Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6#include <linux/elf.h>
7#include <linux/ftrace.h>
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/sort.h>
11
12static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
13 enum aarch64_insn_register reg)
14{
15 u32 adrp, add;
16
17 adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
18 add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
19 AARCH64_INSN_VARIANT_64BIT,
20 AARCH64_INSN_ADSB_ADD);
21
22 return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
23}
24
25struct plt_entry get_plt_entry(u64 dst, void *pc)
26{
27 struct plt_entry plt;
28 static u32 br;
29
30 if (!br)
31 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
32 AARCH64_INSN_BRANCH_NOLINK);
33
34 plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
35 plt.br = cpu_to_le32(br);
36
37 return plt;
38}
39
40static bool plt_entries_equal(const struct plt_entry *a,
41 const struct plt_entry *b)
42{
43 u64 p, q;
44
45 /*
46 * Check whether both entries refer to the same target:
47 * do the cheapest checks first.
48 * If the 'add' or 'br' opcodes are different, then the target
49 * cannot be the same.
50 */
51 if (a->add != b->add || a->br != b->br)
52 return false;
53
54 p = ALIGN_DOWN((u64)a, SZ_4K);
55 q = ALIGN_DOWN((u64)b, SZ_4K);
56
57 /*
58 * If the 'adrp' opcodes are the same then we just need to check
59 * that they refer to the same 4k region.
60 */
61 if (a->adrp == b->adrp && p == q)
62 return true;
63
64 return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
65 (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
66}
67
68static bool in_init(const struct module *mod, void *loc)
69{
70 return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
71}
72
73u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
74 void *loc, const Elf64_Rela *rela,
75 Elf64_Sym *sym)
76{
77 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
78 &mod->arch.init;
79 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
80 int i = pltsec->plt_num_entries;
81 int j = i - 1;
82 u64 val = sym->st_value + rela->r_addend;
83
84 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
85 i++;
86
87 plt[i] = get_plt_entry(val, &plt[i]);
88
89 /*
90 * Check if the entry we just created is a duplicate. Given that the
91 * relocations are sorted, this will be the last entry we allocated.
92 * (if one exists).
93 */
94 if (j >= 0 && plt_entries_equal(plt + i, plt + j))
95 return (u64)&plt[j];
96
97 pltsec->plt_num_entries += i - j;
98 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
99 return 0;
100
101 return (u64)&plt[i];
102}
103
104#ifdef CONFIG_ARM64_ERRATUM_843419
105u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
106 void *loc, u64 val)
107{
108 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
109 &mod->arch.init;
110 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
111 int i = pltsec->plt_num_entries++;
112 u32 br;
113 int rd;
114
115 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
116 return 0;
117
118 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
119 i = pltsec->plt_num_entries++;
120
121 /* get the destination register of the ADRP instruction */
122 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
123 le32_to_cpup((__le32 *)loc));
124
125 br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
126 AARCH64_INSN_BRANCH_NOLINK);
127
128 plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
129 plt[i].br = cpu_to_le32(br);
130
131 return (u64)&plt[i];
132}
133#endif
134
135#define cmp_3way(a, b) ((a) < (b) ? -1 : (a) > (b))
136
137static int cmp_rela(const void *a, const void *b)
138{
139 const Elf64_Rela *x = a, *y = b;
140 int i;
141
142 /* sort by type, symbol index and addend */
143 i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
144 if (i == 0)
145 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
146 if (i == 0)
147 i = cmp_3way(x->r_addend, y->r_addend);
148 return i;
149}
150
151static bool duplicate_rel(const Elf64_Rela *rela, int num)
152{
153 /*
154 * Entries are sorted by type, symbol index and addend. That means
155 * that, if a duplicate entry exists, it must be in the preceding
156 * slot.
157 */
158 return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
159}
160
161static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
162 Elf64_Word dstidx, Elf_Shdr *dstsec)
163{
164 unsigned int ret = 0;
165 Elf64_Sym *s;
166 int i;
167
168 for (i = 0; i < num; i++) {
169 u64 min_align;
170
171 switch (ELF64_R_TYPE(rela[i].r_info)) {
172 case R_AARCH64_JUMP26:
173 case R_AARCH64_CALL26:
174 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
175 break;
176
177 /*
178 * We only have to consider branch targets that resolve
179 * to symbols that are defined in a different section.
180 * This is not simply a heuristic, it is a fundamental
181 * limitation, since there is no guaranteed way to emit
182 * PLT entries sufficiently close to the branch if the
183 * section size exceeds the range of a branch
184 * instruction. So ignore relocations against defined
185 * symbols if they live in the same section as the
186 * relocation target.
187 */
188 s = syms + ELF64_R_SYM(rela[i].r_info);
189 if (s->st_shndx == dstidx)
190 break;
191
192 /*
193 * Jump relocations with non-zero addends against
194 * undefined symbols are supported by the ELF spec, but
195 * do not occur in practice (e.g., 'jump n bytes past
196 * the entry point of undefined function symbol f').
197 * So we need to support them, but there is no need to
198 * take them into consideration when trying to optimize
199 * this code. So let's only check for duplicates when
200 * the addend is zero: this allows us to record the PLT
201 * entry address in the symbol table itself, rather than
202 * having to search the list for duplicates each time we
203 * emit one.
