Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
 
 
  39#include <linux/module.h>
  40#include <linux/types.h>
  41#include <linux/kernel.h>
  42#include <linux/kmemcheck.h>
  43#include <linux/mm.h>
  44#include <linux/interrupt.h>
  45#include <linux/in.h>
  46#include <linux/inet.h>
  47#include <linux/slab.h>
 
 
 
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
 
 
  61
  62#include <net/protocol.h>
  63#include <net/dst.h>
  64#include <net/sock.h>
  65#include <net/checksum.h>
 
  66#include <net/xfrm.h>
 
  67
  68#include <asm/uaccess.h>
  69#include <asm/system.h>
  70#include <trace/events/skb.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72#include "kmap_skb.h"
  73
  74static struct kmem_cache *skbuff_head_cache __read_mostly;
  75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  76
  77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  78				  struct pipe_buffer *buf)
  79{
  80	put_page(buf->page);
 
 
 
 
 
 
 
 
 
 
 
  81}
  82
  83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  84				struct pipe_buffer *buf)
  85{
  86	get_page(buf->page);
  87}
  88
  89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  90			       struct pipe_buffer *buf)
  91{
  92	return 1;
  93}
  94
  95
  96/* Pipe buffer operations for a socket. */
  97static const struct pipe_buf_operations sock_pipe_buf_ops = {
  98	.can_merge = 0,
  99	.map = generic_pipe_buf_map,
 100	.unmap = generic_pipe_buf_unmap,
 101	.confirm = generic_pipe_buf_confirm,
 102	.release = sock_pipe_buf_release,
 103	.steal = sock_pipe_buf_steal,
 104	.get = sock_pipe_buf_get,
 105};
 106
 107/*
 108 *	Keep out-of-line to prevent kernel bloat.
 109 *	__builtin_return_address is not used because it is not always
 110 *	reliable.
 
 
 111 */
 
 
 112
 113/**
 114 *	skb_over_panic	- 	private function
 115 *	@skb: buffer
 116 *	@sz: size
 117 *	@here: address
 118 *
 119 *	Out of line support code for skb_put(). Not user callable.
 120 */
 121static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
 122{
 123	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
 124			  "data:%p tail:%#lx end:%#lx dev:%s\n",
 125	       here, skb->len, sz, skb->head, skb->data,
 126	       (unsigned long)skb->tail, (unsigned long)skb->end,
 127	       skb->dev ? skb->dev->name : "<NULL>");
 128	BUG();
 129}
 130
 131/**
 132 *	skb_under_panic	- 	private function
 133 *	@skb: buffer
 134 *	@sz: size
 135 *	@here: address
 136 *
 137 *	Out of line support code for skb_push(). Not user callable.
 138 */
 
 139
 140static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
 141{
 142	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
 143			  "data:%p tail:%#lx end:%#lx dev:%s\n",
 144	       here, skb->len, sz, skb->head, skb->data,
 145	       (unsigned long)skb->tail, (unsigned long)skb->end,
 146	       skb->dev ? skb->dev->name : "<NULL>");
 147	BUG();
 
 148}
 149
 150/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 151 *	'private' fields and also do memory statistics to find all the
 152 *	[BEEP] leaks.
 153 *
 154 */
 155
 156/**
 157 *	__alloc_skb	-	allocate a network buffer
 158 *	@size: size to allocate
 159 *	@gfp_mask: allocation mask
 160 *	@fclone: allocate from fclone cache instead of head cache
 161 *		and allocate a cloned (child) skb
 
 
 162 *	@node: numa node to allocate memory on
 163 *
 164 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 165 *	tail room of size bytes. The object has a reference count of one.
 166 *	The return is the buffer. On a failure the return is %NULL.
 167 *
 168 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 169 *	%GFP_ATOMIC.
 170 */
 171struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 172			    int fclone, int node)
 173{
 174	struct kmem_cache *cache;
 175	struct skb_shared_info *shinfo;
 176	struct sk_buff *skb;
 177	u8 *data;
 
 
 
 
 178
 179	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
 
 180
 181	/* Get the HEAD */
 182	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 183	if (!skb)
 184		goto out;
 185	prefetchw(skb);
 186
 
 
 
 
 
 187	size = SKB_DATA_ALIGN(size);
 188	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
 189			gfp_mask, node);
 190	if (!data)
 191		goto nodata;
 
 
 
 
 
 192	prefetchw(data + size);
 193
 194	/*
 195	 * Only clear those fields we need to clear, not those that we will
 196	 * actually initialise below. Hence, don't put any more fields after
 197	 * the tail pointer in struct sk_buff!
 198	 */
 199	memset(skb, 0, offsetof(struct sk_buff, tail));
 200	skb->truesize = size + sizeof(struct sk_buff);
 201	atomic_set(&skb->users, 1);
 
 
 202	skb->head = data;
 203	skb->data = data;
 204	skb_reset_tail_pointer(skb);
 205	skb->end = skb->tail + size;
 206#ifdef NET_SKBUFF_DATA_USES_OFFSET
 207	skb->mac_header = ~0U;
 208#endif
 209
 210	/* make sure we initialize shinfo sequentially */
 211	shinfo = skb_shinfo(skb);
 212	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 213	atomic_set(&shinfo->dataref, 1);
 214	kmemcheck_annotate_variable(shinfo->destructor_arg);
 215
 216	if (fclone) {
 217		struct sk_buff *child = skb + 1;
 218		atomic_t *fclone_ref = (atomic_t *) (child + 1);
 
 219
 220		kmemcheck_annotate_bitfield(child, flags1);
 221		kmemcheck_annotate_bitfield(child, flags2);
 222		skb->fclone = SKB_FCLONE_ORIG;
 223		atomic_set(fclone_ref, 1);
 224
 225		child->fclone = SKB_FCLONE_UNAVAILABLE;
 226	}
 227out:
 228	return skb;
 229nodata:
 230	kmem_cache_free(cache, skb);
 231	skb = NULL;
 232	goto out;
 233}
 234EXPORT_SYMBOL(__alloc_skb);
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/**
 237 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 238 *	@dev: network device to receive on
 239 *	@length: length to allocate
 240 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 241 *
 242 *	Allocate a new &sk_buff and assign it a usage count of one. The
 243 *	buffer has unspecified headroom built in. Users should allocate
 244 *	the headroom they think they need without accounting for the
 245 *	built in space. The built in space is used for optimisations.
 246 *
 247 *	%NULL is returned if there is no free memory.
 248 */
 249struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 250		unsigned int length, gfp_t gfp_mask)
 251{
 
 252	struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253
 254	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
 255	if (likely(skb)) {
 256		skb_reserve(skb, NET_SKB_PAD);
 257		skb->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258	}
 
 
 
 
 
 
 
 
 
 
 
 259	return skb;
 260}
 261EXPORT_SYMBOL(__netdev_alloc_skb);
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 264		int size)
 265{
 266	skb_fill_page_desc(skb, i, page, off, size);
 267	skb->len += size;
 268	skb->data_len += size;
 269	skb->truesize += size;
 270}
 271EXPORT_SYMBOL(skb_add_rx_frag);
 272
 273/**
 274 *	dev_alloc_skb - allocate an skbuff for receiving
 275 *	@length: length to allocate
 276 *
 277 *	Allocate a new &sk_buff and assign it a usage count of one. The
 278 *	buffer has unspecified headroom built in. Users should allocate
 279 *	the headroom they think they need without accounting for the
 280 *	built in space. The built in space is used for optimisations.
 281 *
 282 *	%NULL is returned if there is no free memory. Although this function
 283 *	allocates memory it can be called from an interrupt.
 284 */
 285struct sk_buff *dev_alloc_skb(unsigned int length)
 286{
 287	/*
 288	 * There is more code here than it seems:
 289	 * __dev_alloc_skb is an inline
 290	 */
 291	return __dev_alloc_skb(length, GFP_ATOMIC);
 
 292}
 293EXPORT_SYMBOL(dev_alloc_skb);
 294
 295static void skb_drop_list(struct sk_buff **listp)
 296{
 297	struct sk_buff *list = *listp;
 298
 299	*listp = NULL;
 300
 301	do {
 302		struct sk_buff *this = list;
 303		list = list->next;
 304		kfree_skb(this);
 305	} while (list);
 306}
 307
 308static inline void skb_drop_fraglist(struct sk_buff *skb)
 309{
 310	skb_drop_list(&skb_shinfo(skb)->frag_list);
 311}
 312
 313static void skb_clone_fraglist(struct sk_buff *skb)
 314{
 315	struct sk_buff *list;
 316
 317	skb_walk_frags(skb, list)
 318		skb_get(list);
 319}
 320
 
 
 
 
 
 
 
 
 
 
 321static void skb_release_data(struct sk_buff *skb)
 322{
 323	if (!skb->cloned ||
 324	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 325			       &skb_shinfo(skb)->dataref)) {
 326		if (skb_shinfo(skb)->nr_frags) {
 327			int i;
 328			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 329				put_page(skb_shinfo(skb)->frags[i].page);
 330		}
 331
 332		/*
 333		 * If skb buf is from userspace, we need to notify the caller
 334		 * the lower device DMA has done;
 335		 */
 336		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 337			struct ubuf_info *uarg;
 338
 339			uarg = skb_shinfo(skb)->destructor_arg;
 340			if (uarg->callback)
 341				uarg->callback(uarg);
 342		}
 343
 344		if (skb_has_frag_list(skb))
 345			skb_drop_fraglist(skb);
 346
 347		kfree(skb->head);
 348	}
 349}
 350
 351/*
 352 *	Free an skbuff by memory without cleaning the state.
 353 */
 354static void kfree_skbmem(struct sk_buff *skb)
 355{
 356	struct sk_buff *other;
 357	atomic_t *fclone_ref;
 358
 359	switch (skb->fclone) {
 360	case SKB_FCLONE_UNAVAILABLE:
 361		kmem_cache_free(skbuff_head_cache, skb);
 362		break;
 363
 364	case SKB_FCLONE_ORIG:
 365		fclone_ref = (atomic_t *) (skb + 2);
 366		if (atomic_dec_and_test(fclone_ref))
 367			kmem_cache_free(skbuff_fclone_cache, skb);
 368		break;
 369
 370	case SKB_FCLONE_CLONE:
 371		fclone_ref = (atomic_t *) (skb + 1);
 372		other = skb - 1;
 373
 374		/* The clone portion is available for
 375		 * fast-cloning again.
 376		 */
 377		skb->fclone = SKB_FCLONE_UNAVAILABLE;
 
 
 378
 379		if (atomic_dec_and_test(fclone_ref))
 380			kmem_cache_free(skbuff_fclone_cache, other);
 381		break;
 382	}
 
 
 
 
 383}
 384
 385static void skb_release_head_state(struct sk_buff *skb)
 386{
 387	skb_dst_drop(skb);
 388#ifdef CONFIG_XFRM
 389	secpath_put(skb->sp);
 390#endif
 391	if (skb->destructor) {
 392		WARN_ON(in_irq());
 393		skb->destructor(skb);
 394	}
 395#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 396	nf_conntrack_put(skb->nfct);
 397#endif
 398#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 399	nf_conntrack_put_reasm(skb->nfct_reasm);
 400#endif
 401#ifdef CONFIG_BRIDGE_NETFILTER
 402	nf_bridge_put(skb->nf_bridge);
 403#endif
 404/* XXX: IS this still necessary? - JHS */
 405#ifdef CONFIG_NET_SCHED
 406	skb->tc_index = 0;
 407#ifdef CONFIG_NET_CLS_ACT
 408	skb->tc_verd = 0;
 409#endif
 410#endif
 
 411}
 412
 413/* Free everything but the sk_buff shell. */
 414static void skb_release_all(struct sk_buff *skb)
 415{
 416	skb_release_head_state(skb);
 417	skb_release_data(skb);
 
 418}
 419
 420/**
 421 *	__kfree_skb - private function
 422 *	@skb: buffer
 423 *
 424 *	Free an sk_buff. Release anything attached to the buffer.
 425 *	Clean the state. This is an internal helper function. Users should
 426 *	always call kfree_skb
 427 */
 428
 429void __kfree_skb(struct sk_buff *skb)
 430{
 431	skb_release_all(skb);
 432	kfree_skbmem(skb);
 433}
 434EXPORT_SYMBOL(__kfree_skb);
 435
 436/**
 437 *	kfree_skb - free an sk_buff
 438 *	@skb: buffer to free
 439 *
 440 *	Drop a reference to the buffer and free it if the usage count has
 441 *	hit zero.
 442 */
 443void kfree_skb(struct sk_buff *skb)
 444{
 445	if (unlikely(!skb))
 446		return;
 447	if (likely(atomic_read(&skb->users) == 1))
 448		smp_rmb();
 449	else if (likely(!atomic_dec_and_test(&skb->users)))
 450		return;
 
 451	trace_kfree_skb(skb, __builtin_return_address(0));
 452	__kfree_skb(skb);
 453}
 454EXPORT_SYMBOL(kfree_skb);
 455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456/**
 457 *	consume_skb - free an skbuff
 458 *	@skb: buffer to free
 459 *
 460 *	Drop a ref to the buffer and free it if the usage count has hit zero
 461 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 462 *	is being dropped after a failure and notes that
 463 */
 464void consume_skb(struct sk_buff *skb)
 465{
 466	if (unlikely(!skb))
 467		return;
 468	if (likely(atomic_read(&skb->users) == 1))
 469		smp_rmb();
 470	else if (likely(!atomic_dec_and_test(&skb->users)))
 471		return;
 
 472	trace_consume_skb(skb);
 473	__kfree_skb(skb);
 474}
 475EXPORT_SYMBOL(consume_skb);
 476
 477/**
 478 *	skb_recycle_check - check if skb can be reused for receive
 479 *	@skb: buffer
 480 *	@skb_size: minimum receive buffer size
 481 *
 482 *	Checks that the skb passed in is not shared or cloned, and
 483 *	that it is linear and its head portion at least as large as
 484 *	skb_size so that it can be recycled as a receive buffer.
 485 *	If these conditions are met, this function does any necessary
 486 *	reference count dropping and cleans up the skbuff as if it
 487 *	just came from __alloc_skb().
 488 */
 489bool skb_recycle_check(struct sk_buff *skb, int skb_size)
 490{
 491	struct skb_shared_info *shinfo;
 
 
 
 492
 493	if (irqs_disabled())
 494		return false;
 
 495
 496	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
 497		return false;
 
 
 
 
 
 498
 499	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
 500		return false;
 
 501
 502	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
 503	if (skb_end_pointer(skb) - skb->head < skb_size)
 504		return false;
 505
 506	if (skb_shared(skb) || skb_cloned(skb))
 507		return false;
 508
 509	skb_release_head_state(skb);
 
 
 
 510
 511	shinfo = skb_shinfo(skb);
 512	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 513	atomic_set(&shinfo->dataref, 1);
 
 
 
 
 
 
 
 
 514
 515	memset(skb, 0, offsetof(struct sk_buff, tail));
 516	skb->data = skb->head + NET_SKB_PAD;
 517	skb_reset_tail_pointer(skb);
 
 518
 519	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520}
 521EXPORT_SYMBOL(skb_recycle_check);
 
 
 
 
 
 
 
 522
 523static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 524{
 525	new->tstamp		= old->tstamp;
 
 526	new->dev		= old->dev;
 527	new->transport_header	= old->transport_header;
 528	new->network_header	= old->network_header;
 529	new->mac_header		= old->mac_header;
 530	skb_dst_copy(new, old);
 531	new->rxhash		= old->rxhash;
 532#ifdef CONFIG_XFRM
 533	new->sp			= secpath_get(old->sp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534#endif
 535	memcpy(new->cb, old->cb, sizeof(old->cb));
 536	new->csum		= old->csum;
 537	new->local_df		= old->local_df;
 538	new->pkt_type		= old->pkt_type;
 539	new->ip_summed		= old->ip_summed;
 540	skb_copy_queue_mapping(new, old);
 541	new->priority		= old->priority;
 542#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
 543	new->ipvs_property	= old->ipvs_property;
 544#endif
 545	new->protocol		= old->protocol;
 546	new->mark		= old->mark;
 547	new->skb_iif		= old->skb_iif;
 548	__nf_copy(new, old);
 549#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
 550    defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
 551	new->nf_trace		= old->nf_trace;
 552#endif
 553#ifdef CONFIG_NET_SCHED
 554	new->tc_index		= old->tc_index;
 555#ifdef CONFIG_NET_CLS_ACT
 556	new->tc_verd		= old->tc_verd;
 557#endif
 
 
 558#endif
 559	new->vlan_tci		= old->vlan_tci;
 560
 561	skb_copy_secmark(new, old);
 562}
 563
 564/*
 565 * You should not add any new code to this function.  Add it to
 566 * __copy_skb_header above instead.
 567 */
 568static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 569{
 570#define C(x) n->x = skb->x
 571
 572	n->next = n->prev = NULL;
 573	n->sk = NULL;
 574	__copy_skb_header(n, skb);
 575
 576	C(len);
 577	C(data_len);
 578	C(mac_len);
 579	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 580	n->cloned = 1;
 581	n->nohdr = 0;
 
 
 582	n->destructor = NULL;
 583	C(tail);
 584	C(end);
 585	C(head);
 
 586	C(data);
 587	C(truesize);
 588	atomic_set(&n->users, 1);
 589
 590	atomic_inc(&(skb_shinfo(skb)->dataref));
 591	skb->cloned = 1;
 592
 593	return n;
 594#undef C
 595}
 596
 597/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598 *	skb_morph	-	morph one skb into another
 599 *	@dst: the skb to receive the contents
 600 *	@src: the skb to supply the contents
 601 *
 602 *	This is identical to skb_clone except that the target skb is
 603 *	supplied by the user.
 604 *
 605 *	The target skb is returned upon exit.
 606 */
 607struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 608{
 609	skb_release_all(dst);
 610	return __skb_clone(dst, src);
 611}
 612EXPORT_SYMBOL_GPL(skb_morph);
 613
 614/*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615 *	@skb: the skb to modify
 616 *	@gfp_mask: allocation priority
 617 *
 618 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 619 *	It will copy all frags into kernel and drop the reference
 620 *	to userspace pages.
 621 *
 622 *	If this function is called from an interrupt gfp_mask() must be
 623 *	%GFP_ATOMIC.
 624 *
 625 *	Returns 0 on success or a negative error code on failure
 626 *	to allocate kernel memory to copy to.
 627 */
 628int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 629{
 630	int i;
 631	int num_frags = skb_shinfo(skb)->nr_frags;
 632	struct page *page, *head = NULL;
 633	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 
 634
 635	for (i = 0; i < num_frags; i++) {
 636		u8 *vaddr;
 637		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 
 
 638
 639		page = alloc_page(GFP_ATOMIC);
 
 
 640		if (!page) {
 641			while (head) {
 642				struct page *next = (struct page *)head->private;
 643				put_page(head);
 644				head = next;
 645			}
 646			return -ENOMEM;
 647		}
 648		vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
 649		memcpy(page_address(page),
 650		       vaddr + f->page_offset, f->size);
 651		kunmap_skb_frag(vaddr);
 652		page->private = (unsigned long)head;
 653		head = page;
 654	}
 655
 656	/* skb frags release userspace buffers */
 657	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 658		put_page(skb_shinfo(skb)->frags[i].page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659
 660	uarg->callback(uarg);
 
 
 661
 662	/* skb frags point to kernel buffers */
 663	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
 664		skb_shinfo(skb)->frags[i - 1].page_offset = 0;
 665		skb_shinfo(skb)->frags[i - 1].page = head;
 666		head = (struct page *)head->private;
 667	}
 
 
 668
 669	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 
 670	return 0;
 671}
 672
 673
 674/**
 675 *	skb_clone	-	duplicate an sk_buff
 676 *	@skb: buffer to clone
 677 *	@gfp_mask: allocation priority
 678 *
 679 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
 680 *	copies share the same packet data but not structure. The new
 681 *	buffer has a reference count of 1. If the allocation fails the
 682 *	function returns %NULL otherwise the new buffer is returned.
 683 *
 684 *	If this function is called from an interrupt gfp_mask() must be
 685 *	%GFP_ATOMIC.
 686 */
 687
 688struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 689{
 
 
 
 690	struct sk_buff *n;
 691
 692	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 693		if (skb_copy_ubufs(skb, gfp_mask))
 694			return NULL;
 695	}
 696
 697	n = skb + 1;
 698	if (skb->fclone == SKB_FCLONE_ORIG &&
 699	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
 700		atomic_t *fclone_ref = (atomic_t *) (n + 1);
 701		n->fclone = SKB_FCLONE_CLONE;
 702		atomic_inc(fclone_ref);
 703	} else {
 
 
 
 704		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 705		if (!n)
 706			return NULL;
 707
 708		kmemcheck_annotate_bitfield(n, flags1);
 709		kmemcheck_annotate_bitfield(n, flags2);
 710		n->fclone = SKB_FCLONE_UNAVAILABLE;
 711	}
 712
 713	return __skb_clone(n, skb);
 714}
 715EXPORT_SYMBOL(skb_clone);
 716
 717static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 718{
 719#ifndef NET_SKBUFF_DATA_USES_OFFSET
 720	/*
 721	 *	Shift between the two data areas in bytes
 722	 */
 723	unsigned long offset = new->data - old->data;
 724#endif
 
 
 
 
 
 
 
 725
 
 
 726	__copy_skb_header(new, old);
 727
 728#ifndef NET_SKBUFF_DATA_USES_OFFSET
 729	/* {transport,network,mac}_header are relative to skb->head */
 730	new->transport_header += offset;
 731	new->network_header   += offset;
 732	if (skb_mac_header_was_set(new))
 733		new->mac_header	      += offset;
 734#endif
 735	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 736	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 737	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 738}
 
 
 
 
 
 
 
 
 739
 740/**
 741 *	skb_copy	-	create private copy of an sk_buff
 742 *	@skb: buffer to copy
 743 *	@gfp_mask: allocation priority
 744 *
 745 *	Make a copy of both an &sk_buff and its data. This is used when the
 746 *	caller wishes to modify the data and needs a private copy of the
 747 *	data to alter. Returns %NULL on failure or the pointer to the buffer
 748 *	on success. The returned buffer has a reference count of 1.
 749 *
 750 *	As by-product this function converts non-linear &sk_buff to linear
 751 *	one, so that &sk_buff becomes completely private and caller is allowed
 752 *	to modify all the data of returned buffer. This means that this
 753 *	function is not recommended for use in circumstances when only
 754 *	header is going to be modified. Use pskb_copy() instead.
 755 */
 756
 757struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 758{
 759	int headerlen = skb_headroom(skb);
 760	unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
 761	struct sk_buff *n = alloc_skb(size, gfp_mask);
 
 762
 763	if (!n)
 764		return NULL;
 765
 766	/* Set the data pointer */
 767	skb_reserve(n, headerlen);
 768	/* Set the tail pointer and length */
 769	skb_put(n, skb->len);
 770
 771	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 772		BUG();
 773
 774	copy_skb_header(n, skb);
 775	return n;
 776}
 777EXPORT_SYMBOL(skb_copy);
 778
 779/**
 780 *	pskb_copy	-	create copy of an sk_buff with private head.
 781 *	@skb: buffer to copy
 
 782 *	@gfp_mask: allocation priority
 
 
 
 783 *
 784 *	Make a copy of both an &sk_buff and part of its data, located
 785 *	in header. Fragmented data remain shared. This is used when
 786 *	the caller wishes to modify only header of &sk_buff and needs
 787 *	private copy of the header to alter. Returns %NULL on failure
 788 *	or the pointer to the buffer on success.
 789 *	The returned buffer has a reference count of 1.
 790 */
 791
 792struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
 
 793{
 794	unsigned int size = skb_end_pointer(skb) - skb->head;
 795	struct sk_buff *n = alloc_skb(size, gfp_mask);
 
 796
 797	if (!n)
 798		goto out;
 799
 800	/* Set the data pointer */
 801	skb_reserve(n, skb_headroom(skb));
 802	/* Set the tail pointer and length */
 803	skb_put(n, skb_headlen(skb));
 804	/* Copy the bytes */
 805	skb_copy_from_linear_data(skb, n->data, n->len);
 806
 807	n->truesize += skb->data_len;
 808	n->data_len  = skb->data_len;
 809	n->len	     = skb->len;
 810
 811	if (skb_shinfo(skb)->nr_frags) {
 812		int i;
 813
 814		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 815			if (skb_copy_ubufs(skb, gfp_mask)) {
 816				kfree_skb(n);
 817				n = NULL;
 818				goto out;
 819			}
 820		}
 821		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 822			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
 823			get_page(skb_shinfo(n)->frags[i].page);
 824		}
 825		skb_shinfo(n)->nr_frags = i;
 826	}
 827
 828	if (skb_has_frag_list(skb)) {
 829		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
 830		skb_clone_fraglist(n);
 831	}
 832
 833	copy_skb_header(n, skb);
 834out:
 835	return n;
 836}
 837EXPORT_SYMBOL(pskb_copy);
 838
 839/**
 840 *	pskb_expand_head - reallocate header of &sk_buff
 841 *	@skb: buffer to reallocate
 842 *	@nhead: room to add at head
 843 *	@ntail: room to add at tail
 844 *	@gfp_mask: allocation priority
 845 *
 846 *	Expands (or creates identical copy, if &nhead and &ntail are zero)
 847 *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
 848 *	reference count of 1. Returns zero in the case of success or error,
 849 *	if expansion failed. In the last case, &sk_buff is not changed.
 850 *
 851 *	All the pointers pointing into skb header may change and must be
 852 *	reloaded after call to this function.
 853 */
 854
 855int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
 856		     gfp_t gfp_mask)
 857{
 858	int i;
 859	u8 *data;
 860	int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
 861	long off;
 862	bool fastpath;
 863
 864	BUG_ON(nhead < 0);
 865
 866	if (skb_shared(skb))
 867		BUG();
 868
 869	size = SKB_DATA_ALIGN(size);
 870
 871	/* Check if we can avoid taking references on fragments if we own
 872	 * the last reference on skb->head. (see skb_release_data())
 873	 */
 874	if (!skb->cloned)
 875		fastpath = true;
 876	else {
 877		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
 878		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
 879	}
 880
 881	if (fastpath &&
 882	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
 883		memmove(skb->head + size, skb_shinfo(skb),
 884			offsetof(struct skb_shared_info,
 885				 frags[skb_shinfo(skb)->nr_frags]));
 886		memmove(skb->head + nhead, skb->head,
 887			skb_tail_pointer(skb) - skb->head);
 888		off = nhead;
 889		goto adjust_others;
 890	}
 891
 892	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
 893	if (!data)
 894		goto nodata;
 
 895
 896	/* Copy only real data... and, alas, header. This should be
 897	 * optimized for the cases when header is void.
 898	 */
 899	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
 900
 901	memcpy((struct skb_shared_info *)(data + size),
 902	       skb_shinfo(skb),
 903	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
 904
 905	if (fastpath) {
 906		kfree(skb->head);
 907	} else {
 908		/* copy this zero copy skb frags */
 909		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 910			if (skb_copy_ubufs(skb, gfp_mask))
 911				goto nofrags;
 912		}
 
 
 913		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 914			get_page(skb_shinfo(skb)->frags[i].page);
 915
 916		if (skb_has_frag_list(skb))
 917			skb_clone_fraglist(skb);
 918
 919		skb_release_data(skb);
 
 
 920	}
 921	off = (data + nhead) - skb->head;
 922
 923	skb->head     = data;
 924adjust_others:
 925	skb->data    += off;
 926#ifdef NET_SKBUFF_DATA_USES_OFFSET
 927	skb->end      = size;
 928	off           = nhead;
 929#else
 930	skb->end      = skb->head + size;
 931#endif
 932	/* {transport,network,mac}_header and tail are relative to skb->head */
 933	skb->tail	      += off;
 934	skb->transport_header += off;
 935	skb->network_header   += off;
 936	if (skb_mac_header_was_set(skb))
 937		skb->mac_header += off;
 938	/* Only adjust this if it actually is csum_start rather than csum */
 939	if (skb->ip_summed == CHECKSUM_PARTIAL)
 940		skb->csum_start += nhead;
 941	skb->cloned   = 0;
 942	skb->hdr_len  = 0;
 943	skb->nohdr    = 0;
 944	atomic_set(&skb_shinfo(skb)->dataref, 1);
 
 
 
 
 
 
 
 
 
 
 945	return 0;
 946
 947nofrags:
 948	kfree(data);
 949nodata:
 950	return -ENOMEM;
 951}
 952EXPORT_SYMBOL(pskb_expand_head);
 953
 954/* Make private copy of skb with writable head and some headroom */
 955
 956struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
 957{
 958	struct sk_buff *skb2;
 959	int delta = headroom - skb_headroom(skb);
 960
 961	if (delta <= 0)
 962		skb2 = pskb_copy(skb, GFP_ATOMIC);
 963	else {
 964		skb2 = skb_clone(skb, GFP_ATOMIC);
 965		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
 966					     GFP_ATOMIC)) {
 967			kfree_skb(skb2);
 968			skb2 = NULL;
 969		}
 970	}
 971	return skb2;
 972}
 973EXPORT_SYMBOL(skb_realloc_headroom);
 974
 975/**
 976 *	skb_copy_expand	-	copy and expand sk_buff
 977 *	@skb: buffer to copy
 978 *	@newheadroom: new free bytes at head
 979 *	@newtailroom: new free bytes at tail
 980 *	@gfp_mask: allocation priority
 981 *
 982 *	Make a copy of both an &sk_buff and its data and while doing so
 983 *	allocate additional space.
 984 *
 985 *	This is used when the caller wishes to modify the data and needs a
 986 *	private copy of the data to alter as well as more space for new fields.
 987 *	Returns %NULL on failure or the pointer to the buffer
 988 *	on success. The returned buffer has a reference count of 1.
 989 *
 990 *	You must pass %GFP_ATOMIC as the allocation priority if this function
 991 *	is called from an interrupt.
 992 */
 993struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 994				int newheadroom, int newtailroom,
 995				gfp_t gfp_mask)
 996{
 997	/*
 998	 *	Allocate the copy buffer
 999	 */
1000	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1001				      gfp_mask);
 
1002	int oldheadroom = skb_headroom(skb);
1003	int head_copy_len, head_copy_off;
1004	int off;
1005
1006	if (!n)
1007		return NULL;
1008
1009	skb_reserve(n, newheadroom);
1010
1011	/* Set the tail pointer and length */
1012	skb_put(n, skb->len);
1013
1014	head_copy_len = oldheadroom;
1015	head_copy_off = 0;
1016	if (newheadroom <= head_copy_len)
1017		head_copy_len = newheadroom;
1018	else
1019		head_copy_off = newheadroom - head_copy_len;
1020
1021	/* Copy the linear header and data. */
1022	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1023			  skb->len + head_copy_len))
1024		BUG();
1025
1026	copy_skb_header(n, skb);
1027
1028	off                  = newheadroom - oldheadroom;
1029	if (n->ip_summed == CHECKSUM_PARTIAL)
1030		n->csum_start += off;
1031#ifdef NET_SKBUFF_DATA_USES_OFFSET
1032	n->transport_header += off;
1033	n->network_header   += off;
1034	if (skb_mac_header_was_set(skb))
1035		n->mac_header += off;
1036#endif
1037
1038	return n;
1039}
1040EXPORT_SYMBOL(skb_copy_expand);
1041
1042/**
1043 *	skb_pad			-	zero pad the tail of an skb
1044 *	@skb: buffer to pad
1045 *	@pad: space to pad
 
1046 *
1047 *	Ensure that a buffer is followed by a padding area that is zero
1048 *	filled. Used by network drivers which may DMA or transfer data
1049 *	beyond the buffer end onto the wire.
1050 *
1051 *	May return error in out of memory cases. The skb is freed on error.
 
