 msr++;
56 }
57}
58
59/**
60 * __save_processor_state - save CPU registers before creating a
61 * hibernation image and before restoring the memory state from it
62 * @ctxt - structure to store the registers contents in
63 *
64 * NOTE: If there is a CPU register the modification of which by the
65 * boot kernel (ie. the kernel used for loading the hibernation image)
66 * might affect the operations of the restored target kernel (ie. the one
67 * saved in the hibernation image), then its contents must be saved by this
68 * function. In other words, if kernel A is hibernated and different
69 * kernel B is used for loading the hibernation image into memory, the
70 * kernel A's __save_processor_state() function must save all registers
71 * needed by kernel A, so that it can operate correctly after the resume
72 * regardless of what kernel B does in the meantime.
73 */
74static void __save_processor_state(struct saved_context *ctxt)
75{
76#ifdef CONFIG_X86_32
77 mtrr_save_fixed_ranges(NULL);
78#endif
79 kernel_fpu_begin();
80
81 /*
82 * descriptor tables
83 */
84#ifdef CONFIG_X86_32
85 store_idt(&ctxt->idt);
86#else
87/* CONFIG_X86_64 */
88 store_idt((struct desc_ptr *)&ctxt->idt_limit);
89#endif
90 /*
91 * We save it here, but restore it only in the hibernate case.
92 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
93 * mode in "secondary_startup_64". In 32-bit mode it is done via
94 * 'pmode_gdt' in wakeup_start.
95 */
96 ctxt->gdt_desc.size = GDT_SIZE - 1;
97 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
98
99 store_tr(ctxt->tr);
100
101 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
102 /*
103 * segment registers
104 */
105#ifdef CONFIG_X86_32
106 savesegment(es, ctxt->es);
107 savesegment(fs, ctxt->fs);
108 savesegment(gs, ctxt->gs);
109 savesegment(ss, ctxt->ss);
110#else
111/* CONFIG_X86_64 */
112 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
113 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
114 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
115 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
116 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
117
118 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
119 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
120 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
121 mtrr_save_fixed_ranges(NULL);
122
123 rdmsrl(MSR_EFER, ctxt->efer);
124#endif
125
126 /*
127 * control registers
128 */
129 ctxt->cr0 = read_cr0();
130 ctxt->cr2 = read_cr2();
131 ctxt->cr3 = read_cr3();
132 ctxt->cr4 = __read_cr4_safe();
133#ifdef CONFIG_X86_64
134 ctxt->cr8 = read_cr8();
135#endif
136 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
137 &ctxt->misc_enable);
138 msr_save_context(ctxt);
139}
140
141/* Needed by apm.c */
142void save_processor_state(void)
143{
144 __save_processor_state(&saved_context);
145 x86_platform.save_sched_clock_state();
146}
147#ifdef CONFIG_X86_32
148EXPORT_SYMBOL(save_processor_state);
149#endif
150
151static void do_fpu_end(void)
152{
153 /*
154 * Restore FPU regs if necessary.
155 */
156 kernel_fpu_end();
157}
158
159static void fix_processor_context(void)
160{
161 int cpu = smp_processor_id();
162 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
163#ifdef CONFIG_X86_64
164 struct desc_struct *desc = get_cpu_gdt_table(cpu);
165 tss_desc tss;
166#endif
167 set_tss_desc(cpu, t); /*
168 * This just modifies memory; should not be
169 * necessary. But... This is necessary, because
170 * 386 hardware has concept of busy TSS or some
171 * similar stupidity.
172 */
173
174#ifdef CONFIG_X86_64
175 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
176 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
177 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
178
179 syscall_init(); /* This sets MSR_*STAR and related */
180#endif
181 load_TR_desc(); /* This does ltr */
182 load_mm_ldt(current->active_mm); /* This does lldt */
183
184 fpu__resume_cpu();
185}
186
187/**
188 * __restore_processor_state - restore the contents of CPU registers saved
189 * by __save_processor_state()
190 * @ctxt - structure to load the registers contents from
191 */
192static void notrace __restore_processor_state(struct saved_context *ctxt)
193{
194 if (ctxt->misc_enable_saved)
195 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
196 /*
197 * control registers
198 */
199 /* cr4 was introduced in the Pentium CPU */
200#ifdef CONFIG_X86_32
201 if (ctxt->cr4)
202 __write_cr4(ctxt->cr4);
203#else
204/* CONFIG X86_64 */
205 wrmsrl(MSR_EFER, ctxt->efer);
206 write_cr8(ctxt->cr8);
207 __write_cr4(ctxt->cr4);
208#endif
209 write_cr3(ctxt->cr3);
210 write_cr2(ctxt->cr2);
211 write_cr0(ctxt->cr0);
212
213 /*
214 * now restore the descriptor tables to their proper values
215 * ltr is done i fix_processor_context().
