Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Suspend support specific for i386/x86-64.
  3 *
  4 * Distribute under GPLv2
  5 *
  6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  9 */
 10
 11#include <linux/suspend.h>
 
 12#include <linux/smp.h>
 
 13
 14#include <asm/pgtable.h>
 15#include <asm/proto.h>
 16#include <asm/mtrr.h>
 17#include <asm/page.h>
 18#include <asm/mce.h>
 19#include <asm/xcr.h>
 20#include <asm/suspend.h>
 
 21#include <asm/debugreg.h>
 
 
 
 22
 23#ifdef CONFIG_X86_32
 24static struct saved_context saved_context;
 25
 26unsigned long saved_context_ebx;
 27unsigned long saved_context_esp, saved_context_ebp;
 28unsigned long saved_context_esi, saved_context_edi;
 29unsigned long saved_context_eflags;
 30#else
 31/* CONFIG_X86_64 */
 32struct saved_context saved_context;
 33#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35/**
 36 *	__save_processor_state - save CPU registers before creating a
 37 *		hibernation image and before restoring the memory state from it
 38 *	@ctxt - structure to store the registers contents in
 39 *
 40 *	NOTE: If there is a CPU register the modification of which by the
 41 *	boot kernel (ie. the kernel used for loading the hibernation image)
 42 *	might affect the operations of the restored target kernel (ie. the one
 43 *	saved in the hibernation image), then its contents must be saved by this
 44 *	function.  In other words, if kernel A is hibernated and different
 45 *	kernel B is used for loading the hibernation image into memory, the
 46 *	kernel A's __save_processor_state() function must save all registers
 47 *	needed by kernel A, so that it can operate correctly after the resume
 48 *	regardless of what kernel B does in the meantime.
 49 */
 50static void __save_processor_state(struct saved_context *ctxt)
 51{
 52#ifdef CONFIG_X86_32
 53	mtrr_save_fixed_ranges(NULL);
 54#endif
 55	kernel_fpu_begin();
 56
 57	/*
 58	 * descriptor tables
 59	 */
 60#ifdef CONFIG_X86_32
 61	store_gdt(&ctxt->gdt);
 62	store_idt(&ctxt->idt);
 63#else
 64/* CONFIG_X86_64 */
 65	store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
 66	store_idt((struct desc_ptr *)&ctxt->idt_limit);
 67#endif
 
 
 
 
 
 
 
 
 
 68	store_tr(ctxt->tr);
 69
 70	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 71	/*
 72	 * segment registers
 73	 */
 74#ifdef CONFIG_X86_32
 75	savesegment(es, ctxt->es);
 76	savesegment(fs, ctxt->fs);
 77	savesegment(gs, ctxt->gs);
 78	savesegment(ss, ctxt->ss);
 79#else
 80/* CONFIG_X86_64 */
 81	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
 82	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
 83	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
 84	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
 85	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
 86
 87	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 88	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
 89	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
 90	mtrr_save_fixed_ranges(NULL);
 91
 92	rdmsrl(MSR_EFER, ctxt->efer);
 93#endif
 94
 95	/*
 96	 * control registers
 97	 */
 98	ctxt->cr0 = read_cr0();
 99	ctxt->cr2 = read_cr2();
100	ctxt->cr3 = read_cr3();
101#ifdef CONFIG_X86_32
102	ctxt->cr4 = read_cr4_safe();
103#else
104/* CONFIG_X86_64 */
105	ctxt->cr4 = read_cr4();
106	ctxt->cr8 = read_cr8();
107#endif
108	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
109					       &ctxt->misc_enable);
 
