Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
 
 
  39#include <linux/module.h>
  40#include <linux/types.h>
  41#include <linux/kernel.h>
  42#include <linux/kmemcheck.h>
  43#include <linux/mm.h>
  44#include <linux/interrupt.h>
  45#include <linux/in.h>
  46#include <linux/inet.h>
  47#include <linux/slab.h>
 
 
 
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
 
 
  61
  62#include <net/protocol.h>
  63#include <net/dst.h>
  64#include <net/sock.h>
  65#include <net/checksum.h>
 
  66#include <net/xfrm.h>
 
 
  67
  68#include <asm/uaccess.h>
  69#include <asm/system.h>
  70#include <trace/events/skb.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72#include "kmap_skb.h"
  73
  74static struct kmem_cache *skbuff_head_cache __read_mostly;
  75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  76
  77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  78				  struct pipe_buffer *buf)
  79{
  80	put_page(buf->page);
 
 
 
 
 
 
 
 
 
 
 
  81}
  82
  83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  84				struct pipe_buffer *buf)
  85{
  86	get_page(buf->page);
  87}
  88
  89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  90			       struct pipe_buffer *buf)
  91{
  92	return 1;
  93}
  94
  95
  96/* Pipe buffer operations for a socket. */
  97static const struct pipe_buf_operations sock_pipe_buf_ops = {
  98	.can_merge = 0,
  99	.map = generic_pipe_buf_map,
 100	.unmap = generic_pipe_buf_unmap,
 101	.confirm = generic_pipe_buf_confirm,
 102	.release = sock_pipe_buf_release,
 103	.steal = sock_pipe_buf_steal,
 104	.get = sock_pipe_buf_get,
 105};
 106
 107/*
 108 *	Keep out-of-line to prevent kernel bloat.
 109 *	__builtin_return_address is not used because it is not always
 110 *	reliable.
 
 
 111 */
 
 
 112
 113/**
 114 *	skb_over_panic	- 	private function
 115 *	@skb: buffer
 116 *	@sz: size
 117 *	@here: address
 118 *
 119 *	Out of line support code for skb_put(). Not user callable.
 120 */
 121static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
 122{
 123	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
 124			  "data:%p tail:%#lx end:%#lx dev:%s\n",
 125	       here, skb->len, sz, skb->head, skb->data,
 126	       (unsigned long)skb->tail, (unsigned long)skb->end,
 127	       skb->dev ? skb->dev->name : "<NULL>");
 128	BUG();
 129}
 130
 131/**
 132 *	skb_under_panic	- 	private function
 133 *	@skb: buffer
 134 *	@sz: size
 135 *	@here: address
 136 *
 137 *	Out of line support code for skb_push(). Not user callable.
 138 */
 
 139
 140static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
 141{
 142	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
 143			  "data:%p tail:%#lx end:%#lx dev:%s\n",
 144	       here, skb->len, sz, skb->head, skb->data,
 145	       (unsigned long)skb->tail, (unsigned long)skb->end,
 146	       skb->dev ? skb->dev->name : "<NULL>");
 147	BUG();
 
 148}
 149
 150/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 151 *	'private' fields and also do memory statistics to find all the
 152 *	[BEEP] leaks.
 153 *
 154 */
 155
 156/**
 157 *	__alloc_skb	-	allocate a network buffer
 158 *	@size: size to allocate
 159 *	@gfp_mask: allocation mask
 160 *	@fclone: allocate from fclone cache instead of head cache
 161 *		and allocate a cloned (child) skb
 
 
 162 *	@node: numa node to allocate memory on
 163 *
 164 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 165 *	tail room of size bytes. The object has a reference count of one.
 166 *	The return is the buffer. On a failure the return is %NULL.
 167 *
 168 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 169 *	%GFP_ATOMIC.
 170 */
 171struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 172			    int fclone, int node)
 173{
 174	struct kmem_cache *cache;
 175	struct skb_shared_info *shinfo;
 176	struct sk_buff *skb;
 177	u8 *data;
 
 178
 179	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
 
 
 
 
 180
 181	/* Get the HEAD */
 182	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 183	if (!skb)
 184		goto out;
 185	prefetchw(skb);
 186
 
 
 
 
 
 187	size = SKB_DATA_ALIGN(size);
 188	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
 189			gfp_mask, node);
 190	if (!data)
 191		goto nodata;
 
 
 
 
 
 192	prefetchw(data + size);
 193
 194	/*
 195	 * Only clear those fields we need to clear, not those that we will
 196	 * actually initialise below. Hence, don't put any more fields after
 197	 * the tail pointer in struct sk_buff!
 198	 */
 199	memset(skb, 0, offsetof(struct sk_buff, tail));
 200	skb->truesize = size + sizeof(struct sk_buff);
 201	atomic_set(&skb->users, 1);
 
 
 202	skb->head = data;
 203	skb->data = data;
 204	skb_reset_tail_pointer(skb);
 205	skb->end = skb->tail + size;
 206#ifdef NET_SKBUFF_DATA_USES_OFFSET
 207	skb->mac_header = ~0U;
 208#endif
 209
 210	/* make sure we initialize shinfo sequentially */
 211	shinfo = skb_shinfo(skb);
 212	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 213	atomic_set(&shinfo->dataref, 1);
 214	kmemcheck_annotate_variable(shinfo->destructor_arg);
 215
 216	if (fclone) {
 217		struct sk_buff *child = skb + 1;
 218		atomic_t *fclone_ref = (atomic_t *) (child + 1);
 
 219
 220		kmemcheck_annotate_bitfield(child, flags1);
 221		kmemcheck_annotate_bitfield(child, flags2);
 222		skb->fclone = SKB_FCLONE_ORIG;
 223		atomic_set(fclone_ref, 1);
 224
 225		child->fclone = SKB_FCLONE_UNAVAILABLE;
 226	}
 227out:
 228	return skb;
 229nodata:
 230	kmem_cache_free(cache, skb);
 231	skb = NULL;
 232	goto out;
 233}
 234EXPORT_SYMBOL(__alloc_skb);
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/**
 237 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 238 *	@dev: network device to receive on
 239 *	@length: length to allocate
 240 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 241 *
 242 *	Allocate a new &sk_buff and assign it a usage count of one. The
 243 *	buffer has unspecified headroom built in. Users should allocate
 244 *	the headroom they think they need without accounting for the
 245 *	built in space. The built in space is used for optimisations.
 246 *
 247 *	%NULL is returned if there is no free memory.
 248 */
 249struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 250		unsigned int length, gfp_t gfp_mask)
 251{
 
 252	struct sk_buff *skb;
 
 
 253
 254	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
 255	if (likely(skb)) {
 256		skb_reserve(skb, NET_SKB_PAD);
 257		skb->dev = dev;
 
 
 
 
 258	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259	return skb;
 260}
 261EXPORT_SYMBOL(__netdev_alloc_skb);
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 264		int size)
 265{
 266	skb_fill_page_desc(skb, i, page, off, size);
 267	skb->len += size;
 268	skb->data_len += size;
 269	skb->truesize += size;
 270}
 271EXPORT_SYMBOL(skb_add_rx_frag);
 272
 273/**
 274 *	dev_alloc_skb - allocate an skbuff for receiving
 275 *	@length: length to allocate
 276 *
 277 *	Allocate a new &sk_buff and assign it a usage count of one. The
 278 *	buffer has unspecified headroom built in. Users should allocate
 279 *	the headroom they think they need without accounting for the
 280 *	built in space. The built in space is used for optimisations.
 281 *
 282 *	%NULL is returned if there is no free memory. Although this function
 283 *	allocates memory it can be called from an interrupt.
 284 */
 285struct sk_buff *dev_alloc_skb(unsigned int length)
 286{
 287	/*
 288	 * There is more code here than it seems:
 289	 * __dev_alloc_skb is an inline
 290	 */
 291	return __dev_alloc_skb(length, GFP_ATOMIC);
 
 292}
 293EXPORT_SYMBOL(dev_alloc_skb);
 294
 295static void skb_drop_list(struct sk_buff **listp)
 296{
 297	struct sk_buff *list = *listp;
 298
 299	*listp = NULL;
 300
 301	do {
 302		struct sk_buff *this = list;
 303		list = list->next;
 304		kfree_skb(this);
 305	} while (list);
 306}
 307
 308static inline void skb_drop_fraglist(struct sk_buff *skb)
 309{
 310	skb_drop_list(&skb_shinfo(skb)->frag_list);
 311}
 312
 313static void skb_clone_fraglist(struct sk_buff *skb)
 314{
 315	struct sk_buff *list;
 316
 317	skb_walk_frags(skb, list)
 318		skb_get(list);
 319}
 320
 
 
 
 
 
 
 
 
 
 
 321static void skb_release_data(struct sk_buff *skb)
 322{
 323	if (!skb->cloned ||
 324	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 325			       &skb_shinfo(skb)->dataref)) {
 326		if (skb_shinfo(skb)->nr_frags) {
 327			int i;
 328			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 329				put_page(skb_shinfo(skb)->frags[i].page);
 330		}
 331
 332		/*
 333		 * If skb buf is from userspace, we need to notify the caller
 334		 * the lower device DMA has done;
 335		 */
 336		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 337			struct ubuf_info *uarg;
 338
 339			uarg = skb_shinfo(skb)->destructor_arg;
 340			if (uarg->callback)
 341				uarg->callback(uarg);
 342		}
 343
 344		if (skb_has_frag_list(skb))
 345			skb_drop_fraglist(skb);
 346
 347		kfree(skb->head);
 348	}
 349}
 350
 351/*
 352 *	Free an skbuff by memory without cleaning the state.
 353 */
 354static void kfree_skbmem(struct sk_buff *skb)
 355{
 356	struct sk_buff *other;
 357	atomic_t *fclone_ref;
 358
 359	switch (skb->fclone) {
 360	case SKB_FCLONE_UNAVAILABLE:
 361		kmem_cache_free(skbuff_head_cache, skb);
 362		break;
 363
 364	case SKB_FCLONE_ORIG:
 365		fclone_ref = (atomic_t *) (skb + 2);
 366		if (atomic_dec_and_test(fclone_ref))
 367			kmem_cache_free(skbuff_fclone_cache, skb);
 368		break;
 369
 370	case SKB_FCLONE_CLONE:
 371		fclone_ref = (atomic_t *) (skb + 1);
 372		other = skb - 1;
 373
 374		/* The clone portion is available for
 375		 * fast-cloning again.
 376		 */
 377		skb->fclone = SKB_FCLONE_UNAVAILABLE;
 
 
 378
 379		if (atomic_dec_and_test(fclone_ref))
 380			kmem_cache_free(skbuff_fclone_cache, other);
 381		break;
 382	}
 
 
 
 
 383}
 384
 385static void skb_release_head_state(struct sk_buff *skb)
 386{
 387	skb_dst_drop(skb);
 388#ifdef CONFIG_XFRM
 389	secpath_put(skb->sp);
 390#endif
 391	if (skb->destructor) {
 392		WARN_ON(in_irq());
 393		skb->destructor(skb);
 394	}
 395#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 396	nf_conntrack_put(skb->nfct);
 397#endif
 398#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 399	nf_conntrack_put_reasm(skb->nfct_reasm);
 400#endif
 401#ifdef CONFIG_BRIDGE_NETFILTER
 402	nf_bridge_put(skb->nf_bridge);
 403#endif
 404/* XXX: IS this still necessary? - JHS */
 405#ifdef CONFIG_NET_SCHED
 406	skb->tc_index = 0;
 407#ifdef CONFIG_NET_CLS_ACT
 408	skb->tc_verd = 0;
 409#endif
 410#endif
 
 411}
 412
 413/* Free everything but the sk_buff shell. */
 414static void skb_release_all(struct sk_buff *skb)
 415{
 416	skb_release_head_state(skb);
 417	skb_release_data(skb);
 
 418}
 419
 420/**
 421 *	__kfree_skb - private function
 422 *	@skb: buffer
 423 *
 424 *	Free an sk_buff. Release anything attached to the buffer.
 425 *	Clean the state. This is an internal helper function. Users should
 426 *	always call kfree_skb
 427 */
 428
 429void __kfree_skb(struct sk_buff *skb)
 430{
 431	skb_release_all(skb);
 432	kfree_skbmem(skb);
 433}
 434EXPORT_SYMBOL(__kfree_skb);
 435
 436/**
 437 *	kfree_skb - free an sk_buff
 438 *	@skb: buffer to free
 439 *
 440 *	Drop a reference to the buffer and free it if the usage count has
 441 *	hit zero.
 442 */
 443void kfree_skb(struct sk_buff *skb)
 444{
 445	if (unlikely(!skb))
 446		return;
 447	if (likely(atomic_read(&skb->users) == 1))
 448		smp_rmb();
 449	else if (likely(!atomic_dec_and_test(&skb->users)))
 450		return;
 
 451	trace_kfree_skb(skb, __builtin_return_address(0));
 452	__kfree_skb(skb);
 453}
 454EXPORT_SYMBOL(kfree_skb);
 455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456/**
 457 *	consume_skb - free an skbuff
 458 *	@skb: buffer to free
 459 *
 460 *	Drop a ref to the buffer and free it if the usage count has hit zero
 461 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 462 *	is being dropped after a failure and notes that
 463 */
 464void consume_skb(struct sk_buff *skb)
 465{
 466	if (unlikely(!skb))
 467		return;
 468	if (likely(atomic_read(&skb->users) == 1))
 469		smp_rmb();
 470	else if (likely(!atomic_dec_and_test(&skb->users)))
 471		return;
 
 472	trace_consume_skb(skb);
 473	__kfree_skb(skb);
 474}
 475EXPORT_SYMBOL(consume_skb);
 
 476
 477/**
 478 *	skb_recycle_check - check if skb can be reused for receive
 479 *	@skb: buffer
 480 *	@skb_size: minimum receive buffer size
 481 *
 482 *	Checks that the skb passed in is not shared or cloned, and
 483 *	that it is linear and its head portion at least as large as
 484 *	skb_size so that it can be recycled as a receive buffer.
 485 *	If these conditions are met, this function does any necessary
 486 *	reference count dropping and cleans up the skbuff as if it
 487 *	just came from __alloc_skb().
 488 */
 489bool skb_recycle_check(struct sk_buff *skb, int skb_size)
 490{
 491	struct skb_shared_info *shinfo;
 
 
 
 492
 493	if (irqs_disabled())
 494		return false;
 
 495
 496	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
 497		return false;
 
 
 
 
 
 498
 499	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
 500		return false;
 
 501
 502	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
 503	if (skb_end_pointer(skb) - skb->head < skb_size)
 504		return false;
 505
 506	if (skb_shared(skb) || skb_cloned(skb))
 507		return false;
 508
 509	skb_release_head_state(skb);
 
 
 
 510
 511	shinfo = skb_shinfo(skb);
 512	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 513	atomic_set(&shinfo->dataref, 1);
 
 
 
 
 
 
 
 
 514
 515	memset(skb, 0, offsetof(struct sk_buff, tail));
 516	skb->data = skb->head + NET_SKB_PAD;
 517	skb_reset_tail_pointer(skb);
 
 518
 519	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520}
 521EXPORT_SYMBOL(skb_recycle_check);
 
 
 
 
 
 
 
 522
 523static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 524{
 525	new->tstamp		= old->tstamp;
 
 526	new->dev		= old->dev;
 527	new->transport_header	= old->transport_header;
 528	new->network_header	= old->network_header;
 529	new->mac_header		= old->mac_header;
 530	skb_dst_copy(new, old);
 531	new->rxhash		= old->rxhash;
 532#ifdef CONFIG_XFRM
 533	new->sp			= secpath_get(old->sp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534#endif
 535	memcpy(new->cb, old->cb, sizeof(old->cb));
 536	new->csum		= old->csum;
 537	new->local_df		= old->local_df;
 538	new->pkt_type		= old->pkt_type;
 539	new->ip_summed		= old->ip_summed;
 540	skb_copy_queue_mapping(new, old);
 541	new->priority		= old->priority;
 542#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
 543	new->ipvs_property	= old->ipvs_property;
 544#endif
 545	new->protocol		= old->protocol;
 546	new->mark		= old->mark;
 547	new->skb_iif		= old->skb_iif;
 548	__nf_copy(new, old);
 549#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
 550    defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
 551	new->nf_trace		= old->nf_trace;
 552#endif
 553#ifdef CONFIG_NET_SCHED
 554	new->tc_index		= old->tc_index;
 555#ifdef CONFIG_NET_CLS_ACT
 556	new->tc_verd		= old->tc_verd;
 557#endif
 
 
 558#endif
 559	new->vlan_tci		= old->vlan_tci;
 560
 561	skb_copy_secmark(new, old);
 562}
 563
 564/*
 565 * You should not add any new code to this function.  Add it to
 566 * __copy_skb_header above instead.
 567 */
 568static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 569{
 570#define C(x) n->x = skb->x
 571
 572	n->next = n->prev = NULL;
 573	n->sk = NULL;
 574	__copy_skb_header(n, skb);
 575
 576	C(len);
 577	C(data_len);
 578	C(mac_len);
 579	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 580	n->cloned = 1;
 581	n->nohdr = 0;
 
 
 582	n->destructor = NULL;
 583	C(tail);
 584	C(end);
 585	C(head);
 
 586	C(data);
 587	C(truesize);
 588	atomic_set(&n->users, 1);
 589
 590	atomic_inc(&(skb_shinfo(skb)->dataref));
 591	skb->cloned = 1;
 592
 593	return n;
 594#undef C
 595}
 596
 597/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598 *	skb_morph	-	morph one skb into another
 599 *	@dst: the skb to receive the contents
 600 *	@src: the skb to supply the contents
 601 *
 602 *	This is identical to skb_clone except that the target skb is
 603 *	supplied by the user.
 604 *
 605 *	The target skb is returned upon exit.
 606 */
 607struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 608{
 609	skb_release_all(dst);
 610	return __skb_clone(dst, src);
 611}
 612EXPORT_SYMBOL_GPL(skb_morph);
 613
 614/*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615 *	@skb: the skb to modify
 616 *	@gfp_mask: allocation priority
 617 *
 618 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 619 *	It will copy all frags into kernel and drop the reference
 620 *	to userspace pages.
 621 *
 622 *	If this function is called from an interrupt gfp_mask() must be
 623 *	%GFP_ATOMIC.
 624 *
 625 *	Returns 0 on success or a negative error code on failure
 626 *	to allocate kernel memory to copy to.
 627 */
 628int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 629{
 630	int i;
 631	int num_frags = skb_shinfo(skb)->nr_frags;
 632	struct page *page, *head = NULL;
 633	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 
 634
 635	for (i = 0; i < num_frags; i++) {
 636		u8 *vaddr;
 637		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 638
 639		page = alloc_page(GFP_ATOMIC);
 
 
 
 
 
 640		if (!page) {
 641			while (head) {
 642				struct page *next = (struct page *)head->private;
 643				put_page(head);
 644				head = next;
 645			}
 646			return -ENOMEM;
 647		}
 648		vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
 649		memcpy(page_address(page),
 650		       vaddr + f->page_offset, f->size);
 651		kunmap_skb_frag(vaddr);
 652		page->private = (unsigned long)head;
 653		head = page;
 654	}
 655
 656	/* skb frags release userspace buffers */
 657	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 658		put_page(skb_shinfo(skb)->frags[i].page);
 
 
 
 
 659
 660	uarg->callback(uarg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661
 662	/* skb frags point to kernel buffers */
 663	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
 664		skb_shinfo(skb)->frags[i - 1].page_offset = 0;
 665		skb_shinfo(skb)->frags[i - 1].page = head;
 666		head = (struct page *)head->private;
 667	}
 
 
 668
 669	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 
 670	return 0;
 671}
 672
 673
 674/**
 675 *	skb_clone	-	duplicate an sk_buff
 676 *	@skb: buffer to clone
 677 *	@gfp_mask: allocation priority
 678 *
 679 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
 680 *	copies share the same packet data but not structure. The new
 681 *	buffer has a reference count of 1. If the allocation fails the
 682 *	function returns %NULL otherwise the new buffer is returned.
 683 *
 684 *	If this function is called from an interrupt gfp_mask() must be
 685 *	%GFP_ATOMIC.
 686 */
 687
 688struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 689{
 
 
 
 690	struct sk_buff *n;
 691
 692	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 693		if (skb_copy_ubufs(skb, gfp_mask))
 694			return NULL;
 695	}
 696
 697	n = skb + 1;
 698	if (skb->fclone == SKB_FCLONE_ORIG &&
 699	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
 700		atomic_t *fclone_ref = (atomic_t *) (n + 1);
 701		n->fclone = SKB_FCLONE_CLONE;
 702		atomic_inc(fclone_ref);
 703	} else {
 
 
 
 704		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 705		if (!n)
 706			return NULL;
 707
 708		kmemcheck_annotate_bitfield(n, flags1);
 709		kmemcheck_annotate_bitfield(n, flags2);
 710		n->fclone = SKB_FCLONE_UNAVAILABLE;
 711	}
 712
 713	return __skb_clone(n, skb);
 714}
 715EXPORT_SYMBOL(skb_clone);
 716
 717static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 718{
 719#ifndef NET_SKBUFF_DATA_USES_OFFSET
 720	/*
 721	 *	Shift between the two data areas in bytes
 722	 */
 723	unsigned long offset = new->data - old->data;
 724#endif
 
 
 
 
 
 
 
 725
 
 
 726	__copy_skb_header(new, old);
 727
 728#ifndef NET_SKBUFF_DATA_USES_OFFSET
 729	/* {transport,network,mac}_header are relative to skb->head */
 730	new->transport_header += offset;
 731	new->network_header   += offset;
 732	if (skb_mac_header_was_set(new))
 733		new->mac_header	      += offset;
 734#endif
 735	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 736	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 737	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 738}
 
 
 
 
 
 
 
 
 739
 740/**
 741 *	skb_copy	-	create private copy of an sk_buff
 742 *	@skb: buffer to copy
 743 *	@gfp_mask: allocation priority
 744 *
 745 *	Make a copy of both an &sk_buff and its data. This is used when the
 746 *	caller wishes to modify the data and needs a private copy of the
 747 *	data to alter. Returns %NULL on failure or the pointer to the buffer
 748 *	on success. The returned buffer has a reference count of 1.
 749 *
 750 *	As by-product this function converts non-linear &sk_buff to linear
 751 *	one, so that &sk_buff becomes completely private and caller is allowed
 752 *	to modify all the data of returned buffer. This means that this
 753 *	function is not recommended for use in circumstances when only
 754 *	header is going to be modified. Use pskb_copy() instead.
 755 */
 756
 757struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 758{
 759	int headerlen = skb_headroom(skb);
 760	unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
 761	struct sk_buff *n = alloc_skb(size, gfp_mask);
 
 762
 763	if (!n)
 764		return NULL;
 765
 766	/* Set the data pointer */
 767	skb_reserve(n, headerlen);
 768	/* Set the tail pointer and length */
 769	skb_put(n, skb->len);
 770
 771	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 772		BUG();
 773
 774	copy_skb_header(n, skb);
 775	return n;
 776}
 777EXPORT_SYMBOL(skb_copy);
 778
 779/**
 780 *	pskb_copy	-	create copy of an sk_buff with private head.
 781 *	@skb: buffer to copy
 
 782 *	@gfp_mask: allocation priority
 
 
 
 783 *
 784 *	Make a copy of both an &sk_buff and part of its data, located
 785 *	in header. Fragmented data remain shared. This is used when
 786 *	the caller wishes to modify only header of &sk_buff and needs
 787 *	private copy of the header to alter. Returns %NULL on failure
 788 *	or the pointer to the buffer on success.
 789 *	The returned buffer has a reference count of 1.
 790 */
 791
 792struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
 
 793{
 794	unsigned int size = skb_end_pointer(skb) - skb->head;
 795	struct sk_buff *n = alloc_skb(size, gfp_mask);
 
 796
 797	if (!n)
 798		goto out;
 799
 800	/* Set the data pointer */
 801	skb_reserve(n, skb_headroom(skb));
 802	/* Set the tail pointer and length */
 803	skb_put(n, skb_headlen(skb));
 804	/* Copy the bytes */
 805	skb_copy_from_linear_data(skb, n->data, n->len);
 806
 807	n->truesize += skb->data_len;
 808	n->data_len  = skb->data_len;
 809	n->len	     = skb->len;
 810
 811	if (skb_shinfo(skb)->nr_frags) {
 812		int i;
 813
 814		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 815			if (skb_copy_ubufs(skb, gfp_mask)) {
 816				kfree_skb(n);
 817				n = NULL;
 818				goto out;
 819			}
 820		}
 821		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 822			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
 823			get_page(skb_shinfo(n)->frags[i].page);
 824		}
 825		skb_shinfo(n)->nr_frags = i;
 826	}
 827
 828	if (skb_has_frag_list(skb)) {
 829		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
 830		skb_clone_fraglist(n);
 831	}
 832
 833	copy_skb_header(n, skb);
 834out:
 835	return n;
 836}
 837EXPORT_SYMBOL(pskb_copy);
 838
 839/**
 840 *	pskb_expand_head - reallocate header of &sk_buff
 841 *	@skb: buffer to reallocate
 842 *	@nhead: room to add at head
 843 *	@ntail: room to add at tail
 844 *	@gfp_mask: allocation priority
 845 *
 846 *	Expands (or creates identical copy, if &nhead and &ntail are zero)
 847 *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
 848 *	reference count of 1. Returns zero in the case of success or error,
 849 *	if expansion failed. In the last case, &sk_buff is not changed.
 850 *
 851 *	All the pointers pointing into skb header may change and must be
 852 *	reloaded after call to this function.
 853 */
 854
 855int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
 856		     gfp_t gfp_mask)
 857{
 858	int i;
 859	u8 *data;
 860	int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
 861	long off;
 862	bool fastpath;
 863
 864	BUG_ON(nhead < 0);
 865
 866	if (skb_shared(skb))
 867		BUG();
 868
 869	size = SKB_DATA_ALIGN(size);
 870
 871	/* Check if we can avoid taking references on fragments if we own
 872	 * the last reference on skb->head. (see skb_release_data())
 873	 */
 874	if (!skb->cloned)
 875		fastpath = true;
 876	else {
 877		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
 878		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
 879	}
 880
 881	if (fastpath &&
 882	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
 883		memmove(skb->head + size, skb_shinfo(skb),
 884			offsetof(struct skb_shared_info,
 885				 frags[skb_shinfo(skb)->nr_frags]));
 886		memmove(skb->head + nhead, skb->head,
 887			skb_tail_pointer(skb) - skb->head);
 888		off = nhead;
 889		goto adjust_others;
 890	}
 891
 892	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
 893	if (!data)
 894		goto nodata;
 
 895
 896	/* Copy only real data... and, alas, header. This should be
 897	 * optimized for the cases when header is void.
 898	 */
 899	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
 900
 901	memcpy((struct skb_shared_info *)(data + size),
 902	       skb_shinfo(skb),
 903	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
 904
 905	if (fastpath) {
 906		kfree(skb->head);
 907	} else {
 908		/* copy this zero copy skb frags */
 909		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 910			if (skb_copy_ubufs(skb, gfp_mask))
 911				goto nofrags;
 912		}
 
 
 913		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 914			get_page(skb_shinfo(skb)->frags[i].page);
 915
 916		if (skb_has_frag_list(skb))
 917			skb_clone_fraglist(skb);
 918
 919		skb_release_data(skb);
 
 
 920	}
 921	off = (data + nhead) - skb->head;
 922
 923	skb->head     = data;
 924adjust_others:
 925	skb->data    += off;
 926#ifdef NET_SKBUFF_DATA_USES_OFFSET
 927	skb->end      = size;
 928	off           = nhead;
 929#else
 930	skb->end      = skb->head + size;
 931#endif
 932	/* {transport,network,mac}_header and tail are relative to skb->head */
 933	skb->tail	      += off;
 934	skb->transport_header += off;
 935	skb->network_header   += off;
 936	if (skb_mac_header_was_set(skb))
 937		skb->mac_header += off;
 938	/* Only adjust this if it actually is csum_start rather than csum */
 939	if (skb->ip_summed == CHECKSUM_PARTIAL)
 940		skb->csum_start += nhead;
 941	skb->cloned   = 0;
 942	skb->hdr_len  = 0;
 943	skb->nohdr    = 0;
 944	atomic_set(&skb_shinfo(skb)->dataref, 1);
 
 
 
 
 
 
 
 
 
 
 945	return 0;
 946
 947nofrags:
 948	kfree(data);
 949nodata:
 950	return -ENOMEM;
 951}
 952EXPORT_SYMBOL(pskb_expand_head);
 953
 954/* Make private copy of skb with writable head and some headroom */
 955
 956struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
 957{
 958	struct sk_buff *skb2;
 959	int delta = headroom - skb_headroom(skb);
 960
 961	if (delta <= 0)
 962		skb2 = pskb_copy(skb, GFP_ATOMIC);
 963	else {
 964		skb2 = skb_clone(skb, GFP_ATOMIC);
 965		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
 966					     GFP_ATOMIC)) {
 967			kfree_skb(skb2);
 968			skb2 = NULL;
 969		}
 970	}
 971	return skb2;
 972}
 973EXPORT_SYMBOL(skb_realloc_headroom);
 974
 975/**
 976 *	skb_copy_expand	-	copy and expand sk_buff
 977 *	@skb: buffer to copy
 978 *	@newheadroom: new free bytes at head
 979 *	@newtailroom: new free bytes at tail
 980 *	@gfp_mask: allocation priority
 981 *
 982 *	Make a copy of both an &sk_buff and its data and while doing so
 983 *	allocate additional space.
 984 *
 985 *	This is used when the caller wishes to modify the data and needs a
 986 *	private copy of the data to alter as well as more space for new fields.
 987 *	Returns %NULL on failure or the pointer to the buffer
 988 *	on success. The returned buffer has a reference count of 1.
 989 *
 990 *	You must pass %GFP_ATOMIC as the allocation priority if this function
 991 *	is called from an interrupt.
 992 */
 993struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 994				int newheadroom, int newtailroom,
 995				gfp_t gfp_mask)
 996{
 997	/*
 998	 *	Allocate the copy buffer
 999	 */
1000	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1001				      gfp_mask);
 
1002	int oldheadroom = skb_headroom(skb);
1003	int head_copy_len, head_copy_off;
1004	int off;
1005
1006	if (!n)
1007		return NULL;
1008
1009	skb_reserve(n, newheadroom);
1010
1011	/* Set the tail pointer and length */
1012	skb_put(n, skb->len);
1013
1014	head_copy_len = oldheadroom;
1015	head_copy_off = 0;
1016	if (newheadroom <= head_copy_len)
1017		head_copy_len = newheadroom;
1018	else
1019		head_copy_off = newheadroom - head_copy_len;
1020
1021	/* Copy the linear header and data. */
1022	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1023			  skb->len + head_copy_len))
1024		BUG();
1025
1026	copy_skb_header(n, skb);
1027
1028	off                  = newheadroom - oldheadroom;
1029	if (n->ip_summed == CHECKSUM_PARTIAL)
1030		n->csum_start += off;
1031#ifdef NET_SKBUFF_DATA_USES_OFFSET
1032	n->transport_header += off;
1033	n->network_header   += off;
1034	if (skb_mac_header_was_set(skb))
1035		n->mac_header += off;
1036#endif
1037
1038	return n;
1039}
1040EXPORT_SYMBOL(skb_copy_expand);
1041
1042/**
1043 *	skb_pad			-	zero pad the tail of an skb
1044 *	@skb: buffer to pad
1045 *	@pad: space to pad
 
1046 *
1047 *	Ensure that a buffer is followed by a padding area that is zero
1048 *	filled. Used by network drivers which may DMA or transfer data
1049 *	beyond the buffer end onto the wire.
1050 *
1051 *	May return error in out of memory cases. The skb is freed on error.
 