1052 */
1053
1054int skb_pad(struct sk_buff *skb, int pad)
1055{
1056	int err;
1057	int ntail;
1058
1059	/* If the skbuff is non linear tailroom is always zero.. */
1060	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1061		memset(skb->data+skb->len, 0, pad);
1062		return 0;
1063	}
1064
1065	ntail = skb->data_len + pad - (skb->end - skb->tail);
1066	if (likely(skb_cloned(skb) || ntail > 0)) {
1067		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1068		if (unlikely(err))
1069			goto free_skb;
1070	}
1071
1072	/* FIXME: The use of this function with non-linear skb's really needs
1073	 * to be audited.
1074	 */
1075	err = skb_linearize(skb);
1076	if (unlikely(err))
1077		goto free_skb;
1078
1079	memset(skb->data + skb->len, 0, pad);
1080	return 0;
1081
1082free_skb:
1083	kfree_skb(skb);
 
1084	return err;
1085}
1086EXPORT_SYMBOL(skb_pad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088/**
1089 *	skb_put - add data to a buffer
1090 *	@skb: buffer to use
1091 *	@len: amount of data to add
1092 *
1093 *	This function extends the used data area of the buffer. If this would
1094 *	exceed the total buffer size the kernel will panic. A pointer to the
1095 *	first byte of the extra data is returned.
1096 */
1097unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1098{
1099	unsigned char *tmp = skb_tail_pointer(skb);
1100	SKB_LINEAR_ASSERT(skb);
1101	skb->tail += len;
1102	skb->len  += len;
1103	if (unlikely(skb->tail > skb->end))
1104		skb_over_panic(skb, len, __builtin_return_address(0));
1105	return tmp;
1106}
1107EXPORT_SYMBOL(skb_put);
1108
1109/**
1110 *	skb_push - add data to the start of a buffer
1111 *	@skb: buffer to use
1112 *	@len: amount of data to add
1113 *
1114 *	This function extends the used data area of the buffer at the buffer
1115 *	start. If this would exceed the total buffer headroom the kernel will
1116 *	panic. A pointer to the first byte of the extra data is returned.
1117 */
1118unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1119{
1120	skb->data -= len;
1121	skb->len  += len;
1122	if (unlikely(skb->data<skb->head))
1123		skb_under_panic(skb, len, __builtin_return_address(0));
1124	return skb->data;
1125}
1126EXPORT_SYMBOL(skb_push);
1127
1128/**
1129 *	skb_pull - remove data from the start of a buffer
1130 *	@skb: buffer to use
1131 *	@len: amount of data to remove
1132 *
1133 *	This function removes data from the start of a buffer, returning
1134 *	the memory to the headroom. A pointer to the next data in the buffer
1135 *	is returned. Once the data has been pulled future pushes will overwrite
1136 *	the old data.
1137 */
1138unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1139{
1140	return skb_pull_inline(skb, len);
1141}
1142EXPORT_SYMBOL(skb_pull);
1143
1144/**
1145 *	skb_trim - remove end from a buffer
1146 *	@skb: buffer to alter
1147 *	@len: new length
1148 *
1149 *	Cut the length of a buffer down by removing data from the tail. If
1150 *	the buffer is already under the length specified it is not modified.
1151 *	The skb must be linear.
1152 */
1153void skb_trim(struct sk_buff *skb, unsigned int len)
1154{
1155	if (skb->len > len)
1156		__skb_trim(skb, len);
1157}
1158EXPORT_SYMBOL(skb_trim);
1159
1160/* Trims skb to length len. It can change skb pointers.
1161 */
1162
1163int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1164{
1165	struct sk_buff **fragp;
1166	struct sk_buff *frag;
1167	int offset = skb_headlen(skb);
1168	int nfrags = skb_shinfo(skb)->nr_frags;
1169	int i;
1170	int err;
1171
1172	if (skb_cloned(skb) &&
1173	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1174		return err;
1175
1176	i = 0;
1177	if (offset >= len)
1178		goto drop_pages;
1179
1180	for (; i < nfrags; i++) {
1181		int end = offset + skb_shinfo(skb)->frags[i].size;
1182
1183		if (end < len) {
1184			offset = end;
1185			continue;
1186		}
1187
1188		skb_shinfo(skb)->frags[i++].size = len - offset;
1189
1190drop_pages:
1191		skb_shinfo(skb)->nr_frags = i;
1192
1193		for (; i < nfrags; i++)
1194			put_page(skb_shinfo(skb)->frags[i].page);
1195
1196		if (skb_has_frag_list(skb))
1197			skb_drop_fraglist(skb);
1198		goto done;
1199	}
1200
1201	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1202	     fragp = &frag->next) {
1203		int end = offset + frag->len;
1204
1205		if (skb_shared(frag)) {
1206			struct sk_buff *nfrag;
1207
1208			nfrag = skb_clone(frag, GFP_ATOMIC);
1209			if (unlikely(!nfrag))
1210				return -ENOMEM;
1211
1212			nfrag->next = frag->next;
1213			kfree_skb(frag);
1214			frag = nfrag;
1215			*fragp = frag;
1216		}
1217
1218		if (end < len) {
1219			offset = end;
1220			continue;
1221		}
1222
1223		if (end > len &&
1224		    unlikely((err = pskb_trim(frag, len - offset))))
1225			return err;
1226
1227		if (frag->next)
1228			skb_drop_list(&frag->next);
1229		break;
1230	}
1231
1232done:
1233	if (len > skb_headlen(skb)) {
1234		skb->data_len -= skb->len - len;
1235		skb->len       = len;
1236	} else {
1237		skb->len       = len;
1238		skb->data_len  = 0;
1239		skb_set_tail_pointer(skb, len);
1240	}
1241
 
 
1242	return 0;
1243}
1244EXPORT_SYMBOL(___pskb_trim);
1245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246/**
1247 *	__pskb_pull_tail - advance tail of skb header
1248 *	@skb: buffer to reallocate
1249 *	@delta: number of bytes to advance tail
1250 *
1251 *	The function makes a sense only on a fragmented &sk_buff,
1252 *	it expands header moving its tail forward and copying necessary
1253 *	data from fragmented part.
1254 *
1255 *	&sk_buff MUST have reference count of 1.
1256 *
1257 *	Returns %NULL (and &sk_buff does not change) if pull failed
1258 *	or value of new tail of skb in the case of success.
1259 *
1260 *	All the pointers pointing into skb header may change and must be
1261 *	reloaded after call to this function.
1262 */
1263
1264/* Moves tail of skb head forward, copying data from fragmented part,
1265 * when it is necessary.
1266 * 1. It may fail due to malloc failure.
1267 * 2. It may change skb pointers.
1268 *
1269 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1270 */
1271unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1272{
1273	/* If skb has not enough free space at tail, get new one
1274	 * plus 128 bytes for future expansions. If we have enough
1275	 * room at tail, reallocate without expansion only if skb is cloned.
1276	 */
1277	int i, k, eat = (skb->tail + delta) - skb->end;
1278
1279	if (eat > 0 || skb_cloned(skb)) {
1280		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1281				     GFP_ATOMIC))
1282			return NULL;
1283	}
1284
1285	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1286		BUG();
1287
1288	/* Optimization: no fragments, no reasons to preestimate
1289	 * size of pulled pages. Superb.
1290	 */
1291	if (!skb_has_frag_list(skb))
1292		goto pull_pages;
1293
1294	/* Estimate size of pulled pages. */
1295	eat = delta;
1296	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1297		if (skb_shinfo(skb)->frags[i].size >= eat)
 
 
1298			goto pull_pages;
1299		eat -= skb_shinfo(skb)->frags[i].size;
1300	}
1301
1302	/* If we need update frag list, we are in troubles.
1303	 * Certainly, it possible to add an offset to skb data,
1304	 * but taking into account that pulling is expected to
1305	 * be very rare operation, it is worth to fight against
1306	 * further bloating skb head and crucify ourselves here instead.
1307	 * Pure masohism, indeed. 8)8)
1308	 */
1309	if (eat) {
1310		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1311		struct sk_buff *clone = NULL;
1312		struct sk_buff *insp = NULL;
1313
1314		do {
1315			BUG_ON(!list);
1316
1317			if (list->len <= eat) {
1318				/* Eaten as whole. */
1319				eat -= list->len;
1320				list = list->next;
1321				insp = list;
1322			} else {
1323				/* Eaten partially. */
1324
1325				if (skb_shared(list)) {
1326					/* Sucks! We need to fork list. :-( */
1327					clone = skb_clone(list, GFP_ATOMIC);
1328					if (!clone)
1329						return NULL;
1330					insp = list->next;
1331					list = clone;
1332				} else {
1333					/* This may be pulled without
1334					 * problems. */
1335					insp = list;
1336				}
1337				if (!pskb_pull(list, eat)) {
1338					kfree_skb(clone);
1339					return NULL;
1340				}
1341				break;
1342			}
1343		} while (eat);
1344
1345		/* Free pulled out fragments. */
1346		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1347			skb_shinfo(skb)->frag_list = list->next;
1348			kfree_skb(list);
1349		}
1350		/* And insert new clone at head. */
1351		if (clone) {
1352			clone->next = list;
1353			skb_shinfo(skb)->frag_list = clone;
1354		}
1355	}
1356	/* Success! Now we may commit changes to skb data. */
1357
1358pull_pages:
1359	eat = delta;
1360	k = 0;
1361	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1362		if (skb_shinfo(skb)->frags[i].size <= eat) {
1363			put_page(skb_shinfo(skb)->frags[i].page);
1364			eat -= skb_shinfo(skb)->frags[i].size;
 
 
1365		} else {
1366			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
 
 
1367			if (eat) {
1368				skb_shinfo(skb)->frags[k].page_offset += eat;
1369				skb_shinfo(skb)->frags[k].size -= eat;
 
 
1370				eat = 0;
1371			}
1372			k++;
1373		}
1374	}
1375	skb_shinfo(skb)->nr_frags = k;
1376
 
1377	skb->tail     += delta;
1378	skb->data_len -= delta;
1379
 
 
 
1380	return skb_tail_pointer(skb);
1381}
1382EXPORT_SYMBOL(__pskb_pull_tail);
1383
1384/**
1385 *	skb_copy_bits - copy bits from skb to kernel buffer
1386 *	@skb: source skb
1387 *	@offset: offset in source
1388 *	@to: destination buffer
1389 *	@len: number of bytes to copy
1390 *
1391 *	Copy the specified number of bytes from the source skb to the
1392 *	destination buffer.
1393 *
1394 *	CAUTION ! :
1395 *		If its prototype is ever changed,
1396 *		check arch/{*}/net/{*}.S files,
1397 *		since it is called from BPF assembly code.
1398 */
1399int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1400{
1401	int start = skb_headlen(skb);
1402	struct sk_buff *frag_iter;
1403	int i, copy;
1404
1405	if (offset > (int)skb->len - len)
1406		goto fault;
1407
1408	/* Copy header. */
1409	if ((copy = start - offset) > 0) {
1410		if (copy > len)
1411			copy = len;
1412		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1413		if ((len -= copy) == 0)
1414			return 0;
1415		offset += copy;
1416		to     += copy;
1417	}
1418
1419	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1420		int end;
 
1421
1422		WARN_ON(start > offset + len);
1423
1424		end = start + skb_shinfo(skb)->frags[i].size;
1425		if ((copy = end - offset) > 0) {
 
 
1426			u8 *vaddr;
1427
1428			if (copy > len)
1429				copy = len;
1430
1431			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1432			memcpy(to,
1433			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1434			       offset - start, copy);
1435			kunmap_skb_frag(vaddr);
 
 
1436
1437			if ((len -= copy) == 0)
1438				return 0;
1439			offset += copy;
1440			to     += copy;
1441		}
1442		start = end;
1443	}
1444
1445	skb_walk_frags(skb, frag_iter) {
1446		int end;
1447
1448		WARN_ON(start > offset + len);
1449
1450		end = start + frag_iter->len;
1451		if ((copy = end - offset) > 0) {
1452			if (copy > len)
1453				copy = len;
1454			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1455				goto fault;
1456			if ((len -= copy) == 0)
1457				return 0;
1458			offset += copy;
1459			to     += copy;
1460		}
1461		start = end;
1462	}
1463
1464	if (!len)
1465		return 0;
1466
1467fault:
1468	return -EFAULT;
1469}
1470EXPORT_SYMBOL(skb_copy_bits);
1471
1472/*
1473 * Callback from splice_to_pipe(), if we need to release some pages
1474 * at the end of the spd in case we error'ed out in filling the pipe.
1475 */
1476static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1477{
1478	put_page(spd->pages[i]);
1479}
1480
1481static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1482					  unsigned int *offset,
1483					  struct sk_buff *skb, struct sock *sk)
1484{
1485	struct page *p = sk->sk_sndmsg_page;
1486	unsigned int off;
1487
1488	if (!p) {
1489new_page:
1490		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1491		if (!p)
1492			return NULL;
1493
1494		off = sk->sk_sndmsg_off = 0;
1495		/* hold one ref to this page until it's full */
1496	} else {
1497		unsigned int mlen;
1498
1499		off = sk->sk_sndmsg_off;
1500		mlen = PAGE_SIZE - off;
1501		if (mlen < 64 && mlen < *len) {
1502			put_page(p);
1503			goto new_page;
1504		}
1505
1506		*len = min_t(unsigned int, *len, mlen);
1507	}
 
 
1508
1509	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1510	sk->sk_sndmsg_off += *len;
1511	*offset = off;
1512	get_page(p);
1513
1514	return p;
 
 
 
 
 
 
 
1515}
1516
1517/*
1518 * Fill page/offset/length into spd, if it can hold more pages.
1519 */
1520static inline int spd_fill_page(struct splice_pipe_desc *spd,
1521				struct pipe_inode_info *pipe, struct page *page,
1522				unsigned int *len, unsigned int offset,
1523				struct sk_buff *skb, int linear,
1524				struct sock *sk)
1525{
1526	if (unlikely(spd->nr_pages == pipe->buffers))
1527		return 1;
1528
1529	if (linear) {
1530		page = linear_to_page(page, len, &offset, skb, sk);
1531		if (!page)
1532			return 1;
1533	} else
1534		get_page(page);
1535
 
 
 
1536	spd->pages[spd->nr_pages] = page;
1537	spd->partial[spd->nr_pages].len = *len;
1538	spd->partial[spd->nr_pages].offset = offset;
1539	spd->nr_pages++;
1540
1541	return 0;
1542}
1543
1544static inline void __segment_seek(struct page **page, unsigned int *poff,
1545				  unsigned int *plen, unsigned int off)
1546{
1547	unsigned long n;
1548
1549	*poff += off;
1550	n = *poff / PAGE_SIZE;
1551	if (n)
1552		*page = nth_page(*page, n);
1553
1554	*poff = *poff % PAGE_SIZE;
1555	*plen -= off;
1556}
1557
1558static inline int __splice_segment(struct page *page, unsigned int poff,
1559				   unsigned int plen, unsigned int *off,
1560				   unsigned int *len, struct sk_buff *skb,
1561				   struct splice_pipe_desc *spd, int linear,
1562				   struct sock *sk,
1563				   struct pipe_inode_info *pipe)
1564{
1565	if (!*len)
1566		return 1;
1567
1568	/* skip this segment if already processed */
1569	if (*off >= plen) {
1570		*off -= plen;
1571		return 0;
1572	}
1573
1574	/* ignore any bits we already processed */
1575	if (*off) {
1576		__segment_seek(&page, &poff, &plen, *off);
1577		*off = 0;
1578	}
1579
1580	do {
1581		unsigned int flen = min(*len, plen);
1582
1583		/* the linear region may spread across several pages  */
1584		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1585
1586		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1587			return 1;
1588
1589		__segment_seek(&page, &poff, &plen, flen);
1590		*len -= flen;
1591
1592	} while (*len && plen);
1593
1594	return 0;
1595}
1596
1597/*
1598 * Map linear and fragment data from the skb to spd. It reports failure if the
1599 * pipe is full or if we already spliced the requested length.
1600 */
1601static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1602			     unsigned int *offset, unsigned int *len,
1603			     struct splice_pipe_desc *spd, struct sock *sk)
1604{
1605	int seg;
 
1606
1607	/*
1608	 * map the linear part
 
 
1609	 */
1610	if (__splice_segment(virt_to_page(skb->data),
1611			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1612			     skb_headlen(skb),
1613			     offset, len, skb, spd, 1, sk, pipe))
1614		return 1;
 
 
1615
1616	/*
1617	 * then map the fragments
1618	 */
1619	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1620		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1621
1622		if (__splice_segment(f->page, f->page_offset, f->size,
1623				     offset, len, skb, spd, 0, sk, pipe))
1624			return 1;
 
1625	}
1626
1627	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1628}
1629
1630/*
1631 * Map data from the skb to a pipe. Should handle both the linear part,
1632 * the fragments, and the frag list. It does NOT handle frag lists within
1633 * the frag list, if such a thing exists. We'd probably need to recurse to
1634 * handle that cleanly.
1635 */
1636int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1637		    struct pipe_inode_info *pipe, unsigned int tlen,
1638		    unsigned int flags)
1639{
1640	struct partial_page partial[PIPE_DEF_BUFFERS];
1641	struct page *pages[PIPE_DEF_BUFFERS];
1642	struct splice_pipe_desc spd = {
1643		.pages = pages,
1644		.partial = partial,
1645		.flags = flags,
1646		.ops = &sock_pipe_buf_ops,
1647		.spd_release = sock_spd_release,
1648	};
1649	struct sk_buff *frag_iter;
1650	struct sock *sk = skb->sk;
1651	int ret = 0;
1652
1653	if (splice_grow_spd(pipe, &spd))
1654		return -ENOMEM;
1655
1656	/*
1657	 * __skb_splice_bits() only fails if the output has no room left,
1658	 * so no point in going over the frag_list for the error case.
1659	 */
1660	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1661		goto done;
1662	else if (!tlen)
1663		goto done;
1664
1665	/*
1666	 * now see if we have a frag_list to map
1667	 */
1668	skb_walk_frags(skb, frag_iter) {
1669		if (!tlen)
1670			break;
1671		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672			break;
 
 
1673	}
1674
1675done:
1676	if (spd.nr_pages) {
1677		/*
1678		 * Drop the socket lock, otherwise we have reverse
1679		 * locking dependencies between sk_lock and i_mutex
1680		 * here as compared to sendfile(). We enter here
1681		 * with the socket lock held, and splice_to_pipe() will
1682		 * grab the pipe inode lock. For sendfile() emulation,
1683		 * we call into ->sendpage() with the i_mutex lock held
1684		 * and networking will grab the socket lock.
1685		 */
1686		release_sock(sk);
1687		ret = splice_to_pipe(pipe, &spd);
1688		lock_sock(sk);
 
 
 
 
1689	}
1690
1691	splice_shrink_spd(pipe, &spd);
1692	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693}
 
1694
1695/**
1696 *	skb_store_bits - store bits from kernel buffer to skb
1697 *	@skb: destination buffer
1698 *	@offset: offset in destination
1699 *	@from: source buffer
1700 *	@len: number of bytes to copy
1701 *
1702 *	Copy the specified number of bytes from the source buffer to the
1703 *	destination skb.  This function handles all the messy bits of
1704 *	traversing fragment lists and such.
1705 */
1706
1707int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1708{
1709	int start = skb_headlen(skb);
1710	struct sk_buff *frag_iter;
1711	int i, copy;
1712
1713	if (offset > (int)skb->len - len)
1714		goto fault;
1715
1716	if ((copy = start - offset) > 0) {
1717		if (copy > len)
1718			copy = len;
1719		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1720		if ((len -= copy) == 0)
1721			return 0;
1722		offset += copy;
1723		from += copy;
1724	}
1725
1726	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1727		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1728		int end;
1729
1730		WARN_ON(start > offset + len);
1731
1732		end = start + frag->size;
1733		if ((copy = end - offset) > 0) {
 
 
1734			u8 *vaddr;
1735
1736			if (copy > len)
1737				copy = len;
1738
1739			vaddr = kmap_skb_frag(frag);
1740			memcpy(vaddr + frag->page_offset + offset - start,
1741			       from, copy);
1742			kunmap_skb_frag(vaddr);
 
 
 
1743
1744			if ((len -= copy) == 0)
1745				return 0;
1746			offset += copy;
1747			from += copy;
1748		}
1749		start = end;
1750	}
1751
1752	skb_walk_frags(skb, frag_iter) {
1753		int end;
1754
1755		WARN_ON(start > offset + len);
1756
1757		end = start + frag_iter->len;
1758		if ((copy = end - offset) > 0) {
1759			if (copy > len)
1760				copy = len;
1761			if (skb_store_bits(frag_iter, offset - start,
1762					   from, copy))
1763				goto fault;
1764			if ((len -= copy) == 0)
1765				return 0;
1766			offset += copy;
1767			from += copy;
1768		}
1769		start = end;
1770	}
1771	if (!len)
1772		return 0;
1773
1774fault:
1775	return -EFAULT;
1776}
1777EXPORT_SYMBOL(skb_store_bits);
1778
1779/* Checksum skb data. */
1780
1781__wsum skb_checksum(const struct sk_buff *skb, int offset,
1782			  int len, __wsum csum)
1783{
1784	int start = skb_headlen(skb);
1785	int i, copy = start - offset;
1786	struct sk_buff *frag_iter;
1787	int pos = 0;
1788
1789	/* Checksum header. */
1790	if (copy > 0) {
1791		if (copy > len)
1792			copy = len;
1793		csum = csum_partial(skb->data + offset, copy, csum);
 
1794		if ((len -= copy) == 0)
1795			return csum;
1796		offset += copy;
1797		pos	= copy;
1798	}
1799
1800	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1801		int end;
 
1802
1803		WARN_ON(start > offset + len);
1804
1805		end = start + skb_shinfo(skb)->frags[i].size;
1806		if ((copy = end - offset) > 0) {
 
 
1807			__wsum csum2;
1808			u8 *vaddr;
1809			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1810
1811			if (copy > len)
1812				copy = len;
1813			vaddr = kmap_skb_frag(frag);
1814			csum2 = csum_partial(vaddr + frag->page_offset +
1815					     offset - start, copy, 0);
1816			kunmap_skb_frag(vaddr);
1817			csum = csum_block_add(csum, csum2, pos);
 
 
 
 
 
 
 
 
 
 
1818			if (!(len -= copy))
1819				return csum;
1820			offset += copy;
1821			pos    += copy;
1822		}
1823		start = end;
1824	}
1825
1826	skb_walk_frags(skb, frag_iter) {
1827		int end;
1828
1829		WARN_ON(start > offset + len);
1830
1831		end = start + frag_iter->len;
1832		if ((copy = end - offset) > 0) {
1833			__wsum csum2;
1834			if (copy > len)
1835				copy = len;
1836			csum2 = skb_checksum(frag_iter, offset - start,
1837					     copy, 0);
1838			csum = csum_block_add(csum, csum2, pos);
 
1839			if ((len -= copy) == 0)
1840				return csum;
1841			offset += copy;
1842			pos    += copy;
1843		}
1844		start = end;
1845	}
1846	BUG_ON(len);
1847
1848	return csum;
1849}
 
 
 
 
 
 
 
 
 
 
 
 
1850EXPORT_SYMBOL(skb_checksum);
1851
1852/* Both of above in one bottle. */
1853
1854__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1855				    u8 *to, int len, __wsum csum)
1856{
1857	int start = skb_headlen(skb);
1858	int i, copy = start - offset;
1859	struct sk_buff *frag_iter;
1860	int pos = 0;
1861
1862	/* Copy header. */
1863	if (copy > 0) {
1864		if (copy > len)
1865			copy = len;
1866		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1867						 copy, csum);
1868		if ((len -= copy) == 0)
1869			return csum;
1870		offset += copy;
1871		to     += copy;
1872		pos	= copy;
1873	}
1874
1875	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1876		int end;
1877
1878		WARN_ON(start > offset + len);
1879
1880		end = start + skb_shinfo(skb)->frags[i].size;
1881		if ((copy = end - offset) > 0) {
 
 
 
1882			__wsum csum2;
1883			u8 *vaddr;
1884			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1885
1886			if (copy > len)
1887				copy = len;
1888			vaddr = kmap_skb_frag(frag);
1889			csum2 = csum_partial_copy_nocheck(vaddr +
1890							  frag->page_offset +
1891							  offset - start, to,
1892							  copy, 0);
1893			kunmap_skb_frag(vaddr);
1894			csum = csum_block_add(csum, csum2, pos);
 
 
 
 
 
 
1895			if (!(len -= copy))
1896				return csum;
1897			offset += copy;
1898			to     += copy;
1899			pos    += copy;
1900		}
1901		start = end;
1902	}
1903
1904	skb_walk_frags(skb, frag_iter) {
1905		__wsum csum2;
1906		int end;
1907
1908		WARN_ON(start > offset + len);
1909
1910		end = start + frag_iter->len;
1911		if ((copy = end - offset) > 0) {
1912			if (copy > len)
1913				copy = len;
1914			csum2 = skb_copy_and_csum_bits(frag_iter,
1915						       offset - start,
1916						       to, copy, 0);
1917			csum = csum_block_add(csum, csum2, pos);
1918			if ((len -= copy) == 0)
1919				return csum;
1920			offset += copy;
1921			to     += copy;
1922			pos    += copy;
1923		}
1924		start = end;
1925	}
1926	BUG_ON(len);
1927	return csum;
1928}
1929EXPORT_SYMBOL(skb_copy_and_csum_bits);
1930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1932{
1933	__wsum csum;
1934	long csstart;
1935
1936	if (skb->ip_summed == CHECKSUM_PARTIAL)
1937		csstart = skb_checksum_start_offset(skb);
1938	else
1939		csstart = skb_headlen(skb);
1940
1941	BUG_ON(csstart > skb_headlen(skb));
1942
1943	skb_copy_from_linear_data(skb, to, csstart);
1944
1945	csum = 0;
1946	if (csstart != skb->len)
1947		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1948					      skb->len - csstart, 0);
1949
1950	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1951		long csstuff = csstart + skb->csum_offset;
1952
1953		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1954	}
1955}
1956EXPORT_SYMBOL(skb_copy_and_csum_dev);
1957
1958/**
1959 *	skb_dequeue - remove from the head of the queue
1960 *	@list: list to dequeue from
1961 *
1962 *	Remove the head of the list. The list lock is taken so the function
1963 *	may be used safely with other locking list functions. The head item is
1964 *	returned or %NULL if the list is empty.
1965 */
1966
1967struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1968{
1969	unsigned long flags;
1970	struct sk_buff *result;
1971
1972	spin_lock_irqsave(&list->lock, flags);
1973	result = __skb_dequeue(list);
1974	spin_unlock_irqrestore(&list->lock, flags);
1975	return result;
1976}
1977EXPORT_SYMBOL(skb_dequeue);
1978
1979/**
1980 *	skb_dequeue_tail - remove from the tail of the queue
1981 *	@list: list to dequeue from
1982 *
1983 *	Remove the tail of the list. The list lock is taken so the function
1984 *	may be used safely with other locking list functions. The tail item is
1985 *	returned or %NULL if the list is empty.
1986 */
1987struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1988{
1989	unsigned long flags;
1990	struct sk_buff *result;
1991
1992	spin_lock_irqsave(&list->lock, flags);
1993	result = __skb_dequeue_tail(list);
1994	spin_unlock_irqrestore(&list->lock, flags);
1995	return result;
1996}
1997EXPORT_SYMBOL(skb_dequeue_tail);
1998
1999/**
2000 *	skb_queue_purge - empty a list
2001 *	@list: list to empty
2002 *
2003 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2004 *	the list and one reference dropped. This function takes the list
2005 *	lock and is atomic with respect to other list locking functions.
2006 */
2007void skb_queue_purge(struct sk_buff_head *list)
2008{
2009	struct sk_buff *skb;
2010	while ((skb = skb_dequeue(list)) != NULL)
2011		kfree_skb(skb);
2012}
2013EXPORT_SYMBOL(skb_queue_purge);
2014
2015/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016 *	skb_queue_head - queue a buffer at the list head
2017 *	@list: list to use
2018 *	@newsk: buffer to queue
2019 *
2020 *	Queue a buffer at the start of the list. This function takes the
2021 *	list lock and can be used safely with other locking &sk_buff functions
2022 *	safely.
2023 *
2024 *	A buffer cannot be placed on two lists at the same time.
2025 */
2026void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2027{
2028	unsigned long flags;
2029
2030	spin_lock_irqsave(&list->lock, flags);
2031	__skb_queue_head(list, newsk);
2032	spin_unlock_irqrestore(&list->lock, flags);
2033}
2034EXPORT_SYMBOL(skb_queue_head);
2035
2036/**
2037 *	skb_queue_tail - queue a buffer at the list tail
2038 *	@list: list to use
2039 *	@newsk: buffer to queue
2040 *
2041 *	Queue a buffer at the tail of the list. This function takes the
2042 *	list lock and can be used safely with other locking &sk_buff functions
2043 *	safely.
2044 *
2045 *	A buffer cannot be placed on two lists at the same time.
2046 */
2047void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2048{
2049	unsigned long flags;
2050
2051	spin_lock_irqsave(&list->lock, flags);
2052	__skb_queue_tail(list, newsk);
2053	spin_unlock_irqrestore(&list->lock, flags);
2054}
2055EXPORT_SYMBOL(skb_queue_tail);
2056
2057/**
2058 *	skb_unlink	-	remove a buffer from a list
2059 *	@skb: buffer to remove
2060 *	@list: list to use
2061 *
2062 *	Remove a packet from a list. The list locks are taken and this
2063 *	function is atomic with respect to other list locked calls
2064 *
2065 *	You must know what list the SKB is on.
2066 */
2067void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2068{
2069	unsigned long flags;
2070
2071	spin_lock_irqsave(&list->lock, flags);
2072	__skb_unlink(skb, list);
2073	spin_unlock_irqrestore(&list->lock, flags);
2074}
2075EXPORT_SYMBOL(skb_unlink);
2076
2077/**
2078 *	skb_append	-	append a buffer
2079 *	@old: buffer to insert after
2080 *	@newsk: buffer to insert
2081 *	@list: list to use
2082 *
2083 *	Place a packet after a given packet in a list. The list locks are taken
2084 *	and this function is atomic with respect to other list locked calls.
2085 *	A buffer cannot be placed on two lists at the same time.
2086 */
2087void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2088{
2089	unsigned long flags;
2090
2091	spin_lock_irqsave(&list->lock, flags);
2092	__skb_queue_after(list, old, newsk);
2093	spin_unlock_irqrestore(&list->lock, flags);
2094}
2095EXPORT_SYMBOL(skb_append);
2096
2097/**
2098 *	skb_insert	-	insert a buffer
2099 *	@old: buffer to insert before
2100 *	@newsk: buffer to insert
2101 *	@list: list to use
2102 *
2103 *	Place a packet before a given packet in a list. The list locks are
2104 * 	taken and this function is atomic with respect to other list locked
2105 *	calls.
2106 *
2107 *	A buffer cannot be placed on two lists at the same time.
2108 */
2109void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2110{
2111	unsigned long flags;
2112
2113	spin_lock_irqsave(&list->lock, flags);
2114	__skb_insert(newsk, old->prev, old, list);
2115	spin_unlock_irqrestore(&list->lock, flags);
2116}
2117EXPORT_SYMBOL(skb_insert);
2118
2119static inline void skb_split_inside_header(struct sk_buff *skb,
2120					   struct sk_buff* skb1,
2121					   const u32 len, const int pos)
2122{
2123	int i;
2124
2125	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2126					 pos - len);
2127	/* And move data appendix as is. */
2128	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2129		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2130
2131	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2132	skb_shinfo(skb)->nr_frags  = 0;
2133	skb1->data_len		   = skb->data_len;
2134	skb1->len		   += skb1->data_len;
2135	skb->data_len		   = 0;
2136	skb->len		   = len;
2137	skb_set_tail_pointer(skb, len);
2138}
2139
2140static inline void skb_split_no_header(struct sk_buff *skb,
2141				       struct sk_buff* skb1,
2142				       const u32 len, int pos)
2143{
2144	int i, k = 0;
2145	const int nfrags = skb_shinfo(skb)->nr_frags;
2146
2147	skb_shinfo(skb)->nr_frags = 0;
2148	skb1->len		  = skb1->data_len = skb->len - len;
2149	skb->len		  = len;
2150	skb->data_len		  = len - pos;
2151
2152	for (i = 0; i < nfrags; i++) {
2153		int size = skb_shinfo(skb)->frags[i].size;
2154
2155		if (pos + size > len) {
2156			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2157
2158			if (pos < len) {
2159				/* Split frag.
2160				 * We have two variants in this case:
2161				 * 1. Move all the frag to the second
2162				 *    part, if it is possible. F.e.
2163				 *    this approach is mandatory for TUX,
2164				 *    where splitting is expensive.
2165				 * 2. Split is accurately. We make this.
2166				 */
2167				get_page(skb_shinfo(skb)->frags[i].page);
2168				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2169				skb_shinfo(skb1)->frags[0].size -= len - pos;
2170				skb_shinfo(skb)->frags[i].size	= len - pos;
2171				skb_shinfo(skb)->nr_frags++;
2172			}
2173			k++;
2174		} else
2175			skb_shinfo(skb)->nr_frags++;
2176		pos += size;
2177	}
2178	skb_shinfo(skb1)->nr_frags = k;
2179}
2180
2181/**
2182 * skb_split - Split fragmented skb to two parts at length len.
2183 * @skb: the buffer to split
2184 * @skb1: the buffer to receive the second part
2185 * @len: new length for skb
2186 */
2187void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2188{
2189	int pos = skb_headlen(skb);
2190
 
 
 
2191	if (len < pos)	/* Split line is inside header. */
2192		skb_split_inside_header(skb, skb1, len, pos);
2193	else		/* Second chunk has no header, nothing to copy. */
2194		skb_split_no_header(skb, skb1, len, pos);
2195}
2196EXPORT_SYMBOL(skb_split);
2197
2198/* Shifting from/to a cloned skb is a no-go.
2199 *
2200 * Caller cannot keep skb_shinfo related pointers past calling here!
2201 */
2202static int skb_prepare_for_shift(struct sk_buff *skb)
2203{
2204	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2205}
2206
2207/**
2208 * skb_shift - Shifts paged data partially from skb to another
2209 * @tgt: buffer into which tail data gets added
2210 * @skb: buffer from which the paged data comes from
2211 * @shiftlen: shift up to this many bytes
2212 *
2213 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2214 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2215 * It's up to caller to free skb if everything was shifted.
2216 *
2217 * If @tgt runs out of frags, the whole operation is aborted.
2218 *
2219 * Skb cannot include anything else but paged data while tgt is allowed
2220 * to have non-paged data as well.
2221 *
2222 * TODO: full sized shift could be optimized but that would need
2223 * specialized skb free'er to handle frags without up-to-date nr_frags.
2224 */
2225int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2226{
2227	int from, to, merge, todo;
2228	struct skb_frag_struct *fragfrom, *fragto;
2229
2230	BUG_ON(shiftlen > skb->len);
2231	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
 
 
 
 
2232
2233	todo = shiftlen;
2234	from = 0;
2235	to = skb_shinfo(tgt)->nr_frags;
2236	fragfrom = &skb_shinfo(skb)->frags[from];
2237
2238	/* Actual merge is delayed until the point when we know we can
2239	 * commit all, so that we don't have to undo partial changes
2240	 */
2241	if (!to ||
2242	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
 
