Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
  4 */
  5
  6#include <linux/elf.h>
  7#include <linux/ftrace.h>
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/sort.h>
 11
 12static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
 13					    enum aarch64_insn_register reg)
 14{
 15	u32 adrp, add;
 16
 17	adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
 18	add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
 19					   AARCH64_INSN_VARIANT_64BIT,
 20					   AARCH64_INSN_ADSB_ADD);
 21
 22	return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
 23}
 24
 25struct plt_entry get_plt_entry(u64 dst, void *pc)
 26{
 27	struct plt_entry plt;
 28	static u32 br;
 29
 30	if (!br)
 31		br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
 32						 AARCH64_INSN_BRANCH_NOLINK);
 33
 34	plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
 35	plt.br = cpu_to_le32(br);
 36
 37	return plt;
 38}
 39
 40bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
 41{
 42	u64 p, q;
 43
 44	/*
 45	 * Check whether both entries refer to the same target:
 46	 * do the cheapest checks first.
 47	 * If the 'add' or 'br' opcodes are different, then the target
 48	 * cannot be the same.
 49	 */
 50	if (a->add != b->add || a->br != b->br)
 51		return false;
 52
 53	p = ALIGN_DOWN((u64)a, SZ_4K);
 54	q = ALIGN_DOWN((u64)b, SZ_4K);
 55
 56	/*
 57	 * If the 'adrp' opcodes are the same then we just need to check
 58	 * that they refer to the same 4k region.
 59	 */
 60	if (a->adrp == b->adrp && p == q)
 61		return true;
 62
 63	return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
 64	       (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
 65}
 66
 67static bool in_init(const struct module *mod, void *loc)
 68{
 69	return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
 70}
 71
 72u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
 73			  void *loc, const Elf64_Rela *rela,
 74			  Elf64_Sym *sym)
 75{
 76	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
 77							  &mod->arch.init;
 78	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
 79	int i = pltsec->plt_num_entries;
 80	int j = i - 1;
 81	u64 val = sym->st_value + rela->r_addend;
 82
 83	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
 84		i++;
 85
 86	plt[i] = get_plt_entry(val, &plt[i]);
 87
 88	/*
 89	 * Check if the entry we just created is a duplicate. Given that the
 90	 * relocations are sorted, this will be the last entry we allocated.
 91	 * (if one exists).
 92	 */
 93	if (j >= 0 && plt_entries_equal(plt + i, plt + j))
 94		return (u64)&plt[j];
 95
 96	pltsec->plt_num_entries += i - j;
 97	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
 98		return 0;
 99
100	return (u64)&plt[i];
101}
102
103#ifdef CONFIG_ARM64_ERRATUM_843419
104u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
105				void *loc, u64 val)
106{
107	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
108							  &mod->arch.init;
109	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
110	int i = pltsec->plt_num_entries++;
111	u32 br;
112	int rd;
113
114	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
115		return 0;
116
117	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
118		i = pltsec->plt_num_entries++;
119
120	/* get the destination register of the ADRP instruction */
121	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
122					  le32_to_cpup((__le32 *)loc));
123
124	br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
125					 AARCH64_INSN_BRANCH_NOLINK);
126
127	plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
128	plt[i].br = cpu_to_le32(br);
129
130	return (u64)&plt[i];
131}
132#endif
133
134#define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
135
136static int cmp_rela(const void *a, const void *b)
137{
138	const Elf64_Rela *x = a, *y = b;
139	int i;
140
141	/* sort by type, symbol index and addend */
142	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
143	if (i == 0)
144		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
145	if (i == 0)
146		i = cmp_3way(x->r_addend, y->r_addend);
147	return i;
148}
149
150static bool duplicate_rel(const Elf64_Rela *rela, int num)
151{
152	/*
153	 * Entries are sorted by type, symbol index and addend. That means
154	 * that, if a duplicate entry exists, it must be in the preceding
155	 * slot.
156	 */
157	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
158}
159
160static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
161			       Elf64_Word dstidx, Elf_Shdr *dstsec)
162{
163	unsigned int ret = 0;
164	Elf64_Sym *s;
165	int i;
166
167	for (i = 0; i < num; i++) {
168		u64 min_align;
169
170		switch (ELF64_R_TYPE(rela[i].r_info)) {
171		case R_AARCH64_JUMP26:
172		case R_AARCH64_CALL26:
173			if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
174				break;
175
176			/*
177			 * We only have to consider branch targets that resolve
178			 * to symbols that are defined in a different section.
179			 * This is not simply a heuristic, it is a fundamental
180			 * limitation, since there is no guaranteed way to emit
181			 * PLT entries sufficiently close to the branch if the
182			 * section size exceeds the range of a branch
183			 * instruction. So ignore relocations against defined
184			 * symbols if they live in the same section as the
185			 * relocation target.
186			 */
187			s = syms + ELF64_R_SYM(rela[i].r_info);
188			if (s->st_shndx == dstidx)
189				break;
190
191			/*
192			 * Jump relocations with non-zero addends against
193			 * undefined symbols are supported by the ELF spec, but
194			 * do not occur in practice (e.g., 'jump n bytes past
195			 * the entry point of undefined function symbol f').