110}
111
112/* Needed by apm.c */
113void save_processor_state(void)
114{
115	__save_processor_state(&saved_context);
116	save_sched_clock_state();
117}
118#ifdef CONFIG_X86_32
119EXPORT_SYMBOL(save_processor_state);
120#endif
121
122static void do_fpu_end(void)
123{
124	/*
125	 * Restore FPU regs if necessary.
126	 */
127	kernel_fpu_end();
128}
129
130static void fix_processor_context(void)
131{
132	int cpu = smp_processor_id();
133	struct tss_struct *t = &per_cpu(init_tss, cpu);
134
 
 
 
135	set_tss_desc(cpu, t);	/*
136				 * This just modifies memory; should not be
137				 * necessary. But... This is necessary, because
138				 * 386 hardware has concept of busy TSS or some
139				 * similar stupidity.
140				 */
141
142#ifdef CONFIG_X86_64
143	get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9;
 
 
144
145	syscall_init();				/* This sets MSR_*STAR and related */
146#endif
147	load_TR_desc();				/* This does ltr */
148	load_LDT(&current->active_mm->context);	/* This does lldt */
 
 
149}
150
151/**
152 *	__restore_processor_state - restore the contents of CPU registers saved
153 *		by __save_processor_state()
154 *	@ctxt - structure to load the registers contents from
155 */
156static void __restore_processor_state(struct saved_context *ctxt)
157{
158	if (ctxt->misc_enable_saved)
159		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
160	/*
161	 * control registers
162	 */
163	/* cr4 was introduced in the Pentium CPU */
164#ifdef CONFIG_X86_32
165	if (ctxt->cr4)
166		write_cr4(ctxt->cr4);
167#else
168/* CONFIG X86_64 */
169	wrmsrl(MSR_EFER, ctxt->efer);
170	write_cr8(ctxt->cr8);
171	write_cr4(ctxt->cr4);
172#endif
173	write_cr3(ctxt->cr3);
174	write_cr2(ctxt->cr2);
175	write_cr0(ctxt->cr0);
176
177	/*
178	 * now restore the descriptor tables to their proper values
179	 * ltr is done i fix_processor_context().
180	 */
181#ifdef CONFIG_X86_32
182	load_gdt(&ctxt->gdt);
183	load_idt(&ctxt->idt);
184#else
185/* CONFIG_X86_64 */
186	load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
187	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
188#endif
189
190	/*
191	 * segment registers
192	 */
193#ifdef CONFIG_X86_32
194	loadsegment(es, ctxt->es);
195	loadsegment(fs, ctxt->fs);
196	loadsegment(gs, ctxt->gs);
197	loadsegment(ss, ctxt->ss);
198
199	/*
200	 * sysenter MSRs
201	 */
202	if (boot_cpu_has(X86_FEATURE_SEP))
203		enable_sep_cpu();
204#else
205/* CONFIG_X86_64 */
206	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
207	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
208	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
209	load_gs_index(ctxt->gs);
210	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
211
212	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
213	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
214	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
215#endif
216
217	/*
218	 * restore XCR0 for xsave capable cpu's.
219	 */
220	if (cpu_has_xsave)
221		xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
222
223	fix_processor_context();
224
225	do_fpu_end();
 
226	mtrr_bp_restore();
 
 
227}
228
229/* Needed by apm.c */
230void restore_processor_state(void)
231{
232	__restore_processor_state(&saved_context);
233	restore_sched_clock_state();
234}
235#ifdef CONFIG_X86_32
236EXPORT_SYMBOL(restore_processor_state);
237#endif
v4.6
  1/*
  2 * Suspend support specific for i386/x86-64.
  3 *
  4 * Distribute under GPLv2
  5 *
  6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  9 */
 10
 11#include <linux/suspend.h>
 12#include <linux/export.h>
 13#include <linux/smp.h>
 14#include <linux/perf_event.h>
 15
 16#include <asm/pgtable.h>
 17#include <asm/proto.h>
 18#include <asm/mtrr.h>
 19#include <asm/page.h>
 20#include <asm/mce.h>
 