2243		merge = -1;
2244	} else {
2245		merge = to - 1;
2246
2247		todo -= fragfrom->size;
2248		if (todo < 0) {
2249			if (skb_prepare_for_shift(skb) ||
2250			    skb_prepare_for_shift(tgt))
2251				return 0;
2252
2253			/* All previous frag pointers might be stale! */
2254			fragfrom = &skb_shinfo(skb)->frags[from];
2255			fragto = &skb_shinfo(tgt)->frags[merge];
2256
2257			fragto->size += shiftlen;
2258			fragfrom->size -= shiftlen;
2259			fragfrom->page_offset += shiftlen;
2260
2261			goto onlymerged;
2262		}
2263
2264		from++;
2265	}
2266
2267	/* Skip full, not-fitting skb to avoid expensive operations */
2268	if ((shiftlen == skb->len) &&
2269	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2270		return 0;
2271
2272	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2273		return 0;
2274
2275	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2276		if (to == MAX_SKB_FRAGS)
2277			return 0;
2278
2279		fragfrom = &skb_shinfo(skb)->frags[from];
2280		fragto = &skb_shinfo(tgt)->frags[to];
2281
2282		if (todo >= fragfrom->size) {
2283			*fragto = *fragfrom;
2284			todo -= fragfrom->size;
2285			from++;
2286			to++;
2287
2288		} else {
2289			get_page(fragfrom->page);
2290			fragto->page = fragfrom->page;
2291			fragto->page_offset = fragfrom->page_offset;
2292			fragto->size = todo;
2293
2294			fragfrom->page_offset += todo;
2295			fragfrom->size -= todo;
2296			todo = 0;
2297
2298			to++;
2299			break;
2300		}
2301	}
2302
2303	/* Ready to "commit" this state change to tgt */
2304	skb_shinfo(tgt)->nr_frags = to;
2305
2306	if (merge >= 0) {
2307		fragfrom = &skb_shinfo(skb)->frags[0];
2308		fragto = &skb_shinfo(tgt)->frags[merge];
2309
2310		fragto->size += fragfrom->size;
2311		put_page(fragfrom->page);
2312	}
2313
2314	/* Reposition in the original skb */
2315	to = 0;
2316	while (from < skb_shinfo(skb)->nr_frags)
2317		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2318	skb_shinfo(skb)->nr_frags = to;
2319
2320	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2321
2322onlymerged:
2323	/* Most likely the tgt won't ever need its checksum anymore, skb on
2324	 * the other hand might need it if it needs to be resent
2325	 */
2326	tgt->ip_summed = CHECKSUM_PARTIAL;
2327	skb->ip_summed = CHECKSUM_PARTIAL;
2328
2329	/* Yak, is it really working this way? Some helper please? */
2330	skb->len -= shiftlen;
2331	skb->data_len -= shiftlen;
2332	skb->truesize -= shiftlen;
2333	tgt->len += shiftlen;
2334	tgt->data_len += shiftlen;
2335	tgt->truesize += shiftlen;
2336
2337	return shiftlen;
2338}
2339
2340/**
2341 * skb_prepare_seq_read - Prepare a sequential read of skb data
2342 * @skb: the buffer to read
2343 * @from: lower offset of data to be read
2344 * @to: upper offset of data to be read
2345 * @st: state variable
2346 *
2347 * Initializes the specified state variable. Must be called before
2348 * invoking skb_seq_read() for the first time.
2349 */
2350void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2351			  unsigned int to, struct skb_seq_state *st)
2352{
2353	st->lower_offset = from;
2354	st->upper_offset = to;
2355	st->root_skb = st->cur_skb = skb;
2356	st->frag_idx = st->stepped_offset = 0;
2357	st->frag_data = NULL;
2358}
2359EXPORT_SYMBOL(skb_prepare_seq_read);
2360
2361/**
2362 * skb_seq_read - Sequentially read skb data
2363 * @consumed: number of bytes consumed by the caller so far
2364 * @data: destination pointer for data to be returned
2365 * @st: state variable
2366 *
2367 * Reads a block of skb data at &consumed relative to the
2368 * lower offset specified to skb_prepare_seq_read(). Assigns
2369 * the head of the data block to &data and returns the length
2370 * of the block or 0 if the end of the skb data or the upper
2371 * offset has been reached.
2372 *
2373 * The caller is not required to consume all of the data
2374 * returned, i.e. &consumed is typically set to the number
2375 * of bytes already consumed and the next call to
2376 * skb_seq_read() will return the remaining part of the block.
2377 *
2378 * Note 1: The size of each block of data returned can be arbitrary,
2379 *       this limitation is the cost for zerocopy seqeuental
2380 *       reads of potentially non linear data.
2381 *
2382 * Note 2: Fragment lists within fragments are not implemented
2383 *       at the moment, state->root_skb could be replaced with
2384 *       a stack for this purpose.
2385 */
2386unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2387			  struct skb_seq_state *st)
2388{
2389	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2390	skb_frag_t *frag;
2391
2392	if (unlikely(abs_offset >= st->upper_offset))
 
 
 
 
2393		return 0;
 
2394
2395next_skb:
2396	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2397
2398	if (abs_offset < block_limit && !st->frag_data) {
2399		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2400		return block_limit - abs_offset;
2401	}
2402
2403	if (st->frag_idx == 0 && !st->frag_data)
2404		st->stepped_offset += skb_headlen(st->cur_skb);
2405
2406	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2407		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2408		block_limit = frag->size + st->stepped_offset;
2409
2410		if (abs_offset < block_limit) {
2411			if (!st->frag_data)
2412				st->frag_data = kmap_skb_frag(frag);
2413
2414			*data = (u8 *) st->frag_data + frag->page_offset +
2415				(abs_offset - st->stepped_offset);
2416
2417			return block_limit - abs_offset;
2418		}
2419
2420		if (st->frag_data) {
2421			kunmap_skb_frag(st->frag_data);
2422			st->frag_data = NULL;
2423		}
2424
2425		st->frag_idx++;
2426		st->stepped_offset += frag->size;
2427	}
2428
2429	if (st->frag_data) {
2430		kunmap_skb_frag(st->frag_data);
2431		st->frag_data = NULL;
2432	}
2433
2434	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2435		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2436		st->frag_idx = 0;
2437		goto next_skb;
2438	} else if (st->cur_skb->next) {
2439		st->cur_skb = st->cur_skb->next;
2440		st->frag_idx = 0;
2441		goto next_skb;
2442	}
2443
2444	return 0;
2445}
2446EXPORT_SYMBOL(skb_seq_read);
2447
2448/**
2449 * skb_abort_seq_read - Abort a sequential read of skb data
2450 * @st: state variable
2451 *
2452 * Must be called if skb_seq_read() was not called until it
2453 * returned 0.
2454 */
2455void skb_abort_seq_read(struct skb_seq_state *st)
2456{
2457	if (st->frag_data)
2458		kunmap_skb_frag(st->frag_data);
2459}
2460EXPORT_SYMBOL(skb_abort_seq_read);
2461
2462#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2463
2464static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2465					  struct ts_config *conf,
2466					  struct ts_state *state)
2467{
2468	return skb_seq_read(offset, text, TS_SKB_CB(state));
2469}
2470
2471static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2472{
2473	skb_abort_seq_read(TS_SKB_CB(state));
2474}
2475
2476/**
2477 * skb_find_text - Find a text pattern in skb data
2478 * @skb: the buffer to look in
2479 * @from: search offset
2480 * @to: search limit
2481 * @config: textsearch configuration
2482 * @state: uninitialized textsearch state variable
2483 *
2484 * Finds a pattern in the skb data according to the specified
2485 * textsearch configuration. Use textsearch_next() to retrieve
2486 * subsequent occurrences of the pattern. Returns the offset
2487 * to the first occurrence or UINT_MAX if no match was found.
2488 */
2489unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2490			   unsigned int to, struct ts_config *config,
2491			   struct ts_state *state)
2492{
 
2493	unsigned int ret;
2494
2495	config->get_next_block = skb_ts_get_next_block;
2496	config->finish = skb_ts_finish;
2497
2498	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2499
2500	ret = textsearch_find(config, state);
2501	return (ret <= to - from ? ret : UINT_MAX);
2502}
2503EXPORT_SYMBOL(skb_find_text);
2504
2505/**
2506 * skb_append_datato_frags: - append the user data to a skb
2507 * @sk: sock  structure
2508 * @skb: skb structure to be appened with user data.
2509 * @getfrag: call back function to be used for getting the user data
2510 * @from: pointer to user message iov
2511 * @length: length of the iov message
2512 *
2513 * Description: This procedure append the user data in the fragment part
2514 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2515 */
2516int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2517			int (*getfrag)(void *from, char *to, int offset,
2518					int len, int odd, struct sk_buff *skb),
2519			void *from, int length)
2520{
2521	int frg_cnt = 0;
2522	skb_frag_t *frag = NULL;
2523	struct page *page = NULL;
2524	int copy, left;
2525	int offset = 0;
2526	int ret;
2527
2528	do {
2529		/* Return error if we don't have space for new frag */
2530		frg_cnt = skb_shinfo(skb)->nr_frags;
2531		if (frg_cnt >= MAX_SKB_FRAGS)
2532			return -EFAULT;
2533
2534		/* allocate a new page for next frag */
2535		page = alloc_pages(sk->sk_allocation, 0);
2536
2537		/* If alloc_page fails just return failure and caller will
2538		 * free previous allocated pages by doing kfree_skb()
2539		 */
2540		if (page == NULL)
2541			return -ENOMEM;
2542
2543		/* initialize the next frag */
2544		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2545		skb->truesize += PAGE_SIZE;
2546		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2547
2548		/* get the new initialized frag */
2549		frg_cnt = skb_shinfo(skb)->nr_frags;
2550		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2551
2552		/* copy the user data to page */
2553		left = PAGE_SIZE - frag->page_offset;
2554		copy = (length > left)? left : length;
2555
2556		ret = getfrag(from, (page_address(frag->page) +
2557			    frag->page_offset + frag->size),
2558			    offset, copy, 0, skb);
2559		if (ret < 0)
2560			return -EFAULT;
2561
2562		/* copy was successful so update the size parameters */
2563		frag->size += copy;
2564		skb->len += copy;
2565		skb->data_len += copy;
2566		offset += copy;
2567		length -= copy;
2568
2569	} while (length > 0);
 
 
 
 
 
 
 
2570
2571	return 0;
2572}
2573EXPORT_SYMBOL(skb_append_datato_frags);
2574
2575/**
2576 *	skb_pull_rcsum - pull skb and update receive checksum
2577 *	@skb: buffer to update
2578 *	@len: length of data pulled
2579 *
2580 *	This function performs an skb_pull on the packet and updates
2581 *	the CHECKSUM_COMPLETE checksum.  It should be used on
2582 *	receive path processing instead of skb_pull unless you know
2583 *	that the checksum difference is zero (e.g., a valid IP header)
2584 *	or you are setting ip_summed to CHECKSUM_NONE.
2585 */
2586unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2587{
 
 
2588	BUG_ON(len > skb->len);
2589	skb->len -= len;
2590	BUG_ON(skb->len < skb->data_len);
2591	skb_postpull_rcsum(skb, skb->data, len);
2592	return skb->data += len;
2593}
2594EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2595
 
 
 
 
 
 
 
 
 
 
 
 
 
2596/**
2597 *	skb_segment - Perform protocol segmentation on skb.
2598 *	@skb: buffer to segment
2599 *	@features: features for the output path (see dev->features)
2600 *
2601 *	This function performs segmentation on the given skb.  It returns
2602 *	a pointer to the first in a list of new skbs for the segments.
2603 *	In case of error it returns ERR_PTR(err).
2604 */
2605struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
 
2606{
2607	struct sk_buff *segs = NULL;
2608	struct sk_buff *tail = NULL;
2609	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2610	unsigned int mss = skb_shinfo(skb)->gso_size;
2611	unsigned int doffset = skb->data - skb_mac_header(skb);
 
 
2612	unsigned int offset = doffset;
 
 
2613	unsigned int headroom;
2614	unsigned int len;
2615	int sg = !!(features & NETIF_F_SG);
2616	int nfrags = skb_shinfo(skb)->nr_frags;
 
2617	int err = -ENOMEM;
2618	int i = 0;
2619	int pos;
 
2620
2621	__skb_push(skb, doffset);
2622	headroom = skb_headroom(skb);
2623	pos = skb_headlen(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624
2625	do {
2626		struct sk_buff *nskb;
2627		skb_frag_t *frag;
2628		int hsize;
2629		int size;
2630
2631		len = skb->len - offset;
2632		if (len > mss)
2633			len = mss;
 
 
 
 
2634
2635		hsize = skb_headlen(skb) - offset;
2636		if (hsize < 0)
2637			hsize = 0;
2638		if (hsize > len || !sg)
2639			hsize = len;
2640
2641		if (!hsize && i >= nfrags) {
2642			BUG_ON(fskb->len != len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644			pos += len;
2645			nskb = skb_clone(fskb, GFP_ATOMIC);
2646			fskb = fskb->next;
2647
2648			if (unlikely(!nskb))
2649				goto err;
2650
2651			hsize = skb_end_pointer(nskb) - nskb->head;
 
 
 
 
 
2652			if (skb_cow_head(nskb, doffset + headroom)) {
2653				kfree_skb(nskb);
2654				goto err;
2655			}
2656
2657			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2658					  hsize;
2659			skb_release_head_state(nskb);
2660			__skb_push(nskb, doffset);
2661		} else {
2662			nskb = alloc_skb(hsize + doffset + headroom,
2663					 GFP_ATOMIC);
 
2664
2665			if (unlikely(!nskb))
2666				goto err;
2667
2668			skb_reserve(nskb, headroom);
2669			__skb_put(nskb, doffset);
2670		}
2671
2672		if (segs)
2673			tail->next = nskb;
2674		else
2675			segs = nskb;
2676		tail = nskb;
2677
2678		__copy_skb_header(nskb, skb);
2679		nskb->mac_len = skb->mac_len;
2680
2681		/* nskb and skb might have different headroom */
2682		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2683			nskb->csum_start += skb_headroom(nskb) - headroom;
2684
2685		skb_reset_mac_header(nskb);
2686		skb_set_network_header(nskb, skb->mac_len);
2687		nskb->transport_header = (nskb->network_header +
2688					  skb_network_header_len(skb));
2689		skb_copy_from_linear_data(skb, nskb->data, doffset);
2690
2691		if (fskb != skb_shinfo(skb)->frag_list)
2692			continue;
 
 
 
 
2693
2694		if (!sg) {
2695			nskb->ip_summed = CHECKSUM_NONE;
2696			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2697							    skb_put(nskb, len),
2698							    len, 0);
 
 
 
 
2699			continue;
2700		}
2701
2702		frag = skb_shinfo(nskb)->frags;
2703
2704		skb_copy_from_linear_data_offset(skb, offset,
2705						 skb_put(nskb, hsize), hsize);
2706
2707		while (pos < offset + len && i < nfrags) {
2708			*frag = skb_shinfo(skb)->frags[i];
2709			get_page(frag->page);
2710			size = frag->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711
2712			if (pos < offset) {
2713				frag->page_offset += offset - pos;
2714				frag->size -= offset - pos;
2715			}
2716
2717			skb_shinfo(nskb)->nr_frags++;
2718
2719			if (pos + size <= offset + len) {
2720				i++;
 
2721				pos += size;
2722			} else {
2723				frag->size -= pos + size - (offset + len);
2724				goto skip_fraglist;
2725			}
2726
2727			frag++;
2728		}
2729
2730		if (pos < offset + len) {
2731			struct sk_buff *fskb2 = fskb;
 
 
 
 
 
 
 
 
2732
2733			BUG_ON(pos + fskb->len != offset + len);
 
 
 
 
 
 
 
 
2734
2735			pos += fskb->len;
2736			fskb = fskb->next;
 
 
 
2737
2738			if (fskb2->next) {
2739				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2740				if (!fskb2)
2741					goto err;
2742			} else
2743				skb_get(fskb2);
 
 
2744
2745			SKB_FRAG_ASSERT(nskb);
2746			skb_shinfo(nskb)->frag_list = fskb2;
 
 
 
 
 
 
2747		}
2748
2749skip_fraglist:
2750		nskb->data_len = len - hsize;
2751		nskb->len += nskb->data_len;
2752		nskb->truesize += nskb->data_len;
2753	} while ((offset += len) < skb->len);
2754
 
 
 
 
 
 
 
 
 
2755	return segs;
2756
2757err:
2758	while ((skb = segs)) {
2759		segs = skb->next;
2760		kfree_skb(skb);
2761	}
2762	return ERR_PTR(err);
2763}
2764EXPORT_SYMBOL_GPL(skb_segment);
2765
2766int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2767{
2768	struct sk_buff *p = *head;
2769	struct sk_buff *nskb;
2770	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2771	struct skb_shared_info *pinfo = skb_shinfo(p);
2772	unsigned int headroom;
2773	unsigned int len = skb_gro_len(skb);
2774	unsigned int offset = skb_gro_offset(skb);
2775	unsigned int headlen = skb_headlen(skb);
 
 
 
2776
2777	if (p->len + len >= 65536)
2778		return -E2BIG;
2779
2780	if (pinfo->frag_list)
2781		goto merge;
2782	else if (headlen <= offset) {
 
2783		skb_frag_t *frag;
2784		skb_frag_t *frag2;
2785		int i = skbinfo->nr_frags;
2786		int nr_frags = pinfo->nr_frags + i;
2787
2788		offset -= headlen;
2789
2790		if (nr_frags > MAX_SKB_FRAGS)
2791			return -E2BIG;
2792
 
2793		pinfo->nr_frags = nr_frags;
2794		skbinfo->nr_frags = 0;
2795
2796		frag = pinfo->frags + nr_frags;
2797		frag2 = skbinfo->frags + i;
2798		do {
2799			*--frag = *--frag2;
2800		} while (--i);
2801
2802		frag->page_offset += offset;
2803		frag->size -= offset;
 
 
 
 
2804
2805		skb->truesize -= skb->data_len;
2806		skb->len -= skb->data_len;
2807		skb->data_len = 0;
2808
2809		NAPI_GRO_CB(skb)->free = 1;
2810		goto done;
2811	} else if (skb_gro_len(p) != pinfo->gso_size)
2812		return -E2BIG;
2813
2814	headroom = skb_headroom(p);
2815	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2816	if (unlikely(!nskb))
2817		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
2818
2819	__copy_skb_header(nskb, p);
2820	nskb->mac_len = p->mac_len;
2821
2822	skb_reserve(nskb, headroom);
2823	__skb_put(nskb, skb_gro_offset(p));
2824
2825	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2826	skb_set_network_header(nskb, skb_network_offset(p));
2827	skb_set_transport_header(nskb, skb_transport_offset(p));
2828
2829	__skb_pull(p, skb_gro_offset(p));
2830	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2831	       p->data - skb_mac_header(p));
2832
2833	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2834	skb_shinfo(nskb)->frag_list = p;
2835	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2836	pinfo->gso_size = 0;
2837	skb_header_release(p);
2838	nskb->prev = p;
2839
2840	nskb->data_len += p->len;
2841	nskb->truesize += p->len;
2842	nskb->len += p->len;
2843
2844	*head = nskb;
2845	nskb->next = p->next;
2846	p->next = NULL;
2847
2848	p = nskb;
2849
2850merge:
 
2851	if (offset > headlen) {
2852		unsigned int eat = offset - headlen;
2853
2854		skbinfo->frags[0].page_offset += eat;
2855		skbinfo->frags[0].size -= eat;
2856		skb->data_len -= eat;
2857		skb->len -= eat;
2858		offset = headlen;
2859	}
2860
2861	__skb_pull(skb, offset);
2862
2863	p->prev->next = skb;
2864	p->prev = skb;
2865	skb_header_release(skb);
 
 
 
 
2866
2867done:
2868	NAPI_GRO_CB(p)->count++;
2869	p->data_len += len;
2870	p->truesize += len;
2871	p->len += len;
2872
 
 
 
 
2873	NAPI_GRO_CB(skb)->same_flow = 1;
2874	return 0;
2875}
2876EXPORT_SYMBOL_GPL(skb_gro_receive);
2877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878void __init skb_init(void)
2879{
2880	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2881					      sizeof(struct sk_buff),
2882					      0,
2883					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 
 
2884					      NULL);
2885	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2886						(2*sizeof(struct sk_buff)) +
2887						sizeof(atomic_t),
2888						0,
2889						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2890						NULL);
 
2891}
2892
2893/**
2894 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2895 *	@skb: Socket buffer containing the buffers to be mapped
2896 *	@sg: The scatter-gather list to map into
2897 *	@offset: The offset into the buffer's contents to start mapping
2898 *	@len: Length of buffer space to be mapped
2899 *
2900 *	Fill the specified scatter-gather list with mappings/pointers into a
2901 *	region of the buffer space attached to a socket buffer.
2902 */
2903static int
2904__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 
2905{
2906	int start = skb_headlen(skb);
2907	int i, copy = start - offset;
2908	struct sk_buff *frag_iter;
2909	int elt = 0;
2910
 
 
 
2911	if (copy > 0) {
2912		if (copy > len)
2913			copy = len;
2914		sg_set_buf(sg, skb->data + offset, copy);
2915		elt++;
2916		if ((len -= copy) == 0)
2917			return elt;
2918		offset += copy;
2919	}
2920
2921	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2922		int end;
2923
2924		WARN_ON(start > offset + len);
2925
2926		end = start + skb_shinfo(skb)->frags[i].size;
2927		if ((copy = end - offset) > 0) {
2928			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
 
2929
2930			if (copy > len)
2931				copy = len;
2932			sg_set_page(&sg[elt], frag->page, copy,
2933					frag->page_offset+offset-start);
2934			elt++;
2935			if (!(len -= copy))
2936				return elt;
2937			offset += copy;
2938		}
2939		start = end;
2940	}
2941
2942	skb_walk_frags(skb, frag_iter) {
2943		int end;
2944
2945		WARN_ON(start > offset + len);
2946
2947		end = start + frag_iter->len;
2948		if ((copy = end - offset) > 0) {
 
 
 
2949			if (copy > len)
2950				copy = len;
2951			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2952					      copy);
 
 
 
2953			if ((len -= copy) == 0)
2954				return elt;
2955			offset += copy;
2956		}
2957		start = end;
2958	}
2959	BUG_ON(len);
2960	return elt;
2961}
2962
 
 
 
 
 
 
 
 
 
 
 
 
2963int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2964{
2965	int nsg = __skb_to_sgvec(skb, sg, offset, len);
 
 
 
2966
2967	sg_mark_end(&sg[nsg - 1]);
2968
2969	return nsg;
2970}
2971EXPORT_SYMBOL_GPL(skb_to_sgvec);
2972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973/**
2974 *	skb_cow_data - Check that a socket buffer's data buffers are writable
2975 *	@skb: The socket buffer to check.
2976 *	@tailbits: Amount of trailing space to be added
2977 *	@trailer: Returned pointer to the skb where the @tailbits space begins
2978 *
2979 *	Make sure that the data buffers attached to a socket buffer are
2980 *	writable. If they are not, private copies are made of the data buffers
2981 *	and the socket buffer is set to use these instead.
2982 *
2983 *	If @tailbits is given, make sure that there is space to write @tailbits
2984 *	bytes of data beyond current end of socket buffer.  @trailer will be
2985 *	set to point to the skb in which this space begins.
2986 *
2987 *	The number of scatterlist elements required to completely map the
2988 *	COW'd and extended socket buffer will be returned.
2989 */
2990int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2991{
2992	int copyflag;
2993	int elt;
2994	struct sk_buff *skb1, **skb_p;
2995
2996	/* If skb is cloned or its head is paged, reallocate
2997	 * head pulling out all the pages (pages are considered not writable
2998	 * at the moment even if they are anonymous).
2999	 */
3000	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3001	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3002		return -ENOMEM;
3003
3004	/* Easy case. Most of packets will go this way. */
3005	if (!skb_has_frag_list(skb)) {
3006		/* A little of trouble, not enough of space for trailer.
3007		 * This should not happen, when stack is tuned to generate
3008		 * good frames. OK, on miss we reallocate and reserve even more
3009		 * space, 128 bytes is fair. */
3010
3011		if (skb_tailroom(skb) < tailbits &&
3012		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3013			return -ENOMEM;
3014
3015		/* Voila! */
3016		*trailer = skb;
3017		return 1;
3018	}
3019
3020	/* Misery. We are in troubles, going to mincer fragments... */
3021
3022	elt = 1;
3023	skb_p = &skb_shinfo(skb)->frag_list;
3024	copyflag = 0;
3025
3026	while ((skb1 = *skb_p) != NULL) {
3027		int ntail = 0;
3028
3029		/* The fragment is partially pulled by someone,
3030		 * this can happen on input. Copy it and everything
3031		 * after it. */
3032
3033		if (skb_shared(skb1))
3034			copyflag = 1;
3035
3036		/* If the skb is the last, worry about trailer. */
3037
3038		if (skb1->next == NULL && tailbits) {
3039			if (skb_shinfo(skb1)->nr_frags ||
3040			    skb_has_frag_list(skb1) ||
3041			    skb_tailroom(skb1) < tailbits)
3042				ntail = tailbits + 128;
3043		}
3044
3045		if (copyflag ||
3046		    skb_cloned(skb1) ||
3047		    ntail ||
3048		    skb_shinfo(skb1)->nr_frags ||
3049		    skb_has_frag_list(skb1)) {
3050			struct sk_buff *skb2;
3051
3052			/* Fuck, we are miserable poor guys... */
3053			if (ntail == 0)
3054				skb2 = skb_copy(skb1, GFP_ATOMIC);
3055			else
3056				skb2 = skb_copy_expand(skb1,
3057						       skb_headroom(skb1),
3058						       ntail,
3059						       GFP_ATOMIC);
3060			if (unlikely(skb2 == NULL))
3061				return -ENOMEM;
3062
3063			if (skb1->sk)
3064				skb_set_owner_w(skb2, skb1->sk);
3065
3066			/* Looking around. Are we still alive?
3067			 * OK, link new skb, drop old one */
3068
3069			skb2->next = skb1->next;
3070			*skb_p = skb2;
3071			kfree_skb(skb1);
3072			skb1 = skb2;
3073		}
3074		elt++;
3075		*trailer = skb1;
3076		skb_p = &skb1->next;
3077	}
3078
3079	return elt;
3080}
3081EXPORT_SYMBOL_GPL(skb_cow_data);
3082
3083static void sock_rmem_free(struct sk_buff *skb)
3084{
3085	struct sock *sk = skb->sk;
3086
3087	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3088}
3089
 
 
 
 
 
 
 
 
 
3090/*
3091 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3092 */
3093int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3094{
3095	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3096	    (unsigned)sk->sk_rcvbuf)
3097		return -ENOMEM;
3098
3099	skb_orphan(skb);
3100	skb->sk = sk;
3101	skb->destructor = sock_rmem_free;
3102	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
 
3103
3104	/* before exiting rcu section, make sure dst is refcounted */
3105	skb_dst_force(skb);
3106
3107	skb_queue_tail(&sk->sk_error_queue, skb);
3108	if (!sock_flag(sk, SOCK_DEAD))
3109		sk->sk_data_ready(sk, skb->len);
3110	return 0;
3111}
3112EXPORT_SYMBOL(sock_queue_err_skb);
3113
3114void skb_tstamp_tx(struct sk_buff *orig_skb,
3115		struct skb_shared_hwtstamps *hwtstamps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116{
3117	struct sock *sk = orig_skb->sk;
3118	struct sock_exterr_skb *serr;
3119	struct sk_buff *skb;
3120	int err;
3121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122	if (!sk)
3123		return;
3124
3125	skb = skb_clone(orig_skb, GFP_ATOMIC);
3126	if (!skb)
3127		return;
3128
3129	if (hwtstamps) {
3130		*skb_hwtstamps(skb) =
3131			*hwtstamps;
 
 
 
 
 
 
 
 
 
 
 
3132	} else {
3133		/*
3134		 * no hardware time stamps available,
3135		 * so keep the shared tx_flags and only
3136		 * store software time stamp
3137		 */
3138		skb->tstamp = ktime_get_real();
 
 
 
3139	}
3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141	serr = SKB_EXT_ERR(skb);
3142	memset(serr, 0, sizeof(*serr));
3143	serr->ee.ee_errno = ENOMSG;
3144	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3145
3146	err = sock_queue_err_skb(sk, skb);
3147
 
 
 
 
 
 
 
3148	if (err)
3149		kfree_skb(skb);
3150}
3151EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3152
3153
3154/**
3155 * skb_partial_csum_set - set up and verify partial csum values for packet
3156 * @skb: the skb to set
3157 * @start: the number of bytes after skb->data to start checksumming.
3158 * @off: the offset from start to place the checksum.
3159 *
3160 * For untrusted partially-checksummed packets, we need to make sure the values
3161 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3162 *
3163 * This function checks and sets those values and skb->ip_summed: if this
3164 * returns false you should drop the packet.
3165 */
3166bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3167{
3168	if (unlikely(start > skb_headlen(skb)) ||
3169	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3170		if (net_ratelimit())
3171			printk(KERN_WARNING
3172			       "bad partial csum: csum=%u/%u len=%u\n",
3173			       start, off, skb_headlen(skb));
3174		return false;
3175	}
3176	skb->ip_summed = CHECKSUM_PARTIAL;
3177	skb->csum_start = skb_headroom(skb) + start;
3178	skb->csum_offset = off;
 
3179	return true;
3180}
3181EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3183void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3184{
3185	if (net_ratelimit())
3186		pr_warning("%s: received packets cannot be forwarded"
3187			   " while LRO is enabled\n", skb->dev->name);
3188}
3189EXPORT_SYMBOL(__skb_warn_lro_forwarding);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *	Fixes:
   9 *		Alan Cox	:	Fixed the worst of the load
  10 *					balancer bugs.
  11 *		Dave Platt	:	Interrupt stacking fix.
  12 *	Richard Kooijman	:	Timestamp fixes.
  13 *		Alan Cox	:	Changed buffer format.
  14 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  15 *		Linus Torvalds	:	Better skb_clone.
  16 *		Alan Cox	:	Added skb_copy.
  17 *		Alan Cox	:	Added all the changed routines Linus
  18 *					only put in the headers
  19 *		Ray VanTassle	:	Fixed --skb->lock in free
  20 *		Alan Cox	:	skb_copy copy arp field
  21 *		Andi Kleen	:	slabified it.
  22 *		Robert Olsson	:	Removed skb_head_pool
  23 *
  24 *	NOTE:
  25 *		The __skb_ routines should be called with interrupts
  26 *	disabled, or you better be *real* sure that the operation is atomic
  27 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *	or via disabling bottom half handlers, etc).
 
