Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h>
  36#include <linux/pagevec.h>
 
 
 
 
  37#include <trace/events/writeback.h>
  38
 
 
  39/*
  40 * Sleep at most 200ms at a time in balance_dirty_pages().
  41 */
  42#define MAX_PAUSE		max(HZ/5, 1)
  43
  44/*
 
 
 
 
 
 
  45 * Estimate write bandwidth at 200ms intervals.
  46 */
  47#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  48
 
 
  49/*
  50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  51 * will look to see if it needs to force writeback or throttling.
  52 */
  53static long ratelimit_pages = 32;
  54
  55/*
  56 * When balance_dirty_pages decides that the caller needs to perform some
  57 * non-background writeback, this is how many pages it will attempt to write.
  58 * It should be somewhat larger than dirtied pages to ensure that reasonably
  59 * large amounts of I/O are submitted.
  60 */
  61static inline long sync_writeback_pages(unsigned long dirtied)
  62{
  63	if (dirtied < ratelimit_pages)
  64		dirtied = ratelimit_pages;
  65
  66	return dirtied + dirtied / 2;
  67}
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 
 
 104/*
 105 * The longest time for which data is allowed to remain dirty
 106 */
 107unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 108
 109/*
 110 * Flag that makes the machine dump writes/reads and block dirtyings.
 111 */
 112int block_dump;
 113
 114/*
 115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 116 * a full sync is triggered after this time elapses without any disk activity.
 117 */
 118int laptop_mode;
 119
 120EXPORT_SYMBOL(laptop_mode);
 121
 122/* End of sysctl-exported parameters */
 123
 124unsigned long global_dirty_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126/*
 127 * Scale the writeback cache size proportional to the relative writeout speeds.
 
 
 
 
 
 
 
 
 
 128 *
 129 * We do this by keeping a floating proportion between BDIs, based on page
 130 * writeback completions [end_page_writeback()]. Those devices that write out
 131 * pages fastest will get the larger share, while the slower will get a smaller
 132 * share.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133 *
 134 * We use page writeout completions because we are interested in getting rid of
 135 * dirty pages. Having them written out is the primary goal.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136 *
 137 * We introduce a concept of time, a period over which we measure these events,
 138 * because demand can/will vary over time. The length of this period itself is
 139 * measured in page writeback completions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140 *
 
 
 141 */
 142static struct prop_descriptor vm_completions;
 143static struct prop_descriptor vm_dirties;
 
 144
 145/*
 146 * couple the period to the dirty_ratio:
 
 
 
 
 
 
 
 
 147 *
 148 *   period/2 ~ roundup_pow_of_two(dirty limit)
 
 149 */
 150static int calc_period_shift(void)
 151{
 152	unsigned long dirty_total;
 
 
 153
 154	if (vm_dirty_bytes)
 155		dirty_total = vm_dirty_bytes / PAGE_SIZE;
 
 156	else
 157		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
 158				100;
 159	return 2 + ilog2(dirty_total - 1);
 
 
 
 160}
 161
 162/*
 163 * update the period when the dirty threshold changes.
 
 
 
 
 164 */
 165static void update_completion_period(void)
 166{
 167	int shift = calc_period_shift();
 168	prop_change_shift(&vm_completions, shift);
 169	prop_change_shift(&vm_dirties, shift);
 
 
 
 
 170}
 171
 172int dirty_background_ratio_handler(struct ctl_table *table, int write,
 173		void __user *buffer, size_t *lenp,
 174		loff_t *ppos)
 175{
 176	int ret;
 177
 178	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 179	if (ret == 0 && write)
 180		dirty_background_bytes = 0;
 181	return ret;
 182}
 183
 184int dirty_background_bytes_handler(struct ctl_table *table, int write,
 185		void __user *buffer, size_t *lenp,
 186		loff_t *ppos)
 187{
 188	int ret;
 189
 190	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 191	if (ret == 0 && write)
 192		dirty_background_ratio = 0;
 193	return ret;
 194}
 195
 196int dirty_ratio_handler(struct ctl_table *table, int write,
 197		void __user *buffer, size_t *lenp,
 198		loff_t *ppos)
 199{
 200	int old_ratio = vm_dirty_ratio;
 201	int ret;
 202
 203	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 204	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 205		update_completion_period();
 206		vm_dirty_bytes = 0;
 207	}
 208	return ret;
 209}
 210
 211
 212int dirty_bytes_handler(struct ctl_table *table, int write,
 213		void __user *buffer, size_t *lenp,
 214		loff_t *ppos)
 215{
 216	unsigned long old_bytes = vm_dirty_bytes;
 217	int ret;
 218
 219	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 220	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 221		update_completion_period();
 222		vm_dirty_ratio = 0;
 223	}
 224	return ret;
 225}
 226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227/*
 228 * Increment the BDI's writeout completion count and the global writeout
 229 * completion count. Called from test_clear_page_writeback().
 230 */
 231static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 232{
 233	__inc_bdi_stat(bdi, BDI_WRITTEN);
 234	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
 235			      bdi->max_prop_frac);
 
 
 
 
 
 
 
 236}
 237
 238void bdi_writeout_inc(struct backing_dev_info *bdi)
 239{
 240	unsigned long flags;
 241
 242	local_irq_save(flags);
 243	__bdi_writeout_inc(bdi);
 244	local_irq_restore(flags);
 245}
 246EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 247
 248void task_dirty_inc(struct task_struct *tsk)
 249{
 250	prop_inc_single(&vm_dirties, &tsk->dirties);
 251}
 252
 253/*
 254 * Obtain an accurate fraction of the BDI's portion.
 
 255 */
 256static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 257		long *numerator, long *denominator)
 258{
 259	prop_fraction_percpu(&vm_completions, &bdi->completions,
 260				numerator, denominator);
 261}
 262
 263static inline void task_dirties_fraction(struct task_struct *tsk,
 264		long *numerator, long *denominator)
 265{
 266	prop_fraction_single(&vm_dirties, &tsk->dirties,
 267				numerator, denominator);
 
 
 
 
 
 
 268}
 269
 270/*
 271 * task_dirty_limit - scale down dirty throttling threshold for one task
 272 *
 273 * task specific dirty limit:
 274 *
 275 *   dirty -= (dirty/8) * p_{t}
 276 *
 277 * To protect light/slow dirtying tasks from heavier/fast ones, we start
 278 * throttling individual tasks before reaching the bdi dirty limit.
 279 * Relatively low thresholds will be allocated to heavy dirtiers. So when
 280 * dirty pages grow large, heavy dirtiers will be throttled first, which will
 281 * effectively curb the growth of dirty pages. Light dirtiers with high enough
 282 * dirty threshold may never get throttled.
 283 */
 284#define TASK_LIMIT_FRACTION 8
 285static unsigned long task_dirty_limit(struct task_struct *tsk,
 286				       unsigned long bdi_dirty)
 287{
 288	long numerator, denominator;
 289	unsigned long dirty = bdi_dirty;
 290	u64 inv = dirty / TASK_LIMIT_FRACTION;
 291
 292	task_dirties_fraction(tsk, &numerator, &denominator);
 293	inv *= numerator;
 294	do_div(inv, denominator);
 295
 296	dirty -= inv;
 297
 298	return max(dirty, bdi_dirty/2);
 299}
 300
 301/* Minimum limit for any task */
 302static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
 303{
 304	return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
 
 305}
 
 306
 307/*
 308 *
 
 
 309 */
 310static unsigned int bdi_min_ratio;
 311
 312int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 313{
 314	int ret = 0;
 315
 316	spin_lock_bh(&bdi_lock);
 317	if (min_ratio > bdi->max_ratio) {
 318		ret = -EINVAL;
 319	} else {
 320		min_ratio -= bdi->min_ratio;
 321		if (bdi_min_ratio + min_ratio < 100) {
 322			bdi_min_ratio += min_ratio;
 323			bdi->min_ratio += min_ratio;
 324		} else {
 325			ret = -EINVAL;
 326		}
 327	}
 328	spin_unlock_bh(&bdi_lock);
 329
 330	return ret;
 331}
 332
 333int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 334{
 335	int ret = 0;
 336
 337	if (max_ratio > 100)
 338		return -EINVAL;
 339
 340	spin_lock_bh(&bdi_lock);
 341	if (bdi->min_ratio > max_ratio) {
 342		ret = -EINVAL;
 343	} else {
 344		bdi->max_ratio = max_ratio;
 345		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 346	}
 347	spin_unlock_bh(&bdi_lock);
 348
 349	return ret;
 350}
 351EXPORT_SYMBOL(bdi_set_max_ratio);
 352
 
 
 
 
 
 
 
 
 
 
 
 
 353/*
 354 * Work out the current dirty-memory clamping and background writeout
 355 * thresholds.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356 *
 357 * The main aim here is to lower them aggressively if there is a lot of mapped
 358 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 359 * pages.  It is better to clamp down on writers than to start swapping, and
 360 * performing lots of scanning.
 
 
 361 *
 362 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 
 
 363 *
 364 * We don't permit the clamping level to fall below 5% - that is getting rather
 365 * excessive.
 366 *
 367 * We make sure that the background writeout level is below the adjusted
 368 * clamping level.
 369 */
 370
 371static unsigned long highmem_dirtyable_memory(unsigned long total)
 372{
 373#ifdef CONFIG_HIGHMEM
 374	int node;
 375	unsigned long x = 0;
 376
 377	for_each_node_state(node, N_HIGH_MEMORY) {
 378		struct zone *z =
 379			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 380
 381		x += zone_page_state(z, NR_FREE_PAGES) +
 382		     zone_reclaimable_pages(z);
 383	}
 384	/*
 385	 * Make sure that the number of highmem pages is never larger
 386	 * than the number of the total dirtyable memory. This can only
 387	 * occur in very strange VM situations but we want to make sure
 388	 * that this does not occur.
 389	 */
 390	return min(x, total);
 391#else
 392	return 0;
 393#endif
 394}
 395
 396/**
 397 * determine_dirtyable_memory - amount of memory that may be used
 398 *
 399 * Returns the numebr of pages that can currently be freed and used
 400 * by the kernel for direct mappings.
 401 */
 402unsigned long determine_dirtyable_memory(void)
 403{
 404	unsigned long x;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405
 406	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
 407
 408	if (!vm_highmem_is_dirtyable)
 409		x -= highmem_dirtyable_memory(x);
 410
 411	return x + 1;	/* Ensure that we never return 0 */
 412}
 
 
 
 
 
 413
 414static unsigned long hard_dirty_limit(unsigned long thresh)
 415{
 416	return max(thresh, global_dirty_limit);
 417}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418
 419/*
 420 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 421 *
 422 * Calculate the dirty thresholds based on sysctl parameters
 423 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 424 * - vm.dirty_ratio             or  vm.dirty_bytes
 425 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 426 * real-time tasks.
 427 */
 428void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 429{
 430	unsigned long background;
 431	unsigned long dirty;
 432	unsigned long uninitialized_var(available_memory);
 433	struct task_struct *tsk;
 434
 435	if (!vm_dirty_bytes || !dirty_background_bytes)
 436		available_memory = determine_dirtyable_memory();
 437
 438	if (vm_dirty_bytes)
 439		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 440	else
 441		dirty = (vm_dirty_ratio * available_memory) / 100;
 442
 443	if (dirty_background_bytes)
 444		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 445	else
 446		background = (dirty_background_ratio * available_memory) / 100;
 447
 448	if (background >= dirty)
 449		background = dirty / 2;
 450	tsk = current;
 451	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 452		background += background / 4;
 453		dirty += dirty / 4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454	}
 455	*pbackground = background;
 456	*pdirty = dirty;
 457	trace_global_dirty_state(background, dirty);
 458}
 459
 460/**
 461 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 462 * @bdi: the backing_dev_info to query
 463 * @dirty: global dirty limit in pages
 464 *
 465 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 466 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 467 * And the "limit" in the name is not seriously taken as hard limit in
 468 * balance_dirty_pages().
 469 *
 470 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 471 * - starving fast devices
 472 * - piling up dirty pages (that will take long time to sync) on slow devices
 473 *
 474 * The bdi's share of dirty limit will be adapting to its throughput and
 475 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 476 */
 477unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 478{
 479	u64 bdi_dirty;
 480	long numerator, denominator;
 481
 482	/*
 483	 * Calculate this BDI's share of the dirty ratio.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	 */
 485	bdi_writeout_fraction(bdi, &numerator, &denominator);
 
 
 
 
 
 
 
 
 
 
 
 486
 487	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 488	bdi_dirty *= numerator;
 489	do_div(bdi_dirty, denominator);
 
 
 490
 491	bdi_dirty += (dirty * bdi->min_ratio) / 100;
 492	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 493		bdi_dirty = dirty * bdi->max_ratio / 100;
 
 
 
 
 
 
 
 
 
 
 494
 495	return bdi_dirty;
 496}
 497
 498static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 499				       unsigned long elapsed,
 500				       unsigned long written)
 501{
 502	const unsigned long period = roundup_pow_of_two(3 * HZ);
 503	unsigned long avg = bdi->avg_write_bandwidth;
 504	unsigned long old = bdi->write_bandwidth;
 505	u64 bw;
 506
 507	/*
 508	 * bw = written * HZ / elapsed
 509	 *
 510	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 511	 * write_bandwidth = ---------------------------------------------------
 512	 *                                          period
 
 
 
 513	 */
 514	bw = written - bdi->written_stamp;
 515	bw *= HZ;
 516	if (unlikely(elapsed > period)) {
 517		do_div(bw, elapsed);
 518		avg = bw;
 519		goto out;
 520	}
 521	bw += (u64)bdi->write_bandwidth * (period - elapsed);
 522	bw >>= ilog2(period);
 523
 524	/*
 525	 * one more level of smoothing, for filtering out sudden spikes
 526	 */
 527	if (avg > old && old >= (unsigned long)bw)
 528		avg -= (avg - old) >> 3;
 529
 530	if (avg < old && old <= (unsigned long)bw)
 531		avg += (old - avg) >> 3;
 532
 533out:
 534	bdi->write_bandwidth = bw;
 535	bdi->avg_write_bandwidth = avg;
 536}
 537
 538/*
 539 * The global dirtyable memory and dirty threshold could be suddenly knocked
 540 * down by a large amount (eg. on the startup of KVM in a swapless system).
 541 * This may throw the system into deep dirty exceeded state and throttle
 542 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 543 * global_dirty_limit for tracking slowly down to the knocked down dirty
 544 * threshold.
 545 */
 546static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 547{
 548	unsigned long limit = global_dirty_limit;
 
 549
 550	/*
 551	 * Follow up in one step.
 552	 */
 553	if (limit < thresh) {
 554		limit = thresh;
 555		goto update;
 556	}
 557
 558	/*
 559	 * Follow down slowly. Use the higher one as the target, because thresh
 560	 * may drop below dirty. This is exactly the reason to introduce
 561	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
 562	 */
 563	thresh = max(thresh, dirty);
 564	if (limit > thresh) {
 565		limit -= (limit - thresh) >> 5;
 566		goto update;
 567	}
 568	return;
 569update:
 570	global_dirty_limit = limit;
 571}
 572
 573static void global_update_bandwidth(unsigned long thresh,
 574				    unsigned long dirty,
 575				    unsigned long now)
 576{
 577	static DEFINE_SPINLOCK(dirty_lock);
 578	static unsigned long update_time;
 579
 580	/*
 581	 * check locklessly first to optimize away locking for the most time
 582	 */
 583	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 584		return;
 585
 586	spin_lock(&dirty_lock);
 587	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 588		update_dirty_limit(thresh, dirty);
 589		update_time = now;
 590	}
 591	spin_unlock(&dirty_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592}
 593
 594void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 595			    unsigned long thresh,
 596			    unsigned long dirty,
 597			    unsigned long bdi_thresh,
 598			    unsigned long bdi_dirty,
 599			    unsigned long start_time)
 600{
 
 601	unsigned long now = jiffies;
 602	unsigned long elapsed = now - bdi->bw_time_stamp;
 
 603	unsigned long written;
 604
 
 
 605	/*
 606	 * rate-limit, only update once every 200ms.
 607	 */
 608	if (elapsed < BANDWIDTH_INTERVAL)
 609		return;
 610
 611	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
 
 612
 613	/*
 614	 * Skip quiet periods when disk bandwidth is under-utilized.
 615	 * (at least 1s idle time between two flusher runs)
 616	 */
 617	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
 618		goto snapshot;
 619
 620	if (thresh)
 621		global_update_bandwidth(thresh, dirty, now);
 
 622
 623	bdi_update_write_bandwidth(bdi, elapsed, written);
 
 
 
 
 
 
 
 
 
 624
 625snapshot:
 626	bdi->written_stamp = written;
 627	bdi->bw_time_stamp = now;
 
 628}
 629
 630static void bdi_update_bandwidth(struct backing_dev_info *bdi,
 631				 unsigned long thresh,
 632				 unsigned long dirty,
 633				 unsigned long bdi_thresh,
 634				 unsigned long bdi_dirty,
 635				 unsigned long start_time)
 636{
 637	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
 638		return;
 639	spin_lock(&bdi->wb.list_lock);
 640	__bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
 641			       start_time);
 642	spin_unlock(&bdi->wb.list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645/*
 646 * balance_dirty_pages() must be called by processes which are generating dirty
 647 * data.  It looks at the number of dirty pages in the machine and will force
 648 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 649 * If we're over `background_thresh' then the writeback threads are woken to
 650 * perform some writeout.
 651 */
 652static void balance_dirty_pages(struct address_space *mapping,
 653				unsigned long write_chunk)
 654{
 655	unsigned long nr_reclaimable, bdi_nr_reclaimable;
 656	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
 657	unsigned long bdi_dirty;
 658	unsigned long background_thresh;
 659	unsigned long dirty_thresh;
 660	unsigned long bdi_thresh;
 661	unsigned long task_bdi_thresh;
 662	unsigned long min_task_bdi_thresh;
 663	unsigned long pages_written = 0;
 664	unsigned long pause = 1;
 
 
 665	bool dirty_exceeded = false;
 666	bool clear_dirty_exceeded = true;
 667	struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
 668	unsigned long start_time = jiffies;
 669
 670	for (;;) {
 671		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 672					global_page_state(NR_UNSTABLE_NFS);
 673		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674
 675		global_dirty_limits(&background_thresh, &dirty_thresh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676
 677		/*
 678		 * Throttle it only when the background writeback cannot
 679		 * catch-up. This avoids (excessively) small writeouts
 680		 * when the bdi limits are ramping up.
 