 21#include <asm/suspend.h>
 22#include <asm/fpu/internal.h>
 23#include <asm/debugreg.h>
 24#include <asm/cpu.h>
 25#include <asm/mmu_context.h>
 26#include <linux/dmi.h>
 27
 28#ifdef CONFIG_X86_32
 29__visible unsigned long saved_context_ebx;
 30__visible unsigned long saved_context_esp, saved_context_ebp;
 31__visible unsigned long saved_context_esi, saved_context_edi;
 32__visible unsigned long saved_context_eflags;
 
 
 
 
 
 33#endif
 34struct saved_context saved_context;
 35
 36static void msr_save_context(struct saved_context *ctxt)
 37{
 38	struct saved_msr *msr = ctxt->saved_msrs.array;
 39	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 40
 41	while (msr < end) {
 42		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
 43		msr++;
 44	}
 45}
 46
 47static void msr_restore_context(struct saved_context *ctxt)
 48{
 49	struct saved_msr *msr = ctxt->saved_msrs.array;
 50	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 51
 52	while (msr < end) {
 53		if (msr->valid)
 54			wrmsrl(msr->info.msr_no, msr->info.reg.q);
 55		msr++;
 56	}
 57}
 58
 59/**
 60 *	__save_processor_state - save CPU registers before creating a
 61 *		hibernation image and before restoring the memory state from it
 62 *	@ctxt - structure to store the registers contents in
 63 *
 64 *	NOTE: If there is a CPU register the modification of which by the
 65 *	boot kernel (ie. the kernel used for loading the hibernation image)
 66 *	might affect the operations of the restored target kernel (ie. the one
 67 *	saved in the hibernation image), then its contents must be saved by this
 68 *	function.  In other words, if kernel A is hibernated and different
 69 *	kernel B is used for loading the hibernation image into memory, the
 70 *	kernel A's __save_processor_state() function must save all registers
 71 *	needed by kernel A, so that it can operate correctly after the resume
 72 *	regardless of what kernel B does in the meantime.
 73 */
 74static void __save_processor_state(struct saved_context *ctxt)
 75{
 76#ifdef CONFIG_X86_32
 77	mtrr_save_fixed_ranges(NULL);
 78#endif
 79	kernel_fpu_begin();
 80
 81	/*
 82	 * descriptor tables
 83	 */
 84#ifdef CONFIG_X86_32
 
 85	store_idt(&ctxt->idt);
 86#else
 87/* CONFIG_X86_64 */
 
 88	store_idt((struct desc_ptr *)&ctxt->idt_limit);
 89#endif
 90	/*
 91	 * We save it here, but restore it only in the hibernate case.
 92	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 93	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 94	 * 'pmode_gdt' in wakeup_start.
 95	 */
 96	ctxt->gdt_desc.size = GDT_SIZE - 1;
 97	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
 98
 99	store_tr(ctxt->tr);
100
101	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
102	/*
103	 * segment registers
104	 */
105#ifdef CONFIG_X86_32
106	savesegment(es, ctxt->es);
107	savesegment(fs, ctxt->fs);
108	savesegment(gs, ctxt->gs);
109	savesegment(ss, ctxt->ss);
110#else
111/* CONFIG_X86_64 */
112	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
113	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
114	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
115	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
116	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
117
118	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
119	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
120	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
121	mtrr_save_fixed_ranges(NULL);
122
123	rdmsrl(MSR_EFER, ctxt->efer);
124#endif
125
126	/*
127	 * control registers
128	 */
129	ctxt->cr0 = read_cr0();
130	ctxt->cr2 = read_cr2();
131	ctxt->cr3 = read_cr3();
132	ctxt->cr4 = __read_cr4_safe();
133#ifdef CONFIG_X86_64
 
 
 