 
 
 
 
  29 */
  30
  31/*
  32 *	The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
 
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/ip6_checksum.h>
  69#include <net/xfrm.h>
  70#include <net/mpls.h>
  71
  72#include <linux/uaccess.h>
 
  73#include <trace/events/skb.h>
  74#include <linux/highmem.h>
  75#include <linux/capability.h>
  76#include <linux/user_namespace.h>
  77#include <linux/indirect_call_wrapper.h>
  78
  79#include "datagram.h"
  80
  81struct kmem_cache *skbuff_head_cache __ro_after_init;
  82static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  83#ifdef CONFIG_SKB_EXTENSIONS
  84static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  85#endif
  86int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  87EXPORT_SYMBOL(sysctl_max_skb_frags);
  88
  89/**
  90 *	skb_panic - private function for out-of-line support
  91 *	@skb:	buffer
  92 *	@sz:	size
  93 *	@addr:	address
  94 *	@msg:	skb_over_panic or skb_under_panic
  95 *
  96 *	Out-of-line support for skb_put() and skb_push().
  97 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  98 *	Keep out of line to prevent kernel bloat.
  99 *	__builtin_return_address is not used because it is not always reliable.
 100 */
 101static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 102		      const char msg[])
 103{
 104	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 105		 msg, addr, skb->len, sz, skb->head, skb->data,
 106		 (unsigned long)skb->tail, (unsigned long)skb->end,
 107		 skb->dev ? skb->dev->name : "<NULL>");
 108	BUG();
 109}
 110
 111static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 
 112{
 113	skb_panic(skb, sz, addr, __func__);
 114}
 115
 116static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 
 117{
 118	skb_panic(skb, sz, addr, __func__);
 119}
 120
 
 
 
 
 
 
 
 
 
 
 
 
 121/*
 122 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 123 * the caller if emergency pfmemalloc reserves are being used. If it is and
 124 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 125 * may be used. Otherwise, the packet data may be discarded until enough
 126 * memory is free
 127 */
 128#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 129	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 130
 131static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 132			       unsigned long ip, bool *pfmemalloc)
 
 
 
 
 
 
 
 133{
 134	void *obj;
 135	bool ret_pfmemalloc = false;
 
 
 
 
 
 136
 137	/*
 138	 * Try a regular allocation, when that fails and we're not entitled
 139	 * to the reserves, fail.
 140	 */
 141	obj = kmalloc_node_track_caller(size,
 142					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 143					node);
 144	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 145		goto out;
 146
 147	/* Try again but now we are using pfmemalloc reserves */
 148	ret_pfmemalloc = true;
 149	obj = kmalloc_node_track_caller(size, flags, node);
 150
 151out:
 152	if (pfmemalloc)
 153		*pfmemalloc = ret_pfmemalloc;
 154
 155	return obj;
 156}
 157
 158/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 159 *	'private' fields and also do memory statistics to find all the
 160 *	[BEEP] leaks.
 161 *
 162 */
 163
 164/**
 165 *	__alloc_skb	-	allocate a network buffer
 166 *	@size: size to allocate
 167 *	@gfp_mask: allocation mask
 168 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 169 *		instead of head cache and allocate a cloned (child) skb.
 170 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 171 *		allocations in case the data is required for writeback
 172 *	@node: numa node to allocate memory on
 173 *
 174 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 175 *	tail room of at least size bytes. The object has a reference count
 176 *	of one. The return is the buffer. On a failure the return is %NULL.
 177 *
 178 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 179 *	%GFP_ATOMIC.
 180 */
 181struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 182			    int flags, int node)
 183{
 184	struct kmem_cache *cache;
 185	struct skb_shared_info *shinfo;
 186	struct sk_buff *skb;
 187	u8 *data;
 188	bool pfmemalloc;
 189
 190	cache = (flags & SKB_ALLOC_FCLONE)
 191		? skbuff_fclone_cache : skbuff_head_cache;
 192
 193	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 194		gfp_mask |= __GFP_MEMALLOC;
 195
 196	/* Get the HEAD */
 197	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 198	if (!skb)
 199		goto out;
 200	prefetchw(skb);
 201
 202	/* We do our best to align skb_shared_info on a separate cache
 203	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 204	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 205	 * Both skb->head and skb_shared_info are cache line aligned.
 206	 */
 207	size = SKB_DATA_ALIGN(size);
 208	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 209	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 210	if (!data)
 211		goto nodata;
 212	/* kmalloc(size) might give us more room than requested.
 213	 * Put skb_shared_info exactly at the end of allocated zone,
 214	 * to allow max possible filling before reallocation.
 215	 */
 216	size = SKB_WITH_OVERHEAD(ksize(data));
 217	prefetchw(data + size);
 218
 219	/*
 220	 * Only clear those fields we need to clear, not those that we will
 221	 * actually initialise below. Hence, don't put any more fields after
 222	 * the tail pointer in struct sk_buff!
 223	 */
 224	memset(skb, 0, offsetof(struct sk_buff, tail));
 225	/* Account for allocated memory : skb + skb->head */
 226	skb->truesize = SKB_TRUESIZE(size);
 227	skb->pfmemalloc = pfmemalloc;
 228	refcount_set(&skb->users, 1);
 229	skb->head = data;
 230	skb->data = data;
 231	skb_reset_tail_pointer(skb);
 232	skb->end = skb->tail + size;
 233	skb->mac_header = (typeof(skb->mac_header))~0U;
 234	skb->transport_header = (typeof(skb->transport_header))~0U;
 
 235
 236	/* make sure we initialize shinfo sequentially */
 237	shinfo = skb_shinfo(skb);
 238	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 239	atomic_set(&shinfo->dataref, 1);
 
 240
 241	if (flags & SKB_ALLOC_FCLONE) {
 242		struct sk_buff_fclones *fclones;
 243
 244		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 245
 
 
 246		skb->fclone = SKB_FCLONE_ORIG;
 247		refcount_set(&fclones->fclone_ref, 1);
 248
 249		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 250	}
 251out:
 252	return skb;
 253nodata:
 254	kmem_cache_free(cache, skb);
 255	skb = NULL;
 256	goto out;
 257}
 258EXPORT_SYMBOL(__alloc_skb);
 259
 260/* Caller must provide SKB that is memset cleared */
 261static struct sk_buff *__build_skb_around(struct sk_buff *skb,
 262					  void *data, unsigned int frag_size)
 263{
 264	struct skb_shared_info *shinfo;
 265	unsigned int size = frag_size ? : ksize(data);
 266
 267	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 268
 269	/* Assumes caller memset cleared SKB */
 270	skb->truesize = SKB_TRUESIZE(size);
 271	refcount_set(&skb->users, 1);
 272	skb->head = data;
 273	skb->data = data;
 274	skb_reset_tail_pointer(skb);
 275	skb->end = skb->tail + size;
 276	skb->mac_header = (typeof(skb->mac_header))~0U;
 277	skb->transport_header = (typeof(skb->transport_header))~0U;
 278
 279	/* make sure we initialize shinfo sequentially */
 280	shinfo = skb_shinfo(skb);
 281	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 282	atomic_set(&shinfo->dataref, 1);
 283
 284	return skb;
 285}
 286
 287/**
 288 * __build_skb - build a network buffer
 289 * @data: data buffer provided by caller
 290 * @frag_size: size of data, or 0 if head was kmalloced
 291 *
 292 * Allocate a new &sk_buff. Caller provides space holding head and
 293 * skb_shared_info. @data must have been allocated by kmalloc() only if
 294 * @frag_size is 0, otherwise data should come from the page allocator
 295 *  or vmalloc()
 296 * The return is the new skb buffer.
 297 * On a failure the return is %NULL, and @data is not freed.
 298 * Notes :
 299 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 300 *  Driver should add room at head (NET_SKB_PAD) and
 301 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 302 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 303 *  before giving packet to stack.
 304 *  RX rings only contains data buffers, not full skbs.
 305 */
 306struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 307{
 308	struct sk_buff *skb;
 309
 310	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 311	if (unlikely(!skb))
 312		return NULL;
 313
 314	memset(skb, 0, offsetof(struct sk_buff, tail));
 315
 316	return __build_skb_around(skb, data, frag_size);
 317}
 318
 319/* build_skb() is wrapper over __build_skb(), that specifically
 320 * takes care of skb->head and skb->pfmemalloc
 321 * This means that if @frag_size is not zero, then @data must be backed
 322 * by a page fragment, not kmalloc() or vmalloc()
 323 */
 324struct sk_buff *build_skb(void *data, unsigned int frag_size)
 325{
 326	struct sk_buff *skb = __build_skb(data, frag_size);
 327
 328	if (skb && frag_size) {
 329		skb->head_frag = 1;
 330		if (page_is_pfmemalloc(virt_to_head_page(data)))
 331			skb->pfmemalloc = 1;
 332	}
 333	return skb;
 334}
 335EXPORT_SYMBOL(build_skb);
 336
 337/**
 338 * build_skb_around - build a network buffer around provided skb
 339 * @skb: sk_buff provide by caller, must be memset cleared
 340 * @data: data buffer provided by caller
 341 * @frag_size: size of data, or 0 if head was kmalloced
 342 */
 343struct sk_buff *build_skb_around(struct sk_buff *skb,
 344				 void *data, unsigned int frag_size)
 345{
 346	if (unlikely(!skb))
 347		return NULL;
 348
 349	skb = __build_skb_around(skb, data, frag_size);
 350
 351	if (skb && frag_size) {
 352		skb->head_frag = 1;
 353		if (page_is_pfmemalloc(virt_to_head_page(data)))
 354			skb->pfmemalloc = 1;
 355	}
 356	return skb;
 357}
 358EXPORT_SYMBOL(build_skb_around);
 359
 360#define NAPI_SKB_CACHE_SIZE	64
 361
 362struct napi_alloc_cache {
 363	struct page_frag_cache page;
 364	unsigned int skb_count;
 365	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 366};
 367
 368static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 369static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 370
 371static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 372{
 373	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 374
 375	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 376}
 377
 378void *napi_alloc_frag(unsigned int fragsz)
 379{
 380	fragsz = SKB_DATA_ALIGN(fragsz);
 381
 382	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 383}
 384EXPORT_SYMBOL(napi_alloc_frag);
 385
 386/**
 387 * netdev_alloc_frag - allocate a page fragment
 388 * @fragsz: fragment size
 389 *
 390 * Allocates a frag from a page for receive buffer.
 391 * Uses GFP_ATOMIC allocations.
 392 */
 393void *netdev_alloc_frag(unsigned int fragsz)
 394{
 395	struct page_frag_cache *nc;
 396	void *data;
 397
 398	fragsz = SKB_DATA_ALIGN(fragsz);
 399	if (in_irq() || irqs_disabled()) {
 400		nc = this_cpu_ptr(&netdev_alloc_cache);
 401		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
 402	} else {
 403		local_bh_disable();
 404		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
 405		local_bh_enable();
 406	}
 407	return data;
 408}
 409EXPORT_SYMBOL(netdev_alloc_frag);
 410
 411/**
 412 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 413 *	@dev: network device to receive on
 414 *	@len: length to allocate
 415 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 416 *
 417 *	Allocate a new &sk_buff and assign it a usage count of one. The
 418 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 419 *	the headroom they think they need without accounting for the
 420 *	built in space. The built in space is used for optimisations.
 421 *
 422 *	%NULL is returned if there is no free memory.
 423 */
 424struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 425				   gfp_t gfp_mask)
 426{
 427	struct page_frag_cache *nc;
 428	struct sk_buff *skb;
 429	bool pfmemalloc;
 430	void *data;
 431
 432	len += NET_SKB_PAD;
 433
 434	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 435	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 436		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 437		if (!skb)
 438			goto skb_fail;
 439		goto skb_success;
 440	}
 441
 442	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 443	len = SKB_DATA_ALIGN(len);
 444
 445	if (sk_memalloc_socks())
 446		gfp_mask |= __GFP_MEMALLOC;
 447
 448	if (in_irq() || irqs_disabled()) {
 449		nc = this_cpu_ptr(&netdev_alloc_cache);
 450		data = page_frag_alloc(nc, len, gfp_mask);
 451		pfmemalloc = nc->pfmemalloc;
 452	} else {
 453		local_bh_disable();
 454		nc = this_cpu_ptr(&napi_alloc_cache.page);
 455		data = page_frag_alloc(nc, len, gfp_mask);
 456		pfmemalloc = nc->pfmemalloc;
 457		local_bh_enable();
 458	}
 459
 460	if (unlikely(!data))
 461		return NULL;
 462
 463	skb = __build_skb(data, len);
 464	if (unlikely(!skb)) {
 465		skb_free_frag(data);
 466		return NULL;
 467	}
 468
 469	/* use OR instead of assignment to avoid clearing of bits in mask */
 470	if (pfmemalloc)
 471		skb->pfmemalloc = 1;
 472	skb->head_frag = 1;
 473
 474skb_success:
 475	skb_reserve(skb, NET_SKB_PAD);
 476	skb->dev = dev;
 477
 478skb_fail:
 479	return skb;
 480}
 481EXPORT_SYMBOL(__netdev_alloc_skb);
 482
 483/**
 484 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 485 *	@napi: napi instance this buffer was allocated for
 486 *	@len: length to allocate
 487 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 488 *
 489 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 490 *	attempt to allocate the head from a special reserved region used
 491 *	only for NAPI Rx allocation.  By doing this we can save several
 492 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 493 *
 494 *	%NULL is returned if there is no free memory.
 495 */
 496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 497				 gfp_t gfp_mask)
 498{
 499	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 500	struct sk_buff *skb;
 501	void *data;
 502
 503	len += NET_SKB_PAD + NET_IP_ALIGN;
 504
 505	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 506	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 507		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 508		if (!skb)
 509			goto skb_fail;
 510		goto skb_success;
 511	}
 512
 513	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 514	len = SKB_DATA_ALIGN(len);
 515
 516	if (sk_memalloc_socks())
 517		gfp_mask |= __GFP_MEMALLOC;
 518
 519	data = page_frag_alloc(&nc->page, len, gfp_mask);
 520	if (unlikely(!data))
 521		return NULL;
 522
 523	skb = __build_skb(data, len);
 524	if (unlikely(!skb)) {
 525		skb_free_frag(data);
 526		return NULL;
 527	}
 528
 529	/* use OR instead of assignment to avoid clearing of bits in mask */
 530	if (nc->page.pfmemalloc)
 531		skb->pfmemalloc = 1;
 532	skb->head_frag = 1;
 533
 534skb_success:
 535	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 536	skb->dev = napi->dev;
 537
 538skb_fail:
 539	return skb;
 540}
 541EXPORT_SYMBOL(__napi_alloc_skb);
 542
 543void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 544		     int size, unsigned int truesize)
 545{
 546	skb_fill_page_desc(skb, i, page, off, size);
 547	skb->len += size;
 548	skb->data_len += size;
 549	skb->truesize += truesize;
 550}
 551EXPORT_SYMBOL(skb_add_rx_frag);
 552
 553void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 554			  unsigned int truesize)
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 557
 558	skb_frag_size_add(frag, size);
 559	skb->len += size;
 560	skb->data_len += size;
 561	skb->truesize += truesize;
 562}
 563EXPORT_SYMBOL(skb_coalesce_rx_frag);
 564
 565static void skb_drop_list(struct sk_buff **listp)
 566{
 567	kfree_skb_list(*listp);
 
 568	*listp = NULL;
 
 
 
 
 
 
 569}
 570
 571static inline void skb_drop_fraglist(struct sk_buff *skb)
 572{
 573	skb_drop_list(&skb_shinfo(skb)->frag_list);
 574}
 575
 576static void skb_clone_fraglist(struct sk_buff *skb)
 577{
 578	struct sk_buff *list;
 579
 580	skb_walk_frags(skb, list)
 581		skb_get(list);
 582}
 583
 584static void skb_free_head(struct sk_buff *skb)
 585{
 586	unsigned char *head = skb->head;
 587
 588	if (skb->head_frag)
 589		skb_free_frag(head);
 590	else
 591		kfree(head);
 592}
 593
 594static void skb_release_data(struct sk_buff *skb)
 595{
 596	struct skb_shared_info *shinfo = skb_shinfo(skb);
 597	int i;
 
 
 
 
 
 
 598
 599	if (skb->cloned &&
 600	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 601			      &shinfo->dataref))
 602		return;
 
 
 603
 604	for (i = 0; i < shinfo->nr_frags; i++)
 605		__skb_frag_unref(&shinfo->frags[i]);
 
 
 606
 607	if (shinfo->frag_list)
 608		kfree_skb_list(shinfo->frag_list);
 609
 610	skb_zcopy_clear(skb, true);
 611	skb_free_head(skb);
 612}
 613
 614/*
 615 *	Free an skbuff by memory without cleaning the state.
 616 */
 617static void kfree_skbmem(struct sk_buff *skb)
 618{
 619	struct sk_buff_fclones *fclones;
 
 620
 621	switch (skb->fclone) {
 622	case SKB_FCLONE_UNAVAILABLE:
 623		kmem_cache_free(skbuff_head_cache, skb);
 624		return;
 625
 626	case SKB_FCLONE_ORIG:
 627		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 
 
 
 628
 629		/* We usually free the clone (TX completion) before original skb
 630		 * This test would have no chance to be true for the clone,
 631		 * while here, branch prediction will be good.
 
 
 
 632		 */
 633		if (refcount_read(&fclones->fclone_ref) == 1)
 634			goto fastpath;
 635		break;
 636
 637	default: /* SKB_FCLONE_CLONE */
 638		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 639		break;
 640	}
 641	if (!refcount_dec_and_test(&fclones->fclone_ref))
 642		return;
 643fastpath:
 644	kmem_cache_free(skbuff_fclone_cache, fclones);
 645}
 646
 647void skb_release_head_state(struct sk_buff *skb)
 648{
 649	skb_dst_drop(skb);
 
 
 
 650	if (skb->destructor) {
 651		WARN_ON(in_irq());
 652		skb->destructor(skb);
 653	}
 654#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 655	nf_conntrack_put(skb_nfct(skb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 656#endif
 657	skb_ext_put(skb);
 658}
 659
 660/* Free everything but the sk_buff shell. */
 661static void skb_release_all(struct sk_buff *skb)
 662{
 663	skb_release_head_state(skb);
 664	if (likely(skb->head))
 665		skb_release_data(skb);
 666}
 667
 668/**
 669 *	__kfree_skb - private function
 670 *	@skb: buffer
 671 *
 672 *	Free an sk_buff. Release anything attached to the buffer.
 673 *	Clean the state. This is an internal helper function. Users should
 674 *	always call kfree_skb
 675 */
 676
 677void __kfree_skb(struct sk_buff *skb)
 678{
 679	skb_release_all(skb);
 680	kfree_skbmem(skb);
 681}
 682EXPORT_SYMBOL(__kfree_skb);
 683
 684/**
 685 *	kfree_skb - free an sk_buff
 686 *	@skb: buffer to free
 687 *
 688 *	Drop a reference to the buffer and free it if the usage count has
 689 *	hit zero.
 690 */
 691void kfree_skb(struct sk_buff *skb)
 692{
 693	if (!skb_unref(skb))
 
 
 
 
 694		return;
 695
 696	trace_kfree_skb(skb, __builtin_return_address(0));
 697	__kfree_skb(skb);
 698}
 699EXPORT_SYMBOL(kfree_skb);
 700
 701void kfree_skb_list(struct sk_buff *segs)
 702{
 703	while (segs) {
 704		struct sk_buff *next = segs->next;
 705
 706		kfree_skb(segs);
 707		segs = next;
 708	}
 709}
 710EXPORT_SYMBOL(kfree_skb_list);
 711
 712/* Dump skb information and contents.
 713 *
 714 * Must only be called from net_ratelimit()-ed paths.
 715 *
 716 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
 717 */
 718void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 719{
 720	static atomic_t can_dump_full = ATOMIC_INIT(5);
 721	struct skb_shared_info *sh = skb_shinfo(skb);
 722	struct net_device *dev = skb->dev;
 723	struct sock *sk = skb->sk;
 724	struct sk_buff *list_skb;
 725	bool has_mac, has_trans;
 726	int headroom, tailroom;
 727	int i, len, seg_len;
 728
 729	if (full_pkt)
 730		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
 731
 732	if (full_pkt)
 733		len = skb->len;
 734	else
 735		len = min_t(int, skb->len, MAX_HEADER + 128);
 736
 737	headroom = skb_headroom(skb);
 738	tailroom = skb_tailroom(skb);
 739
 740	has_mac = skb_mac_header_was_set(skb);
 741	has_trans = skb_transport_header_was_set(skb);
 742
 743	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 744	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 745	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 746	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 747	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 748	       level, skb->len, headroom, skb_headlen(skb), tailroom,
 749	       has_mac ? skb->mac_header : -1,
 750	       has_mac ? skb_mac_header_len(skb) : -1,
 751	       skb->network_header,
 752	       has_trans ? skb_network_header_len(skb) : -1,
 753	       has_trans ? skb->transport_header : -1,
 754	       sh->tx_flags, sh->nr_frags,
 755	       sh->gso_size, sh->gso_type, sh->gso_segs,
 756	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
 757	       skb->csum_valid, skb->csum_level,
 758	       skb->hash, skb->sw_hash, skb->l4_hash,
 759	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 760
 761	if (dev)
 762		printk("%sdev name=%s feat=0x%pNF\n",
 763		       level, dev->name, &dev->features);
 764	if (sk)
 765		printk("%ssk family=%hu type=%u proto=%u\n",
 766		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 767
 768	if (full_pkt && headroom)
 769		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 770			       16, 1, skb->head, headroom, false);
 771
 772	seg_len = min_t(int, skb_headlen(skb), len);
 773	if (seg_len)
 774		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 775			       16, 1, skb->data, seg_len, false);
 776	len -= seg_len;
 777
 778	if (full_pkt && tailroom)
 779		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 780			       16, 1, skb_tail_pointer(skb), tailroom, false);
 781
 782	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 783		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 784		u32 p_off, p_len, copied;
 785		struct page *p;
 786		u8 *vaddr;
 787
 788		skb_frag_foreach_page(frag, skb_frag_off(frag),
 789				      skb_frag_size(frag), p, p_off, p_len,
 790				      copied) {
 791			seg_len = min_t(int, p_len, len);
 792			vaddr = kmap_atomic(p);
 793			print_hex_dump(level, "skb frag:     ",
 794				       DUMP_PREFIX_OFFSET,
 795				       16, 1, vaddr + p_off, seg_len, false);
 796			kunmap_atomic(vaddr);
 797			len -= seg_len;
 798			if (!len)
 799				break;
 800		}
 801	}
 802
 803	if (full_pkt && skb_has_frag_list(skb)) {
 804		printk("skb fraglist:\n");
 805		skb_walk_frags(skb, list_skb)
 806			skb_dump(level, list_skb, true);
 807	}
 808}
 809EXPORT_SYMBOL(skb_dump);
 810
 811/**
 812 *	skb_tx_error - report an sk_buff xmit error
 813 *	@skb: buffer that triggered an error
 814 *
 815 *	Report xmit error if a device callback is tracking this skb.
 816 *	skb must be freed afterwards.
 817 */
 818void skb_tx_error(struct sk_buff *skb)
 819{
 820	skb_zcopy_clear(skb, true);
 821}
 822EXPORT_SYMBOL(skb_tx_error);
 823
 824/**
 825 *	consume_skb - free an skbuff
 826 *	@skb: buffer to free
 827 *
 828 *	Drop a ref to the buffer and free it if the usage count has hit zero
 829 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 830 *	is being dropped after a failure and notes that
 831 */
 832void consume_skb(struct sk_buff *skb)
 833{
 834	if (!skb_unref(skb))
 
 
 
 
 835		return;
 836
 837	trace_consume_skb(skb);
 838	__kfree_skb(skb);
 839}
 840EXPORT_SYMBOL(consume_skb);
 841
 842/**
 843 *	consume_stateless_skb - free an skbuff, assuming it is stateless
 844 *	@skb: buffer to free
 
 845 *
 846 *	Alike consume_skb(), but this variant assumes that this is the last
 847 *	skb reference and all the head states have been already dropped
 
 
 
 
 848 */
 849void __consume_stateless_skb(struct sk_buff *skb)
 850{
 851	trace_consume_skb(skb);
 852	skb_release_data(skb);
 853	kfree_skbmem(skb);
 854}
 855
 856void __kfree_skb_flush(void)
 857{
 858	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 859
 860	/* flush skb_cache if containing objects */
 861	if (nc->skb_count) {
 862		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 863				     nc->skb_cache);
 864		nc->skb_count = 0;
 865	}
 866}
 867
 868static inline void _kfree_skb_defer(struct sk_buff *skb)
 869{
 870	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 871
 872	/* drop skb->head and call any destructors for packet */
 873	skb_release_all(skb);
 
 874
 875	/* record skb to CPU local list */
 876	nc->skb_cache[nc->skb_count++] = skb;
 877
 878#ifdef CONFIG_SLUB
 879	/* SLUB writes into objects when freeing */
 880	prefetchw(skb);
 881#endif
 882
 883	/* flush skb_cache if it is filled */
 884	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 885		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 886				     nc->skb_cache);
 887		nc->skb_count = 0;
 888	}
 889}
 890void __kfree_skb_defer(struct sk_buff *skb)
 891{
 892	_kfree_skb_defer(skb);
 893}
 894
 895void napi_consume_skb(struct sk_buff *skb, int budget)
 896{
 897	if (unlikely(!skb))
 898		return;
 899
 900	/* Zero budget indicate non-NAPI context called us, like netpoll */
 901	if (unlikely(!budget)) {
 902		dev_consume_skb_any(skb);
 903		return;
 904	}
 905
 906	if (!skb_unref(skb))
 907		return;
 908
 909	/* if reaching here SKB is ready to free */
 910	trace_consume_skb(skb);
 911
 912	/* if SKB is a clone, don't handle this case */
 913	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 914		__kfree_skb(skb);
 915		return;
 916	}
 917
 918	_kfree_skb_defer(skb);
 919}
 920EXPORT_SYMBOL(napi_consume_skb);
 921
 922/* Make sure a field is enclosed inside headers_start/headers_end section */
 923#define CHECK_SKB_FIELD(field) \
 924	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 925		     offsetof(struct sk_buff, headers_start));	\
 926	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 927		     offsetof(struct sk_buff, headers_end));	\
 928
 929static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 930{
 931	new->tstamp		= old->tstamp;
 932	/* We do not copy old->sk */
 933	new->dev		= old->dev;
 934	memcpy(new->cb, old->cb, sizeof(old->cb));
 
 
 935	skb_dst_copy(new, old);
 936	__skb_ext_copy(new, old);
 937	__nf_copy(new, old, false);
 938
 939	/* Note : this field could be in headers_start/headers_end section
 940	 * It is not yet because we do not want to have a 16 bit hole
 941	 */
 942	new->queue_mapping = old->queue_mapping;
 943
 944	memcpy(&new->headers_start, &old->headers_start,
 945	       offsetof(struct sk_buff, headers_end) -
 946	       offsetof(struct sk_buff, headers_start));
 947	CHECK_SKB_FIELD(protocol);
 948	CHECK_SKB_FIELD(csum);
 949	CHECK_SKB_FIELD(hash);
 950	CHECK_SKB_FIELD(priority);
 951	CHECK_SKB_FIELD(skb_iif);
 952	CHECK_SKB_FIELD(vlan_proto);
 953	CHECK_SKB_FIELD(vlan_tci);
 954	CHECK_SKB_FIELD(transport_header);
 955	CHECK_SKB_FIELD(network_header);
 956	CHECK_SKB_FIELD(mac_header);
 957	CHECK_SKB_FIELD(inner_protocol);
 958	CHECK_SKB_FIELD(inner_transport_header);
 959	CHECK_SKB_FIELD(inner_network_header);
 960	CHECK_SKB_FIELD(inner_mac_header);
 961	CHECK_SKB_FIELD(mark);
 962#ifdef CONFIG_NETWORK_SECMARK
 963	CHECK_SKB_FIELD(secmark);
 964#endif
 965#ifdef CONFIG_NET_RX_BUSY_POLL
 966	CHECK_SKB_FIELD(napi_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967#endif
 968#ifdef CONFIG_XPS
 969	CHECK_SKB_FIELD(sender_cpu);
 
 
 970#endif
 971#ifdef CONFIG_NET_SCHED
 972	CHECK_SKB_FIELD(tc_index);
 973#endif
 
 974
 
 975}
 976
 977/*
 978 * You should not add any new code to this function.  Add it to
 979 * __copy_skb_header above instead.
 980 */
 981static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 982{
 983#define C(x) n->x = skb->x
 984
 985	n->next = n->prev = NULL;
 986	n->sk = NULL;
 987	__copy_skb_header(n, skb);
 988
 989	C(len);
 990	C(data_len);
 991	C(mac_len);
 992	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 993	n->cloned = 1;
 994	n->nohdr = 0;
 995	n->peeked = 0;
 996	C(pfmemalloc);
 997	n->destructor = NULL;
 998	C(tail);
 999	C(end);
1000	C(head);
1001	C(head_frag);
1002	C(data);
1003	C(truesize);
1004	refcount_set(&n->users, 1);
1005
1006	atomic_inc(&(skb_shinfo(skb)->dataref));
1007	skb->cloned = 1;
1008
1009	return n;
1010#undef C
1011}
1012
1013/**
1014 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015 * @first: first sk_buff of the msg
1016 */
1017struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018{
1019	struct sk_buff *n;
1020
1021	n = alloc_skb(0, GFP_ATOMIC);
1022	if (!n)
1023		return NULL;
1024
1025	n->len = first->len;
1026	n->data_len = first->len;
1027	n->truesize = first->truesize;
1028
1029	skb_shinfo(n)->frag_list = first;
1030
1031	__copy_skb_header(n, first);
1032	n->destructor = NULL;
1033
1034	return n;
1035}
1036EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037
1038/**
1039 *	skb_morph	-	morph one skb into another
1040 *	@dst: the skb to receive the contents
1041 *	@src: the skb to supply the contents
1042 *
1043 *	This is identical to skb_clone except that the target skb is
1044 *	supplied by the user.
1045 *
1046 *	The target skb is returned upon exit.
1047 */
1048struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049{
1050	skb_release_all(dst);
1051	return __skb_clone(dst, src);
1052}
1053EXPORT_SYMBOL_GPL(skb_morph);
1054
1055int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056{
1057	unsigned long max_pg, num_pg, new_pg, old_pg;
1058	struct user_struct *user;
1059
1060	if (capable(CAP_IPC_LOCK) || !size)
1061		return 0;
1062
1063	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1064	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065	user = mmp->user ? : current_user();
1066
1067	do {
1068		old_pg = atomic_long_read(&user->locked_vm);
1069		new_pg = old_pg + num_pg;
1070		if (new_pg > max_pg)
1071			return -ENOBUFS;
1072	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073		 old_pg);
1074
1075	if (!mmp->user) {
1076		mmp->user = get_uid(user);
1077		mmp->num_pg = num_pg;
1078	} else {
1079		mmp->num_pg += num_pg;
1080	}
1081
1082	return 0;
1083}
1084EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085
1086void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087{
1088	if (mmp->user) {
1089		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090		free_uid(mmp->user);
1091	}
1092}
1093EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094
1095struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096{
1097	struct ubuf_info *uarg;
1098	struct sk_buff *skb;
1099
1100	WARN_ON_ONCE(!in_task());
1101
1102	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103	if (!skb)
1104		return NULL;
1105
1106	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107	uarg = (void *)skb->cb;
1108	uarg->mmp.user = NULL;
1109
1110	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111		kfree_skb(skb);
1112		return NULL;
1113	}
1114
1115	uarg->callback = sock_zerocopy_callback;
1116	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117	uarg->len = 1;
1118	uarg->bytelen = size;
1119	uarg->zerocopy = 1;
1120	refcount_set(&uarg->refcnt, 1);
1121	sock_hold(sk);
1122
1123	return uarg;
1124}
1125EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126
1127static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128{
1129	return container_of((void *)uarg, struct sk_buff, cb);
1130}
1131
1132struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133					struct ubuf_info *uarg)
1134{
1135	if (uarg) {
1136		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1137		u32 bytelen, next;
1138
1139		/* realloc only when socket is locked (TCP, UDP cork),
1140		 * so uarg->len and sk_zckey access is serialized
1141		 */
1142		if (!sock_owned_by_user(sk)) {
1143			WARN_ON_ONCE(1);
1144			return NULL;
1145		}
1146
1147		bytelen = uarg->bytelen + size;
1148		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149			/* TCP can create new skb to attach new uarg */
1150			if (sk->sk_type == SOCK_STREAM)
1151				goto new_alloc;
1152			return NULL;
1153		}
1154
1155		next = (u32)atomic_read(&sk->sk_zckey);
1156		if ((u32)(uarg->id + uarg->len) == next) {
1157			if (mm_account_pinned_pages(&uarg->mmp, size))
1158				return NULL;
1159			uarg->len++;
1160			uarg->bytelen = bytelen;
1161			atomic_set(&sk->sk_zckey, ++next);
1162
1163			/* no extra ref when appending to datagram (MSG_MORE) */
1164			if (sk->sk_type == SOCK_STREAM)
1165				sock_zerocopy_get(uarg);
1166
1167			return uarg;
1168		}
1169	}
1170
1171new_alloc:
1172	return sock_zerocopy_alloc(sk, size);
1173}
1174EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175
1176static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177{
1178	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179	u32 old_lo, old_hi;
1180	u64 sum_len;
1181
1182	old_lo = serr->ee.ee_info;
1183	old_hi = serr->ee.ee_data;
1184	sum_len = old_hi - old_lo + 1ULL + len;
1185
1186	if (sum_len >= (1ULL << 32))
1187		return false;
1188
1189	if (lo != old_hi + 1)
1190		return false;
1191
1192	serr->ee.ee_data += len;
1193	return true;
1194}
1195
1196void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197{
1198	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199	struct sock_exterr_skb *serr;
1200	struct sock *sk = skb->sk;
1201	struct sk_buff_head *q;
1202	unsigned long flags;
1203	u32 lo, hi;
1204	u16 len;
1205
1206	mm_unaccount_pinned_pages(&uarg->mmp);
1207
1208	/* if !len, there was only 1 call, and it was aborted
1209	 * so do not queue a completion notification
1210	 */
1211	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212		goto release;
1213
1214	len = uarg->len;
1215	lo = uarg->id;
1216	hi = uarg->id + len - 1;
1217
1218	serr = SKB_EXT_ERR(skb);
1219	memset(serr, 0, sizeof(*serr));
1220	serr->ee.ee_errno = 0;
1221	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222	serr->ee.ee_data = hi;
1223	serr->ee.ee_info = lo;
1224	if (!success)
1225		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226
1227	q = &sk->sk_error_queue;
1228	spin_lock_irqsave(&q->lock, flags);
1229	tail = skb_peek_tail(q);
1230	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1232		__skb_queue_tail(q, skb);
1233		skb = NULL;
1234	}
1235	spin_unlock_irqrestore(&q->lock, flags);
1236
1237	sk->sk_error_report(sk);
1238
1239release:
1240	consume_skb(skb);
1241	sock_put(sk);
1242}
1243EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244
1245void sock_zerocopy_put(struct ubuf_info *uarg)
1246{
1247	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248		if (uarg->callback)
1249			uarg->callback(uarg, uarg->zerocopy);
1250		else
1251			consume_skb(skb_from_uarg(uarg));
1252	}
1253}
1254EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255
1256void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257{
1258	if (uarg) {
1259		struct sock *sk = skb_from_uarg(uarg)->sk;
1260
1261		atomic_dec(&sk->sk_zckey);
1262		uarg->len--;
1263
1264		if (have_uref)
1265			sock_zerocopy_put(uarg);
1266	}
1267}
1268EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269
1270int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271{
1272	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273}
1274EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275
1276int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277			     struct msghdr *msg, int len,
1278			     struct ubuf_info *uarg)
1279{
1280	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281	struct iov_iter orig_iter = msg->msg_iter;
1282	int err, orig_len = skb->len;
1283
1284	/* An skb can only point to one uarg. This edge case happens when
1285	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286	 */
1287	if (orig_uarg && uarg != orig_uarg)
1288		return -EEXIST;
1289
1290	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292		struct sock *save_sk = skb->sk;
1293
1294		/* Streams do not free skb on error. Reset to prev state. */
1295		msg->msg_iter = orig_iter;
1296		skb->sk = sk;
1297		___pskb_trim(skb, orig_len);
1298		skb->sk = save_sk;
1299		return err;
1300	}
1301
1302	skb_zcopy_set(skb, uarg, NULL);
1303	return skb->len - orig_len;
1304}
1305EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306
1307static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308			      gfp_t gfp_mask)
1309{
1310	if (skb_zcopy(orig)) {
1311		if (skb_zcopy(nskb)) {
1312			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313			if (!gfp_mask) {
1314				WARN_ON_ONCE(1);
1315				return -ENOMEM;
1316			}
1317			if (skb_uarg(nskb) == skb_uarg(orig))
1318				return 0;
1319			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320				return -EIO;
1321		}
1322		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323	}
1324	return 0;
1325}
1326
1327/**
1328 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1329 *	@skb: the skb to modify
1330 *	@gfp_mask: allocation priority
1331 *
1332 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1333 *	It will copy all frags into kernel and drop the reference
1334 *	to userspace pages.
1335 *
1336 *	If this function is called from an interrupt gfp_mask() must be
1337 *	%GFP_ATOMIC.
1338 *
1339 *	Returns 0 on success or a negative error code on failure
1340 *	to allocate kernel memory to copy to.
1341 */
1342int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343{
 
1344	int num_frags = skb_shinfo(skb)->nr_frags;
1345	struct page *page, *head = NULL;
1346	int i, new_frags;
1347	u32 d_off;
1348
1349	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350		return -EINVAL;
1351
1352	if (!num_frags)
1353		goto release;
1354
1355	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356	for (i = 0; i < new_frags; i++) {
1357		page = alloc_page(gfp_mask);
1358		if (!page) {
1359			while (head) {
1360				struct page *next = (struct page *)page_private(head);
1361				put_page(head);
1362				head = next;
1363			}
1364			return -ENOMEM;
1365		}
1366		set_page_private(page, (unsigned long)head);
 
 
 
 
1367		head = page;
1368	}
1369
1370	page = head;
1371	d_off = 0;
1372	for (i = 0; i < num_frags; i++) {
1373		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374		u32 p_off, p_len, copied;
1375		struct page *p;
1376		u8 *vaddr;
1377
1378		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1379				      p, p_off, p_len, copied) {
1380			u32 copy, done = 0;
1381			vaddr = kmap_atomic(p);
1382
1383			while (done < p_len) {
1384				if (d_off == PAGE_SIZE) {
1385					d_off = 0;
1386					page = (struct page *)page_private(page);
1387				}
1388				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389				memcpy(page_address(page) + d_off,
1390				       vaddr + p_off + done, copy);
1391				done += copy;
1392				d_off += copy;
1393			}
1394			kunmap_atomic(vaddr);
1395		}
1396	}
1397
1398	/* skb frags release userspace buffers */
1399	for (i = 0; i < num_frags; i++)
1400		skb_frag_unref(skb, i);
1401
1402	/* skb frags point to kernel buffers */
1403	for (i = 0; i < new_frags - 1; i++) {
1404		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405		head = (struct page *)page_private(head);
 