196			 * So we need to support them, but there is no need to
197			 * take them into consideration when trying to optimize
198			 * this code. So let's only check for duplicates when
199			 * the addend is zero: this allows us to record the PLT
200			 * entry address in the symbol table itself, rather than
201			 * having to search the list for duplicates each time we
202			 * emit one.
203			 */
204			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
205				ret++;
206			break;
207		case R_AARCH64_ADR_PREL_PG_HI21_NC:
208		case R_AARCH64_ADR_PREL_PG_HI21:
209			if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
210			    !cpus_have_const_cap(ARM64_WORKAROUND_843419))
211				break;
212
213			/*
214			 * Determine the minimal safe alignment for this ADRP
215			 * instruction: the section alignment at which it is
216			 * guaranteed not to appear at a vulnerable offset.
217			 *
218			 * This comes down to finding the least significant zero
219			 * bit in bits [11:3] of the section offset, and
220			 * increasing the section's alignment so that the
221			 * resulting address of this instruction is guaranteed
222			 * to equal the offset in that particular bit (as well
223			 * as all less signficant bits). This ensures that the
224			 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
225			 * have all ones in bits [11:3])
226			 */
227			min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
228
229			/*
230			 * Allocate veneer space for each ADRP that may appear
231			 * at a vulnerable offset nonetheless. At relocation
232			 * time, some of these will remain unused since some
233			 * ADRP instructions can be patched to ADR instructions
234			 * instead.
235			 */
236			if (min_align > SZ_4K)
237				ret++;
238			else
239				dstsec->sh_addralign = max(dstsec->sh_addralign,
240							   min_align);
241			break;
242		}
243	}
244
245	if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
246	    cpus_have_const_cap(ARM64_WORKAROUND_843419))
247		/*
248		 * Add some slack so we can skip PLT slots that may trigger
249		 * the erratum due to the placement of the ADRP instruction.
250		 */
251		ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
252
253	return ret;
254}
255
256static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
257				  Elf64_Word dstidx)
258{
259
260	Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
261
262	if (s->st_shndx == dstidx)
263		return false;
264
265	return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
266	       ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
267}
268
269/* Group branch PLT relas at the front end of the array. */
270static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
271				      int numrels, Elf64_Word dstidx)
272{
273	int i = 0, j = numrels - 1;
274
275	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
276		return 0;
277
278	while (i < j) {
279		if (branch_rela_needs_plt(syms, &rela[i], dstidx))
280			i++;
281		else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
282			swap(rela[i], rela[j]);
283		else
284			j--;
285	}
286
287	return i;
288}
289
290int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
291			      char *secstrings, struct module *mod)
292{
293	unsigned long core_plts = 0;
294	unsigned long init_plts = 0;
295	Elf64_Sym *syms = NULL;
296	Elf_Shdr *pltsec, *tramp = NULL;
297	int i;
298
299	/*
300	 * Find the empty .plt section so we can expand it to store the PLT
301	 * entries. Record the symtab address as well.
302	 */
303	for (i = 0; i < ehdr->e_shnum; i++) {
304		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
305			mod->arch.core.plt_shndx = i;
306		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
307			mod->arch.init.plt_shndx = i;
308		else if (!strcmp(secstrings + sechdrs[i].sh_name,
309				 ".text.ftrace_trampoline"))
310			tramp = sechdrs + i;
311		else if (sechdrs[i].sh_type == SHT_SYMTAB)
312			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
313	}
314
315	if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
316		pr_err("%s: module PLT section(s) missing\n", mod->name);
317		return -ENOEXEC;
318	}
319	if (!syms) {
320		pr_err("%s: module symtab section missing\n", mod->name);
321		return -ENOEXEC;
322	}
323
324	for (i = 0; i < ehdr->e_shnum; i++) {
325		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
326		int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
327		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
328
329		if (sechdrs[i].sh_type != SHT_RELA)
330			continue;
331
332		/* ignore relocations that operate on non-exec sections */
333		if (!(dstsec->sh_flags & SHF_EXECINSTR))
334			continue;
335
336		/*
337		 * sort branch relocations requiring a PLT by type, symbol index
338		 * and addend
339		 */
340		nents = partition_branch_plt_relas(syms, rels, numrels,
341						   sechdrs[i].sh_info);
342		if (nents)
343			sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
344
345		if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
346			core_plts += count_plts(syms, rels, numrels,
347						sechdrs[i].sh_info, dstsec);
348		else
349			init_plts += count_plts(syms, rels, numrels,
350						sechdrs[i].sh_info, dstsec);
351	}
352
353	pltsec = sechdrs + mod->arch.core.plt_shndx;
354	pltsec->sh_type = SHT_NOBITS;
355	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
356	pltsec->sh_addralign = L1_CACHE_BYTES;
357	pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
358	mod->arch.core.plt_num_entries = 0;
359	mod->arch.core.plt_max_entries = core_plts;
360
361	pltsec = sechdrs + mod->arch.init.plt_shndx;
362	pltsec->sh_type = SHT_NOBITS;
363	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
364	pltsec->sh_addralign = L1_CACHE_BYTES;
365	pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
366	mod->arch.init.plt_num_entries = 0;
367	mod->arch.init.plt_max_entries = init_plts;
368
369	if (tramp) {
370		tramp->sh_type = SHT_NOBITS;
371		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
372		tramp->sh_addralign = __alignof__(struct plt_entry);
373		tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
374	}
375
376	return 0;
377}