 
 
 
 
 
 
 681		 */
 682		if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683			break;
 
 
 
 
 684
 685		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
 686		min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
 687		task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
 688
 689		/*
 690		 * In order to avoid the stacked BDI deadlock we need
 691		 * to ensure we accurately count the 'dirty' pages when
 692		 * the threshold is low.
 693		 *
 694		 * Otherwise it would be possible to get thresh+n pages
 695		 * reported dirty, even though there are thresh-m pages
 696		 * actually dirty; with m+n sitting in the percpu
 697		 * deltas.
 698		 */
 699		if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
 700			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 701			bdi_dirty = bdi_nr_reclaimable +
 702				    bdi_stat_sum(bdi, BDI_WRITEBACK);
 703		} else {
 704			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 705			bdi_dirty = bdi_nr_reclaimable +
 706				    bdi_stat(bdi, BDI_WRITEBACK);
 
 
 
 
 707		}
 708
 709		/*
 710		 * The bdi thresh is somehow "soft" limit derived from the
 711		 * global "hard" limit. The former helps to prevent heavy IO
 712		 * bdi or process from holding back light ones; The latter is
 713		 * the last resort safeguard.
 714		 */
 715		dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
 716				  (nr_dirty > dirty_thresh);
 717		clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
 718					(nr_dirty <= dirty_thresh);
 719
 720		if (!dirty_exceeded)
 721			break;
 722
 723		if (!bdi->dirty_exceeded)
 724			bdi->dirty_exceeded = 1;
 
 
 
 
 
 
 
 725
 726		bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
 727				     bdi_thresh, bdi_dirty, start_time);
 
 
 
 
 
 
 
 
 
 
 
 728
 729		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 730		 * Unstable writes are a feature of certain networked
 731		 * filesystems (i.e. NFS) in which data may have been
 732		 * written to the server's write cache, but has not yet
 733		 * been flushed to permanent storage.
 734		 * Only move pages to writeback if this bdi is over its
 735		 * threshold otherwise wait until the disk writes catch
 736		 * up.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		 */
 738		trace_balance_dirty_start(bdi);
 739		if (bdi_nr_reclaimable > task_bdi_thresh) {
 740			pages_written += writeback_inodes_wb(&bdi->wb,
 741							     write_chunk);
 742			trace_balance_dirty_written(bdi, pages_written);
 743			if (pages_written >= write_chunk)
 744				break;		/* We've done our duty */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745		}
 746		__set_current_state(TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747		io_schedule_timeout(pause);
 748		trace_balance_dirty_wait(bdi);
 749
 750		dirty_thresh = hard_dirty_limit(dirty_thresh);
 
 
 
 751		/*
 752		 * max-pause area. If dirty exceeded but still within this
 753		 * area, no need to sleep for more than 200ms: (a) 8 pages per
 754		 * 200ms is typically more than enough to curb heavy dirtiers;
 755		 * (b) the pause time limit makes the dirtiers more responsive.
 756		 */
 757		if (nr_dirty < dirty_thresh &&
 758		    bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
 759		    time_after(jiffies, start_time + MAX_PAUSE))
 760			break;
 761
 762		/*
 763		 * Increase the delay for each loop, up to our previous
 764		 * default of taking a 100ms nap.
 
 
 
 
 
 
 765		 */
 766		pause <<= 1;
 767		if (pause > HZ / 10)
 768			pause = HZ / 10;
 
 
 769	}
 770
 771	/* Clear dirty_exceeded flag only when no task can exceed the limit */
 772	if (clear_dirty_exceeded && bdi->dirty_exceeded)
 773		bdi->dirty_exceeded = 0;
 774
 775	if (writeback_in_progress(bdi))
 776		return;
 777
 778	/*
 779	 * In laptop mode, we wait until hitting the higher threshold before
 780	 * starting background writeout, and then write out all the way down
 781	 * to the lower threshold.  So slow writers cause minimal disk activity.
 782	 *
 783	 * In normal mode, we start background writeout at the lower
 784	 * background_thresh, to keep the amount of dirty memory low.
 785	 */
 786	if ((laptop_mode && pages_written) ||
 787	    (!laptop_mode && (nr_reclaimable > background_thresh)))
 788		bdi_start_background_writeback(bdi);
 789}
 790
 791void set_page_dirty_balance(struct page *page, int page_mkwrite)
 792{
 793	if (set_page_dirty(page) || page_mkwrite) {
 794		struct address_space *mapping = page_mapping(page);
 795
 796		if (mapping)
 797			balance_dirty_pages_ratelimited(mapping);
 798	}
 799}
 800
 801static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803/**
 804 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 805 * @mapping: address_space which was dirtied
 806 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 807 *
 808 * Processes which are dirtying memory should call in here once for each page
 809 * which was newly dirtied.  The function will periodically check the system's
 810 * dirty state and will initiate writeback if needed.
 811 *
 812 * On really big machines, get_writeback_state is expensive, so try to avoid
 813 * calling it too often (ratelimiting).  But once we're over the dirty memory
 814 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 815 * from overshooting the limit by (ratelimit_pages) each.
 816 */
 817void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 818					unsigned long nr_pages_dirtied)
 819{
 820	struct backing_dev_info *bdi = mapping->backing_dev_info;
 821	unsigned long ratelimit;
 822	unsigned long *p;
 
 
 823
 824	if (!bdi_cap_account_dirty(bdi))
 825		return;
 826
 827	ratelimit = ratelimit_pages;
 828	if (mapping->backing_dev_info->dirty_exceeded)
 829		ratelimit = 8;
 
 
 
 
 
 830
 
 831	/*
 832	 * Check the rate limiting. Also, we do not want to throttle real-time
 833	 * tasks in balance_dirty_pages(). Period.
 
 
 834	 */
 835	preempt_disable();
 836	p =  &__get_cpu_var(bdp_ratelimits);
 837	*p += nr_pages_dirtied;
 838	if (unlikely(*p >= ratelimit)) {
 839		ratelimit = sync_writeback_pages(*p);
 840		*p = 0;
 841		preempt_enable();
 842		balance_dirty_pages(mapping, ratelimit);
 843		return;
 
 
 
 
 
 
 
 
 
 
 
 
 844	}
 845	preempt_enable();
 
 
 
 
 
 846}
 847EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 848
 849void throttle_vm_writeout(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 850{
 851	unsigned long background_thresh;
 852	unsigned long dirty_thresh;
 
 
 
 853
 854        for ( ; ; ) {
 855		global_dirty_limits(&background_thresh, &dirty_thresh);
 
 
 
 
 
 856
 857                /*
 858                 * Boost the allowable dirty threshold a bit for page
 859                 * allocators so they don't get DoS'ed by heavy writers
 860                 */
 861                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 862
 863                if (global_page_state(NR_UNSTABLE_NFS) +
 864			global_page_state(NR_WRITEBACK) <= dirty_thresh)
 865                        	break;
 866                congestion_wait(BLK_RW_ASYNC, HZ/10);
 867
 868		/*
 869		 * The caller might hold locks which can prevent IO completion
 870		 * or progress in the filesystem.  So we cannot just sit here
 871		 * waiting for IO to complete.
 872		 */
 873		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 874			break;
 875        }
 
 
 
 
 
 
 
 
 
 
 
 
 
 876}
 877
 878/*
 879 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 880 */
 881int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 882	void __user *buffer, size_t *length, loff_t *ppos)
 883{
 884	proc_dointvec(table, write, buffer, length, ppos);
 885	bdi_arm_supers_timer();
 886	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887}
 888
 889#ifdef CONFIG_BLOCK
 890void laptop_mode_timer_fn(unsigned long data)
 891{
 892	struct request_queue *q = (struct request_queue *)data;
 893	int nr_pages = global_page_state(NR_FILE_DIRTY) +
 894		global_page_state(NR_UNSTABLE_NFS);
 895
 896	/*
 897	 * We want to write everything out, not just down to the dirty
 898	 * threshold
 899	 */
 900	if (bdi_has_dirty_io(&q->backing_dev_info))
 901		bdi_start_writeback(&q->backing_dev_info, nr_pages);
 902}
 903
 904/*
 905 * We've spun up the disk and we're in laptop mode: schedule writeback
 906 * of all dirty data a few seconds from now.  If the flush is already scheduled
 907 * then push it back - the user is still using the disk.
 908 */
 909void laptop_io_completion(struct backing_dev_info *info)
 910{
 911	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
 912}
 913
 914/*
 915 * We're in laptop mode and we've just synced. The sync's writes will have
 916 * caused another writeback to be scheduled by laptop_io_completion.
 917 * Nothing needs to be written back anymore, so we unschedule the writeback.
 918 */
 919void laptop_sync_completion(void)
 920{
 921	struct backing_dev_info *bdi;
 922
 923	rcu_read_lock();
 924
 925	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
 926		del_timer(&bdi->laptop_mode_wb_timer);
 927
 928	rcu_read_unlock();
 929}
 930#endif
 931
 932/*
 933 * If ratelimit_pages is too high then we can get into dirty-data overload
 934 * if a large number of processes all perform writes at the same time.
 935 * If it is too low then SMP machines will call the (expensive)
 936 * get_writeback_state too often.
 937 *
 938 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 939 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 940 * thresholds before writeback cuts in.
 941 *
 942 * But the limit should not be set too high.  Because it also controls the
 943 * amount of memory which the balance_dirty_pages() caller has to write back.
 944 * If this is too large then the caller will block on the IO queue all the
 945 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 946 * will write six megabyte chunks, max.
 947 */
 948
 949void writeback_set_ratelimit(void)
 950{
 951	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 
 
 
 
 
 
 952	if (ratelimit_pages < 16)
 953		ratelimit_pages = 16;
 954	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 955		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 956}
 957
 958static int __cpuinit
 959ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 960{
 961	writeback_set_ratelimit();
 962	return NOTIFY_DONE;
 963}
 964
 965static struct notifier_block __cpuinitdata ratelimit_nb = {
 966	.notifier_call	= ratelimit_handler,
 967	.next		= NULL,
 968};
 969
 970/*
 971 * Called early on to tune the page writeback dirty limits.
 972 *
 973 * We used to scale dirty pages according to how total memory
 974 * related to pages that could be allocated for buffers (by
 975 * comparing nr_free_buffer_pages() to vm_total_pages.
 976 *
 977 * However, that was when we used "dirty_ratio" to scale with
 978 * all memory, and we don't do that any more. "dirty_ratio"
 979 * is now applied to total non-HIGHPAGE memory (by subtracting
 980 * totalhigh_pages from vm_total_pages), and as such we can't
 981 * get into the old insane situation any more where we had
 982 * large amounts of dirty pages compared to a small amount of
 983 * non-HIGHMEM memory.
 984 *
 985 * But we might still want to scale the dirty_ratio by how
 986 * much memory the box has..
 987 */
 988void __init page_writeback_init(void)
 989{
 990	int shift;
 991
 992	writeback_set_ratelimit();
 993	register_cpu_notifier(&ratelimit_nb);
 994
 995	shift = calc_period_shift();
 996	prop_descriptor_init(&vm_completions, shift);
 997	prop_descriptor_init(&vm_dirties, shift);
 
 998}
 999
1000/**
1001 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1002 * @mapping: address space structure to write
1003 * @start: starting page index
1004 * @end: ending page index (inclusive)
1005 *
1006 * This function scans the page range from @start to @end (inclusive) and tags
1007 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1008 * that write_cache_pages (or whoever calls this function) will then use
1009 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1010 * used to avoid livelocking of writeback by a process steadily creating new
1011 * dirty pages in the file (thus it is important for this function to be quick
1012 * so that it can tag pages faster than a dirtying process can create them).
1013 */
1014/*
1015 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1016 */
1017void tag_pages_for_writeback(struct address_space *mapping,
1018			     pgoff_t start, pgoff_t end)
1019{
1020#define WRITEBACK_TAG_BATCH 4096
1021	unsigned long tagged;
 
 
 
 
 
 
 
1022
1023	do {
1024		spin_lock_irq(&mapping->tree_lock);
1025		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1026				&start, end, WRITEBACK_TAG_BATCH,
1027				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1028		spin_unlock_irq(&mapping->tree_lock);
1029		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1030		cond_resched();
1031		/* We check 'start' to handle wrapping when end == ~0UL */
1032	} while (tagged >= WRITEBACK_TAG_BATCH && start);
 
1033}
1034EXPORT_SYMBOL(tag_pages_for_writeback);
1035
1036/**
1037 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1038 * @mapping: address space structure to write
1039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1040 * @writepage: function called for each page
1041 * @data: data passed to writepage function
1042 *
1043 * If a page is already under I/O, write_cache_pages() skips it, even
1044 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1045 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1046 * and msync() need to guarantee that all the data which was dirty at the time
1047 * the call was made get new I/O started against them.  If wbc->sync_mode is
1048 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1049 * existing IO to complete.
1050 *
1051 * To avoid livelocks (when other process dirties new pages), we first tag
1052 * pages which should be written back with TOWRITE tag and only then start
1053 * writing them. For data-integrity sync we have to be careful so that we do
1054 * not miss some pages (e.g., because some other process has cleared TOWRITE
1055 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1056 * by the process clearing the DIRTY tag (and submitting the page for IO).
 