1406	}
1407	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408	skb_shinfo(skb)->nr_frags = new_frags;
1409
1410release:
1411	skb_zcopy_clear(skb, false);
1412	return 0;
1413}
1414EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415
1416/**
1417 *	skb_clone	-	duplicate an sk_buff
1418 *	@skb: buffer to clone
1419 *	@gfp_mask: allocation priority
1420 *
1421 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422 *	copies share the same packet data but not structure. The new
1423 *	buffer has a reference count of 1. If the allocation fails the
1424 *	function returns %NULL otherwise the new buffer is returned.
1425 *
1426 *	If this function is called from an interrupt gfp_mask() must be
1427 *	%GFP_ATOMIC.
1428 */
1429
1430struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431{
1432	struct sk_buff_fclones *fclones = container_of(skb,
1433						       struct sk_buff_fclones,
1434						       skb1);
1435	struct sk_buff *n;
1436
1437	if (skb_orphan_frags(skb, gfp_mask))
1438		return NULL;
 
 
1439
 
1440	if (skb->fclone == SKB_FCLONE_ORIG &&
1441	    refcount_read(&fclones->fclone_ref) == 1) {
1442		n = &fclones->skb2;
1443		refcount_set(&fclones->fclone_ref, 2);
 
1444	} else {
1445		if (skb_pfmemalloc(skb))
1446			gfp_mask |= __GFP_MEMALLOC;
1447
1448		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449		if (!n)
1450			return NULL;
1451
 
 
1452		n->fclone = SKB_FCLONE_UNAVAILABLE;
1453	}
1454
1455	return __skb_clone(n, skb);
1456}
1457EXPORT_SYMBOL(skb_clone);
1458
1459void skb_headers_offset_update(struct sk_buff *skb, int off)
1460{
1461	/* Only adjust this if it actually is csum_start rather than csum */
1462	if (skb->ip_summed == CHECKSUM_PARTIAL)
1463		skb->csum_start += off;
1464	/* {transport,network,mac}_header and tail are relative to skb->head */
1465	skb->transport_header += off;
1466	skb->network_header   += off;
1467	if (skb_mac_header_was_set(skb))
1468		skb->mac_header += off;
1469	skb->inner_transport_header += off;
1470	skb->inner_network_header += off;
1471	skb->inner_mac_header += off;
1472}
1473EXPORT_SYMBOL(skb_headers_offset_update);
1474
1475void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476{
1477	__copy_skb_header(new, old);
1478
 
 
 
 
 
 
 
1479	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482}
1483EXPORT_SYMBOL(skb_copy_header);
1484
1485static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486{
1487	if (skb_pfmemalloc(skb))
1488		return SKB_ALLOC_RX;
1489	return 0;
1490}
1491
1492/**
1493 *	skb_copy	-	create private copy of an sk_buff
1494 *	@skb: buffer to copy
1495 *	@gfp_mask: allocation priority
1496 *
1497 *	Make a copy of both an &sk_buff and its data. This is used when the
1498 *	caller wishes to modify the data and needs a private copy of the
1499 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1500 *	on success. The returned buffer has a reference count of 1.
1501 *
1502 *	As by-product this function converts non-linear &sk_buff to linear
1503 *	one, so that &sk_buff becomes completely private and caller is allowed
1504 *	to modify all the data of returned buffer. This means that this
1505 *	function is not recommended for use in circumstances when only
1506 *	header is going to be modified. Use pskb_copy() instead.
1507 */
1508
1509struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510{
1511	int headerlen = skb_headroom(skb);
1512	unsigned int size = skb_end_offset(skb) + skb->data_len;
1513	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515
1516	if (!n)
1517		return NULL;
1518
1519	/* Set the data pointer */
1520	skb_reserve(n, headerlen);
1521	/* Set the tail pointer and length */
1522	skb_put(n, skb->len);
1523
1524	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
 
1525
1526	skb_copy_header(n, skb);
1527	return n;
1528}
1529EXPORT_SYMBOL(skb_copy);
1530
1531/**
1532 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1533 *	@skb: buffer to copy
1534 *	@headroom: headroom of new skb
1535 *	@gfp_mask: allocation priority
1536 *	@fclone: if true allocate the copy of the skb from the fclone
1537 *	cache instead of the head cache; it is recommended to set this
1538 *	to true for the cases where the copy will likely be cloned
1539 *
1540 *	Make a copy of both an &sk_buff and part of its data, located
1541 *	in header. Fragmented data remain shared. This is used when
1542 *	the caller wishes to modify only header of &sk_buff and needs
1543 *	private copy of the header to alter. Returns %NULL on failure
1544 *	or the pointer to the buffer on success.
1545 *	The returned buffer has a reference count of 1.
1546 */
1547
1548struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549				   gfp_t gfp_mask, bool fclone)
1550{
1551	unsigned int size = skb_headlen(skb) + headroom;
1552	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554
1555	if (!n)
1556		goto out;
1557
1558	/* Set the data pointer */
1559	skb_reserve(n, headroom);
1560	/* Set the tail pointer and length */
1561	skb_put(n, skb_headlen(skb));
1562	/* Copy the bytes */
1563	skb_copy_from_linear_data(skb, n->data, n->len);
1564
1565	n->truesize += skb->data_len;
1566	n->data_len  = skb->data_len;
1567	n->len	     = skb->len;
1568
1569	if (skb_shinfo(skb)->nr_frags) {
1570		int i;
1571
1572		if (skb_orphan_frags(skb, gfp_mask) ||
1573		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1574			kfree_skb(n);
1575			n = NULL;
1576			goto out;
 
1577		}
1578		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580			skb_frag_ref(skb, i);
1581		}
1582		skb_shinfo(n)->nr_frags = i;
1583	}
1584
1585	if (skb_has_frag_list(skb)) {
1586		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587		skb_clone_fraglist(n);
1588	}
1589
1590	skb_copy_header(n, skb);
1591out:
1592	return n;
1593}
1594EXPORT_SYMBOL(__pskb_copy_fclone);
1595
1596/**
1597 *	pskb_expand_head - reallocate header of &sk_buff
1598 *	@skb: buffer to reallocate
1599 *	@nhead: room to add at head
1600 *	@ntail: room to add at tail
1601 *	@gfp_mask: allocation priority
1602 *
1603 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1604 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605 *	reference count of 1. Returns zero in the case of success or error,
1606 *	if expansion failed. In the last case, &sk_buff is not changed.
1607 *
1608 *	All the pointers pointing into skb header may change and must be
1609 *	reloaded after call to this function.
1610 */
1611
1612int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613		     gfp_t gfp_mask)
1614{
1615	int i, osize = skb_end_offset(skb);
1616	int size = osize + nhead + ntail;
 
1617	long off;
1618	u8 *data;
1619
1620	BUG_ON(nhead < 0);
1621
1622	BUG_ON(skb_shared(skb));
 
1623
1624	size = SKB_DATA_ALIGN(size);
1625
1626	if (skb_pfmemalloc(skb))
1627		gfp_mask |= __GFP_MEMALLOC;
1628	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629			       gfp_mask, NUMA_NO_NODE, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630	if (!data)
1631		goto nodata;
1632	size = SKB_WITH_OVERHEAD(ksize(data));
1633
1634	/* Copy only real data... and, alas, header. This should be
1635	 * optimized for the cases when header is void.
1636	 */
1637	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638
1639	memcpy((struct skb_shared_info *)(data + size),
1640	       skb_shinfo(skb),
1641	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642
1643	/*
1644	 * if shinfo is shared we must drop the old head gracefully, but if it
1645	 * is not we can just drop the old head and let the existing refcount
1646	 * be since all we did is relocate the values
1647	 */
1648	if (skb_cloned(skb)) {
1649		if (skb_orphan_frags(skb, gfp_mask))
1650			goto nofrags;
1651		if (skb_zcopy(skb))
1652			refcount_inc(&skb_uarg(skb)->refcnt);
1653		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654			skb_frag_ref(skb, i);
1655
1656		if (skb_has_frag_list(skb))
1657			skb_clone_fraglist(skb);
1658
1659		skb_release_data(skb);
1660	} else {
1661		skb_free_head(skb);
1662	}
1663	off = (data + nhead) - skb->head;
1664
1665	skb->head     = data;
1666	skb->head_frag = 0;
1667	skb->data    += off;
1668#ifdef NET_SKBUFF_DATA_USES_OFFSET
1669	skb->end      = size;
1670	off           = nhead;
1671#else
1672	skb->end      = skb->head + size;
1673#endif
 
1674	skb->tail	      += off;
1675	skb_headers_offset_update(skb, nhead);
 
 
 
 
 
 
1676	skb->cloned   = 0;
1677	skb->hdr_len  = 0;
1678	skb->nohdr    = 0;
1679	atomic_set(&skb_shinfo(skb)->dataref, 1);
1680
1681	skb_metadata_clear(skb);
1682
1683	/* It is not generally safe to change skb->truesize.
1684	 * For the moment, we really care of rx path, or
1685	 * when skb is orphaned (not attached to a socket).
1686	 */
1687	if (!skb->sk || skb->destructor == sock_edemux)
1688		skb->truesize += size - osize;
1689
1690	return 0;
1691
1692nofrags:
1693	kfree(data);
1694nodata:
1695	return -ENOMEM;
1696}
1697EXPORT_SYMBOL(pskb_expand_head);
1698
1699/* Make private copy of skb with writable head and some headroom */
1700
1701struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702{
1703	struct sk_buff *skb2;
1704	int delta = headroom - skb_headroom(skb);
1705
1706	if (delta <= 0)
1707		skb2 = pskb_copy(skb, GFP_ATOMIC);
1708	else {
1709		skb2 = skb_clone(skb, GFP_ATOMIC);
1710		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711					     GFP_ATOMIC)) {
1712			kfree_skb(skb2);
1713			skb2 = NULL;
1714		}
1715	}
1716	return skb2;
1717}
1718EXPORT_SYMBOL(skb_realloc_headroom);
1719
1720/**
1721 *	skb_copy_expand	-	copy and expand sk_buff
1722 *	@skb: buffer to copy
1723 *	@newheadroom: new free bytes at head
1724 *	@newtailroom: new free bytes at tail
1725 *	@gfp_mask: allocation priority
1726 *
1727 *	Make a copy of both an &sk_buff and its data and while doing so
1728 *	allocate additional space.
1729 *
1730 *	This is used when the caller wishes to modify the data and needs a
1731 *	private copy of the data to alter as well as more space for new fields.
1732 *	Returns %NULL on failure or the pointer to the buffer
1733 *	on success. The returned buffer has a reference count of 1.
1734 *
1735 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1736 *	is called from an interrupt.
1737 */
1738struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739				int newheadroom, int newtailroom,
1740				gfp_t gfp_mask)
1741{
1742	/*
1743	 *	Allocate the copy buffer
1744	 */
1745	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746					gfp_mask, skb_alloc_rx_flag(skb),
1747					NUMA_NO_NODE);
1748	int oldheadroom = skb_headroom(skb);
1749	int head_copy_len, head_copy_off;
 
1750
1751	if (!n)
1752		return NULL;
1753
1754	skb_reserve(n, newheadroom);
1755
1756	/* Set the tail pointer and length */
1757	skb_put(n, skb->len);
1758
1759	head_copy_len = oldheadroom;
1760	head_copy_off = 0;
1761	if (newheadroom <= head_copy_len)
1762		head_copy_len = newheadroom;
1763	else
1764		head_copy_off = newheadroom - head_copy_len;
1765
1766	/* Copy the linear header and data. */
1767	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768			     skb->len + head_copy_len));
1769
1770	skb_copy_header(n, skb);
1771
1772	skb_headers_offset_update(n, newheadroom - oldheadroom);
 
 
 
 
 
 
 
 
 
1773
1774	return n;
1775}
1776EXPORT_SYMBOL(skb_copy_expand);
1777
1778/**
1779 *	__skb_pad		-	zero pad the tail of an skb
1780 *	@skb: buffer to pad
1781 *	@pad: space to pad
1782 *	@free_on_error: free buffer on error
1783 *
1784 *	Ensure that a buffer is followed by a padding area that is zero
1785 *	filled. Used by network drivers which may DMA or transfer data
1786 *	beyond the buffer end onto the wire.
1787 *
1788 *	May return error in out of memory cases. The skb is freed on error
1789 *	if @free_on_error is true.
1790 */
1791
1792int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793{
1794	int err;
1795	int ntail;
1796
1797	/* If the skbuff is non linear tailroom is always zero.. */
1798	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799		memset(skb->data+skb->len, 0, pad);
1800		return 0;
1801	}
1802
1803	ntail = skb->data_len + pad - (skb->end - skb->tail);
1804	if (likely(skb_cloned(skb) || ntail > 0)) {
1805		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806		if (unlikely(err))
1807			goto free_skb;
1808	}
1809
1810	/* FIXME: The use of this function with non-linear skb's really needs
1811	 * to be audited.
1812	 */
1813	err = skb_linearize(skb);
1814	if (unlikely(err))
1815		goto free_skb;
1816
1817	memset(skb->data + skb->len, 0, pad);
1818	return 0;
1819
1820free_skb:
1821	if (free_on_error)
1822		kfree_skb(skb);
1823	return err;
1824}
1825EXPORT_SYMBOL(__skb_pad);
1826
1827/**
1828 *	pskb_put - add data to the tail of a potentially fragmented buffer
1829 *	@skb: start of the buffer to use
1830 *	@tail: tail fragment of the buffer to use
1831 *	@len: amount of data to add
1832 *
1833 *	This function extends the used data area of the potentially
1834 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1835 *	@skb itself. If this would exceed the total buffer size the kernel
1836 *	will panic. A pointer to the first byte of the extra data is
1837 *	returned.
1838 */
1839
1840void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841{
1842	if (tail != skb) {
1843		skb->data_len += len;
1844		skb->len += len;
1845	}
1846	return skb_put(tail, len);
1847}
1848EXPORT_SYMBOL_GPL(pskb_put);
1849
1850/**
1851 *	skb_put - add data to a buffer
1852 *	@skb: buffer to use
1853 *	@len: amount of data to add
1854 *
1855 *	This function extends the used data area of the buffer. If this would
1856 *	exceed the total buffer size the kernel will panic. A pointer to the
1857 *	first byte of the extra data is returned.
1858 */
1859void *skb_put(struct sk_buff *skb, unsigned int len)
1860{
1861	void *tmp = skb_tail_pointer(skb);
1862	SKB_LINEAR_ASSERT(skb);
1863	skb->tail += len;
1864	skb->len  += len;
1865	if (unlikely(skb->tail > skb->end))
1866		skb_over_panic(skb, len, __builtin_return_address(0));
1867	return tmp;
1868}
1869EXPORT_SYMBOL(skb_put);
1870
1871/**
1872 *	skb_push - add data to the start of a buffer
1873 *	@skb: buffer to use
1874 *	@len: amount of data to add
1875 *
1876 *	This function extends the used data area of the buffer at the buffer
1877 *	start. If this would exceed the total buffer headroom the kernel will
1878 *	panic. A pointer to the first byte of the extra data is returned.
1879 */
1880void *skb_push(struct sk_buff *skb, unsigned int len)
1881{
1882	skb->data -= len;
1883	skb->len  += len;
1884	if (unlikely(skb->data < skb->head))
1885		skb_under_panic(skb, len, __builtin_return_address(0));
1886	return skb->data;
1887}
1888EXPORT_SYMBOL(skb_push);
1889
1890/**
1891 *	skb_pull - remove data from the start of a buffer
1892 *	@skb: buffer to use
1893 *	@len: amount of data to remove
1894 *
1895 *	This function removes data from the start of a buffer, returning
1896 *	the memory to the headroom. A pointer to the next data in the buffer
1897 *	is returned. Once the data has been pulled future pushes will overwrite
1898 *	the old data.
1899 */
1900void *skb_pull(struct sk_buff *skb, unsigned int len)
1901{
1902	return skb_pull_inline(skb, len);
1903}
1904EXPORT_SYMBOL(skb_pull);
1905
1906/**
1907 *	skb_trim - remove end from a buffer
1908 *	@skb: buffer to alter
1909 *	@len: new length
1910 *
1911 *	Cut the length of a buffer down by removing data from the tail. If
1912 *	the buffer is already under the length specified it is not modified.
1913 *	The skb must be linear.
1914 */
1915void skb_trim(struct sk_buff *skb, unsigned int len)
1916{
1917	if (skb->len > len)
1918		__skb_trim(skb, len);
1919}
1920EXPORT_SYMBOL(skb_trim);
1921
1922/* Trims skb to length len. It can change skb pointers.
1923 */
1924
1925int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926{
1927	struct sk_buff **fragp;
1928	struct sk_buff *frag;
1929	int offset = skb_headlen(skb);
1930	int nfrags = skb_shinfo(skb)->nr_frags;
1931	int i;
1932	int err;
1933
1934	if (skb_cloned(skb) &&
1935	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936		return err;
1937
1938	i = 0;
1939	if (offset >= len)
1940		goto drop_pages;
1941
1942	for (; i < nfrags; i++) {
1943		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944
1945		if (end < len) {
1946			offset = end;
1947			continue;
1948		}
1949
1950		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951
1952drop_pages:
1953		skb_shinfo(skb)->nr_frags = i;
1954
1955		for (; i < nfrags; i++)
1956			skb_frag_unref(skb, i);
1957
1958		if (skb_has_frag_list(skb))
1959			skb_drop_fraglist(skb);
1960		goto done;
1961	}
1962
1963	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964	     fragp = &frag->next) {
1965		int end = offset + frag->len;
1966
1967		if (skb_shared(frag)) {
1968			struct sk_buff *nfrag;
1969
1970			nfrag = skb_clone(frag, GFP_ATOMIC);
1971			if (unlikely(!nfrag))
1972				return -ENOMEM;
1973
1974			nfrag->next = frag->next;
1975			consume_skb(frag);
1976			frag = nfrag;
1977			*fragp = frag;
1978		}
1979
1980		if (end < len) {
1981			offset = end;
1982			continue;
1983		}
1984
1985		if (end > len &&
1986		    unlikely((err = pskb_trim(frag, len - offset))))
1987			return err;
1988
1989		if (frag->next)
1990			skb_drop_list(&frag->next);
1991		break;
1992	}
1993
1994done:
1995	if (len > skb_headlen(skb)) {
1996		skb->data_len -= skb->len - len;
1997		skb->len       = len;
1998	} else {
1999		skb->len       = len;
2000		skb->data_len  = 0;
2001		skb_set_tail_pointer(skb, len);
2002	}
2003
2004	if (!skb->sk || skb->destructor == sock_edemux)
2005		skb_condense(skb);
2006	return 0;
2007}
2008EXPORT_SYMBOL(___pskb_trim);
2009
2010/* Note : use pskb_trim_rcsum() instead of calling this directly
2011 */
2012int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013{
2014	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015		int delta = skb->len - len;
2016
2017		skb->csum = csum_block_sub(skb->csum,
2018					   skb_checksum(skb, len, delta, 0),
2019					   len);
2020	}
2021	return __pskb_trim(skb, len);
2022}
2023EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024
2025/**
2026 *	__pskb_pull_tail - advance tail of skb header
2027 *	@skb: buffer to reallocate
2028 *	@delta: number of bytes to advance tail
2029 *
2030 *	The function makes a sense only on a fragmented &sk_buff,
2031 *	it expands header moving its tail forward and copying necessary
2032 *	data from fragmented part.
2033 *
2034 *	&sk_buff MUST have reference count of 1.
2035 *
2036 *	Returns %NULL (and &sk_buff does not change) if pull failed
2037 *	or value of new tail of skb in the case of success.
2038 *
2039 *	All the pointers pointing into skb header may change and must be
2040 *	reloaded after call to this function.
2041 */
2042
2043/* Moves tail of skb head forward, copying data from fragmented part,
2044 * when it is necessary.
2045 * 1. It may fail due to malloc failure.
2046 * 2. It may change skb pointers.
2047 *
2048 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049 */
2050void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051{
2052	/* If skb has not enough free space at tail, get new one
2053	 * plus 128 bytes for future expansions. If we have enough
2054	 * room at tail, reallocate without expansion only if skb is cloned.
2055	 */
2056	int i, k, eat = (skb->tail + delta) - skb->end;
2057
2058	if (eat > 0 || skb_cloned(skb)) {
2059		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060				     GFP_ATOMIC))
2061			return NULL;
2062	}
2063
2064	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065			     skb_tail_pointer(skb), delta));
2066
2067	/* Optimization: no fragments, no reasons to preestimate
2068	 * size of pulled pages. Superb.
2069	 */
2070	if (!skb_has_frag_list(skb))
2071		goto pull_pages;
2072
2073	/* Estimate size of pulled pages. */
2074	eat = delta;
2075	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077
2078		if (size >= eat)
2079			goto pull_pages;
2080		eat -= size;
2081	}
2082
2083	/* If we need update frag list, we are in troubles.
2084	 * Certainly, it is possible to add an offset to skb data,
2085	 * but taking into account that pulling is expected to
2086	 * be very rare operation, it is worth to fight against
2087	 * further bloating skb head and crucify ourselves here instead.
2088	 * Pure masohism, indeed. 8)8)
2089	 */
2090	if (eat) {
2091		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092		struct sk_buff *clone = NULL;
2093		struct sk_buff *insp = NULL;
2094
2095		do {
 
 
2096			if (list->len <= eat) {
2097				/* Eaten as whole. */
2098				eat -= list->len;
2099				list = list->next;
2100				insp = list;
2101			} else {
2102				/* Eaten partially. */
2103
2104				if (skb_shared(list)) {
2105					/* Sucks! We need to fork list. :-( */
2106					clone = skb_clone(list, GFP_ATOMIC);
2107					if (!clone)
2108						return NULL;
2109					insp = list->next;
2110					list = clone;
2111				} else {
2112					/* This may be pulled without
2113					 * problems. */
2114					insp = list;
2115				}
2116				if (!pskb_pull(list, eat)) {
2117					kfree_skb(clone);
2118					return NULL;
2119				}
2120				break;
2121			}
2122		} while (eat);
2123
2124		/* Free pulled out fragments. */
2125		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126			skb_shinfo(skb)->frag_list = list->next;
2127			kfree_skb(list);
2128		}
2129		/* And insert new clone at head. */
2130		if (clone) {
2131			clone->next = list;
2132			skb_shinfo(skb)->frag_list = clone;
2133		}
2134	}
2135	/* Success! Now we may commit changes to skb data. */
2136
2137pull_pages:
2138	eat = delta;
2139	k = 0;
2140	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142
2143		if (size <= eat) {
2144			skb_frag_unref(skb, i);
2145			eat -= size;
2146		} else {
2147			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2148
2149			*frag = skb_shinfo(skb)->frags[i];
2150			if (eat) {
2151				skb_frag_off_add(frag, eat);
2152				skb_frag_size_sub(frag, eat);
2153				if (!i)
2154					goto end;
2155				eat = 0;
2156			}
2157			k++;
2158		}
2159	}
2160	skb_shinfo(skb)->nr_frags = k;
2161
2162end:
2163	skb->tail     += delta;
2164	skb->data_len -= delta;
2165
2166	if (!skb->data_len)
2167		skb_zcopy_clear(skb, false);
2168
2169	return skb_tail_pointer(skb);
2170}
2171EXPORT_SYMBOL(__pskb_pull_tail);
2172
2173/**
2174 *	skb_copy_bits - copy bits from skb to kernel buffer
2175 *	@skb: source skb
2176 *	@offset: offset in source
2177 *	@to: destination buffer
2178 *	@len: number of bytes to copy
2179 *
2180 *	Copy the specified number of bytes from the source skb to the
2181 *	destination buffer.
2182 *
2183 *	CAUTION ! :
2184 *		If its prototype is ever changed,
2185 *		check arch/{*}/net/{*}.S files,
2186 *		since it is called from BPF assembly code.
2187 */
2188int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2189{
2190	int start = skb_headlen(skb);
2191	struct sk_buff *frag_iter;
2192	int i, copy;
2193
2194	if (offset > (int)skb->len - len)
2195		goto fault;
2196
2197	/* Copy header. */
2198	if ((copy = start - offset) > 0) {
2199		if (copy > len)
2200			copy = len;
2201		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2202		if ((len -= copy) == 0)
2203			return 0;
2204		offset += copy;
2205		to     += copy;
2206	}
2207
2208	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209		int end;
2210		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2211
2212		WARN_ON(start > offset + len);
2213
2214		end = start + skb_frag_size(f);
2215		if ((copy = end - offset) > 0) {
2216			u32 p_off, p_len, copied;
2217			struct page *p;
2218			u8 *vaddr;
2219
2220			if (copy > len)
2221				copy = len;
2222
2223			skb_frag_foreach_page(f,
2224					      skb_frag_off(f) + offset - start,
2225					      copy, p, p_off, p_len, copied) {
2226				vaddr = kmap_atomic(p);
2227				memcpy(to + copied, vaddr + p_off, p_len);
2228				kunmap_atomic(vaddr);
2229			}
2230
2231			if ((len -= copy) == 0)
2232				return 0;
2233			offset += copy;
2234			to     += copy;
2235		}
2236		start = end;
2237	}
2238
2239	skb_walk_frags(skb, frag_iter) {
2240		int end;
2241
2242		WARN_ON(start > offset + len);
2243
2244		end = start + frag_iter->len;
2245		if ((copy = end - offset) > 0) {
2246			if (copy > len)
2247				copy = len;
2248			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2249				goto fault;
2250			if ((len -= copy) == 0)
2251				return 0;
2252			offset += copy;
2253			to     += copy;
2254		}
2255		start = end;
2256	}
2257
2258	if (!len)
2259		return 0;
2260
2261fault:
2262	return -EFAULT;
2263}
2264EXPORT_SYMBOL(skb_copy_bits);
2265
2266/*
2267 * Callback from splice_to_pipe(), if we need to release some pages
2268 * at the end of the spd in case we error'ed out in filling the pipe.
2269 */
2270static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2271{
2272	put_page(spd->pages[i]);
2273}
2274
2275static struct page *linear_to_page(struct page *page, unsigned int *len,
2276				   unsigned int *offset,
2277				   struct sock *sk)
2278{
2279	struct page_frag *pfrag = sk_page_frag(sk);
 
2280
2281	if (!sk_page_frag_refill(sk, pfrag))
2282		return NULL;
 
 
 
 
 
 
 
 
2283
2284	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
 
 
 
 
 
2285
2286	memcpy(page_address(pfrag->page) + pfrag->offset,
2287	       page_address(page) + *offset, *len);
2288	*offset = pfrag->offset;
2289	pfrag->offset += *len;
2290
2291	return pfrag->page;
2292}
 
 
2293
2294static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2295			     struct page *page,
2296			     unsigned int offset)
2297{
2298	return	spd->nr_pages &&
2299		spd->pages[spd->nr_pages - 1] == page &&
2300		(spd->partial[spd->nr_pages - 1].offset +
2301		 spd->partial[spd->nr_pages - 1].len == offset);
2302}
2303
2304/*
2305 * Fill page/offset/length into spd, if it can hold more pages.
2306 */
2307static bool spd_fill_page(struct splice_pipe_desc *spd,
2308			  struct pipe_inode_info *pipe, struct page *page,
2309			  unsigned int *len, unsigned int offset,
2310			  bool linear,
2311			  struct sock *sk)
2312{
2313	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2314		return true;
2315
2316	if (linear) {
2317		page = linear_to_page(page, len, &offset, sk);
2318		if (!page)
2319			return true;
2320	}
2321	if (spd_can_coalesce(spd, page, offset)) {
2322		spd->partial[spd->nr_pages - 1].len += *len;
2323		return false;
2324	}
2325	get_page(page);
2326	spd->pages[spd->nr_pages] = page;
2327	spd->partial[spd->nr_pages].len = *len;
2328	spd->partial[spd->nr_pages].offset = offset;
2329	spd->nr_pages++;
2330
2331	return false;
2332}
2333
2334static bool __splice_segment(struct page *page, unsigned int poff,
2335			     unsigned int plen, unsigned int *off,
2336			     unsigned int *len,
2337			     struct splice_pipe_desc *spd, bool linear,
2338			     struct sock *sk,
2339			     struct pipe_inode_info *pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2340{
2341	if (!*len)
2342		return true;
2343
2344	/* skip this segment if already processed */
2345	if (*off >= plen) {
2346		*off -= plen;
2347		return false;
2348	}
2349
2350	/* ignore any bits we already processed */
2351	poff += *off;
2352	plen -= *off;
2353	*off = 0;
 
2354
2355	do {
2356		unsigned int flen = min(*len, plen);
2357
2358		if (spd_fill_page(spd, pipe, page, &flen, poff,
2359				  linear, sk))
2360			return true;
2361		poff += flen;
2362		plen -= flen;
 
 
2363		*len -= flen;
 
2364	} while (*len && plen);
2365
2366	return false;
2367}
2368
2369/*
2370 * Map linear and fragment data from the skb to spd. It reports true if the
2371 * pipe is full or if we already spliced the requested length.
2372 */
2373static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2374			      unsigned int *offset, unsigned int *len,
2375			      struct splice_pipe_desc *spd, struct sock *sk)
2376{
2377	int seg;
2378	struct sk_buff *iter;
2379
2380	/* map the linear part :
2381	 * If skb->head_frag is set, this 'linear' part is backed by a
2382	 * fragment, and if the head is not shared with any clones then
2383	 * we can avoid a copy since we own the head portion of this page.
2384	 */
2385	if (__splice_segment(virt_to_page(skb->data),
2386			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2387			     skb_headlen(skb),
2388			     offset, len, spd,
2389			     skb_head_is_locked(skb),
2390			     sk, pipe))
2391		return true;
2392
2393	/*
2394	 * then map the fragments
2395	 */
2396	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2397		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2398
2399		if (__splice_segment(skb_frag_page(f),
2400				     skb_frag_off(f), skb_frag_size(f),
2401				     offset, len, spd, false, sk, pipe))
2402			return true;
2403	}
2404
2405	skb_walk_frags(skb, iter) {
2406		if (*offset >= iter->len) {
2407			*offset -= iter->len;
2408			continue;
2409		}
2410		/* __skb_splice_bits() only fails if the output has no room
2411		 * left, so no point in going over the frag_list for the error
2412		 * case.
2413		 */
2414		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2415			return true;
2416	}
2417
2418	return false;
2419}
2420
2421/*
2422 * Map data from the skb to a pipe. Should handle both the linear part,
2423 * the fragments, and the frag list.
 