1052 */
1053
1054int skb_pad(struct sk_buff *skb, int pad)
1055{
1056	int err;
1057	int ntail;
1058
1059	/* If the skbuff is non linear tailroom is always zero.. */
1060	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1061		memset(skb->data+skb->len, 0, pad);
1062		return 0;
1063	}
1064
1065	ntail = skb->data_len + pad - (skb->end - skb->tail);
1066	if (likely(skb_cloned(skb) || ntail > 0)) {
1067		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1068		if (unlikely(err))
1069			goto free_skb;
1070	}
1071
1072	/* FIXME: The use of this function with non-linear skb's really needs
1073	 * to be audited.
1074	 */
1075	err = skb_linearize(skb);
1076	if (unlikely(err))
1077		goto free_skb;
1078
1079	memset(skb->data + skb->len, 0, pad);
1080	return 0;
1081
1082free_skb:
1083	kfree_skb(skb);
 
1084	return err;
1085}
1086EXPORT_SYMBOL(skb_pad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088/**
1089 *	skb_put - add data to a buffer
1090 *	@skb: buffer to use
1091 *	@len: amount of data to add
1092 *
1093 *	This function extends the used data area of the buffer. If this would
1094 *	exceed the total buffer size the kernel will panic. A pointer to the
1095 *	first byte of the extra data is returned.
1096 */
1097unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1098{
1099	unsigned char *tmp = skb_tail_pointer(skb);
1100	SKB_LINEAR_ASSERT(skb);
1101	skb->tail += len;
1102	skb->len  += len;
1103	if (unlikely(skb->tail > skb->end))
1104		skb_over_panic(skb, len, __builtin_return_address(0));
1105	return tmp;
1106}
1107EXPORT_SYMBOL(skb_put);
1108
1109/**
1110 *	skb_push - add data to the start of a buffer
1111 *	@skb: buffer to use
1112 *	@len: amount of data to add
1113 *
1114 *	This function extends the used data area of the buffer at the buffer
1115 *	start. If this would exceed the total buffer headroom the kernel will
1116 *	panic. A pointer to the first byte of the extra data is returned.
1117 */
1118unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1119{
1120	skb->data -= len;
1121	skb->len  += len;
1122	if (unlikely(skb->data<skb->head))
1123		skb_under_panic(skb, len, __builtin_return_address(0));
1124	return skb->data;
1125}
1126EXPORT_SYMBOL(skb_push);
1127
1128/**
1129 *	skb_pull - remove data from the start of a buffer
1130 *	@skb: buffer to use
1131 *	@len: amount of data to remove
1132 *
1133 *	This function removes data from the start of a buffer, returning
1134 *	the memory to the headroom. A pointer to the next data in the buffer
1135 *	is returned. Once the data has been pulled future pushes will overwrite
1136 *	the old data.
1137 */
1138unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1139{
1140	return skb_pull_inline(skb, len);
1141}
1142EXPORT_SYMBOL(skb_pull);
1143
1144/**
1145 *	skb_trim - remove end from a buffer
1146 *	@skb: buffer to alter
1147 *	@len: new length
1148 *
1149 *	Cut the length of a buffer down by removing data from the tail. If
1150 *	the buffer is already under the length specified it is not modified.
1151 *	The skb must be linear.
1152 */
1153void skb_trim(struct sk_buff *skb, unsigned int len)
1154{
1155	if (skb->len > len)
1156		__skb_trim(skb, len);
1157}
1158EXPORT_SYMBOL(skb_trim);
1159
1160/* Trims skb to length len. It can change skb pointers.
1161 */
1162
1163int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1164{
1165	struct sk_buff **fragp;
1166	struct sk_buff *frag;
1167	int offset = skb_headlen(skb);
1168	int nfrags = skb_shinfo(skb)->nr_frags;
1169	int i;
1170	int err;
1171
1172	if (skb_cloned(skb) &&
1173	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1174		return err;
1175
1176	i = 0;
1177	if (offset >= len)
1178		goto drop_pages;
1179
1180	for (; i < nfrags; i++) {
1181		int end = offset + skb_shinfo(skb)->frags[i].size;
1182
1183		if (end < len) {
1184			offset = end;
1185			continue;
1186		}
1187
1188		skb_shinfo(skb)->frags[i++].size = len - offset;
1189
1190drop_pages:
1191		skb_shinfo(skb)->nr_frags = i;
1192
1193		for (; i < nfrags; i++)
1194			put_page(skb_shinfo(skb)->frags[i].page);
1195
1196		if (skb_has_frag_list(skb))
1197			skb_drop_fraglist(skb);
1198		goto done;
1199	}
1200
1201	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1202	     fragp = &frag->next) {
1203		int end = offset + frag->len;
1204
1205		if (skb_shared(frag)) {
1206			struct sk_buff *nfrag;
1207
1208			nfrag = skb_clone(frag, GFP_ATOMIC);
1209			if (unlikely(!nfrag))
1210				return -ENOMEM;
1211
1212			nfrag->next = frag->next;
1213			kfree_skb(frag);
1214			frag = nfrag;
1215			*fragp = frag;
1216		}
1217
1218		if (end < len) {
1219			offset = end;
1220			continue;
1221		}
1222
1223		if (end > len &&
1224		    unlikely((err = pskb_trim(frag, len - offset))))
1225			return err;
1226
1227		if (frag->next)
1228			skb_drop_list(&frag->next);
1229		break;
1230	}
1231
1232done:
1233	if (len > skb_headlen(skb)) {
1234		skb->data_len -= skb->len - len;
1235		skb->len       = len;
1236	} else {
1237		skb->len       = len;
1238		skb->data_len  = 0;
1239		skb_set_tail_pointer(skb, len);
1240	}
1241
 
 
1242	return 0;
1243}
1244EXPORT_SYMBOL(___pskb_trim);
1245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246/**
1247 *	__pskb_pull_tail - advance tail of skb header
1248 *	@skb: buffer to reallocate
1249 *	@delta: number of bytes to advance tail
1250 *
1251 *	The function makes a sense only on a fragmented &sk_buff,
1252 *	it expands header moving its tail forward and copying necessary
1253 *	data from fragmented part.
1254 *
1255 *	&sk_buff MUST have reference count of 1.
1256 *
1257 *	Returns %NULL (and &sk_buff does not change) if pull failed
1258 *	or value of new tail of skb in the case of success.
1259 *
1260 *	All the pointers pointing into skb header may change and must be
1261 *	reloaded after call to this function.
1262 */
1263
1264/* Moves tail of skb head forward, copying data from fragmented part,
1265 * when it is necessary.
1266 * 1. It may fail due to malloc failure.
1267 * 2. It may change skb pointers.
1268 *
1269 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1270 */
1271unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1272{
1273	/* If skb has not enough free space at tail, get new one
1274	 * plus 128 bytes for future expansions. If we have enough
1275	 * room at tail, reallocate without expansion only if skb is cloned.
1276	 */
1277	int i, k, eat = (skb->tail + delta) - skb->end;
1278
1279	if (eat > 0 || skb_cloned(skb)) {
1280		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1281				     GFP_ATOMIC))
1282			return NULL;
1283	}
1284
1285	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1286		BUG();
1287
1288	/* Optimization: no fragments, no reasons to preestimate
1289	 * size of pulled pages. Superb.
1290	 */
1291	if (!skb_has_frag_list(skb))
1292		goto pull_pages;
1293
1294	/* Estimate size of pulled pages. */
1295	eat = delta;
1296	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1297		if (skb_shinfo(skb)->frags[i].size >= eat)
 
 
1298			goto pull_pages;
1299		eat -= skb_shinfo(skb)->frags[i].size;
1300	}
1301
1302	/* If we need update frag list, we are in troubles.
1303	 * Certainly, it possible to add an offset to skb data,
1304	 * but taking into account that pulling is expected to
1305	 * be very rare operation, it is worth to fight against
1306	 * further bloating skb head and crucify ourselves here instead.
1307	 * Pure masohism, indeed. 8)8)
1308	 */
1309	if (eat) {
1310		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1311		struct sk_buff *clone = NULL;
1312		struct sk_buff *insp = NULL;
1313
1314		do {
1315			BUG_ON(!list);
1316
1317			if (list->len <= eat) {
1318				/* Eaten as whole. */
1319				eat -= list->len;
1320				list = list->next;
1321				insp = list;
1322			} else {
1323				/* Eaten partially. */
1324
1325				if (skb_shared(list)) {
1326					/* Sucks! We need to fork list. :-( */
1327					clone = skb_clone(list, GFP_ATOMIC);
1328					if (!clone)
1329						return NULL;
1330					insp = list->next;
1331					list = clone;
1332				} else {
1333					/* This may be pulled without
1334					 * problems. */
1335					insp = list;
1336				}
1337				if (!pskb_pull(list, eat)) {
1338					kfree_skb(clone);
1339					return NULL;
1340				}
1341				break;
1342			}
1343		} while (eat);
1344
1345		/* Free pulled out fragments. */
1346		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1347			skb_shinfo(skb)->frag_list = list->next;
1348			kfree_skb(list);
1349		}
1350		/* And insert new clone at head. */
1351		if (clone) {
1352			clone->next = list;
1353			skb_shinfo(skb)->frag_list = clone;
1354		}
1355	}
1356	/* Success! Now we may commit changes to skb data. */
1357
1358pull_pages:
1359	eat = delta;
1360	k = 0;
1361	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1362		if (skb_shinfo(skb)->frags[i].size <= eat) {
1363			put_page(skb_shinfo(skb)->frags[i].page);
1364			eat -= skb_shinfo(skb)->frags[i].size;
 
 
1365		} else {
1366			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
 
 
1367			if (eat) {
1368				skb_shinfo(skb)->frags[k].page_offset += eat;
1369				skb_shinfo(skb)->frags[k].size -= eat;
 
 
1370				eat = 0;
1371			}
1372			k++;
1373		}
1374	}
1375	skb_shinfo(skb)->nr_frags = k;
1376
 
1377	skb->tail     += delta;
1378	skb->data_len -= delta;
1379
 
 
 
1380	return skb_tail_pointer(skb);
1381}
1382EXPORT_SYMBOL(__pskb_pull_tail);
1383
1384/**
1385 *	skb_copy_bits - copy bits from skb to kernel buffer
1386 *	@skb: source skb
1387 *	@offset: offset in source
1388 *	@to: destination buffer
1389 *	@len: number of bytes to copy
1390 *
1391 *	Copy the specified number of bytes from the source skb to the
1392 *	destination buffer.
1393 *
1394 *	CAUTION ! :
1395 *		If its prototype is ever changed,
1396 *		check arch/{*}/net/{*}.S files,
1397 *		since it is called from BPF assembly code.
1398 */
1399int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1400{
1401	int start = skb_headlen(skb);
1402	struct sk_buff *frag_iter;
1403	int i, copy;
1404
1405	if (offset > (int)skb->len - len)
1406		goto fault;
1407
1408	/* Copy header. */
1409	if ((copy = start - offset) > 0) {
1410		if (copy > len)
1411			copy = len;
1412		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1413		if ((len -= copy) == 0)
1414			return 0;
1415		offset += copy;
1416		to     += copy;
1417	}
1418
1419	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1420		int end;
 
1421
1422		WARN_ON(start > offset + len);
1423
1424		end = start + skb_shinfo(skb)->frags[i].size;
1425		if ((copy = end - offset) > 0) {
 
 
1426			u8 *vaddr;
1427
1428			if (copy > len)
1429				copy = len;
1430
1431			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1432			memcpy(to,
1433			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1434			       offset - start, copy);
1435			kunmap_skb_frag(vaddr);
 
 
1436
1437			if ((len -= copy) == 0)
1438				return 0;
1439			offset += copy;
1440			to     += copy;
1441		}
1442		start = end;
1443	}
1444
1445	skb_walk_frags(skb, frag_iter) {
1446		int end;
1447
1448		WARN_ON(start > offset + len);
1449
1450		end = start + frag_iter->len;
1451		if ((copy = end - offset) > 0) {
1452			if (copy > len)
1453				copy = len;
1454			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1455				goto fault;
1456			if ((len -= copy) == 0)
1457				return 0;
1458			offset += copy;
1459			to     += copy;
1460		}
1461		start = end;
1462	}
1463
1464	if (!len)
1465		return 0;
1466
1467fault:
1468	return -EFAULT;
1469}
1470EXPORT_SYMBOL(skb_copy_bits);
1471
1472/*
1473 * Callback from splice_to_pipe(), if we need to release some pages
1474 * at the end of the spd in case we error'ed out in filling the pipe.
1475 */
1476static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1477{
1478	put_page(spd->pages[i]);
1479}
1480
1481static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1482					  unsigned int *offset,
1483					  struct sk_buff *skb, struct sock *sk)
1484{
1485	struct page *p = sk->sk_sndmsg_page;
1486	unsigned int off;
1487
1488	if (!p) {
1489new_page:
1490		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1491		if (!p)
1492			return NULL;
1493
1494		off = sk->sk_sndmsg_off = 0;
1495		/* hold one ref to this page until it's full */
1496	} else {
1497		unsigned int mlen;
1498
1499		off = sk->sk_sndmsg_off;
1500		mlen = PAGE_SIZE - off;
1501		if (mlen < 64 && mlen < *len) {
1502			put_page(p);
1503			goto new_page;
1504		}
1505
1506		*len = min_t(unsigned int, *len, mlen);
1507	}
 
 
1508
1509	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1510	sk->sk_sndmsg_off += *len;
1511	*offset = off;
1512	get_page(p);
1513
1514	return p;
 
 
 
 
 
 
 
1515}
1516
1517/*
1518 * Fill page/offset/length into spd, if it can hold more pages.
1519 */
1520static inline int spd_fill_page(struct splice_pipe_desc *spd,
1521				struct pipe_inode_info *pipe, struct page *page,
1522				unsigned int *len, unsigned int offset,
1523				struct sk_buff *skb, int linear,
1524				struct sock *sk)
1525{
1526	if (unlikely(spd->nr_pages == pipe->buffers))
1527		return 1;
1528
1529	if (linear) {
1530		page = linear_to_page(page, len, &offset, skb, sk);
1531		if (!page)
1532			return 1;
1533	} else
1534		get_page(page);
1535
 
 
 
1536	spd->pages[spd->nr_pages] = page;
1537	spd->partial[spd->nr_pages].len = *len;
1538	spd->partial[spd->nr_pages].offset = offset;
1539	spd->nr_pages++;
1540
1541	return 0;
1542}
1543
1544static inline void __segment_seek(struct page **page, unsigned int *poff,
1545				  unsigned int *plen, unsigned int off)
1546{
1547	unsigned long n;
1548
1549	*poff += off;
1550	n = *poff / PAGE_SIZE;
1551	if (n)
1552		*page = nth_page(*page, n);
1553
1554	*poff = *poff % PAGE_SIZE;
1555	*plen -= off;
1556}
1557
1558static inline int __splice_segment(struct page *page, unsigned int poff,
1559				   unsigned int plen, unsigned int *off,
1560				   unsigned int *len, struct sk_buff *skb,
1561				   struct splice_pipe_desc *spd, int linear,
1562				   struct sock *sk,
1563				   struct pipe_inode_info *pipe)
1564{
1565	if (!*len)
1566		return 1;
1567
1568	/* skip this segment if already processed */
1569	if (*off >= plen) {
1570		*off -= plen;
1571		return 0;
1572	}
1573
1574	/* ignore any bits we already processed */
1575	if (*off) {
1576		__segment_seek(&page, &poff, &plen, *off);
1577		*off = 0;
1578	}
1579
1580	do {
1581		unsigned int flen = min(*len, plen);
1582
1583		/* the linear region may spread across several pages  */
1584		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1585
1586		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1587			return 1;
1588
1589		__segment_seek(&page, &poff, &plen, flen);
1590		*len -= flen;
1591
1592	} while (*len && plen);
1593
1594	return 0;
1595}
1596
1597/*
1598 * Map linear and fragment data from the skb to spd. It reports failure if the
1599 * pipe is full or if we already spliced the requested length.
1600 */
1601static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1602			     unsigned int *offset, unsigned int *len,
1603			     struct splice_pipe_desc *spd, struct sock *sk)
1604{
1605	int seg;
 
1606
1607	/*
1608	 * map the linear part
 
 
1609	 */
1610	if (__splice_segment(virt_to_page(skb->data),
1611			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1612			     skb_headlen(skb),
1613			     offset, len, skb, spd, 1, sk, pipe))
1614		return 1;
 
 
1615
1616	/*
1617	 * then map the fragments
1618	 */
1619	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1620		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1621
1622		if (__splice_segment(f->page, f->page_offset, f->size,
1623				     offset, len, skb, spd, 0, sk, pipe))
1624			return 1;
 
1625	}
1626
1627	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1628}
1629
1630/*
1631 * Map data from the skb to a pipe. Should handle both the linear part,
1632 * the fragments, and the frag list. It does NOT handle frag lists within
1633 * the frag list, if such a thing exists. We'd probably need to recurse to
1634 * handle that cleanly.
1635 */
1636int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1637		    struct pipe_inode_info *pipe, unsigned int tlen,
1638		    unsigned int flags)
1639{
1640	struct partial_page partial[PIPE_DEF_BUFFERS];
1641	struct page *pages[PIPE_DEF_BUFFERS];
1642	struct splice_pipe_desc spd = {
1643		.pages = pages,
1644		.partial = partial,
1645		.flags = flags,
1646		.ops = &sock_pipe_buf_ops,
1647		.spd_release = sock_spd_release,
1648	};
1649	struct sk_buff *frag_iter;
1650	struct sock *sk = skb->sk;
1651	int ret = 0;
1652
1653	if (splice_grow_spd(pipe, &spd))
1654		return -ENOMEM;
1655
1656	/*
1657	 * __skb_splice_bits() only fails if the output has no room left,
1658	 * so no point in going over the frag_list for the error case.
1659	 */
1660	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1661		goto done;
1662	else if (!tlen)
1663		goto done;
1664
1665	/*
1666	 * now see if we have a frag_list to map
1667	 */
1668	skb_walk_frags(skb, frag_iter) {
1669		if (!tlen)
1670			break;
1671		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672			break;
 
 
1673	}
1674
1675done:
1676	if (spd.nr_pages) {
1677		/*
1678		 * Drop the socket lock, otherwise we have reverse
1679		 * locking dependencies between sk_lock and i_mutex
1680		 * here as compared to sendfile(). We enter here
1681		 * with the socket lock held, and splice_to_pipe() will
1682		 * grab the pipe inode lock. For sendfile() emulation,
1683		 * we call into ->sendpage() with the i_mutex lock held
1684		 * and networking will grab the socket lock.
1685		 */
1686		release_sock(sk);
1687		ret = splice_to_pipe(pipe, &spd);
1688		lock_sock(sk);
 
 
 
 
1689	}
1690
1691	splice_shrink_spd(pipe, &spd);
1692	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693}
 
1694
1695/**
1696 *	skb_store_bits - store bits from kernel buffer to skb
1697 *	@skb: destination buffer
1698 *	@offset: offset in destination
1699 *	@from: source buffer
1700 *	@len: number of bytes to copy
1701 *
1702 *	Copy the specified number of bytes from the source buffer to the
1703 *	destination skb.  This function handles all the messy bits of
1704 *	traversing fragment lists and such.
1705 */
1706
1707int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1708{
1709	int start = skb_headlen(skb);
1710	struct sk_buff *frag_iter;
1711	int i, copy;
1712
1713	if (offset > (int)skb->len - len)
1714		goto fault;
1715
1716	if ((copy = start - offset) > 0) {
1717		if (copy > len)
1718			copy = len;
1719		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1720		if ((len -= copy) == 0)
1721			return 0;
1722		offset += copy;
1723		from += copy;
1724	}
1725
1726	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1727		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1728		int end;
1729
1730		WARN_ON(start > offset + len);
1731
1732		end = start + frag->size;
1733		if ((copy = end - offset) > 0) {
 
 
1734			u8 *vaddr;
1735
1736			if (copy > len)
1737				copy = len;
1738
1739			vaddr = kmap_skb_frag(frag);
1740			memcpy(vaddr + frag->page_offset + offset - start,
1741			       from, copy);
1742			kunmap_skb_frag(vaddr);
 
 
 
1743
1744			if ((len -= copy) == 0)
1745				return 0;
1746			offset += copy;
1747			from += copy;
1748		}
1749		start = end;
1750	}
1751
1752	skb_walk_frags(skb, frag_iter) {
1753		int end;
1754
1755		WARN_ON(start > offset + len);
1756
1757		end = start + frag_iter->len;
1758		if ((copy = end - offset) > 0) {
1759			if (copy > len)
1760				copy = len;
1761			if (skb_store_bits(frag_iter, offset - start,
1762					   from, copy))
1763				goto fault;
1764			if ((len -= copy) == 0)
1765				return 0;
1766			offset += copy;
1767			from += copy;
1768		}
1769		start = end;
1770	}
1771	if (!len)
1772		return 0;
1773
1774fault:
1775	return -EFAULT;
1776}
1777EXPORT_SYMBOL(skb_store_bits);
1778
1779/* Checksum skb data. */
1780
1781__wsum skb_checksum(const struct sk_buff *skb, int offset,
1782			  int len, __wsum csum)
1783{
1784	int start = skb_headlen(skb);
1785	int i, copy = start - offset;
1786	struct sk_buff *frag_iter;
1787	int pos = 0;
1788
1789	/* Checksum header. */
1790	if (copy > 0) {
1791		if (copy > len)
1792			copy = len;
1793		csum = csum_partial(skb->data + offset, copy, csum);
 
1794		if ((len -= copy) == 0)
1795			return csum;
1796		offset += copy;
1797		pos	= copy;
1798	}
1799
1800	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1801		int end;
 
1802
1803		WARN_ON(start > offset + len);
1804
1805		end = start + skb_shinfo(skb)->frags[i].size;
1806		if ((copy = end - offset) > 0) {
 
 
1807			__wsum csum2;
1808			u8 *vaddr;
1809			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1810
1811			if (copy > len)
1812				copy = len;
1813			vaddr = kmap_skb_frag(frag);
1814			csum2 = csum_partial(vaddr + frag->page_offset +
1815					     offset - start, copy, 0);
1816			kunmap_skb_frag(vaddr);
1817			csum = csum_block_add(csum, csum2, pos);
 
 
 
 
 
 
 
 
 
 
1818			if (!(len -= copy))
1819				return csum;
1820			offset += copy;
1821			pos    += copy;
1822		}
1823		start = end;
1824	}
1825
1826	skb_walk_frags(skb, frag_iter) {
1827		int end;
1828
1829		WARN_ON(start > offset + len);
1830
1831		end = start + frag_iter->len;
1832		if ((copy = end - offset) > 0) {
1833			__wsum csum2;
1834			if (copy > len)
1835				copy = len;
1836			csum2 = skb_checksum(frag_iter, offset - start,
1837					     copy, 0);
1838			csum = csum_block_add(csum, csum2, pos);
 
1839			if ((len -= copy) == 0)
1840				return csum;
1841			offset += copy;
1842			pos    += copy;
1843		}
1844		start = end;
1845	}
1846	BUG_ON(len);
1847
1848	return csum;
1849}
 
 
 
 
 
 
 
 
 
 
 
 
1850EXPORT_SYMBOL(skb_checksum);
1851
1852/* Both of above in one bottle. */
1853
1854__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1855				    u8 *to, int len, __wsum csum)
1856{
1857	int start = skb_headlen(skb);
1858	int i, copy = start - offset;
1859	struct sk_buff *frag_iter;
1860	int pos = 0;
1861
1862	/* Copy header. */
1863	if (copy > 0) {
1864		if (copy > len)
1865			copy = len;
1866		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1867						 copy, csum);
1868		if ((len -= copy) == 0)
1869			return csum;
1870		offset += copy;
1871		to     += copy;
1872		pos	= copy;
1873	}
1874
1875	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1876		int end;
1877
1878		WARN_ON(start > offset + len);
1879
1880		end = start + skb_shinfo(skb)->frags[i].size;
1881		if ((copy = end - offset) > 0) {
 
 
 
1882			__wsum csum2;
1883			u8 *vaddr;
1884			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1885
1886			if (copy > len)
1887				copy = len;
1888			vaddr = kmap_skb_frag(frag);
1889			csum2 = csum_partial_copy_nocheck(vaddr +
1890							  frag->page_offset +
1891							  offset - start, to,
1892							  copy, 0);
1893			kunmap_skb_frag(vaddr);
1894			csum = csum_block_add(csum, csum2, pos);
 
 
 
 
 
 
1895			if (!(len -= copy))
1896				return csum;
1897			offset += copy;
1898			to     += copy;
1899			pos    += copy;
1900		}
1901		start = end;
1902	}
1903
1904	skb_walk_frags(skb, frag_iter) {
1905		__wsum csum2;
1906		int end;
1907
1908		WARN_ON(start > offset + len);
1909
1910		end = start + frag_iter->len;
1911		if ((copy = end - offset) > 0) {
1912			if (copy > len)
1913				copy = len;
1914			csum2 = skb_copy_and_csum_bits(frag_iter,
1915						       offset - start,
1916						       to, copy, 0);
1917			csum = csum_block_add(csum, csum2, pos);
1918			if ((len -= copy) == 0)
1919				return csum;
1920			offset += copy;
1921			to     += copy;
1922			pos    += copy;
1923		}
1924		start = end;
1925	}
1926	BUG_ON(len);
1927	return csum;
1928}
1929EXPORT_SYMBOL(skb_copy_and_csum_bits);
1930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1932{
1933	__wsum csum;
1934	long csstart;
1935
1936	if (skb->ip_summed == CHECKSUM_PARTIAL)
1937		csstart = skb_checksum_start_offset(skb);
1938	else
1939		csstart = skb_headlen(skb);
1940
1941	BUG_ON(csstart > skb_headlen(skb));
1942
1943	skb_copy_from_linear_data(skb, to, csstart);
1944
1945	csum = 0;
1946	if (csstart != skb->len)
1947		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1948					      skb->len - csstart, 0);
1949
1950	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1951		long csstuff = csstart + skb->csum_offset;
1952
1953		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1954	}
1955}
1956EXPORT_SYMBOL(skb_copy_and_csum_dev);
1957
1958/**
1959 *	skb_dequeue - remove from the head of the queue
1960 *	@list: list to dequeue from
1961 *
1962 *	Remove the head of the list. The list lock is taken so the function
1963 *	may be used safely with other locking list functions. The head item is
1964 *	returned or %NULL if the list is empty.
1965 */
1966
1967struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1968{
1969	unsigned long flags;
1970	struct sk_buff *result;
1971
1972	spin_lock_irqsave(&list->lock, flags);
1973	result = __skb_dequeue(list);
1974	spin_unlock_irqrestore(&list->lock, flags);
1975	return result;
1976}
1977EXPORT_SYMBOL(skb_dequeue);
1978
1979/**
1980 *	skb_dequeue_tail - remove from the tail of the queue
1981 *	@list: list to dequeue from
1982 *
1983 *	Remove the tail of the list. The list lock is taken so the function
1984 *	may be used safely with other locking list functions. The tail item is
1985 *	returned or %NULL if the list is empty.
1986 */
1987struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1988{
1989	unsigned long flags;
1990	struct sk_buff *result;
1991
1992	spin_lock_irqsave(&list->lock, flags);
1993	result = __skb_dequeue_tail(list);
1994	spin_unlock_irqrestore(&list->lock, flags);
1995	return result;
1996}
1997EXPORT_SYMBOL(skb_dequeue_tail);
1998
1999/**
2000 *	skb_queue_purge - empty a list
2001 *	@list: list to empty
2002 *
2003 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2004 *	the list and one reference dropped. This function takes the list
2005 *	lock and is atomic with respect to other list locking functions.
2006 */
2007void skb_queue_purge(struct sk_buff_head *list)
2008{
2009	struct sk_buff *skb;
2010	while ((skb = skb_dequeue(list)) != NULL)
2011		kfree_skb(skb);
2012}
2013EXPORT_SYMBOL(skb_queue_purge);
2014
2015/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016 *	skb_queue_head - queue a buffer at the list head
2017 *	@list: list to use
2018 *	@newsk: buffer to queue
2019 *
2020 *	Queue a buffer at the start of the list. This function takes the
2021 *	list lock and can be used safely with other locking &sk_buff functions
2022 *	safely.
2023 *
2024 *	A buffer cannot be placed on two lists at the same time.
2025 */
2026void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2027{
2028	unsigned long flags;
2029
2030	spin_lock_irqsave(&list->lock, flags);
2031	__skb_queue_head(list, newsk);
2032	spin_unlock_irqrestore(&list->lock, flags);
2033}
2034EXPORT_SYMBOL(skb_queue_head);
2035
2036/**
2037 *	skb_queue_tail - queue a buffer at the list tail
2038 *	@list: list to use
2039 *	@newsk: buffer to queue
2040 *
2041 *	Queue a buffer at the tail of the list. This function takes the
2042 *	list lock and can be used safely with other locking &sk_buff functions
2043 *	safely.
2044 *
2045 *	A buffer cannot be placed on two lists at the same time.
2046 */
2047void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2048{
2049	unsigned long flags;
2050
2051	spin_lock_irqsave(&list->lock, flags);
2052	__skb_queue_tail(list, newsk);
2053	spin_unlock_irqrestore(&list->lock, flags);
2054}
2055EXPORT_SYMBOL(skb_queue_tail);
2056
2057/**
2058 *	skb_unlink	-	remove a buffer from a list
2059 *	@skb: buffer to remove
2060 *	@list: list to use
2061 *
2062 *	Remove a packet from a list. The list locks are taken and this
2063 *	function is atomic with respect to other list locked calls
2064 *
2065 *	You must know what list the SKB is on.
2066 */
2067void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2068{
2069	unsigned long flags;
2070
2071	spin_lock_irqsave(&list->lock, flags);
2072	__skb_unlink(skb, list);
2073	spin_unlock_irqrestore(&list->lock, flags);
2074}
2075EXPORT_SYMBOL(skb_unlink);
2076
2077/**
2078 *	skb_append	-	append a buffer
2079 *	@old: buffer to insert after
2080 *	@newsk: buffer to insert
2081 *	@list: list to use
2082 *
2083 *	Place a packet after a given packet in a list. The list locks are taken
2084 *	and this function is atomic with respect to other list locked calls.
2085 *	A buffer cannot be placed on two lists at the same time.
2086 */
2087void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2088{
2089	unsigned long flags;
2090
2091	spin_lock_irqsave(&list->lock, flags);
2092	__skb_queue_after(list, old, newsk);
2093	spin_unlock_irqrestore(&list->lock, flags);
2094}
2095EXPORT_SYMBOL(skb_append);
2096
2097/**
2098 *	skb_insert	-	insert a buffer
2099 *	@old: buffer to insert before
2100 *	@newsk: buffer to insert
2101 *	@list: list to use
2102 *
2103 *	Place a packet before a given packet in a list. The list locks are
2104 * 	taken and this function is atomic with respect to other list locked
2105 *	calls.
2106 *
2107 *	A buffer cannot be placed on two lists at the same time.
2108 */
2109void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2110{
2111	unsigned long flags;
2112
2113	spin_lock_irqsave(&list->lock, flags);
2114	__skb_insert(newsk, old->prev, old, list);
2115	spin_unlock_irqrestore(&list->lock, flags);
2116}
2117EXPORT_SYMBOL(skb_insert);
2118
2119static inline void skb_split_inside_header(struct sk_buff *skb,
2120					   struct sk_buff* skb1,
2121					   const u32 len, const int pos)
2122{
2123	int i;
2124
2125	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2126					 pos - len);
2127	/* And move data appendix as is. */
2128	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2129		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2130
2131	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2132	skb_shinfo(skb)->nr_frags  = 0;
2133	skb1->data_len		   = skb->data_len;
2134	skb1->len		   += skb1->data_len;
2135	skb->data_len		   = 0;
2136	skb->len		   = len;
2137	skb_set_tail_pointer(skb, len);
2138}
2139
2140static inline void skb_split_no_header(struct sk_buff *skb,
2141				       struct sk_buff* skb1,
2142				       const u32 len, int pos)
2143{
2144	int i, k = 0;
2145	const int nfrags = skb_shinfo(skb)->nr_frags;
2146
2147	skb_shinfo(skb)->nr_frags = 0;
2148	skb1->len		  = skb1->data_len = skb->len - len;
2149	skb->len		  = len;
2150	skb->data_len		  = len - pos;
2151
2152	for (i = 0; i < nfrags; i++) {
2153		int size = skb_shinfo(skb)->frags[i].size;
2154
2155		if (pos + size > len) {
2156			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2157
2158			if (pos < len) {
2159				/* Split frag.
2160				 * We have two variants in this case:
2161				 * 1. Move all the frag to the second
2162				 *    part, if it is possible. F.e.
2163				 *    this approach is mandatory for TUX,
2164				 *    where splitting is expensive.
2165				 * 2. Split is accurately. We make this.
2166				 */
2167				get_page(skb_shinfo(skb)->frags[i].page);
2168				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2169				skb_shinfo(skb1)->frags[0].size -= len - pos;
2170				skb_shinfo(skb)->frags[i].size	= len - pos;
2171				skb_shinfo(skb)->nr_frags++;
2172			}
2173			k++;
2174		} else
2175			skb_shinfo(skb)->nr_frags++;
2176		pos += size;
2177	}
2178	skb_shinfo(skb1)->nr_frags = k;
2179}
2180
2181/**
2182 * skb_split - Split fragmented skb to two parts at length len.
2183 * @skb: the buffer to split
2184 * @skb1: the buffer to receive the second part
2185 * @len: new length for skb
2186 */
2187void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2188{
2189	int pos = skb_headlen(skb);
2190
 
 
 
2191	if (len < pos)	/* Split line is inside header. */
2192		skb_split_inside_header(skb, skb1, len, pos);
2193	else		/* Second chunk has no header, nothing to copy. */
2194		skb_split_no_header(skb, skb1, len, pos);
2195}
2196EXPORT_SYMBOL(skb_split);
2197
2198/* Shifting from/to a cloned skb is a no-go.
2199 *
2200 * Caller cannot keep skb_shinfo related pointers past calling here!
2201 */
2202static int skb_prepare_for_shift(struct sk_buff *skb)
2203{
2204	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2205}
2206
2207/**
2208 * skb_shift - Shifts paged data partially from skb to another
2209 * @tgt: buffer into which tail data gets added
2210 * @skb: buffer from which the paged data comes from
2211 * @shiftlen: shift up to this many bytes
2212 *
2213 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2214 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2215 * It's up to caller to free skb if everything was shifted.
2216 *
2217 * If @tgt runs out of frags, the whole operation is aborted.
2218 *
2219 * Skb cannot include anything else but paged data while tgt is allowed
2220 * to have non-paged data as well.
2221 *
2222 * TODO: full sized shift could be optimized but that would need
2223 * specialized skb free'er to handle frags without up-to-date nr_frags.
2224 */
2225int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2226{
2227	int from, to, merge, todo;
2228	struct skb_frag_struct *fragfrom, *fragto;
2229
2230	BUG_ON(shiftlen > skb->len);
2231	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
 
 
 
 
2232
2233	todo = shiftlen;
2234	from = 0;
2235	to = skb_shinfo(tgt)->nr_frags;
2236	fragfrom = &skb_shinfo(skb)->frags[from];
2237
2238	/* Actual merge is delayed until the point when we know we can
2239	 * commit all, so that we don't have to undo partial changes
2240	 */
2241	if (!to ||
2242	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
 