 
 
 
 
 
 
 
 
1057 */
1058int write_cache_pages(struct address_space *mapping,
1059		      struct writeback_control *wbc, writepage_t writepage,
1060		      void *data)
1061{
1062	int ret = 0;
1063	int done = 0;
 
1064	struct pagevec pvec;
1065	int nr_pages;
1066	pgoff_t uninitialized_var(writeback_index);
1067	pgoff_t index;
1068	pgoff_t end;		/* Inclusive */
1069	pgoff_t done_index;
1070	int cycled;
1071	int range_whole = 0;
1072	int tag;
1073
1074	pagevec_init(&pvec, 0);
1075	if (wbc->range_cyclic) {
1076		writeback_index = mapping->writeback_index; /* prev offset */
1077		index = writeback_index;
1078		if (index == 0)
1079			cycled = 1;
1080		else
1081			cycled = 0;
1082		end = -1;
1083	} else {
1084		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1085		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1086		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1087			range_whole = 1;
1088		cycled = 1; /* ignore range_cyclic tests */
1089	}
1090	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 
1091		tag = PAGECACHE_TAG_TOWRITE;
1092	else
1093		tag = PAGECACHE_TAG_DIRTY;
1094retry:
1095	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1096		tag_pages_for_writeback(mapping, index, end);
1097	done_index = index;
1098	while (!done && (index <= end)) {
1099		int i;
1100
1101		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1102			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1103		if (nr_pages == 0)
1104			break;
1105
1106		for (i = 0; i < nr_pages; i++) {
1107			struct page *page = pvec.pages[i];
1108
1109			/*
1110			 * At this point, the page may be truncated or
1111			 * invalidated (changing page->mapping to NULL), or
1112			 * even swizzled back from swapper_space to tmpfs file
1113			 * mapping. However, page->index will not change
1114			 * because we have a reference on the page.
1115			 */
1116			if (page->index > end) {
1117				/*
1118				 * can't be range_cyclic (1st pass) because
1119				 * end == -1 in that case.
1120				 */
1121				done = 1;
1122				break;
1123			}
1124
1125			done_index = page->index;
1126
1127			lock_page(page);
1128
1129			/*
1130			 * Page truncated or invalidated. We can freely skip it
1131			 * then, even for data integrity operations: the page
1132			 * has disappeared concurrently, so there could be no
1133			 * real expectation of this data interity operation
1134			 * even if there is now a new, dirty page at the same
1135			 * pagecache address.
1136			 */
1137			if (unlikely(page->mapping != mapping)) {
1138continue_unlock:
1139				unlock_page(page);
1140				continue;
1141			}
1142
1143			if (!PageDirty(page)) {
1144				/* someone wrote it for us */
1145				goto continue_unlock;
1146			}
1147
1148			if (PageWriteback(page)) {
1149				if (wbc->sync_mode != WB_SYNC_NONE)
1150					wait_on_page_writeback(page);
1151				else
1152					goto continue_unlock;
1153			}
1154
1155			BUG_ON(PageWriteback(page));
1156			if (!clear_page_dirty_for_io(page))
1157				goto continue_unlock;
1158
1159			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1160			ret = (*writepage)(page, wbc, data);
1161			if (unlikely(ret)) {
1162				if (ret == AOP_WRITEPAGE_ACTIVATE) {
 
 
 
 
 
 
 
 
 
 
 
 
1163					unlock_page(page);
1164					ret = 0;
1165				} else {
1166					/*
1167					 * done_index is set past this page,
1168					 * so media errors will not choke
1169					 * background writeout for the entire
1170					 * file. This has consequences for
1171					 * range_cyclic semantics (ie. it may
1172					 * not be suitable for data integrity
1173					 * writeout).
1174					 */
1175					done_index = page->index + 1;
1176					done = 1;
1177					break;
1178				}
 
 
1179			}
1180
1181			/*
1182			 * We stop writing back only if we are not doing
1183			 * integrity sync. In case of integrity sync we have to
1184			 * keep going until we have written all the pages
1185			 * we tagged for writeback prior to entering this loop.
1186			 */
1187			if (--wbc->nr_to_write <= 0 &&
1188			    wbc->sync_mode == WB_SYNC_NONE) {
1189				done = 1;
1190				break;
1191			}
1192		}
1193		pagevec_release(&pvec);
1194		cond_resched();
1195	}
1196	if (!cycled && !done) {
1197		/*
1198		 * range_cyclic:
1199		 * We hit the last page and there is more work to be done: wrap
1200		 * back to the start of the file
1201		 */
1202		cycled = 1;
1203		index = 0;
1204		end = writeback_index - 1;
1205		goto retry;
1206	}
1207	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1208		mapping->writeback_index = done_index;
1209
1210	return ret;
1211}
1212EXPORT_SYMBOL(write_cache_pages);
1213
1214/*
1215 * Function used by generic_writepages to call the real writepage
1216 * function and set the mapping flags on error
1217 */
1218static int __writepage(struct page *page, struct writeback_control *wbc,
1219		       void *data)
1220{
1221	struct address_space *mapping = data;
1222	int ret = mapping->a_ops->writepage(page, wbc);
1223	mapping_set_error(mapping, ret);
1224	return ret;
1225}
1226
1227/**
1228 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1229 * @mapping: address space structure to write
1230 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1231 *
1232 * This is a library function, which implements the writepages()
1233 * address_space_operation.
 
 
1234 */
1235int generic_writepages(struct address_space *mapping,
1236		       struct writeback_control *wbc)
1237{
1238	struct blk_plug plug;
1239	int ret;
1240
1241	/* deal with chardevs and other special file */
1242	if (!mapping->a_ops->writepage)
1243		return 0;
1244
1245	blk_start_plug(&plug);
1246	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1247	blk_finish_plug(&plug);
1248	return ret;
1249}
1250
1251EXPORT_SYMBOL(generic_writepages);
1252
1253int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1254{
1255	int ret;
1256
1257	if (wbc->nr_to_write <= 0)
1258		return 0;
1259	if (mapping->a_ops->writepages)
1260		ret = mapping->a_ops->writepages(mapping, wbc);
1261	else
1262		ret = generic_writepages(mapping, wbc);
 
 
 
 
 
 
1263	return ret;
1264}
1265
1266/**
1267 * write_one_page - write out a single page and optionally wait on I/O
1268 * @page: the page to write
1269 * @wait: if true, wait on writeout
1270 *
1271 * The page must be locked by the caller and will be unlocked upon return.
1272 *
1273 * write_one_page() returns a negative error code if I/O failed.
 
 
 
1274 */
1275int write_one_page(struct page *page, int wait)
1276{
1277	struct address_space *mapping = page->mapping;
1278	int ret = 0;
1279	struct writeback_control wbc = {
1280		.sync_mode = WB_SYNC_ALL,
1281		.nr_to_write = 1,
1282	};
1283
1284	BUG_ON(!PageLocked(page));
1285
1286	if (wait)
1287		wait_on_page_writeback(page);
1288
1289	if (clear_page_dirty_for_io(page)) {
1290		page_cache_get(page);
1291		ret = mapping->a_ops->writepage(page, &wbc);
1292		if (ret == 0 && wait) {
1293			wait_on_page_writeback(page);
1294			if (PageError(page))
1295				ret = -EIO;
1296		}
1297		page_cache_release(page);
1298	} else {
1299		unlock_page(page);
1300	}
 
 
 
1301	return ret;
1302}
1303EXPORT_SYMBOL(write_one_page);
1304
1305/*
1306 * For address_spaces which do not use buffers nor write back.
1307 */
1308int __set_page_dirty_no_writeback(struct page *page)
1309{
1310	if (!PageDirty(page))
1311		return !TestSetPageDirty(page);
1312	return 0;
1313}
1314
1315/*
1316 * Helper function for set_page_dirty family.
 
 
 
1317 * NOTE: This relies on being atomic wrt interrupts.
1318 */
1319void account_page_dirtied(struct page *page, struct address_space *mapping)
1320{
 
 
 
 
1321	if (mapping_cap_account_dirty(mapping)) {
1322		__inc_zone_page_state(page, NR_FILE_DIRTY);
1323		__inc_zone_page_state(page, NR_DIRTIED);
1324		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1325		task_dirty_inc(current);
1326		task_io_account_write(PAGE_CACHE_SIZE);
 
 
 
 
 
 
 
 
 
 
1327	}
1328}
1329EXPORT_SYMBOL(account_page_dirtied);
1330
1331/*
1332 * Helper function for set_page_writeback family.
1333 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1334 * wrt interrupts.
1335 */
1336void account_page_writeback(struct page *page)
 
1337{
1338	inc_zone_page_state(page, NR_WRITEBACK);
 
 
 
 
 
1339}
1340EXPORT_SYMBOL(account_page_writeback);
1341
1342/*
1343 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1344 * its radix tree.
1345 *
1346 * This is also used when a single buffer is being dirtied: we want to set the
1347 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1348 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1349 *
1350 * Most callers have locked the page, which pins the address_space in memory.
1351 * But zap_pte_range() does not lock the page, however in that case the
1352 * mapping is pinned by the vma's ->vm_file reference.
1353 *
1354 * We take care to handle the case where the page was truncated from the
1355 * mapping by re-checking page_mapping() inside tree_lock.
1356 */
1357int __set_page_dirty_nobuffers(struct page *page)
1358{
 
1359	if (!TestSetPageDirty(page)) {
1360		struct address_space *mapping = page_mapping(page);
1361		struct address_space *mapping2;
1362
1363		if (!mapping)
 
1364			return 1;
1365
1366		spin_lock_irq(&mapping->tree_lock);
1367		mapping2 = page_mapping(page);
1368		if (mapping2) { /* Race with truncate? */
1369			BUG_ON(mapping2 != mapping);
1370			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1371			account_page_dirtied(page, mapping);
1372			radix_tree_tag_set(&mapping->page_tree,
1373				page_index(page), PAGECACHE_TAG_DIRTY);
1374		}
1375		spin_unlock_irq(&mapping->tree_lock);
 
 
 
 
 
 
 
 
 
1376		if (mapping->host) {
1377			/* !PageAnon && !swapper_space */
1378			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1379		}
1380		return 1;
1381	}
 
1382	return 0;
1383}
1384EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1385
1386/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387 * When a writepage implementation decides that it doesn't want to write this
1388 * page for some reason, it should redirty the locked page via
1389 * redirty_page_for_writepage() and it should then unlock the page and return 0
1390 */
1391int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1392{
 
 
1393	wbc->pages_skipped++;
1394	return __set_page_dirty_nobuffers(page);
 
 
1395}
1396EXPORT_SYMBOL(redirty_page_for_writepage);
1397
1398/*
1399 * Dirty a page.
1400 *
1401 * For pages with a mapping this should be done under the page lock
1402 * for the benefit of asynchronous memory errors who prefer a consistent
1403 * dirty state. This rule can be broken in some special cases,
1404 * but should be better not to.
1405 *
1406 * If the mapping doesn't provide a set_page_dirty a_op, then
1407 * just fall through and assume that it wants buffer_heads.
1408 */
1409int set_page_dirty(struct page *page)
1410{
1411	struct address_space *mapping = page_mapping(page);
1412
 
1413	if (likely(mapping)) {
1414		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1415		/*
1416		 * readahead/lru_deactivate_page could remain
1417		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1418		 * About readahead, if the page is written, the flags would be
1419		 * reset. So no problem.
1420		 * About lru_deactivate_page, if the page is redirty, the flag
1421		 * will be reset. So no problem. but if the page is used by readahead
1422		 * it will confuse readahead and make it restart the size rampup
1423		 * process. But it's a trivial problem.
1424		 */
1425		ClearPageReclaim(page);
 
1426#ifdef CONFIG_BLOCK
1427		if (!spd)
1428			spd = __set_page_dirty_buffers;
1429#endif
1430		return (*spd)(page);
1431	}
1432	if (!PageDirty(page)) {
1433		if (!TestSetPageDirty(page))
1434			return 1;
1435	}
1436	return 0;
1437}
1438EXPORT_SYMBOL(set_page_dirty);
1439
1440/*
1441 * set_page_dirty() is racy if the caller has no reference against
1442 * page->mapping->host, and if the page is unlocked.  This is because another
1443 * CPU could truncate the page off the mapping and then free the mapping.
1444 *
1445 * Usually, the page _is_ locked, or the caller is a user-space process which
1446 * holds a reference on the inode by having an open file.
1447 *
1448 * In other cases, the page should be locked before running set_page_dirty().
1449 */
1450int set_page_dirty_lock(struct page *page)
1451{
1452	int ret;
1453
1454	lock_page(page);
1455	ret = set_page_dirty(page);
1456	unlock_page(page);
1457	return ret;
1458}
1459EXPORT_SYMBOL(set_page_dirty_lock);
1460
1461/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462 * Clear a page's dirty flag, while caring for dirty memory accounting.
1463 * Returns true if the page was previously dirty.
1464 *
1465 * This is for preparing to put the page under writeout.  We leave the page
1466 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1467 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1468 * implementation will run either set_page_writeback() or set_page_dirty(),
1469 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1470 * back into sync.
1471 *
1472 * This incoherency between the page's dirty flag and radix-tree tag is
1473 * unfortunate, but it only exists while the page is locked.
1474 */
1475int clear_page_dirty_for_io(struct page *page)
1476{
1477	struct address_space *mapping = page_mapping(page);
 
1478
1479	BUG_ON(!PageLocked(page));
1480
1481	if (mapping && mapping_cap_account_dirty(mapping)) {
 
 
 
 
1482		/*
1483		 * Yes, Virginia, this is indeed insane.
1484		 *
1485		 * We use this sequence to make sure that
1486		 *  (a) we account for dirty stats properly
1487		 *  (b) we tell the low-level filesystem to
1488		 *      mark the whole page dirty if it was
1489		 *      dirty in a pagetable. Only to then
1490		 *  (c) clean the page again and return 1 to
1491		 *      cause the writeback.
1492		 *
1493		 * This way we avoid all nasty races with the
1494		 * dirty bit in multiple places and clearing
1495		 * them concurrently from different threads.
1496		 *
1497		 * Note! Normally the "set_page_dirty(page)"
1498		 * has no effect on the actual dirty bit - since
1499		 * that will already usually be set. But we
1500		 * need the side effects, and it can help us
1501		 * avoid races.
1502		 *
1503		 * We basically use the page "master dirty bit"
1504		 * as a serialization point for all the different
1505		 * threads doing their things.
1506		 */
1507		if (page_mkclean(page))
1508			set_page_dirty(page);
1509		/*
1510		 * We carefully synchronise fault handlers against
1511		 * installing a dirty pte and marking the page dirty
1512		 * at this point. We do this by having them hold the
1513		 * page lock at some point after installing their
1514		 * pte, but before marking the page dirty.
1515		 * Pages are always locked coming in here, so we get
1516		 * the desired exclusion. See mm/memory.c:do_wp_page()
1517		 * for more comments.
1518		 */
 
1519		if (TestClearPageDirty(page)) {
1520			dec_zone_page_state(page, NR_FILE_DIRTY);
1521			dec_bdi_stat(mapping->backing_dev_info,
1522					BDI_RECLAIMABLE);
1523			return 1;
1524		}
1525		return 0;
 
1526	}
1527	return TestClearPageDirty(page);
1528}
1529EXPORT_SYMBOL(clear_page_dirty_for_io);
1530
1531int test_clear_page_writeback(struct page *page)
1532{
1533	struct address_space *mapping = page_mapping(page);
 
 
1534	int ret;
1535
1536	if (mapping) {
1537		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
 
1538		unsigned long flags;
1539
1540		spin_lock_irqsave(&mapping->tree_lock, flags);
1541		ret = TestClearPageWriteback(page);
1542		if (ret) {
1543			radix_tree_tag_clear(&mapping->page_tree,
1544						page_index(page),
1545						PAGECACHE_TAG_WRITEBACK);
1546			if (bdi_cap_account_writeback(bdi)) {
1547				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1548				__bdi_writeout_inc(bdi);
 
 
1549			}
1550		}
1551		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
 
 
 
1552	} else {
1553		ret = TestClearPageWriteback(page);
1554	}
 
 
 
 
 
 
1555	if (ret) {
1556		dec_zone_page_state(page, NR_WRITEBACK);
1557		inc_zone_page_state(page, NR_WRITTEN);
 
1558	}
 
1559	return ret;
1560}
1561
1562int test_set_page_writeback(struct page *page)
1563{
1564	struct address_space *mapping = page_mapping(page);
1565	int ret;
1566
1567	if (mapping) {
1568		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
 
1569		unsigned long flags;
1570
1571		spin_lock_irqsave(&mapping->tree_lock, flags);
 
1572		ret = TestSetPageWriteback(page);
1573		if (!ret) {
1574			radix_tree_tag_set(&mapping->page_tree,
1575						page_index(page),
1576						PAGECACHE_TAG_WRITEBACK);
 
 
 
1577			if (bdi_cap_account_writeback(bdi))
1578				__inc_bdi_stat(bdi, BDI_WRITEBACK);
 
 
 
 
 
 
 
 
1579		}
1580		if (!PageDirty(page))
1581			radix_tree_tag_clear(&mapping->page_tree,
1582						page_index(page),
1583						PAGECACHE_TAG_DIRTY);
1584		radix_tree_tag_clear(&mapping->page_tree,
1585				     page_index(page),
1586				     PAGECACHE_TAG_TOWRITE);
1587		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1588	} else {
1589		ret = TestSetPageWriteback(page);
1590	}
1591	if (!ret)
1592		account_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
1593	return ret;
1594
1595}
1596EXPORT_SYMBOL(test_set_page_writeback);
1597
1598/*
1599 * Return true if any of the pages in the mapping are marked with the
1600 * passed tag.
1601 */
1602int mapping_tagged(struct address_space *mapping, int tag)
1603{
1604	return radix_tree_tagged(&mapping->page_tree, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605}
1606EXPORT_SYMBOL(mapping_tagged);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
 