204 */
205 if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
206 ret++;
207 break;
208 case R_AARCH64_ADR_PREL_PG_HI21_NC:
209 case R_AARCH64_ADR_PREL_PG_HI21:
210 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
211 !cpus_have_const_cap(ARM64_WORKAROUND_843419))
212 break;
213
214 /*
215 * Determine the minimal safe alignment for this ADRP
216 * instruction: the section alignment at which it is
217 * guaranteed not to appear at a vulnerable offset.
218 *
219 * This comes down to finding the least significant zero
220 * bit in bits [11:3] of the section offset, and
221 * increasing the section's alignment so that the
222 * resulting address of this instruction is guaranteed
223 * to equal the offset in that particular bit (as well
224 * as all less significant bits). This ensures that the
225 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
226 * have all ones in bits [11:3])
227 */
228 min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
229
230 /*
231 * Allocate veneer space for each ADRP that may appear
232 * at a vulnerable offset nonetheless. At relocation
233 * time, some of these will remain unused since some
234 * ADRP instructions can be patched to ADR instructions
235 * instead.
236 */
237 if (min_align > SZ_4K)
238 ret++;
239 else
240 dstsec->sh_addralign = max(dstsec->sh_addralign,
241 min_align);
242 break;
243 }
244 }
245
246 if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
247 cpus_have_const_cap(ARM64_WORKAROUND_843419))
248 /*
249 * Add some slack so we can skip PLT slots that may trigger
250 * the erratum due to the placement of the ADRP instruction.
251 */
252 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
253
254 return ret;
255}
256
257static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
258 Elf64_Word dstidx)
259{
260
261 Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
262
263 if (s->st_shndx == dstidx)
264 return false;
265
266 return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
267 ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
268}
269
270/* Group branch PLT relas at the front end of the array. */
271static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
272 int numrels, Elf64_Word dstidx)
273{
274 int i = 0, j = numrels - 1;
275
276 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
277 return 0;
278
279 while (i < j) {
280 if (branch_rela_needs_plt(syms, &rela[i], dstidx))
281 i++;
282 else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
283 swap(rela[i], rela[j]);
284 else
285 j--;
286 }
287
288 return i;
289}
290
291int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
292 char *secstrings, struct module *mod)
293{
294 unsigned long core_plts = 0;
295 unsigned long init_plts = 0;
296 Elf64_Sym *syms = NULL;
297 Elf_Shdr *pltsec, *tramp = NULL;
298 int i;
299
300 /*
301 * Find the empty .plt section so we can expand it to store the PLT
302 * entries. Record the symtab address as well.
303 */
304 for (i = 0; i < ehdr->e_shnum; i++) {
305 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
306 mod->arch.core.plt_shndx = i;
307 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
308 mod->arch.init.plt_shndx = i;
309 else if (!strcmp(secstrings + sechdrs[i].sh_name,
310 ".text.ftrace_trampoline"))
311 tramp = sechdrs + i;
312 else if (sechdrs[i].sh_type == SHT_SYMTAB)
313 syms = (Elf64_Sym *)sechdrs[i].sh_addr;
314 }
315
316 if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
317 pr_err("%s: module PLT section(s) missing\n", mod->name);
318 return -ENOEXEC;
319 }
320 if (!syms) {
321 pr_err("%s: module symtab section missing\n", mod->name);
322 return -ENOEXEC;
323 }
324
325 for (i = 0; i < ehdr->e_shnum; i++) {
326 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
327 int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
328 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
329
330 if (sechdrs[i].sh_type != SHT_RELA)
331 continue;
332
333 /* ignore relocations that operate on non-exec sections */
334 if (!(dstsec->sh_flags & SHF_EXECINSTR))
335 continue;
336
337 /*
338 * sort branch relocations requiring a PLT by type, symbol index
339 * and addend
340 */
341 nents = partition_branch_plt_relas(syms, rels, numrels,
342 sechdrs[i].sh_info);
343 if (nents)
344 sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
345
346 if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
347 core_plts += count_plts(syms, rels, numrels,
348 sechdrs[i].sh_info, dstsec);
349 else
350 init_plts += count_plts(syms, rels, numrels,
351 sechdrs[i].sh_info, dstsec);
352 }
353
354 pltsec = sechdrs + mod->arch.core.plt_shndx;
355 pltsec->sh_type = SHT_NOBITS;
356 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
357 pltsec->sh_addralign = L1_CACHE_BYTES;
358 pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
359 mod->arch.core.plt_num_entries = 0;
360 mod->arch.core.plt_max_entries = core_plts;
361
362 pltsec = sechdrs + mod->arch.init.plt_shndx;
363 pltsec->sh_type = SHT_NOBITS;
364 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
365 pltsec->sh_addralign = L1_CACHE_BYTES;
366 pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
367 mod->arch.init.plt_num_entries = 0;
368 mod->arch.init.plt_max_entries = init_plts;
369
370 if (tramp) {
371 tramp->sh_type = SHT_NOBITS;
372 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
373 tramp->sh_addralign = __alignof__(struct plt_entry);
374 tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
375 }
376
377 return 0;
378}