134	ctxt->cr8 = read_cr8();
135#endif
136	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
137					       &ctxt->misc_enable);
138	msr_save_context(ctxt);
139}
140
141/* Needed by apm.c */
142void save_processor_state(void)
143{
144	__save_processor_state(&saved_context);
145	x86_platform.save_sched_clock_state();
146}
147#ifdef CONFIG_X86_32
148EXPORT_SYMBOL(save_processor_state);
149#endif
150
151static void do_fpu_end(void)
152{
153	/*
154	 * Restore FPU regs if necessary.
155	 */
156	kernel_fpu_end();
157}
158
159static void fix_processor_context(void)
160{
161	int cpu = smp_processor_id();
162	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
163#ifdef CONFIG_X86_64
164	struct desc_struct *desc = get_cpu_gdt_table(cpu);
165	tss_desc tss;
166#endif
167	set_tss_desc(cpu, t);	/*
168				 * This just modifies memory; should not be
169				 * necessary. But... This is necessary, because
170				 * 386 hardware has concept of busy TSS or some
171				 * similar stupidity.
172				 */
173
174#ifdef CONFIG_X86_64
175	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
176	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
177	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
178
179	syscall_init();				/* This sets MSR_*STAR and related */
180#endif
181	load_TR_desc();				/* This does ltr */
182	load_mm_ldt(current->active_mm);	/* This does lldt */
183
184	fpu__resume_cpu();
185}
186
187/**
188 *	__restore_processor_state - restore the contents of CPU registers saved
189 *		by __save_processor_state()
190 *	@ctxt - structure to load the registers contents from
191 */
192static void notrace __restore_processor_state(struct saved_context *ctxt)
193{
194	if (ctxt->misc_enable_saved)
195		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
196	/*
197	 * control registers
198	 */
199	/* cr4 was introduced in the Pentium CPU */
200#ifdef CONFIG_X86_32
201	if (ctxt->cr4)
202		__write_cr4(ctxt->cr4);
203#else
204/* CONFIG X86_64 */
205	wrmsrl(MSR_EFER, ctxt->efer);
206	write_cr8(ctxt->cr8);
207	__write_cr4(ctxt->cr4);
208#endif
209	write_cr3(ctxt->cr3);
210	write_cr2(ctxt->cr2);
211	write_cr0(ctxt->cr0);
212
213	/*
214	 * now restore the descriptor tables to their proper values
215	 * ltr is done i fix_processor_context().
216	 */
217#ifdef CONFIG_X86_32
 
218	load_idt(&ctxt->idt);
219#else
220/* CONFIG_X86_64 */
 
221	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
222#endif
223
224	/*
225	 * segment registers
226	 */
227#ifdef CONFIG_X86_32
228	loadsegment(es, ctxt->es);
229	loadsegment(fs, ctxt->fs);
230	loadsegment(gs, ctxt->gs);
231	loadsegment(ss, ctxt->ss);
232
233	/*
234	 * sysenter MSRs
235	 */
236	if (boot_cpu_has(X86_FEATURE_SEP))
237		enable_sep_cpu();
238#else
239/* CONFIG_X86_64 */
240	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
241	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
242	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
243	load_gs_index(ctxt->gs);
244	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
245
246	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
247	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
248	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
249#endif
250
 
 
 
 
 
 
251	fix_processor_context();
252
253	do_fpu_end();
254	x86_platform.restore_sched_clock_state();
255	mtrr_bp_restore();
256	perf_restore_debug_store();
257	msr_restore_context(ctxt);
258}
259
260/* Needed by apm.c */
261void notrace restore_processor_state(void)
262{
263	__restore_processor_state(&saved_context);
 