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE		max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT	10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 112 * Flag that makes the machine dump writes/reads and block dirtyings.
 113 */
 114int block_dump;
 115
 116/*
 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 118 * a full sync is triggered after this time elapses without any disk activity.
 119 */
 120int laptop_mode;
 121
 122EXPORT_SYMBOL(laptop_mode);
 123
 124/* End of sysctl-exported parameters */
 125
 126struct wb_domain global_wb_domain;
 127
 128/* consolidated parameters for balance_dirty_pages() and its subroutines */
 129struct dirty_throttle_control {
 130#ifdef CONFIG_CGROUP_WRITEBACK
 131	struct wb_domain	*dom;
 132	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 133#endif
 134	struct bdi_writeback	*wb;
 135	struct fprop_local_percpu *wb_completions;
 136
 137	unsigned long		avail;		/* dirtyable */
 138	unsigned long		dirty;		/* file_dirty + write + nfs */
 139	unsigned long		thresh;		/* dirty threshold */
 140	unsigned long		bg_thresh;	/* dirty background threshold */
 141
 142	unsigned long		wb_dirty;	/* per-wb counterparts */
 143	unsigned long		wb_thresh;
 144	unsigned long		wb_bg_thresh;
 145
 146	unsigned long		pos_ratio;
 147};
 148
 149/*
 150 * Length of period for aging writeout fractions of bdis. This is an
 151 * arbitrarily chosen number. The longer the period, the slower fractions will
 152 * reflect changes in current writeout rate.
 153 */
 154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 155
 156#ifdef CONFIG_CGROUP_WRITEBACK
 157
 158#define GDTC_INIT(__wb)		.wb = (__wb),				\
 159				.dom = &global_wb_domain,		\
 160				.wb_completions = &(__wb)->completions
 161
 162#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 163
 164#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 165				.dom = mem_cgroup_wb_domain(__wb),	\
 166				.wb_completions = &(__wb)->memcg_completions, \
 167				.gdtc = __gdtc
 168
 169static bool mdtc_valid(struct dirty_throttle_control *dtc)
 170{
 171	return dtc->dom;
 172}
 173
 174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 175{
 176	return dtc->dom;
 177}
 178
 179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 180{
 181	return mdtc->gdtc;
 182}
 183
 184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 185{
 186	return &wb->memcg_completions;
 187}
 188
 189static void wb_min_max_ratio(struct bdi_writeback *wb,
 190			     unsigned long *minp, unsigned long *maxp)
 191{
 192	unsigned long this_bw = wb->avg_write_bandwidth;
 193	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 194	unsigned long long min = wb->bdi->min_ratio;
 195	unsigned long long max = wb->bdi->max_ratio;
 196
 197	/*
 198	 * @wb may already be clean by the time control reaches here and
 199	 * the total may not include its bw.
 200	 */
 201	if (this_bw < tot_bw) {
 202		if (min) {
 203			min *= this_bw;
 204			min = div64_ul(min, tot_bw);
 205		}
 206		if (max < 100) {
 207			max *= this_bw;
 208			max = div64_ul(max, tot_bw);
 209		}
 210	}
 211
 212	*minp = min;
 213	*maxp = max;
 214}
 215
 216#else	/* CONFIG_CGROUP_WRITEBACK */
 217
 218#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 219				.wb_completions = &(__wb)->completions
 220#define GDTC_INIT_NO_WB
 221#define MDTC_INIT(__wb, __gdtc)
 222
 223static bool mdtc_valid(struct dirty_throttle_control *dtc)
 224{
 225	return false;
 226}
 227
 228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 229{
 230	return &global_wb_domain;
 231}
 232
 233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 234{
 235	return NULL;
 236}
 237
 238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 239{
 240	return NULL;
 241}
 242
 243static void wb_min_max_ratio(struct bdi_writeback *wb,
 244			     unsigned long *minp, unsigned long *maxp)
 245{
 246	*minp = wb->bdi->min_ratio;
 247	*maxp = wb->bdi->max_ratio;
 248}
 249
 250#endif	/* CONFIG_CGROUP_WRITEBACK */
 251
 252/*
 253 * In a memory zone, there is a certain amount of pages we consider
 254 * available for the page cache, which is essentially the number of
 255 * free and reclaimable pages, minus some zone reserves to protect
 256 * lowmem and the ability to uphold the zone's watermarks without
 257 * requiring writeback.
 258 *
 259 * This number of dirtyable pages is the base value of which the
 260 * user-configurable dirty ratio is the effective number of pages that
 261 * are allowed to be actually dirtied.  Per individual zone, or
 262 * globally by using the sum of dirtyable pages over all zones.
 263 *
 264 * Because the user is allowed to specify the dirty limit globally as
 265 * absolute number of bytes, calculating the per-zone dirty limit can
 266 * require translating the configured limit into a percentage of
 267 * global dirtyable memory first.
 268 */
 269
 270/**
 271 * node_dirtyable_memory - number of dirtyable pages in a node
 272 * @pgdat: the node
 273 *
 274 * Return: the node's number of pages potentially available for dirty
 275 * page cache.  This is the base value for the per-node dirty limits.
 276 */
 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 278{
 279	unsigned long nr_pages = 0;
 280	int z;
 281
 282	for (z = 0; z < MAX_NR_ZONES; z++) {
 283		struct zone *zone = pgdat->node_zones + z;
 284
 285		if (!populated_zone(zone))
 286			continue;
 287
 288		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 289	}
 290
 291	/*
 292	 * Pages reserved for the kernel should not be considered
 293	 * dirtyable, to prevent a situation where reclaim has to
 294	 * clean pages in order to balance the zones.
 295	 */
 296	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 297
 298	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 299	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 300
 301	return nr_pages;
 302}
 303
 304static unsigned long highmem_dirtyable_memory(unsigned long total)
 305{
 306#ifdef CONFIG_HIGHMEM
 307	int node;
 308	unsigned long x = 0;
 309	int i;
 310
 311	for_each_node_state(node, N_HIGH_MEMORY) {
 312		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 313			struct zone *z;
 314			unsigned long nr_pages;
 315
 316			if (!is_highmem_idx(i))
 317				continue;
 318
 319			z = &NODE_DATA(node)->node_zones[i];
 320			if (!populated_zone(z))
 321				continue;
 322
 323			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 324			/* watch for underflows */
 325			nr_pages -= min(nr_pages, high_wmark_pages(z));
 326			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 327			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 328			x += nr_pages;
 329		}
 330	}
 331
 332	/*
 333	 * Unreclaimable memory (kernel memory or anonymous memory
 334	 * without swap) can bring down the dirtyable pages below
 335	 * the zone's dirty balance reserve and the above calculation
 336	 * will underflow.  However we still want to add in nodes
 337	 * which are below threshold (negative values) to get a more
 338	 * accurate calculation but make sure that the total never
 339	 * underflows.
 340	 */
 341	if ((long)x < 0)
 342		x = 0;
 343
 344	/*
 345	 * Make sure that the number of highmem pages is never larger
 346	 * than the number of the total dirtyable memory. This can only
 347	 * occur in very strange VM situations but we want to make sure
 348	 * that this does not occur.
 349	 */
 350	return min(x, total);
 351#else
 352	return 0;
 353#endif
 354}
 355
 356/**
 357 * global_dirtyable_memory - number of globally dirtyable pages
 358 *
 359 * Return: the global number of pages potentially available for dirty
 360 * page cache.  This is the base value for the global dirty limits.
 361 */
 362static unsigned long global_dirtyable_memory(void)
 363{
 364	unsigned long x;
 365
 366	x = global_zone_page_state(NR_FREE_PAGES);
 367	/*
 368	 * Pages reserved for the kernel should not be considered
 369	 * dirtyable, to prevent a situation where reclaim has to
 370	 * clean pages in order to balance the zones.
 371	 */
 372	x -= min(x, totalreserve_pages);
 373
 374	x += global_node_page_state(NR_INACTIVE_FILE);
 375	x += global_node_page_state(NR_ACTIVE_FILE);
 376
 377	if (!vm_highmem_is_dirtyable)
 378		x -= highmem_dirtyable_memory(x);
 379
 380	return x + 1;	/* Ensure that we never return 0 */
 381}
 382
 383/**
 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 385 * @dtc: dirty_throttle_control of interest
 386 *
 387 * Calculate @dtc->thresh and ->bg_thresh considering
 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 389 * must ensure that @dtc->avail is set before calling this function.  The
 390 * dirty limits will be lifted by 1/4 for real-time tasks.
 391 */
 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 393{
 394	const unsigned long available_memory = dtc->avail;
 395	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 396	unsigned long bytes = vm_dirty_bytes;
 397	unsigned long bg_bytes = dirty_background_bytes;
 398	/* convert ratios to per-PAGE_SIZE for higher precision */
 399	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 400	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 401	unsigned long thresh;
 402	unsigned long bg_thresh;
 403	struct task_struct *tsk;
 404
 405	/* gdtc is !NULL iff @dtc is for memcg domain */
 406	if (gdtc) {
 407		unsigned long global_avail = gdtc->avail;
 408
 409		/*
 410		 * The byte settings can't be applied directly to memcg
 411		 * domains.  Convert them to ratios by scaling against
 412		 * globally available memory.  As the ratios are in
 413		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 414		 * number of pages.
 415		 */
 416		if (bytes)
 417			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 418				    PAGE_SIZE);
 419		if (bg_bytes)
 420			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 421				       PAGE_SIZE);
 422		bytes = bg_bytes = 0;
 423	}
 424
 425	if (bytes)
 426		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 427	else
 428		thresh = (ratio * available_memory) / PAGE_SIZE;
 429
 430	if (bg_bytes)
 431		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 432	else
 433		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 434
 435	if (bg_thresh >= thresh)
 436		bg_thresh = thresh / 2;
 437	tsk = current;
 438	if (rt_task(tsk)) {
 439		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 440		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 441	}
 442	dtc->thresh = thresh;
 443	dtc->bg_thresh = bg_thresh;
 444
 445	/* we should eventually report the domain in the TP */
 446	if (!gdtc)
 447		trace_global_dirty_state(bg_thresh, thresh);
 448}
 449
 450/**
 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 452 * @pbackground: out parameter for bg_thresh
 453 * @pdirty: out parameter for thresh
 454 *
 455 * Calculate bg_thresh and thresh for global_wb_domain.  See
 456 * domain_dirty_limits() for details.
 457 */
 458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 459{
 460	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 461
 462	gdtc.avail = global_dirtyable_memory();
 463	domain_dirty_limits(&gdtc);
 464
 465	*pbackground = gdtc.bg_thresh;
 466	*pdirty = gdtc.thresh;
 467}
 468
 469/**
 470 * node_dirty_limit - maximum number of dirty pages allowed in a node
 471 * @pgdat: the node
 472 *
 473 * Return: the maximum number of dirty pages allowed in a node, based
 474 * on the node's dirtyable memory.
 475 */
 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 477{
 478	unsigned long node_memory = node_dirtyable_memory(pgdat);
 479	struct task_struct *tsk = current;
 480	unsigned long dirty;
 481
 482	if (vm_dirty_bytes)
 483		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 484			node_memory / global_dirtyable_memory();
 485	else
 486		dirty = vm_dirty_ratio * node_memory / 100;
 487
 488	if (rt_task(tsk))
 489		dirty += dirty / 4;
 490
 491	return dirty;
 492}
 493
 494/**
 495 * node_dirty_ok - tells whether a node is within its dirty limits
 496 * @pgdat: the node to check
 497 *
 498 * Return: %true when the dirty pages in @pgdat are within the node's
 499 * dirty limit, %false if the limit is exceeded.
 500 */
 501bool node_dirty_ok(struct pglist_data *pgdat)
 502{
 503	unsigned long limit = node_dirty_limit(pgdat);
 504	unsigned long nr_pages = 0;
 505
 506	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 507	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 508
 509	return nr_pages <= limit;
 510}
 511
 512int dirty_background_ratio_handler(struct ctl_table *table, int write,
 513		void *buffer, size_t *lenp, loff_t *ppos)
 
 514{
 515	int ret;
 516
 517	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 518	if (ret == 0 && write)
 519		dirty_background_bytes = 0;
 520	return ret;
 521}
 522
 523int dirty_background_bytes_handler(struct ctl_table *table, int write,
 524		void *buffer, size_t *lenp, loff_t *ppos)
 
 525{
 526	int ret;
 527
 528	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 529	if (ret == 0 && write)
 530		dirty_background_ratio = 0;
 531	return ret;
 532}
 533
 534int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 535		size_t *lenp, loff_t *ppos)
 
 536{
 537	int old_ratio = vm_dirty_ratio;
 538	int ret;
 539
 540	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 541	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 542		writeback_set_ratelimit();
 543		vm_dirty_bytes = 0;
 544	}
 545	return ret;
 546}
 547
 
 548int dirty_bytes_handler(struct ctl_table *table, int write,
 549		void *buffer, size_t *lenp, loff_t *ppos)
 
 550{
 551	unsigned long old_bytes = vm_dirty_bytes;
 552	int ret;
 553
 554	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 555	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 556		writeback_set_ratelimit();
 557		vm_dirty_ratio = 0;
 558	}
 559	return ret;
 560}
 561
 562static unsigned long wp_next_time(unsigned long cur_time)
 563{
 564	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 565	/* 0 has a special meaning... */
 566	if (!cur_time)
 567		return 1;
 568	return cur_time;
 569}
 570
 571static void wb_domain_writeout_inc(struct wb_domain *dom,
 572				   struct fprop_local_percpu *completions,
 573				   unsigned int max_prop_frac)
 574{
 575	__fprop_inc_percpu_max(&dom->completions, completions,
 576			       max_prop_frac);
 577	/* First event after period switching was turned off? */
 578	if (unlikely(!dom->period_time)) {
 579		/*
 580		 * We can race with other __bdi_writeout_inc calls here but
 581		 * it does not cause any harm since the resulting time when
 582		 * timer will fire and what is in writeout_period_time will be
 583		 * roughly the same.
 584		 */
 585		dom->period_time = wp_next_time(jiffies);
 586		mod_timer(&dom->period_timer, dom->period_time);
 587	}
 588}
 589
 590/*
 591 * Increment @wb's writeout completion count and the global writeout
 592 * completion count. Called from test_clear_page_writeback().
 593 */
 594static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 595{
 596	struct wb_domain *cgdom;
 597
 598	inc_wb_stat(wb, WB_WRITTEN);
 599	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 600			       wb->bdi->max_prop_frac);
 601
 602	cgdom = mem_cgroup_wb_domain(wb);
 603	if (cgdom)
 604		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 605				       wb->bdi->max_prop_frac);
 606}
 607
 608void wb_writeout_inc(struct bdi_writeback *wb)
 609{
 610	unsigned long flags;
 611
 612	local_irq_save(flags);
 613	__wb_writeout_inc(wb);
 614	local_irq_restore(flags);
 615}
 616EXPORT_SYMBOL_GPL(wb_writeout_inc);
 
 
 
 
 
 617
 618/*
 619 * On idle system, we can be called long after we scheduled because we use
 620 * deferred timers so count with missed periods.
 621 */
 622static void writeout_period(struct timer_list *t)
 
 623{
 624	struct wb_domain *dom = from_timer(dom, t, period_timer);
 625	int miss_periods = (jiffies - dom->period_time) /
 626						 VM_COMPLETIONS_PERIOD_LEN;
 627
 628	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 629		dom->period_time = wp_next_time(dom->period_time +
 630				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 631		mod_timer(&dom->period_timer, dom->period_time);
 632	} else {
 633		/*
 634		 * Aging has zeroed all fractions. Stop wasting CPU on period
 635		 * updates.
 636		 */
 637		dom->period_time = 0;
 638	}
 639}
 640
 641int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642{
 643	memset(dom, 0, sizeof(*dom));
 644
 645	spin_lock_init(&dom->lock);
 646
 647	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 
 
 648
 649	dom->dirty_limit_tstamp = jiffies;
 650
 651	return fprop_global_init(&dom->completions, gfp);
 652}
 653
 654#ifdef CONFIG_CGROUP_WRITEBACK
 655void wb_domain_exit(struct wb_domain *dom)
 656{
 657	del_timer_sync(&dom->period_timer);
 658	fprop_global_destroy(&dom->completions);
 659}
 660#endif
 661
 662/*
 663 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 664 * registered backing devices, which, for obvious reasons, can not
 665 * exceed 100%.
 666 */
 667static unsigned int bdi_min_ratio;
 668
 669int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 670{
 671	int ret = 0;
 672
 673	spin_lock_bh(&bdi_lock);
 674	if (min_ratio > bdi->max_ratio) {
 675		ret = -EINVAL;
 676	} else {
 677		min_ratio -= bdi->min_ratio;
 678		if (bdi_min_ratio + min_ratio < 100) {
 679			bdi_min_ratio += min_ratio;
 680			bdi->min_ratio += min_ratio;
 681		} else {
 682			ret = -EINVAL;
 683		}
 684	}
 685	spin_unlock_bh(&bdi_lock);
 686
 687	return ret;
 688}
 689
 690int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 691{
 692	int ret = 0;
 693
 694	if (max_ratio > 100)
 695		return -EINVAL;
 696
 697	spin_lock_bh(&bdi_lock);
 698	if (bdi->min_ratio > max_ratio) {
 699		ret = -EINVAL;
 700	} else {
 701		bdi->max_ratio = max_ratio;
 702		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 703	}
 704	spin_unlock_bh(&bdi_lock);
 705
 706	return ret;
 707}
 708EXPORT_SYMBOL(bdi_set_max_ratio);
 709
 710static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 711					   unsigned long bg_thresh)
 712{
 713	return (thresh + bg_thresh) / 2;
 714}
 715
 716static unsigned long hard_dirty_limit(struct wb_domain *dom,
 717				      unsigned long thresh)
 718{
 719	return max(thresh, dom->dirty_limit);
 720}
 721
 722/*
 723 * Memory which can be further allocated to a memcg domain is capped by
 724 * system-wide clean memory excluding the amount being used in the domain.
 725 */
 726static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 727			    unsigned long filepages, unsigned long headroom)
 728{
 729	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 730	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 731	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 732	unsigned long other_clean = global_clean - min(global_clean, clean);
 733
 734	mdtc->avail = filepages + min(headroom, other_clean);
 735}
 736
 737/**
 738 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 739 * @dtc: dirty_throttle_context of interest
 740 *
 741 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 742 * when sleeping max_pause per page is not enough to keep the dirty pages under
 743 * control. For example, when the device is completely stalled due to some error
 744 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 745 * In the other normal situations, it acts more gently by throttling the tasks
 746 * more (rather than completely block them) when the wb dirty pages go high.
 747 *
 748 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 749 * - starving fast devices
 750 * - piling up dirty pages (that will take long time to sync) on slow devices
 751 *
 752 * The wb's share of dirty limit will be adapting to its throughput and
 753 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 754 *
 755 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 756 * dirty balancing includes all PG_dirty and PG_writeback pages.
 757 */
 758static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 
 759{
 760	struct wb_domain *dom = dtc_dom(dtc);
 761	unsigned long thresh = dtc->thresh;
 762	u64 wb_thresh;
 763	unsigned long numerator, denominator;
 764	unsigned long wb_min_ratio, wb_max_ratio;
 
 
 765
 
 
 
 766	/*
 767	 * Calculate this BDI's share of the thresh ratio.
 