 
2424 */
2425int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2426		    struct pipe_inode_info *pipe, unsigned int tlen,
2427		    unsigned int flags)
2428{
2429	struct partial_page partial[MAX_SKB_FRAGS];
2430	struct page *pages[MAX_SKB_FRAGS];
2431	struct splice_pipe_desc spd = {
2432		.pages = pages,
2433		.partial = partial,
2434		.nr_pages_max = MAX_SKB_FRAGS,
2435		.ops = &nosteal_pipe_buf_ops,
2436		.spd_release = sock_spd_release,
2437	};
 
 
2438	int ret = 0;
2439
2440	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
 
2441
2442	if (spd.nr_pages)
2443		ret = splice_to_pipe(pipe, &spd);
 
 
 
 
 
 
2444
2445	return ret;
2446}
2447EXPORT_SYMBOL_GPL(skb_splice_bits);
2448
2449/* Send skb data on a socket. Socket must be locked. */
2450int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2451			 int len)
2452{
2453	unsigned int orig_len = len;
2454	struct sk_buff *head = skb;
2455	unsigned short fragidx;
2456	int slen, ret;
2457
2458do_frag_list:
2459
2460	/* Deal with head data */
2461	while (offset < skb_headlen(skb) && len) {
2462		struct kvec kv;
2463		struct msghdr msg;
2464
2465		slen = min_t(int, len, skb_headlen(skb) - offset);
2466		kv.iov_base = skb->data + offset;
2467		kv.iov_len = slen;
2468		memset(&msg, 0, sizeof(msg));
2469		msg.msg_flags = MSG_DONTWAIT;
2470
2471		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2472		if (ret <= 0)
2473			goto error;
2474
2475		offset += ret;
2476		len -= ret;
2477	}
2478
2479	/* All the data was skb head? */
2480	if (!len)
2481		goto out;
2482
2483	/* Make offset relative to start of frags */
2484	offset -= skb_headlen(skb);
2485
2486	/* Find where we are in frag list */
2487	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2488		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2489
2490		if (offset < skb_frag_size(frag))
2491			break;
2492
2493		offset -= skb_frag_size(frag);
2494	}
2495
2496	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2497		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2498
2499		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2500
2501		while (slen) {
2502			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2503						     skb_frag_off(frag) + offset,
2504						     slen, MSG_DONTWAIT);
2505			if (ret <= 0)
2506				goto error;
2507
2508			len -= ret;
2509			offset += ret;
2510			slen -= ret;
2511		}
2512
2513		offset = 0;
2514	}
2515
2516	if (len) {
2517		/* Process any frag lists */
2518
2519		if (skb == head) {
2520			if (skb_has_frag_list(skb)) {
2521				skb = skb_shinfo(skb)->frag_list;
2522				goto do_frag_list;
2523			}
2524		} else if (skb->next) {
2525			skb = skb->next;
2526			goto do_frag_list;
2527		}
2528	}
2529
2530out:
2531	return orig_len - len;
2532
2533error:
2534	return orig_len == len ? ret : orig_len - len;
2535}
2536EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2537
2538/**
2539 *	skb_store_bits - store bits from kernel buffer to skb
2540 *	@skb: destination buffer
2541 *	@offset: offset in destination
2542 *	@from: source buffer
2543 *	@len: number of bytes to copy
2544 *
2545 *	Copy the specified number of bytes from the source buffer to the
2546 *	destination skb.  This function handles all the messy bits of
2547 *	traversing fragment lists and such.
2548 */
2549
2550int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2551{
2552	int start = skb_headlen(skb);
2553	struct sk_buff *frag_iter;
2554	int i, copy;
2555
2556	if (offset > (int)skb->len - len)
2557		goto fault;
2558
2559	if ((copy = start - offset) > 0) {
2560		if (copy > len)
2561			copy = len;
2562		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2563		if ((len -= copy) == 0)
2564			return 0;
2565		offset += copy;
2566		from += copy;
2567	}
2568
2569	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2570		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2571		int end;
2572
2573		WARN_ON(start > offset + len);
2574
2575		end = start + skb_frag_size(frag);
2576		if ((copy = end - offset) > 0) {
2577			u32 p_off, p_len, copied;
2578			struct page *p;
2579			u8 *vaddr;
2580
2581			if (copy > len)
2582				copy = len;
2583
2584			skb_frag_foreach_page(frag,
2585					      skb_frag_off(frag) + offset - start,
2586					      copy, p, p_off, p_len, copied) {
2587				vaddr = kmap_atomic(p);
2588				memcpy(vaddr + p_off, from + copied, p_len);
2589				kunmap_atomic(vaddr);
2590			}
2591
2592			if ((len -= copy) == 0)
2593				return 0;
2594			offset += copy;
2595			from += copy;
2596		}
2597		start = end;
2598	}
2599
2600	skb_walk_frags(skb, frag_iter) {
2601		int end;
2602
2603		WARN_ON(start > offset + len);
2604
2605		end = start + frag_iter->len;
2606		if ((copy = end - offset) > 0) {
2607			if (copy > len)
2608				copy = len;
2609			if (skb_store_bits(frag_iter, offset - start,
2610					   from, copy))
2611				goto fault;
2612			if ((len -= copy) == 0)
2613				return 0;
2614			offset += copy;
2615			from += copy;
2616		}
2617		start = end;
2618	}
2619	if (!len)
2620		return 0;
2621
2622fault:
2623	return -EFAULT;
2624}
2625EXPORT_SYMBOL(skb_store_bits);
2626
2627/* Checksum skb data. */
2628__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2629		      __wsum csum, const struct skb_checksum_ops *ops)
 
2630{
2631	int start = skb_headlen(skb);
2632	int i, copy = start - offset;
2633	struct sk_buff *frag_iter;
2634	int pos = 0;
2635
2636	/* Checksum header. */
2637	if (copy > 0) {
2638		if (copy > len)
2639			copy = len;
2640		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2641				       skb->data + offset, copy, csum);
2642		if ((len -= copy) == 0)
2643			return csum;
2644		offset += copy;
2645		pos	= copy;
2646	}
2647
2648	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2649		int end;
2650		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2651
2652		WARN_ON(start > offset + len);
2653
2654		end = start + skb_frag_size(frag);
2655		if ((copy = end - offset) > 0) {
2656			u32 p_off, p_len, copied;
2657			struct page *p;
2658			__wsum csum2;
2659			u8 *vaddr;
 
2660
2661			if (copy > len)
2662				copy = len;
2663
2664			skb_frag_foreach_page(frag,
2665					      skb_frag_off(frag) + offset - start,
2666					      copy, p, p_off, p_len, copied) {
2667				vaddr = kmap_atomic(p);
2668				csum2 = INDIRECT_CALL_1(ops->update,
2669							csum_partial_ext,
2670							vaddr + p_off, p_len, 0);
2671				kunmap_atomic(vaddr);
2672				csum = INDIRECT_CALL_1(ops->combine,
2673						       csum_block_add_ext, csum,
2674						       csum2, pos, p_len);
2675				pos += p_len;
2676			}
2677
2678			if (!(len -= copy))
2679				return csum;
2680			offset += copy;
 
2681		}
2682		start = end;
2683	}
2684
2685	skb_walk_frags(skb, frag_iter) {
2686		int end;
2687
2688		WARN_ON(start > offset + len);
2689
2690		end = start + frag_iter->len;
2691		if ((copy = end - offset) > 0) {
2692			__wsum csum2;
2693			if (copy > len)
2694				copy = len;
2695			csum2 = __skb_checksum(frag_iter, offset - start,
2696					       copy, 0, ops);
2697			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2698					       csum, csum2, pos, copy);
2699			if ((len -= copy) == 0)
2700				return csum;
2701			offset += copy;
2702			pos    += copy;
2703		}
2704		start = end;
2705	}
2706	BUG_ON(len);
2707
2708	return csum;
2709}
2710EXPORT_SYMBOL(__skb_checksum);
2711
2712__wsum skb_checksum(const struct sk_buff *skb, int offset,
2713		    int len, __wsum csum)
2714{
2715	const struct skb_checksum_ops ops = {
2716		.update  = csum_partial_ext,
2717		.combine = csum_block_add_ext,
2718	};
2719
2720	return __skb_checksum(skb, offset, len, csum, &ops);
2721}
2722EXPORT_SYMBOL(skb_checksum);
2723
2724/* Both of above in one bottle. */
2725
2726__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2727				    u8 *to, int len, __wsum csum)
2728{
2729	int start = skb_headlen(skb);
2730	int i, copy = start - offset;
2731	struct sk_buff *frag_iter;
2732	int pos = 0;
2733
2734	/* Copy header. */
2735	if (copy > 0) {
2736		if (copy > len)
2737			copy = len;
2738		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2739						 copy, csum);
2740		if ((len -= copy) == 0)
2741			return csum;
2742		offset += copy;
2743		to     += copy;
2744		pos	= copy;
2745	}
2746
2747	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2748		int end;
2749
2750		WARN_ON(start > offset + len);
2751
2752		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2753		if ((copy = end - offset) > 0) {
2754			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755			u32 p_off, p_len, copied;
2756			struct page *p;
2757			__wsum csum2;
2758			u8 *vaddr;
 
2759
2760			if (copy > len)
2761				copy = len;
2762
2763			skb_frag_foreach_page(frag,
2764					      skb_frag_off(frag) + offset - start,
2765					      copy, p, p_off, p_len, copied) {
2766				vaddr = kmap_atomic(p);
2767				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2768								  to + copied,
2769								  p_len, 0);
2770				kunmap_atomic(vaddr);
2771				csum = csum_block_add(csum, csum2, pos);
2772				pos += p_len;
2773			}
2774
2775			if (!(len -= copy))
2776				return csum;
2777			offset += copy;
2778			to     += copy;
 
2779		}
2780		start = end;
2781	}
2782
2783	skb_walk_frags(skb, frag_iter) {
2784		__wsum csum2;
2785		int end;
2786
2787		WARN_ON(start > offset + len);
2788
2789		end = start + frag_iter->len;
2790		if ((copy = end - offset) > 0) {
2791			if (copy > len)
2792				copy = len;
2793			csum2 = skb_copy_and_csum_bits(frag_iter,
2794						       offset - start,
2795						       to, copy, 0);
2796			csum = csum_block_add(csum, csum2, pos);
2797			if ((len -= copy) == 0)
2798				return csum;
2799			offset += copy;
2800			to     += copy;
2801			pos    += copy;
2802		}
2803		start = end;
2804	}
2805	BUG_ON(len);
2806	return csum;
2807}
2808EXPORT_SYMBOL(skb_copy_and_csum_bits);
2809
2810__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2811{
2812	__sum16 sum;
2813
2814	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2815	/* See comments in __skb_checksum_complete(). */
2816	if (likely(!sum)) {
2817		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2818		    !skb->csum_complete_sw)
2819			netdev_rx_csum_fault(skb->dev, skb);
2820	}
2821	if (!skb_shared(skb))
2822		skb->csum_valid = !sum;
2823	return sum;
2824}
2825EXPORT_SYMBOL(__skb_checksum_complete_head);
2826
2827/* This function assumes skb->csum already holds pseudo header's checksum,
2828 * which has been changed from the hardware checksum, for example, by
2829 * __skb_checksum_validate_complete(). And, the original skb->csum must
2830 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2831 *
2832 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2833 * zero. The new checksum is stored back into skb->csum unless the skb is
2834 * shared.
2835 */
2836__sum16 __skb_checksum_complete(struct sk_buff *skb)
2837{
2838	__wsum csum;
2839	__sum16 sum;
2840
2841	csum = skb_checksum(skb, 0, skb->len, 0);
2842
2843	sum = csum_fold(csum_add(skb->csum, csum));
2844	/* This check is inverted, because we already knew the hardware
2845	 * checksum is invalid before calling this function. So, if the
2846	 * re-computed checksum is valid instead, then we have a mismatch
2847	 * between the original skb->csum and skb_checksum(). This means either
2848	 * the original hardware checksum is incorrect or we screw up skb->csum
2849	 * when moving skb->data around.
2850	 */
2851	if (likely(!sum)) {
2852		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2853		    !skb->csum_complete_sw)
2854			netdev_rx_csum_fault(skb->dev, skb);
2855	}
2856
2857	if (!skb_shared(skb)) {
2858		/* Save full packet checksum */
2859		skb->csum = csum;
2860		skb->ip_summed = CHECKSUM_COMPLETE;
2861		skb->csum_complete_sw = 1;
2862		skb->csum_valid = !sum;
2863	}
2864
2865	return sum;
2866}
2867EXPORT_SYMBOL(__skb_checksum_complete);
2868
2869static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2870{
2871	net_warn_ratelimited(
2872		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2873		__func__);
2874	return 0;
2875}
2876
2877static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2878				       int offset, int len)
2879{
2880	net_warn_ratelimited(
2881		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2882		__func__);
2883	return 0;
2884}
2885
2886static const struct skb_checksum_ops default_crc32c_ops = {
2887	.update  = warn_crc32c_csum_update,
2888	.combine = warn_crc32c_csum_combine,
2889};
2890
2891const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2892	&default_crc32c_ops;
2893EXPORT_SYMBOL(crc32c_csum_stub);
2894
2895 /**
2896 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2897 *	@from: source buffer
2898 *
2899 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2900 *	into skb_zerocopy().
2901 */
2902unsigned int
2903skb_zerocopy_headlen(const struct sk_buff *from)
2904{
2905	unsigned int hlen = 0;
2906
2907	if (!from->head_frag ||
2908	    skb_headlen(from) < L1_CACHE_BYTES ||
2909	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2910		hlen = skb_headlen(from);
2911
2912	if (skb_has_frag_list(from))
2913		hlen = from->len;
2914
2915	return hlen;
2916}
2917EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2918
2919/**
2920 *	skb_zerocopy - Zero copy skb to skb
2921 *	@to: destination buffer
2922 *	@from: source buffer
2923 *	@len: number of bytes to copy from source buffer
2924 *	@hlen: size of linear headroom in destination buffer
2925 *
2926 *	Copies up to `len` bytes from `from` to `to` by creating references
2927 *	to the frags in the source buffer.
2928 *
2929 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2930 *	headroom in the `to` buffer.
2931 *
2932 *	Return value:
2933 *	0: everything is OK
2934 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2935 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2936 */
2937int
2938skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2939{
2940	int i, j = 0;
2941	int plen = 0; /* length of skb->head fragment */
2942	int ret;
2943	struct page *page;
2944	unsigned int offset;
2945
2946	BUG_ON(!from->head_frag && !hlen);
2947
2948	/* dont bother with small payloads */
2949	if (len <= skb_tailroom(to))
2950		return skb_copy_bits(from, 0, skb_put(to, len), len);
2951
2952	if (hlen) {
2953		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2954		if (unlikely(ret))
2955			return ret;
2956		len -= hlen;
2957	} else {
2958		plen = min_t(int, skb_headlen(from), len);
2959		if (plen) {
2960			page = virt_to_head_page(from->head);
2961			offset = from->data - (unsigned char *)page_address(page);
2962			__skb_fill_page_desc(to, 0, page, offset, plen);
2963			get_page(page);
2964			j = 1;
2965			len -= plen;
2966		}
2967	}
2968
2969	to->truesize += len + plen;
2970	to->len += len + plen;
2971	to->data_len += len + plen;
2972
2973	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2974		skb_tx_error(from);
2975		return -ENOMEM;
2976	}
2977	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2978
2979	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2980		int size;
2981
2982		if (!len)
2983			break;
2984		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2985		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2986					len);
2987		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2988		len -= size;
2989		skb_frag_ref(to, j);
2990		j++;
2991	}
2992	skb_shinfo(to)->nr_frags = j;
2993
2994	return 0;
2995}
2996EXPORT_SYMBOL_GPL(skb_zerocopy);
2997
2998void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2999{
3000	__wsum csum;
3001	long csstart;
3002
3003	if (skb->ip_summed == CHECKSUM_PARTIAL)
3004		csstart = skb_checksum_start_offset(skb);
3005	else
3006		csstart = skb_headlen(skb);
3007
3008	BUG_ON(csstart > skb_headlen(skb));
3009
3010	skb_copy_from_linear_data(skb, to, csstart);
3011
3012	csum = 0;
3013	if (csstart != skb->len)
3014		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3015					      skb->len - csstart, 0);
3016
3017	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3018		long csstuff = csstart + skb->csum_offset;
3019
3020		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3021	}
3022}
3023EXPORT_SYMBOL(skb_copy_and_csum_dev);
3024
3025/**
3026 *	skb_dequeue - remove from the head of the queue
3027 *	@list: list to dequeue from
3028 *
3029 *	Remove the head of the list. The list lock is taken so the function
3030 *	may be used safely with other locking list functions. The head item is
3031 *	returned or %NULL if the list is empty.
3032 */
3033
3034struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3035{
3036	unsigned long flags;
3037	struct sk_buff *result;
3038
3039	spin_lock_irqsave(&list->lock, flags);
3040	result = __skb_dequeue(list);
3041	spin_unlock_irqrestore(&list->lock, flags);
3042	return result;
3043}
3044EXPORT_SYMBOL(skb_dequeue);
3045
3046/**
3047 *	skb_dequeue_tail - remove from the tail of the queue
3048 *	@list: list to dequeue from
3049 *
3050 *	Remove the tail of the list. The list lock is taken so the function
3051 *	may be used safely with other locking list functions. The tail item is
3052 *	returned or %NULL if the list is empty.
3053 */
3054struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3055{
3056	unsigned long flags;
3057	struct sk_buff *result;
3058
3059	spin_lock_irqsave(&list->lock, flags);
3060	result = __skb_dequeue_tail(list);
3061	spin_unlock_irqrestore(&list->lock, flags);
3062	return result;
3063}
3064EXPORT_SYMBOL(skb_dequeue_tail);
3065
3066/**
3067 *	skb_queue_purge - empty a list
3068 *	@list: list to empty
3069 *
3070 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3071 *	the list and one reference dropped. This function takes the list
3072 *	lock and is atomic with respect to other list locking functions.
3073 */
3074void skb_queue_purge(struct sk_buff_head *list)
3075{
3076	struct sk_buff *skb;
3077	while ((skb = skb_dequeue(list)) != NULL)
3078		kfree_skb(skb);
3079}
3080EXPORT_SYMBOL(skb_queue_purge);
3081
3082/**
3083 *	skb_rbtree_purge - empty a skb rbtree
3084 *	@root: root of the rbtree to empty
3085 *	Return value: the sum of truesizes of all purged skbs.
3086 *
3087 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3088 *	the list and one reference dropped. This function does not take
3089 *	any lock. Synchronization should be handled by the caller (e.g., TCP
3090 *	out-of-order queue is protected by the socket lock).
3091 */
3092unsigned int skb_rbtree_purge(struct rb_root *root)
3093{
3094	struct rb_node *p = rb_first(root);
3095	unsigned int sum = 0;
3096
3097	while (p) {
3098		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3099
3100		p = rb_next(p);
3101		rb_erase(&skb->rbnode, root);
3102		sum += skb->truesize;
3103		kfree_skb(skb);
3104	}
3105	return sum;
3106}
3107
3108/**
3109 *	skb_queue_head - queue a buffer at the list head
3110 *	@list: list to use
3111 *	@newsk: buffer to queue
3112 *
3113 *	Queue a buffer at the start of the list. This function takes the
3114 *	list lock and can be used safely with other locking &sk_buff functions
3115 *	safely.
3116 *
3117 *	A buffer cannot be placed on two lists at the same time.
3118 */
3119void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3120{
3121	unsigned long flags;
3122
3123	spin_lock_irqsave(&list->lock, flags);
3124	__skb_queue_head(list, newsk);
3125	spin_unlock_irqrestore(&list->lock, flags);
3126}
3127EXPORT_SYMBOL(skb_queue_head);
3128
3129/**
3130 *	skb_queue_tail - queue a buffer at the list tail
3131 *	@list: list to use
3132 *	@newsk: buffer to queue
3133 *
3134 *	Queue a buffer at the tail of the list. This function takes the
3135 *	list lock and can be used safely with other locking &sk_buff functions
3136 *	safely.
3137 *
3138 *	A buffer cannot be placed on two lists at the same time.
3139 */
3140void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3141{
3142	unsigned long flags;
3143
3144	spin_lock_irqsave(&list->lock, flags);
3145	__skb_queue_tail(list, newsk);
3146	spin_unlock_irqrestore(&list->lock, flags);
3147}
3148EXPORT_SYMBOL(skb_queue_tail);
3149
3150/**
3151 *	skb_unlink	-	remove a buffer from a list
3152 *	@skb: buffer to remove
3153 *	@list: list to use
3154 *
3155 *	Remove a packet from a list. The list locks are taken and this
3156 *	function is atomic with respect to other list locked calls
3157 *
3158 *	You must know what list the SKB is on.
3159 */
3160void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3161{
3162	unsigned long flags;
3163
3164	spin_lock_irqsave(&list->lock, flags);
3165	__skb_unlink(skb, list);
3166	spin_unlock_irqrestore(&list->lock, flags);
3167}
3168EXPORT_SYMBOL(skb_unlink);
3169
3170/**
3171 *	skb_append	-	append a buffer
3172 *	@old: buffer to insert after
3173 *	@newsk: buffer to insert
3174 *	@list: list to use
3175 *
3176 *	Place a packet after a given packet in a list. The list locks are taken
3177 *	and this function is atomic with respect to other list locked calls.
3178 *	A buffer cannot be placed on two lists at the same time.
3179 */
3180void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3181{
3182	unsigned long flags;
3183
3184	spin_lock_irqsave(&list->lock, flags);
3185	__skb_queue_after(list, old, newsk);
3186	spin_unlock_irqrestore(&list->lock, flags);
3187}
3188EXPORT_SYMBOL(skb_append);
3189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190static inline void skb_split_inside_header(struct sk_buff *skb,
3191					   struct sk_buff* skb1,
3192					   const u32 len, const int pos)
3193{
3194	int i;
3195
3196	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3197					 pos - len);
3198	/* And move data appendix as is. */
3199	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3200		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3201
3202	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3203	skb_shinfo(skb)->nr_frags  = 0;
3204	skb1->data_len		   = skb->data_len;
3205	skb1->len		   += skb1->data_len;
3206	skb->data_len		   = 0;
3207	skb->len		   = len;
3208	skb_set_tail_pointer(skb, len);
3209}
3210
3211static inline void skb_split_no_header(struct sk_buff *skb,
3212				       struct sk_buff* skb1,
3213				       const u32 len, int pos)
3214{
3215	int i, k = 0;
3216	const int nfrags = skb_shinfo(skb)->nr_frags;
3217
3218	skb_shinfo(skb)->nr_frags = 0;
3219	skb1->len		  = skb1->data_len = skb->len - len;
3220	skb->len		  = len;
3221	skb->data_len		  = len - pos;
3222
3223	for (i = 0; i < nfrags; i++) {
3224		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3225
3226		if (pos + size > len) {
3227			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3228
3229			if (pos < len) {
3230				/* Split frag.
3231				 * We have two variants in this case:
3232				 * 1. Move all the frag to the second
3233				 *    part, if it is possible. F.e.
3234				 *    this approach is mandatory for TUX,
3235				 *    where splitting is expensive.
3236				 * 2. Split is accurately. We make this.
3237				 */
3238				skb_frag_ref(skb, i);
3239				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3240				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3241				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3242				skb_shinfo(skb)->nr_frags++;
3243			}
3244			k++;
3245		} else
3246			skb_shinfo(skb)->nr_frags++;
3247		pos += size;
3248	}
3249	skb_shinfo(skb1)->nr_frags = k;
3250}
3251
3252/**
3253 * skb_split - Split fragmented skb to two parts at length len.
3254 * @skb: the buffer to split
3255 * @skb1: the buffer to receive the second part
3256 * @len: new length for skb
3257 */
3258void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3259{
3260	int pos = skb_headlen(skb);
3261
3262	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3263				      SKBTX_SHARED_FRAG;
3264	skb_zerocopy_clone(skb1, skb, 0);
3265	if (len < pos)	/* Split line is inside header. */
3266		skb_split_inside_header(skb, skb1, len, pos);
3267	else		/* Second chunk has no header, nothing to copy. */
3268		skb_split_no_header(skb, skb1, len, pos);
3269}
3270EXPORT_SYMBOL(skb_split);
3271
3272/* Shifting from/to a cloned skb is a no-go.
3273 *
3274 * Caller cannot keep skb_shinfo related pointers past calling here!
3275 */
3276static int skb_prepare_for_shift(struct sk_buff *skb)
3277{
3278	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3279}
3280
3281/**
3282 * skb_shift - Shifts paged data partially from skb to another
3283 * @tgt: buffer into which tail data gets added
3284 * @skb: buffer from which the paged data comes from
3285 * @shiftlen: shift up to this many bytes
3286 *
3287 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3288 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3289 * It's up to caller to free skb if everything was shifted.
3290 *
3291 * If @tgt runs out of frags, the whole operation is aborted.
3292 *
3293 * Skb cannot include anything else but paged data while tgt is allowed
3294 * to have non-paged data as well.
3295 *
3296 * TODO: full sized shift could be optimized but that would need
3297 * specialized skb free'er to handle frags without up-to-date nr_frags.
3298 */
3299int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3300{
3301	int from, to, merge, todo;
3302	skb_frag_t *fragfrom, *fragto;
3303
3304	BUG_ON(shiftlen > skb->len);
3305
3306	if (skb_headlen(skb))
3307		return 0;
3308	if (skb_zcopy(tgt) || skb_zcopy(skb))
3309		return 0;
3310
3311	todo = shiftlen;
3312	from = 0;
3313	to = skb_shinfo(tgt)->nr_frags;
3314	fragfrom = &skb_shinfo(skb)->frags[from];
3315
3316	/* Actual merge is delayed until the point when we know we can
3317	 * commit all, so that we don't have to undo partial changes
3318	 */
3319	if (!to ||
3320	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3321			      skb_frag_off(fragfrom))) {
3322		merge = -1;
3323	} else {
3324		merge = to - 1;
3325
3326		todo -= skb_frag_size(fragfrom);
3327		if (todo < 0) {
3328			if (skb_prepare_for_shift(skb) ||
3329			    skb_prepare_for_shift(tgt))
3330				return 0;
3331
3332			/* All previous frag pointers might be stale! */
3333			fragfrom = &skb_shinfo(skb)->frags[from];
3334			fragto = &skb_shinfo(tgt)->frags[merge];
3335
3336			skb_frag_size_add(fragto, shiftlen);
3337			skb_frag_size_sub(fragfrom, shiftlen);
3338			skb_frag_off_add(fragfrom, shiftlen);
3339
3340			goto onlymerged;
3341		}
3342
3343		from++;
3344	}
3345
3346	/* Skip full, not-fitting skb to avoid expensive operations */
3347	if ((shiftlen == skb->len) &&
3348	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3349		return 0;
3350
3351	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3352		return 0;
3353
3354	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3355		if (to == MAX_SKB_FRAGS)
3356			return 0;
3357
3358		fragfrom = &skb_shinfo(skb)->frags[from];
3359		fragto = &skb_shinfo(tgt)->frags[to];
3360
3361		if (todo >= skb_frag_size(fragfrom)) {
3362			*fragto = *fragfrom;
3363			todo -= skb_frag_size(fragfrom);
3364			from++;
3365			to++;
3366
3367		} else {
3368			__skb_frag_ref(fragfrom);
3369			skb_frag_page_copy(fragto, fragfrom);
3370			skb_frag_off_copy(fragto, fragfrom);
3371			skb_frag_size_set(fragto, todo);
3372
3373			skb_frag_off_add(fragfrom, todo);
3374			skb_frag_size_sub(fragfrom, todo);
3375			todo = 0;
3376
3377			to++;
3378			break;
3379		}
3380	}
3381
3382	/* Ready to "commit" this state change to tgt */
3383	skb_shinfo(tgt)->nr_frags = to;
3384
3385	if (merge >= 0) {
3386		fragfrom = &skb_shinfo(skb)->frags[0];
3387		fragto = &skb_shinfo(tgt)->frags[merge];
3388
3389		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3390		__skb_frag_unref(fragfrom);
3391	}
3392
3393	/* Reposition in the original skb */
3394	to = 0;
3395	while (from < skb_shinfo(skb)->nr_frags)
3396		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3397	skb_shinfo(skb)->nr_frags = to;
3398
3399	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3400
3401onlymerged:
3402	/* Most likely the tgt won't ever need its checksum anymore, skb on
3403	 * the other hand might need it if it needs to be resent
3404	 */
3405	tgt->ip_summed = CHECKSUM_PARTIAL;
3406	skb->ip_summed = CHECKSUM_PARTIAL;
3407
3408	/* Yak, is it really working this way? Some helper please? */
3409	skb->len -= shiftlen;
3410	skb->data_len -= shiftlen;
3411	skb->truesize -= shiftlen;
3412	tgt->len += shiftlen;
3413	tgt->data_len += shiftlen;
3414	tgt->truesize += shiftlen;
3415
3416	return shiftlen;
3417}
3418
3419/**
3420 * skb_prepare_seq_read - Prepare a sequential read of skb data
3421 * @skb: the buffer to read
3422 * @from: lower offset of data to be read
3423 * @to: upper offset of data to be read
3424 * @st: state variable
3425 *
3426 * Initializes the specified state variable. Must be called before
3427 * invoking skb_seq_read() for the first time.
3428 */
3429void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3430			  unsigned int to, struct skb_seq_state *st)
3431{
3432	st->lower_offset = from;
3433	st->upper_offset = to;
3434	st->root_skb = st->cur_skb = skb;
3435	st->frag_idx = st->stepped_offset = 0;
3436	st->frag_data = NULL;
3437}
3438EXPORT_SYMBOL(skb_prepare_seq_read);
3439
3440/**
3441 * skb_seq_read - Sequentially read skb data
3442 * @consumed: number of bytes consumed by the caller so far
3443 * @data: destination pointer for data to be returned
3444 * @st: state variable
3445 *
3446 * Reads a block of skb data at @consumed relative to the
3447 * lower offset specified to skb_prepare_seq_read(). Assigns
3448 * the head of the data block to @data and returns the length
3449 * of the block or 0 if the end of the skb data or the upper
3450 * offset has been reached.
3451 *
3452 * The caller is not required to consume all of the data
3453 * returned, i.e. @consumed is typically set to the number
3454 * of bytes already consumed and the next call to
3455 * skb_seq_read() will return the remaining part of the block.
3456 *
3457 * Note 1: The size of each block of data returned can be arbitrary,
3458 *       this limitation is the cost for zerocopy sequential
3459 *       reads of potentially non linear data.
3460 *
3461 * Note 2: Fragment lists within fragments are not implemented
3462 *       at the moment, state->root_skb could be replaced with
3463 *       a stack for this purpose.
3464 */
3465unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3466			  struct skb_seq_state *st)
3467{
3468	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3469	skb_frag_t *frag;
3470
3471	if (unlikely(abs_offset >= st->upper_offset)) {
3472		if (st->frag_data) {
3473			kunmap_atomic(st->frag_data);
3474			st->frag_data = NULL;
3475		}
3476		return 0;
3477	}
3478
3479next_skb:
3480	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3481
3482	if (abs_offset < block_limit && !st->frag_data) {
3483		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3484		return block_limit - abs_offset;
3485	}
3486
3487	if (st->frag_idx == 0 && !st->frag_data)
3488		st->stepped_offset += skb_headlen(st->cur_skb);
3489
3490	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3491		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3492		block_limit = skb_frag_size(frag) + st->stepped_offset;
3493
3494		if (abs_offset < block_limit) {
3495			if (!st->frag_data)
3496				st->frag_data = kmap_atomic(skb_frag_page(frag));
3497
3498			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3499				(abs_offset - st->stepped_offset);
3500
3501			return block_limit - abs_offset;
3502		}
3503
3504		if (st->frag_data) {
3505			kunmap_atomic(st->frag_data);
3506			st->frag_data = NULL;
3507		}
3508
3509		st->frag_idx++;
3510		st->stepped_offset += skb_frag_size(frag);
3511	}
3512
3513	if (st->frag_data) {
3514		kunmap_atomic(st->frag_data);
3515		st->frag_data = NULL;
3516	}
3517
3518	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3519		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3520		st->frag_idx = 0;
3521		goto next_skb;
3522	} else if (st->cur_skb->next) {
3523		st->cur_skb = st->cur_skb->next;
3524		st->frag_idx = 0;
3525		goto next_skb;
3526	}
3527
3528	return 0;
3529}
3530EXPORT_SYMBOL(skb_seq_read);
3531
3532/**
3533 * skb_abort_seq_read - Abort a sequential read of skb data
3534 * @st: state variable
3535 *
3536 * Must be called if skb_seq_read() was not called until it
3537 * returned 0.
3538 */
3539void skb_abort_seq_read(struct skb_seq_state *st)
3540{
3541	if (st->frag_data)
3542		kunmap_atomic(st->frag_data);
3543}
3544EXPORT_SYMBOL(skb_abort_seq_read);
3545
3546#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3547
3548static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3549					  struct ts_config *conf,
3550					  struct ts_state *state)
3551{
3552	return skb_seq_read(offset, text, TS_SKB_CB(state));
3553}
3554
3555static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3556{
3557	skb_abort_seq_read(TS_SKB_CB(state));
3558}
3559
3560/**
3561 * skb_find_text - Find a text pattern in skb data
3562 * @skb: the buffer to look in
3563 * @from: search offset
3564 * @to: search limit
3565 * @config: textsearch configuration
 
3566 *
3567 * Finds a pattern in the skb data according to the specified
3568 * textsearch configuration. Use textsearch_next() to retrieve
3569 * subsequent occurrences of the pattern. Returns the offset
3570 * to the first occurrence or UINT_MAX if no match was found.
3571 */
3572unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3573			   unsigned int to, struct ts_config *config)
 
3574{
3575	struct ts_state state;
3576	unsigned int ret;
3577
3578	config->get_next_block = skb_ts_get_next_block;
3579	config->finish = skb_ts_finish;
3580
3581	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3582
3583	ret = textsearch_find(config, &state);
3584	return (ret <= to - from ? ret : UINT_MAX);
3585}
3586EXPORT_SYMBOL(skb_find_text);
3587
3588int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3589			 int offset, size_t size)
3590{
3591	int i = skb_shinfo(skb)->nr_frags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3592
3593	if (skb_can_coalesce(skb, i, page, offset)) {
3594		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3595	} else if (i < MAX_SKB_FRAGS) {
3596		get_page(page);
3597		skb_fill_page_desc(skb, i, page, offset, size);
3598	} else {
3599		return -EMSGSIZE;
3600	}
3601
3602	return 0;
3603}
3604EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3605
3606/**
3607 *	skb_pull_rcsum - pull skb and update receive checksum
3608 *	@skb: buffer to update
3609 *	@len: length of data pulled
3610 *
3611 *	This function performs an skb_pull on the packet and updates
3612 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3613 *	receive path processing instead of skb_pull unless you know
3614 *	that the checksum difference is zero (e.g., a valid IP header)
3615 *	or you are setting ip_summed to CHECKSUM_NONE.
3616 */
3617void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3618{
3619	unsigned char *data = skb->data;
3620
3621	BUG_ON(len > skb->len);
3622	__skb_pull(skb, len);
3623	skb_postpull_rcsum(skb, data, len);
3624	return skb->data;
 
3625}
3626EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3627
3628static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3629{
3630	skb_frag_t head_frag;
3631	struct page *page;
3632
3633	page = virt_to_head_page(frag_skb->head);
3634	__skb_frag_set_page(&head_frag, page);
3635	skb_frag_off_set(&head_frag, frag_skb->data -
3636			 (unsigned char *)page_address(page));
3637	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3638	return head_frag;
3639}
3640
3641/**
3642 *	skb_segment - Perform protocol segmentation on skb.
3643 *	@head_skb: buffer to segment
3644 *	@features: features for the output path (see dev->features)
3645 *
3646 *	This function performs segmentation on the given skb.  It returns
3647 *	a pointer to the first in a list of new skbs for the segments.
3648 *	In case of error it returns ERR_PTR(err).
3649 */
3650struct sk_buff *skb_segment(struct sk_buff *head_skb,
3651			    netdev_features_t features)
3652{
3653	struct sk_buff *segs = NULL;
3654	struct sk_buff *tail = NULL;
3655	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3656	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3657	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3658	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3659	struct sk_buff *frag_skb = head_skb;
3660	unsigned int offset = doffset;
3661	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3662	unsigned int partial_segs = 0;
3663	unsigned int headroom;
3664	unsigned int len = head_skb->len;
3665	__be16 proto;
3666	bool csum, sg;
3667	int nfrags = skb_shinfo(head_skb)->nr_frags;
3668	int err = -ENOMEM;
3669	int i = 0;
3670	int pos;
3671	int dummy;
3672
3673	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3674	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3675		/* gso_size is untrusted, and we have a frag_list with a linear
3676		 * non head_frag head.
3677		 *
3678		 * (we assume checking the first list_skb member suffices;
3679		 * i.e if either of the list_skb members have non head_frag
3680		 * head, then the first one has too).
3681		 *
3682		 * If head_skb's headlen does not fit requested gso_size, it
3683		 * means that the frag_list members do NOT terminate on exact
3684		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3685		 * sharing. Therefore we must fallback to copying the frag_list
3686		 * skbs; we do so by disabling SG.
3687		 */
3688		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3689			features &= ~NETIF_F_SG;
3690	}
3691
3692	__skb_push(head_skb, doffset);
3693	proto = skb_network_protocol(head_skb, &dummy);
3694	if (unlikely(!proto))
3695		return ERR_PTR(-EINVAL);
3696
3697	sg = !!(features & NETIF_F_SG);
3698	csum = !!can_checksum_protocol(features, proto);
3699
3700	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3701		if (!(features & NETIF_F_GSO_PARTIAL)) {
3702			struct sk_buff *iter;
3703			unsigned int frag_len;
3704
3705			if (!list_skb ||
3706			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3707				goto normal;
3708
3709			/* If we get here then all the required
3710			 * GSO features except frag_list are supported.
3711			 * Try to split the SKB to multiple GSO SKBs
3712			 * with no frag_list.
3713			 * Currently we can do that only when the buffers don't
3714			 * have a linear part and all the buffers except
3715			 * the last are of the same length.
3716			 */
3717			frag_len = list_skb->len;
3718			skb_walk_frags(head_skb, iter) {
3719				if (frag_len != iter->len && iter->next)
3720					goto normal;
3721				if (skb_headlen(iter) && !iter->head_frag)
3722					goto normal;
3723
3724				len -= iter->len;
3725			}
3726
3727			if (len != frag_len)
3728				goto normal;
3729		}
3730
3731		/* GSO partial only requires that we trim off any excess that
3732		 * doesn't fit into an MSS sized block, so take care of that
3733		 * now.
3734		 */
3735		partial_segs = len / mss;
3736		if (partial_segs > 1)
3737			mss *= partial_segs;
3738		else
3739			partial_segs = 0;
3740	}
3741
3742normal:
3743	headroom = skb_headroom(head_skb);
3744	pos = skb_headlen(head_skb);
3745
3746	do {
3747		struct sk_buff *nskb;
3748		skb_frag_t *nskb_frag;
3749		int hsize;
3750		int size;
3751
3752		if (unlikely(mss == GSO_BY_FRAGS)) {
3753			len = list_skb->len;
3754		} else {
3755			len = head_skb->len - offset;
3756			if (len > mss)
3757				len = mss;
3758		}
3759
3760		hsize = skb_headlen(head_skb) - offset;
3761		if (hsize < 0)
3762			hsize = 0;
3763		if (hsize > len || !sg)
3764			hsize = len;
3765
3766		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3767		    (skb_headlen(list_skb) == len || sg)) {
3768			BUG_ON(skb_headlen(list_skb) > len);
3769
3770			i = 0;
3771			nfrags = skb_shinfo(list_skb)->nr_frags;
3772			frag = skb_shinfo(list_skb)->frags;
3773			frag_skb = list_skb;
3774			pos += skb_headlen(list_skb);
3775
3776			while (pos < offset + len) {
3777				BUG_ON(i >= nfrags);
3778
3779				size = skb_frag_size(frag);
3780				if (pos + size > offset + len)
3781					break;
3782
3783				i++;
3784				pos += size;
3785				frag++;
3786			}
3787
3788			nskb = skb_clone(list_skb, GFP_ATOMIC);
3789			list_skb = list_skb->next;
 