2243		merge = -1;
2244	} else {
2245		merge = to - 1;
2246
2247		todo -= fragfrom->size;
2248		if (todo < 0) {
2249			if (skb_prepare_for_shift(skb) ||
2250			    skb_prepare_for_shift(tgt))
2251				return 0;
2252
2253			/* All previous frag pointers might be stale! */
2254			fragfrom = &skb_shinfo(skb)->frags[from];
2255			fragto = &skb_shinfo(tgt)->frags[merge];
2256
2257			fragto->size += shiftlen;
2258			fragfrom->size -= shiftlen;
2259			fragfrom->page_offset += shiftlen;
2260
2261			goto onlymerged;
2262		}
2263
2264		from++;
2265	}
2266
2267	/* Skip full, not-fitting skb to avoid expensive operations */
2268	if ((shiftlen == skb->len) &&
2269	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2270		return 0;
2271
2272	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2273		return 0;
2274
2275	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2276		if (to == MAX_SKB_FRAGS)
2277			return 0;
2278
2279		fragfrom = &skb_shinfo(skb)->frags[from];
2280		fragto = &skb_shinfo(tgt)->frags[to];
2281
2282		if (todo >= fragfrom->size) {
2283			*fragto = *fragfrom;
2284			todo -= fragfrom->size;
2285			from++;
2286			to++;
2287
2288		} else {
2289			get_page(fragfrom->page);
2290			fragto->page = fragfrom->page;
2291			fragto->page_offset = fragfrom->page_offset;
2292			fragto->size = todo;
2293
2294			fragfrom->page_offset += todo;
2295			fragfrom->size -= todo;
2296			todo = 0;
2297
2298			to++;
2299			break;
2300		}
2301	}
2302
2303	/* Ready to "commit" this state change to tgt */
2304	skb_shinfo(tgt)->nr_frags = to;
2305
2306	if (merge >= 0) {
2307		fragfrom = &skb_shinfo(skb)->frags[0];
2308		fragto = &skb_shinfo(tgt)->frags[merge];
2309
2310		fragto->size += fragfrom->size;
2311		put_page(fragfrom->page);
2312	}
2313
2314	/* Reposition in the original skb */
2315	to = 0;
2316	while (from < skb_shinfo(skb)->nr_frags)
2317		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2318	skb_shinfo(skb)->nr_frags = to;
2319
2320	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2321
2322onlymerged:
2323	/* Most likely the tgt won't ever need its checksum anymore, skb on
2324	 * the other hand might need it if it needs to be resent
2325	 */
2326	tgt->ip_summed = CHECKSUM_PARTIAL;
2327	skb->ip_summed = CHECKSUM_PARTIAL;
2328
2329	/* Yak, is it really working this way? Some helper please? */
2330	skb->len -= shiftlen;
2331	skb->data_len -= shiftlen;
2332	skb->truesize -= shiftlen;
2333	tgt->len += shiftlen;
2334	tgt->data_len += shiftlen;
2335	tgt->truesize += shiftlen;
2336
2337	return shiftlen;
2338}
2339
2340/**
2341 * skb_prepare_seq_read - Prepare a sequential read of skb data
2342 * @skb: the buffer to read
2343 * @from: lower offset of data to be read
2344 * @to: upper offset of data to be read
2345 * @st: state variable
2346 *
2347 * Initializes the specified state variable. Must be called before
2348 * invoking skb_seq_read() for the first time.
2349 */
2350void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2351			  unsigned int to, struct skb_seq_state *st)
2352{
2353	st->lower_offset = from;
2354	st->upper_offset = to;
2355	st->root_skb = st->cur_skb = skb;
2356	st->frag_idx = st->stepped_offset = 0;
2357	st->frag_data = NULL;
2358}
2359EXPORT_SYMBOL(skb_prepare_seq_read);
2360
2361/**
2362 * skb_seq_read - Sequentially read skb data
2363 * @consumed: number of bytes consumed by the caller so far
2364 * @data: destination pointer for data to be returned
2365 * @st: state variable
2366 *
2367 * Reads a block of skb data at &consumed relative to the
2368 * lower offset specified to skb_prepare_seq_read(). Assigns
2369 * the head of the data block to &data and returns the length
2370 * of the block or 0 if the end of the skb data or the upper
2371 * offset has been reached.
2372 *
2373 * The caller is not required to consume all of the data
2374 * returned, i.e. &consumed is typically set to the number
2375 * of bytes already consumed and the next call to
2376 * skb_seq_read() will return the remaining part of the block.
2377 *
2378 * Note 1: The size of each block of data returned can be arbitrary,
2379 *       this limitation is the cost for zerocopy seqeuental
2380 *       reads of potentially non linear data.
2381 *
2382 * Note 2: Fragment lists within fragments are not implemented
2383 *       at the moment, state->root_skb could be replaced with
2384 *       a stack for this purpose.
2385 */
2386unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2387			  struct skb_seq_state *st)
2388{
2389	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2390	skb_frag_t *frag;
2391
2392	if (unlikely(abs_offset >= st->upper_offset))
 
 
 
 
2393		return 0;
 
2394
2395next_skb:
2396	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2397
2398	if (abs_offset < block_limit && !st->frag_data) {
2399		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2400		return block_limit - abs_offset;
2401	}
2402
2403	if (st->frag_idx == 0 && !st->frag_data)
2404		st->stepped_offset += skb_headlen(st->cur_skb);
2405
2406	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2407		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2408		block_limit = frag->size + st->stepped_offset;
2409
2410		if (abs_offset < block_limit) {
2411			if (!st->frag_data)
2412				st->frag_data = kmap_skb_frag(frag);
2413
2414			*data = (u8 *) st->frag_data + frag->page_offset +
2415				(abs_offset - st->stepped_offset);
2416
2417			return block_limit - abs_offset;
2418		}
2419
2420		if (st->frag_data) {
2421			kunmap_skb_frag(st->frag_data);
2422			st->frag_data = NULL;
2423		}
2424
2425		st->frag_idx++;
2426		st->stepped_offset += frag->size;
2427	}
2428
2429	if (st->frag_data) {
2430		kunmap_skb_frag(st->frag_data);
2431		st->frag_data = NULL;
2432	}
2433
2434	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2435		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2436		st->frag_idx = 0;
2437		goto next_skb;
2438	} else if (st->cur_skb->next) {
2439		st->cur_skb = st->cur_skb->next;
2440		st->frag_idx = 0;
2441		goto next_skb;
2442	}
2443
2444	return 0;
2445}
2446EXPORT_SYMBOL(skb_seq_read);
2447
2448/**
2449 * skb_abort_seq_read - Abort a sequential read of skb data
2450 * @st: state variable
2451 *
2452 * Must be called if skb_seq_read() was not called until it
2453 * returned 0.
2454 */
2455void skb_abort_seq_read(struct skb_seq_state *st)
2456{
2457	if (st->frag_data)
2458		kunmap_skb_frag(st->frag_data);
2459}
2460EXPORT_SYMBOL(skb_abort_seq_read);
2461
2462#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2463
2464static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2465					  struct ts_config *conf,
2466					  struct ts_state *state)
2467{
2468	return skb_seq_read(offset, text, TS_SKB_CB(state));
2469}
2470
2471static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2472{
2473	skb_abort_seq_read(TS_SKB_CB(state));
2474}
2475
2476/**
2477 * skb_find_text - Find a text pattern in skb data
2478 * @skb: the buffer to look in
2479 * @from: search offset
2480 * @to: search limit
2481 * @config: textsearch configuration
2482 * @state: uninitialized textsearch state variable
2483 *
2484 * Finds a pattern in the skb data according to the specified
2485 * textsearch configuration. Use textsearch_next() to retrieve
2486 * subsequent occurrences of the pattern. Returns the offset
2487 * to the first occurrence or UINT_MAX if no match was found.
2488 */
2489unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2490			   unsigned int to, struct ts_config *config,
2491			   struct ts_state *state)
2492{
 
2493	unsigned int ret;
2494
2495	config->get_next_block = skb_ts_get_next_block;
2496	config->finish = skb_ts_finish;
2497
2498	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2499
2500	ret = textsearch_find(config, state);
2501	return (ret <= to - from ? ret : UINT_MAX);
2502}
2503EXPORT_SYMBOL(skb_find_text);
2504
2505/**
2506 * skb_append_datato_frags: - append the user data to a skb
2507 * @sk: sock  structure
2508 * @skb: skb structure to be appened with user data.
2509 * @getfrag: call back function to be used for getting the user data
2510 * @from: pointer to user message iov
2511 * @length: length of the iov message
2512 *
2513 * Description: This procedure append the user data in the fragment part
2514 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2515 */
2516int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2517			int (*getfrag)(void *from, char *to, int offset,
2518					int len, int odd, struct sk_buff *skb),
2519			void *from, int length)
2520{
2521	int frg_cnt = 0;
2522	skb_frag_t *frag = NULL;
2523	struct page *page = NULL;
2524	int copy, left;
2525	int offset = 0;
2526	int ret;
2527
2528	do {
2529		/* Return error if we don't have space for new frag */
2530		frg_cnt = skb_shinfo(skb)->nr_frags;
2531		if (frg_cnt >= MAX_SKB_FRAGS)
2532			return -EFAULT;
2533
2534		/* allocate a new page for next frag */
2535		page = alloc_pages(sk->sk_allocation, 0);
2536
2537		/* If alloc_page fails just return failure and caller will
2538		 * free previous allocated pages by doing kfree_skb()
2539		 */
2540		if (page == NULL)
2541			return -ENOMEM;
2542
2543		/* initialize the next frag */
2544		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2545		skb->truesize += PAGE_SIZE;
2546		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2547
2548		/* get the new initialized frag */
2549		frg_cnt = skb_shinfo(skb)->nr_frags;
2550		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2551
2552		/* copy the user data to page */
2553		left = PAGE_SIZE - frag->page_offset;
2554		copy = (length > left)? left : length;
2555
2556		ret = getfrag(from, (page_address(frag->page) +
2557			    frag->page_offset + frag->size),
2558			    offset, copy, 0, skb);
2559		if (ret < 0)
2560			return -EFAULT;
2561
2562		/* copy was successful so update the size parameters */
2563		frag->size += copy;
2564		skb->len += copy;
2565		skb->data_len += copy;
2566		offset += copy;
2567		length -= copy;
2568
2569	} while (length > 0);
 
 
 
 
 
 
 
2570
2571	return 0;
2572}
2573EXPORT_SYMBOL(skb_append_datato_frags);
2574
2575/**
2576 *	skb_pull_rcsum - pull skb and update receive checksum
2577 *	@skb: buffer to update
2578 *	@len: length of data pulled
2579 *
2580 *	This function performs an skb_pull on the packet and updates
2581 *	the CHECKSUM_COMPLETE checksum.  It should be used on
2582 *	receive path processing instead of skb_pull unless you know
2583 *	that the checksum difference is zero (e.g., a valid IP header)
2584 *	or you are setting ip_summed to CHECKSUM_NONE.
2585 */
2586unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2587{
 
 
2588	BUG_ON(len > skb->len);
2589	skb->len -= len;
2590	BUG_ON(skb->len < skb->data_len);
2591	skb_postpull_rcsum(skb, skb->data, len);
2592	return skb->data += len;
2593}
2594EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2596/**
2597 *	skb_segment - Perform protocol segmentation on skb.
2598 *	@skb: buffer to segment
2599 *	@features: features for the output path (see dev->features)
2600 *
2601 *	This function performs segmentation on the given skb.  It returns
2602 *	a pointer to the first in a list of new skbs for the segments.
2603 *	In case of error it returns ERR_PTR(err).
2604 */
2605struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
 
2606{
2607	struct sk_buff *segs = NULL;
2608	struct sk_buff *tail = NULL;
2609	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2610	unsigned int mss = skb_shinfo(skb)->gso_size;
2611	unsigned int doffset = skb->data - skb_mac_header(skb);
 
 
2612	unsigned int offset = doffset;
 
 
2613	unsigned int headroom;
2614	unsigned int len;
2615	int sg = !!(features & NETIF_F_SG);
2616	int nfrags = skb_shinfo(skb)->nr_frags;
 
2617	int err = -ENOMEM;
2618	int i = 0;
2619	int pos;
2620
2621	__skb_push(skb, doffset);
2622	headroom = skb_headroom(skb);
2623	pos = skb_headlen(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624
2625	do {
2626		struct sk_buff *nskb;
2627		skb_frag_t *frag;
2628		int hsize;
2629		int size;
2630
2631		len = skb->len - offset;
2632		if (len > mss)
2633			len = mss;
 
 
 
 
2634
2635		hsize = skb_headlen(skb) - offset;
2636		if (hsize < 0)
2637			hsize = 0;
2638		if (hsize > len || !sg)
2639			hsize = len;
2640
2641		if (!hsize && i >= nfrags) {
2642			BUG_ON(fskb->len != len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644			pos += len;
2645			nskb = skb_clone(fskb, GFP_ATOMIC);
2646			fskb = fskb->next;
2647
2648			if (unlikely(!nskb))
2649				goto err;
2650
2651			hsize = skb_end_pointer(nskb) - nskb->head;
 
 
 
 
 
2652			if (skb_cow_head(nskb, doffset + headroom)) {
2653				kfree_skb(nskb);
2654				goto err;
2655			}
2656
2657			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2658					  hsize;
2659			skb_release_head_state(nskb);
2660			__skb_push(nskb, doffset);
2661		} else {
2662			nskb = alloc_skb(hsize + doffset + headroom,
2663					 GFP_ATOMIC);
 
2664
2665			if (unlikely(!nskb))
2666				goto err;
2667
2668			skb_reserve(nskb, headroom);
2669			__skb_put(nskb, doffset);
2670		}
2671
2672		if (segs)
2673			tail->next = nskb;
2674		else
2675			segs = nskb;
2676		tail = nskb;
2677
2678		__copy_skb_header(nskb, skb);
2679		nskb->mac_len = skb->mac_len;
2680
2681		/* nskb and skb might have different headroom */
2682		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2683			nskb->csum_start += skb_headroom(nskb) - headroom;
2684
2685		skb_reset_mac_header(nskb);
2686		skb_set_network_header(nskb, skb->mac_len);
2687		nskb->transport_header = (nskb->network_header +
2688					  skb_network_header_len(skb));
2689		skb_copy_from_linear_data(skb, nskb->data, doffset);
2690
2691		if (fskb != skb_shinfo(skb)->frag_list)
2692			continue;
 
 
 
 
2693
2694		if (!sg) {
2695			nskb->ip_summed = CHECKSUM_NONE;
2696			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2697							    skb_put(nskb, len),
2698							    len, 0);
 
 
 
 
 
 
 
 
 
 
 
2699			continue;
2700		}
2701
2702		frag = skb_shinfo(nskb)->frags;
2703
2704		skb_copy_from_linear_data_offset(skb, offset,
2705						 skb_put(nskb, hsize), hsize);
2706
2707		while (pos < offset + len && i < nfrags) {
2708			*frag = skb_shinfo(skb)->frags[i];
2709			get_page(frag->page);
2710			size = frag->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711
2712			if (pos < offset) {
2713				frag->page_offset += offset - pos;
2714				frag->size -= offset - pos;
2715			}
2716
2717			skb_shinfo(nskb)->nr_frags++;
2718
2719			if (pos + size <= offset + len) {
2720				i++;
 
2721				pos += size;
2722			} else {
2723				frag->size -= pos + size - (offset + len);
2724				goto skip_fraglist;
2725			}
2726
2727			frag++;
2728		}
2729
2730		if (pos < offset + len) {
2731			struct sk_buff *fskb2 = fskb;
 
 
2732
2733			BUG_ON(pos + fskb->len != offset + len);
 
 
 
 
2734
2735			pos += fskb->len;
2736			fskb = fskb->next;
 
 
 
 
 
 
 
2737
2738			if (fskb2->next) {
2739				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2740				if (!fskb2)
2741					goto err;
2742			} else
2743				skb_get(fskb2);
 
 
 
 
 
 
 
 
2744
2745			SKB_FRAG_ASSERT(nskb);
2746			skb_shinfo(nskb)->frag_list = fskb2;
 
 
 
 
 
 
2747		}
2748
2749skip_fraglist:
2750		nskb->data_len = len - hsize;
2751		nskb->len += nskb->data_len;
2752		nskb->truesize += nskb->data_len;
2753	} while ((offset += len) < skb->len);
2754
 
 
 
 
 
 
 
 
 
2755	return segs;
2756
2757err:
2758	while ((skb = segs)) {
2759		segs = skb->next;
2760		kfree_skb(skb);
2761	}
2762	return ERR_PTR(err);
2763}
2764EXPORT_SYMBOL_GPL(skb_segment);
2765
2766int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2767{
2768	struct sk_buff *p = *head;
2769	struct sk_buff *nskb;
2770	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2771	struct skb_shared_info *pinfo = skb_shinfo(p);
2772	unsigned int headroom;
2773	unsigned int len = skb_gro_len(skb);
2774	unsigned int offset = skb_gro_offset(skb);
2775	unsigned int headlen = skb_headlen(skb);
 
 
 
2776
2777	if (p->len + len >= 65536)
2778		return -E2BIG;
2779
2780	if (pinfo->frag_list)
2781		goto merge;
2782	else if (headlen <= offset) {
 
2783		skb_frag_t *frag;
2784		skb_frag_t *frag2;
2785		int i = skbinfo->nr_frags;
2786		int nr_frags = pinfo->nr_frags + i;
2787
2788		offset -= headlen;
2789
2790		if (nr_frags > MAX_SKB_FRAGS)
2791			return -E2BIG;
2792
 
2793		pinfo->nr_frags = nr_frags;
2794		skbinfo->nr_frags = 0;
2795
2796		frag = pinfo->frags + nr_frags;
2797		frag2 = skbinfo->frags + i;
2798		do {
2799			*--frag = *--frag2;
2800		} while (--i);
2801
2802		frag->page_offset += offset;
2803		frag->size -= offset;
 
 
 
 
2804
2805		skb->truesize -= skb->data_len;
2806		skb->len -= skb->data_len;
2807		skb->data_len = 0;
2808
2809		NAPI_GRO_CB(skb)->free = 1;
2810		goto done;
2811	} else if (skb_gro_len(p) != pinfo->gso_size)
2812		return -E2BIG;
2813
2814	headroom = skb_headroom(p);
2815	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2816	if (unlikely(!nskb))
2817		return -ENOMEM;
2818
2819	__copy_skb_header(nskb, p);
2820	nskb->mac_len = p->mac_len;
 
 
 
 
 
 
 
 
 
2821
2822	skb_reserve(nskb, headroom);
2823	__skb_put(nskb, skb_gro_offset(p));
2824
2825	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2826	skb_set_network_header(nskb, skb_network_offset(p));
2827	skb_set_transport_header(nskb, skb_transport_offset(p));
2828
2829	__skb_pull(p, skb_gro_offset(p));
2830	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2831	       p->data - skb_mac_header(p));
2832
2833	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2834	skb_shinfo(nskb)->frag_list = p;
2835	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2836	pinfo->gso_size = 0;
2837	skb_header_release(p);
2838	nskb->prev = p;
2839
2840	nskb->data_len += p->len;
2841	nskb->truesize += p->len;
2842	nskb->len += p->len;
2843
2844	*head = nskb;
2845	nskb->next = p->next;
2846	p->next = NULL;
2847
2848	p = nskb;
2849
2850merge:
 
2851	if (offset > headlen) {
2852		unsigned int eat = offset - headlen;
2853
2854		skbinfo->frags[0].page_offset += eat;
2855		skbinfo->frags[0].size -= eat;
2856		skb->data_len -= eat;
2857		skb->len -= eat;
2858		offset = headlen;
2859	}
2860
2861	__skb_pull(skb, offset);
2862
2863	p->prev->next = skb;
2864	p->prev = skb;
2865	skb_header_release(skb);
 
 
 
 
2866
2867done:
2868	NAPI_GRO_CB(p)->count++;
2869	p->data_len += len;
2870	p->truesize += len;
2871	p->len += len;
2872
 
 
 
 
2873	NAPI_GRO_CB(skb)->same_flow = 1;
2874	return 0;
2875}
2876EXPORT_SYMBOL_GPL(skb_gro_receive);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877
2878void __init skb_init(void)
2879{
2880	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2881					      sizeof(struct sk_buff),
2882					      0,
2883					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 
 
2884					      NULL);
2885	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2886						(2*sizeof(struct sk_buff)) +
2887						sizeof(atomic_t),
2888						0,
2889						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2890						NULL);
 
2891}
2892
2893/**
2894 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2895 *	@skb: Socket buffer containing the buffers to be mapped
2896 *	@sg: The scatter-gather list to map into
2897 *	@offset: The offset into the buffer's contents to start mapping
2898 *	@len: Length of buffer space to be mapped
2899 *
2900 *	Fill the specified scatter-gather list with mappings/pointers into a
2901 *	region of the buffer space attached to a socket buffer.
2902 */
2903static int
2904__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 
2905{
2906	int start = skb_headlen(skb);
2907	int i, copy = start - offset;
2908	struct sk_buff *frag_iter;
2909	int elt = 0;
2910
 
 
 
2911	if (copy > 0) {
2912		if (copy > len)
2913			copy = len;
2914		sg_set_buf(sg, skb->data + offset, copy);
2915		elt++;
2916		if ((len -= copy) == 0)
2917			return elt;
2918		offset += copy;
2919	}
2920
2921	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2922		int end;
2923
2924		WARN_ON(start > offset + len);
2925
2926		end = start + skb_shinfo(skb)->frags[i].size;
2927		if ((copy = end - offset) > 0) {
2928			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
 
2929
2930			if (copy > len)
2931				copy = len;
2932			sg_set_page(&sg[elt], frag->page, copy,
2933					frag->page_offset+offset-start);
2934			elt++;
2935			if (!(len -= copy))
2936				return elt;
2937			offset += copy;
2938		}
2939		start = end;
2940	}
2941
2942	skb_walk_frags(skb, frag_iter) {
2943		int end;
2944
2945		WARN_ON(start > offset + len);
2946
2947		end = start + frag_iter->len;
2948		if ((copy = end - offset) > 0) {
 
 
 
2949			if (copy > len)
2950				copy = len;
2951			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2952					      copy);
 
 
 
2953			if ((len -= copy) == 0)
2954				return elt;
2955			offset += copy;
2956		}
2957		start = end;
2958	}
2959	BUG_ON(len);
2960	return elt;
2961}
2962
 
 
 
 
 
 
 
 
 
 
 
 
2963int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2964{
2965	int nsg = __skb_to_sgvec(skb, sg, offset, len);
 
 
 
2966
2967	sg_mark_end(&sg[nsg - 1]);
2968
2969	return nsg;
2970}
2971EXPORT_SYMBOL_GPL(skb_to_sgvec);
2972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973/**
2974 *	skb_cow_data - Check that a socket buffer's data buffers are writable
2975 *	@skb: The socket buffer to check.
2976 *	@tailbits: Amount of trailing space to be added
2977 *	@trailer: Returned pointer to the skb where the @tailbits space begins
2978 *
2979 *	Make sure that the data buffers attached to a socket buffer are
2980 *	writable. If they are not, private copies are made of the data buffers
2981 *	and the socket buffer is set to use these instead.
2982 *
2983 *	If @tailbits is given, make sure that there is space to write @tailbits
2984 *	bytes of data beyond current end of socket buffer.  @trailer will be
2985 *	set to point to the skb in which this space begins.
2986 *
2987 *	The number of scatterlist elements required to completely map the
2988 *	COW'd and extended socket buffer will be returned.
2989 */
2990int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2991{
2992	int copyflag;
2993	int elt;
2994	struct sk_buff *skb1, **skb_p;
2995
2996	/* If skb is cloned or its head is paged, reallocate
2997	 * head pulling out all the pages (pages are considered not writable
2998	 * at the moment even if they are anonymous).
2999	 */
3000	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3001	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3002		return -ENOMEM;
3003
3004	/* Easy case. Most of packets will go this way. */
3005	if (!skb_has_frag_list(skb)) {
3006		/* A little of trouble, not enough of space for trailer.
3007		 * This should not happen, when stack is tuned to generate
3008		 * good frames. OK, on miss we reallocate and reserve even more
3009		 * space, 128 bytes is fair. */
3010
3011		if (skb_tailroom(skb) < tailbits &&
3012		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3013			return -ENOMEM;
3014
3015		/* Voila! */
3016		*trailer = skb;
3017		return 1;
3018	}
3019
3020	/* Misery. We are in troubles, going to mincer fragments... */
3021
3022	elt = 1;
3023	skb_p = &skb_shinfo(skb)->frag_list;
3024	copyflag = 0;
3025
3026	while ((skb1 = *skb_p) != NULL) {
3027		int ntail = 0;
3028
3029		/* The fragment is partially pulled by someone,
3030		 * this can happen on input. Copy it and everything
3031		 * after it. */
3032
3033		if (skb_shared(skb1))
3034			copyflag = 1;
3035
3036		/* If the skb is the last, worry about trailer. */
3037
3038		if (skb1->next == NULL && tailbits) {
3039			if (skb_shinfo(skb1)->nr_frags ||
3040			    skb_has_frag_list(skb1) ||
3041			    skb_tailroom(skb1) < tailbits)
3042				ntail = tailbits + 128;
3043		}
3044
3045		if (copyflag ||
3046		    skb_cloned(skb1) ||
3047		    ntail ||
3048		    skb_shinfo(skb1)->nr_frags ||
3049		    skb_has_frag_list(skb1)) {
3050			struct sk_buff *skb2;
3051
3052			/* Fuck, we are miserable poor guys... */
3053			if (ntail == 0)
3054				skb2 = skb_copy(skb1, GFP_ATOMIC);
3055			else
3056				skb2 = skb_copy_expand(skb1,
3057						       skb_headroom(skb1),
3058						       ntail,
3059						       GFP_ATOMIC);
3060			if (unlikely(skb2 == NULL))
3061				return -ENOMEM;
3062
3063			if (skb1->sk)
3064				skb_set_owner_w(skb2, skb1->sk);
3065
3066			/* Looking around. Are we still alive?
3067			 * OK, link new skb, drop old one */
3068
3069			skb2->next = skb1->next;
3070			*skb_p = skb2;
3071			kfree_skb(skb1);
3072			skb1 = skb2;
3073		}
3074		elt++;
3075		*trailer = skb1;
3076		skb_p = &skb1->next;
3077	}
3078
3079	return elt;
3080}
3081EXPORT_SYMBOL_GPL(skb_cow_data);
3082
3083static void sock_rmem_free(struct sk_buff *skb)
3084{
3085	struct sock *sk = skb->sk;
3086
3087	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3088}
3089
 
 
 
 
 
 
 
 
 
3090/*
3091 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3092 */
3093int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3094{
3095	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3096	    (unsigned)sk->sk_rcvbuf)
3097		return -ENOMEM;
3098
3099	skb_orphan(skb);
3100	skb->sk = sk;
3101	skb->destructor = sock_rmem_free;
3102	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
 
3103
3104	/* before exiting rcu section, make sure dst is refcounted */
3105	skb_dst_force(skb);
3106
3107	skb_queue_tail(&sk->sk_error_queue, skb);
3108	if (!sock_flag(sk, SOCK_DEAD))
3109		sk->sk_data_ready(sk, skb->len);
3110	return 0;
3111}
3112EXPORT_SYMBOL(sock_queue_err_skb);
3113
3114void skb_tstamp_tx(struct sk_buff *orig_skb,
3115		struct skb_shared_hwtstamps *hwtstamps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116{
3117	struct sock *sk = orig_skb->sk;
3118	struct sock_exterr_skb *serr;
3119	struct sk_buff *skb;
3120	int err;
3121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122	if (!sk)
3123		return;
3124
3125	skb = skb_clone(orig_skb, GFP_ATOMIC);
3126	if (!skb)
3127		return;
3128
3129	if (hwtstamps) {
3130		*skb_hwtstamps(skb) =
3131			*hwtstamps;
 
 
 
 
 
 
 
 
 
 
 
3132	} else {
3133		/*
3134		 * no hardware time stamps available,
3135		 * so keep the shared tx_flags and only
3136		 * store software time stamp
3137		 */
3138		skb->tstamp = ktime_get_real();
3139	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3140
3141	serr = SKB_EXT_ERR(skb);
3142	memset(serr, 0, sizeof(*serr));
3143	serr->ee.ee_errno = ENOMSG;
3144	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3145
3146	err = sock_queue_err_skb(sk, skb);
3147
 
 
 
 
 
 
 
3148	if (err)
3149		kfree_skb(skb);
3150}
3151EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3152
3153
3154/**
3155 * skb_partial_csum_set - set up and verify partial csum values for packet
3156 * @skb: the skb to set
3157 * @start: the number of bytes after skb->data to start checksumming.
3158 * @off: the offset from start to place the checksum.
3159 *
3160 * For untrusted partially-checksummed packets, we need to make sure the values
3161 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3162 *
3163 * This function checks and sets those values and skb->ip_summed: if this
3164 * returns false you should drop the packet.
3165 */
3166bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3167{
3168	if (unlikely(start > skb_headlen(skb)) ||
3169	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3170		if (net_ratelimit())
3171			printk(KERN_WARNING
3172			       "bad partial csum: csum=%u/%u len=%u\n",
3173			       start, off, skb_headlen(skb));
3174		return false;
3175	}
3176	skb->ip_summed = CHECKSUM_PARTIAL;
3177	skb->csum_start = skb_headroom(skb) + start;
3178	skb->csum_offset = off;
 
3179	return true;
3180}
3181EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3183void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3184{
3185	if (net_ratelimit())
3186		pr_warning("%s: received packets cannot be forwarded"
3187			   " while LRO is enabled\n", skb->dev->name);
3188}
3189EXPORT_SYMBOL(__skb_warn_lro_forwarding);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *	Fixes:
   9 *		Alan Cox	:	Fixed the worst of the load
  10 *					balancer bugs.
  11 *		Dave Platt	:	Interrupt stacking fix.
  12 *	Richard Kooijman	:	Timestamp fixes.
  13 *		Alan Cox	:	Changed buffer format.
  14 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  15 *		Linus Torvalds	:	Better skb_clone.
  16 *		Alan Cox	:	Added skb_copy.
  17 *		Alan Cox	:	Added all the changed routines Linus
  18 *					only put in the headers
  19 *		Ray VanTassle	:	Fixed --skb->lock in free
  20 *		Alan Cox	:	skb_copy copy arp field
  21 *		Andi Kleen	:	slabified it.
  22 *		Robert Olsson	:	Removed skb_head_pool
  23 *
  24 *	NOTE:
  25 *		The __skb_ routines should be called with interrupts
  26 *	disabled, or you better be *real* sure that the operation is atomic
  27 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *	or via disabling bottom half handlers, etc).
 
 
 
 
 
  29 */
  30
  31/*
  32 *	The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
 
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/ip6_checksum.h>
  69#include <net/xfrm.h>
  70#include <net/mpls.h>
  71#include <net/mptcp.h>
  72
  73#include <linux/uaccess.h>
 
  74#include <trace/events/skb.h>
  75#include <linux/highmem.h>
  76#include <linux/capability.h>
  77#include <linux/user_namespace.h>
  78#include <linux/indirect_call_wrapper.h>
  79
  80#include "datagram.h"
  81
  82struct kmem_cache *skbuff_head_cache __ro_after_init;
  83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  84#ifdef CONFIG_SKB_EXTENSIONS
  85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  86#endif
  87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  88EXPORT_SYMBOL(sysctl_max_skb_frags);
  89
  90/**
  91 *	skb_panic - private function for out-of-line support
  92 *	@skb:	buffer
  93 *	@sz:	size
  94 *	@addr:	address
  95 *	@msg:	skb_over_panic or skb_under_panic
  96 *
  97 *	Out-of-line support for skb_put() and skb_push().
  98 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  99 *	Keep out of line to prevent kernel bloat.
 100 *	__builtin_return_address is not used because it is not always reliable.
 101 */
 102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 103		      const char msg[])
 104{
 105	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 106		 msg, addr, skb->len, sz, skb->head, skb->data,
 107		 (unsigned long)skb->tail, (unsigned long)skb->end,
 108		 skb->dev ? skb->dev->name : "<NULL>");
 109	BUG();
 110}
 111
 112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 
 113{
 114	skb_panic(skb, sz, addr, __func__);
 115}
 116
 117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 
 118{
 119	skb_panic(skb, sz, addr, __func__);
 120}
 121
 
 
 
 
 
 
 
 
 
 
 
 
 122/*
 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 124 * the caller if emergency pfmemalloc reserves are being used. If it is and
 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 126 * may be used. Otherwise, the packet data may be discarded until enough
 127 * memory is free
 128 */
 129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 130	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 131
 132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 133			       unsigned long ip, bool *pfmemalloc)
 
 
 
 
 
 
 
 134{
 135	void *obj;
 136	bool ret_pfmemalloc = false;
 
 
 
 
 
 137
 138	/*
 139	 * Try a regular allocation, when that fails and we're not entitled
 140	 * to the reserves, fail.
 141	 */
 142	obj = kmalloc_node_track_caller(size,
 143					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 144					node);
 145	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 146		goto out;
 147
 148	/* Try again but now we are using pfmemalloc reserves */
 149	ret_pfmemalloc = true;
 150	obj = kmalloc_node_track_caller(size, flags, node);
 151
 152out:
 153	if (pfmemalloc)
 154		*pfmemalloc = ret_pfmemalloc;
 155
 156	return obj;
 157}
 158
 159/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 160 *	'private' fields and also do memory statistics to find all the
 161 *	[BEEP] leaks.
 162 *
 163 */
 164
 165/**
 166 *	__alloc_skb	-	allocate a network buffer
 167 *	@size: size to allocate
 168 *	@gfp_mask: allocation mask
 169 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 170 *		instead of head cache and allocate a cloned (child) skb.
 171 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 172 *		allocations in case the data is required for writeback
 173 *	@node: numa node to allocate memory on
 174 *
 175 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 176 *	tail room of at least size bytes. The object has a reference count
 177 *	of one. The return is the buffer. On a failure the return is %NULL.
 178 *
 179 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 180 *	%GFP_ATOMIC.
 181 */
 182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 183			    int flags, int node)
 184{
 185	struct kmem_cache *cache;
 186	struct skb_shared_info *shinfo;
 187	struct sk_buff *skb;
 188	u8 *data;
 189	bool pfmemalloc;
 190
 191	cache = (flags & SKB_ALLOC_FCLONE)
 192		? skbuff_fclone_cache : skbuff_head_cache;
 193
 194	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 195		gfp_mask |= __GFP_MEMALLOC;
 196
 197	/* Get the HEAD */
 198	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 199	if (!skb)
 200		goto out;
 201	prefetchw(skb);
 202
 203	/* We do our best to align skb_shared_info on a separate cache
 204	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 205	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 206	 * Both skb->head and skb_shared_info are cache line aligned.
 207	 */
 208	size = SKB_DATA_ALIGN(size);
 209	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 210	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 211	if (!data)
 212		goto nodata;
 213	/* kmalloc(size) might give us more room than requested.
 214	 * Put skb_shared_info exactly at the end of allocated zone,
 215	 * to allow max possible filling before reallocation.
 216	 */
 217	size = SKB_WITH_OVERHEAD(ksize(data));
 218	prefetchw(data + size);
 219
 220	/*
 221	 * Only clear those fields we need to clear, not those that we will
 222	 * actually initialise below. Hence, don't put any more fields after
 223	 * the tail pointer in struct sk_buff!
 224	 */
 225	memset(skb, 0, offsetof(struct sk_buff, tail));
 226	/* Account for allocated memory : skb + skb->head */
 227	skb->truesize = SKB_TRUESIZE(size);
 228	skb->pfmemalloc = pfmemalloc;
 229	refcount_set(&skb->users, 1);
 230	skb->head = data;
 231	skb->data = data;
 232	skb_reset_tail_pointer(skb);
 233	skb->end = skb->tail + size;
 234	skb->mac_header = (typeof(skb->mac_header))~0U;
 235	skb->transport_header = (typeof(skb->transport_header))~0U;
 
 236
 237	/* make sure we initialize shinfo sequentially */
 238	shinfo = skb_shinfo(skb);
 239	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 240	atomic_set(&shinfo->dataref, 1);
 
 241
 242	if (flags & SKB_ALLOC_FCLONE) {
 243		struct sk_buff_fclones *fclones;
 244
 245		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 246
 
