Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h>
  36#include <linux/pagevec.h>
  37#include <trace/events/writeback.h>
  38
  39/*
  40 * Sleep at most 200ms at a time in balance_dirty_pages().
  41 */
  42#define MAX_PAUSE		max(HZ/5, 1)
  43
  44/*
 
 
 
 
 
 
  45 * Estimate write bandwidth at 200ms intervals.
  46 */
  47#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  48
 
 
  49/*
  50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  51 * will look to see if it needs to force writeback or throttling.
  52 */
  53static long ratelimit_pages = 32;
  54
  55/*
  56 * When balance_dirty_pages decides that the caller needs to perform some
  57 * non-background writeback, this is how many pages it will attempt to write.
  58 * It should be somewhat larger than dirtied pages to ensure that reasonably
  59 * large amounts of I/O are submitted.
  60 */
  61static inline long sync_writeback_pages(unsigned long dirtied)
  62{
  63	if (dirtied < ratelimit_pages)
  64		dirtied = ratelimit_pages;
  65
  66	return dirtied + dirtied / 2;
  67}
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 
 
 104/*
 105 * The longest time for which data is allowed to remain dirty
 106 */
 107unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 108
 109/*
 110 * Flag that makes the machine dump writes/reads and block dirtyings.
 111 */
 112int block_dump;
 113
 114/*
 115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 116 * a full sync is triggered after this time elapses without any disk activity.
 117 */
 118int laptop_mode;
 119
 120EXPORT_SYMBOL(laptop_mode);
 121
 122/* End of sysctl-exported parameters */
 123
 124unsigned long global_dirty_limit;
 125
 126/*
 127 * Scale the writeback cache size proportional to the relative writeout speeds.
 128 *
 129 * We do this by keeping a floating proportion between BDIs, based on page
 130 * writeback completions [end_page_writeback()]. Those devices that write out
 131 * pages fastest will get the larger share, while the slower will get a smaller
 132 * share.
 133 *
 134 * We use page writeout completions because we are interested in getting rid of
 135 * dirty pages. Having them written out is the primary goal.
 136 *
 137 * We introduce a concept of time, a period over which we measure these events,
 138 * because demand can/will vary over time. The length of this period itself is
 139 * measured in page writeback completions.
 140 *
 141 */
 142static struct prop_descriptor vm_completions;
 143static struct prop_descriptor vm_dirties;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144
 145/*
 146 * couple the period to the dirty_ratio:
 147 *
 148 *   period/2 ~ roundup_pow_of_two(dirty limit)
 149 */
 150static int calc_period_shift(void)
 151{
 152	unsigned long dirty_total;
 153
 154	if (vm_dirty_bytes)
 155		dirty_total = vm_dirty_bytes / PAGE_SIZE;
 156	else
 157		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
 158				100;
 159	return 2 + ilog2(dirty_total - 1);
 160}
 161
 162/*
 163 * update the period when the dirty threshold changes.
 164 */
 165static void update_completion_period(void)
 166{
 167	int shift = calc_period_shift();
 168	prop_change_shift(&vm_completions, shift);
 169	prop_change_shift(&vm_dirties, shift);
 