264}
265#ifdef CONFIG_X86_32
266EXPORT_SYMBOL(restore_processor_state);
267#endif
268
269/*
270 * When bsp_check() is called in hibernate and suspend, cpu hotplug
271 * is disabled already. So it's unnessary to handle race condition between
272 * cpumask query and cpu hotplug.
273 */
274static int bsp_check(void)
275{
276	if (cpumask_first(cpu_online_mask) != 0) {
277		pr_warn("CPU0 is offline.\n");
278		return -ENODEV;
279	}
280
281	return 0;
282}
283
284static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
285			   void *ptr)
286{
287	int ret = 0;
288
289	switch (action) {
290	case PM_SUSPEND_PREPARE:
291	case PM_HIBERNATION_PREPARE:
292		ret = bsp_check();
293		break;
294#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
295	case PM_RESTORE_PREPARE:
296		/*
297		 * When system resumes from hibernation, online CPU0 because
298		 * 1. it's required for resume and
299		 * 2. the CPU was online before hibernation
300		 */
301		if (!cpu_online(0))
302			_debug_hotplug_cpu(0, 1);
303		break;
304	case PM_POST_RESTORE:
305		/*
306		 * When a resume really happens, this code won't be called.
307		 *
308		 * This code is called only when user space hibernation software
309		 * prepares for snapshot device during boot time. So we just
310		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
311		 * preparing the snapshot device.
312		 *
313		 * This works for normal boot case in our CPU0 hotplug debug
314		 * mode, i.e. CPU0 is offline and user mode hibernation
315		 * software initializes during boot time.
316		 *
317		 * If CPU0 is online and user application accesses snapshot
318		 * device after boot time, this will offline CPU0 and user may
319		 * see different CPU0 state before and after accessing
320		 * the snapshot device. But hopefully this is not a case when
321		 * user debugging CPU0 hotplug. Even if users hit this case,
322		 * they can easily online CPU0 back.
323		 *
324		 * To simplify this debug code, we only consider normal boot
325		 * case. Otherwise we need to remember CPU0's state and restore
326		 * to that state and resolve racy conditions etc.
327		 */
328		_debug_hotplug_cpu(0, 0);
329		break;
330#endif
331	default:
332		break;
333	}
334	return notifier_from_errno(ret);
335}
336
337static int __init bsp_pm_check_init(void)
338{
339	/*
340	 * Set this bsp_pm_callback as lower priority than
341	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
342	 * earlier to disable cpu hotplug before bsp online check.
343	 */
344	pm_notifier(bsp_pm_callback, -INT_MAX);
345	return 0;
346}
347
348core_initcall(bsp_pm_check_init);
349
350static int msr_init_context(const u32 *msr_id, const int total_num)
351{
352	int i = 0;
353	struct saved_msr *msr_array;
354
355	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
356		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
357		return -EINVAL;
358	}
359
360	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
361	if (!msr_array) {
362		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
363		return -ENOMEM;
364	}
365
366	for (i = 0; i < total_num; i++) {
367		msr_array[i].info.msr_no	= msr_id[i];
368		msr_array[i].valid		= false;
369		msr_array[i].info.reg.q		= 0;
370	}
371	saved_context.saved_msrs.num	= total_num;
372	saved_context.saved_msrs.array	= msr_array;
373
374	return 0;
375}
376
377/*
378 * The following section is a quirk framework for problematic BIOSen:
379 * Sometimes MSRs are modified by the BIOSen after suspended to
380 * RAM, this might cause unexpected behavior after wakeup.
381 * Thus we save/restore these specified MSRs across suspend/resume
382 * in order to work around it.
383 *
384 * For any further problematic BIOSen/platforms,
385 * please add your own function similar to msr_initialize_bdw.
386 */
387static int msr_initialize_bdw(const struct dmi_system_id *d)
388{
389	/* Add any extra MSR ids into this array. */
390	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
391
392	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
393	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
394}
395
396static struct dmi_system_id msr_save_dmi_table[] = {
397	{
398	 .callback = msr_initialize_bdw,
399	 .ident = "BROADWELL BDX_EP",
400	 .matches = {
401		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
402		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
403		},
404	},
405	{}
406};
407
408static int pm_check_save_msr(void)
409{
410	dmi_check_system(msr_save_dmi_table);
411	return 0;
412}
413
414device_initcall(pm_check_save_msr);