 
 247		skb->fclone = SKB_FCLONE_ORIG;
 248		refcount_set(&fclones->fclone_ref, 1);
 249
 250		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 251	}
 252out:
 253	return skb;
 254nodata:
 255	kmem_cache_free(cache, skb);
 256	skb = NULL;
 257	goto out;
 258}
 259EXPORT_SYMBOL(__alloc_skb);
 260
 261/* Caller must provide SKB that is memset cleared */
 262static struct sk_buff *__build_skb_around(struct sk_buff *skb,
 263					  void *data, unsigned int frag_size)
 264{
 265	struct skb_shared_info *shinfo;
 266	unsigned int size = frag_size ? : ksize(data);
 267
 268	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 269
 270	/* Assumes caller memset cleared SKB */
 271	skb->truesize = SKB_TRUESIZE(size);
 272	refcount_set(&skb->users, 1);
 273	skb->head = data;
 274	skb->data = data;
 275	skb_reset_tail_pointer(skb);
 276	skb->end = skb->tail + size;
 277	skb->mac_header = (typeof(skb->mac_header))~0U;
 278	skb->transport_header = (typeof(skb->transport_header))~0U;
 279
 280	/* make sure we initialize shinfo sequentially */
 281	shinfo = skb_shinfo(skb);
 282	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 283	atomic_set(&shinfo->dataref, 1);
 284
 285	return skb;
 286}
 287
 288/**
 289 * __build_skb - build a network buffer
 290 * @data: data buffer provided by caller
 291 * @frag_size: size of data, or 0 if head was kmalloced
 292 *
 293 * Allocate a new &sk_buff. Caller provides space holding head and
 294 * skb_shared_info. @data must have been allocated by kmalloc() only if
 295 * @frag_size is 0, otherwise data should come from the page allocator
 296 *  or vmalloc()
 297 * The return is the new skb buffer.
 298 * On a failure the return is %NULL, and @data is not freed.
 299 * Notes :
 300 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 301 *  Driver should add room at head (NET_SKB_PAD) and
 302 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 303 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 304 *  before giving packet to stack.
 305 *  RX rings only contains data buffers, not full skbs.
 306 */
 307struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 308{
 309	struct sk_buff *skb;
 310
 311	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 312	if (unlikely(!skb))
 313		return NULL;
 314
 315	memset(skb, 0, offsetof(struct sk_buff, tail));
 316
 317	return __build_skb_around(skb, data, frag_size);
 318}
 319
 320/* build_skb() is wrapper over __build_skb(), that specifically
 321 * takes care of skb->head and skb->pfmemalloc
 322 * This means that if @frag_size is not zero, then @data must be backed
 323 * by a page fragment, not kmalloc() or vmalloc()
 324 */
 325struct sk_buff *build_skb(void *data, unsigned int frag_size)
 326{
 327	struct sk_buff *skb = __build_skb(data, frag_size);
 328
 329	if (skb && frag_size) {
 330		skb->head_frag = 1;
 331		if (page_is_pfmemalloc(virt_to_head_page(data)))
 332			skb->pfmemalloc = 1;
 333	}
 334	return skb;
 335}
 336EXPORT_SYMBOL(build_skb);
 337
 338/**
 339 * build_skb_around - build a network buffer around provided skb
 340 * @skb: sk_buff provide by caller, must be memset cleared
 341 * @data: data buffer provided by caller
 342 * @frag_size: size of data, or 0 if head was kmalloced
 343 */
 344struct sk_buff *build_skb_around(struct sk_buff *skb,
 345				 void *data, unsigned int frag_size)
 346{
 347	if (unlikely(!skb))
 348		return NULL;
 349
 350	skb = __build_skb_around(skb, data, frag_size);
 351
 352	if (skb && frag_size) {
 353		skb->head_frag = 1;
 354		if (page_is_pfmemalloc(virt_to_head_page(data)))
 355			skb->pfmemalloc = 1;
 356	}
 357	return skb;
 358}
 359EXPORT_SYMBOL(build_skb_around);
 360
 361#define NAPI_SKB_CACHE_SIZE	64
 362
 363struct napi_alloc_cache {
 364	struct page_frag_cache page;
 365	unsigned int skb_count;
 366	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 367};
 368
 369static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 370static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 371
 372static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 373{
 374	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 375
 376	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 377}
 378
 379void *napi_alloc_frag(unsigned int fragsz)
 380{
 381	fragsz = SKB_DATA_ALIGN(fragsz);
 382
 383	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 384}
 385EXPORT_SYMBOL(napi_alloc_frag);
 386
 387/**
 388 * netdev_alloc_frag - allocate a page fragment
 389 * @fragsz: fragment size
 390 *
 391 * Allocates a frag from a page for receive buffer.
 392 * Uses GFP_ATOMIC allocations.
 393 */
 394void *netdev_alloc_frag(unsigned int fragsz)
 395{
 396	struct page_frag_cache *nc;
 397	void *data;
 398
 399	fragsz = SKB_DATA_ALIGN(fragsz);
 400	if (in_irq() || irqs_disabled()) {
 401		nc = this_cpu_ptr(&netdev_alloc_cache);
 402		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
 403	} else {
 404		local_bh_disable();
 405		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
 406		local_bh_enable();
 407	}
 408	return data;
 409}
 410EXPORT_SYMBOL(netdev_alloc_frag);
 411
 412/**
 413 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 414 *	@dev: network device to receive on
 415 *	@len: length to allocate
 416 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 417 *
 418 *	Allocate a new &sk_buff and assign it a usage count of one. The
 419 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 420 *	the headroom they think they need without accounting for the
 421 *	built in space. The built in space is used for optimisations.
 422 *
 423 *	%NULL is returned if there is no free memory.
 424 */
 425struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 426				   gfp_t gfp_mask)
 427{
 428	struct page_frag_cache *nc;
 429	struct sk_buff *skb;
 430	bool pfmemalloc;
 431	void *data;
 432
 433	len += NET_SKB_PAD;
 434
 435	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 436	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 437		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 438		if (!skb)
 439			goto skb_fail;
 440		goto skb_success;
 441	}
 442
 443	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 444	len = SKB_DATA_ALIGN(len);
 445
 446	if (sk_memalloc_socks())
 447		gfp_mask |= __GFP_MEMALLOC;
 448
 449	if (in_irq() || irqs_disabled()) {
 450		nc = this_cpu_ptr(&netdev_alloc_cache);
 451		data = page_frag_alloc(nc, len, gfp_mask);
 452		pfmemalloc = nc->pfmemalloc;
 453	} else {
 454		local_bh_disable();
 455		nc = this_cpu_ptr(&napi_alloc_cache.page);
 456		data = page_frag_alloc(nc, len, gfp_mask);
 457		pfmemalloc = nc->pfmemalloc;
 458		local_bh_enable();
 459	}
 460
 461	if (unlikely(!data))
 462		return NULL;
 463
 464	skb = __build_skb(data, len);
 465	if (unlikely(!skb)) {
 466		skb_free_frag(data);
 467		return NULL;
 468	}
 469
 470	if (pfmemalloc)
 471		skb->pfmemalloc = 1;
 472	skb->head_frag = 1;
 473
 474skb_success:
 475	skb_reserve(skb, NET_SKB_PAD);
 476	skb->dev = dev;
 477
 478skb_fail:
 479	return skb;
 480}
 481EXPORT_SYMBOL(__netdev_alloc_skb);
 482
 483/**
 484 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 485 *	@napi: napi instance this buffer was allocated for
 486 *	@len: length to allocate
 487 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 488 *
 489 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 490 *	attempt to allocate the head from a special reserved region used
 491 *	only for NAPI Rx allocation.  By doing this we can save several
 492 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 493 *
 494 *	%NULL is returned if there is no free memory.
 495 */
 496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 497				 gfp_t gfp_mask)
 498{
 499	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 500	struct sk_buff *skb;
 501	void *data;
 502
 503	len += NET_SKB_PAD + NET_IP_ALIGN;
 504
 505	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 506	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 507		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 508		if (!skb)
 509			goto skb_fail;
 510		goto skb_success;
 511	}
 512
 513	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 514	len = SKB_DATA_ALIGN(len);
 515
 516	if (sk_memalloc_socks())
 517		gfp_mask |= __GFP_MEMALLOC;
 518
 519	data = page_frag_alloc(&nc->page, len, gfp_mask);
 520	if (unlikely(!data))
 521		return NULL;
 522
 523	skb = __build_skb(data, len);
 524	if (unlikely(!skb)) {
 525		skb_free_frag(data);
 526		return NULL;
 527	}
 528
 529	if (nc->page.pfmemalloc)
 530		skb->pfmemalloc = 1;
 531	skb->head_frag = 1;
 532
 533skb_success:
 534	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 535	skb->dev = napi->dev;
 536
 537skb_fail:
 538	return skb;
 539}
 540EXPORT_SYMBOL(__napi_alloc_skb);
 541
 542void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 543		     int size, unsigned int truesize)
 544{
 545	skb_fill_page_desc(skb, i, page, off, size);
 546	skb->len += size;
 547	skb->data_len += size;
 548	skb->truesize += truesize;
 549}
 550EXPORT_SYMBOL(skb_add_rx_frag);
 551
 552void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 553			  unsigned int truesize)
 
 
 
 
 
 
 
 
 
 
 
 554{
 555	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 556
 557	skb_frag_size_add(frag, size);
 558	skb->len += size;
 559	skb->data_len += size;
 560	skb->truesize += truesize;
 561}
 562EXPORT_SYMBOL(skb_coalesce_rx_frag);
 563
 564static void skb_drop_list(struct sk_buff **listp)
 565{
 566	kfree_skb_list(*listp);
 
 567	*listp = NULL;
 
 
 
 
 
 
 568}
 569
 570static inline void skb_drop_fraglist(struct sk_buff *skb)
 571{
 572	skb_drop_list(&skb_shinfo(skb)->frag_list);
 573}
 574
 575static void skb_clone_fraglist(struct sk_buff *skb)
 576{
 577	struct sk_buff *list;
 578
 579	skb_walk_frags(skb, list)
 580		skb_get(list);
 581}
 582
 583static void skb_free_head(struct sk_buff *skb)
 584{
 585	unsigned char *head = skb->head;
 586
 587	if (skb->head_frag)
 588		skb_free_frag(head);
 589	else
 590		kfree(head);
 591}
 592
 593static void skb_release_data(struct sk_buff *skb)
 594{
 595	struct skb_shared_info *shinfo = skb_shinfo(skb);
 596	int i;
 
 
 
 
 
 
 597
 598	if (skb->cloned &&
 599	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 600			      &shinfo->dataref))
 601		return;
 
 
 602
 603	for (i = 0; i < shinfo->nr_frags; i++)
 604		__skb_frag_unref(&shinfo->frags[i]);
 
 
 605
 606	if (shinfo->frag_list)
 607		kfree_skb_list(shinfo->frag_list);
 608
 609	skb_zcopy_clear(skb, true);
 610	skb_free_head(skb);
 611}
 612
 613/*
 614 *	Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618	struct sk_buff_fclones *fclones;
 
 619
 620	switch (skb->fclone) {
 621	case SKB_FCLONE_UNAVAILABLE:
 622		kmem_cache_free(skbuff_head_cache, skb);
 623		return;
 624
 625	case SKB_FCLONE_ORIG:
 626		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 
 
 
 627
 628		/* We usually free the clone (TX completion) before original skb
 629		 * This test would have no chance to be true for the clone,
 630		 * while here, branch prediction will be good.
 
 
 
 631		 */
 632		if (refcount_read(&fclones->fclone_ref) == 1)
 633			goto fastpath;
 634		break;
 635
 636	default: /* SKB_FCLONE_CLONE */
 637		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638		break;
 639	}
 640	if (!refcount_dec_and_test(&fclones->fclone_ref))
 641		return;
 642fastpath:
 643	kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646void skb_release_head_state(struct sk_buff *skb)
 647{
 648	skb_dst_drop(skb);
 
 
 
 649	if (skb->destructor) {
 650		WARN_ON(in_irq());
 651		skb->destructor(skb);
 652	}
 653#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 654	nf_conntrack_put(skb_nfct(skb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 655#endif
 656	skb_ext_put(skb);
 657}
 658
 659/* Free everything but the sk_buff shell. */
 660static void skb_release_all(struct sk_buff *skb)
 661{
 662	skb_release_head_state(skb);
 663	if (likely(skb->head))
 664		skb_release_data(skb);
 665}
 666
 667/**
 668 *	__kfree_skb - private function
 669 *	@skb: buffer
 670 *
 671 *	Free an sk_buff. Release anything attached to the buffer.
 672 *	Clean the state. This is an internal helper function. Users should
 673 *	always call kfree_skb
 674 */
 675
 676void __kfree_skb(struct sk_buff *skb)
 677{
 678	skb_release_all(skb);
 679	kfree_skbmem(skb);
 680}
 681EXPORT_SYMBOL(__kfree_skb);
 682
 683/**
 684 *	kfree_skb - free an sk_buff
 685 *	@skb: buffer to free
 686 *
 687 *	Drop a reference to the buffer and free it if the usage count has
 688 *	hit zero.
 689 */
 690void kfree_skb(struct sk_buff *skb)
 691{
 692	if (!skb_unref(skb))
 
 
 
 
 693		return;
 694
 695	trace_kfree_skb(skb, __builtin_return_address(0));
 696	__kfree_skb(skb);
 697}
 698EXPORT_SYMBOL(kfree_skb);
 699
 700void kfree_skb_list(struct sk_buff *segs)
 701{
 702	while (segs) {
 703		struct sk_buff *next = segs->next;
 704
 705		kfree_skb(segs);
 706		segs = next;
 707	}
 708}
 709EXPORT_SYMBOL(kfree_skb_list);
 710
 711/* Dump skb information and contents.
 712 *
 713 * Must only be called from net_ratelimit()-ed paths.
 714 *
 715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
 716 */
 717void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 718{
 719	static atomic_t can_dump_full = ATOMIC_INIT(5);
 720	struct skb_shared_info *sh = skb_shinfo(skb);
 721	struct net_device *dev = skb->dev;
 722	struct sock *sk = skb->sk;
 723	struct sk_buff *list_skb;
 724	bool has_mac, has_trans;
 725	int headroom, tailroom;
 726	int i, len, seg_len;
 727
 728	if (full_pkt)
 729		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
 730
 731	if (full_pkt)
 732		len = skb->len;
 733	else
 734		len = min_t(int, skb->len, MAX_HEADER + 128);
 735
 736	headroom = skb_headroom(skb);
 737	tailroom = skb_tailroom(skb);
 738
 739	has_mac = skb_mac_header_was_set(skb);
 740	has_trans = skb_transport_header_was_set(skb);
 741
 742	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 743	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 744	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 745	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 746	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 747	       level, skb->len, headroom, skb_headlen(skb), tailroom,
 748	       has_mac ? skb->mac_header : -1,
 749	       has_mac ? skb_mac_header_len(skb) : -1,
 750	       skb->network_header,
 751	       has_trans ? skb_network_header_len(skb) : -1,
 752	       has_trans ? skb->transport_header : -1,
 753	       sh->tx_flags, sh->nr_frags,
 754	       sh->gso_size, sh->gso_type, sh->gso_segs,
 755	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
 756	       skb->csum_valid, skb->csum_level,
 757	       skb->hash, skb->sw_hash, skb->l4_hash,
 758	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 759
 760	if (dev)
 761		printk("%sdev name=%s feat=0x%pNF\n",
 762		       level, dev->name, &dev->features);
 763	if (sk)
 764		printk("%ssk family=%hu type=%u proto=%u\n",
 765		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 766
 767	if (full_pkt && headroom)
 768		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 769			       16, 1, skb->head, headroom, false);
 770
 771	seg_len = min_t(int, skb_headlen(skb), len);
 772	if (seg_len)
 773		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 774			       16, 1, skb->data, seg_len, false);
 775	len -= seg_len;
 776
 777	if (full_pkt && tailroom)
 778		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 779			       16, 1, skb_tail_pointer(skb), tailroom, false);
 780
 781	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 782		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 783		u32 p_off, p_len, copied;
 784		struct page *p;
 785		u8 *vaddr;
 786
 787		skb_frag_foreach_page(frag, skb_frag_off(frag),
 788				      skb_frag_size(frag), p, p_off, p_len,
 789				      copied) {
 790			seg_len = min_t(int, p_len, len);
 791			vaddr = kmap_atomic(p);
 792			print_hex_dump(level, "skb frag:     ",
 793				       DUMP_PREFIX_OFFSET,
 794				       16, 1, vaddr + p_off, seg_len, false);
 795			kunmap_atomic(vaddr);
 796			len -= seg_len;
 797			if (!len)
 798				break;
 799		}
 800	}
 801
 802	if (full_pkt && skb_has_frag_list(skb)) {
 803		printk("skb fraglist:\n");
 804		skb_walk_frags(skb, list_skb)
 805			skb_dump(level, list_skb, true);
 806	}
 807}
 808EXPORT_SYMBOL(skb_dump);
 809
 810/**
 811 *	skb_tx_error - report an sk_buff xmit error
 812 *	@skb: buffer that triggered an error
 813 *
 814 *	Report xmit error if a device callback is tracking this skb.
 815 *	skb must be freed afterwards.
 816 */
 817void skb_tx_error(struct sk_buff *skb)
 818{
 819	skb_zcopy_clear(skb, true);
 820}
 821EXPORT_SYMBOL(skb_tx_error);
 822
 823#ifdef CONFIG_TRACEPOINTS
 824/**
 825 *	consume_skb - free an skbuff
 826 *	@skb: buffer to free
 827 *
 828 *	Drop a ref to the buffer and free it if the usage count has hit zero
 829 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 830 *	is being dropped after a failure and notes that
 831 */
 832void consume_skb(struct sk_buff *skb)
 833{
 834	if (!skb_unref(skb))
 
 
 
 
 835		return;
 836
 837	trace_consume_skb(skb);
 838	__kfree_skb(skb);
 839}
 840EXPORT_SYMBOL(consume_skb);
 841#endif
 842
 843/**
 844 *	consume_stateless_skb - free an skbuff, assuming it is stateless
 845 *	@skb: buffer to free
 
 846 *
 847 *	Alike consume_skb(), but this variant assumes that this is the last
 848 *	skb reference and all the head states have been already dropped
 
 
 
 
 849 */
 850void __consume_stateless_skb(struct sk_buff *skb)
 851{
 852	trace_consume_skb(skb);
 853	skb_release_data(skb);
 854	kfree_skbmem(skb);
 855}
 856
 857void __kfree_skb_flush(void)
 858{
 859	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 860
 861	/* flush skb_cache if containing objects */
 862	if (nc->skb_count) {
 863		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 864				     nc->skb_cache);
 865		nc->skb_count = 0;
 866	}
 867}
 868
 869static inline void _kfree_skb_defer(struct sk_buff *skb)
 870{
 871	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 872
 873	/* drop skb->head and call any destructors for packet */
 874	skb_release_all(skb);
 
 875
 876	/* record skb to CPU local list */
 877	nc->skb_cache[nc->skb_count++] = skb;
 878
 879#ifdef CONFIG_SLUB
 880	/* SLUB writes into objects when freeing */
 881	prefetchw(skb);
 882#endif
 883
 884	/* flush skb_cache if it is filled */
 885	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 886		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 887				     nc->skb_cache);
 888		nc->skb_count = 0;
 889	}
 890}
 891void __kfree_skb_defer(struct sk_buff *skb)
 892{
 893	_kfree_skb_defer(skb);
 894}
 895
 896void napi_consume_skb(struct sk_buff *skb, int budget)
 897{
 898	if (unlikely(!skb))
 899		return;
 900
 901	/* Zero budget indicate non-NAPI context called us, like netpoll */
 902	if (unlikely(!budget)) {
 903		dev_consume_skb_any(skb);
 904		return;
 905	}
 906
 907	if (!skb_unref(skb))
 908		return;
 909
 910	/* if reaching here SKB is ready to free */
 911	trace_consume_skb(skb);
 912
 913	/* if SKB is a clone, don't handle this case */
 914	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 915		__kfree_skb(skb);
 916		return;
 917	}
 918
 919	_kfree_skb_defer(skb);
 920}
 921EXPORT_SYMBOL(napi_consume_skb);
 922
 923/* Make sure a field is enclosed inside headers_start/headers_end section */
 924#define CHECK_SKB_FIELD(field) \
 925	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 926		     offsetof(struct sk_buff, headers_start));	\
 927	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 928		     offsetof(struct sk_buff, headers_end));	\
 929
 930static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 931{
 932	new->tstamp		= old->tstamp;
 933	/* We do not copy old->sk */
 934	new->dev		= old->dev;
 935	memcpy(new->cb, old->cb, sizeof(old->cb));
 
 
 936	skb_dst_copy(new, old);
 937	__skb_ext_copy(new, old);
 938	__nf_copy(new, old, false);
 939
 940	/* Note : this field could be in headers_start/headers_end section
 941	 * It is not yet because we do not want to have a 16 bit hole
 942	 */
 943	new->queue_mapping = old->queue_mapping;
 944
 945	memcpy(&new->headers_start, &old->headers_start,
 946	       offsetof(struct sk_buff, headers_end) -
 947	       offsetof(struct sk_buff, headers_start));
 948	CHECK_SKB_FIELD(protocol);
 949	CHECK_SKB_FIELD(csum);
 950	CHECK_SKB_FIELD(hash);
 951	CHECK_SKB_FIELD(priority);
 952	CHECK_SKB_FIELD(skb_iif);
 953	CHECK_SKB_FIELD(vlan_proto);
 954	CHECK_SKB_FIELD(vlan_tci);
 955	CHECK_SKB_FIELD(transport_header);
 956	CHECK_SKB_FIELD(network_header);
 957	CHECK_SKB_FIELD(mac_header);
 958	CHECK_SKB_FIELD(inner_protocol);
 959	CHECK_SKB_FIELD(inner_transport_header);
 960	CHECK_SKB_FIELD(inner_network_header);
 961	CHECK_SKB_FIELD(inner_mac_header);
 962	CHECK_SKB_FIELD(mark);
 963#ifdef CONFIG_NETWORK_SECMARK
 964	CHECK_SKB_FIELD(secmark);
 965#endif
 966#ifdef CONFIG_NET_RX_BUSY_POLL
 967	CHECK_SKB_FIELD(napi_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968#endif
 969#ifdef CONFIG_XPS
 970	CHECK_SKB_FIELD(sender_cpu);
 
 
 971#endif
 972#ifdef CONFIG_NET_SCHED
 973	CHECK_SKB_FIELD(tc_index);
 974#endif
 
 975
 
 976}
 977
 978/*
 979 * You should not add any new code to this function.  Add it to
 980 * __copy_skb_header above instead.
 981 */
 982static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 983{
 984#define C(x) n->x = skb->x
 985
 986	n->next = n->prev = NULL;
 987	n->sk = NULL;
 988	__copy_skb_header(n, skb);
 989
 990	C(len);
 991	C(data_len);
 992	C(mac_len);
 993	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 994	n->cloned = 1;
 995	n->nohdr = 0;
 996	n->peeked = 0;
 997	C(pfmemalloc);
 998	n->destructor = NULL;
 999	C(tail);
1000	C(end);
1001	C(head);
1002	C(head_frag);
1003	C(data);
1004	C(truesize);
1005	refcount_set(&n->users, 1);
1006
1007	atomic_inc(&(skb_shinfo(skb)->dataref));
1008	skb->cloned = 1;
1009
1010	return n;
1011#undef C
1012}
1013
1014/**
1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016 * @first: first sk_buff of the msg
1017 */
1018struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019{
1020	struct sk_buff *n;
1021
1022	n = alloc_skb(0, GFP_ATOMIC);
1023	if (!n)
1024		return NULL;
1025
1026	n->len = first->len;
1027	n->data_len = first->len;
1028	n->truesize = first->truesize;
1029
1030	skb_shinfo(n)->frag_list = first;
1031
1032	__copy_skb_header(n, first);
1033	n->destructor = NULL;
1034
1035	return n;
1036}
1037EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038
1039/**
1040 *	skb_morph	-	morph one skb into another
1041 *	@dst: the skb to receive the contents
1042 *	@src: the skb to supply the contents
1043 *
1044 *	This is identical to skb_clone except that the target skb is
1045 *	supplied by the user.
1046 *
1047 *	The target skb is returned upon exit.
1048 */
1049struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050{
1051	skb_release_all(dst);
1052	return __skb_clone(dst, src);
1053}
1054EXPORT_SYMBOL_GPL(skb_morph);
1055
1056int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057{
1058	unsigned long max_pg, num_pg, new_pg, old_pg;
1059	struct user_struct *user;
1060
1061	if (capable(CAP_IPC_LOCK) || !size)
1062		return 0;
1063
1064	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1065	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066	user = mmp->user ? : current_user();
1067
1068	do {
1069		old_pg = atomic_long_read(&user->locked_vm);
1070		new_pg = old_pg + num_pg;
1071		if (new_pg > max_pg)
1072			return -ENOBUFS;
1073	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074		 old_pg);
1075
1076	if (!mmp->user) {
1077		mmp->user = get_uid(user);
1078		mmp->num_pg = num_pg;
1079	} else {
1080		mmp->num_pg += num_pg;
1081	}
1082
1083	return 0;
1084}
1085EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086
1087void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088{
1089	if (mmp->user) {
1090		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091		free_uid(mmp->user);
1092	}
1093}
1094EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095
1096struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097{
1098	struct ubuf_info *uarg;
1099	struct sk_buff *skb;
1100
1101	WARN_ON_ONCE(!in_task());
1102
1103	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104	if (!skb)
1105		return NULL;
1106
1107	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108	uarg = (void *)skb->cb;
1109	uarg->mmp.user = NULL;
1110
1111	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112		kfree_skb(skb);
1113		return NULL;
1114	}
1115
1116	uarg->callback = sock_zerocopy_callback;
1117	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118	uarg->len = 1;
1119	uarg->bytelen = size;
1120	uarg->zerocopy = 1;
1121	refcount_set(&uarg->refcnt, 1);
1122	sock_hold(sk);
1123
1124	return uarg;
1125}
1126EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127
1128static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129{
1130	return container_of((void *)uarg, struct sk_buff, cb);
1131}
1132
1133struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134					struct ubuf_info *uarg)
1135{
1136	if (uarg) {
1137		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1138		u32 bytelen, next;
1139
1140		/* realloc only when socket is locked (TCP, UDP cork),
1141		 * so uarg->len and sk_zckey access is serialized
1142		 */
1143		if (!sock_owned_by_user(sk)) {
1144			WARN_ON_ONCE(1);
1145			return NULL;
1146		}
1147
1148		bytelen = uarg->bytelen + size;
1149		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150			/* TCP can create new skb to attach new uarg */
1151			if (sk->sk_type == SOCK_STREAM)
1152				goto new_alloc;
1153			return NULL;
1154		}
1155
1156		next = (u32)atomic_read(&sk->sk_zckey);
1157		if ((u32)(uarg->id + uarg->len) == next) {
1158			if (mm_account_pinned_pages(&uarg->mmp, size))
1159				return NULL;
1160			uarg->len++;
1161			uarg->bytelen = bytelen;
1162			atomic_set(&sk->sk_zckey, ++next);
1163
1164			/* no extra ref when appending to datagram (MSG_MORE) */
1165			if (sk->sk_type == SOCK_STREAM)
1166				sock_zerocopy_get(uarg);
1167
1168			return uarg;
1169		}
1170	}
1171
1172new_alloc:
1173	return sock_zerocopy_alloc(sk, size);
1174}
1175EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176
1177static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178{
1179	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180	u32 old_lo, old_hi;
1181	u64 sum_len;
1182
1183	old_lo = serr->ee.ee_info;
1184	old_hi = serr->ee.ee_data;
1185	sum_len = old_hi - old_lo + 1ULL + len;
1186
1187	if (sum_len >= (1ULL << 32))
1188		return false;
1189
1190	if (lo != old_hi + 1)
1191		return false;
1192
1193	serr->ee.ee_data += len;
1194	return true;
1195}
1196
1197void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198{
1199	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200	struct sock_exterr_skb *serr;
1201	struct sock *sk = skb->sk;
1202	struct sk_buff_head *q;
1203	unsigned long flags;
1204	u32 lo, hi;
1205	u16 len;
1206
1207	mm_unaccount_pinned_pages(&uarg->mmp);
1208
1209	/* if !len, there was only 1 call, and it was aborted
1210	 * so do not queue a completion notification
1211	 */
1212	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213		goto release;
1214
1215	len = uarg->len;
1216	lo = uarg->id;
1217	hi = uarg->id + len - 1;
1218
1219	serr = SKB_EXT_ERR(skb);
1220	memset(serr, 0, sizeof(*serr));
1221	serr->ee.ee_errno = 0;
1222	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223	serr->ee.ee_data = hi;
1224	serr->ee.ee_info = lo;
1225	if (!success)
1226		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227
1228	q = &sk->sk_error_queue;
1229	spin_lock_irqsave(&q->lock, flags);
1230	tail = skb_peek_tail(q);
1231	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1233		__skb_queue_tail(q, skb);
1234		skb = NULL;
1235	}
1236	spin_unlock_irqrestore(&q->lock, flags);
1237
1238	sk->sk_error_report(sk);
1239
1240release:
1241	consume_skb(skb);
1242	sock_put(sk);
1243}
1244EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245
1246void sock_zerocopy_put(struct ubuf_info *uarg)
1247{
1248	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249		if (uarg->callback)
1250			uarg->callback(uarg, uarg->zerocopy);
1251		else
1252			consume_skb(skb_from_uarg(uarg));
1253	}
1254}
1255EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256
1257void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258{
1259	if (uarg) {
1260		struct sock *sk = skb_from_uarg(uarg)->sk;
1261
1262		atomic_dec(&sk->sk_zckey);
1263		uarg->len--;
1264
1265		if (have_uref)
1266			sock_zerocopy_put(uarg);
1267	}
1268}
1269EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270
1271int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272{
1273	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274}
1275EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276
1277int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278			     struct msghdr *msg, int len,
1279			     struct ubuf_info *uarg)
1280{
1281	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282	struct iov_iter orig_iter = msg->msg_iter;
1283	int err, orig_len = skb->len;
1284
1285	/* An skb can only point to one uarg. This edge case happens when
1286	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287	 */
1288	if (orig_uarg && uarg != orig_uarg)
1289		return -EEXIST;
1290
1291	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293		struct sock *save_sk = skb->sk;
1294
1295		/* Streams do not free skb on error. Reset to prev state. */
1296		msg->msg_iter = orig_iter;
1297		skb->sk = sk;
1298		___pskb_trim(skb, orig_len);
1299		skb->sk = save_sk;
1300		return err;
1301	}
1302
1303	skb_zcopy_set(skb, uarg, NULL);
1304	return skb->len - orig_len;
1305}
1306EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307
1308static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309			      gfp_t gfp_mask)
1310{
1311	if (skb_zcopy(orig)) {
1312		if (skb_zcopy(nskb)) {
1313			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314			if (!gfp_mask) {
1315				WARN_ON_ONCE(1);
1316				return -ENOMEM;
1317			}
1318			if (skb_uarg(nskb) == skb_uarg(orig))
1319				return 0;
1320			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321				return -EIO;
1322		}
1323		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324	}
1325	return 0;
1326}
1327
1328/**
1329 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1330 *	@skb: the skb to modify
1331 *	@gfp_mask: allocation priority
1332 *
1333 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1334 *	It will copy all frags into kernel and drop the reference
1335 *	to userspace pages.
1336 *
1337 *	If this function is called from an interrupt gfp_mask() must be
1338 *	%GFP_ATOMIC.
1339 *
1340 *	Returns 0 on success or a negative error code on failure
1341 *	to allocate kernel memory to copy to.
1342 */
1343int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344{
 
1345	int num_frags = skb_shinfo(skb)->nr_frags;
1346	struct page *page, *head = NULL;
1347	int i, new_frags;
1348	u32 d_off;
1349
1350	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351		return -EINVAL;
 
1352
1353	if (!num_frags)
1354		goto release;
1355
1356	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357	for (i = 0; i < new_frags; i++) {
1358		page = alloc_page(gfp_mask);
1359		if (!page) {
1360			while (head) {
1361				struct page *next = (struct page *)page_private(head);
1362				put_page(head);
1363				head = next;
1364			}
1365			return -ENOMEM;
1366		}
1367		set_page_private(page, (unsigned long)head);
 
 
 
 
1368		head = page;
1369	}
1370
1371	page = head;
1372	d_off = 0;
1373	for (i = 0; i < num_frags; i++) {
1374		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375		u32 p_off, p_len, copied;
1376		struct page *p;
1377		u8 *vaddr;
1378
1379		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380				      p, p_off, p_len, copied) {
1381			u32 copy, done = 0;
1382			vaddr = kmap_atomic(p);
1383
1384			while (done < p_len) {
1385				if (d_off == PAGE_SIZE) {
1386					d_off = 0;
1387					page = (struct page *)page_private(page);
1388				}
1389				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390				memcpy(page_address(page) + d_off,
1391				       vaddr + p_off + done, copy);
1392				done += copy;
1393				d_off += copy;
1394			}
1395			kunmap_atomic(vaddr);
1396		}
1397	}
1398
1399	/* skb frags release userspace buffers */
1400	for (i = 0; i < num_frags; i++)
1401		skb_frag_unref(skb, i);
1402
1403	/* skb frags point to kernel buffers */
1404	for (i = 0; i < new_frags - 1; i++) {
1405		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406		head = (struct page *)page_private(head);
 
1407	}
1408	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409	skb_shinfo(skb)->nr_frags = new_frags;
1410
1411release:
1412	skb_zcopy_clear(skb, false);
1413	return 0;
1414}
1415EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416
1417/**
1418 *	skb_clone	-	duplicate an sk_buff
1419 *	@skb: buffer to clone
1420 *	@gfp_mask: allocation priority
1421 *
1422 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423 *	copies share the same packet data but not structure. The new
1424 *	buffer has a reference count of 1. If the allocation fails the
1425 *	function returns %NULL otherwise the new buffer is returned.
1426 *
1427 *	If this function is called from an interrupt gfp_mask() must be
1428 *	%GFP_ATOMIC.
1429 */
1430
1431struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432{
1433	struct sk_buff_fclones *fclones = container_of(skb,
1434						       struct sk_buff_fclones,
1435						       skb1);
1436	struct sk_buff *n;
1437
1438	if (skb_orphan_frags(skb, gfp_mask))
1439		return NULL;
 
 
1440
 
1441	if (skb->fclone == SKB_FCLONE_ORIG &&
1442	    refcount_read(&fclones->fclone_ref) == 1) {
1443		n = &fclones->skb2;
1444		refcount_set(&fclones->fclone_ref, 2);
 
1445	} else {
1446		if (skb_pfmemalloc(skb))
1447			gfp_mask |= __GFP_MEMALLOC;
1448
1449		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450		if (!n)
1451			return NULL;
1452
 
 
1453		n->fclone = SKB_FCLONE_UNAVAILABLE;
1454	}
1455
1456	return __skb_clone(n, skb);
1457}
1458EXPORT_SYMBOL(skb_clone);
1459
1460void skb_headers_offset_update(struct sk_buff *skb, int off)
1461{
1462	/* Only adjust this if it actually is csum_start rather than csum */
1463	if (skb->ip_summed == CHECKSUM_PARTIAL)
1464		skb->csum_start += off;
1465	/* {transport,network,mac}_header and tail are relative to skb->head */
1466	skb->transport_header += off;
1467	skb->network_header   += off;
1468	if (skb_mac_header_was_set(skb))
1469		skb->mac_header += off;
1470	skb->inner_transport_header += off;
1471	skb->inner_network_header += off;
1472	skb->inner_mac_header += off;
1473}
1474EXPORT_SYMBOL(skb_headers_offset_update);
1475
1476void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477{
1478	__copy_skb_header(new, old);
1479
 