 170}
 171
 172int dirty_background_ratio_handler(struct ctl_table *table, int write,
 173		void __user *buffer, size_t *lenp,
 174		loff_t *ppos)
 175{
 176	int ret;
 177
 178	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 179	if (ret == 0 && write)
 180		dirty_background_bytes = 0;
 181	return ret;
 182}
 183
 184int dirty_background_bytes_handler(struct ctl_table *table, int write,
 185		void __user *buffer, size_t *lenp,
 186		loff_t *ppos)
 187{
 188	int ret;
 189
 190	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 191	if (ret == 0 && write)
 192		dirty_background_ratio = 0;
 193	return ret;
 194}
 195
 196int dirty_ratio_handler(struct ctl_table *table, int write,
 197		void __user *buffer, size_t *lenp,
 198		loff_t *ppos)
 199{
 200	int old_ratio = vm_dirty_ratio;
 201	int ret;
 202
 203	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 204	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 205		update_completion_period();
 206		vm_dirty_bytes = 0;
 207	}
 208	return ret;
 209}
 210
 211
 212int dirty_bytes_handler(struct ctl_table *table, int write,
 213		void __user *buffer, size_t *lenp,
 214		loff_t *ppos)
 215{
 216	unsigned long old_bytes = vm_dirty_bytes;
 217	int ret;
 218
 219	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 220	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 221		update_completion_period();
 222		vm_dirty_ratio = 0;
 223	}
 224	return ret;
 225}
 226
 227/*
 228 * Increment the BDI's writeout completion count and the global writeout
 229 * completion count. Called from test_clear_page_writeback().
 230 */
 231static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 232{
 233	__inc_bdi_stat(bdi, BDI_WRITTEN);
 234	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
 235			      bdi->max_prop_frac);
 236}
 237
 238void bdi_writeout_inc(struct backing_dev_info *bdi)
 239{
 240	unsigned long flags;
 241
 242	local_irq_save(flags);
 243	__bdi_writeout_inc(bdi);
 244	local_irq_restore(flags);
 245}
 246EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 247
 248void task_dirty_inc(struct task_struct *tsk)
 249{
 250	prop_inc_single(&vm_dirties, &tsk->dirties);
 251}
 252
 253/*
 254 * Obtain an accurate fraction of the BDI's portion.
 255 */
 256static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 257		long *numerator, long *denominator)
 258{
 259	prop_fraction_percpu(&vm_completions, &bdi->completions,
 260				numerator, denominator);
 261}
 262
 263static inline void task_dirties_fraction(struct task_struct *tsk,
 264		long *numerator, long *denominator)
 265{
 266	prop_fraction_single(&vm_dirties, &tsk->dirties,
 267				numerator, denominator);
 268}
 269
 270/*
 271 * task_dirty_limit - scale down dirty throttling threshold for one task
 272 *
 273 * task specific dirty limit:
 274 *
 275 *   dirty -= (dirty/8) * p_{t}
 276 *
 277 * To protect light/slow dirtying tasks from heavier/fast ones, we start
 278 * throttling individual tasks before reaching the bdi dirty limit.
 279 * Relatively low thresholds will be allocated to heavy dirtiers. So when
 280 * dirty pages grow large, heavy dirtiers will be throttled first, which will
 281 * effectively curb the growth of dirty pages. Light dirtiers with high enough
 282 * dirty threshold may never get throttled.
 283 */
 284#define TASK_LIMIT_FRACTION 8
 285static unsigned long task_dirty_limit(struct task_struct *tsk,
 286				       unsigned long bdi_dirty)
 287{
 288	long numerator, denominator;
 289	unsigned long dirty = bdi_dirty;
 290	u64 inv = dirty / TASK_LIMIT_FRACTION;
 291
 292	task_dirties_fraction(tsk, &numerator, &denominator);
 293	inv *= numerator;
 294	do_div(inv, denominator);
 295
 296	dirty -= inv;
 297
 298	return max(dirty, bdi_dirty/2);
 299}
 300
 301/* Minimum limit for any task */
 302static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
 303{
 304	return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
 305}
 306
 307/*
 308 *
 