3790
3791			if (unlikely(!nskb))
3792				goto err;
3793
3794			if (unlikely(pskb_trim(nskb, len))) {
3795				kfree_skb(nskb);
3796				goto err;
3797			}
3798
3799			hsize = skb_end_offset(nskb);
3800			if (skb_cow_head(nskb, doffset + headroom)) {
3801				kfree_skb(nskb);
3802				goto err;
3803			}
3804
3805			nskb->truesize += skb_end_offset(nskb) - hsize;
 
3806			skb_release_head_state(nskb);
3807			__skb_push(nskb, doffset);
3808		} else {
3809			nskb = __alloc_skb(hsize + doffset + headroom,
3810					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3811					   NUMA_NO_NODE);
3812
3813			if (unlikely(!nskb))
3814				goto err;
3815
3816			skb_reserve(nskb, headroom);
3817			__skb_put(nskb, doffset);
3818		}
3819
3820		if (segs)
3821			tail->next = nskb;
3822		else
3823			segs = nskb;
3824		tail = nskb;
3825
3826		__copy_skb_header(nskb, head_skb);
 
3827
3828		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3829		skb_reset_mac_len(nskb);
 
 
 
 
 
 
 
3830
3831		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3832						 nskb->data - tnl_hlen,
3833						 doffset + tnl_hlen);
3834
3835		if (nskb->len == len + doffset)
3836			goto perform_csum_check;
3837
3838		if (!sg) {
3839			if (!nskb->remcsum_offload)
3840				nskb->ip_summed = CHECKSUM_NONE;
3841			SKB_GSO_CB(nskb)->csum =
3842				skb_copy_and_csum_bits(head_skb, offset,
3843						       skb_put(nskb, len),
3844						       len, 0);
3845			SKB_GSO_CB(nskb)->csum_start =
3846				skb_headroom(nskb) + doffset;
3847			continue;
3848		}
3849
3850		nskb_frag = skb_shinfo(nskb)->frags;
3851
3852		skb_copy_from_linear_data_offset(head_skb, offset,
3853						 skb_put(nskb, hsize), hsize);
3854
3855		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3856					      SKBTX_SHARED_FRAG;
3857
3858		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3859		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3860			goto err;
3861
3862		while (pos < offset + len) {
3863			if (i >= nfrags) {
3864				i = 0;
3865				nfrags = skb_shinfo(list_skb)->nr_frags;
3866				frag = skb_shinfo(list_skb)->frags;
3867				frag_skb = list_skb;
3868				if (!skb_headlen(list_skb)) {
3869					BUG_ON(!nfrags);
3870				} else {
3871					BUG_ON(!list_skb->head_frag);
3872
3873					/* to make room for head_frag. */
3874					i--;
3875					frag--;
3876				}
3877				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3878				    skb_zerocopy_clone(nskb, frag_skb,
3879						       GFP_ATOMIC))
3880					goto err;
3881
3882				list_skb = list_skb->next;
3883			}
3884
3885			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3886				     MAX_SKB_FRAGS)) {
3887				net_warn_ratelimited(
3888					"skb_segment: too many frags: %u %u\n",
3889					pos, mss);
3890				err = -EINVAL;
3891				goto err;
3892			}
3893
3894			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3895			__skb_frag_ref(nskb_frag);
3896			size = skb_frag_size(nskb_frag);
3897
3898			if (pos < offset) {
3899				skb_frag_off_add(nskb_frag, offset - pos);
3900				skb_frag_size_sub(nskb_frag, offset - pos);
3901			}
3902
3903			skb_shinfo(nskb)->nr_frags++;
3904
3905			if (pos + size <= offset + len) {
3906				i++;
3907				frag++;
3908				pos += size;
3909			} else {
3910				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3911				goto skip_fraglist;
3912			}
3913
3914			nskb_frag++;
3915		}
3916
3917skip_fraglist:
3918		nskb->data_len = len - hsize;
3919		nskb->len += nskb->data_len;
3920		nskb->truesize += nskb->data_len;
3921
3922perform_csum_check:
3923		if (!csum) {
3924			if (skb_has_shared_frag(nskb) &&
3925			    __skb_linearize(nskb))
3926				goto err;
3927
3928			if (!nskb->remcsum_offload)
3929				nskb->ip_summed = CHECKSUM_NONE;
3930			SKB_GSO_CB(nskb)->csum =
3931				skb_checksum(nskb, doffset,
3932					     nskb->len - doffset, 0);
3933			SKB_GSO_CB(nskb)->csum_start =
3934				skb_headroom(nskb) + doffset;
3935		}
3936	} while ((offset += len) < head_skb->len);
3937
3938	/* Some callers want to get the end of the list.
3939	 * Put it in segs->prev to avoid walking the list.
3940	 * (see validate_xmit_skb_list() for example)
3941	 */
3942	segs->prev = tail;
3943
3944	if (partial_segs) {
3945		struct sk_buff *iter;
3946		int type = skb_shinfo(head_skb)->gso_type;
3947		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3948
3949		/* Update type to add partial and then remove dodgy if set */
3950		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3951		type &= ~SKB_GSO_DODGY;
3952
3953		/* Update GSO info and prepare to start updating headers on
3954		 * our way back down the stack of protocols.
3955		 */
3956		for (iter = segs; iter; iter = iter->next) {
3957			skb_shinfo(iter)->gso_size = gso_size;
3958			skb_shinfo(iter)->gso_segs = partial_segs;
3959			skb_shinfo(iter)->gso_type = type;
3960			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3961		}
3962
3963		if (tail->len - doffset <= gso_size)
3964			skb_shinfo(tail)->gso_size = 0;
3965		else if (tail != segs)
3966			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3967	}
3968
3969	/* Following permits correct backpressure, for protocols
3970	 * using skb_set_owner_w().
3971	 * Idea is to tranfert ownership from head_skb to last segment.
3972	 */
3973	if (head_skb->destructor == sock_wfree) {
3974		swap(tail->truesize, head_skb->truesize);
3975		swap(tail->destructor, head_skb->destructor);
3976		swap(tail->sk, head_skb->sk);
3977	}
3978	return segs;
3979
3980err:
3981	kfree_skb_list(segs);
 
 
 
3982	return ERR_PTR(err);
3983}
3984EXPORT_SYMBOL_GPL(skb_segment);
3985
3986int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3987{
3988	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
 
 
 
 
 
3989	unsigned int offset = skb_gro_offset(skb);
3990	unsigned int headlen = skb_headlen(skb);
3991	unsigned int len = skb_gro_len(skb);
3992	unsigned int delta_truesize;
3993	struct sk_buff *lp;
3994
3995	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3996		return -E2BIG;
3997
3998	lp = NAPI_GRO_CB(p)->last;
3999	pinfo = skb_shinfo(lp);
4000
4001	if (headlen <= offset) {
4002		skb_frag_t *frag;
4003		skb_frag_t *frag2;
4004		int i = skbinfo->nr_frags;
4005		int nr_frags = pinfo->nr_frags + i;
4006
 
 
4007		if (nr_frags > MAX_SKB_FRAGS)
4008			goto merge;
4009
4010		offset -= headlen;
4011		pinfo->nr_frags = nr_frags;
4012		skbinfo->nr_frags = 0;
4013
4014		frag = pinfo->frags + nr_frags;
4015		frag2 = skbinfo->frags + i;
4016		do {
4017			*--frag = *--frag2;
4018		} while (--i);
4019
4020		skb_frag_off_add(frag, offset);
4021		skb_frag_size_sub(frag, offset);
4022
4023		/* all fragments truesize : remove (head size + sk_buff) */
4024		delta_truesize = skb->truesize -
4025				 SKB_TRUESIZE(skb_end_offset(skb));
4026
4027		skb->truesize -= skb->data_len;
4028		skb->len -= skb->data_len;
4029		skb->data_len = 0;
4030
4031		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4032		goto done;
4033	} else if (skb->head_frag) {
4034		int nr_frags = pinfo->nr_frags;
4035		skb_frag_t *frag = pinfo->frags + nr_frags;
4036		struct page *page = virt_to_head_page(skb->head);
4037		unsigned int first_size = headlen - offset;
4038		unsigned int first_offset;
4039
4040		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4041			goto merge;
4042
4043		first_offset = skb->data -
4044			       (unsigned char *)page_address(page) +
4045			       offset;
4046
4047		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4048
4049		__skb_frag_set_page(frag, page);
4050		skb_frag_off_set(frag, first_offset);
4051		skb_frag_size_set(frag, first_size);
4052
4053		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4054		/* We dont need to clear skbinfo->nr_frags here */
4055
4056		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4057		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4058		goto done;
4059	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4060
4061merge:
4062	delta_truesize = skb->truesize;
4063	if (offset > headlen) {
4064		unsigned int eat = offset - headlen;
4065
4066		skb_frag_off_add(&skbinfo->frags[0], eat);
4067		skb_frag_size_sub(&skbinfo->frags[0], eat);
4068		skb->data_len -= eat;
4069		skb->len -= eat;
4070		offset = headlen;
4071	}
4072
4073	__skb_pull(skb, offset);
4074
4075	if (NAPI_GRO_CB(p)->last == p)
4076		skb_shinfo(p)->frag_list = skb;
4077	else
4078		NAPI_GRO_CB(p)->last->next = skb;
4079	NAPI_GRO_CB(p)->last = skb;
4080	__skb_header_release(skb);
4081	lp = p;
4082
4083done:
4084	NAPI_GRO_CB(p)->count++;
4085	p->data_len += len;
4086	p->truesize += delta_truesize;
4087	p->len += len;
4088	if (lp != p) {
4089		lp->data_len += len;
4090		lp->truesize += delta_truesize;
4091		lp->len += len;
4092	}
4093	NAPI_GRO_CB(skb)->same_flow = 1;
4094	return 0;
4095}
4096EXPORT_SYMBOL_GPL(skb_gro_receive);
4097
4098#ifdef CONFIG_SKB_EXTENSIONS
4099#define SKB_EXT_ALIGN_VALUE	8
4100#define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4101
4102static const u8 skb_ext_type_len[] = {
4103#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4104	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4105#endif
4106#ifdef CONFIG_XFRM
4107	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4108#endif
4109#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4110	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4111#endif
4112};
4113
4114static __always_inline unsigned int skb_ext_total_length(void)
4115{
4116	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4117#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4118		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4119#endif
4120#ifdef CONFIG_XFRM
4121		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4122#endif
4123#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4124		skb_ext_type_len[TC_SKB_EXT] +
4125#endif
4126		0;
4127}
4128
4129static void skb_extensions_init(void)
4130{
4131	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4132	BUILD_BUG_ON(skb_ext_total_length() > 255);
4133
4134	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4135					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4136					     0,
4137					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4138					     NULL);
4139}
4140#else
4141static void skb_extensions_init(void) {}
4142#endif
4143
4144void __init skb_init(void)
4145{
4146	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4147					      sizeof(struct sk_buff),
4148					      0,
4149					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4150					      offsetof(struct sk_buff, cb),
4151					      sizeof_field(struct sk_buff, cb),
4152					      NULL);
4153	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4154						sizeof(struct sk_buff_fclones),
 
4155						0,
4156						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4157						NULL);
4158	skb_extensions_init();
4159}
4160
 
 
 
 
 
 
 
 
 
 
4161static int
4162__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4163	       unsigned int recursion_level)
4164{
4165	int start = skb_headlen(skb);
4166	int i, copy = start - offset;
4167	struct sk_buff *frag_iter;
4168	int elt = 0;
4169
4170	if (unlikely(recursion_level >= 24))
4171		return -EMSGSIZE;
4172
4173	if (copy > 0) {
4174		if (copy > len)
4175			copy = len;
4176		sg_set_buf(sg, skb->data + offset, copy);
4177		elt++;
4178		if ((len -= copy) == 0)
4179			return elt;
4180		offset += copy;
4181	}
4182
4183	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4184		int end;
4185
4186		WARN_ON(start > offset + len);
4187
4188		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4189		if ((copy = end - offset) > 0) {
4190			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4191			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4192				return -EMSGSIZE;
4193
4194			if (copy > len)
4195				copy = len;
4196			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4197				    skb_frag_off(frag) + offset - start);
4198			elt++;
4199			if (!(len -= copy))
4200				return elt;
4201			offset += copy;
4202		}
4203		start = end;
4204	}
4205
4206	skb_walk_frags(skb, frag_iter) {
4207		int end, ret;
4208
4209		WARN_ON(start > offset + len);
4210
4211		end = start + frag_iter->len;
4212		if ((copy = end - offset) > 0) {
4213			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4214				return -EMSGSIZE;
4215
4216			if (copy > len)
4217				copy = len;
4218			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4219					      copy, recursion_level + 1);
4220			if (unlikely(ret < 0))
4221				return ret;
4222			elt += ret;
4223			if ((len -= copy) == 0)
4224				return elt;
4225			offset += copy;
4226		}
4227		start = end;
4228	}
4229	BUG_ON(len);
4230	return elt;
4231}
4232
4233/**
4234 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4235 *	@skb: Socket buffer containing the buffers to be mapped
4236 *	@sg: The scatter-gather list to map into
4237 *	@offset: The offset into the buffer's contents to start mapping
4238 *	@len: Length of buffer space to be mapped
4239 *
4240 *	Fill the specified scatter-gather list with mappings/pointers into a
4241 *	region of the buffer space attached to a socket buffer. Returns either
4242 *	the number of scatterlist items used, or -EMSGSIZE if the contents
4243 *	could not fit.
4244 */
4245int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4246{
4247	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4248
4249	if (nsg <= 0)
4250		return nsg;
4251
4252	sg_mark_end(&sg[nsg - 1]);
4253
4254	return nsg;
4255}
4256EXPORT_SYMBOL_GPL(skb_to_sgvec);
4257
4258/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4259 * sglist without mark the sg which contain last skb data as the end.
4260 * So the caller can mannipulate sg list as will when padding new data after
4261 * the first call without calling sg_unmark_end to expend sg list.
4262 *
4263 * Scenario to use skb_to_sgvec_nomark:
4264 * 1. sg_init_table
4265 * 2. skb_to_sgvec_nomark(payload1)
4266 * 3. skb_to_sgvec_nomark(payload2)
4267 *
4268 * This is equivalent to:
4269 * 1. sg_init_table
4270 * 2. skb_to_sgvec(payload1)
4271 * 3. sg_unmark_end
4272 * 4. skb_to_sgvec(payload2)
4273 *
4274 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4275 * is more preferable.
4276 */
4277int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4278			int offset, int len)
4279{
4280	return __skb_to_sgvec(skb, sg, offset, len, 0);
4281}
4282EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4283
4284
4285
4286/**
4287 *	skb_cow_data - Check that a socket buffer's data buffers are writable
4288 *	@skb: The socket buffer to check.
4289 *	@tailbits: Amount of trailing space to be added
4290 *	@trailer: Returned pointer to the skb where the @tailbits space begins
4291 *
4292 *	Make sure that the data buffers attached to a socket buffer are
4293 *	writable. If they are not, private copies are made of the data buffers
4294 *	and the socket buffer is set to use these instead.
4295 *
4296 *	If @tailbits is given, make sure that there is space to write @tailbits
4297 *	bytes of data beyond current end of socket buffer.  @trailer will be
4298 *	set to point to the skb in which this space begins.
4299 *
4300 *	The number of scatterlist elements required to completely map the
4301 *	COW'd and extended socket buffer will be returned.
4302 */
4303int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4304{
4305	int copyflag;
4306	int elt;
4307	struct sk_buff *skb1, **skb_p;
4308
4309	/* If skb is cloned or its head is paged, reallocate
4310	 * head pulling out all the pages (pages are considered not writable
4311	 * at the moment even if they are anonymous).
4312	 */
4313	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4314	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4315		return -ENOMEM;
4316
4317	/* Easy case. Most of packets will go this way. */
4318	if (!skb_has_frag_list(skb)) {
4319		/* A little of trouble, not enough of space for trailer.
4320		 * This should not happen, when stack is tuned to generate
4321		 * good frames. OK, on miss we reallocate and reserve even more
4322		 * space, 128 bytes is fair. */
4323
4324		if (skb_tailroom(skb) < tailbits &&
4325		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4326			return -ENOMEM;
4327
4328		/* Voila! */
4329		*trailer = skb;
4330		return 1;
4331	}
4332
4333	/* Misery. We are in troubles, going to mincer fragments... */
4334
4335	elt = 1;
4336	skb_p = &skb_shinfo(skb)->frag_list;
4337	copyflag = 0;
4338
4339	while ((skb1 = *skb_p) != NULL) {
4340		int ntail = 0;
4341
4342		/* The fragment is partially pulled by someone,
4343		 * this can happen on input. Copy it and everything
4344		 * after it. */
4345
4346		if (skb_shared(skb1))
4347			copyflag = 1;
4348
4349		/* If the skb is the last, worry about trailer. */
4350
4351		if (skb1->next == NULL && tailbits) {
4352			if (skb_shinfo(skb1)->nr_frags ||
4353			    skb_has_frag_list(skb1) ||
4354			    skb_tailroom(skb1) < tailbits)
4355				ntail = tailbits + 128;
4356		}
4357
4358		if (copyflag ||
4359		    skb_cloned(skb1) ||
4360		    ntail ||
4361		    skb_shinfo(skb1)->nr_frags ||
4362		    skb_has_frag_list(skb1)) {
4363			struct sk_buff *skb2;
4364
4365			/* Fuck, we are miserable poor guys... */
4366			if (ntail == 0)
4367				skb2 = skb_copy(skb1, GFP_ATOMIC);
4368			else
4369				skb2 = skb_copy_expand(skb1,
4370						       skb_headroom(skb1),
4371						       ntail,
4372						       GFP_ATOMIC);
4373			if (unlikely(skb2 == NULL))
4374				return -ENOMEM;
4375
4376			if (skb1->sk)
4377				skb_set_owner_w(skb2, skb1->sk);
4378
4379			/* Looking around. Are we still alive?
4380			 * OK, link new skb, drop old one */
4381
4382			skb2->next = skb1->next;
4383			*skb_p = skb2;
4384			kfree_skb(skb1);
4385			skb1 = skb2;
4386		}
4387		elt++;
4388		*trailer = skb1;
4389		skb_p = &skb1->next;
4390	}
4391
4392	return elt;
4393}
4394EXPORT_SYMBOL_GPL(skb_cow_data);
4395
4396static void sock_rmem_free(struct sk_buff *skb)
4397{
4398	struct sock *sk = skb->sk;
4399
4400	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4401}
4402
4403static void skb_set_err_queue(struct sk_buff *skb)
4404{
4405	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4406	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4407	 */
4408	skb->pkt_type = PACKET_OUTGOING;
4409	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4410}
4411
4412/*
4413 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4414 */
4415int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4416{
4417	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4418	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4419		return -ENOMEM;
4420
4421	skb_orphan(skb);
4422	skb->sk = sk;
4423	skb->destructor = sock_rmem_free;
4424	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4425	skb_set_err_queue(skb);
4426
4427	/* before exiting rcu section, make sure dst is refcounted */
4428	skb_dst_force(skb);
4429
4430	skb_queue_tail(&sk->sk_error_queue, skb);
4431	if (!sock_flag(sk, SOCK_DEAD))
4432		sk->sk_error_report(sk);
4433	return 0;
4434}
4435EXPORT_SYMBOL(sock_queue_err_skb);
4436
4437static bool is_icmp_err_skb(const struct sk_buff *skb)
4438{
4439	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4440		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4441}
4442
4443struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4444{
4445	struct sk_buff_head *q = &sk->sk_error_queue;
4446	struct sk_buff *skb, *skb_next = NULL;
4447	bool icmp_next = false;
4448	unsigned long flags;
4449
4450	spin_lock_irqsave(&q->lock, flags);
4451	skb = __skb_dequeue(q);
4452	if (skb && (skb_next = skb_peek(q))) {
4453		icmp_next = is_icmp_err_skb(skb_next);
4454		if (icmp_next)
4455			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4456	}
4457	spin_unlock_irqrestore(&q->lock, flags);
4458
4459	if (is_icmp_err_skb(skb) && !icmp_next)
4460		sk->sk_err = 0;
4461
4462	if (skb_next)
4463		sk->sk_error_report(sk);
4464
4465	return skb;
4466}
4467EXPORT_SYMBOL(sock_dequeue_err_skb);
4468
4469/**
4470 * skb_clone_sk - create clone of skb, and take reference to socket
4471 * @skb: the skb to clone
4472 *
4473 * This function creates a clone of a buffer that holds a reference on
4474 * sk_refcnt.  Buffers created via this function are meant to be
4475 * returned using sock_queue_err_skb, or free via kfree_skb.
4476 *
4477 * When passing buffers allocated with this function to sock_queue_err_skb
4478 * it is necessary to wrap the call with sock_hold/sock_put in order to
4479 * prevent the socket from being released prior to being enqueued on
4480 * the sk_error_queue.
4481 */
4482struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4483{
4484	struct sock *sk = skb->sk;
4485	struct sk_buff *clone;
4486
4487	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4488		return NULL;
4489
4490	clone = skb_clone(skb, GFP_ATOMIC);
4491	if (!clone) {
4492		sock_put(sk);
4493		return NULL;
4494	}
4495
4496	clone->sk = sk;
4497	clone->destructor = sock_efree;
4498
4499	return clone;
4500}
4501EXPORT_SYMBOL(skb_clone_sk);
4502
4503static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4504					struct sock *sk,
4505					int tstype,
4506					bool opt_stats)
4507{
 
4508	struct sock_exterr_skb *serr;
 
4509	int err;
4510
4511	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4512
4513	serr = SKB_EXT_ERR(skb);
4514	memset(serr, 0, sizeof(*serr));
4515	serr->ee.ee_errno = ENOMSG;
4516	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4517	serr->ee.ee_info = tstype;
4518	serr->opt_stats = opt_stats;
4519	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4520	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4521		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4522		if (sk->sk_protocol == IPPROTO_TCP &&
4523		    sk->sk_type == SOCK_STREAM)
4524			serr->ee.ee_data -= sk->sk_tskey;
4525	}
4526
4527	err = sock_queue_err_skb(sk, skb);
4528
4529	if (err)
4530		kfree_skb(skb);
4531}
4532
4533static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4534{
4535	bool ret;
4536
4537	if (likely(sysctl_tstamp_allow_data || tsonly))
4538		return true;
4539
4540	read_lock_bh(&sk->sk_callback_lock);
4541	ret = sk->sk_socket && sk->sk_socket->file &&
4542	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4543	read_unlock_bh(&sk->sk_callback_lock);
4544	return ret;
4545}
4546
4547void skb_complete_tx_timestamp(struct sk_buff *skb,
4548			       struct skb_shared_hwtstamps *hwtstamps)
4549{
4550	struct sock *sk = skb->sk;
4551
4552	if (!skb_may_tx_timestamp(sk, false))
4553		goto err;
4554
4555	/* Take a reference to prevent skb_orphan() from freeing the socket,
4556	 * but only if the socket refcount is not zero.
4557	 */
4558	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4559		*skb_hwtstamps(skb) = *hwtstamps;
4560		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4561		sock_put(sk);
4562		return;
4563	}
4564
4565err:
4566	kfree_skb(skb);
4567}
4568EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4569
4570void __skb_tstamp_tx(struct sk_buff *orig_skb,
4571		     struct skb_shared_hwtstamps *hwtstamps,
4572		     struct sock *sk, int tstype)
4573{
4574	struct sk_buff *skb;
4575	bool tsonly, opt_stats = false;
4576
4577	if (!sk)
4578		return;
4579
4580	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4581	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4582		return;
4583
4584	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4585	if (!skb_may_tx_timestamp(sk, tsonly))
4586		return;
4587
4588	if (tsonly) {
4589#ifdef CONFIG_INET
4590		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4591		    sk->sk_protocol == IPPROTO_TCP &&
4592		    sk->sk_type == SOCK_STREAM) {
4593			skb = tcp_get_timestamping_opt_stats(sk);
4594			opt_stats = true;
4595		} else
4596#endif
4597			skb = alloc_skb(0, GFP_ATOMIC);
4598	} else {
4599		skb = skb_clone(orig_skb, GFP_ATOMIC);
4600	}
4601	if (!skb)
4602		return;
4603
4604	if (tsonly) {
4605		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4606					     SKBTX_ANY_TSTAMP;
4607		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4608	}
4609
4610	if (hwtstamps)
4611		*skb_hwtstamps(skb) = *hwtstamps;
4612	else
4613		skb->tstamp = ktime_get_real();
4614
4615	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4616}
4617EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4618
4619void skb_tstamp_tx(struct sk_buff *orig_skb,
4620		   struct skb_shared_hwtstamps *hwtstamps)
4621{
4622	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4623			       SCM_TSTAMP_SND);
4624}
4625EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4626
4627void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4628{
4629	struct sock *sk = skb->sk;
4630	struct sock_exterr_skb *serr;
4631	int err = 1;
4632
4633	skb->wifi_acked_valid = 1;
4634	skb->wifi_acked = acked;
4635
4636	serr = SKB_EXT_ERR(skb);
4637	memset(serr, 0, sizeof(*serr));
4638	serr->ee.ee_errno = ENOMSG;
4639	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
 
 
4640
4641	/* Take a reference to prevent skb_orphan() from freeing the socket,
4642	 * but only if the socket refcount is not zero.
4643	 */
4644	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4645		err = sock_queue_err_skb(sk, skb);
4646		sock_put(sk);
4647	}
4648	if (err)
4649		kfree_skb(skb);
4650}
4651EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
 
4652
4653/**
4654 * skb_partial_csum_set - set up and verify partial csum values for packet
4655 * @skb: the skb to set
4656 * @start: the number of bytes after skb->data to start checksumming.
4657 * @off: the offset from start to place the checksum.
4658 *
4659 * For untrusted partially-checksummed packets, we need to make sure the values
4660 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4661 *
4662 * This function checks and sets those values and skb->ip_summed: if this
4663 * returns false you should drop the packet.
4664 */
4665bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4666{
4667	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4668	u32 csum_start = skb_headroom(skb) + (u32)start;
4669
4670	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4671		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4672				     start, off, skb_headroom(skb), skb_headlen(skb));
4673		return false;
4674	}
4675	skb->ip_summed = CHECKSUM_PARTIAL;
4676	skb->csum_start = csum_start;
4677	skb->csum_offset = off;
4678	skb_set_transport_header(skb, start);
4679	return true;
4680}
4681EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4682
4683static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4684			       unsigned int max)
4685{
4686	if (skb_headlen(skb) >= len)
4687		return 0;
4688
4689	/* If we need to pullup then pullup to the max, so we
4690	 * won't need to do it again.
4691	 */
4692	if (max > skb->len)
4693		max = skb->len;
4694
4695	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4696		return -ENOMEM;
4697
4698	if (skb_headlen(skb) < len)
4699		return -EPROTO;
4700
4701	return 0;
4702}
4703
4704#define MAX_TCP_HDR_LEN (15 * 4)
4705
4706static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4707				      typeof(IPPROTO_IP) proto,
4708				      unsigned int off)
4709{
4710	switch (proto) {
4711		int err;
4712
4713	case IPPROTO_TCP:
4714		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4715					  off + MAX_TCP_HDR_LEN);
4716		if (!err && !skb_partial_csum_set(skb, off,
4717						  offsetof(struct tcphdr,
4718							   check)))
4719			err = -EPROTO;
4720		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4721
4722	case IPPROTO_UDP:
4723		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4724					  off + sizeof(struct udphdr));
4725		if (!err && !skb_partial_csum_set(skb, off,
4726						  offsetof(struct udphdr,
4727							   check)))
4728			err = -EPROTO;
4729		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4730	}
4731
4732	return ERR_PTR(-EPROTO);
4733}
4734
4735/* This value should be large enough to cover a tagged ethernet header plus
4736 * maximally sized IP and TCP or UDP headers.
4737 */
4738#define MAX_IP_HDR_LEN 128
4739
4740static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4741{
4742	unsigned int off;
4743	bool fragment;
4744	__sum16 *csum;
4745	int err;
4746
4747	fragment = false;
4748
4749	err = skb_maybe_pull_tail(skb,
4750				  sizeof(struct iphdr),
4751				  MAX_IP_HDR_LEN);
4752	if (err < 0)
4753		goto out;
4754
4755	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4756		fragment = true;
4757
4758	off = ip_hdrlen(skb);
4759
4760	err = -EPROTO;
4761
4762	if (fragment)
4763		goto out;
4764
4765	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4766	if (IS_ERR(csum))
4767		return PTR_ERR(csum);
4768
4769	if (recalculate)
4770		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4771					   ip_hdr(skb)->daddr,
4772					   skb->len - off,
4773					   ip_hdr(skb)->protocol, 0);
4774	err = 0;
4775
4776out:
4777	return err;
4778}
4779
4780/* This value should be large enough to cover a tagged ethernet header plus
4781 * an IPv6 header, all options, and a maximal TCP or UDP header.
4782 */
4783#define MAX_IPV6_HDR_LEN 256
4784
4785#define OPT_HDR(type, skb, off) \
4786	(type *)(skb_network_header(skb) + (off))
4787
4788static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4789{
4790	int err;
4791	u8 nexthdr;
4792	unsigned int off;
4793	unsigned int len;
4794	bool fragment;
4795	bool done;
4796	__sum16 *csum;
4797
4798	fragment = false;
4799	done = false;
4800
4801	off = sizeof(struct ipv6hdr);
4802
4803	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4804	if (err < 0)
4805		goto out;
4806
4807	nexthdr = ipv6_hdr(skb)->nexthdr;
4808
4809	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4810	while (off <= len && !done) {
4811		switch (nexthdr) {
4812		case IPPROTO_DSTOPTS:
4813		case IPPROTO_HOPOPTS:
4814		case IPPROTO_ROUTING: {
4815			struct ipv6_opt_hdr *hp;
4816
4817			err = skb_maybe_pull_tail(skb,
4818						  off +
4819						  sizeof(struct ipv6_opt_hdr),
4820						  MAX_IPV6_HDR_LEN);
4821			if (err < 0)
4822				goto out;
4823
4824			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4825			nexthdr = hp->nexthdr;
4826			off += ipv6_optlen(hp);
4827			break;
4828		}
4829		case IPPROTO_AH: {
4830			struct ip_auth_hdr *hp;
4831
4832			err = skb_maybe_pull_tail(skb,
4833						  off +
4834						  sizeof(struct ip_auth_hdr),
4835						  MAX_IPV6_HDR_LEN);
4836			if (err < 0)
4837				goto out;
4838
4839			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4840			nexthdr = hp->nexthdr;
4841			off += ipv6_authlen(hp);
4842			break;
4843		}
4844		case IPPROTO_FRAGMENT: {
4845			struct frag_hdr *hp;
4846
4847			err = skb_maybe_pull_tail(skb,
4848						  off +
4849						  sizeof(struct frag_hdr),
4850						  MAX_IPV6_HDR_LEN);
4851			if (err < 0)
4852				goto out;
4853
4854			hp = OPT_HDR(struct frag_hdr, skb, off);
4855
4856			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4857				fragment = true;
4858
4859			nexthdr = hp->nexthdr;
4860			off += sizeof(struct frag_hdr);
4861			break;
4862		}
4863		default:
4864			done = true;
4865			break;
4866		}
4867	}
4868
4869	err = -EPROTO;
4870
4871	if (!done || fragment)
4872		goto out;
4873
4874	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4875	if (IS_ERR(csum))
4876		return PTR_ERR(csum);
4877
4878	if (recalculate)
4879		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4880					 &ipv6_hdr(skb)->daddr,
4881					 skb->len - off, nexthdr, 0);
4882	err = 0;
4883
4884out:
4885	return err;
4886}
4887
4888/**
4889 * skb_checksum_setup - set up partial checksum offset
4890 * @skb: the skb to set up
4891 * @recalculate: if true the pseudo-header checksum will be recalculated
4892 */
4893int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4894{
4895	int err;
4896
4897	switch (skb->protocol) {
4898	case htons(ETH_P_IP):
4899		err = skb_checksum_setup_ipv4(skb, recalculate);
4900		break;
4901
4902	case htons(ETH_P_IPV6):
4903		err = skb_checksum_setup_ipv6(skb, recalculate);
4904		break;
4905
4906	default:
4907		err = -EPROTO;
4908		break;
4909	}
4910
4911	return err;
4912}
4913EXPORT_SYMBOL(skb_checksum_setup);
4914
4915/**
4916 * skb_checksum_maybe_trim - maybe trims the given skb
4917 * @skb: the skb to check
4918 * @transport_len: the data length beyond the network header
4919 *
4920 * Checks whether the given skb has data beyond the given transport length.
4921 * If so, returns a cloned skb trimmed to this transport length.
4922 * Otherwise returns the provided skb. Returns NULL in error cases
4923 * (e.g. transport_len exceeds skb length or out-of-memory).
4924 *
4925 * Caller needs to set the skb transport header and free any returned skb if it
4926 * differs from the provided skb.
4927 */
4928static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4929					       unsigned int transport_len)
4930{
4931	struct sk_buff *skb_chk;
4932	unsigned int len = skb_transport_offset(skb) + transport_len;
4933	int ret;
4934
4935	if (skb->len < len)
4936		return NULL;
4937	else if (skb->len == len)
4938		return skb;
4939
4940	skb_chk = skb_clone(skb, GFP_ATOMIC);
4941	if (!skb_chk)
4942		return NULL;
4943
4944	ret = pskb_trim_rcsum(skb_chk, len);
4945	if (ret) {
4946		kfree_skb(skb_chk);
4947		return NULL;
4948	}
4949
4950	return skb_chk;
4951}
4952
4953/**
4954 * skb_checksum_trimmed - validate checksum of an skb
4955 * @skb: the skb to check
4956 * @transport_len: the data length beyond the network header
4957 * @skb_chkf: checksum function to use
4958 *
4959 * Applies the given checksum function skb_chkf to the provided skb.
4960 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4961 *
4962 * If the skb has data beyond the given transport length, then a
4963 * trimmed & cloned skb is checked and returned.
4964 *
4965 * Caller needs to set the skb transport header and free any returned skb if it
4966 * differs from the provided skb.
4967 */
4968struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4969				     unsigned int transport_len,
4970				     __sum16(*skb_chkf)(struct sk_buff *skb))
4971{
4972	struct sk_buff *skb_chk;
4973	unsigned int offset = skb_transport_offset(skb);
4974	__sum16 ret;
4975
4976	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4977	if (!skb_chk)
4978		goto err;
4979
4980	if (!pskb_may_pull(skb_chk, offset))
4981		goto err;
4982
4983	skb_pull_rcsum(skb_chk, offset);
4984	ret = skb_chkf(skb_chk);
4985	skb_push_rcsum(skb_chk, offset);
4986
4987	if (ret)
4988		goto err;
4989
4990	return skb_chk;
4991
4992err:
4993	if (skb_chk && skb_chk != skb)
4994		kfree_skb(skb_chk);
4995
4996	return NULL;
4997
4998}
4999EXPORT_SYMBOL(skb_checksum_trimmed);
5000
5001void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5002{
5003	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5004			     skb->dev->name);
 