 
 
 
 
 
 
1480	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483}
1484EXPORT_SYMBOL(skb_copy_header);
1485
1486static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487{
1488	if (skb_pfmemalloc(skb))
1489		return SKB_ALLOC_RX;
1490	return 0;
1491}
1492
1493/**
1494 *	skb_copy	-	create private copy of an sk_buff
1495 *	@skb: buffer to copy
1496 *	@gfp_mask: allocation priority
1497 *
1498 *	Make a copy of both an &sk_buff and its data. This is used when the
1499 *	caller wishes to modify the data and needs a private copy of the
1500 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1501 *	on success. The returned buffer has a reference count of 1.
1502 *
1503 *	As by-product this function converts non-linear &sk_buff to linear
1504 *	one, so that &sk_buff becomes completely private and caller is allowed
1505 *	to modify all the data of returned buffer. This means that this
1506 *	function is not recommended for use in circumstances when only
1507 *	header is going to be modified. Use pskb_copy() instead.
1508 */
1509
1510struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511{
1512	int headerlen = skb_headroom(skb);
1513	unsigned int size = skb_end_offset(skb) + skb->data_len;
1514	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516
1517	if (!n)
1518		return NULL;
1519
1520	/* Set the data pointer */
1521	skb_reserve(n, headerlen);
1522	/* Set the tail pointer and length */
1523	skb_put(n, skb->len);
1524
1525	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
 
1526
1527	skb_copy_header(n, skb);
1528	return n;
1529}
1530EXPORT_SYMBOL(skb_copy);
1531
1532/**
1533 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1534 *	@skb: buffer to copy
1535 *	@headroom: headroom of new skb
1536 *	@gfp_mask: allocation priority
1537 *	@fclone: if true allocate the copy of the skb from the fclone
1538 *	cache instead of the head cache; it is recommended to set this
1539 *	to true for the cases where the copy will likely be cloned
1540 *
1541 *	Make a copy of both an &sk_buff and part of its data, located
1542 *	in header. Fragmented data remain shared. This is used when
1543 *	the caller wishes to modify only header of &sk_buff and needs
1544 *	private copy of the header to alter. Returns %NULL on failure
1545 *	or the pointer to the buffer on success.
1546 *	The returned buffer has a reference count of 1.
1547 */
1548
1549struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550				   gfp_t gfp_mask, bool fclone)
1551{
1552	unsigned int size = skb_headlen(skb) + headroom;
1553	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555
1556	if (!n)
1557		goto out;
1558
1559	/* Set the data pointer */
1560	skb_reserve(n, headroom);
1561	/* Set the tail pointer and length */
1562	skb_put(n, skb_headlen(skb));
1563	/* Copy the bytes */
1564	skb_copy_from_linear_data(skb, n->data, n->len);
1565
1566	n->truesize += skb->data_len;
1567	n->data_len  = skb->data_len;
1568	n->len	     = skb->len;
1569
1570	if (skb_shinfo(skb)->nr_frags) {
1571		int i;
1572
1573		if (skb_orphan_frags(skb, gfp_mask) ||
1574		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1575			kfree_skb(n);
1576			n = NULL;
1577			goto out;
 
1578		}
1579		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581			skb_frag_ref(skb, i);
1582		}
1583		skb_shinfo(n)->nr_frags = i;
1584	}
1585
1586	if (skb_has_frag_list(skb)) {
1587		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588		skb_clone_fraglist(n);
1589	}
1590
1591	skb_copy_header(n, skb);
1592out:
1593	return n;
1594}
1595EXPORT_SYMBOL(__pskb_copy_fclone);
1596
1597/**
1598 *	pskb_expand_head - reallocate header of &sk_buff
1599 *	@skb: buffer to reallocate
1600 *	@nhead: room to add at head
1601 *	@ntail: room to add at tail
1602 *	@gfp_mask: allocation priority
1603 *
1604 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1605 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606 *	reference count of 1. Returns zero in the case of success or error,
1607 *	if expansion failed. In the last case, &sk_buff is not changed.
1608 *
1609 *	All the pointers pointing into skb header may change and must be
1610 *	reloaded after call to this function.
1611 */
1612
1613int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614		     gfp_t gfp_mask)
1615{
1616	int i, osize = skb_end_offset(skb);
1617	int size = osize + nhead + ntail;
 
1618	long off;
1619	u8 *data;
1620
1621	BUG_ON(nhead < 0);
1622
1623	BUG_ON(skb_shared(skb));
 
1624
1625	size = SKB_DATA_ALIGN(size);
1626
1627	if (skb_pfmemalloc(skb))
1628		gfp_mask |= __GFP_MEMALLOC;
1629	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630			       gfp_mask, NUMA_NO_NODE, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631	if (!data)
1632		goto nodata;
1633	size = SKB_WITH_OVERHEAD(ksize(data));
1634
1635	/* Copy only real data... and, alas, header. This should be
1636	 * optimized for the cases when header is void.
1637	 */
1638	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639
1640	memcpy((struct skb_shared_info *)(data + size),
1641	       skb_shinfo(skb),
1642	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643
1644	/*
1645	 * if shinfo is shared we must drop the old head gracefully, but if it
1646	 * is not we can just drop the old head and let the existing refcount
1647	 * be since all we did is relocate the values
1648	 */
1649	if (skb_cloned(skb)) {
1650		if (skb_orphan_frags(skb, gfp_mask))
1651			goto nofrags;
1652		if (skb_zcopy(skb))
1653			refcount_inc(&skb_uarg(skb)->refcnt);
1654		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655			skb_frag_ref(skb, i);
1656
1657		if (skb_has_frag_list(skb))
1658			skb_clone_fraglist(skb);
1659
1660		skb_release_data(skb);
1661	} else {
1662		skb_free_head(skb);
1663	}
1664	off = (data + nhead) - skb->head;
1665
1666	skb->head     = data;
1667	skb->head_frag = 0;
1668	skb->data    += off;
1669#ifdef NET_SKBUFF_DATA_USES_OFFSET
1670	skb->end      = size;
1671	off           = nhead;
1672#else
1673	skb->end      = skb->head + size;
1674#endif
 
1675	skb->tail	      += off;
1676	skb_headers_offset_update(skb, nhead);
 
 
 
 
 
 
1677	skb->cloned   = 0;
1678	skb->hdr_len  = 0;
1679	skb->nohdr    = 0;
1680	atomic_set(&skb_shinfo(skb)->dataref, 1);
1681
1682	skb_metadata_clear(skb);
1683
1684	/* It is not generally safe to change skb->truesize.
1685	 * For the moment, we really care of rx path, or
1686	 * when skb is orphaned (not attached to a socket).
1687	 */
1688	if (!skb->sk || skb->destructor == sock_edemux)
1689		skb->truesize += size - osize;
1690
1691	return 0;
1692
1693nofrags:
1694	kfree(data);
1695nodata:
1696	return -ENOMEM;
1697}
1698EXPORT_SYMBOL(pskb_expand_head);
1699
1700/* Make private copy of skb with writable head and some headroom */
1701
1702struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703{
1704	struct sk_buff *skb2;
1705	int delta = headroom - skb_headroom(skb);
1706
1707	if (delta <= 0)
1708		skb2 = pskb_copy(skb, GFP_ATOMIC);
1709	else {
1710		skb2 = skb_clone(skb, GFP_ATOMIC);
1711		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712					     GFP_ATOMIC)) {
1713			kfree_skb(skb2);
1714			skb2 = NULL;
1715		}
1716	}
1717	return skb2;
1718}
1719EXPORT_SYMBOL(skb_realloc_headroom);
1720
1721/**
1722 *	skb_copy_expand	-	copy and expand sk_buff
1723 *	@skb: buffer to copy
1724 *	@newheadroom: new free bytes at head
1725 *	@newtailroom: new free bytes at tail
1726 *	@gfp_mask: allocation priority
1727 *
1728 *	Make a copy of both an &sk_buff and its data and while doing so
1729 *	allocate additional space.
1730 *
1731 *	This is used when the caller wishes to modify the data and needs a
1732 *	private copy of the data to alter as well as more space for new fields.
1733 *	Returns %NULL on failure or the pointer to the buffer
1734 *	on success. The returned buffer has a reference count of 1.
1735 *
1736 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1737 *	is called from an interrupt.
1738 */
1739struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740				int newheadroom, int newtailroom,
1741				gfp_t gfp_mask)
1742{
1743	/*
1744	 *	Allocate the copy buffer
1745	 */
1746	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747					gfp_mask, skb_alloc_rx_flag(skb),
1748					NUMA_NO_NODE);
1749	int oldheadroom = skb_headroom(skb);
1750	int head_copy_len, head_copy_off;
 
1751
1752	if (!n)
1753		return NULL;
1754
1755	skb_reserve(n, newheadroom);
1756
1757	/* Set the tail pointer and length */
1758	skb_put(n, skb->len);
1759
1760	head_copy_len = oldheadroom;
1761	head_copy_off = 0;
1762	if (newheadroom <= head_copy_len)
1763		head_copy_len = newheadroom;
1764	else
1765		head_copy_off = newheadroom - head_copy_len;
1766
1767	/* Copy the linear header and data. */
1768	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769			     skb->len + head_copy_len));
1770
1771	skb_copy_header(n, skb);
1772
1773	skb_headers_offset_update(n, newheadroom - oldheadroom);
 
 
 
 
 
 
 
 
 
1774
1775	return n;
1776}
1777EXPORT_SYMBOL(skb_copy_expand);
1778
1779/**
1780 *	__skb_pad		-	zero pad the tail of an skb
1781 *	@skb: buffer to pad
1782 *	@pad: space to pad
1783 *	@free_on_error: free buffer on error
1784 *
1785 *	Ensure that a buffer is followed by a padding area that is zero
1786 *	filled. Used by network drivers which may DMA or transfer data
1787 *	beyond the buffer end onto the wire.
1788 *
1789 *	May return error in out of memory cases. The skb is freed on error
1790 *	if @free_on_error is true.
1791 */
1792
1793int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794{
1795	int err;
1796	int ntail;
1797
1798	/* If the skbuff is non linear tailroom is always zero.. */
1799	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800		memset(skb->data+skb->len, 0, pad);
1801		return 0;
1802	}
1803
1804	ntail = skb->data_len + pad - (skb->end - skb->tail);
1805	if (likely(skb_cloned(skb) || ntail > 0)) {
1806		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807		if (unlikely(err))
1808			goto free_skb;
1809	}
1810
1811	/* FIXME: The use of this function with non-linear skb's really needs
1812	 * to be audited.
1813	 */
1814	err = skb_linearize(skb);
1815	if (unlikely(err))
1816		goto free_skb;
1817
1818	memset(skb->data + skb->len, 0, pad);
1819	return 0;
1820
1821free_skb:
1822	if (free_on_error)
1823		kfree_skb(skb);
1824	return err;
1825}
1826EXPORT_SYMBOL(__skb_pad);
1827
1828/**
1829 *	pskb_put - add data to the tail of a potentially fragmented buffer
1830 *	@skb: start of the buffer to use
1831 *	@tail: tail fragment of the buffer to use
1832 *	@len: amount of data to add
1833 *
1834 *	This function extends the used data area of the potentially
1835 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1836 *	@skb itself. If this would exceed the total buffer size the kernel
1837 *	will panic. A pointer to the first byte of the extra data is
1838 *	returned.
1839 */
1840
1841void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842{
1843	if (tail != skb) {
1844		skb->data_len += len;
1845		skb->len += len;
1846	}
1847	return skb_put(tail, len);
1848}
1849EXPORT_SYMBOL_GPL(pskb_put);
1850
1851/**
1852 *	skb_put - add data to a buffer
1853 *	@skb: buffer to use
1854 *	@len: amount of data to add
1855 *
1856 *	This function extends the used data area of the buffer. If this would
1857 *	exceed the total buffer size the kernel will panic. A pointer to the
1858 *	first byte of the extra data is returned.
1859 */
1860void *skb_put(struct sk_buff *skb, unsigned int len)
1861{
1862	void *tmp = skb_tail_pointer(skb);
1863	SKB_LINEAR_ASSERT(skb);
1864	skb->tail += len;
1865	skb->len  += len;
1866	if (unlikely(skb->tail > skb->end))
1867		skb_over_panic(skb, len, __builtin_return_address(0));
1868	return tmp;
1869}
1870EXPORT_SYMBOL(skb_put);
1871
1872/**
1873 *	skb_push - add data to the start of a buffer
1874 *	@skb: buffer to use
1875 *	@len: amount of data to add
1876 *
1877 *	This function extends the used data area of the buffer at the buffer
1878 *	start. If this would exceed the total buffer headroom the kernel will
1879 *	panic. A pointer to the first byte of the extra data is returned.
1880 */
1881void *skb_push(struct sk_buff *skb, unsigned int len)
1882{
1883	skb->data -= len;
1884	skb->len  += len;
1885	if (unlikely(skb->data < skb->head))
1886		skb_under_panic(skb, len, __builtin_return_address(0));
1887	return skb->data;
1888}
1889EXPORT_SYMBOL(skb_push);
1890
1891/**
1892 *	skb_pull - remove data from the start of a buffer
1893 *	@skb: buffer to use
1894 *	@len: amount of data to remove
1895 *
1896 *	This function removes data from the start of a buffer, returning
1897 *	the memory to the headroom. A pointer to the next data in the buffer
1898 *	is returned. Once the data has been pulled future pushes will overwrite
1899 *	the old data.
1900 */
1901void *skb_pull(struct sk_buff *skb, unsigned int len)
1902{
1903	return skb_pull_inline(skb, len);
1904}
1905EXPORT_SYMBOL(skb_pull);
1906
1907/**
1908 *	skb_trim - remove end from a buffer
1909 *	@skb: buffer to alter
1910 *	@len: new length
1911 *
1912 *	Cut the length of a buffer down by removing data from the tail. If
1913 *	the buffer is already under the length specified it is not modified.
1914 *	The skb must be linear.
1915 */
1916void skb_trim(struct sk_buff *skb, unsigned int len)
1917{
1918	if (skb->len > len)
1919		__skb_trim(skb, len);
1920}
1921EXPORT_SYMBOL(skb_trim);
1922
1923/* Trims skb to length len. It can change skb pointers.
1924 */
1925
1926int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927{
1928	struct sk_buff **fragp;
1929	struct sk_buff *frag;
1930	int offset = skb_headlen(skb);
1931	int nfrags = skb_shinfo(skb)->nr_frags;
1932	int i;
1933	int err;
1934
1935	if (skb_cloned(skb) &&
1936	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937		return err;
1938
1939	i = 0;
1940	if (offset >= len)
1941		goto drop_pages;
1942
1943	for (; i < nfrags; i++) {
1944		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945
1946		if (end < len) {
1947			offset = end;
1948			continue;
1949		}
1950
1951		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952
1953drop_pages:
1954		skb_shinfo(skb)->nr_frags = i;
1955
1956		for (; i < nfrags; i++)
1957			skb_frag_unref(skb, i);
1958
1959		if (skb_has_frag_list(skb))
1960			skb_drop_fraglist(skb);
1961		goto done;
1962	}
1963
1964	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965	     fragp = &frag->next) {
1966		int end = offset + frag->len;
1967
1968		if (skb_shared(frag)) {
1969			struct sk_buff *nfrag;
1970
1971			nfrag = skb_clone(frag, GFP_ATOMIC);
1972			if (unlikely(!nfrag))
1973				return -ENOMEM;
1974
1975			nfrag->next = frag->next;
1976			consume_skb(frag);
1977			frag = nfrag;
1978			*fragp = frag;
1979		}
1980
1981		if (end < len) {
1982			offset = end;
1983			continue;
1984		}
1985
1986		if (end > len &&
1987		    unlikely((err = pskb_trim(frag, len - offset))))
1988			return err;
1989
1990		if (frag->next)
1991			skb_drop_list(&frag->next);
1992		break;
1993	}
1994
1995done:
1996	if (len > skb_headlen(skb)) {
1997		skb->data_len -= skb->len - len;
1998		skb->len       = len;
1999	} else {
2000		skb->len       = len;
2001		skb->data_len  = 0;
2002		skb_set_tail_pointer(skb, len);
2003	}
2004
2005	if (!skb->sk || skb->destructor == sock_edemux)
2006		skb_condense(skb);
2007	return 0;
2008}
2009EXPORT_SYMBOL(___pskb_trim);
2010
2011/* Note : use pskb_trim_rcsum() instead of calling this directly
2012 */
2013int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014{
2015	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016		int delta = skb->len - len;
2017
2018		skb->csum = csum_block_sub(skb->csum,
2019					   skb_checksum(skb, len, delta, 0),
2020					   len);
2021	}
2022	return __pskb_trim(skb, len);
2023}
2024EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025
2026/**
2027 *	__pskb_pull_tail - advance tail of skb header
2028 *	@skb: buffer to reallocate
2029 *	@delta: number of bytes to advance tail
2030 *
2031 *	The function makes a sense only on a fragmented &sk_buff,
2032 *	it expands header moving its tail forward and copying necessary
2033 *	data from fragmented part.
2034 *
2035 *	&sk_buff MUST have reference count of 1.
2036 *
2037 *	Returns %NULL (and &sk_buff does not change) if pull failed
2038 *	or value of new tail of skb in the case of success.
2039 *
2040 *	All the pointers pointing into skb header may change and must be
2041 *	reloaded after call to this function.
2042 */
2043
2044/* Moves tail of skb head forward, copying data from fragmented part,
2045 * when it is necessary.
2046 * 1. It may fail due to malloc failure.
2047 * 2. It may change skb pointers.
2048 *
2049 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050 */
2051void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052{
2053	/* If skb has not enough free space at tail, get new one
2054	 * plus 128 bytes for future expansions. If we have enough
2055	 * room at tail, reallocate without expansion only if skb is cloned.
2056	 */
2057	int i, k, eat = (skb->tail + delta) - skb->end;
2058
2059	if (eat > 0 || skb_cloned(skb)) {
2060		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061				     GFP_ATOMIC))
2062			return NULL;
2063	}
2064
2065	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066			     skb_tail_pointer(skb), delta));
2067
2068	/* Optimization: no fragments, no reasons to preestimate
2069	 * size of pulled pages. Superb.
2070	 */
2071	if (!skb_has_frag_list(skb))
2072		goto pull_pages;
2073
2074	/* Estimate size of pulled pages. */
2075	eat = delta;
2076	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078
2079		if (size >= eat)
2080			goto pull_pages;
2081		eat -= size;
2082	}
2083
2084	/* If we need update frag list, we are in troubles.
2085	 * Certainly, it is possible to add an offset to skb data,
2086	 * but taking into account that pulling is expected to
2087	 * be very rare operation, it is worth to fight against
2088	 * further bloating skb head and crucify ourselves here instead.
2089	 * Pure masohism, indeed. 8)8)
2090	 */
2091	if (eat) {
2092		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093		struct sk_buff *clone = NULL;
2094		struct sk_buff *insp = NULL;
2095
2096		do {
 
 
2097			if (list->len <= eat) {
2098				/* Eaten as whole. */
2099				eat -= list->len;
2100				list = list->next;
2101				insp = list;
2102			} else {
2103				/* Eaten partially. */
2104
2105				if (skb_shared(list)) {
2106					/* Sucks! We need to fork list. :-( */
2107					clone = skb_clone(list, GFP_ATOMIC);
2108					if (!clone)
2109						return NULL;
2110					insp = list->next;
2111					list = clone;
2112				} else {
2113					/* This may be pulled without
2114					 * problems. */
2115					insp = list;
2116				}
2117				if (!pskb_pull(list, eat)) {
2118					kfree_skb(clone);
2119					return NULL;
2120				}
2121				break;
2122			}
2123		} while (eat);
2124
2125		/* Free pulled out fragments. */
2126		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127			skb_shinfo(skb)->frag_list = list->next;
2128			kfree_skb(list);
2129		}
2130		/* And insert new clone at head. */
2131		if (clone) {
2132			clone->next = list;
2133			skb_shinfo(skb)->frag_list = clone;
2134		}
2135	}
2136	/* Success! Now we may commit changes to skb data. */
2137
2138pull_pages:
2139	eat = delta;
2140	k = 0;
2141	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143
2144		if (size <= eat) {
2145			skb_frag_unref(skb, i);
2146			eat -= size;
2147		} else {
2148			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149
2150			*frag = skb_shinfo(skb)->frags[i];
2151			if (eat) {
2152				skb_frag_off_add(frag, eat);
2153				skb_frag_size_sub(frag, eat);
2154				if (!i)
2155					goto end;
2156				eat = 0;
2157			}
2158			k++;
2159		}
2160	}
2161	skb_shinfo(skb)->nr_frags = k;
2162
2163end:
2164	skb->tail     += delta;
2165	skb->data_len -= delta;
2166
2167	if (!skb->data_len)
2168		skb_zcopy_clear(skb, false);
2169
2170	return skb_tail_pointer(skb);
2171}
2172EXPORT_SYMBOL(__pskb_pull_tail);
2173
2174/**
2175 *	skb_copy_bits - copy bits from skb to kernel buffer
2176 *	@skb: source skb
2177 *	@offset: offset in source
2178 *	@to: destination buffer
2179 *	@len: number of bytes to copy
2180 *
2181 *	Copy the specified number of bytes from the source skb to the
2182 *	destination buffer.
2183 *
2184 *	CAUTION ! :
2185 *		If its prototype is ever changed,
2186 *		check arch/{*}/net/{*}.S files,
2187 *		since it is called from BPF assembly code.
2188 */
2189int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190{
2191	int start = skb_headlen(skb);
2192	struct sk_buff *frag_iter;
2193	int i, copy;
2194
2195	if (offset > (int)skb->len - len)
2196		goto fault;
2197
2198	/* Copy header. */
2199	if ((copy = start - offset) > 0) {
2200		if (copy > len)
2201			copy = len;
2202		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203		if ((len -= copy) == 0)
2204			return 0;
2205		offset += copy;
2206		to     += copy;
2207	}
2208
2209	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210		int end;
2211		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212
2213		WARN_ON(start > offset + len);
2214
2215		end = start + skb_frag_size(f);
2216		if ((copy = end - offset) > 0) {
2217			u32 p_off, p_len, copied;
2218			struct page *p;
2219			u8 *vaddr;
2220
2221			if (copy > len)
2222				copy = len;
2223
2224			skb_frag_foreach_page(f,
2225					      skb_frag_off(f) + offset - start,
2226					      copy, p, p_off, p_len, copied) {
2227				vaddr = kmap_atomic(p);
2228				memcpy(to + copied, vaddr + p_off, p_len);
2229				kunmap_atomic(vaddr);
2230			}
2231
2232			if ((len -= copy) == 0)
2233				return 0;
2234			offset += copy;
2235			to     += copy;
2236		}
2237		start = end;
2238	}
2239
2240	skb_walk_frags(skb, frag_iter) {
2241		int end;
2242
2243		WARN_ON(start > offset + len);
2244
2245		end = start + frag_iter->len;
2246		if ((copy = end - offset) > 0) {
2247			if (copy > len)
2248				copy = len;
2249			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250				goto fault;
2251			if ((len -= copy) == 0)
2252				return 0;
2253			offset += copy;
2254			to     += copy;
2255		}
2256		start = end;
2257	}
2258
2259	if (!len)
2260		return 0;
2261
2262fault:
2263	return -EFAULT;
2264}
2265EXPORT_SYMBOL(skb_copy_bits);
2266
2267/*
2268 * Callback from splice_to_pipe(), if we need to release some pages
2269 * at the end of the spd in case we error'ed out in filling the pipe.
2270 */
2271static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272{
2273	put_page(spd->pages[i]);
2274}
2275
2276static struct page *linear_to_page(struct page *page, unsigned int *len,
2277				   unsigned int *offset,
2278				   struct sock *sk)
2279{
2280	struct page_frag *pfrag = sk_page_frag(sk);
 
 
 
 
 
 
 
2281
2282	if (!sk_page_frag_refill(sk, pfrag))
2283		return NULL;
 
 
2284
2285	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
 
 
 
 
 
2286
2287	memcpy(page_address(pfrag->page) + pfrag->offset,
2288	       page_address(page) + *offset, *len);
2289	*offset = pfrag->offset;
2290	pfrag->offset += *len;
2291
2292	return pfrag->page;
2293}
 
 
2294
2295static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296			     struct page *page,
2297			     unsigned int offset)
2298{
2299	return	spd->nr_pages &&
2300		spd->pages[spd->nr_pages - 1] == page &&
2301		(spd->partial[spd->nr_pages - 1].offset +
2302		 spd->partial[spd->nr_pages - 1].len == offset);
2303}
2304
2305/*
2306 * Fill page/offset/length into spd, if it can hold more pages.
2307 */
2308static bool spd_fill_page(struct splice_pipe_desc *spd,
2309			  struct pipe_inode_info *pipe, struct page *page,
2310			  unsigned int *len, unsigned int offset,
2311			  bool linear,
2312			  struct sock *sk)
2313{
2314	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315		return true;
2316
2317	if (linear) {
2318		page = linear_to_page(page, len, &offset, sk);
2319		if (!page)
2320			return true;
2321	}
2322	if (spd_can_coalesce(spd, page, offset)) {
2323		spd->partial[spd->nr_pages - 1].len += *len;
2324		return false;
2325	}
2326	get_page(page);
2327	spd->pages[spd->nr_pages] = page;
2328	spd->partial[spd->nr_pages].len = *len;
2329	spd->partial[spd->nr_pages].offset = offset;
2330	spd->nr_pages++;
2331
2332	return false;
2333}
2334
2335static bool __splice_segment(struct page *page, unsigned int poff,
2336			     unsigned int plen, unsigned int *off,
2337			     unsigned int *len,
2338			     struct splice_pipe_desc *spd, bool linear,
2339			     struct sock *sk,
2340			     struct pipe_inode_info *pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341{
2342	if (!*len)
2343		return true;
2344
2345	/* skip this segment if already processed */
2346	if (*off >= plen) {
2347		*off -= plen;
2348		return false;
2349	}
2350
2351	/* ignore any bits we already processed */
2352	poff += *off;
2353	plen -= *off;
2354	*off = 0;
 
2355
2356	do {
2357		unsigned int flen = min(*len, plen);
2358
2359		if (spd_fill_page(spd, pipe, page, &flen, poff,
2360				  linear, sk))
2361			return true;
2362		poff += flen;
2363		plen -= flen;
 
 
2364		*len -= flen;
 
2365	} while (*len && plen);
2366
2367	return false;
2368}
2369
2370/*
2371 * Map linear and fragment data from the skb to spd. It reports true if the
2372 * pipe is full or if we already spliced the requested length.
2373 */
2374static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375			      unsigned int *offset, unsigned int *len,
2376			      struct splice_pipe_desc *spd, struct sock *sk)
2377{
2378	int seg;
2379	struct sk_buff *iter;
2380
2381	/* map the linear part :
2382	 * If skb->head_frag is set, this 'linear' part is backed by a
2383	 * fragment, and if the head is not shared with any clones then
2384	 * we can avoid a copy since we own the head portion of this page.
2385	 */
2386	if (__splice_segment(virt_to_page(skb->data),
2387			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2388			     skb_headlen(skb),
2389			     offset, len, spd,
2390			     skb_head_is_locked(skb),
2391			     sk, pipe))
2392		return true;
2393
2394	/*
2395	 * then map the fragments
2396	 */
2397	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399
2400		if (__splice_segment(skb_frag_page(f),
2401				     skb_frag_off(f), skb_frag_size(f),
2402				     offset, len, spd, false, sk, pipe))
2403			return true;
2404	}
2405
2406	skb_walk_frags(skb, iter) {
2407		if (*offset >= iter->len) {
2408			*offset -= iter->len;
2409			continue;
2410		}
2411		/* __skb_splice_bits() only fails if the output has no room
2412		 * left, so no point in going over the frag_list for the error
2413		 * case.
2414		 */
2415		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416			return true;
2417	}
2418
2419	return false;
2420}
2421
2422/*
2423 * Map data from the skb to a pipe. Should handle both the linear part,
2424 * the fragments, and the frag list.
 
 
2425 */
2426int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427		    struct pipe_inode_info *pipe, unsigned int tlen,
2428		    unsigned int flags)
2429{
2430	struct partial_page partial[MAX_SKB_FRAGS];
2431	struct page *pages[MAX_SKB_FRAGS];
2432	struct splice_pipe_desc spd = {
2433		.pages = pages,
2434		.partial = partial,
2435		.nr_pages_max = MAX_SKB_FRAGS,
2436		.ops = &nosteal_pipe_buf_ops,
2437		.spd_release = sock_spd_release,
2438	};
 
 
2439	int ret = 0;
2440
2441	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
 
2442
2443	if (spd.nr_pages)
2444		ret = splice_to_pipe(pipe, &spd);
 
 
 
 
 
 
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(skb_splice_bits);
2449
2450/* Send skb data on a socket. Socket must be locked. */
2451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452			 int len)
2453{
2454	unsigned int orig_len = len;
2455	struct sk_buff *head = skb;
2456	unsigned short fragidx;
2457	int slen, ret;
2458
2459do_frag_list:
2460
2461	/* Deal with head data */
2462	while (offset < skb_headlen(skb) && len) {
2463		struct kvec kv;
2464		struct msghdr msg;
2465
2466		slen = min_t(int, len, skb_headlen(skb) - offset);
2467		kv.iov_base = skb->data + offset;
2468		kv.iov_len = slen;
2469		memset(&msg, 0, sizeof(msg));
2470		msg.msg_flags = MSG_DONTWAIT;
2471
2472		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473		if (ret <= 0)
2474			goto error;
2475
2476		offset += ret;
2477		len -= ret;
2478	}
2479
2480	/* All the data was skb head? */
2481	if (!len)
2482		goto out;
2483
2484	/* Make offset relative to start of frags */
2485	offset -= skb_headlen(skb);
2486
2487	/* Find where we are in frag list */
2488	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2490
2491		if (offset < skb_frag_size(frag))
2492			break;
2493
2494		offset -= skb_frag_size(frag);
2495	}
2496
2497	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2499
2500		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501
2502		while (slen) {
2503			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504						     skb_frag_off(frag) + offset,
2505						     slen, MSG_DONTWAIT);
2506			if (ret <= 0)
2507				goto error;
2508
2509			len -= ret;
2510			offset += ret;
2511			slen -= ret;
2512		}
2513
2514		offset = 0;
2515	}
2516
2517	if (len) {
2518		/* Process any frag lists */
2519
2520		if (skb == head) {
2521			if (skb_has_frag_list(skb)) {
2522				skb = skb_shinfo(skb)->frag_list;
2523				goto do_frag_list;
2524			}
2525		} else if (skb->next) {
2526			skb = skb->next;
2527			goto do_frag_list;
2528		}
2529	}
2530
2531out:
2532	return orig_len - len;
2533
2534error:
2535	return orig_len == len ? ret : orig_len - len;
2536}
2537EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538
2539/**
2540 *	skb_store_bits - store bits from kernel buffer to skb
2541 *	@skb: destination buffer
2542 *	@offset: offset in destination
2543 *	@from: source buffer
2544 *	@len: number of bytes to copy
2545 *
2546 *	Copy the specified number of bytes from the source buffer to the
2547 *	destination skb.  This function handles all the messy bits of
2548 *	traversing fragment lists and such.
2549 */
2550
2551int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552{
2553	int start = skb_headlen(skb);
2554	struct sk_buff *frag_iter;
2555	int i, copy;
2556
2557	if (offset > (int)skb->len - len)
2558		goto fault;
2559
2560	if ((copy = start - offset) > 0) {
2561		if (copy > len)
2562			copy = len;
2563		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564		if ((len -= copy) == 0)
2565			return 0;
2566		offset += copy;
2567		from += copy;
2568	}
2569
2570	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572		int end;
2573
2574		WARN_ON(start > offset + len);
2575
2576		end = start + skb_frag_size(frag);
2577		if ((copy = end - offset) > 0) {
2578			u32 p_off, p_len, copied;
2579			struct page *p;
2580			u8 *vaddr;
2581
2582			if (copy > len)
2583				copy = len;
2584
2585			skb_frag_foreach_page(frag,
2586					      skb_frag_off(frag) + offset - start,
2587					      copy, p, p_off, p_len, copied) {
2588				vaddr = kmap_atomic(p);
2589				memcpy(vaddr + p_off, from + copied, p_len);
2590				kunmap_atomic(vaddr);
2591			}
2592
2593			if ((len -= copy) == 0)
2594				return 0;
2595			offset += copy;
2596			from += copy;
2597		}
2598		start = end;
2599	}
2600
2601	skb_walk_frags(skb, frag_iter) {
2602		int end;
2603
2604		WARN_ON(start > offset + len);
2605
2606		end = start + frag_iter->len;
2607		if ((copy = end - offset) > 0) {
2608			if (copy > len)
2609				copy = len;
2610			if (skb_store_bits(frag_iter, offset - start,
2611					   from, copy))
2612				goto fault;
2613			if ((len -= copy) == 0)
2614				return 0;
2615			offset += copy;
2616			from += copy;
2617		}
2618		start = end;
2619	}
2620	if (!len)
2621		return 0;
2622
2623fault:
2624	return -EFAULT;
2625}
2626EXPORT_SYMBOL(skb_store_bits);
2627
2628/* Checksum skb data. */
2629__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630		      __wsum csum, const struct skb_checksum_ops *ops)
 
2631{
2632	int start = skb_headlen(skb);
2633	int i, copy = start - offset;
2634	struct sk_buff *frag_iter;
2635	int pos = 0;
2636
2637	/* Checksum header. */
2638	if (copy > 0) {
2639		if (copy > len)
2640			copy = len;
2641		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642				       skb->data + offset, copy, csum);
2643		if ((len -= copy) == 0)
2644			return csum;
2645		offset += copy;
2646		pos	= copy;
2647	}
2648
2649	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650		int end;
2651		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652
2653		WARN_ON(start > offset + len);
2654
2655		end = start + skb_frag_size(frag);
2656		if ((copy = end - offset) > 0) {
2657			u32 p_off, p_len, copied;
2658			struct page *p;
2659			__wsum csum2;
2660			u8 *vaddr;
 