 
 309 */
 310static unsigned int bdi_min_ratio;
 311
 312int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 313{
 314	int ret = 0;
 315
 316	spin_lock_bh(&bdi_lock);
 317	if (min_ratio > bdi->max_ratio) {
 318		ret = -EINVAL;
 319	} else {
 320		min_ratio -= bdi->min_ratio;
 321		if (bdi_min_ratio + min_ratio < 100) {
 322			bdi_min_ratio += min_ratio;
 323			bdi->min_ratio += min_ratio;
 324		} else {
 325			ret = -EINVAL;
 326		}
 327	}
 328	spin_unlock_bh(&bdi_lock);
 329
 330	return ret;
 331}
 332
 333int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 334{
 335	int ret = 0;
 336
 337	if (max_ratio > 100)
 338		return -EINVAL;
 339
 340	spin_lock_bh(&bdi_lock);
 341	if (bdi->min_ratio > max_ratio) {
 342		ret = -EINVAL;
 343	} else {
 344		bdi->max_ratio = max_ratio;
 345		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 346	}
 347	spin_unlock_bh(&bdi_lock);
 348
 349	return ret;
 350}
 351EXPORT_SYMBOL(bdi_set_max_ratio);
 352
 353/*
 354 * Work out the current dirty-memory clamping and background writeout
 355 * thresholds.
 356 *
 357 * The main aim here is to lower them aggressively if there is a lot of mapped
 358 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 359 * pages.  It is better to clamp down on writers than to start swapping, and
 360 * performing lots of scanning.
 361 *
 362 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 363 *
 364 * We don't permit the clamping level to fall below 5% - that is getting rather
 365 * excessive.
 366 *
 367 * We make sure that the background writeout level is below the adjusted
 368 * clamping level.
 369 */
 370
 371static unsigned long highmem_dirtyable_memory(unsigned long total)
 372{
 373#ifdef CONFIG_HIGHMEM
 374	int node;
 375	unsigned long x = 0;
 376
 377	for_each_node_state(node, N_HIGH_MEMORY) {
 378		struct zone *z =
 379			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 380
 381		x += zone_page_state(z, NR_FREE_PAGES) +
 382		     zone_reclaimable_pages(z);
 383	}
 384	/*
 385	 * Make sure that the number of highmem pages is never larger
 386	 * than the number of the total dirtyable memory. This can only
 387	 * occur in very strange VM situations but we want to make sure
 388	 * that this does not occur.
 389	 */
 390	return min(x, total);
 391#else
 392	return 0;
 393#endif
 394}
 395
 396/**
 397 * determine_dirtyable_memory - amount of memory that may be used
 398 *
 399 * Returns the numebr of pages that can currently be freed and used
 400 * by the kernel for direct mappings.
 401 */
 402unsigned long determine_dirtyable_memory(void)
 403{
 404	unsigned long x;
 405
 406	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
 407
 408	if (!vm_highmem_is_dirtyable)
 409		x -= highmem_dirtyable_memory(x);
 410
 411	return x + 1;	/* Ensure that we never return 0 */
 412}
 413
 414static unsigned long hard_dirty_limit(unsigned long thresh)
 415{
 416	return max(thresh, global_dirty_limit);
 417}
 418
 419/*
 420 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 421 *
 422 * Calculate the dirty thresholds based on sysctl parameters
 423 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 424 * - vm.dirty_ratio             or  vm.dirty_bytes
 425 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 426 * real-time tasks.
 427 */
 428void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 429{
 430	unsigned long background;
 431	unsigned long dirty;
 432	unsigned long uninitialized_var(available_memory);
 433	struct task_struct *tsk;
 434
 435	if (!vm_dirty_bytes || !dirty_background_bytes)
 436		available_memory = determine_dirtyable_memory();
 437
 438	if (vm_dirty_bytes)
 439		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 440	else
 441		dirty = (vm_dirty_ratio * available_memory) / 100;
 442
 443	if (dirty_background_bytes)
 444		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 445	else
 446		background = (dirty_background_ratio * available_memory) / 100;
 447
 448	if (background >= dirty)
 449		background = dirty / 2;
 450	tsk = current;
 451	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 452		background += background / 4;
 453		dirty += dirty / 4;
 454	}
 455	*pbackground = background;
 456	*pdirty = dirty;
 457	trace_global_dirty_state(background, dirty);
 458}
 459
 460/**
 461 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 462 * @bdi: the backing_dev_info to query
 463 * @dirty: global dirty limit in pages
 464 *
 465 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 466 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 467 * And the "limit" in the name is not seriously taken as hard limit in
 468 * balance_dirty_pages().
 