5005}
5006EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5007
5008void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5009{
5010	if (head_stolen) {
5011		skb_release_head_state(skb);
5012		kmem_cache_free(skbuff_head_cache, skb);
5013	} else {
5014		__kfree_skb(skb);
5015	}
5016}
5017EXPORT_SYMBOL(kfree_skb_partial);
5018
5019/**
5020 * skb_try_coalesce - try to merge skb to prior one
5021 * @to: prior buffer
5022 * @from: buffer to add
5023 * @fragstolen: pointer to boolean
5024 * @delta_truesize: how much more was allocated than was requested
5025 */
5026bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5027		      bool *fragstolen, int *delta_truesize)
5028{
5029	struct skb_shared_info *to_shinfo, *from_shinfo;
5030	int i, delta, len = from->len;
5031
5032	*fragstolen = false;
5033
5034	if (skb_cloned(to))
5035		return false;
5036
5037	if (len <= skb_tailroom(to)) {
5038		if (len)
5039			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5040		*delta_truesize = 0;
5041		return true;
5042	}
5043
5044	to_shinfo = skb_shinfo(to);
5045	from_shinfo = skb_shinfo(from);
5046	if (to_shinfo->frag_list || from_shinfo->frag_list)
5047		return false;
5048	if (skb_zcopy(to) || skb_zcopy(from))
5049		return false;
5050
5051	if (skb_headlen(from) != 0) {
5052		struct page *page;
5053		unsigned int offset;
5054
5055		if (to_shinfo->nr_frags +
5056		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5057			return false;
5058
5059		if (skb_head_is_locked(from))
5060			return false;
5061
5062		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5063
5064		page = virt_to_head_page(from->head);
5065		offset = from->data - (unsigned char *)page_address(page);
5066
5067		skb_fill_page_desc(to, to_shinfo->nr_frags,
5068				   page, offset, skb_headlen(from));
5069		*fragstolen = true;
5070	} else {
5071		if (to_shinfo->nr_frags +
5072		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5073			return false;
5074
5075		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5076	}
5077
5078	WARN_ON_ONCE(delta < len);
5079
5080	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5081	       from_shinfo->frags,
5082	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5083	to_shinfo->nr_frags += from_shinfo->nr_frags;
5084
5085	if (!skb_cloned(from))
5086		from_shinfo->nr_frags = 0;
5087
5088	/* if the skb is not cloned this does nothing
5089	 * since we set nr_frags to 0.
5090	 */
5091	for (i = 0; i < from_shinfo->nr_frags; i++)
5092		__skb_frag_ref(&from_shinfo->frags[i]);
5093
5094	to->truesize += delta;
5095	to->len += len;
5096	to->data_len += len;
5097
5098	*delta_truesize = delta;
5099	return true;
5100}
5101EXPORT_SYMBOL(skb_try_coalesce);
5102
5103/**
5104 * skb_scrub_packet - scrub an skb
5105 *
5106 * @skb: buffer to clean
5107 * @xnet: packet is crossing netns
5108 *
5109 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5110 * into/from a tunnel. Some information have to be cleared during these
5111 * operations.
5112 * skb_scrub_packet can also be used to clean a skb before injecting it in
5113 * another namespace (@xnet == true). We have to clear all information in the
5114 * skb that could impact namespace isolation.
5115 */
5116void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5117{
5118	skb->pkt_type = PACKET_HOST;
5119	skb->skb_iif = 0;
5120	skb->ignore_df = 0;
5121	skb_dst_drop(skb);
5122	skb_ext_reset(skb);
5123	nf_reset_ct(skb);
5124	nf_reset_trace(skb);
5125
5126#ifdef CONFIG_NET_SWITCHDEV
5127	skb->offload_fwd_mark = 0;
5128	skb->offload_l3_fwd_mark = 0;
5129#endif
5130
5131	if (!xnet)
5132		return;
5133
5134	ipvs_reset(skb);
5135	skb->mark = 0;
5136	skb->tstamp = 0;
5137}
5138EXPORT_SYMBOL_GPL(skb_scrub_packet);
5139
5140/**
5141 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5142 *
5143 * @skb: GSO skb
5144 *
5145 * skb_gso_transport_seglen is used to determine the real size of the
5146 * individual segments, including Layer4 headers (TCP/UDP).
5147 *
5148 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5149 */
5150static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5151{
5152	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5153	unsigned int thlen = 0;
5154
5155	if (skb->encapsulation) {
5156		thlen = skb_inner_transport_header(skb) -
5157			skb_transport_header(skb);
5158
5159		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5160			thlen += inner_tcp_hdrlen(skb);
5161	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5162		thlen = tcp_hdrlen(skb);
5163	} else if (unlikely(skb_is_gso_sctp(skb))) {
5164		thlen = sizeof(struct sctphdr);
5165	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5166		thlen = sizeof(struct udphdr);
5167	}
5168	/* UFO sets gso_size to the size of the fragmentation
5169	 * payload, i.e. the size of the L4 (UDP) header is already
5170	 * accounted for.
5171	 */
5172	return thlen + shinfo->gso_size;
5173}
5174
5175/**
5176 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5177 *
5178 * @skb: GSO skb
5179 *
5180 * skb_gso_network_seglen is used to determine the real size of the
5181 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5182 *
5183 * The MAC/L2 header is not accounted for.
5184 */
5185static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5186{
5187	unsigned int hdr_len = skb_transport_header(skb) -
5188			       skb_network_header(skb);
5189
5190	return hdr_len + skb_gso_transport_seglen(skb);
5191}
5192
5193/**
5194 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5195 *
5196 * @skb: GSO skb
5197 *
5198 * skb_gso_mac_seglen is used to determine the real size of the
5199 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5200 * headers (TCP/UDP).
5201 */
5202static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5203{
5204	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5205
5206	return hdr_len + skb_gso_transport_seglen(skb);
5207}
5208
5209/**
5210 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5211 *
5212 * There are a couple of instances where we have a GSO skb, and we
5213 * want to determine what size it would be after it is segmented.
5214 *
5215 * We might want to check:
5216 * -    L3+L4+payload size (e.g. IP forwarding)
5217 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5218 *
5219 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5220 *
5221 * @skb: GSO skb
5222 *
5223 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5224 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5225 *
5226 * @max_len: The maximum permissible length.
5227 *
5228 * Returns true if the segmented length <= max length.
5229 */
5230static inline bool skb_gso_size_check(const struct sk_buff *skb,
5231				      unsigned int seg_len,
5232				      unsigned int max_len) {
5233	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5234	const struct sk_buff *iter;
5235
5236	if (shinfo->gso_size != GSO_BY_FRAGS)
5237		return seg_len <= max_len;
5238
5239	/* Undo this so we can re-use header sizes */
5240	seg_len -= GSO_BY_FRAGS;
5241
5242	skb_walk_frags(skb, iter) {
5243		if (seg_len + skb_headlen(iter) > max_len)
5244			return false;
5245	}
5246
5247	return true;
5248}
5249
5250/**
5251 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5252 *
5253 * @skb: GSO skb
5254 * @mtu: MTU to validate against
5255 *
5256 * skb_gso_validate_network_len validates if a given skb will fit a
5257 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5258 * payload.
5259 */
5260bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5261{
5262	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5263}
5264EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5265
5266/**
5267 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5268 *
5269 * @skb: GSO skb
5270 * @len: length to validate against
5271 *
5272 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5273 * length once split, including L2, L3 and L4 headers and the payload.
5274 */
5275bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5276{
5277	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5278}
5279EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5280
5281static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5282{
5283	int mac_len, meta_len;
5284	void *meta;
5285
5286	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5287		kfree_skb(skb);
5288		return NULL;
5289	}
5290
5291	mac_len = skb->data - skb_mac_header(skb);
5292	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5293		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5294			mac_len - VLAN_HLEN - ETH_TLEN);
5295	}
5296
5297	meta_len = skb_metadata_len(skb);
5298	if (meta_len) {
5299		meta = skb_metadata_end(skb) - meta_len;
5300		memmove(meta + VLAN_HLEN, meta, meta_len);
5301	}
5302
5303	skb->mac_header += VLAN_HLEN;
5304	return skb;
5305}
5306
5307struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5308{
5309	struct vlan_hdr *vhdr;
5310	u16 vlan_tci;
5311
5312	if (unlikely(skb_vlan_tag_present(skb))) {
5313		/* vlan_tci is already set-up so leave this for another time */
5314		return skb;
5315	}
5316
5317	skb = skb_share_check(skb, GFP_ATOMIC);
5318	if (unlikely(!skb))
5319		goto err_free;
5320
5321	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5322		goto err_free;
5323
5324	vhdr = (struct vlan_hdr *)skb->data;
5325	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5326	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5327
5328	skb_pull_rcsum(skb, VLAN_HLEN);
5329	vlan_set_encap_proto(skb, vhdr);
5330
5331	skb = skb_reorder_vlan_header(skb);
5332	if (unlikely(!skb))
5333		goto err_free;
5334
5335	skb_reset_network_header(skb);
5336	skb_reset_transport_header(skb);
5337	skb_reset_mac_len(skb);
5338
5339	return skb;
5340
5341err_free:
5342	kfree_skb(skb);
5343	return NULL;
5344}
5345EXPORT_SYMBOL(skb_vlan_untag);
5346
5347int skb_ensure_writable(struct sk_buff *skb, int write_len)
5348{
5349	if (!pskb_may_pull(skb, write_len))
5350		return -ENOMEM;
5351
5352	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5353		return 0;
5354
5355	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5356}
5357EXPORT_SYMBOL(skb_ensure_writable);
5358
5359/* remove VLAN header from packet and update csum accordingly.
5360 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5361 */
5362int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5363{
5364	struct vlan_hdr *vhdr;
5365	int offset = skb->data - skb_mac_header(skb);
5366	int err;
5367
5368	if (WARN_ONCE(offset,
5369		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5370		      offset)) {
5371		return -EINVAL;
5372	}
5373
5374	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5375	if (unlikely(err))
5376		return err;
5377
5378	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5379
5380	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5381	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5382
5383	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5384	__skb_pull(skb, VLAN_HLEN);
5385
5386	vlan_set_encap_proto(skb, vhdr);
5387	skb->mac_header += VLAN_HLEN;
5388
5389	if (skb_network_offset(skb) < ETH_HLEN)
5390		skb_set_network_header(skb, ETH_HLEN);
5391
5392	skb_reset_mac_len(skb);
5393
5394	return err;
5395}
5396EXPORT_SYMBOL(__skb_vlan_pop);
5397
5398/* Pop a vlan tag either from hwaccel or from payload.
5399 * Expects skb->data at mac header.
5400 */
5401int skb_vlan_pop(struct sk_buff *skb)
5402{
5403	u16 vlan_tci;
5404	__be16 vlan_proto;
5405	int err;
5406
5407	if (likely(skb_vlan_tag_present(skb))) {
5408		__vlan_hwaccel_clear_tag(skb);
5409	} else {
5410		if (unlikely(!eth_type_vlan(skb->protocol)))
5411			return 0;
5412
5413		err = __skb_vlan_pop(skb, &vlan_tci);
5414		if (err)
5415			return err;
5416	}
5417	/* move next vlan tag to hw accel tag */
5418	if (likely(!eth_type_vlan(skb->protocol)))
5419		return 0;
5420
5421	vlan_proto = skb->protocol;
5422	err = __skb_vlan_pop(skb, &vlan_tci);
5423	if (unlikely(err))
5424		return err;
5425
5426	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5427	return 0;
5428}
5429EXPORT_SYMBOL(skb_vlan_pop);
5430
5431/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5432 * Expects skb->data at mac header.
5433 */
5434int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5435{
5436	if (skb_vlan_tag_present(skb)) {
5437		int offset = skb->data - skb_mac_header(skb);
5438		int err;
5439
5440		if (WARN_ONCE(offset,
5441			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5442			      offset)) {
5443			return -EINVAL;
5444		}
5445
5446		err = __vlan_insert_tag(skb, skb->vlan_proto,
5447					skb_vlan_tag_get(skb));
5448		if (err)
5449			return err;
5450
5451		skb->protocol = skb->vlan_proto;
5452		skb->mac_len += VLAN_HLEN;
5453
5454		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5455	}
5456	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5457	return 0;
5458}
5459EXPORT_SYMBOL(skb_vlan_push);
5460
5461/* Update the ethertype of hdr and the skb csum value if required. */
5462static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5463			     __be16 ethertype)
5464{
5465	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5466		__be16 diff[] = { ~hdr->h_proto, ethertype };
5467
5468		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5469	}
5470
5471	hdr->h_proto = ethertype;
5472}
5473
5474/**
5475 * skb_mpls_push() - push a new MPLS header after the mac header
5476 *
5477 * @skb: buffer
5478 * @mpls_lse: MPLS label stack entry to push
5479 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5480 * @mac_len: length of the MAC header
5481 *
5482 * Expects skb->data at mac header.
5483 *
5484 * Returns 0 on success, -errno otherwise.
5485 */
5486int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5487		  int mac_len)
5488{
5489	struct mpls_shim_hdr *lse;
5490	int err;
5491
5492	if (unlikely(!eth_p_mpls(mpls_proto)))
5493		return -EINVAL;
5494
5495	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5496	if (skb->encapsulation)
5497		return -EINVAL;
5498
5499	err = skb_cow_head(skb, MPLS_HLEN);
5500	if (unlikely(err))
5501		return err;
5502
5503	if (!skb->inner_protocol) {
5504		skb_set_inner_network_header(skb, mac_len);
5505		skb_set_inner_protocol(skb, skb->protocol);
5506	}
5507
5508	skb_push(skb, MPLS_HLEN);
5509	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5510		mac_len);
5511	skb_reset_mac_header(skb);
5512	skb_set_network_header(skb, mac_len);
5513
5514	lse = mpls_hdr(skb);
5515	lse->label_stack_entry = mpls_lse;
5516	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5517
5518	if (skb->dev && skb->dev->type == ARPHRD_ETHER)
5519		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5520	skb->protocol = mpls_proto;
5521
5522	return 0;
5523}
5524EXPORT_SYMBOL_GPL(skb_mpls_push);
5525
5526/**
5527 * skb_mpls_pop() - pop the outermost MPLS header
5528 *
5529 * @skb: buffer
5530 * @next_proto: ethertype of header after popped MPLS header
5531 * @mac_len: length of the MAC header
5532 *
5533 * Expects skb->data at mac header.
5534 *
5535 * Returns 0 on success, -errno otherwise.
5536 */
5537int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len)
5538{
5539	int err;
5540
5541	if (unlikely(!eth_p_mpls(skb->protocol)))
5542		return 0;
5543
5544	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5545	if (unlikely(err))
5546		return err;
5547
5548	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5549	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5550		mac_len);
5551
5552	__skb_pull(skb, MPLS_HLEN);
5553	skb_reset_mac_header(skb);
5554	skb_set_network_header(skb, mac_len);
5555
5556	if (skb->dev && skb->dev->type == ARPHRD_ETHER) {
5557		struct ethhdr *hdr;
5558
5559		/* use mpls_hdr() to get ethertype to account for VLANs. */
5560		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5561		skb_mod_eth_type(skb, hdr, next_proto);
5562	}
5563	skb->protocol = next_proto;
5564
5565	return 0;
5566}
5567EXPORT_SYMBOL_GPL(skb_mpls_pop);
5568
5569/**
5570 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5571 *
5572 * @skb: buffer
5573 * @mpls_lse: new MPLS label stack entry to update to
5574 *
5575 * Expects skb->data at mac header.
5576 *
5577 * Returns 0 on success, -errno otherwise.
5578 */
5579int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5580{
5581	int err;
5582
5583	if (unlikely(!eth_p_mpls(skb->protocol)))
5584		return -EINVAL;
5585
5586	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5587	if (unlikely(err))
5588		return err;
5589
5590	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5591		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5592
5593		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5594	}
5595
5596	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5597
5598	return 0;
5599}
5600EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5601
5602/**
5603 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5604 *
5605 * @skb: buffer
5606 *
5607 * Expects skb->data at mac header.
5608 *
5609 * Returns 0 on success, -errno otherwise.
5610 */
5611int skb_mpls_dec_ttl(struct sk_buff *skb)
5612{
5613	u32 lse;
5614	u8 ttl;
5615
5616	if (unlikely(!eth_p_mpls(skb->protocol)))
5617		return -EINVAL;
5618
5619	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5620	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5621	if (!--ttl)
5622		return -EINVAL;
5623
5624	lse &= ~MPLS_LS_TTL_MASK;
5625	lse |= ttl << MPLS_LS_TTL_SHIFT;
5626
5627	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5628}
5629EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5630
5631/**
5632 * alloc_skb_with_frags - allocate skb with page frags
5633 *
5634 * @header_len: size of linear part
5635 * @data_len: needed length in frags
5636 * @max_page_order: max page order desired.
5637 * @errcode: pointer to error code if any
5638 * @gfp_mask: allocation mask
5639 *
5640 * This can be used to allocate a paged skb, given a maximal order for frags.
5641 */
5642struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5643				     unsigned long data_len,
5644				     int max_page_order,
5645				     int *errcode,
5646				     gfp_t gfp_mask)
5647{
5648	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5649	unsigned long chunk;
5650	struct sk_buff *skb;
5651	struct page *page;
5652	int i;
5653
5654	*errcode = -EMSGSIZE;
5655	/* Note this test could be relaxed, if we succeed to allocate
5656	 * high order pages...
5657	 */
5658	if (npages > MAX_SKB_FRAGS)
5659		return NULL;
5660
5661	*errcode = -ENOBUFS;
5662	skb = alloc_skb(header_len, gfp_mask);
5663	if (!skb)
5664		return NULL;
5665
5666	skb->truesize += npages << PAGE_SHIFT;
5667
5668	for (i = 0; npages > 0; i++) {
5669		int order = max_page_order;
5670
5671		while (order) {
5672			if (npages >= 1 << order) {
5673				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5674						   __GFP_COMP |
5675						   __GFP_NOWARN,
5676						   order);
5677				if (page)
5678					goto fill_page;
5679				/* Do not retry other high order allocations */
5680				order = 1;
5681				max_page_order = 0;
5682			}
5683			order--;
5684		}
5685		page = alloc_page(gfp_mask);
5686		if (!page)
5687			goto failure;
5688fill_page:
5689		chunk = min_t(unsigned long, data_len,
5690			      PAGE_SIZE << order);
5691		skb_fill_page_desc(skb, i, page, 0, chunk);
5692		data_len -= chunk;
5693		npages -= 1 << order;
5694	}
5695	return skb;
5696
5697failure:
5698	kfree_skb(skb);
5699	return NULL;
5700}
5701EXPORT_SYMBOL(alloc_skb_with_frags);
5702
5703/* carve out the first off bytes from skb when off < headlen */
5704static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5705				    const int headlen, gfp_t gfp_mask)
5706{
5707	int i;
5708	int size = skb_end_offset(skb);
5709	int new_hlen = headlen - off;
5710	u8 *data;
5711
5712	size = SKB_DATA_ALIGN(size);
5713
5714	if (skb_pfmemalloc(skb))
5715		gfp_mask |= __GFP_MEMALLOC;
5716	data = kmalloc_reserve(size +
5717			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5718			       gfp_mask, NUMA_NO_NODE, NULL);
5719	if (!data)
5720		return -ENOMEM;
5721
5722	size = SKB_WITH_OVERHEAD(ksize(data));
5723
5724	/* Copy real data, and all frags */
5725	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5726	skb->len -= off;
5727
5728	memcpy((struct skb_shared_info *)(data + size),
5729	       skb_shinfo(skb),
5730	       offsetof(struct skb_shared_info,
5731			frags[skb_shinfo(skb)->nr_frags]));
5732	if (skb_cloned(skb)) {
5733		/* drop the old head gracefully */
5734		if (skb_orphan_frags(skb, gfp_mask)) {
5735			kfree(data);
5736			return -ENOMEM;
5737		}
5738		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5739			skb_frag_ref(skb, i);
5740		if (skb_has_frag_list(skb))
5741			skb_clone_fraglist(skb);
5742		skb_release_data(skb);
5743	} else {
5744		/* we can reuse existing recount- all we did was
5745		 * relocate values
5746		 */
5747		skb_free_head(skb);
5748	}
5749
5750	skb->head = data;
5751	skb->data = data;
5752	skb->head_frag = 0;
5753#ifdef NET_SKBUFF_DATA_USES_OFFSET
5754	skb->end = size;
5755#else
5756	skb->end = skb->head + size;
5757#endif
5758	skb_set_tail_pointer(skb, skb_headlen(skb));
5759	skb_headers_offset_update(skb, 0);
5760	skb->cloned = 0;
5761	skb->hdr_len = 0;
5762	skb->nohdr = 0;
5763	atomic_set(&skb_shinfo(skb)->dataref, 1);
5764
5765	return 0;
5766}
5767
5768static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5769
5770/* carve out the first eat bytes from skb's frag_list. May recurse into
5771 * pskb_carve()
5772 */
5773static int pskb_carve_frag_list(struct sk_buff *skb,
5774				struct skb_shared_info *shinfo, int eat,
5775				gfp_t gfp_mask)
5776{
5777	struct sk_buff *list = shinfo->frag_list;
5778	struct sk_buff *clone = NULL;
5779	struct sk_buff *insp = NULL;
5780
5781	do {
5782		if (!list) {
5783			pr_err("Not enough bytes to eat. Want %d\n", eat);
5784			return -EFAULT;
5785		}
5786		if (list->len <= eat) {
5787			/* Eaten as whole. */
5788			eat -= list->len;
5789			list = list->next;
5790			insp = list;
5791		} else {
5792			/* Eaten partially. */
5793			if (skb_shared(list)) {
5794				clone = skb_clone(list, gfp_mask);
5795				if (!clone)
5796					return -ENOMEM;
5797				insp = list->next;
5798				list = clone;
5799			} else {
5800				/* This may be pulled without problems. */
5801				insp = list;
5802			}
5803			if (pskb_carve(list, eat, gfp_mask) < 0) {
5804				kfree_skb(clone);
5805				return -ENOMEM;
5806			}
5807			break;
5808		}
5809	} while (eat);
5810
5811	/* Free pulled out fragments. */
5812	while ((list = shinfo->frag_list) != insp) {
5813		shinfo->frag_list = list->next;
5814		kfree_skb(list);
5815	}
5816	/* And insert new clone at head. */
5817	if (clone) {
5818		clone->next = list;
5819		shinfo->frag_list = clone;
5820	}
5821	return 0;
5822}
5823
5824/* carve off first len bytes from skb. Split line (off) is in the
5825 * non-linear part of skb
5826 */
5827static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5828				       int pos, gfp_t gfp_mask)
5829{
5830	int i, k = 0;
5831	int size = skb_end_offset(skb);
5832	u8 *data;
5833	const int nfrags = skb_shinfo(skb)->nr_frags;
5834	struct skb_shared_info *shinfo;
5835
5836	size = SKB_DATA_ALIGN(size);
5837
5838	if (skb_pfmemalloc(skb))
5839		gfp_mask |= __GFP_MEMALLOC;
5840	data = kmalloc_reserve(size +
5841			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5842			       gfp_mask, NUMA_NO_NODE, NULL);
5843	if (!data)
5844		return -ENOMEM;
5845
5846	size = SKB_WITH_OVERHEAD(ksize(data));
5847
5848	memcpy((struct skb_shared_info *)(data + size),
5849	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5850					 frags[skb_shinfo(skb)->nr_frags]));
5851	if (skb_orphan_frags(skb, gfp_mask)) {
5852		kfree(data);
5853		return -ENOMEM;
5854	}
5855	shinfo = (struct skb_shared_info *)(data + size);
5856	for (i = 0; i < nfrags; i++) {
5857		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5858
5859		if (pos + fsize > off) {
5860			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5861
5862			if (pos < off) {
5863				/* Split frag.
5864				 * We have two variants in this case:
5865				 * 1. Move all the frag to the second
5866				 *    part, if it is possible. F.e.
5867				 *    this approach is mandatory for TUX,
5868				 *    where splitting is expensive.
5869				 * 2. Split is accurately. We make this.
5870				 */
5871				skb_frag_off_add(&shinfo->frags[0], off - pos);
5872				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5873			}
5874			skb_frag_ref(skb, i);
5875			k++;
5876		}
5877		pos += fsize;
5878	}
5879	shinfo->nr_frags = k;
5880	if (skb_has_frag_list(skb))
5881		skb_clone_fraglist(skb);
5882
5883	if (k == 0) {
5884		/* split line is in frag list */
5885		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5886	}
5887	skb_release_data(skb);
5888
5889	skb->head = data;
5890	skb->head_frag = 0;
5891	skb->data = data;
5892#ifdef NET_SKBUFF_DATA_USES_OFFSET
5893	skb->end = size;
5894#else
5895	skb->end = skb->head + size;
5896#endif
5897	skb_reset_tail_pointer(skb);
5898	skb_headers_offset_update(skb, 0);
5899	skb->cloned   = 0;
5900	skb->hdr_len  = 0;
5901	skb->nohdr    = 0;
5902	skb->len -= off;
5903	skb->data_len = skb->len;
5904	atomic_set(&skb_shinfo(skb)->dataref, 1);
5905	return 0;
5906}
5907
5908/* remove len bytes from the beginning of the skb */
5909static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5910{
5911	int headlen = skb_headlen(skb);
5912
5913	if (len < headlen)
5914		return pskb_carve_inside_header(skb, len, headlen, gfp);
5915	else
5916		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5917}
5918
5919/* Extract to_copy bytes starting at off from skb, and return this in
5920 * a new skb
5921 */
5922struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5923			     int to_copy, gfp_t gfp)
5924{
5925	struct sk_buff  *clone = skb_clone(skb, gfp);
5926
5927	if (!clone)
5928		return NULL;
5929
5930	if (pskb_carve(clone, off, gfp) < 0 ||
5931	    pskb_trim(clone, to_copy)) {
5932		kfree_skb(clone);
5933		return NULL;
5934	}
5935	return clone;
5936}
5937EXPORT_SYMBOL(pskb_extract);
5938
5939/**
5940 * skb_condense - try to get rid of fragments/frag_list if possible
5941 * @skb: buffer
5942 *
5943 * Can be used to save memory before skb is added to a busy queue.
5944 * If packet has bytes in frags and enough tail room in skb->head,
5945 * pull all of them, so that we can free the frags right now and adjust
5946 * truesize.
5947 * Notes:
5948 *	We do not reallocate skb->head thus can not fail.
5949 *	Caller must re-evaluate skb->truesize if needed.
5950 */
5951void skb_condense(struct sk_buff *skb)
5952{
5953	if (skb->data_len) {
5954		if (skb->data_len > skb->end - skb->tail ||
5955		    skb_cloned(skb))
5956			return;
5957
5958		/* Nice, we can free page frag(s) right now */
5959		__pskb_pull_tail(skb, skb->data_len);
5960	}
5961	/* At this point, skb->truesize might be over estimated,
5962	 * because skb had a fragment, and fragments do not tell
5963	 * their truesize.
5964	 * When we pulled its content into skb->head, fragment
5965	 * was freed, but __pskb_pull_tail() could not possibly
5966	 * adjust skb->truesize, not knowing the frag truesize.
5967	 */
5968	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5969}
5970
5971#ifdef CONFIG_SKB_EXTENSIONS
5972static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5973{
5974	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5975}
5976
5977static struct skb_ext *skb_ext_alloc(void)
5978{
5979	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5980
5981	if (new) {
5982		memset(new->offset, 0, sizeof(new->offset));
5983		refcount_set(&new->refcnt, 1);
5984	}
5985
5986	return new;
5987}
5988
5989static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5990					 unsigned int old_active)
5991{
5992	struct skb_ext *new;
5993
5994	if (refcount_read(&old->refcnt) == 1)
5995		return old;
5996
5997	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5998	if (!new)
5999		return NULL;
6000
6001	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6002	refcount_set(&new->refcnt, 1);
6003
6004#ifdef CONFIG_XFRM
6005	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6006		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6007		unsigned int i;
6008
6009		for (i = 0; i < sp->len; i++)
6010			xfrm_state_hold(sp->xvec[i]);
6011	}
6012#endif
6013	__skb_ext_put(old);
6014	return new;
6015}
6016
6017/**
6018 * skb_ext_add - allocate space for given extension, COW if needed
6019 * @skb: buffer
6020 * @id: extension to allocate space for
6021 *
6022 * Allocates enough space for the given extension.
6023 * If the extension is already present, a pointer to that extension
6024 * is returned.
6025 *
6026 * If the skb was cloned, COW applies and the returned memory can be
6027 * modified without changing the extension space of clones buffers.
6028 *
6029 * Returns pointer to the extension or NULL on allocation failure.
6030 */
6031void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6032{
6033	struct skb_ext *new, *old = NULL;
6034	unsigned int newlen, newoff;
6035
6036	if (skb->active_extensions) {
6037		old = skb->extensions;
6038
6039		new = skb_ext_maybe_cow(old, skb->active_extensions);
6040		if (!new)
6041			return NULL;
6042
6043		if (__skb_ext_exist(new, id))
6044			goto set_active;
6045
6046		newoff = new->chunks;
6047	} else {
6048		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6049
6050		new = skb_ext_alloc();
6051		if (!new)
6052			return NULL;
6053	}
6054
6055	newlen = newoff + skb_ext_type_len[id];
6056	new->chunks = newlen;
6057	new->offset[id] = newoff;
6058set_active:
6059	skb->extensions = new;
6060	skb->active_extensions |= 1 << id;
6061	return skb_ext_get_ptr(new, id);
6062}
6063EXPORT_SYMBOL(skb_ext_add);
6064
6065#ifdef CONFIG_XFRM
6066static void skb_ext_put_sp(struct sec_path *sp)
6067{
6068	unsigned int i;
6069
6070	for (i = 0; i < sp->len; i++)
6071		xfrm_state_put(sp->xvec[i]);
6072}
6073#endif
6074
6075void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6076{
6077	struct skb_ext *ext = skb->extensions;
6078
6079	skb->active_extensions &= ~(1 << id);
6080	if (skb->active_extensions == 0) {
6081		skb->extensions = NULL;
6082		__skb_ext_put(ext);
6083#ifdef CONFIG_XFRM
6084	} else if (id == SKB_EXT_SEC_PATH &&
6085		   refcount_read(&ext->refcnt) == 1) {
6086		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6087
6088		skb_ext_put_sp(sp);
6089		sp->len = 0;
6090#endif
6091	}
6092}
6093EXPORT_SYMBOL(__skb_ext_del);
6094
6095void __skb_ext_put(struct skb_ext *ext)
6096{
6097	/* If this is last clone, nothing can increment
6098	 * it after check passes.  Avoids one atomic op.
6099	 */
6100	if (refcount_read(&ext->refcnt) == 1)
6101		goto free_now;
6102
6103	if (!refcount_dec_and_test(&ext->refcnt))
6104		return;
6105free_now:
6106#ifdef CONFIG_XFRM
6107	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6108		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6109#endif
6110
6111	kmem_cache_free(skbuff_ext_cache, ext);
6112}
6113EXPORT_SYMBOL(__skb_ext_put);
6114#endif /* CONFIG_SKB_EXTENSIONS */