 
 
 768	 */
 769	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 770			      &numerator, &denominator);
 
 
 
 771
 772	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 773	wb_thresh *= numerator;
 774	wb_thresh = div64_ul(wb_thresh, denominator);
 775
 776	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 777
 778	wb_thresh += (thresh * wb_min_ratio) / 100;
 779	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 780		wb_thresh = thresh * wb_max_ratio / 100;
 781
 782	return wb_thresh;
 783}
 784
 785unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 786{
 787	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 788					       .thresh = thresh };
 789	return __wb_calc_thresh(&gdtc);
 790}
 791
 792/*
 793 *                           setpoint - dirty 3
 794 *        f(dirty) := 1.0 + (----------------)
 795 *                           limit - setpoint
 796 *
 797 * it's a 3rd order polynomial that subjects to
 798 *
 799 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 800 * (2) f(setpoint) = 1.0 => the balance point
 801 * (3) f(limit)    = 0   => the hard limit
 802 * (4) df/dx      <= 0	 => negative feedback control
 803 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 804 *     => fast response on large errors; small oscillation near setpoint
 805 */
 806static long long pos_ratio_polynom(unsigned long setpoint,
 807					  unsigned long dirty,
 808					  unsigned long limit)
 809{
 810	long long pos_ratio;
 811	long x;
 812
 813	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 814		      (limit - setpoint) | 1);
 815	pos_ratio = x;
 816	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 817	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 818	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 819
 820	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 821}
 822
 823/*
 824 * Dirty position control.
 825 *
 826 * (o) global/bdi setpoints
 827 *
 828 * We want the dirty pages be balanced around the global/wb setpoints.
 829 * When the number of dirty pages is higher/lower than the setpoint, the
 830 * dirty position control ratio (and hence task dirty ratelimit) will be
 831 * decreased/increased to bring the dirty pages back to the setpoint.
 832 *
 833 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 834 *
 835 *     if (dirty < setpoint) scale up   pos_ratio
 836 *     if (dirty > setpoint) scale down pos_ratio
 837 *
 838 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 839 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 840 *
 841 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 842 *
 843 * (o) global control line
 844 *
 845 *     ^ pos_ratio
 846 *     |
 847 *     |            |<===== global dirty control scope ======>|
 848 * 2.0 .............*
 849 *     |            .*
 850 *     |            . *
 851 *     |            .   *
 852 *     |            .     *
 853 *     |            .        *
 854 *     |            .            *
 855 * 1.0 ................................*
 856 *     |            .                  .     *
 857 *     |            .                  .          *
 858 *     |            .                  .              *
 859 *     |            .                  .                 *
 860 *     |            .                  .                    *
 861 *   0 +------------.------------------.----------------------*------------->
 862 *           freerun^          setpoint^                 limit^   dirty pages
 863 *
 864 * (o) wb control line
 865 *
 866 *     ^ pos_ratio
 867 *     |
 868 *     |            *
 869 *     |              *
 870 *     |                *
 871 *     |                  *
 872 *     |                    * |<=========== span ============>|
 873 * 1.0 .......................*
 874 *     |                      . *
 875 *     |                      .   *
 876 *     |                      .     *
 877 *     |                      .       *
 878 *     |                      .         *
 879 *     |                      .           *
 880 *     |                      .             *
 881 *     |                      .               *
 882 *     |                      .                 *
 883 *     |                      .                   *
 884 *     |                      .                     *
 885 * 1/4 ...............................................* * * * * * * * * * * *
 886 *     |                      .                         .
 887 *     |                      .                           .
 888 *     |                      .                             .
 889 *   0 +----------------------.-------------------------------.------------->
 890 *                wb_setpoint^                    x_intercept^
 891 *
 892 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 893 * be smoothly throttled down to normal if it starts high in situations like
 894 * - start writing to a slow SD card and a fast disk at the same time. The SD
 895 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 896 * - the wb dirty thresh drops quickly due to change of JBOD workload
 897 */
 898static void wb_position_ratio(struct dirty_throttle_control *dtc)
 899{
 900	struct bdi_writeback *wb = dtc->wb;
 901	unsigned long write_bw = wb->avg_write_bandwidth;
 902	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 903	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 904	unsigned long wb_thresh = dtc->wb_thresh;
 905	unsigned long x_intercept;
 906	unsigned long setpoint;		/* dirty pages' target balance point */
 907	unsigned long wb_setpoint;
 908	unsigned long span;
 909	long long pos_ratio;		/* for scaling up/down the rate limit */
 910	long x;
 911
 912	dtc->pos_ratio = 0;
 913
 914	if (unlikely(dtc->dirty >= limit))
 915		return;
 916
 917	/*
 918	 * global setpoint
 919	 *
 920	 * See comment for pos_ratio_polynom().
 921	 */
 922	setpoint = (freerun + limit) / 2;
 923	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 924
 925	/*
 926	 * The strictlimit feature is a tool preventing mistrusted filesystems
 927	 * from growing a large number of dirty pages before throttling. For
 928	 * such filesystems balance_dirty_pages always checks wb counters
 929	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 930	 * This is especially important for fuse which sets bdi->max_ratio to
 931	 * 1% by default. Without strictlimit feature, fuse writeback may
 932	 * consume arbitrary amount of RAM because it is accounted in
 933	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 934	 *
 935	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 936	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 937	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 938	 * limits are set by default to 10% and 20% (background and throttle).
 939	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 940	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 941	 * about ~6K pages (as the average of background and throttle wb
 942	 * limits). The 3rd order polynomial will provide positive feedback if
 943	 * wb_dirty is under wb_setpoint and vice versa.
 944	 *
 945	 * Note, that we cannot use global counters in these calculations
 946	 * because we want to throttle process writing to a strictlimit wb
 947	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 948	 * in the example above).
 949	 */
 950	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 951		long long wb_pos_ratio;
 952
 953		if (dtc->wb_dirty < 8) {
 954			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 955					   2 << RATELIMIT_CALC_SHIFT);
 956			return;
 957		}
 
 
 
 
 
 
 
 
 
 
 958
 959		if (dtc->wb_dirty >= wb_thresh)
 960			return;
 961
 962		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 963						    dtc->wb_bg_thresh);
 
 
 964
 965		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 966			return;
 
 
 967
 968		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 969						 wb_thresh);
 970
 971		/*
 972		 * Typically, for strictlimit case, wb_setpoint << setpoint
 973		 * and pos_ratio >> wb_pos_ratio. In the other words global
 974		 * state ("dirty") is not limiting factor and we have to
 975		 * make decision based on wb counters. But there is an
 976		 * important case when global pos_ratio should get precedence:
 977		 * global limits are exceeded (e.g. due to activities on other
 978		 * wb's) while given strictlimit wb is below limit.
 979		 *
 980		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 981		 * but it would look too non-natural for the case of all
 982		 * activity in the system coming from a single strictlimit wb
 983		 * with bdi->max_ratio == 100%.
 984		 *
 985		 * Note that min() below somewhat changes the dynamics of the
 986		 * control system. Normally, pos_ratio value can be well over 3
 987		 * (when globally we are at freerun and wb is well below wb
 988		 * setpoint). Now the maximum pos_ratio in the same situation
 989		 * is 2. We might want to tweak this if we observe the control
 990		 * system is too slow to adapt.
 991		 */
 992		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 993		return;
 994	}
 
 
 
 
 995
 996	/*
 997	 * We have computed basic pos_ratio above based on global situation. If
 998	 * the wb is over/under its share of dirty pages, we want to scale
 999	 * pos_ratio further down/up. That is done by the following mechanism.
1000	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002	/*
1003	 * wb setpoint
1004	 *
1005	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1006	 *
1007	 *                        x_intercept - wb_dirty
1008	 *                     := --------------------------
1009	 *                        x_intercept - wb_setpoint
1010	 *
1011	 * The main wb control line is a linear function that subjects to
1012	 *
1013	 * (1) f(wb_setpoint) = 1.0
1014	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1015	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1016	 *
1017	 * For single wb case, the dirty pages are observed to fluctuate
1018	 * regularly within range
1019	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1020	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1021	 * fluctuation range for pos_ratio.
1022	 *
1023	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1024	 * own size, so move the slope over accordingly and choose a slope that
1025	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1026	 */
1027	if (unlikely(wb_thresh > dtc->thresh))
1028		wb_thresh = dtc->thresh;
1029	/*
1030	 * It's very possible that wb_thresh is close to 0 not because the
1031	 * device is slow, but that it has remained inactive for long time.
1032	 * Honour such devices a reasonable good (hopefully IO efficient)
1033	 * threshold, so that the occasional writes won't be blocked and active
1034	 * writes can rampup the threshold quickly.
1035	 */
1036	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1037	/*
1038	 * scale global setpoint to wb's:
1039	 *	wb_setpoint = setpoint * wb_thresh / thresh
1040	 */
1041	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1042	wb_setpoint = setpoint * (u64)x >> 16;
1043	/*
1044	 * Use span=(8*write_bw) in single wb case as indicated by
1045	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1046	 *
1047	 *        wb_thresh                    thresh - wb_thresh
1048	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1049	 *         thresh                           thresh
1050	 */
1051	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1052	x_intercept = wb_setpoint + span;
1053
1054	if (dtc->wb_dirty < x_intercept - span / 4) {
1055		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1056				      (x_intercept - wb_setpoint) | 1);
1057	} else
1058		pos_ratio /= 4;
1059
1060	/*
1061	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1062	 * It may push the desired control point of global dirty pages higher
1063	 * than setpoint.
1064	 */
1065	x_intercept = wb_thresh / 2;
1066	if (dtc->wb_dirty < x_intercept) {
1067		if (dtc->wb_dirty > x_intercept / 8)
1068			pos_ratio = div_u64(pos_ratio * x_intercept,
1069					    dtc->wb_dirty);
1070		else
1071			pos_ratio *= 8;
1072	}
1073
1074	dtc->pos_ratio = pos_ratio;
1075}
1076
1077static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1078				      unsigned long elapsed,
1079				      unsigned long written)
1080{
1081	const unsigned long period = roundup_pow_of_two(3 * HZ);
1082	unsigned long avg = wb->avg_write_bandwidth;
1083	unsigned long old = wb->write_bandwidth;
1084	u64 bw;
1085
1086	/*
1087	 * bw = written * HZ / elapsed
1088	 *
1089	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1090	 * write_bandwidth = ---------------------------------------------------
1091	 *                                          period
1092	 *
1093	 * @written may have decreased due to account_page_redirty().
1094	 * Avoid underflowing @bw calculation.
1095	 */
1096	bw = written - min(written, wb->written_stamp);
1097	bw *= HZ;
1098	if (unlikely(elapsed > period)) {
1099		bw = div64_ul(bw, elapsed);
1100		avg = bw;
1101		goto out;
1102	}
1103	bw += (u64)wb->write_bandwidth * (period - elapsed);
1104	bw >>= ilog2(period);
1105
1106	/*
1107	 * one more level of smoothing, for filtering out sudden spikes
1108	 */
1109	if (avg > old && old >= (unsigned long)bw)
1110		avg -= (avg - old) >> 3;
1111
1112	if (avg < old && old <= (unsigned long)bw)
1113		avg += (old - avg) >> 3;
1114
1115out:
1116	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1117	avg = max(avg, 1LU);
1118	if (wb_has_dirty_io(wb)) {
1119		long delta = avg - wb->avg_write_bandwidth;
1120		WARN_ON_ONCE(atomic_long_add_return(delta,
1121					&wb->bdi->tot_write_bandwidth) <= 0);
1122	}
1123	wb->write_bandwidth = bw;
1124	wb->avg_write_bandwidth = avg;
1125}
1126
1127static void update_dirty_limit(struct dirty_throttle_control *dtc)
1128{
1129	struct wb_domain *dom = dtc_dom(dtc);
1130	unsigned long thresh = dtc->thresh;
1131	unsigned long limit = dom->dirty_limit;
1132
1133	/*
1134	 * Follow up in one step.
1135	 */
1136	if (limit < thresh) {
1137		limit = thresh;
1138		goto update;
1139	}
1140
1141	/*
1142	 * Follow down slowly. Use the higher one as the target, because thresh
1143	 * may drop below dirty. This is exactly the reason to introduce
1144	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1145	 */
1146	thresh = max(thresh, dtc->dirty);
1147	if (limit > thresh) {
1148		limit -= (limit - thresh) >> 5;
1149		goto update;
1150	}
1151	return;
1152update:
1153	dom->dirty_limit = limit;
1154}
1155
1156static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
 
1157				    unsigned long now)
1158{
1159	struct wb_domain *dom = dtc_dom(dtc);
 
1160
1161	/*
1162	 * check locklessly first to optimize away locking for the most time
1163	 */
1164	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1165		return;
1166
1167	spin_lock(&dom->lock);
1168	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1169		update_dirty_limit(dtc);
1170		dom->dirty_limit_tstamp = now;
1171	}
1172	spin_unlock(&dom->lock);
1173}
1174
1175/*
1176 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1177 *
1178 * Normal wb tasks will be curbed at or below it in long term.
1179 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1180 */
1181static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1182				      unsigned long dirtied,
1183				      unsigned long elapsed)
1184{
1185	struct bdi_writeback *wb = dtc->wb;
1186	unsigned long dirty = dtc->dirty;
1187	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1188	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1189	unsigned long setpoint = (freerun + limit) / 2;
1190	unsigned long write_bw = wb->avg_write_bandwidth;
1191	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1192	unsigned long dirty_rate;
1193	unsigned long task_ratelimit;
1194	unsigned long balanced_dirty_ratelimit;
1195	unsigned long step;
1196	unsigned long x;
1197	unsigned long shift;
1198
1199	/*
1200	 * The dirty rate will match the writeout rate in long term, except
1201	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1202	 */
1203	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1204
1205	/*
1206	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1207	 */
1208	task_ratelimit = (u64)dirty_ratelimit *
1209					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1210	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1211
1212	/*
1213	 * A linear estimation of the "balanced" throttle rate. The theory is,
1214	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1215	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1216	 * formula will yield the balanced rate limit (write_bw / N).
1217	 *
1218	 * Note that the expanded form is not a pure rate feedback:
1219	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1220	 * but also takes pos_ratio into account:
1221	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1222	 *
1223	 * (1) is not realistic because pos_ratio also takes part in balancing
1224	 * the dirty rate.  Consider the state
1225	 *	pos_ratio = 0.5						     (3)
1226	 *	rate = 2 * (write_bw / N)				     (4)
1227	 * If (1) is used, it will stuck in that state! Because each dd will
1228	 * be throttled at
1229	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1230	 * yielding
1231	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1232	 * put (6) into (1) we get
1233	 *	rate_(i+1) = rate_(i)					     (7)
1234	 *
1235	 * So we end up using (2) to always keep
1236	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1237	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1238	 * pos_ratio is able to drive itself to 1.0, which is not only where
1239	 * the dirty count meet the setpoint, but also where the slope of
1240	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1241	 */
1242	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1243					   dirty_rate | 1);
1244	/*
1245	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1246	 */
1247	if (unlikely(balanced_dirty_ratelimit > write_bw))
1248		balanced_dirty_ratelimit = write_bw;
1249
1250	/*
1251	 * We could safely do this and return immediately:
1252	 *
1253	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1254	 *
1255	 * However to get a more stable dirty_ratelimit, the below elaborated
1256	 * code makes use of task_ratelimit to filter out singular points and
1257	 * limit the step size.
1258	 *
1259	 * The below code essentially only uses the relative value of
1260	 *
1261	 *	task_ratelimit - dirty_ratelimit
1262	 *	= (pos_ratio - 1) * dirty_ratelimit
1263	 *
1264	 * which reflects the direction and size of dirty position error.
1265	 */
1266
1267	/*
1268	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1269	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1270	 * For example, when
1271	 * - dirty_ratelimit > balanced_dirty_ratelimit
1272	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1273	 * lowering dirty_ratelimit will help meet both the position and rate
1274	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1275	 * only help meet the rate target. After all, what the users ultimately
1276	 * feel and care are stable dirty rate and small position error.
1277	 *
1278	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1279	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1280	 * keeps jumping around randomly and can even leap far away at times
1281	 * due to the small 200ms estimation period of dirty_rate (we want to
1282	 * keep that period small to reduce time lags).
1283	 */
1284	step = 0;
1285
1286	/*
1287	 * For strictlimit case, calculations above were based on wb counters
1288	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1289	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1290	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1291	 * "dirty" and wb_setpoint as "setpoint".
1292	 *
1293	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1294	 * it's possible that wb_thresh is close to zero due to inactivity
1295	 * of backing device.
1296	 */
1297	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1298		dirty = dtc->wb_dirty;
1299		if (dtc->wb_dirty < 8)
1300			setpoint = dtc->wb_dirty + 1;
1301		else
1302			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1303	}
1304
1305	if (dirty < setpoint) {
1306		x = min3(wb->balanced_dirty_ratelimit,
1307			 balanced_dirty_ratelimit, task_ratelimit);
1308		if (dirty_ratelimit < x)
1309			step = x - dirty_ratelimit;
1310	} else {
1311		x = max3(wb->balanced_dirty_ratelimit,
1312			 balanced_dirty_ratelimit, task_ratelimit);
1313		if (dirty_ratelimit > x)
1314			step = dirty_ratelimit - x;
1315	}
1316
1317	/*
1318	 * Don't pursue 100% rate matching. It's impossible since the balanced
1319	 * rate itself is constantly fluctuating. So decrease the track speed
1320	 * when it gets close to the target. Helps eliminate pointless tremors.
1321	 */
1322	shift = dirty_ratelimit / (2 * step + 1);
1323	if (shift < BITS_PER_LONG)
1324		step = DIV_ROUND_UP(step >> shift, 8);
1325	else
1326		step = 0;
1327
1328	if (dirty_ratelimit < balanced_dirty_ratelimit)
1329		dirty_ratelimit += step;
1330	else
1331		dirty_ratelimit -= step;
1332
1333	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1334	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1335
1336	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1337}
1338
1339static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1340				  struct dirty_throttle_control *mdtc,
1341				  unsigned long start_time,
1342				  bool update_ratelimit)
 