2661
2662			if (copy > len)
2663				copy = len;
2664
2665			skb_frag_foreach_page(frag,
2666					      skb_frag_off(frag) + offset - start,
2667					      copy, p, p_off, p_len, copied) {
2668				vaddr = kmap_atomic(p);
2669				csum2 = INDIRECT_CALL_1(ops->update,
2670							csum_partial_ext,
2671							vaddr + p_off, p_len, 0);
2672				kunmap_atomic(vaddr);
2673				csum = INDIRECT_CALL_1(ops->combine,
2674						       csum_block_add_ext, csum,
2675						       csum2, pos, p_len);
2676				pos += p_len;
2677			}
2678
2679			if (!(len -= copy))
2680				return csum;
2681			offset += copy;
 
2682		}
2683		start = end;
2684	}
2685
2686	skb_walk_frags(skb, frag_iter) {
2687		int end;
2688
2689		WARN_ON(start > offset + len);
2690
2691		end = start + frag_iter->len;
2692		if ((copy = end - offset) > 0) {
2693			__wsum csum2;
2694			if (copy > len)
2695				copy = len;
2696			csum2 = __skb_checksum(frag_iter, offset - start,
2697					       copy, 0, ops);
2698			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699					       csum, csum2, pos, copy);
2700			if ((len -= copy) == 0)
2701				return csum;
2702			offset += copy;
2703			pos    += copy;
2704		}
2705		start = end;
2706	}
2707	BUG_ON(len);
2708
2709	return csum;
2710}
2711EXPORT_SYMBOL(__skb_checksum);
2712
2713__wsum skb_checksum(const struct sk_buff *skb, int offset,
2714		    int len, __wsum csum)
2715{
2716	const struct skb_checksum_ops ops = {
2717		.update  = csum_partial_ext,
2718		.combine = csum_block_add_ext,
2719	};
2720
2721	return __skb_checksum(skb, offset, len, csum, &ops);
2722}
2723EXPORT_SYMBOL(skb_checksum);
2724
2725/* Both of above in one bottle. */
2726
2727__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728				    u8 *to, int len, __wsum csum)
2729{
2730	int start = skb_headlen(skb);
2731	int i, copy = start - offset;
2732	struct sk_buff *frag_iter;
2733	int pos = 0;
2734
2735	/* Copy header. */
2736	if (copy > 0) {
2737		if (copy > len)
2738			copy = len;
2739		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2740						 copy, csum);
2741		if ((len -= copy) == 0)
2742			return csum;
2743		offset += copy;
2744		to     += copy;
2745		pos	= copy;
2746	}
2747
2748	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749		int end;
2750
2751		WARN_ON(start > offset + len);
2752
2753		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2754		if ((copy = end - offset) > 0) {
2755			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756			u32 p_off, p_len, copied;
2757			struct page *p;
2758			__wsum csum2;
2759			u8 *vaddr;
 
2760
2761			if (copy > len)
2762				copy = len;
2763
2764			skb_frag_foreach_page(frag,
2765					      skb_frag_off(frag) + offset - start,
2766					      copy, p, p_off, p_len, copied) {
2767				vaddr = kmap_atomic(p);
2768				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2769								  to + copied,
2770								  p_len, 0);
2771				kunmap_atomic(vaddr);
2772				csum = csum_block_add(csum, csum2, pos);
2773				pos += p_len;
2774			}
2775
2776			if (!(len -= copy))
2777				return csum;
2778			offset += copy;
2779			to     += copy;
 
2780		}
2781		start = end;
2782	}
2783
2784	skb_walk_frags(skb, frag_iter) {
2785		__wsum csum2;
2786		int end;
2787
2788		WARN_ON(start > offset + len);
2789
2790		end = start + frag_iter->len;
2791		if ((copy = end - offset) > 0) {
2792			if (copy > len)
2793				copy = len;
2794			csum2 = skb_copy_and_csum_bits(frag_iter,
2795						       offset - start,
2796						       to, copy, 0);
2797			csum = csum_block_add(csum, csum2, pos);
2798			if ((len -= copy) == 0)
2799				return csum;
2800			offset += copy;
2801			to     += copy;
2802			pos    += copy;
2803		}
2804		start = end;
2805	}
2806	BUG_ON(len);
2807	return csum;
2808}
2809EXPORT_SYMBOL(skb_copy_and_csum_bits);
2810
2811__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2812{
2813	__sum16 sum;
2814
2815	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2816	/* See comments in __skb_checksum_complete(). */
2817	if (likely(!sum)) {
2818		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2819		    !skb->csum_complete_sw)
2820			netdev_rx_csum_fault(skb->dev, skb);
2821	}
2822	if (!skb_shared(skb))
2823		skb->csum_valid = !sum;
2824	return sum;
2825}
2826EXPORT_SYMBOL(__skb_checksum_complete_head);
2827
2828/* This function assumes skb->csum already holds pseudo header's checksum,
2829 * which has been changed from the hardware checksum, for example, by
2830 * __skb_checksum_validate_complete(). And, the original skb->csum must
2831 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2832 *
2833 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2834 * zero. The new checksum is stored back into skb->csum unless the skb is
2835 * shared.
2836 */
2837__sum16 __skb_checksum_complete(struct sk_buff *skb)
2838{
2839	__wsum csum;
2840	__sum16 sum;
2841
2842	csum = skb_checksum(skb, 0, skb->len, 0);
2843
2844	sum = csum_fold(csum_add(skb->csum, csum));
2845	/* This check is inverted, because we already knew the hardware
2846	 * checksum is invalid before calling this function. So, if the
2847	 * re-computed checksum is valid instead, then we have a mismatch
2848	 * between the original skb->csum and skb_checksum(). This means either
2849	 * the original hardware checksum is incorrect or we screw up skb->csum
2850	 * when moving skb->data around.
2851	 */
2852	if (likely(!sum)) {
2853		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2854		    !skb->csum_complete_sw)
2855			netdev_rx_csum_fault(skb->dev, skb);
2856	}
2857
2858	if (!skb_shared(skb)) {
2859		/* Save full packet checksum */
2860		skb->csum = csum;
2861		skb->ip_summed = CHECKSUM_COMPLETE;
2862		skb->csum_complete_sw = 1;
2863		skb->csum_valid = !sum;
2864	}
2865
2866	return sum;
2867}
2868EXPORT_SYMBOL(__skb_checksum_complete);
2869
2870static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2871{
2872	net_warn_ratelimited(
2873		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2874		__func__);
2875	return 0;
2876}
2877
2878static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2879				       int offset, int len)
2880{
2881	net_warn_ratelimited(
2882		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2883		__func__);
2884	return 0;
2885}
2886
2887static const struct skb_checksum_ops default_crc32c_ops = {
2888	.update  = warn_crc32c_csum_update,
2889	.combine = warn_crc32c_csum_combine,
2890};
2891
2892const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2893	&default_crc32c_ops;
2894EXPORT_SYMBOL(crc32c_csum_stub);
2895
2896 /**
2897 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2898 *	@from: source buffer
2899 *
2900 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2901 *	into skb_zerocopy().
2902 */
2903unsigned int
2904skb_zerocopy_headlen(const struct sk_buff *from)
2905{
2906	unsigned int hlen = 0;
2907
2908	if (!from->head_frag ||
2909	    skb_headlen(from) < L1_CACHE_BYTES ||
2910	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2911		hlen = skb_headlen(from);
2912
2913	if (skb_has_frag_list(from))
2914		hlen = from->len;
2915
2916	return hlen;
2917}
2918EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919
2920/**
2921 *	skb_zerocopy - Zero copy skb to skb
2922 *	@to: destination buffer
2923 *	@from: source buffer
2924 *	@len: number of bytes to copy from source buffer
2925 *	@hlen: size of linear headroom in destination buffer
2926 *
2927 *	Copies up to `len` bytes from `from` to `to` by creating references
2928 *	to the frags in the source buffer.
2929 *
2930 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2931 *	headroom in the `to` buffer.
2932 *
2933 *	Return value:
2934 *	0: everything is OK
2935 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2936 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2937 */
2938int
2939skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2940{
2941	int i, j = 0;
2942	int plen = 0; /* length of skb->head fragment */
2943	int ret;
2944	struct page *page;
2945	unsigned int offset;
2946
2947	BUG_ON(!from->head_frag && !hlen);
2948
2949	/* dont bother with small payloads */
2950	if (len <= skb_tailroom(to))
2951		return skb_copy_bits(from, 0, skb_put(to, len), len);
2952
2953	if (hlen) {
2954		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2955		if (unlikely(ret))
2956			return ret;
2957		len -= hlen;
2958	} else {
2959		plen = min_t(int, skb_headlen(from), len);
2960		if (plen) {
2961			page = virt_to_head_page(from->head);
2962			offset = from->data - (unsigned char *)page_address(page);
2963			__skb_fill_page_desc(to, 0, page, offset, plen);
2964			get_page(page);
2965			j = 1;
2966			len -= plen;
2967		}
2968	}
2969
2970	to->truesize += len + plen;
2971	to->len += len + plen;
2972	to->data_len += len + plen;
2973
2974	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2975		skb_tx_error(from);
2976		return -ENOMEM;
2977	}
2978	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2979
2980	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2981		int size;
2982
2983		if (!len)
2984			break;
2985		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2986		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2987					len);
2988		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2989		len -= size;
2990		skb_frag_ref(to, j);
2991		j++;
2992	}
2993	skb_shinfo(to)->nr_frags = j;
2994
2995	return 0;
2996}
2997EXPORT_SYMBOL_GPL(skb_zerocopy);
2998
2999void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3000{
3001	__wsum csum;
3002	long csstart;
3003
3004	if (skb->ip_summed == CHECKSUM_PARTIAL)
3005		csstart = skb_checksum_start_offset(skb);
3006	else
3007		csstart = skb_headlen(skb);
3008
3009	BUG_ON(csstart > skb_headlen(skb));
3010
3011	skb_copy_from_linear_data(skb, to, csstart);
3012
3013	csum = 0;
3014	if (csstart != skb->len)
3015		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3016					      skb->len - csstart, 0);
3017
3018	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3019		long csstuff = csstart + skb->csum_offset;
3020
3021		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022	}
3023}
3024EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025
3026/**
3027 *	skb_dequeue - remove from the head of the queue
3028 *	@list: list to dequeue from
3029 *
3030 *	Remove the head of the list. The list lock is taken so the function
3031 *	may be used safely with other locking list functions. The head item is
3032 *	returned or %NULL if the list is empty.
3033 */
3034
3035struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3036{
3037	unsigned long flags;
3038	struct sk_buff *result;
3039
3040	spin_lock_irqsave(&list->lock, flags);
3041	result = __skb_dequeue(list);
3042	spin_unlock_irqrestore(&list->lock, flags);
3043	return result;
3044}
3045EXPORT_SYMBOL(skb_dequeue);
3046
3047/**
3048 *	skb_dequeue_tail - remove from the tail of the queue
3049 *	@list: list to dequeue from
3050 *
3051 *	Remove the tail of the list. The list lock is taken so the function
3052 *	may be used safely with other locking list functions. The tail item is
3053 *	returned or %NULL if the list is empty.
3054 */
3055struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3056{
3057	unsigned long flags;
3058	struct sk_buff *result;
3059
3060	spin_lock_irqsave(&list->lock, flags);
3061	result = __skb_dequeue_tail(list);
3062	spin_unlock_irqrestore(&list->lock, flags);
3063	return result;
3064}
3065EXPORT_SYMBOL(skb_dequeue_tail);
3066
3067/**
3068 *	skb_queue_purge - empty a list
3069 *	@list: list to empty
3070 *
3071 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3072 *	the list and one reference dropped. This function takes the list
3073 *	lock and is atomic with respect to other list locking functions.
3074 */
3075void skb_queue_purge(struct sk_buff_head *list)
3076{
3077	struct sk_buff *skb;
3078	while ((skb = skb_dequeue(list)) != NULL)
3079		kfree_skb(skb);
3080}
3081EXPORT_SYMBOL(skb_queue_purge);
3082
3083/**
3084 *	skb_rbtree_purge - empty a skb rbtree
3085 *	@root: root of the rbtree to empty
3086 *	Return value: the sum of truesizes of all purged skbs.
3087 *
3088 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3089 *	the list and one reference dropped. This function does not take
3090 *	any lock. Synchronization should be handled by the caller (e.g., TCP
3091 *	out-of-order queue is protected by the socket lock).
3092 */
3093unsigned int skb_rbtree_purge(struct rb_root *root)
3094{
3095	struct rb_node *p = rb_first(root);
3096	unsigned int sum = 0;
3097
3098	while (p) {
3099		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3100
3101		p = rb_next(p);
3102		rb_erase(&skb->rbnode, root);
3103		sum += skb->truesize;
3104		kfree_skb(skb);
3105	}
3106	return sum;
3107}
3108
3109/**
3110 *	skb_queue_head - queue a buffer at the list head
3111 *	@list: list to use
3112 *	@newsk: buffer to queue
3113 *
3114 *	Queue a buffer at the start of the list. This function takes the
3115 *	list lock and can be used safely with other locking &sk_buff functions
3116 *	safely.
3117 *
3118 *	A buffer cannot be placed on two lists at the same time.
3119 */
3120void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3121{
3122	unsigned long flags;
3123
3124	spin_lock_irqsave(&list->lock, flags);
3125	__skb_queue_head(list, newsk);
3126	spin_unlock_irqrestore(&list->lock, flags);
3127}
3128EXPORT_SYMBOL(skb_queue_head);
3129
3130/**
3131 *	skb_queue_tail - queue a buffer at the list tail
3132 *	@list: list to use
3133 *	@newsk: buffer to queue
3134 *
3135 *	Queue a buffer at the tail of the list. This function takes the
3136 *	list lock and can be used safely with other locking &sk_buff functions
3137 *	safely.
3138 *
3139 *	A buffer cannot be placed on two lists at the same time.
3140 */
3141void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3142{
3143	unsigned long flags;
3144
3145	spin_lock_irqsave(&list->lock, flags);
3146	__skb_queue_tail(list, newsk);
3147	spin_unlock_irqrestore(&list->lock, flags);
3148}
3149EXPORT_SYMBOL(skb_queue_tail);
3150
3151/**
3152 *	skb_unlink	-	remove a buffer from a list
3153 *	@skb: buffer to remove
3154 *	@list: list to use
3155 *
3156 *	Remove a packet from a list. The list locks are taken and this
3157 *	function is atomic with respect to other list locked calls
3158 *
3159 *	You must know what list the SKB is on.
3160 */
3161void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3162{
3163	unsigned long flags;
3164
3165	spin_lock_irqsave(&list->lock, flags);
3166	__skb_unlink(skb, list);
3167	spin_unlock_irqrestore(&list->lock, flags);
3168}
3169EXPORT_SYMBOL(skb_unlink);
3170
3171/**
3172 *	skb_append	-	append a buffer
3173 *	@old: buffer to insert after
3174 *	@newsk: buffer to insert
3175 *	@list: list to use
3176 *
3177 *	Place a packet after a given packet in a list. The list locks are taken
3178 *	and this function is atomic with respect to other list locked calls.
3179 *	A buffer cannot be placed on two lists at the same time.
3180 */
3181void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3182{
3183	unsigned long flags;
3184
3185	spin_lock_irqsave(&list->lock, flags);
3186	__skb_queue_after(list, old, newsk);
3187	spin_unlock_irqrestore(&list->lock, flags);
3188}
3189EXPORT_SYMBOL(skb_append);
3190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3191static inline void skb_split_inside_header(struct sk_buff *skb,
3192					   struct sk_buff* skb1,
3193					   const u32 len, const int pos)
3194{
3195	int i;
3196
3197	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3198					 pos - len);
3199	/* And move data appendix as is. */
3200	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3201		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3202
3203	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3204	skb_shinfo(skb)->nr_frags  = 0;
3205	skb1->data_len		   = skb->data_len;
3206	skb1->len		   += skb1->data_len;
3207	skb->data_len		   = 0;
3208	skb->len		   = len;
3209	skb_set_tail_pointer(skb, len);
3210}
3211
3212static inline void skb_split_no_header(struct sk_buff *skb,
3213				       struct sk_buff* skb1,
3214				       const u32 len, int pos)
3215{
3216	int i, k = 0;
3217	const int nfrags = skb_shinfo(skb)->nr_frags;
3218
3219	skb_shinfo(skb)->nr_frags = 0;
3220	skb1->len		  = skb1->data_len = skb->len - len;
3221	skb->len		  = len;
3222	skb->data_len		  = len - pos;
3223
3224	for (i = 0; i < nfrags; i++) {
3225		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3226
3227		if (pos + size > len) {
3228			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3229
3230			if (pos < len) {
3231				/* Split frag.
3232				 * We have two variants in this case:
3233				 * 1. Move all the frag to the second
3234				 *    part, if it is possible. F.e.
3235				 *    this approach is mandatory for TUX,
3236				 *    where splitting is expensive.
3237				 * 2. Split is accurately. We make this.
3238				 */
3239				skb_frag_ref(skb, i);
3240				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3241				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3242				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3243				skb_shinfo(skb)->nr_frags++;
3244			}
3245			k++;
3246		} else
3247			skb_shinfo(skb)->nr_frags++;
3248		pos += size;
3249	}
3250	skb_shinfo(skb1)->nr_frags = k;
3251}
3252
3253/**
3254 * skb_split - Split fragmented skb to two parts at length len.
3255 * @skb: the buffer to split
3256 * @skb1: the buffer to receive the second part
3257 * @len: new length for skb
3258 */
3259void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3260{
3261	int pos = skb_headlen(skb);
3262
3263	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3264				      SKBTX_SHARED_FRAG;
3265	skb_zerocopy_clone(skb1, skb, 0);
3266	if (len < pos)	/* Split line is inside header. */
3267		skb_split_inside_header(skb, skb1, len, pos);
3268	else		/* Second chunk has no header, nothing to copy. */
3269		skb_split_no_header(skb, skb1, len, pos);
3270}
3271EXPORT_SYMBOL(skb_split);
3272
3273/* Shifting from/to a cloned skb is a no-go.
3274 *
3275 * Caller cannot keep skb_shinfo related pointers past calling here!
3276 */
3277static int skb_prepare_for_shift(struct sk_buff *skb)
3278{
3279	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280}
3281
3282/**
3283 * skb_shift - Shifts paged data partially from skb to another
3284 * @tgt: buffer into which tail data gets added
3285 * @skb: buffer from which the paged data comes from
3286 * @shiftlen: shift up to this many bytes
3287 *
3288 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3289 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3290 * It's up to caller to free skb if everything was shifted.
3291 *
3292 * If @tgt runs out of frags, the whole operation is aborted.
3293 *
3294 * Skb cannot include anything else but paged data while tgt is allowed
3295 * to have non-paged data as well.
3296 *
3297 * TODO: full sized shift could be optimized but that would need
3298 * specialized skb free'er to handle frags without up-to-date nr_frags.
3299 */
3300int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3301{
3302	int from, to, merge, todo;
3303	skb_frag_t *fragfrom, *fragto;
3304
3305	BUG_ON(shiftlen > skb->len);
3306
3307	if (skb_headlen(skb))
3308		return 0;
3309	if (skb_zcopy(tgt) || skb_zcopy(skb))
3310		return 0;
3311
3312	todo = shiftlen;
3313	from = 0;
3314	to = skb_shinfo(tgt)->nr_frags;
3315	fragfrom = &skb_shinfo(skb)->frags[from];
3316
3317	/* Actual merge is delayed until the point when we know we can
3318	 * commit all, so that we don't have to undo partial changes
3319	 */
3320	if (!to ||
3321	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3322			      skb_frag_off(fragfrom))) {
3323		merge = -1;
3324	} else {
3325		merge = to - 1;
3326
3327		todo -= skb_frag_size(fragfrom);
3328		if (todo < 0) {
3329			if (skb_prepare_for_shift(skb) ||
3330			    skb_prepare_for_shift(tgt))
3331				return 0;
3332
3333			/* All previous frag pointers might be stale! */
3334			fragfrom = &skb_shinfo(skb)->frags[from];
3335			fragto = &skb_shinfo(tgt)->frags[merge];
3336
3337			skb_frag_size_add(fragto, shiftlen);
3338			skb_frag_size_sub(fragfrom, shiftlen);
3339			skb_frag_off_add(fragfrom, shiftlen);
3340
3341			goto onlymerged;
3342		}
3343
3344		from++;
3345	}
3346
3347	/* Skip full, not-fitting skb to avoid expensive operations */
3348	if ((shiftlen == skb->len) &&
3349	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3350		return 0;
3351
3352	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3353		return 0;
3354
3355	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3356		if (to == MAX_SKB_FRAGS)
3357			return 0;
3358
3359		fragfrom = &skb_shinfo(skb)->frags[from];
3360		fragto = &skb_shinfo(tgt)->frags[to];
3361
3362		if (todo >= skb_frag_size(fragfrom)) {
3363			*fragto = *fragfrom;
3364			todo -= skb_frag_size(fragfrom);
3365			from++;
3366			to++;
3367
3368		} else {
3369			__skb_frag_ref(fragfrom);
3370			skb_frag_page_copy(fragto, fragfrom);
3371			skb_frag_off_copy(fragto, fragfrom);
3372			skb_frag_size_set(fragto, todo);
3373
3374			skb_frag_off_add(fragfrom, todo);
3375			skb_frag_size_sub(fragfrom, todo);
3376			todo = 0;
3377
3378			to++;
3379			break;
3380		}
3381	}
3382
3383	/* Ready to "commit" this state change to tgt */
3384	skb_shinfo(tgt)->nr_frags = to;
3385
3386	if (merge >= 0) {
3387		fragfrom = &skb_shinfo(skb)->frags[0];
3388		fragto = &skb_shinfo(tgt)->frags[merge];
3389
3390		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3391		__skb_frag_unref(fragfrom);
3392	}
3393
3394	/* Reposition in the original skb */
3395	to = 0;
3396	while (from < skb_shinfo(skb)->nr_frags)
3397		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3398	skb_shinfo(skb)->nr_frags = to;
3399
3400	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3401
3402onlymerged:
3403	/* Most likely the tgt won't ever need its checksum anymore, skb on
3404	 * the other hand might need it if it needs to be resent
3405	 */
3406	tgt->ip_summed = CHECKSUM_PARTIAL;
3407	skb->ip_summed = CHECKSUM_PARTIAL;
3408
3409	/* Yak, is it really working this way? Some helper please? */
3410	skb->len -= shiftlen;
3411	skb->data_len -= shiftlen;
3412	skb->truesize -= shiftlen;
3413	tgt->len += shiftlen;
3414	tgt->data_len += shiftlen;
3415	tgt->truesize += shiftlen;
3416
3417	return shiftlen;
3418}
3419
3420/**
3421 * skb_prepare_seq_read - Prepare a sequential read of skb data
3422 * @skb: the buffer to read
3423 * @from: lower offset of data to be read
3424 * @to: upper offset of data to be read
3425 * @st: state variable
3426 *
3427 * Initializes the specified state variable. Must be called before
3428 * invoking skb_seq_read() for the first time.
3429 */
3430void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3431			  unsigned int to, struct skb_seq_state *st)
3432{
3433	st->lower_offset = from;
3434	st->upper_offset = to;
3435	st->root_skb = st->cur_skb = skb;
3436	st->frag_idx = st->stepped_offset = 0;
3437	st->frag_data = NULL;
3438}
3439EXPORT_SYMBOL(skb_prepare_seq_read);
3440
3441/**
3442 * skb_seq_read - Sequentially read skb data
3443 * @consumed: number of bytes consumed by the caller so far
3444 * @data: destination pointer for data to be returned
3445 * @st: state variable
3446 *
3447 * Reads a block of skb data at @consumed relative to the
3448 * lower offset specified to skb_prepare_seq_read(). Assigns
3449 * the head of the data block to @data and returns the length
3450 * of the block or 0 if the end of the skb data or the upper
3451 * offset has been reached.
3452 *
3453 * The caller is not required to consume all of the data
3454 * returned, i.e. @consumed is typically set to the number
3455 * of bytes already consumed and the next call to
3456 * skb_seq_read() will return the remaining part of the block.
3457 *
3458 * Note 1: The size of each block of data returned can be arbitrary,
3459 *       this limitation is the cost for zerocopy sequential
3460 *       reads of potentially non linear data.
3461 *
3462 * Note 2: Fragment lists within fragments are not implemented
3463 *       at the moment, state->root_skb could be replaced with
3464 *       a stack for this purpose.
3465 */
3466unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3467			  struct skb_seq_state *st)
3468{
3469	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3470	skb_frag_t *frag;
3471
3472	if (unlikely(abs_offset >= st->upper_offset)) {
3473		if (st->frag_data) {
3474			kunmap_atomic(st->frag_data);
3475			st->frag_data = NULL;
3476		}
3477		return 0;
3478	}
3479
3480next_skb:
3481	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3482
3483	if (abs_offset < block_limit && !st->frag_data) {
3484		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3485		return block_limit - abs_offset;
3486	}
3487
3488	if (st->frag_idx == 0 && !st->frag_data)
3489		st->stepped_offset += skb_headlen(st->cur_skb);
3490
3491	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3492		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3493		block_limit = skb_frag_size(frag) + st->stepped_offset;
3494
3495		if (abs_offset < block_limit) {
3496			if (!st->frag_data)
3497				st->frag_data = kmap_atomic(skb_frag_page(frag));
3498
3499			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3500				(abs_offset - st->stepped_offset);
3501
3502			return block_limit - abs_offset;
3503		}
3504
3505		if (st->frag_data) {
3506			kunmap_atomic(st->frag_data);
3507			st->frag_data = NULL;
3508		}
3509
3510		st->frag_idx++;
3511		st->stepped_offset += skb_frag_size(frag);
3512	}
3513
3514	if (st->frag_data) {
3515		kunmap_atomic(st->frag_data);
3516		st->frag_data = NULL;
3517	}
3518
3519	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3520		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3521		st->frag_idx = 0;
3522		goto next_skb;
3523	} else if (st->cur_skb->next) {
3524		st->cur_skb = st->cur_skb->next;
3525		st->frag_idx = 0;
3526		goto next_skb;
3527	}
3528
3529	return 0;
3530}
3531EXPORT_SYMBOL(skb_seq_read);
3532
3533/**
3534 * skb_abort_seq_read - Abort a sequential read of skb data
3535 * @st: state variable
3536 *
3537 * Must be called if skb_seq_read() was not called until it
3538 * returned 0.
3539 */
3540void skb_abort_seq_read(struct skb_seq_state *st)
3541{
3542	if (st->frag_data)
3543		kunmap_atomic(st->frag_data);
3544}
3545EXPORT_SYMBOL(skb_abort_seq_read);
3546
3547#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3548
3549static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3550					  struct ts_config *conf,
3551					  struct ts_state *state)
3552{
3553	return skb_seq_read(offset, text, TS_SKB_CB(state));
3554}
3555
3556static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3557{
3558	skb_abort_seq_read(TS_SKB_CB(state));
3559}
3560
3561/**
3562 * skb_find_text - Find a text pattern in skb data
3563 * @skb: the buffer to look in
3564 * @from: search offset
3565 * @to: search limit
3566 * @config: textsearch configuration
 
3567 *
3568 * Finds a pattern in the skb data according to the specified
3569 * textsearch configuration. Use textsearch_next() to retrieve
3570 * subsequent occurrences of the pattern. Returns the offset
3571 * to the first occurrence or UINT_MAX if no match was found.
3572 */
3573unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3574			   unsigned int to, struct ts_config *config)
 
3575{
3576	struct ts_state state;
3577	unsigned int ret;
3578
3579	config->get_next_block = skb_ts_get_next_block;
3580	config->finish = skb_ts_finish;
3581
3582	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3583
3584	ret = textsearch_find(config, &state);
3585	return (ret <= to - from ? ret : UINT_MAX);
3586}
3587EXPORT_SYMBOL(skb_find_text);
3588
3589int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3590			 int offset, size_t size)
3591{
3592	int i = skb_shinfo(skb)->nr_frags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3593
3594	if (skb_can_coalesce(skb, i, page, offset)) {
3595		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3596	} else if (i < MAX_SKB_FRAGS) {
3597		get_page(page);
3598		skb_fill_page_desc(skb, i, page, offset, size);
3599	} else {
3600		return -EMSGSIZE;
3601	}
3602
3603	return 0;
3604}
3605EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606
3607/**
3608 *	skb_pull_rcsum - pull skb and update receive checksum
3609 *	@skb: buffer to update
3610 *	@len: length of data pulled
3611 *
3612 *	This function performs an skb_pull on the packet and updates
3613 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3614 *	receive path processing instead of skb_pull unless you know
3615 *	that the checksum difference is zero (e.g., a valid IP header)
3616 *	or you are setting ip_summed to CHECKSUM_NONE.
3617 */
3618void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3619{
3620	unsigned char *data = skb->data;
3621
3622	BUG_ON(len > skb->len);
3623	__skb_pull(skb, len);
3624	skb_postpull_rcsum(skb, data, len);
3625	return skb->data;
 
3626}
3627EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3628
3629static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3630{
3631	skb_frag_t head_frag;
3632	struct page *page;
3633
3634	page = virt_to_head_page(frag_skb->head);
3635	__skb_frag_set_page(&head_frag, page);
3636	skb_frag_off_set(&head_frag, frag_skb->data -
3637			 (unsigned char *)page_address(page));
3638	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3639	return head_frag;
3640}
3641
3642struct sk_buff *skb_segment_list(struct sk_buff *skb,
3643				 netdev_features_t features,
3644				 unsigned int offset)
3645{
3646	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3647	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3648	unsigned int delta_truesize = 0;
3649	unsigned int delta_len = 0;
3650	struct sk_buff *tail = NULL;
3651	struct sk_buff *nskb;
3652
3653	skb_push(skb, -skb_network_offset(skb) + offset);
3654
3655	skb_shinfo(skb)->frag_list = NULL;
3656
3657	do {
3658		nskb = list_skb;
3659		list_skb = list_skb->next;
3660
3661		if (!tail)
3662			skb->next = nskb;
3663		else
3664			tail->next = nskb;
3665
3666		tail = nskb;
3667
3668		delta_len += nskb->len;
3669		delta_truesize += nskb->truesize;
3670
3671		skb_push(nskb, -skb_network_offset(nskb) + offset);
3672
3673		skb_release_head_state(nskb);
3674		 __copy_skb_header(nskb, skb);
3675
3676		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3677		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3678						 nskb->data - tnl_hlen,
3679						 offset + tnl_hlen);
3680
3681		if (skb_needs_linearize(nskb, features) &&
3682		    __skb_linearize(nskb))
3683			goto err_linearize;
3684
3685	} while (list_skb);
3686
3687	skb->truesize = skb->truesize - delta_truesize;
3688	skb->data_len = skb->data_len - delta_len;
3689	skb->len = skb->len - delta_len;
3690
3691	skb_gso_reset(skb);
3692
3693	skb->prev = tail;
3694
3695	if (skb_needs_linearize(skb, features) &&
3696	    __skb_linearize(skb))
3697		goto err_linearize;
3698
3699	skb_get(skb);
3700
3701	return skb;
3702
3703err_linearize:
3704	kfree_skb_list(skb->next);
3705	skb->next = NULL;
3706	return ERR_PTR(-ENOMEM);
3707}
3708EXPORT_SYMBOL_GPL(skb_segment_list);
3709
3710int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3711{
3712	if (unlikely(p->len + skb->len >= 65536))
3713		return -E2BIG;
3714
3715	if (NAPI_GRO_CB(p)->last == p)
3716		skb_shinfo(p)->frag_list = skb;
3717	else
3718		NAPI_GRO_CB(p)->last->next = skb;
3719
3720	skb_pull(skb, skb_gro_offset(skb));
3721
3722	NAPI_GRO_CB(p)->last = skb;
3723	NAPI_GRO_CB(p)->count++;
3724	p->data_len += skb->len;
3725	p->truesize += skb->truesize;
3726	p->len += skb->len;
3727
3728	NAPI_GRO_CB(skb)->same_flow = 1;
3729
3730	return 0;
3731}
3732
3733/**
3734 *	skb_segment - Perform protocol segmentation on skb.
3735 *	@head_skb: buffer to segment
3736 *	@features: features for the output path (see dev->features)
3737 *
3738 *	This function performs segmentation on the given skb.  It returns
3739 *	a pointer to the first in a list of new skbs for the segments.
3740 *	In case of error it returns ERR_PTR(err).
3741 */
3742struct sk_buff *skb_segment(struct sk_buff *head_skb,
3743			    netdev_features_t features)
3744{
3745	struct sk_buff *segs = NULL;
3746	struct sk_buff *tail = NULL;
3747	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3748	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3749	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3750	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3751	struct sk_buff *frag_skb = head_skb;
3752	unsigned int offset = doffset;
3753	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3754	unsigned int partial_segs = 0;
3755	unsigned int headroom;
3756	unsigned int len = head_skb->len;
3757	__be16 proto;
3758	bool csum, sg;
3759	int nfrags = skb_shinfo(head_skb)->nr_frags;
3760	int err = -ENOMEM;
3761	int i = 0;
3762	int pos;
3763
3764	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3765	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3766		/* gso_size is untrusted, and we have a frag_list with a linear
3767		 * non head_frag head.
3768		 *
3769		 * (we assume checking the first list_skb member suffices;
3770		 * i.e if either of the list_skb members have non head_frag
3771		 * head, then the first one has too).
3772		 *
3773		 * If head_skb's headlen does not fit requested gso_size, it
3774		 * means that the frag_list members do NOT terminate on exact
3775		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776		 * sharing. Therefore we must fallback to copying the frag_list
3777		 * skbs; we do so by disabling SG.
3778		 */
3779		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3780			features &= ~NETIF_F_SG;
3781	}
3782
3783	__skb_push(head_skb, doffset);
3784	proto = skb_network_protocol(head_skb, NULL);
3785	if (unlikely(!proto))
3786		return ERR_PTR(-EINVAL);
3787
3788	sg = !!(features & NETIF_F_SG);
3789	csum = !!can_checksum_protocol(features, proto);
3790
3791	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3792		if (!(features & NETIF_F_GSO_PARTIAL)) {
3793			struct sk_buff *iter;
3794			unsigned int frag_len;
3795
3796			if (!list_skb ||
3797			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3798				goto normal;
3799
3800			/* If we get here then all the required
3801			 * GSO features except frag_list are supported.
3802			 * Try to split the SKB to multiple GSO SKBs
3803			 * with no frag_list.
3804			 * Currently we can do that only when the buffers don't
3805			 * have a linear part and all the buffers except
3806			 * the last are of the same length.
3807			 */
3808			frag_len = list_skb->len;
3809			skb_walk_frags(head_skb, iter) {
3810				if (frag_len != iter->len && iter->next)
3811					goto normal;
3812				if (skb_headlen(iter) && !iter->head_frag)
3813					goto normal;
3814
3815				len -= iter->len;
3816			}
3817
3818			if (len != frag_len)
3819				goto normal;
3820		}
3821
3822		/* GSO partial only requires that we trim off any excess that
3823		 * doesn't fit into an MSS sized block, so take care of that
3824		 * now.
3825		 */
3826		partial_segs = len / mss;
3827		if (partial_segs > 1)
3828			mss *= partial_segs;
3829		else
3830			partial_segs = 0;
3831	}
3832
3833normal:
3834	headroom = skb_headroom(head_skb);
3835	pos = skb_headlen(head_skb);
3836
3837	do {
3838		struct sk_buff *nskb;
3839		skb_frag_t *nskb_frag;
3840		int hsize;
3841		int size;
3842
3843		if (unlikely(mss == GSO_BY_FRAGS)) {
3844			len = list_skb->len;
3845		} else {
3846			len = head_skb->len - offset;
3847			if (len > mss)
3848				len = mss;
3849		}
3850
3851		hsize = skb_headlen(head_skb) - offset;
3852		if (hsize < 0)
3853			hsize = 0;
3854		if (hsize > len || !sg)
3855			hsize = len;
3856
3857		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3858		    (skb_headlen(list_skb) == len || sg)) {
3859			BUG_ON(skb_headlen(list_skb) > len);
3860
3861			i = 0;
3862			nfrags = skb_shinfo(list_skb)->nr_frags;
3863			frag = skb_shinfo(list_skb)->frags;
3864			frag_skb = list_skb;
3865			pos += skb_headlen(list_skb);
3866
3867			while (pos < offset + len) {
3868				BUG_ON(i >= nfrags);
3869
3870				size = skb_frag_size(frag);
3871				if (pos + size > offset + len)
3872					break;
3873
3874				i++;
3875				pos += size;
3876				frag++;
3877			}
3878
3879			nskb = skb_clone(list_skb, GFP_ATOMIC);
3880			list_skb = list_skb->next;
 