216 */
217#ifdef CONFIG_X86_32
218 load_idt(&ctxt->idt);
219#else
220/* CONFIG_X86_64 */
221 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
222#endif
223
224 /*
225 * segment registers
226 */
227#ifdef CONFIG_X86_32
228 loadsegment(es, ctxt->es);
229 loadsegment(fs, ctxt->fs);
230 loadsegment(gs, ctxt->gs);
231 loadsegment(ss, ctxt->ss);
232
233 /*
234 * sysenter MSRs
235 */
236 if (boot_cpu_has(X86_FEATURE_SEP))
237 enable_sep_cpu();
238#else
239/* CONFIG_X86_64 */
240 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
241 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
242 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
243 load_gs_index(ctxt->gs);
244 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
245
246 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
247 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
248 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
249#endif
250
251 fix_processor_context();
252
253 do_fpu_end();
254 x86_platform.restore_sched_clock_state();
255 mtrr_bp_restore();
256 perf_restore_debug_store();
257 msr_restore_context(ctxt);
258}
259
260/* Needed by apm.c */
261void notrace restore_processor_state(void)
262{
263 __restore_processor_state(&saved_context);
264}
265#ifdef CONFIG_X86_32
266EXPORT_SYMBOL(restore_processor_state);
267#endif
268
269/*
270 * When bsp_check() is called in hibernate and suspend, cpu hotplug
271 * is disabled already. So it's unnessary to handle race condition between
272 * cpumask query and cpu hotplug.
273 */
274static int bsp_check(void)
275{
276 if (cpumask_first(cpu_online_mask) != 0) {
277 pr_warn("CPU0 is offline.\n");
278 return -ENODEV;
279 }
280
281 return 0;
282}
283
284static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
285 void *ptr)
286{
287 int ret = 0;
288
289 switch (action) {
290 case PM_SUSPEND_PREPARE:
291 case PM_HIBERNATION_PREPARE:
292 ret = bsp_check();
293 break;
294#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
295 case PM_RESTORE_PREPARE:
296 /*
297 * When system resumes from hibernation, online CPU0 because
298 * 1. it's required for resume and
299 * 2. the CPU was online before hibernation
300 */
301 if (!cpu_online(0))
302 _debug_hotplug_cpu(0, 1);
303 break;
304 case PM_POST_RESTORE:
305 /*
306 * When a resume really happens, this code won't be called.
307 *
308 * This code is called only when user space hibernation software
309 * prepares for snapshot device during boot time. So we just
310 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
311 * preparing the snapshot device.
312 *
313 * This works for normal boot case in our CPU0 hotplug debug
314 * mode, i.e. CPU0 is offline and user mode hibernation
315 * software initializes during boot time.
316 *
317 * If CPU0 is online and user application accesses snapshot
318 * device after boot time, this will offline CPU0 and user may
319 * see different CPU0 state before and after accessing
320 * the snapshot device. But hopefully this is not a case when
321 * user debugging CPU0 hotplug. Even if users hit this case,
322 * they can easily online CPU0 back.
323 *
324 * To simplify this debug code, we only consider normal boot
325 * case. Otherwise we need to remember CPU0's state and restore
326 * to that state and resolve racy conditions etc.
327 */
328 _debug_hotplug_cpu(0, 0);
329 break;
330#endif
331 default:
332 break;
333 }
334 return notifier_from_errno(ret);
335}
336
337static int __init bsp_pm_check_init(void)
338{
339 /*
340 * Set this bsp_pm_callback as lower priority than
341 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
342 * earlier to disable cpu hotplug before bsp online check.
343 */
344 pm_notifier(bsp_pm_callback, -INT_MAX);
345 return 0;
346}
347
348core_initcall(bsp_pm_check_init);
349
350static int msr_init_context(const u32 *msr_id, const int total_num)
351{
352 int i = 0;
353 struct saved_msr *msr_array;
354
355 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
356 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
357 return -EINVAL;
358 }
359
360 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
361 if (!msr_array) {
362 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
363 return -ENOMEM;
364 }
365
366 for (i = 0; i < total_num; i++) {
367 msr_array[i].info.msr_no = msr_id[i];
368 msr_array[i].valid = false;
369 msr_array[i].info.reg.q = 0;
370 }
371 saved_context.saved_msrs.num = total_num;
372 saved_context.saved_msrs.array = msr_array;
373
374 return 0;
375}
376
377/*
378 * The following section is a quirk framework for problematic BIOSen:
379 * Sometimes MSRs are modified by the BIOSen after suspended to
380 * RAM, this might cause unexpected behavior after wakeup.
381 * Thus we save/restore these specified MSRs across suspend/resume
382 * in order to work around it.
383 *
384 * For any further problematic BIOSen/platforms,
385 * please add your own function similar to msr_initialize_bdw.
386 */
387static int msr_initialize_bdw(const struct dmi_system_id *d)
388{
389 /* Add any extra MSR ids into this array. */
390 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
391
392 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
393 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
394}
395
396static struct dmi_system_id msr_save_dmi_table[] = {
397 {
398 .callback = msr_initialize_bdw,
399 .ident = "BROADWELL BDX_EP",
400 .matches = {
401 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
402 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
403 },
404 },
405 {}
406};
407
408static int pm_check_save_msr(void)
409{
410 dmi_check_system(msr_save_dmi_table);
411 return 0;
412}
413
414device_initcall(pm_check_save_msr);