 
1343{
1344	struct bdi_writeback *wb = gdtc->wb;
1345	unsigned long now = jiffies;
1346	unsigned long elapsed = now - wb->bw_time_stamp;
1347	unsigned long dirtied;
1348	unsigned long written;
1349
1350	lockdep_assert_held(&wb->list_lock);
1351
1352	/*
1353	 * rate-limit, only update once every 200ms.
1354	 */
1355	if (elapsed < BANDWIDTH_INTERVAL)
1356		return;
1357
1358	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1359	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1360
1361	/*
1362	 * Skip quiet periods when disk bandwidth is under-utilized.
1363	 * (at least 1s idle time between two flusher runs)
1364	 */
1365	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1366		goto snapshot;
1367
1368	if (update_ratelimit) {
1369		domain_update_bandwidth(gdtc, now);
1370		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1371
1372		/*
1373		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1374		 * compiler has no way to figure that out.  Help it.
1375		 */
1376		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1377			domain_update_bandwidth(mdtc, now);
1378			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1379		}
1380	}
1381	wb_update_write_bandwidth(wb, elapsed, written);
1382
1383snapshot:
1384	wb->dirtied_stamp = dirtied;
1385	wb->written_stamp = written;
1386	wb->bw_time_stamp = now;
1387}
1388
1389void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
 
 
 
 
 
1390{
1391	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1392
1393	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1394}
1395
1396/*
1397 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1398 * will look to see if it needs to start dirty throttling.
1399 *
1400 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1401 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1402 * (the number of pages we may dirty without exceeding the dirty limits).
1403 */
1404static unsigned long dirty_poll_interval(unsigned long dirty,
1405					 unsigned long thresh)
1406{
1407	if (thresh > dirty)
1408		return 1UL << (ilog2(thresh - dirty) >> 1);
1409
1410	return 1;
1411}
1412
1413static unsigned long wb_max_pause(struct bdi_writeback *wb,
1414				  unsigned long wb_dirty)
1415{
1416	unsigned long bw = wb->avg_write_bandwidth;
1417	unsigned long t;
1418
1419	/*
1420	 * Limit pause time for small memory systems. If sleeping for too long
1421	 * time, a small pool of dirty/writeback pages may go empty and disk go
1422	 * idle.
1423	 *
1424	 * 8 serves as the safety ratio.
1425	 */
1426	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1427	t++;
1428
1429	return min_t(unsigned long, t, MAX_PAUSE);
1430}
1431
1432static long wb_min_pause(struct bdi_writeback *wb,
1433			 long max_pause,
1434			 unsigned long task_ratelimit,
1435			 unsigned long dirty_ratelimit,
1436			 int *nr_dirtied_pause)
1437{
1438	long hi = ilog2(wb->avg_write_bandwidth);
1439	long lo = ilog2(wb->dirty_ratelimit);
1440	long t;		/* target pause */
1441	long pause;	/* estimated next pause */
1442	int pages;	/* target nr_dirtied_pause */
1443
1444	/* target for 10ms pause on 1-dd case */
1445	t = max(1, HZ / 100);
1446
1447	/*
1448	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1449	 * overheads.
1450	 *
1451	 * (N * 10ms) on 2^N concurrent tasks.
1452	 */
1453	if (hi > lo)
1454		t += (hi - lo) * (10 * HZ) / 1024;
1455
1456	/*
1457	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1458	 * on the much more stable dirty_ratelimit. However the next pause time
1459	 * will be computed based on task_ratelimit and the two rate limits may
1460	 * depart considerably at some time. Especially if task_ratelimit goes
1461	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1462	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1463	 * result task_ratelimit won't be executed faithfully, which could
1464	 * eventually bring down dirty_ratelimit.
1465	 *
1466	 * We apply two rules to fix it up:
1467	 * 1) try to estimate the next pause time and if necessary, use a lower
1468	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1469	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1470	 * 2) limit the target pause time to max_pause/2, so that the normal
1471	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1472	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1473	 */
1474	t = min(t, 1 + max_pause / 2);
1475	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1476
1477	/*
1478	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1479	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1480	 * When the 16 consecutive reads are often interrupted by some dirty
1481	 * throttling pause during the async writes, cfq will go into idles
1482	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1483	 * until reaches DIRTY_POLL_THRESH=32 pages.
1484	 */
1485	if (pages < DIRTY_POLL_THRESH) {
1486		t = max_pause;
1487		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1488		if (pages > DIRTY_POLL_THRESH) {
1489			pages = DIRTY_POLL_THRESH;
1490			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1491		}
1492	}
1493
1494	pause = HZ * pages / (task_ratelimit + 1);
1495	if (pause > max_pause) {
1496		t = max_pause;
1497		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1498	}
1499
1500	*nr_dirtied_pause = pages;
1501	/*
1502	 * The minimal pause time will normally be half the target pause time.
1503	 */
1504	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1505}
1506
1507static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1508{
1509	struct bdi_writeback *wb = dtc->wb;
1510	unsigned long wb_reclaimable;
1511
1512	/*
1513	 * wb_thresh is not treated as some limiting factor as
1514	 * dirty_thresh, due to reasons
1515	 * - in JBOD setup, wb_thresh can fluctuate a lot
1516	 * - in a system with HDD and USB key, the USB key may somehow
1517	 *   go into state (wb_dirty >> wb_thresh) either because
1518	 *   wb_dirty starts high, or because wb_thresh drops low.
1519	 *   In this case we don't want to hard throttle the USB key
1520	 *   dirtiers for 100 seconds until wb_dirty drops under
1521	 *   wb_thresh. Instead the auxiliary wb control line in
1522	 *   wb_position_ratio() will let the dirtier task progress
1523	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1524	 */
1525	dtc->wb_thresh = __wb_calc_thresh(dtc);
1526	dtc->wb_bg_thresh = dtc->thresh ?
1527		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1528
1529	/*
1530	 * In order to avoid the stacked BDI deadlock we need
1531	 * to ensure we accurately count the 'dirty' pages when
1532	 * the threshold is low.
1533	 *
1534	 * Otherwise it would be possible to get thresh+n pages
1535	 * reported dirty, even though there are thresh-m pages
1536	 * actually dirty; with m+n sitting in the percpu
1537	 * deltas.
1538	 */
1539	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1540		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1541		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1542	} else {
1543		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1544		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1545	}
1546}
1547
1548/*
1549 * balance_dirty_pages() must be called by processes which are generating dirty
1550 * data.  It looks at the number of dirty pages in the machine and will force
1551 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1552 * If we're over `background_thresh' then the writeback threads are woken to
1553 * perform some writeout.
1554 */
1555static void balance_dirty_pages(struct bdi_writeback *wb,
1556				unsigned long pages_dirtied)
1557{
1558	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1559	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1560	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1561	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1562						     &mdtc_stor : NULL;
1563	struct dirty_throttle_control *sdtc;
1564	unsigned long nr_reclaimable;	/* = file_dirty */
1565	long period;
1566	long pause;
1567	long max_pause;
1568	long min_pause;
1569	int nr_dirtied_pause;
1570	bool dirty_exceeded = false;
1571	unsigned long task_ratelimit;
1572	unsigned long dirty_ratelimit;
1573	struct backing_dev_info *bdi = wb->bdi;
1574	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1575	unsigned long start_time = jiffies;
1576
1577	for (;;) {
1578		unsigned long now = jiffies;
1579		unsigned long dirty, thresh, bg_thresh;
1580		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1581		unsigned long m_thresh = 0;
1582		unsigned long m_bg_thresh = 0;
1583
1584		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1585		gdtc->avail = global_dirtyable_memory();
1586		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1587
1588		domain_dirty_limits(gdtc);
1589
1590		if (unlikely(strictlimit)) {
1591			wb_dirty_limits(gdtc);
1592
1593			dirty = gdtc->wb_dirty;
1594			thresh = gdtc->wb_thresh;
1595			bg_thresh = gdtc->wb_bg_thresh;
1596		} else {
1597			dirty = gdtc->dirty;
1598			thresh = gdtc->thresh;
1599			bg_thresh = gdtc->bg_thresh;
1600		}
1601
1602		if (mdtc) {
1603			unsigned long filepages, headroom, writeback;
1604
1605			/*
1606			 * If @wb belongs to !root memcg, repeat the same
1607			 * basic calculations for the memcg domain.
1608			 */
1609			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1610					    &mdtc->dirty, &writeback);
1611			mdtc->dirty += writeback;
1612			mdtc_calc_avail(mdtc, filepages, headroom);
1613
1614			domain_dirty_limits(mdtc);
1615
1616			if (unlikely(strictlimit)) {
1617				wb_dirty_limits(mdtc);
1618				m_dirty = mdtc->wb_dirty;
1619				m_thresh = mdtc->wb_thresh;
1620				m_bg_thresh = mdtc->wb_bg_thresh;
1621			} else {
1622				m_dirty = mdtc->dirty;
1623				m_thresh = mdtc->thresh;
1624				m_bg_thresh = mdtc->bg_thresh;
1625			}
1626		}
1627
1628		/*
1629		 * Throttle it only when the background writeback cannot
1630		 * catch-up. This avoids (excessively) small writeouts
1631		 * when the wb limits are ramping up in case of !strictlimit.
1632		 *
1633		 * In strictlimit case make decision based on the wb counters
1634		 * and limits. Small writeouts when the wb limits are ramping
1635		 * up are the price we consciously pay for strictlimit-ing.
1636		 *
1637		 * If memcg domain is in effect, @dirty should be under
1638		 * both global and memcg freerun ceilings.
1639		 */
1640		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1641		    (!mdtc ||
1642		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1643			unsigned long intv;
1644			unsigned long m_intv;
1645
1646free_running:
1647			intv = dirty_poll_interval(dirty, thresh);
1648			m_intv = ULONG_MAX;
1649
1650			current->dirty_paused_when = now;
1651			current->nr_dirtied = 0;
1652			if (mdtc)
1653				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1654			current->nr_dirtied_pause = min(intv, m_intv);
1655			break;
1656		}
1657
1658		if (unlikely(!writeback_in_progress(wb)))
1659			wb_start_background_writeback(wb);
1660
1661		mem_cgroup_flush_foreign(wb);
 
 
1662
1663		/*
1664		 * Calculate global domain's pos_ratio and select the
1665		 * global dtc by default.
 
 
 
 
 
 
1666		 */
1667		if (!strictlimit) {
1668			wb_dirty_limits(gdtc);
1669
1670			if ((current->flags & PF_LOCAL_THROTTLE) &&
1671			    gdtc->wb_dirty <
1672			    dirty_freerun_ceiling(gdtc->wb_thresh,
1673						  gdtc->wb_bg_thresh))
1674				/*
1675				 * LOCAL_THROTTLE tasks must not be throttled
1676				 * when below the per-wb freerun ceiling.
1677				 */
1678				goto free_running;
1679		}
1680
1681		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682			((gdtc->dirty > gdtc->thresh) || strictlimit);
 
 
 
 
 
 
 
 
1683
1684		wb_position_ratio(gdtc);
1685		sdtc = gdtc;
1686
1687		if (mdtc) {
1688			/*
1689			 * If memcg domain is in effect, calculate its
1690			 * pos_ratio.  @wb should satisfy constraints from
1691			 * both global and memcg domains.  Choose the one
1692			 * w/ lower pos_ratio.
1693			 */
1694			if (!strictlimit) {
1695				wb_dirty_limits(mdtc);
1696
1697				if ((current->flags & PF_LOCAL_THROTTLE) &&
1698				    mdtc->wb_dirty <
1699				    dirty_freerun_ceiling(mdtc->wb_thresh,
1700							  mdtc->wb_bg_thresh))
1701					/*
1702					 * LOCAL_THROTTLE tasks must not be
1703					 * throttled when below the per-wb
1704					 * freerun ceiling.
1705					 */
1706					goto free_running;
1707			}
1708			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1709				((mdtc->dirty > mdtc->thresh) || strictlimit);
1710
1711			wb_position_ratio(mdtc);
1712			if (mdtc->pos_ratio < gdtc->pos_ratio)
1713				sdtc = mdtc;
1714		}
1715
1716		if (dirty_exceeded && !wb->dirty_exceeded)
1717			wb->dirty_exceeded = 1;
1718
1719		if (time_is_before_jiffies(wb->bw_time_stamp +
1720					   BANDWIDTH_INTERVAL)) {
1721			spin_lock(&wb->list_lock);
1722			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1723			spin_unlock(&wb->list_lock);
1724		}
1725
1726		/* throttle according to the chosen dtc */
1727		dirty_ratelimit = wb->dirty_ratelimit;
1728		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1729							RATELIMIT_CALC_SHIFT;
1730		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1731		min_pause = wb_min_pause(wb, max_pause,
1732					 task_ratelimit, dirty_ratelimit,
1733					 &nr_dirtied_pause);
1734
1735		if (unlikely(task_ratelimit == 0)) {
1736			period = max_pause;
1737			pause = max_pause;
1738			goto pause;
1739		}
1740		period = HZ * pages_dirtied / task_ratelimit;
1741		pause = period;
1742		if (current->dirty_paused_when)
1743			pause -= now - current->dirty_paused_when;
1744		/*
1745		 * For less than 1s think time (ext3/4 may block the dirtier
1746		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1747		 * however at much less frequency), try to compensate it in
1748		 * future periods by updating the virtual time; otherwise just
1749		 * do a reset, as it may be a light dirtier.
1750		 */
1751		if (pause < min_pause) {
1752			trace_balance_dirty_pages(wb,
1753						  sdtc->thresh,
1754						  sdtc->bg_thresh,
1755						  sdtc->dirty,
1756						  sdtc->wb_thresh,
1757						  sdtc->wb_dirty,
1758						  dirty_ratelimit,
1759						  task_ratelimit,
1760						  pages_dirtied,
1761						  period,
1762						  min(pause, 0L),
1763						  start_time);
1764			if (pause < -HZ) {
1765				current->dirty_paused_when = now;
1766				current->nr_dirtied = 0;
1767			} else if (period) {
1768				current->dirty_paused_when += period;
1769				current->nr_dirtied = 0;
1770			} else if (current->nr_dirtied_pause <= pages_dirtied)
1771				current->nr_dirtied_pause += pages_dirtied;
1772			break;
1773		}
1774		if (unlikely(pause > max_pause)) {
1775			/* for occasional dropped task_ratelimit */
1776			now += min(pause - max_pause, max_pause);
1777			pause = max_pause;
1778		}
1779
1780pause:
1781		trace_balance_dirty_pages(wb,
1782					  sdtc->thresh,
1783					  sdtc->bg_thresh,
1784					  sdtc->dirty,
1785					  sdtc->wb_thresh,
1786					  sdtc->wb_dirty,
1787					  dirty_ratelimit,
1788					  task_ratelimit,
1789					  pages_dirtied,
1790					  period,
1791					  pause,
1792					  start_time);
1793		__set_current_state(TASK_KILLABLE);
1794		wb->dirty_sleep = now;
1795		io_schedule_timeout(pause);
 
1796
1797		current->dirty_paused_when = now + pause;
1798		current->nr_dirtied = 0;
1799		current->nr_dirtied_pause = nr_dirtied_pause;
1800
1801		/*
1802		 * This is typically equal to (dirty < thresh) and can also
1803		 * keep "1000+ dd on a slow USB stick" under control.
 