3881
3882			if (unlikely(!nskb))
3883				goto err;
3884
3885			if (unlikely(pskb_trim(nskb, len))) {
3886				kfree_skb(nskb);
3887				goto err;
3888			}
3889
3890			hsize = skb_end_offset(nskb);
3891			if (skb_cow_head(nskb, doffset + headroom)) {
3892				kfree_skb(nskb);
3893				goto err;
3894			}
3895
3896			nskb->truesize += skb_end_offset(nskb) - hsize;
 
3897			skb_release_head_state(nskb);
3898			__skb_push(nskb, doffset);
3899		} else {
3900			nskb = __alloc_skb(hsize + doffset + headroom,
3901					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3902					   NUMA_NO_NODE);
3903
3904			if (unlikely(!nskb))
3905				goto err;
3906
3907			skb_reserve(nskb, headroom);
3908			__skb_put(nskb, doffset);
3909		}
3910
3911		if (segs)
3912			tail->next = nskb;
3913		else
3914			segs = nskb;
3915		tail = nskb;
3916
3917		__copy_skb_header(nskb, head_skb);
 
3918
3919		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3920		skb_reset_mac_len(nskb);
 
 
 
 
 
 
 
3921
3922		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3923						 nskb->data - tnl_hlen,
3924						 doffset + tnl_hlen);
3925
3926		if (nskb->len == len + doffset)
3927			goto perform_csum_check;
3928
3929		if (!sg) {
3930			if (!csum) {
3931				if (!nskb->remcsum_offload)
3932					nskb->ip_summed = CHECKSUM_NONE;
3933				SKB_GSO_CB(nskb)->csum =
3934					skb_copy_and_csum_bits(head_skb, offset,
3935							       skb_put(nskb,
3936								       len),
3937							       len, 0);
3938				SKB_GSO_CB(nskb)->csum_start =
3939					skb_headroom(nskb) + doffset;
3940			} else {
3941				skb_copy_bits(head_skb, offset,
3942					      skb_put(nskb, len),
3943					      len);
3944			}
3945			continue;
3946		}
3947
3948		nskb_frag = skb_shinfo(nskb)->frags;
3949
3950		skb_copy_from_linear_data_offset(head_skb, offset,
3951						 skb_put(nskb, hsize), hsize);
3952
3953		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3954					      SKBTX_SHARED_FRAG;
3955
3956		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3957		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3958			goto err;
3959
3960		while (pos < offset + len) {
3961			if (i >= nfrags) {
3962				i = 0;
3963				nfrags = skb_shinfo(list_skb)->nr_frags;
3964				frag = skb_shinfo(list_skb)->frags;
3965				frag_skb = list_skb;
3966				if (!skb_headlen(list_skb)) {
3967					BUG_ON(!nfrags);
3968				} else {
3969					BUG_ON(!list_skb->head_frag);
3970
3971					/* to make room for head_frag. */
3972					i--;
3973					frag--;
3974				}
3975				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3976				    skb_zerocopy_clone(nskb, frag_skb,
3977						       GFP_ATOMIC))
3978					goto err;
3979
3980				list_skb = list_skb->next;
3981			}
3982
3983			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3984				     MAX_SKB_FRAGS)) {
3985				net_warn_ratelimited(
3986					"skb_segment: too many frags: %u %u\n",
3987					pos, mss);
3988				err = -EINVAL;
3989				goto err;
3990			}
3991
3992			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3993			__skb_frag_ref(nskb_frag);
3994			size = skb_frag_size(nskb_frag);
3995
3996			if (pos < offset) {
3997				skb_frag_off_add(nskb_frag, offset - pos);
3998				skb_frag_size_sub(nskb_frag, offset - pos);
3999			}
4000
4001			skb_shinfo(nskb)->nr_frags++;
4002
4003			if (pos + size <= offset + len) {
4004				i++;
4005				frag++;
4006				pos += size;
4007			} else {
4008				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4009				goto skip_fraglist;
4010			}
4011
4012			nskb_frag++;
4013		}
4014
4015skip_fraglist:
4016		nskb->data_len = len - hsize;
4017		nskb->len += nskb->data_len;
4018		nskb->truesize += nskb->data_len;
4019
4020perform_csum_check:
4021		if (!csum) {
4022			if (skb_has_shared_frag(nskb) &&
4023			    __skb_linearize(nskb))
4024				goto err;
4025
4026			if (!nskb->remcsum_offload)
4027				nskb->ip_summed = CHECKSUM_NONE;
4028			SKB_GSO_CB(nskb)->csum =
4029				skb_checksum(nskb, doffset,
4030					     nskb->len - doffset, 0);
4031			SKB_GSO_CB(nskb)->csum_start =
4032				skb_headroom(nskb) + doffset;
4033		}
4034	} while ((offset += len) < head_skb->len);
4035
4036	/* Some callers want to get the end of the list.
4037	 * Put it in segs->prev to avoid walking the list.
4038	 * (see validate_xmit_skb_list() for example)
4039	 */
4040	segs->prev = tail;
4041
4042	if (partial_segs) {
4043		struct sk_buff *iter;
4044		int type = skb_shinfo(head_skb)->gso_type;
4045		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4046
4047		/* Update type to add partial and then remove dodgy if set */
4048		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4049		type &= ~SKB_GSO_DODGY;
4050
4051		/* Update GSO info and prepare to start updating headers on
4052		 * our way back down the stack of protocols.
4053		 */
4054		for (iter = segs; iter; iter = iter->next) {
4055			skb_shinfo(iter)->gso_size = gso_size;
4056			skb_shinfo(iter)->gso_segs = partial_segs;
4057			skb_shinfo(iter)->gso_type = type;
4058			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4059		}
4060
4061		if (tail->len - doffset <= gso_size)
4062			skb_shinfo(tail)->gso_size = 0;
4063		else if (tail != segs)
4064			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4065	}
4066
4067	/* Following permits correct backpressure, for protocols
4068	 * using skb_set_owner_w().
4069	 * Idea is to tranfert ownership from head_skb to last segment.
4070	 */
4071	if (head_skb->destructor == sock_wfree) {
4072		swap(tail->truesize, head_skb->truesize);
4073		swap(tail->destructor, head_skb->destructor);
4074		swap(tail->sk, head_skb->sk);
4075	}
4076	return segs;
4077
4078err:
4079	kfree_skb_list(segs);
 
 
 
4080	return ERR_PTR(err);
4081}
4082EXPORT_SYMBOL_GPL(skb_segment);
4083
4084int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4085{
4086	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
 
 
 
 
 
4087	unsigned int offset = skb_gro_offset(skb);
4088	unsigned int headlen = skb_headlen(skb);
4089	unsigned int len = skb_gro_len(skb);
4090	unsigned int delta_truesize;
4091	struct sk_buff *lp;
4092
4093	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4094		return -E2BIG;
4095
4096	lp = NAPI_GRO_CB(p)->last;
4097	pinfo = skb_shinfo(lp);
4098
4099	if (headlen <= offset) {
4100		skb_frag_t *frag;
4101		skb_frag_t *frag2;
4102		int i = skbinfo->nr_frags;
4103		int nr_frags = pinfo->nr_frags + i;
4104
 
 
4105		if (nr_frags > MAX_SKB_FRAGS)
4106			goto merge;
4107
4108		offset -= headlen;
4109		pinfo->nr_frags = nr_frags;
4110		skbinfo->nr_frags = 0;
4111
4112		frag = pinfo->frags + nr_frags;
4113		frag2 = skbinfo->frags + i;
4114		do {
4115			*--frag = *--frag2;
4116		} while (--i);
4117
4118		skb_frag_off_add(frag, offset);
4119		skb_frag_size_sub(frag, offset);
4120
4121		/* all fragments truesize : remove (head size + sk_buff) */
4122		delta_truesize = skb->truesize -
4123				 SKB_TRUESIZE(skb_end_offset(skb));
4124
4125		skb->truesize -= skb->data_len;
4126		skb->len -= skb->data_len;
4127		skb->data_len = 0;
4128
4129		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4130		goto done;
4131	} else if (skb->head_frag) {
4132		int nr_frags = pinfo->nr_frags;
4133		skb_frag_t *frag = pinfo->frags + nr_frags;
4134		struct page *page = virt_to_head_page(skb->head);
4135		unsigned int first_size = headlen - offset;
4136		unsigned int first_offset;
4137
4138		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4139			goto merge;
4140
4141		first_offset = skb->data -
4142			       (unsigned char *)page_address(page) +
4143			       offset;
4144
4145		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4146
4147		__skb_frag_set_page(frag, page);
4148		skb_frag_off_set(frag, first_offset);
4149		skb_frag_size_set(frag, first_size);
4150
4151		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4152		/* We dont need to clear skbinfo->nr_frags here */
4153
4154		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4155		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4156		goto done;
4157	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158
4159merge:
4160	delta_truesize = skb->truesize;
4161	if (offset > headlen) {
4162		unsigned int eat = offset - headlen;
4163
4164		skb_frag_off_add(&skbinfo->frags[0], eat);
4165		skb_frag_size_sub(&skbinfo->frags[0], eat);
4166		skb->data_len -= eat;
4167		skb->len -= eat;
4168		offset = headlen;
4169	}
4170
4171	__skb_pull(skb, offset);
4172
4173	if (NAPI_GRO_CB(p)->last == p)
4174		skb_shinfo(p)->frag_list = skb;
4175	else
4176		NAPI_GRO_CB(p)->last->next = skb;
4177	NAPI_GRO_CB(p)->last = skb;
4178	__skb_header_release(skb);
4179	lp = p;
4180
4181done:
4182	NAPI_GRO_CB(p)->count++;
4183	p->data_len += len;
4184	p->truesize += delta_truesize;
4185	p->len += len;
4186	if (lp != p) {
4187		lp->data_len += len;
4188		lp->truesize += delta_truesize;
4189		lp->len += len;
4190	}
4191	NAPI_GRO_CB(skb)->same_flow = 1;
4192	return 0;
4193}
4194
4195#ifdef CONFIG_SKB_EXTENSIONS
4196#define SKB_EXT_ALIGN_VALUE	8
4197#define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4198
4199static const u8 skb_ext_type_len[] = {
4200#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4201	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4202#endif
4203#ifdef CONFIG_XFRM
4204	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4205#endif
4206#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4207	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4208#endif
4209#if IS_ENABLED(CONFIG_MPTCP)
4210	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4211#endif
4212};
4213
4214static __always_inline unsigned int skb_ext_total_length(void)
4215{
4216	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4217#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4218		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4219#endif
4220#ifdef CONFIG_XFRM
4221		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4222#endif
4223#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4224		skb_ext_type_len[TC_SKB_EXT] +
4225#endif
4226#if IS_ENABLED(CONFIG_MPTCP)
4227		skb_ext_type_len[SKB_EXT_MPTCP] +
4228#endif
4229		0;
4230}
4231
4232static void skb_extensions_init(void)
4233{
4234	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4235	BUILD_BUG_ON(skb_ext_total_length() > 255);
4236
4237	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4238					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4239					     0,
4240					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4241					     NULL);
4242}
4243#else
4244static void skb_extensions_init(void) {}
4245#endif
4246
4247void __init skb_init(void)
4248{
4249	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4250					      sizeof(struct sk_buff),
4251					      0,
4252					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4253					      offsetof(struct sk_buff, cb),
4254					      sizeof_field(struct sk_buff, cb),
4255					      NULL);
4256	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4257						sizeof(struct sk_buff_fclones),
 
4258						0,
4259						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4260						NULL);
4261	skb_extensions_init();
4262}
4263
 
 
 
 
 
 
 
 
 
 
4264static int
4265__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4266	       unsigned int recursion_level)
4267{
4268	int start = skb_headlen(skb);
4269	int i, copy = start - offset;
4270	struct sk_buff *frag_iter;
4271	int elt = 0;
4272
4273	if (unlikely(recursion_level >= 24))
4274		return -EMSGSIZE;
4275
4276	if (copy > 0) {
4277		if (copy > len)
4278			copy = len;
4279		sg_set_buf(sg, skb->data + offset, copy);
4280		elt++;
4281		if ((len -= copy) == 0)
4282			return elt;
4283		offset += copy;
4284	}
4285
4286	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4287		int end;
4288
4289		WARN_ON(start > offset + len);
4290
4291		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4292		if ((copy = end - offset) > 0) {
4293			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4294			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4295				return -EMSGSIZE;
4296
4297			if (copy > len)
4298				copy = len;
4299			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4300				    skb_frag_off(frag) + offset - start);
4301			elt++;
4302			if (!(len -= copy))
4303				return elt;
4304			offset += copy;
4305		}
4306		start = end;
4307	}
4308
4309	skb_walk_frags(skb, frag_iter) {
4310		int end, ret;
4311
4312		WARN_ON(start > offset + len);
4313
4314		end = start + frag_iter->len;
4315		if ((copy = end - offset) > 0) {
4316			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4317				return -EMSGSIZE;
4318
4319			if (copy > len)
4320				copy = len;
4321			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4322					      copy, recursion_level + 1);
4323			if (unlikely(ret < 0))
4324				return ret;
4325			elt += ret;
4326			if ((len -= copy) == 0)
4327				return elt;
4328			offset += copy;
4329		}
4330		start = end;
4331	}
4332	BUG_ON(len);
4333	return elt;
4334}
4335
4336/**
4337 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4338 *	@skb: Socket buffer containing the buffers to be mapped
4339 *	@sg: The scatter-gather list to map into
4340 *	@offset: The offset into the buffer's contents to start mapping
4341 *	@len: Length of buffer space to be mapped
4342 *
4343 *	Fill the specified scatter-gather list with mappings/pointers into a
4344 *	region of the buffer space attached to a socket buffer. Returns either
4345 *	the number of scatterlist items used, or -EMSGSIZE if the contents
4346 *	could not fit.
4347 */
4348int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4349{
4350	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4351
4352	if (nsg <= 0)
4353		return nsg;
4354
4355	sg_mark_end(&sg[nsg - 1]);
4356
4357	return nsg;
4358}
4359EXPORT_SYMBOL_GPL(skb_to_sgvec);
4360
4361/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4362 * sglist without mark the sg which contain last skb data as the end.
4363 * So the caller can mannipulate sg list as will when padding new data after
4364 * the first call without calling sg_unmark_end to expend sg list.
4365 *
4366 * Scenario to use skb_to_sgvec_nomark:
4367 * 1. sg_init_table
4368 * 2. skb_to_sgvec_nomark(payload1)
4369 * 3. skb_to_sgvec_nomark(payload2)
4370 *
4371 * This is equivalent to:
4372 * 1. sg_init_table
4373 * 2. skb_to_sgvec(payload1)
4374 * 3. sg_unmark_end
4375 * 4. skb_to_sgvec(payload2)
4376 *
4377 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4378 * is more preferable.
4379 */
4380int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4381			int offset, int len)
4382{
4383	return __skb_to_sgvec(skb, sg, offset, len, 0);
4384}
4385EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4386
4387
4388
4389/**
4390 *	skb_cow_data - Check that a socket buffer's data buffers are writable
4391 *	@skb: The socket buffer to check.
4392 *	@tailbits: Amount of trailing space to be added
4393 *	@trailer: Returned pointer to the skb where the @tailbits space begins
4394 *
4395 *	Make sure that the data buffers attached to a socket buffer are
4396 *	writable. If they are not, private copies are made of the data buffers
4397 *	and the socket buffer is set to use these instead.
4398 *
4399 *	If @tailbits is given, make sure that there is space to write @tailbits
4400 *	bytes of data beyond current end of socket buffer.  @trailer will be
4401 *	set to point to the skb in which this space begins.
4402 *
4403 *	The number of scatterlist elements required to completely map the
4404 *	COW'd and extended socket buffer will be returned.
4405 */
4406int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4407{
4408	int copyflag;
4409	int elt;
4410	struct sk_buff *skb1, **skb_p;
4411
4412	/* If skb is cloned or its head is paged, reallocate
4413	 * head pulling out all the pages (pages are considered not writable
4414	 * at the moment even if they are anonymous).
4415	 */
4416	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4417	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4418		return -ENOMEM;
4419
4420	/* Easy case. Most of packets will go this way. */
4421	if (!skb_has_frag_list(skb)) {
4422		/* A little of trouble, not enough of space for trailer.
4423		 * This should not happen, when stack is tuned to generate
4424		 * good frames. OK, on miss we reallocate and reserve even more
4425		 * space, 128 bytes is fair. */
4426
4427		if (skb_tailroom(skb) < tailbits &&
4428		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4429			return -ENOMEM;
4430
4431		/* Voila! */
4432		*trailer = skb;
4433		return 1;
4434	}
4435
4436	/* Misery. We are in troubles, going to mincer fragments... */
4437
4438	elt = 1;
4439	skb_p = &skb_shinfo(skb)->frag_list;
4440	copyflag = 0;
4441
4442	while ((skb1 = *skb_p) != NULL) {
4443		int ntail = 0;
4444
4445		/* The fragment is partially pulled by someone,
4446		 * this can happen on input. Copy it and everything
4447		 * after it. */
4448
4449		if (skb_shared(skb1))
4450			copyflag = 1;
4451
4452		/* If the skb is the last, worry about trailer. */
4453
4454		if (skb1->next == NULL && tailbits) {
4455			if (skb_shinfo(skb1)->nr_frags ||
4456			    skb_has_frag_list(skb1) ||
4457			    skb_tailroom(skb1) < tailbits)
4458				ntail = tailbits + 128;
4459		}
4460
4461		if (copyflag ||
4462		    skb_cloned(skb1) ||
4463		    ntail ||
4464		    skb_shinfo(skb1)->nr_frags ||
4465		    skb_has_frag_list(skb1)) {
4466			struct sk_buff *skb2;
4467
4468			/* Fuck, we are miserable poor guys... */
4469			if (ntail == 0)
4470				skb2 = skb_copy(skb1, GFP_ATOMIC);
4471			else
4472				skb2 = skb_copy_expand(skb1,
4473						       skb_headroom(skb1),
4474						       ntail,
4475						       GFP_ATOMIC);
4476			if (unlikely(skb2 == NULL))
4477				return -ENOMEM;
4478
4479			if (skb1->sk)
4480				skb_set_owner_w(skb2, skb1->sk);
4481
4482			/* Looking around. Are we still alive?
4483			 * OK, link new skb, drop old one */
4484
4485			skb2->next = skb1->next;
4486			*skb_p = skb2;
4487			kfree_skb(skb1);
4488			skb1 = skb2;
4489		}
4490		elt++;
4491		*trailer = skb1;
4492		skb_p = &skb1->next;
4493	}
4494
4495	return elt;
4496}
4497EXPORT_SYMBOL_GPL(skb_cow_data);
4498
4499static void sock_rmem_free(struct sk_buff *skb)
4500{
4501	struct sock *sk = skb->sk;
4502
4503	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4504}
4505
4506static void skb_set_err_queue(struct sk_buff *skb)
4507{
4508	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4509	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4510	 */
4511	skb->pkt_type = PACKET_OUTGOING;
4512	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4513}
4514
4515/*
4516 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4517 */
4518int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4519{
4520	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4521	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4522		return -ENOMEM;
4523
4524	skb_orphan(skb);
4525	skb->sk = sk;
4526	skb->destructor = sock_rmem_free;
4527	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4528	skb_set_err_queue(skb);
4529
4530	/* before exiting rcu section, make sure dst is refcounted */
4531	skb_dst_force(skb);
4532
4533	skb_queue_tail(&sk->sk_error_queue, skb);
4534	if (!sock_flag(sk, SOCK_DEAD))
4535		sk->sk_error_report(sk);
4536	return 0;
4537}
4538EXPORT_SYMBOL(sock_queue_err_skb);
4539
4540static bool is_icmp_err_skb(const struct sk_buff *skb)
4541{
4542	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4543		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4544}
4545
4546struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4547{
4548	struct sk_buff_head *q = &sk->sk_error_queue;
4549	struct sk_buff *skb, *skb_next = NULL;
4550	bool icmp_next = false;
4551	unsigned long flags;
4552
4553	spin_lock_irqsave(&q->lock, flags);
4554	skb = __skb_dequeue(q);
4555	if (skb && (skb_next = skb_peek(q))) {
4556		icmp_next = is_icmp_err_skb(skb_next);
4557		if (icmp_next)
4558			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4559	}
4560	spin_unlock_irqrestore(&q->lock, flags);
4561
4562	if (is_icmp_err_skb(skb) && !icmp_next)
4563		sk->sk_err = 0;
4564
4565	if (skb_next)
4566		sk->sk_error_report(sk);
4567
4568	return skb;
4569}
4570EXPORT_SYMBOL(sock_dequeue_err_skb);
4571
4572/**
4573 * skb_clone_sk - create clone of skb, and take reference to socket
4574 * @skb: the skb to clone
4575 *
4576 * This function creates a clone of a buffer that holds a reference on
4577 * sk_refcnt.  Buffers created via this function are meant to be
4578 * returned using sock_queue_err_skb, or free via kfree_skb.
4579 *
4580 * When passing buffers allocated with this function to sock_queue_err_skb
4581 * it is necessary to wrap the call with sock_hold/sock_put in order to
4582 * prevent the socket from being released prior to being enqueued on
4583 * the sk_error_queue.
4584 */
4585struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4586{
4587	struct sock *sk = skb->sk;
4588	struct sk_buff *clone;
4589
4590	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4591		return NULL;
4592
4593	clone = skb_clone(skb, GFP_ATOMIC);
4594	if (!clone) {
4595		sock_put(sk);
4596		return NULL;
4597	}
4598
4599	clone->sk = sk;
4600	clone->destructor = sock_efree;
4601
4602	return clone;
4603}
4604EXPORT_SYMBOL(skb_clone_sk);
4605
4606static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4607					struct sock *sk,
4608					int tstype,
4609					bool opt_stats)
4610{
 
4611	struct sock_exterr_skb *serr;
 
4612	int err;
4613
4614	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4615
4616	serr = SKB_EXT_ERR(skb);
4617	memset(serr, 0, sizeof(*serr));
4618	serr->ee.ee_errno = ENOMSG;
4619	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4620	serr->ee.ee_info = tstype;
4621	serr->opt_stats = opt_stats;
4622	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4623	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4624		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4625		if (sk->sk_protocol == IPPROTO_TCP &&
4626		    sk->sk_type == SOCK_STREAM)
4627			serr->ee.ee_data -= sk->sk_tskey;
4628	}
4629
4630	err = sock_queue_err_skb(sk, skb);
4631
4632	if (err)
4633		kfree_skb(skb);
4634}
4635
4636static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4637{
4638	bool ret;
4639
4640	if (likely(sysctl_tstamp_allow_data || tsonly))
4641		return true;
4642
4643	read_lock_bh(&sk->sk_callback_lock);
4644	ret = sk->sk_socket && sk->sk_socket->file &&
4645	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4646	read_unlock_bh(&sk->sk_callback_lock);
4647	return ret;
4648}
4649
4650void skb_complete_tx_timestamp(struct sk_buff *skb,
4651			       struct skb_shared_hwtstamps *hwtstamps)
4652{
4653	struct sock *sk = skb->sk;
4654
4655	if (!skb_may_tx_timestamp(sk, false))
4656		goto err;
4657
4658	/* Take a reference to prevent skb_orphan() from freeing the socket,
4659	 * but only if the socket refcount is not zero.
4660	 */
4661	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4662		*skb_hwtstamps(skb) = *hwtstamps;
4663		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4664		sock_put(sk);
4665		return;
4666	}
4667
4668err:
4669	kfree_skb(skb);
4670}
4671EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4672
4673void __skb_tstamp_tx(struct sk_buff *orig_skb,
4674		     struct skb_shared_hwtstamps *hwtstamps,
4675		     struct sock *sk, int tstype)
4676{
4677	struct sk_buff *skb;
4678	bool tsonly, opt_stats = false;
4679
4680	if (!sk)
4681		return;
4682
4683	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4684	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4685		return;
4686
4687	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4688	if (!skb_may_tx_timestamp(sk, tsonly))
4689		return;
4690
4691	if (tsonly) {
4692#ifdef CONFIG_INET
4693		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4694		    sk->sk_protocol == IPPROTO_TCP &&
4695		    sk->sk_type == SOCK_STREAM) {
4696			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4697			opt_stats = true;
4698		} else
4699#endif
4700			skb = alloc_skb(0, GFP_ATOMIC);
4701	} else {
4702		skb = skb_clone(orig_skb, GFP_ATOMIC);
 
 
 
 
 
4703	}
4704	if (!skb)
4705		return;
4706
4707	if (tsonly) {
4708		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4709					     SKBTX_ANY_TSTAMP;
4710		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4711	}
4712
4713	if (hwtstamps)
4714		*skb_hwtstamps(skb) = *hwtstamps;
4715	else
4716		skb->tstamp = ktime_get_real();
4717
4718	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4719}
4720EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4721
4722void skb_tstamp_tx(struct sk_buff *orig_skb,
4723		   struct skb_shared_hwtstamps *hwtstamps)
4724{
4725	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4726			       SCM_TSTAMP_SND);
4727}
4728EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4729
4730void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4731{
4732	struct sock *sk = skb->sk;
4733	struct sock_exterr_skb *serr;
4734	int err = 1;
4735
4736	skb->wifi_acked_valid = 1;
4737	skb->wifi_acked = acked;
4738
4739	serr = SKB_EXT_ERR(skb);
4740	memset(serr, 0, sizeof(*serr));
4741	serr->ee.ee_errno = ENOMSG;
4742	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
 
 
4743
4744	/* Take a reference to prevent skb_orphan() from freeing the socket,
4745	 * but only if the socket refcount is not zero.
4746	 */
4747	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4748		err = sock_queue_err_skb(sk, skb);
4749		sock_put(sk);
4750	}
4751	if (err)
4752		kfree_skb(skb);
4753}
4754EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
 
4755
4756/**
4757 * skb_partial_csum_set - set up and verify partial csum values for packet
4758 * @skb: the skb to set
4759 * @start: the number of bytes after skb->data to start checksumming.
4760 * @off: the offset from start to place the checksum.
4761 *
4762 * For untrusted partially-checksummed packets, we need to make sure the values
4763 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4764 *
4765 * This function checks and sets those values and skb->ip_summed: if this
4766 * returns false you should drop the packet.
4767 */
4768bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4769{
4770	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4771	u32 csum_start = skb_headroom(skb) + (u32)start;
4772
4773	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4774		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4775				     start, off, skb_headroom(skb), skb_headlen(skb));
4776		return false;
4777	}
4778	skb->ip_summed = CHECKSUM_PARTIAL;
4779	skb->csum_start = csum_start;
4780	skb->csum_offset = off;
4781	skb_set_transport_header(skb, start);
4782	return true;
4783}
4784EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4785
4786static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4787			       unsigned int max)
4788{
4789	if (skb_headlen(skb) >= len)
4790		return 0;
4791
4792	/* If we need to pullup then pullup to the max, so we
4793	 * won't need to do it again.
4794	 */
4795	if (max > skb->len)
4796		max = skb->len;
4797
4798	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4799		return -ENOMEM;
4800
4801	if (skb_headlen(skb) < len)
4802		return -EPROTO;
4803
4804	return 0;
4805}
4806
4807#define MAX_TCP_HDR_LEN (15 * 4)
4808
4809static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4810				      typeof(IPPROTO_IP) proto,
4811				      unsigned int off)
4812{
4813	int err;
4814
4815	switch (proto) {
4816	case IPPROTO_TCP:
4817		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4818					  off + MAX_TCP_HDR_LEN);
4819		if (!err && !skb_partial_csum_set(skb, off,
4820						  offsetof(struct tcphdr,
4821							   check)))
4822			err = -EPROTO;
4823		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4824
4825	case IPPROTO_UDP:
4826		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4827					  off + sizeof(struct udphdr));
4828		if (!err && !skb_partial_csum_set(skb, off,
4829						  offsetof(struct udphdr,
4830							   check)))
4831			err = -EPROTO;
4832		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4833	}
4834
4835	return ERR_PTR(-EPROTO);
4836}
4837
4838/* This value should be large enough to cover a tagged ethernet header plus
4839 * maximally sized IP and TCP or UDP headers.
4840 */
4841#define MAX_IP_HDR_LEN 128
4842
4843static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4844{
4845	unsigned int off;
4846	bool fragment;
4847	__sum16 *csum;
4848	int err;
4849
4850	fragment = false;
4851
4852	err = skb_maybe_pull_tail(skb,
4853				  sizeof(struct iphdr),
4854				  MAX_IP_HDR_LEN);
4855	if (err < 0)
4856		goto out;
4857
4858	if (ip_is_fragment(ip_hdr(skb)))
4859		fragment = true;
4860
4861	off = ip_hdrlen(skb);
4862
4863	err = -EPROTO;
4864
4865	if (fragment)
4866		goto out;
4867
4868	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4869	if (IS_ERR(csum))
4870		return PTR_ERR(csum);
4871
4872	if (recalculate)
4873		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4874					   ip_hdr(skb)->daddr,
4875					   skb->len - off,
4876					   ip_hdr(skb)->protocol, 0);
4877	err = 0;
4878
4879out:
4880	return err;
4881}
4882
4883/* This value should be large enough to cover a tagged ethernet header plus
4884 * an IPv6 header, all options, and a maximal TCP or UDP header.
4885 */
4886#define MAX_IPV6_HDR_LEN 256
4887
4888#define OPT_HDR(type, skb, off) \
4889	(type *)(skb_network_header(skb) + (off))
4890
4891static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4892{
4893	int err;
4894	u8 nexthdr;
4895	unsigned int off;
4896	unsigned int len;
4897	bool fragment;
4898	bool done;
4899	__sum16 *csum;
4900
4901	fragment = false;
4902	done = false;
4903
4904	off = sizeof(struct ipv6hdr);
4905
4906	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4907	if (err < 0)
4908		goto out;
4909
4910	nexthdr = ipv6_hdr(skb)->nexthdr;
4911
4912	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4913	while (off <= len && !done) {
4914		switch (nexthdr) {
4915		case IPPROTO_DSTOPTS:
4916		case IPPROTO_HOPOPTS:
4917		case IPPROTO_ROUTING: {
4918			struct ipv6_opt_hdr *hp;
4919
4920			err = skb_maybe_pull_tail(skb,
4921						  off +
4922						  sizeof(struct ipv6_opt_hdr),
4923						  MAX_IPV6_HDR_LEN);
4924			if (err < 0)
4925				goto out;
4926
4927			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4928			nexthdr = hp->nexthdr;
4929			off += ipv6_optlen(hp);
4930			break;
4931		}
4932		case IPPROTO_AH: {
4933			struct ip_auth_hdr *hp;
4934
4935			err = skb_maybe_pull_tail(skb,
4936						  off +
4937						  sizeof(struct ip_auth_hdr),
4938						  MAX_IPV6_HDR_LEN);
4939			if (err < 0)
4940				goto out;
4941
4942			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4943			nexthdr = hp->nexthdr;
4944			off += ipv6_authlen(hp);
4945			break;
4946		}
4947		case IPPROTO_FRAGMENT: {
4948			struct frag_hdr *hp;
4949
4950			err = skb_maybe_pull_tail(skb,
4951						  off +
4952						  sizeof(struct frag_hdr),
4953						  MAX_IPV6_HDR_LEN);
4954			if (err < 0)
4955				goto out;
4956
4957			hp = OPT_HDR(struct frag_hdr, skb, off);
4958
4959			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4960				fragment = true;
4961
4962			nexthdr = hp->nexthdr;
4963			off += sizeof(struct frag_hdr);
4964			break;
4965		}
4966		default:
4967			done = true;
4968			break;
4969		}
4970	}
4971
4972	err = -EPROTO;
4973
4974	if (!done || fragment)
4975		goto out;
4976
4977	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4978	if (IS_ERR(csum))
4979		return PTR_ERR(csum);
4980
4981	if (recalculate)
4982		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4983					 &ipv6_hdr(skb)->daddr,
4984					 skb->len - off, nexthdr, 0);
4985	err = 0;
4986
4987out:
4988	return err;
4989}
4990
4991/**
4992 * skb_checksum_setup - set up partial checksum offset
4993 * @skb: the skb to set up
4994 * @recalculate: if true the pseudo-header checksum will be recalculated
4995 */
4996int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4997{
4998	int err;
4999
5000	switch (skb->protocol) {
5001	case htons(ETH_P_IP):
5002		err = skb_checksum_setup_ipv4(skb, recalculate);
5003		break;
5004
5005	case htons(ETH_P_IPV6):
5006		err = skb_checksum_setup_ipv6(skb, recalculate);
5007		break;
5008
5009	default:
5010		err = -EPROTO;
5011		break;
5012	}
5013
5014	return err;
5015}
5016EXPORT_SYMBOL(skb_checksum_setup);
5017
5018/**
5019 * skb_checksum_maybe_trim - maybe trims the given skb
5020 * @skb: the skb to check
5021 * @transport_len: the data length beyond the network header
5022 *
5023 * Checks whether the given skb has data beyond the given transport length.
5024 * If so, returns a cloned skb trimmed to this transport length.
5025 * Otherwise returns the provided skb. Returns NULL in error cases
5026 * (e.g. transport_len exceeds skb length or out-of-memory).
5027 *
5028 * Caller needs to set the skb transport header and free any returned skb if it
5029 * differs from the provided skb.
5030 */
5031static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5032					       unsigned int transport_len)
5033{
5034	struct sk_buff *skb_chk;
5035	unsigned int len = skb_transport_offset(skb) + transport_len;
5036	int ret;
5037
5038	if (skb->len < len)
5039		return NULL;
5040	else if (skb->len == len)
5041		return skb;
5042
5043	skb_chk = skb_clone(skb, GFP_ATOMIC);
5044	if (!skb_chk)
5045		return NULL;
5046
5047	ret = pskb_trim_rcsum(skb_chk, len);
5048	if (ret) {
5049		kfree_skb(skb_chk);
5050		return NULL;
5051	}
5052
5053	return skb_chk;
5054}
5055
5056/**
5057 * skb_checksum_trimmed - validate checksum of an skb
5058 * @skb: the skb to check
5059 * @transport_len: the data length beyond the network header
5060 * @skb_chkf: checksum function to use
5061 *
5062 * Applies the given checksum function skb_chkf to the provided skb.
5063 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5064 *
5065 * If the skb has data beyond the given transport length, then a
5066 * trimmed & cloned skb is checked and returned.
5067 *
5068 * Caller needs to set the skb transport header and free any returned skb if it
5069 * differs from the provided skb.
5070 */
5071struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5072				     unsigned int transport_len,
5073				     __sum16(*skb_chkf)(struct sk_buff *skb))
5074{
5075	struct sk_buff *skb_chk;
5076	unsigned int offset = skb_transport_offset(skb);
5077	__sum16 ret;
5078
5079	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5080	if (!skb_chk)
5081		goto err;
5082
5083	if (!pskb_may_pull(skb_chk, offset))
5084		goto err;
5085
5086	skb_pull_rcsum(skb_chk, offset);
5087	ret = skb_chkf(skb_chk);
5088	skb_push_rcsum(skb_chk, offset);
5089
5090	if (ret)
5091		goto err;
5092
5093	return skb_chk;
5094
5095err:
5096	if (skb_chk && skb_chk != skb)
5097		kfree_skb(skb_chk);
5098
5099	return NULL;
5100
5101}
5102EXPORT_SYMBOL(skb_checksum_trimmed);
5103
5104void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5105{
5106	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5107			     skb->dev->name);
 