 
 
 
 
 469 *
 470 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 471 * - starving fast devices
 472 * - piling up dirty pages (that will take long time to sync) on slow devices
 473 *
 474 * The bdi's share of dirty limit will be adapting to its throughput and
 475 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 476 */
 477unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 478{
 479	u64 bdi_dirty;
 480	long numerator, denominator;
 481
 482	/*
 483	 * Calculate this BDI's share of the dirty ratio.
 484	 */
 485	bdi_writeout_fraction(bdi, &numerator, &denominator);
 486
 487	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 488	bdi_dirty *= numerator;
 489	do_div(bdi_dirty, denominator);
 490
 491	bdi_dirty += (dirty * bdi->min_ratio) / 100;
 492	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 493		bdi_dirty = dirty * bdi->max_ratio / 100;
 494
 495	return bdi_dirty;
 496}
 497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 499				       unsigned long elapsed,
 500				       unsigned long written)
 501{
 502	const unsigned long period = roundup_pow_of_two(3 * HZ);
 503	unsigned long avg = bdi->avg_write_bandwidth;
 504	unsigned long old = bdi->write_bandwidth;
 505	u64 bw;
 506
 507	/*
 508	 * bw = written * HZ / elapsed
 509	 *
 510	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 511	 * write_bandwidth = ---------------------------------------------------
 512	 *                                          period
 513	 */
 514	bw = written - bdi->written_stamp;
 515	bw *= HZ;
 516	if (unlikely(elapsed > period)) {
 517		do_div(bw, elapsed);
 518		avg = bw;
 519		goto out;
 520	}
 521	bw += (u64)bdi->write_bandwidth * (period - elapsed);
 522	bw >>= ilog2(period);
 523
 524	/*
 525	 * one more level of smoothing, for filtering out sudden spikes
 526	 */
 527	if (avg > old && old >= (unsigned long)bw)
 528		avg -= (avg - old) >> 3;
 529
 530	if (avg < old && old <= (unsigned long)bw)
 531		avg += (old - avg) >> 3;
 532
 533out:
 534	bdi->write_bandwidth = bw;
 535	bdi->avg_write_bandwidth = avg;
 536}
 537
 538/*
 539 * The global dirtyable memory and dirty threshold could be suddenly knocked
 540 * down by a large amount (eg. on the startup of KVM in a swapless system).
 541 * This may throw the system into deep dirty exceeded state and throttle
 542 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 543 * global_dirty_limit for tracking slowly down to the knocked down dirty
 544 * threshold.
 545 */
 546static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 547{
 548	unsigned long limit = global_dirty_limit;
 549
 550	/*
 551	 * Follow up in one step.
 552	 */
 553	if (limit < thresh) {
 554		limit = thresh;
 555		goto update;
 556	}
 557
 558	/*
 559	 * Follow down slowly. Use the higher one as the target, because thresh
 560	 * may drop below dirty. This is exactly the reason to introduce
 561	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
 562	 */
 563	thresh = max(thresh, dirty);
 564	if (limit > thresh) {
 565		limit -= (limit - thresh) >> 5;
 566		goto update;
 567	}
 568	return;
 569update:
 570	global_dirty_limit = limit;
 571}
 572
 573static void global_update_bandwidth(unsigned long thresh,
 574				    unsigned long dirty,
 575				    unsigned long now)
 576{
 577	static DEFINE_SPINLOCK(dirty_lock);
 578	static unsigned long update_time;
 579
 580	/*
 581	 * check locklessly first to optimize away locking for the most time
 582	 */
 583	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 584		return;
 585
 586	spin_lock(&dirty_lock);
 587	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 588		update_dirty_limit(thresh, dirty);
 589		update_time = now;
 590	}
 591	spin_unlock(&dirty_lock);
 592}
 593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 595			    unsigned long thresh,
 
 596			    unsigned long dirty,
 597			    unsigned long bdi_thresh,
 598			    unsigned long bdi_dirty,
 599			    unsigned long start_time)
 600{
 601	unsigned long now = jiffies;
 602	unsigned long elapsed = now - bdi->bw_time_stamp;
 