 
1804		 */
1805		if (task_ratelimit)
 
 
1806			break;
1807
1808		/*
1809		 * In the case of an unresponding NFS server and the NFS dirty
1810		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1811		 * to go through, so that tasks on them still remain responsive.
1812		 *
1813		 * In theory 1 page is enough to keep the consumer-producer
1814		 * pipe going: the flusher cleans 1 page => the task dirties 1
1815		 * more page. However wb_dirty has accounting errors.  So use
1816		 * the larger and more IO friendly wb_stat_error.
1817		 */
1818		if (sdtc->wb_dirty <= wb_stat_error())
1819			break;
1820
1821		if (fatal_signal_pending(current))
1822			break;
1823	}
1824
1825	if (!dirty_exceeded && wb->dirty_exceeded)
1826		wb->dirty_exceeded = 0;
 
1827
1828	if (writeback_in_progress(wb))
1829		return;
1830
1831	/*
1832	 * In laptop mode, we wait until hitting the higher threshold before
1833	 * starting background writeout, and then write out all the way down
1834	 * to the lower threshold.  So slow writers cause minimal disk activity.
1835	 *
1836	 * In normal mode, we start background writeout at the lower
1837	 * background_thresh, to keep the amount of dirty memory low.
1838	 */
1839	if (laptop_mode)
1840		return;
 
 
 
 
 
 
 
1841
1842	if (nr_reclaimable > gdtc->bg_thresh)
1843		wb_start_background_writeback(wb);
 
1844}
1845
1846static DEFINE_PER_CPU(int, bdp_ratelimits);
1847
1848/*
1849 * Normal tasks are throttled by
1850 *	loop {
1851 *		dirty tsk->nr_dirtied_pause pages;
1852 *		take a snap in balance_dirty_pages();
1853 *	}
1854 * However there is a worst case. If every task exit immediately when dirtied
1855 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1856 * called to throttle the page dirties. The solution is to save the not yet
1857 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1858 * randomly into the running tasks. This works well for the above worst case,
1859 * as the new task will pick up and accumulate the old task's leaked dirty
1860 * count and eventually get throttled.
1861 */
1862DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1863
1864/**
1865 * balance_dirty_pages_ratelimited - balance dirty memory state
1866 * @mapping: address_space which was dirtied
 
1867 *
1868 * Processes which are dirtying memory should call in here once for each page
1869 * which was newly dirtied.  The function will periodically check the system's
1870 * dirty state and will initiate writeback if needed.
1871 *
1872 * On really big machines, get_writeback_state is expensive, so try to avoid
1873 * calling it too often (ratelimiting).  But once we're over the dirty memory
1874 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1875 * from overshooting the limit by (ratelimit_pages) each.
1876 */
1877void balance_dirty_pages_ratelimited(struct address_space *mapping)
 
1878{
1879	struct inode *inode = mapping->host;
1880	struct backing_dev_info *bdi = inode_to_bdi(inode);
1881	struct bdi_writeback *wb = NULL;
1882	int ratelimit;
1883	int *p;
1884
1885	if (!bdi_cap_account_dirty(bdi))
1886		return;
1887
1888	if (inode_cgwb_enabled(inode))
1889		wb = wb_get_create_current(bdi, GFP_KERNEL);
1890	if (!wb)
1891		wb = &bdi->wb;
1892
1893	ratelimit = current->nr_dirtied_pause;
1894	if (wb->dirty_exceeded)
1895		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1896
1897	preempt_disable();
1898	/*
1899	 * This prevents one CPU to accumulate too many dirtied pages without
1900	 * calling into balance_dirty_pages(), which can happen when there are
1901	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1902	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1903	 */
1904	p =  this_cpu_ptr(&bdp_ratelimits);
1905	if (unlikely(current->nr_dirtied >= ratelimit))
 
 
 
1906		*p = 0;
1907	else if (unlikely(*p >= ratelimit_pages)) {
1908		*p = 0;
1909		ratelimit = 0;
1910	}
1911	/*
1912	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1913	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1914	 * the dirty throttling and livelock other long-run dirtiers.
1915	 */
1916	p = this_cpu_ptr(&dirty_throttle_leaks);
1917	if (*p > 0 && current->nr_dirtied < ratelimit) {
1918		unsigned long nr_pages_dirtied;
1919		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1920		*p -= nr_pages_dirtied;
1921		current->nr_dirtied += nr_pages_dirtied;
1922	}
1923	preempt_enable();
1924
1925	if (unlikely(current->nr_dirtied >= ratelimit))
1926		balance_dirty_pages(wb, current->nr_dirtied);
1927
1928	wb_put(wb);
1929}
1930EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1931
1932/**
1933 * wb_over_bg_thresh - does @wb need to be written back?
1934 * @wb: bdi_writeback of interest
1935 *
1936 * Determines whether background writeback should keep writing @wb or it's
1937 * clean enough.
1938 *
1939 * Return: %true if writeback should continue.
1940 */
1941bool wb_over_bg_thresh(struct bdi_writeback *wb)
1942{
1943	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1944	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1945	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1946	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1947						     &mdtc_stor : NULL;
1948
1949	/*
1950	 * Similar to balance_dirty_pages() but ignores pages being written
1951	 * as we're trying to decide whether to put more under writeback.
1952	 */
1953	gdtc->avail = global_dirtyable_memory();
1954	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1955	domain_dirty_limits(gdtc);
1956
1957	if (gdtc->dirty > gdtc->bg_thresh)
1958		return true;
 
 
 
 
 
 
 
 
1959
1960	if (wb_stat(wb, WB_RECLAIMABLE) >
1961	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1962		return true;
1963
1964	if (mdtc) {
1965		unsigned long filepages, headroom, writeback;
1966
1967		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1968				    &writeback);
1969		mdtc_calc_avail(mdtc, filepages, headroom);
1970		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1971
1972		if (mdtc->dirty > mdtc->bg_thresh)
1973			return true;
1974
1975		if (wb_stat(wb, WB_RECLAIMABLE) >
1976		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1977			return true;
1978	}
1979
1980	return false;
1981}
1982
1983/*
1984 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1985 */
1986int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1987		void *buffer, size_t *length, loff_t *ppos)
1988{
1989	unsigned int old_interval = dirty_writeback_interval;
1990	int ret;
1991
1992	ret = proc_dointvec(table, write, buffer, length, ppos);
1993
1994	/*
1995	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1996	 * and a different non-zero value will wakeup the writeback threads.
1997	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1998	 * iterate over all bdis and wbs.
1999	 * The reason we do this is to make the change take effect immediately.
2000	 */
2001	if (!ret && write && dirty_writeback_interval &&
2002		dirty_writeback_interval != old_interval)
2003		wakeup_flusher_threads(WB_REASON_PERIODIC);
2004
2005	return ret;
2006}
2007
2008#ifdef CONFIG_BLOCK
2009void laptop_mode_timer_fn(struct timer_list *t)
2010{
2011	struct backing_dev_info *backing_dev_info =
2012		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
 
2013
2014	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
 
 
 
 
 
2015}
2016
2017/*
2018 * We've spun up the disk and we're in laptop mode: schedule writeback
2019 * of all dirty data a few seconds from now.  If the flush is already scheduled
2020 * then push it back - the user is still using the disk.
2021 */
2022void laptop_io_completion(struct backing_dev_info *info)
2023{
2024	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2025}
2026
2027/*
2028 * We're in laptop mode and we've just synced. The sync's writes will have
2029 * caused another writeback to be scheduled by laptop_io_completion.
2030 * Nothing needs to be written back anymore, so we unschedule the writeback.
2031 */
2032void laptop_sync_completion(void)
2033{
2034	struct backing_dev_info *bdi;
2035
2036	rcu_read_lock();
2037
2038	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2039		del_timer(&bdi->laptop_mode_wb_timer);
2040
2041	rcu_read_unlock();
2042}
2043#endif
2044
2045/*
2046 * If ratelimit_pages is too high then we can get into dirty-data overload
2047 * if a large number of processes all perform writes at the same time.
2048 * If it is too low then SMP machines will call the (expensive)
2049 * get_writeback_state too often.
2050 *
2051 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2052 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2053 * thresholds.
 
 
 
 
 
 
2054 */
2055
2056void writeback_set_ratelimit(void)
2057{
2058	struct wb_domain *dom = &global_wb_domain;
2059	unsigned long background_thresh;
2060	unsigned long dirty_thresh;
2061
2062	global_dirty_limits(&background_thresh, &dirty_thresh);
2063	dom->dirty_limit = dirty_thresh;
2064	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2065	if (ratelimit_pages < 16)
2066		ratelimit_pages = 16;
 
 
2067}
2068
2069static int page_writeback_cpu_online(unsigned int cpu)
 
2070{
2071	writeback_set_ratelimit();
2072	return 0;
2073}
2074
 
 
 
 
 
2075/*
2076 * Called early on to tune the page writeback dirty limits.
2077 *
2078 * We used to scale dirty pages according to how total memory
2079 * related to pages that could be allocated for buffers.
 
2080 *
2081 * However, that was when we used "dirty_ratio" to scale with
2082 * all memory, and we don't do that any more. "dirty_ratio"
2083 * is now applied to total non-HIGHPAGE memory, and as such we can't
 
2084 * get into the old insane situation any more where we had
2085 * large amounts of dirty pages compared to a small amount of
2086 * non-HIGHMEM memory.
2087 *
2088 * But we might still want to scale the dirty_ratio by how
2089 * much memory the box has..
2090 */
2091void __init page_writeback_init(void)
2092{
2093	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
 
 
 
2094
2095	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2096			  page_writeback_cpu_online, NULL);
2097	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2098			  page_writeback_cpu_online);
2099}
2100
2101/**
2102 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103 * @mapping: address space structure to write
2104 * @start: starting page index
2105 * @end: ending page index (inclusive)
2106 *
2107 * This function scans the page range from @start to @end (inclusive) and tags
2108 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109 * that write_cache_pages (or whoever calls this function) will then use
2110 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2111 * used to avoid livelocking of writeback by a process steadily creating new
2112 * dirty pages in the file (thus it is important for this function to be quick
2113 * so that it can tag pages faster than a dirtying process can create them).
2114 */
 
 
 
2115void tag_pages_for_writeback(struct address_space *mapping,
2116			     pgoff_t start, pgoff_t end)
2117{
2118	XA_STATE(xas, &mapping->i_pages, start);
2119	unsigned int tagged = 0;
2120	void *page;
2121
2122	xas_lock_irq(&xas);
2123	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2124		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2125		if (++tagged % XA_CHECK_SCHED)
2126			continue;
2127
2128		xas_pause(&xas);
2129		xas_unlock_irq(&xas);
 
 
 
 
 
2130		cond_resched();
2131		xas_lock_irq(&xas);
2132	}
2133	xas_unlock_irq(&xas);
2134}
2135EXPORT_SYMBOL(tag_pages_for_writeback);
2136
2137/**
2138 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139 * @mapping: address space structure to write
2140 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141 * @writepage: function called for each page
2142 * @data: data passed to writepage function
2143 *
2144 * If a page is already under I/O, write_cache_pages() skips it, even
2145 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2146 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2147 * and msync() need to guarantee that all the data which was dirty at the time
2148 * the call was made get new I/O started against them.  If wbc->sync_mode is
2149 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150 * existing IO to complete.
2151 *
2152 * To avoid livelocks (when other process dirties new pages), we first tag
2153 * pages which should be written back with TOWRITE tag and only then start
2154 * writing them. For data-integrity sync we have to be careful so that we do
2155 * not miss some pages (e.g., because some other process has cleared TOWRITE
2156 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157 * by the process clearing the DIRTY tag (and submitting the page for IO).
2158 *
2159 * To avoid deadlocks between range_cyclic writeback and callers that hold
2160 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2161 * we do not loop back to the start of the file. Doing so causes a page
2162 * lock/page writeback access order inversion - we should only ever lock
2163 * multiple pages in ascending page->index order, and looping back to the start
2164 * of the file violates that rule and causes deadlocks.
2165 *
2166 * Return: %0 on success, negative error code otherwise
2167 */
2168int write_cache_pages(struct address_space *mapping,
2169		      struct writeback_control *wbc, writepage_t writepage,
2170		      void *data)
2171{
2172	int ret = 0;
2173	int done = 0;
2174	int error;
2175	struct pagevec pvec;
2176	int nr_pages;
 
2177	pgoff_t index;
2178	pgoff_t end;		/* Inclusive */
2179	pgoff_t done_index;
 
2180	int range_whole = 0;
2181	xa_mark_t tag;
2182
2183	pagevec_init(&pvec);
2184	if (wbc->range_cyclic) {
2185		index = mapping->writeback_index; /* prev offset */
 
 
 
 
 
2186		end = -1;
2187	} else {
2188		index = wbc->range_start >> PAGE_SHIFT;
2189		end = wbc->range_end >> PAGE_SHIFT;
2190		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191			range_whole = 1;
 
2192	}
2193	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2194		tag_pages_for_writeback(mapping, index, end);
2195		tag = PAGECACHE_TAG_TOWRITE;
2196	} else {
2197		tag = PAGECACHE_TAG_DIRTY;
2198	}
 
 
2199	done_index = index;
2200	while (!done && (index <= end)) {
2201		int i;
2202
2203		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2204				tag);
2205		if (nr_pages == 0)
2206			break;
2207
2208		for (i = 0; i < nr_pages; i++) {
2209			struct page *page = pvec.pages[i];
2210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211			done_index = page->index;
2212
2213			lock_page(page);
2214
2215			/*
2216			 * Page truncated or invalidated. We can freely skip it
2217			 * then, even for data integrity operations: the page
2218			 * has disappeared concurrently, so there could be no
2219			 * real expectation of this data interity operation
2220			 * even if there is now a new, dirty page at the same
2221			 * pagecache address.
2222			 */
2223			if (unlikely(page->mapping != mapping)) {
2224continue_unlock:
2225				unlock_page(page);
2226				continue;
2227			}
2228
2229			if (!PageDirty(page)) {
2230				/* someone wrote it for us */
2231				goto continue_unlock;
2232			}
2233
2234			if (PageWriteback(page)) {
2235				if (wbc->sync_mode != WB_SYNC_NONE)
2236					wait_on_page_writeback(page);
2237				else
2238					goto continue_unlock;
2239			}
2240
2241			BUG_ON(PageWriteback(page));
2242			if (!clear_page_dirty_for_io(page))
2243				goto continue_unlock;
2244
2245			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2246			error = (*writepage)(page, wbc, data);
2247			if (unlikely(error)) {
2248				/*
2249				 * Handle errors according to the type of
2250				 * writeback. There's no need to continue for
2251				 * background writeback. Just push done_index
2252				 * past this page so media errors won't choke
2253				 * writeout for the entire file. For integrity
2254				 * writeback, we must process the entire dirty
2255				 * set regardless of errors because the fs may
2256				 * still have state to clear for each page. In
2257				 * that case we continue processing and return
2258				 * the first error.
2259				 */
2260				if (error == AOP_WRITEPAGE_ACTIVATE) {
2261					unlock_page(page);
2262					error = 0;
2263				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2264					ret = error;
 
 
 
 
 
 
 
 
2265					done_index = page->index + 1;
2266					done = 1;
2267					break;
2268				}
2269				if (!ret)
2270					ret = error;
2271			}
2272
2273			/*
2274			 * We stop writing back only if we are not doing
2275			 * integrity sync. In case of integrity sync we have to
2276			 * keep going until we have written all the pages
2277			 * we tagged for writeback prior to entering this loop.
2278			 */
2279			if (--wbc->nr_to_write <= 0 &&
2280			    wbc->sync_mode == WB_SYNC_NONE) {
2281				done = 1;
2282				break;
2283			}
2284		}
2285		pagevec_release(&pvec);
2286		cond_resched();
2287	}
2288
2289	/*
2290	 * If we hit the last page and there is more work to be done: wrap
2291	 * back the index back to the start of the file for the next
2292	 * time we are called.
2293	 */
2294	if (wbc->range_cyclic && !done)
2295		done_index = 0;
 
 
 
2296	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2297		mapping->writeback_index = done_index;
2298
2299	return ret;
2300}
2301EXPORT_SYMBOL(write_cache_pages);
2302
2303/*
2304 * Function used by generic_writepages to call the real writepage
2305 * function and set the mapping flags on error
2306 */
2307static int __writepage(struct page *page, struct writeback_control *wbc,
2308		       void *data)
2309{
2310	struct address_space *mapping = data;
2311	int ret = mapping->a_ops->writepage(page, wbc);
2312	mapping_set_error(mapping, ret);
2313	return ret;
2314}
2315
2316/**
2317 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318 * @mapping: address space structure to write
2319 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2320 *
2321 * This is a library function, which implements the writepages()
2322 * address_space_operation.
2323 *
2324 * Return: %0 on success, negative error code otherwise
2325 */
2326int generic_writepages(struct address_space *mapping,
2327		       struct writeback_control *wbc)
2328{
2329	struct blk_plug plug;
2330	int ret;
2331
2332	/* deal with chardevs and other special file */
2333	if (!mapping->a_ops->writepage)
2334		return 0;
2335
2336	blk_start_plug(&plug);
2337	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2338	blk_finish_plug(&plug);
2339	return ret;
2340}
2341
2342EXPORT_SYMBOL(generic_writepages);
2343
2344int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2345{
2346	int ret;
2347
2348	if (wbc->nr_to_write <= 0)
2349		return 0;
2350	while (1) {
2351		if (mapping->a_ops->writepages)
2352			ret = mapping->a_ops->writepages(mapping, wbc);
2353		else
2354			ret = generic_writepages(mapping, wbc);
2355		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2356			break;
2357		cond_resched();
2358		congestion_wait(BLK_RW_ASYNC, HZ/50);
2359	}
2360	return ret;
2361}
2362
2363/**
2364 * write_one_page - write out a single page and wait on I/O
2365 * @page: the page to write
 