5108}
5109EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5110
5111void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5112{
5113	if (head_stolen) {
5114		skb_release_head_state(skb);
5115		kmem_cache_free(skbuff_head_cache, skb);
5116	} else {
5117		__kfree_skb(skb);
5118	}
5119}
5120EXPORT_SYMBOL(kfree_skb_partial);
5121
5122/**
5123 * skb_try_coalesce - try to merge skb to prior one
5124 * @to: prior buffer
5125 * @from: buffer to add
5126 * @fragstolen: pointer to boolean
5127 * @delta_truesize: how much more was allocated than was requested
5128 */
5129bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5130		      bool *fragstolen, int *delta_truesize)
5131{
5132	struct skb_shared_info *to_shinfo, *from_shinfo;
5133	int i, delta, len = from->len;
5134
5135	*fragstolen = false;
5136
5137	if (skb_cloned(to))
5138		return false;
5139
5140	if (len <= skb_tailroom(to)) {
5141		if (len)
5142			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5143		*delta_truesize = 0;
5144		return true;
5145	}
5146
5147	to_shinfo = skb_shinfo(to);
5148	from_shinfo = skb_shinfo(from);
5149	if (to_shinfo->frag_list || from_shinfo->frag_list)
5150		return false;
5151	if (skb_zcopy(to) || skb_zcopy(from))
5152		return false;
5153
5154	if (skb_headlen(from) != 0) {
5155		struct page *page;
5156		unsigned int offset;
5157
5158		if (to_shinfo->nr_frags +
5159		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5160			return false;
5161
5162		if (skb_head_is_locked(from))
5163			return false;
5164
5165		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5166
5167		page = virt_to_head_page(from->head);
5168		offset = from->data - (unsigned char *)page_address(page);
5169
5170		skb_fill_page_desc(to, to_shinfo->nr_frags,
5171				   page, offset, skb_headlen(from));
5172		*fragstolen = true;
5173	} else {
5174		if (to_shinfo->nr_frags +
5175		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5176			return false;
5177
5178		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5179	}
5180
5181	WARN_ON_ONCE(delta < len);
5182
5183	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5184	       from_shinfo->frags,
5185	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5186	to_shinfo->nr_frags += from_shinfo->nr_frags;
5187
5188	if (!skb_cloned(from))
5189		from_shinfo->nr_frags = 0;
5190
5191	/* if the skb is not cloned this does nothing
5192	 * since we set nr_frags to 0.
5193	 */
5194	for (i = 0; i < from_shinfo->nr_frags; i++)
5195		__skb_frag_ref(&from_shinfo->frags[i]);
5196
5197	to->truesize += delta;
5198	to->len += len;
5199	to->data_len += len;
5200
5201	*delta_truesize = delta;
5202	return true;
5203}
5204EXPORT_SYMBOL(skb_try_coalesce);
5205
5206/**
5207 * skb_scrub_packet - scrub an skb
5208 *
5209 * @skb: buffer to clean
5210 * @xnet: packet is crossing netns
5211 *
5212 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5213 * into/from a tunnel. Some information have to be cleared during these
5214 * operations.
5215 * skb_scrub_packet can also be used to clean a skb before injecting it in
5216 * another namespace (@xnet == true). We have to clear all information in the
5217 * skb that could impact namespace isolation.
5218 */
5219void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5220{
5221	skb->pkt_type = PACKET_HOST;
5222	skb->skb_iif = 0;
5223	skb->ignore_df = 0;
5224	skb_dst_drop(skb);
5225	skb_ext_reset(skb);
5226	nf_reset_ct(skb);
5227	nf_reset_trace(skb);
5228
5229#ifdef CONFIG_NET_SWITCHDEV
5230	skb->offload_fwd_mark = 0;
5231	skb->offload_l3_fwd_mark = 0;
5232#endif
5233
5234	if (!xnet)
5235		return;
5236
5237	ipvs_reset(skb);
5238	skb->mark = 0;
5239	skb->tstamp = 0;
5240}
5241EXPORT_SYMBOL_GPL(skb_scrub_packet);
5242
5243/**
5244 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5245 *
5246 * @skb: GSO skb
5247 *
5248 * skb_gso_transport_seglen is used to determine the real size of the
5249 * individual segments, including Layer4 headers (TCP/UDP).
5250 *
5251 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5252 */
5253static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5254{
5255	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5256	unsigned int thlen = 0;
5257
5258	if (skb->encapsulation) {
5259		thlen = skb_inner_transport_header(skb) -
5260			skb_transport_header(skb);
5261
5262		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5263			thlen += inner_tcp_hdrlen(skb);
5264	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5265		thlen = tcp_hdrlen(skb);
5266	} else if (unlikely(skb_is_gso_sctp(skb))) {
5267		thlen = sizeof(struct sctphdr);
5268	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5269		thlen = sizeof(struct udphdr);
5270	}
5271	/* UFO sets gso_size to the size of the fragmentation
5272	 * payload, i.e. the size of the L4 (UDP) header is already
5273	 * accounted for.
5274	 */
5275	return thlen + shinfo->gso_size;
5276}
5277
5278/**
5279 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5280 *
5281 * @skb: GSO skb
5282 *
5283 * skb_gso_network_seglen is used to determine the real size of the
5284 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5285 *
5286 * The MAC/L2 header is not accounted for.
5287 */
5288static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5289{
5290	unsigned int hdr_len = skb_transport_header(skb) -
5291			       skb_network_header(skb);
5292
5293	return hdr_len + skb_gso_transport_seglen(skb);
5294}
5295
5296/**
5297 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5298 *
5299 * @skb: GSO skb
5300 *
5301 * skb_gso_mac_seglen is used to determine the real size of the
5302 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5303 * headers (TCP/UDP).
5304 */
5305static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5306{
5307	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5308
5309	return hdr_len + skb_gso_transport_seglen(skb);
5310}
5311
5312/**
5313 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5314 *
5315 * There are a couple of instances where we have a GSO skb, and we
5316 * want to determine what size it would be after it is segmented.
5317 *
5318 * We might want to check:
5319 * -    L3+L4+payload size (e.g. IP forwarding)
5320 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5321 *
5322 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5323 *
5324 * @skb: GSO skb
5325 *
5326 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5327 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5328 *
5329 * @max_len: The maximum permissible length.
5330 *
5331 * Returns true if the segmented length <= max length.
5332 */
5333static inline bool skb_gso_size_check(const struct sk_buff *skb,
5334				      unsigned int seg_len,
5335				      unsigned int max_len) {
5336	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5337	const struct sk_buff *iter;
5338
5339	if (shinfo->gso_size != GSO_BY_FRAGS)
5340		return seg_len <= max_len;
5341
5342	/* Undo this so we can re-use header sizes */
5343	seg_len -= GSO_BY_FRAGS;
5344
5345	skb_walk_frags(skb, iter) {
5346		if (seg_len + skb_headlen(iter) > max_len)
5347			return false;
5348	}
5349
5350	return true;
5351}
5352
5353/**
5354 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5355 *
5356 * @skb: GSO skb
5357 * @mtu: MTU to validate against
5358 *
5359 * skb_gso_validate_network_len validates if a given skb will fit a
5360 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5361 * payload.
5362 */
5363bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5364{
5365	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5366}
5367EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5368
5369/**
5370 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5371 *
5372 * @skb: GSO skb
5373 * @len: length to validate against
5374 *
5375 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5376 * length once split, including L2, L3 and L4 headers and the payload.
5377 */
5378bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5379{
5380	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5381}
5382EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5383
5384static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5385{
5386	int mac_len, meta_len;
5387	void *meta;
5388
5389	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5390		kfree_skb(skb);
5391		return NULL;
5392	}
5393
5394	mac_len = skb->data - skb_mac_header(skb);
5395	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5396		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5397			mac_len - VLAN_HLEN - ETH_TLEN);
5398	}
5399
5400	meta_len = skb_metadata_len(skb);
5401	if (meta_len) {
5402		meta = skb_metadata_end(skb) - meta_len;
5403		memmove(meta + VLAN_HLEN, meta, meta_len);
5404	}
5405
5406	skb->mac_header += VLAN_HLEN;
5407	return skb;
5408}
5409
5410struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5411{
5412	struct vlan_hdr *vhdr;
5413	u16 vlan_tci;
5414
5415	if (unlikely(skb_vlan_tag_present(skb))) {
5416		/* vlan_tci is already set-up so leave this for another time */
5417		return skb;
5418	}
5419
5420	skb = skb_share_check(skb, GFP_ATOMIC);
5421	if (unlikely(!skb))
5422		goto err_free;
5423	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5424	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5425		goto err_free;
5426
5427	vhdr = (struct vlan_hdr *)skb->data;
5428	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5429	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5430
5431	skb_pull_rcsum(skb, VLAN_HLEN);
5432	vlan_set_encap_proto(skb, vhdr);
5433
5434	skb = skb_reorder_vlan_header(skb);
5435	if (unlikely(!skb))
5436		goto err_free;
5437
5438	skb_reset_network_header(skb);
5439	skb_reset_transport_header(skb);
5440	skb_reset_mac_len(skb);
5441
5442	return skb;
5443
5444err_free:
5445	kfree_skb(skb);
5446	return NULL;
5447}
5448EXPORT_SYMBOL(skb_vlan_untag);
5449
5450int skb_ensure_writable(struct sk_buff *skb, int write_len)
5451{
5452	if (!pskb_may_pull(skb, write_len))
5453		return -ENOMEM;
5454
5455	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5456		return 0;
5457
5458	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5459}
5460EXPORT_SYMBOL(skb_ensure_writable);
5461
5462/* remove VLAN header from packet and update csum accordingly.
5463 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5464 */
5465int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5466{
5467	struct vlan_hdr *vhdr;
5468	int offset = skb->data - skb_mac_header(skb);
5469	int err;
5470
5471	if (WARN_ONCE(offset,
5472		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5473		      offset)) {
5474		return -EINVAL;
5475	}
5476
5477	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5478	if (unlikely(err))
5479		return err;
5480
5481	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5482
5483	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5484	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5485
5486	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5487	__skb_pull(skb, VLAN_HLEN);
5488
5489	vlan_set_encap_proto(skb, vhdr);
5490	skb->mac_header += VLAN_HLEN;
5491
5492	if (skb_network_offset(skb) < ETH_HLEN)
5493		skb_set_network_header(skb, ETH_HLEN);
5494
5495	skb_reset_mac_len(skb);
5496
5497	return err;
5498}
5499EXPORT_SYMBOL(__skb_vlan_pop);
5500
5501/* Pop a vlan tag either from hwaccel or from payload.
5502 * Expects skb->data at mac header.
5503 */
5504int skb_vlan_pop(struct sk_buff *skb)
5505{
5506	u16 vlan_tci;
5507	__be16 vlan_proto;
5508	int err;
5509
5510	if (likely(skb_vlan_tag_present(skb))) {
5511		__vlan_hwaccel_clear_tag(skb);
5512	} else {
5513		if (unlikely(!eth_type_vlan(skb->protocol)))
5514			return 0;
5515
5516		err = __skb_vlan_pop(skb, &vlan_tci);
5517		if (err)
5518			return err;
5519	}
5520	/* move next vlan tag to hw accel tag */
5521	if (likely(!eth_type_vlan(skb->protocol)))
5522		return 0;
5523
5524	vlan_proto = skb->protocol;
5525	err = __skb_vlan_pop(skb, &vlan_tci);
5526	if (unlikely(err))
5527		return err;
5528
5529	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5530	return 0;
5531}
5532EXPORT_SYMBOL(skb_vlan_pop);
5533
5534/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5535 * Expects skb->data at mac header.
5536 */
5537int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5538{
5539	if (skb_vlan_tag_present(skb)) {
5540		int offset = skb->data - skb_mac_header(skb);
5541		int err;
5542
5543		if (WARN_ONCE(offset,
5544			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5545			      offset)) {
5546			return -EINVAL;
5547		}
5548
5549		err = __vlan_insert_tag(skb, skb->vlan_proto,
5550					skb_vlan_tag_get(skb));
5551		if (err)
5552			return err;
5553
5554		skb->protocol = skb->vlan_proto;
5555		skb->mac_len += VLAN_HLEN;
5556
5557		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5558	}
5559	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5560	return 0;
5561}
5562EXPORT_SYMBOL(skb_vlan_push);
5563
5564/* Update the ethertype of hdr and the skb csum value if required. */
5565static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5566			     __be16 ethertype)
5567{
5568	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5569		__be16 diff[] = { ~hdr->h_proto, ethertype };
5570
5571		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5572	}
5573
5574	hdr->h_proto = ethertype;
5575}
5576
5577/**
5578 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5579 *                   the packet
5580 *
5581 * @skb: buffer
5582 * @mpls_lse: MPLS label stack entry to push
5583 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5584 * @mac_len: length of the MAC header
5585 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5586 *            ethernet
5587 *
5588 * Expects skb->data at mac header.
5589 *
5590 * Returns 0 on success, -errno otherwise.
5591 */
5592int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5593		  int mac_len, bool ethernet)
5594{
5595	struct mpls_shim_hdr *lse;
5596	int err;
5597
5598	if (unlikely(!eth_p_mpls(mpls_proto)))
5599		return -EINVAL;
5600
5601	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5602	if (skb->encapsulation)
5603		return -EINVAL;
5604
5605	err = skb_cow_head(skb, MPLS_HLEN);
5606	if (unlikely(err))
5607		return err;
5608
5609	if (!skb->inner_protocol) {
5610		skb_set_inner_network_header(skb, skb_network_offset(skb));
5611		skb_set_inner_protocol(skb, skb->protocol);
5612	}
5613
5614	skb_push(skb, MPLS_HLEN);
5615	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5616		mac_len);
5617	skb_reset_mac_header(skb);
5618	skb_set_network_header(skb, mac_len);
5619	skb_reset_mac_len(skb);
5620
5621	lse = mpls_hdr(skb);
5622	lse->label_stack_entry = mpls_lse;
5623	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5624
5625	if (ethernet && mac_len >= ETH_HLEN)
5626		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5627	skb->protocol = mpls_proto;
5628
5629	return 0;
5630}
5631EXPORT_SYMBOL_GPL(skb_mpls_push);
5632
5633/**
5634 * skb_mpls_pop() - pop the outermost MPLS header
5635 *
5636 * @skb: buffer
5637 * @next_proto: ethertype of header after popped MPLS header
5638 * @mac_len: length of the MAC header
5639 * @ethernet: flag to indicate if the packet is ethernet
5640 *
5641 * Expects skb->data at mac header.
5642 *
5643 * Returns 0 on success, -errno otherwise.
5644 */
5645int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5646		 bool ethernet)
5647{
5648	int err;
5649
5650	if (unlikely(!eth_p_mpls(skb->protocol)))
5651		return 0;
5652
5653	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5654	if (unlikely(err))
5655		return err;
5656
5657	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5658	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5659		mac_len);
5660
5661	__skb_pull(skb, MPLS_HLEN);
5662	skb_reset_mac_header(skb);
5663	skb_set_network_header(skb, mac_len);
5664
5665	if (ethernet && mac_len >= ETH_HLEN) {
5666		struct ethhdr *hdr;
5667
5668		/* use mpls_hdr() to get ethertype to account for VLANs. */
5669		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5670		skb_mod_eth_type(skb, hdr, next_proto);
5671	}
5672	skb->protocol = next_proto;
5673
5674	return 0;
5675}
5676EXPORT_SYMBOL_GPL(skb_mpls_pop);
5677
5678/**
5679 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5680 *
5681 * @skb: buffer
5682 * @mpls_lse: new MPLS label stack entry to update to
5683 *
5684 * Expects skb->data at mac header.
5685 *
5686 * Returns 0 on success, -errno otherwise.
5687 */
5688int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5689{
5690	int err;
5691
5692	if (unlikely(!eth_p_mpls(skb->protocol)))
5693		return -EINVAL;
5694
5695	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5696	if (unlikely(err))
5697		return err;
5698
5699	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5700		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5701
5702		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5703	}
5704
5705	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5706
5707	return 0;
5708}
5709EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5710
5711/**
5712 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5713 *
5714 * @skb: buffer
5715 *
5716 * Expects skb->data at mac header.
5717 *
5718 * Returns 0 on success, -errno otherwise.
5719 */
5720int skb_mpls_dec_ttl(struct sk_buff *skb)
5721{
5722	u32 lse;
5723	u8 ttl;
5724
5725	if (unlikely(!eth_p_mpls(skb->protocol)))
5726		return -EINVAL;
5727
5728	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5729	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5730	if (!--ttl)
5731		return -EINVAL;
5732
5733	lse &= ~MPLS_LS_TTL_MASK;
5734	lse |= ttl << MPLS_LS_TTL_SHIFT;
5735
5736	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5737}
5738EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5739
5740/**
5741 * alloc_skb_with_frags - allocate skb with page frags
5742 *
5743 * @header_len: size of linear part
5744 * @data_len: needed length in frags
5745 * @max_page_order: max page order desired.
5746 * @errcode: pointer to error code if any
5747 * @gfp_mask: allocation mask
5748 *
5749 * This can be used to allocate a paged skb, given a maximal order for frags.
5750 */
5751struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5752				     unsigned long data_len,
5753				     int max_page_order,
5754				     int *errcode,
5755				     gfp_t gfp_mask)
5756{
5757	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5758	unsigned long chunk;
5759	struct sk_buff *skb;
5760	struct page *page;
5761	int i;
5762
5763	*errcode = -EMSGSIZE;
5764	/* Note this test could be relaxed, if we succeed to allocate
5765	 * high order pages...
5766	 */
5767	if (npages > MAX_SKB_FRAGS)
5768		return NULL;
5769
5770	*errcode = -ENOBUFS;
5771	skb = alloc_skb(header_len, gfp_mask);
5772	if (!skb)
5773		return NULL;
5774
5775	skb->truesize += npages << PAGE_SHIFT;
5776
5777	for (i = 0; npages > 0; i++) {
5778		int order = max_page_order;
5779
5780		while (order) {
5781			if (npages >= 1 << order) {
5782				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5783						   __GFP_COMP |
5784						   __GFP_NOWARN,
5785						   order);
5786				if (page)
5787					goto fill_page;
5788				/* Do not retry other high order allocations */
5789				order = 1;
5790				max_page_order = 0;
5791			}
5792			order--;
5793		}
5794		page = alloc_page(gfp_mask);
5795		if (!page)
5796			goto failure;
5797fill_page:
5798		chunk = min_t(unsigned long, data_len,
5799			      PAGE_SIZE << order);
5800		skb_fill_page_desc(skb, i, page, 0, chunk);
5801		data_len -= chunk;
5802		npages -= 1 << order;
5803	}
5804	return skb;
5805
5806failure:
5807	kfree_skb(skb);
5808	return NULL;
5809}
5810EXPORT_SYMBOL(alloc_skb_with_frags);
5811
5812/* carve out the first off bytes from skb when off < headlen */
5813static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5814				    const int headlen, gfp_t gfp_mask)
5815{
5816	int i;
5817	int size = skb_end_offset(skb);
5818	int new_hlen = headlen - off;
5819	u8 *data;
5820
5821	size = SKB_DATA_ALIGN(size);
5822
5823	if (skb_pfmemalloc(skb))
5824		gfp_mask |= __GFP_MEMALLOC;
5825	data = kmalloc_reserve(size +
5826			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5827			       gfp_mask, NUMA_NO_NODE, NULL);
5828	if (!data)
5829		return -ENOMEM;
5830
5831	size = SKB_WITH_OVERHEAD(ksize(data));
5832
5833	/* Copy real data, and all frags */
5834	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5835	skb->len -= off;
5836
5837	memcpy((struct skb_shared_info *)(data + size),
5838	       skb_shinfo(skb),
5839	       offsetof(struct skb_shared_info,
5840			frags[skb_shinfo(skb)->nr_frags]));
5841	if (skb_cloned(skb)) {
5842		/* drop the old head gracefully */
5843		if (skb_orphan_frags(skb, gfp_mask)) {
5844			kfree(data);
5845			return -ENOMEM;
5846		}
5847		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5848			skb_frag_ref(skb, i);
5849		if (skb_has_frag_list(skb))
5850			skb_clone_fraglist(skb);
5851		skb_release_data(skb);
5852	} else {
5853		/* we can reuse existing recount- all we did was
5854		 * relocate values
5855		 */
5856		skb_free_head(skb);
5857	}
5858
5859	skb->head = data;
5860	skb->data = data;
5861	skb->head_frag = 0;
5862#ifdef NET_SKBUFF_DATA_USES_OFFSET
5863	skb->end = size;
5864#else
5865	skb->end = skb->head + size;
5866#endif
5867	skb_set_tail_pointer(skb, skb_headlen(skb));
5868	skb_headers_offset_update(skb, 0);
5869	skb->cloned = 0;
5870	skb->hdr_len = 0;
5871	skb->nohdr = 0;
5872	atomic_set(&skb_shinfo(skb)->dataref, 1);
5873
5874	return 0;
5875}
5876
5877static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5878
5879/* carve out the first eat bytes from skb's frag_list. May recurse into
5880 * pskb_carve()
5881 */
5882static int pskb_carve_frag_list(struct sk_buff *skb,
5883				struct skb_shared_info *shinfo, int eat,
5884				gfp_t gfp_mask)
5885{
5886	struct sk_buff *list = shinfo->frag_list;
5887	struct sk_buff *clone = NULL;
5888	struct sk_buff *insp = NULL;
5889
5890	do {
5891		if (!list) {
5892			pr_err("Not enough bytes to eat. Want %d\n", eat);
5893			return -EFAULT;
5894		}
5895		if (list->len <= eat) {
5896			/* Eaten as whole. */
5897			eat -= list->len;
5898			list = list->next;
5899			insp = list;
5900		} else {
5901			/* Eaten partially. */
5902			if (skb_shared(list)) {
5903				clone = skb_clone(list, gfp_mask);
5904				if (!clone)
5905					return -ENOMEM;
5906				insp = list->next;
5907				list = clone;
5908			} else {
5909				/* This may be pulled without problems. */
5910				insp = list;
5911			}
5912			if (pskb_carve(list, eat, gfp_mask) < 0) {
5913				kfree_skb(clone);
5914				return -ENOMEM;
5915			}
5916			break;
5917		}
5918	} while (eat);
5919
5920	/* Free pulled out fragments. */
5921	while ((list = shinfo->frag_list) != insp) {
5922		shinfo->frag_list = list->next;
5923		kfree_skb(list);
5924	}
5925	/* And insert new clone at head. */
5926	if (clone) {
5927		clone->next = list;
5928		shinfo->frag_list = clone;
5929	}
5930	return 0;
5931}
5932
5933/* carve off first len bytes from skb. Split line (off) is in the
5934 * non-linear part of skb
5935 */
5936static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5937				       int pos, gfp_t gfp_mask)
5938{
5939	int i, k = 0;
5940	int size = skb_end_offset(skb);
5941	u8 *data;
5942	const int nfrags = skb_shinfo(skb)->nr_frags;
5943	struct skb_shared_info *shinfo;
5944
5945	size = SKB_DATA_ALIGN(size);
5946
5947	if (skb_pfmemalloc(skb))
5948		gfp_mask |= __GFP_MEMALLOC;
5949	data = kmalloc_reserve(size +
5950			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5951			       gfp_mask, NUMA_NO_NODE, NULL);
5952	if (!data)
5953		return -ENOMEM;
5954
5955	size = SKB_WITH_OVERHEAD(ksize(data));
5956
5957	memcpy((struct skb_shared_info *)(data + size),
5958	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5959					 frags[skb_shinfo(skb)->nr_frags]));
5960	if (skb_orphan_frags(skb, gfp_mask)) {
5961		kfree(data);
5962		return -ENOMEM;
5963	}
5964	shinfo = (struct skb_shared_info *)(data + size);
5965	for (i = 0; i < nfrags; i++) {
5966		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5967
5968		if (pos + fsize > off) {
5969			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5970
5971			if (pos < off) {
5972				/* Split frag.
5973				 * We have two variants in this case:
5974				 * 1. Move all the frag to the second
5975				 *    part, if it is possible. F.e.
5976				 *    this approach is mandatory for TUX,
5977				 *    where splitting is expensive.
5978				 * 2. Split is accurately. We make this.
5979				 */
5980				skb_frag_off_add(&shinfo->frags[0], off - pos);
5981				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5982			}
5983			skb_frag_ref(skb, i);
5984			k++;
5985		}
5986		pos += fsize;
5987	}
5988	shinfo->nr_frags = k;
5989	if (skb_has_frag_list(skb))
5990		skb_clone_fraglist(skb);
5991
5992	/* split line is in frag list */
5993	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5994		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5995		if (skb_has_frag_list(skb))
5996			kfree_skb_list(skb_shinfo(skb)->frag_list);
5997		kfree(data);
5998		return -ENOMEM;
5999	}
6000	skb_release_data(skb);
6001
6002	skb->head = data;
6003	skb->head_frag = 0;
6004	skb->data = data;
6005#ifdef NET_SKBUFF_DATA_USES_OFFSET
6006	skb->end = size;
6007#else
6008	skb->end = skb->head + size;
6009#endif
6010	skb_reset_tail_pointer(skb);
6011	skb_headers_offset_update(skb, 0);
6012	skb->cloned   = 0;
6013	skb->hdr_len  = 0;
6014	skb->nohdr    = 0;
6015	skb->len -= off;
6016	skb->data_len = skb->len;
6017	atomic_set(&skb_shinfo(skb)->dataref, 1);
6018	return 0;
6019}
6020
6021/* remove len bytes from the beginning of the skb */
6022static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6023{
6024	int headlen = skb_headlen(skb);
6025
6026	if (len < headlen)
6027		return pskb_carve_inside_header(skb, len, headlen, gfp);
6028	else
6029		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6030}
6031
6032/* Extract to_copy bytes starting at off from skb, and return this in
6033 * a new skb
6034 */
6035struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6036			     int to_copy, gfp_t gfp)
6037{
6038	struct sk_buff  *clone = skb_clone(skb, gfp);
6039
6040	if (!clone)
6041		return NULL;
6042
6043	if (pskb_carve(clone, off, gfp) < 0 ||
6044	    pskb_trim(clone, to_copy)) {
6045		kfree_skb(clone);
6046		return NULL;
6047	}
6048	return clone;
6049}
6050EXPORT_SYMBOL(pskb_extract);
6051
6052/**
6053 * skb_condense - try to get rid of fragments/frag_list if possible
6054 * @skb: buffer
6055 *
6056 * Can be used to save memory before skb is added to a busy queue.
6057 * If packet has bytes in frags and enough tail room in skb->head,
6058 * pull all of them, so that we can free the frags right now and adjust
6059 * truesize.
6060 * Notes:
6061 *	We do not reallocate skb->head thus can not fail.
6062 *	Caller must re-evaluate skb->truesize if needed.
6063 */
6064void skb_condense(struct sk_buff *skb)
6065{
6066	if (skb->data_len) {
6067		if (skb->data_len > skb->end - skb->tail ||
6068		    skb_cloned(skb))
6069			return;
6070
6071		/* Nice, we can free page frag(s) right now */
6072		__pskb_pull_tail(skb, skb->data_len);
6073	}
6074	/* At this point, skb->truesize might be over estimated,
6075	 * because skb had a fragment, and fragments do not tell
6076	 * their truesize.
6077	 * When we pulled its content into skb->head, fragment
6078	 * was freed, but __pskb_pull_tail() could not possibly
6079	 * adjust skb->truesize, not knowing the frag truesize.
6080	 */
6081	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6082}
6083
6084#ifdef CONFIG_SKB_EXTENSIONS
6085static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6086{
6087	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6088}
6089
6090/**
6091 * __skb_ext_alloc - allocate a new skb extensions storage
6092 *
6093 * @flags: See kmalloc().
6094 *
6095 * Returns the newly allocated pointer. The pointer can later attached to a
6096 * skb via __skb_ext_set().
6097 * Note: caller must handle the skb_ext as an opaque data.
6098 */
6099struct skb_ext *__skb_ext_alloc(gfp_t flags)
6100{
6101	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6102
6103	if (new) {
6104		memset(new->offset, 0, sizeof(new->offset));
6105		refcount_set(&new->refcnt, 1);
6106	}
6107
6108	return new;
6109}
6110
6111static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6112					 unsigned int old_active)
6113{
6114	struct skb_ext *new;
6115
6116	if (refcount_read(&old->refcnt) == 1)
6117		return old;
6118
6119	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6120	if (!new)
6121		return NULL;
6122
6123	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6124	refcount_set(&new->refcnt, 1);
6125
6126#ifdef CONFIG_XFRM
6127	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6128		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6129		unsigned int i;
6130
6131		for (i = 0; i < sp->len; i++)
6132			xfrm_state_hold(sp->xvec[i]);
6133	}
6134#endif
6135	__skb_ext_put(old);
6136	return new;
6137}
6138
6139/**
6140 * __skb_ext_set - attach the specified extension storage to this skb
6141 * @skb: buffer
6142 * @id: extension id
6143 * @ext: extension storage previously allocated via __skb_ext_alloc()
6144 *
6145 * Existing extensions, if any, are cleared.
6146 *
6147 * Returns the pointer to the extension.
6148 */
6149void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6150		    struct skb_ext *ext)
6151{
6152	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6153
6154	skb_ext_put(skb);
6155	newlen = newoff + skb_ext_type_len[id];
6156	ext->chunks = newlen;
6157	ext->offset[id] = newoff;
6158	skb->extensions = ext;
6159	skb->active_extensions = 1 << id;
6160	return skb_ext_get_ptr(ext, id);
6161}
6162
6163/**
6164 * skb_ext_add - allocate space for given extension, COW if needed
6165 * @skb: buffer
6166 * @id: extension to allocate space for
6167 *
6168 * Allocates enough space for the given extension.
6169 * If the extension is already present, a pointer to that extension
6170 * is returned.
6171 *
6172 * If the skb was cloned, COW applies and the returned memory can be
6173 * modified without changing the extension space of clones buffers.
6174 *
6175 * Returns pointer to the extension or NULL on allocation failure.
6176 */
6177void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6178{
6179	struct skb_ext *new, *old = NULL;
6180	unsigned int newlen, newoff;
6181
6182	if (skb->active_extensions) {
6183		old = skb->extensions;
6184
6185		new = skb_ext_maybe_cow(old, skb->active_extensions);
6186		if (!new)
6187			return NULL;
6188
6189		if (__skb_ext_exist(new, id))
6190			goto set_active;
6191
6192		newoff = new->chunks;
6193	} else {
6194		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6195
6196		new = __skb_ext_alloc(GFP_ATOMIC);
6197		if (!new)
6198			return NULL;
6199	}
6200
6201	newlen = newoff + skb_ext_type_len[id];
6202	new->chunks = newlen;
6203	new->offset[id] = newoff;
6204set_active:
6205	skb->extensions = new;
6206	skb->active_extensions |= 1 << id;
6207	return skb_ext_get_ptr(new, id);
6208}
6209EXPORT_SYMBOL(skb_ext_add);
6210
6211#ifdef CONFIG_XFRM
6212static void skb_ext_put_sp(struct sec_path *sp)
6213{
6214	unsigned int i;
6215
6216	for (i = 0; i < sp->len; i++)
6217		xfrm_state_put(sp->xvec[i]);
6218}
6219#endif
6220
6221void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6222{
6223	struct skb_ext *ext = skb->extensions;
6224
6225	skb->active_extensions &= ~(1 << id);
6226	if (skb->active_extensions == 0) {
6227		skb->extensions = NULL;
6228		__skb_ext_put(ext);
6229#ifdef CONFIG_XFRM
6230	} else if (id == SKB_EXT_SEC_PATH &&
6231		   refcount_read(&ext->refcnt) == 1) {
6232		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6233
6234		skb_ext_put_sp(sp);
6235		sp->len = 0;
6236#endif
6237	}
6238}
6239EXPORT_SYMBOL(__skb_ext_del);
6240
6241void __skb_ext_put(struct skb_ext *ext)
6242{
6243	/* If this is last clone, nothing can increment
6244	 * it after check passes.  Avoids one atomic op.
6245	 */
6246	if (refcount_read(&ext->refcnt) == 1)
6247		goto free_now;
6248
6249	if (!refcount_dec_and_test(&ext->refcnt))
6250		return;
6251free_now:
6252#ifdef CONFIG_XFRM
6253	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6254		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6255#endif
6256
6257	kmem_cache_free(skbuff_ext_cache, ext);
6258}
6259EXPORT_SYMBOL(__skb_ext_put);
6260#endif /* CONFIG_SKB_EXTENSIONS */