2366 *
2367 * The page must be locked by the caller and will be unlocked upon return.
2368 *
2369 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2370 * function returns.
2371 *
2372 * Return: %0 on success, negative error code otherwise
2373 */
2374int write_one_page(struct page *page)
2375{
2376	struct address_space *mapping = page->mapping;
2377	int ret = 0;
2378	struct writeback_control wbc = {
2379		.sync_mode = WB_SYNC_ALL,
2380		.nr_to_write = 1,
2381	};
2382
2383	BUG_ON(!PageLocked(page));
2384
2385	wait_on_page_writeback(page);
 
2386
2387	if (clear_page_dirty_for_io(page)) {
2388		get_page(page);
2389		ret = mapping->a_ops->writepage(page, &wbc);
2390		if (ret == 0)
2391			wait_on_page_writeback(page);
2392		put_page(page);
 
 
 
2393	} else {
2394		unlock_page(page);
2395	}
2396
2397	if (!ret)
2398		ret = filemap_check_errors(mapping);
2399	return ret;
2400}
2401EXPORT_SYMBOL(write_one_page);
2402
2403/*
2404 * For address_spaces which do not use buffers nor write back.
2405 */
2406int __set_page_dirty_no_writeback(struct page *page)
2407{
2408	if (!PageDirty(page))
2409		return !TestSetPageDirty(page);
2410	return 0;
2411}
2412
2413/*
2414 * Helper function for set_page_dirty family.
2415 *
2416 * Caller must hold lock_page_memcg().
2417 *
2418 * NOTE: This relies on being atomic wrt interrupts.
2419 */
2420void account_page_dirtied(struct page *page, struct address_space *mapping)
2421{
2422	struct inode *inode = mapping->host;
2423
2424	trace_writeback_dirty_page(page, mapping);
2425
2426	if (mapping_cap_account_dirty(mapping)) {
2427		struct bdi_writeback *wb;
2428
2429		inode_attach_wb(inode, page);
2430		wb = inode_to_wb(inode);
2431
2432		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2433		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434		__inc_node_page_state(page, NR_DIRTIED);
2435		inc_wb_stat(wb, WB_RECLAIMABLE);
2436		inc_wb_stat(wb, WB_DIRTIED);
2437		task_io_account_write(PAGE_SIZE);
2438		current->nr_dirtied++;
2439		this_cpu_inc(bdp_ratelimits);
2440
2441		mem_cgroup_track_foreign_dirty(page, wb);
2442	}
2443}
 
2444
2445/*
2446 * Helper function for deaccounting dirty page without writeback.
2447 *
2448 * Caller must hold lock_page_memcg().
2449 */
2450void account_page_cleaned(struct page *page, struct address_space *mapping,
2451			  struct bdi_writeback *wb)
2452{
2453	if (mapping_cap_account_dirty(mapping)) {
2454		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2455		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456		dec_wb_stat(wb, WB_RECLAIMABLE);
2457		task_io_account_cancelled_write(PAGE_SIZE);
2458	}
2459}
 
2460
2461/*
2462 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2463 * the xarray.
2464 *
2465 * This is also used when a single buffer is being dirtied: we want to set the
2466 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2467 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2468 *
2469 * The caller must ensure this doesn't race with truncation.  Most will simply
2470 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471 * the pte lock held, which also locks out truncation.
 
 
 
2472 */
2473int __set_page_dirty_nobuffers(struct page *page)
2474{
2475	lock_page_memcg(page);
2476	if (!TestSetPageDirty(page)) {
2477		struct address_space *mapping = page_mapping(page);
2478		unsigned long flags;
2479
2480		if (!mapping) {
2481			unlock_page_memcg(page);
2482			return 1;
 
 
 
 
 
 
 
 
 
2483		}
2484
2485		xa_lock_irqsave(&mapping->i_pages, flags);
2486		BUG_ON(page_mapping(page) != mapping);
2487		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488		account_page_dirtied(page, mapping);
2489		__xa_set_mark(&mapping->i_pages, page_index(page),
2490				   PAGECACHE_TAG_DIRTY);
2491		xa_unlock_irqrestore(&mapping->i_pages, flags);
2492		unlock_page_memcg(page);
2493
2494		if (mapping->host) {
2495			/* !PageAnon && !swapper_space */
2496			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2497		}
2498		return 1;
2499	}
2500	unlock_page_memcg(page);
2501	return 0;
2502}
2503EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504
2505/*
2506 * Call this whenever redirtying a page, to de-account the dirty counters
2507 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2508 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2509 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510 * control.
2511 */
2512void account_page_redirty(struct page *page)
2513{
2514	struct address_space *mapping = page->mapping;
2515
2516	if (mapping && mapping_cap_account_dirty(mapping)) {
2517		struct inode *inode = mapping->host;
2518		struct bdi_writeback *wb;
2519		struct wb_lock_cookie cookie = {};
2520
2521		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2522		current->nr_dirtied--;
2523		dec_node_page_state(page, NR_DIRTIED);
2524		dec_wb_stat(wb, WB_DIRTIED);
2525		unlocked_inode_to_wb_end(inode, &cookie);
2526	}
2527}
2528EXPORT_SYMBOL(account_page_redirty);
2529
2530/*
2531 * When a writepage implementation decides that it doesn't want to write this
2532 * page for some reason, it should redirty the locked page via
2533 * redirty_page_for_writepage() and it should then unlock the page and return 0
2534 */
2535int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2536{
2537	int ret;
2538
2539	wbc->pages_skipped++;
2540	ret = __set_page_dirty_nobuffers(page);
2541	account_page_redirty(page);
2542	return ret;
2543}
2544EXPORT_SYMBOL(redirty_page_for_writepage);
2545
2546/*
2547 * Dirty a page.
2548 *
2549 * For pages with a mapping this should be done under the page lock
2550 * for the benefit of asynchronous memory errors who prefer a consistent
2551 * dirty state. This rule can be broken in some special cases,
2552 * but should be better not to.
2553 *
2554 * If the mapping doesn't provide a set_page_dirty a_op, then
2555 * just fall through and assume that it wants buffer_heads.
2556 */
2557int set_page_dirty(struct page *page)
2558{
2559	struct address_space *mapping = page_mapping(page);
2560
2561	page = compound_head(page);
2562	if (likely(mapping)) {
2563		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2564		/*
2565		 * readahead/lru_deactivate_page could remain
2566		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2567		 * About readahead, if the page is written, the flags would be
2568		 * reset. So no problem.
2569		 * About lru_deactivate_page, if the page is redirty, the flag
2570		 * will be reset. So no problem. but if the page is used by readahead
2571		 * it will confuse readahead and make it restart the size rampup
2572		 * process. But it's a trivial problem.
2573		 */
2574		if (PageReclaim(page))
2575			ClearPageReclaim(page);
2576#ifdef CONFIG_BLOCK
2577		if (!spd)
2578			spd = __set_page_dirty_buffers;
2579#endif
2580		return (*spd)(page);
2581	}
2582	if (!PageDirty(page)) {
2583		if (!TestSetPageDirty(page))
2584			return 1;
2585	}
2586	return 0;
2587}
2588EXPORT_SYMBOL(set_page_dirty);
2589
2590/*
2591 * set_page_dirty() is racy if the caller has no reference against
2592 * page->mapping->host, and if the page is unlocked.  This is because another
2593 * CPU could truncate the page off the mapping and then free the mapping.
2594 *
2595 * Usually, the page _is_ locked, or the caller is a user-space process which
2596 * holds a reference on the inode by having an open file.
2597 *
2598 * In other cases, the page should be locked before running set_page_dirty().
2599 */
2600int set_page_dirty_lock(struct page *page)
2601{
2602	int ret;
2603
2604	lock_page(page);
2605	ret = set_page_dirty(page);
2606	unlock_page(page);
2607	return ret;
2608}
2609EXPORT_SYMBOL(set_page_dirty_lock);
2610
2611/*
2612 * This cancels just the dirty bit on the kernel page itself, it does NOT
2613 * actually remove dirty bits on any mmap's that may be around. It also
2614 * leaves the page tagged dirty, so any sync activity will still find it on
2615 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616 * look at the dirty bits in the VM.
2617 *
2618 * Doing this should *normally* only ever be done when a page is truncated,
2619 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620 * this when it notices that somebody has cleaned out all the buffers on a
2621 * page without actually doing it through the VM. Can you say "ext3 is
2622 * horribly ugly"? Thought you could.
2623 */
2624void __cancel_dirty_page(struct page *page)
2625{
2626	struct address_space *mapping = page_mapping(page);
2627
2628	if (mapping_cap_account_dirty(mapping)) {
2629		struct inode *inode = mapping->host;
2630		struct bdi_writeback *wb;
2631		struct wb_lock_cookie cookie = {};
2632
2633		lock_page_memcg(page);
2634		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2635
2636		if (TestClearPageDirty(page))
2637			account_page_cleaned(page, mapping, wb);
2638
2639		unlocked_inode_to_wb_end(inode, &cookie);
2640		unlock_page_memcg(page);
2641	} else {
2642		ClearPageDirty(page);
2643	}
2644}
2645EXPORT_SYMBOL(__cancel_dirty_page);
2646
2647/*
2648 * Clear a page's dirty flag, while caring for dirty memory accounting.
2649 * Returns true if the page was previously dirty.
2650 *
2651 * This is for preparing to put the page under writeout.  We leave the page
2652 * tagged as dirty in the xarray so that a concurrent write-for-sync
2653 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2654 * implementation will run either set_page_writeback() or set_page_dirty(),
2655 * at which stage we bring the page's dirty flag and xarray dirty tag
2656 * back into sync.
2657 *
2658 * This incoherency between the page's dirty flag and xarray tag is
2659 * unfortunate, but it only exists while the page is locked.
2660 */
2661int clear_page_dirty_for_io(struct page *page)
2662{
2663	struct address_space *mapping = page_mapping(page);
2664	int ret = 0;
2665
2666	VM_BUG_ON_PAGE(!PageLocked(page), page);
2667
2668	if (mapping && mapping_cap_account_dirty(mapping)) {
2669		struct inode *inode = mapping->host;
2670		struct bdi_writeback *wb;
2671		struct wb_lock_cookie cookie = {};
2672
2673		/*
2674		 * Yes, Virginia, this is indeed insane.
2675		 *
2676		 * We use this sequence to make sure that
2677		 *  (a) we account for dirty stats properly
2678		 *  (b) we tell the low-level filesystem to
2679		 *      mark the whole page dirty if it was
2680		 *      dirty in a pagetable. Only to then
2681		 *  (c) clean the page again and return 1 to
2682		 *      cause the writeback.
2683		 *
2684		 * This way we avoid all nasty races with the
2685		 * dirty bit in multiple places and clearing
2686		 * them concurrently from different threads.
2687		 *
2688		 * Note! Normally the "set_page_dirty(page)"
2689		 * has no effect on the actual dirty bit - since
2690		 * that will already usually be set. But we
2691		 * need the side effects, and it can help us
2692		 * avoid races.
2693		 *
2694		 * We basically use the page "master dirty bit"
2695		 * as a serialization point for all the different
2696		 * threads doing their things.
2697		 */
2698		if (page_mkclean(page))
2699			set_page_dirty(page);
2700		/*
2701		 * We carefully synchronise fault handlers against
2702		 * installing a dirty pte and marking the page dirty
2703		 * at this point.  We do this by having them hold the
2704		 * page lock while dirtying the page, and pages are
2705		 * always locked coming in here, so we get the desired
2706		 * exclusion.
 
 
2707		 */
2708		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2709		if (TestClearPageDirty(page)) {
2710			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2711			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712			dec_wb_stat(wb, WB_RECLAIMABLE);
2713			ret = 1;
2714		}
2715		unlocked_inode_to_wb_end(inode, &cookie);
2716		return ret;
2717	}
2718	return TestClearPageDirty(page);
2719}
2720EXPORT_SYMBOL(clear_page_dirty_for_io);
2721
2722int test_clear_page_writeback(struct page *page)
2723{
2724	struct address_space *mapping = page_mapping(page);
2725	struct mem_cgroup *memcg;
2726	struct lruvec *lruvec;
2727	int ret;
2728
2729	memcg = lock_page_memcg(page);
2730	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2731	if (mapping && mapping_use_writeback_tags(mapping)) {
2732		struct inode *inode = mapping->host;
2733		struct backing_dev_info *bdi = inode_to_bdi(inode);
2734		unsigned long flags;
2735
2736		xa_lock_irqsave(&mapping->i_pages, flags);
2737		ret = TestClearPageWriteback(page);
2738		if (ret) {
2739			__xa_clear_mark(&mapping->i_pages, page_index(page),
 
2740						PAGECACHE_TAG_WRITEBACK);
2741			if (bdi_cap_account_writeback(bdi)) {
2742				struct bdi_writeback *wb = inode_to_wb(inode);
2743
2744				dec_wb_stat(wb, WB_WRITEBACK);
2745				__wb_writeout_inc(wb);
2746			}
2747		}
2748
2749		if (mapping->host && !mapping_tagged(mapping,
2750						     PAGECACHE_TAG_WRITEBACK))
2751			sb_clear_inode_writeback(mapping->host);
2752
2753		xa_unlock_irqrestore(&mapping->i_pages, flags);
2754	} else {
2755		ret = TestClearPageWriteback(page);
2756	}
2757	/*
2758	 * NOTE: Page might be free now! Writeback doesn't hold a page
2759	 * reference on its own, it relies on truncation to wait for
2760	 * the clearing of PG_writeback. The below can only access
2761	 * page state that is static across allocation cycles.
2762	 */
2763	if (ret) {
2764		dec_lruvec_state(lruvec, NR_WRITEBACK);
2765		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2766		inc_node_page_state(page, NR_WRITTEN);
2767	}
2768	__unlock_page_memcg(memcg);
2769	return ret;
2770}
2771
2772int __test_set_page_writeback(struct page *page, bool keep_write)
2773{
2774	struct address_space *mapping = page_mapping(page);
2775	int ret, access_ret;
2776
2777	lock_page_memcg(page);
2778	if (mapping && mapping_use_writeback_tags(mapping)) {
2779		XA_STATE(xas, &mapping->i_pages, page_index(page));
2780		struct inode *inode = mapping->host;
2781		struct backing_dev_info *bdi = inode_to_bdi(inode);
2782		unsigned long flags;
2783
2784		xas_lock_irqsave(&xas, flags);
2785		xas_load(&xas);
2786		ret = TestSetPageWriteback(page);
2787		if (!ret) {
2788			bool on_wblist;
2789
2790			on_wblist = mapping_tagged(mapping,
2791						   PAGECACHE_TAG_WRITEBACK);
2792
2793			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2794			if (bdi_cap_account_writeback(bdi))
2795				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2796
2797			/*
2798			 * We can come through here when swapping anonymous
2799			 * pages, so we don't necessarily have an inode to track
2800			 * for sync.
2801			 */
2802			if (mapping->host && !on_wblist)
2803				sb_mark_inode_writeback(mapping->host);
2804		}
2805		if (!PageDirty(page))
2806			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2807		if (!keep_write)
2808			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2809		xas_unlock_irqrestore(&xas, flags);
 
 
 
2810	} else {
2811		ret = TestSetPageWriteback(page);
2812	}
2813	if (!ret) {
2814		inc_lruvec_page_state(page, NR_WRITEBACK);
2815		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2816	}
2817	unlock_page_memcg(page);
2818	access_ret = arch_make_page_accessible(page);
2819	/*
2820	 * If writeback has been triggered on a page that cannot be made
2821	 * accessible, it is too late to recover here.
2822	 */
2823	VM_BUG_ON_PAGE(access_ret != 0, page);
2824
2825	return ret;
2826
2827}
2828EXPORT_SYMBOL(__test_set_page_writeback);
2829
2830/*
2831 * Wait for a page to complete writeback
 
2832 */
2833void wait_on_page_writeback(struct page *page)
2834{
2835	if (PageWriteback(page)) {
2836		trace_wait_on_page_writeback(page, page_mapping(page));
2837		wait_on_page_bit(page, PG_writeback);
2838	}
2839}
2840EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2841
2842/**
2843 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2844 * @page:	The page to wait on.
2845 *
2846 * This function determines if the given page is related to a backing device
2847 * that requires page contents to be held stable during writeback.  If so, then
2848 * it will wait for any pending writeback to complete.
2849 */
2850void wait_for_stable_page(struct page *page)
2851{
2852	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2853		wait_on_page_writeback(page);
2854}
2855EXPORT_SYMBOL_GPL(wait_for_stable_page);