 603	unsigned long written;
 604
 605	/*
 606	 * rate-limit, only update once every 200ms.
 607	 */
 608	if (elapsed < BANDWIDTH_INTERVAL)
 609		return;
 610
 
 611	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
 612
 613	/*
 614	 * Skip quiet periods when disk bandwidth is under-utilized.
 615	 * (at least 1s idle time between two flusher runs)
 616	 */
 617	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
 618		goto snapshot;
 619
 620	if (thresh)
 621		global_update_bandwidth(thresh, dirty, now);
 622
 
 
 
 623	bdi_update_write_bandwidth(bdi, elapsed, written);
 624
 625snapshot:
 
 626	bdi->written_stamp = written;
 627	bdi->bw_time_stamp = now;
 628}
 629
 630static void bdi_update_bandwidth(struct backing_dev_info *bdi,
 631				 unsigned long thresh,
 
 632				 unsigned long dirty,
 633				 unsigned long bdi_thresh,
 634				 unsigned long bdi_dirty,
 635				 unsigned long start_time)
 636{
 637	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
 638		return;
 639	spin_lock(&bdi->wb.list_lock);
 640	__bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
 641			       start_time);
 642	spin_unlock(&bdi->wb.list_lock);
 643}
 644
 645/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646 * balance_dirty_pages() must be called by processes which are generating dirty
 647 * data.  It looks at the number of dirty pages in the machine and will force
 648 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 649 * If we're over `background_thresh' then the writeback threads are woken to
 650 * perform some writeout.
 651 */
 652static void balance_dirty_pages(struct address_space *mapping,
 653				unsigned long write_chunk)
 654{
 655	unsigned long nr_reclaimable, bdi_nr_reclaimable;
 
 656	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
 657	unsigned long bdi_dirty;
 
 658	unsigned long background_thresh;
 659	unsigned long dirty_thresh;
 660	unsigned long bdi_thresh;
 661	unsigned long task_bdi_thresh;
 662	unsigned long min_task_bdi_thresh;
 663	unsigned long pages_written = 0;
 664	unsigned long pause = 1;
 
 665	bool dirty_exceeded = false;
 666	bool clear_dirty_exceeded = true;
 
 
 667	struct backing_dev_info *bdi = mapping->backing_dev_info;
 668	unsigned long start_time = jiffies;
 669
 670	for (;;) {
 
 
 
 
 
 
 
 
 671		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 672					global_page_state(NR_UNSTABLE_NFS);
 673		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
 674
 675		global_dirty_limits(&background_thresh, &dirty_thresh);
 676
 677		/*
 678		 * Throttle it only when the background writeback cannot
 679		 * catch-up. This avoids (excessively) small writeouts
 680		 * when the bdi limits are ramping up.
 681		 */
 682		if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
 
 
 
 
 
 
 683			break;
 
 
 
 
 684
 
 
 
 
 
 
 
 
 
 
 
 
 
 685		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
 686		min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
 687		task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
 688
 689		/*
 690		 * In order to avoid the stacked BDI deadlock we need
 691		 * to ensure we accurately count the 'dirty' pages when
 692		 * the threshold is low.
 693		 *
 694		 * Otherwise it would be possible to get thresh+n pages
 695		 * reported dirty, even though there are thresh-m pages
 696		 * actually dirty; with m+n sitting in the percpu
 697		 * deltas.
 698		 */
 699		if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
 700			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 701			bdi_dirty = bdi_nr_reclaimable +
 702				    bdi_stat_sum(bdi, BDI_WRITEBACK);
 703		} else {
 704			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 705			bdi_dirty = bdi_nr_reclaimable +
 706				    bdi_stat(bdi, BDI_WRITEBACK);
 707		}
 708
 709		/*
 710		 * The bdi thresh is somehow "soft" limit derived from the
 711		 * global "hard" limit. The former helps to prevent heavy IO
 712		 * bdi or process from holding back light ones; The latter is
 713		 * the last resort safeguard.
 714		 */
 715		dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
 716				  (nr_dirty > dirty_thresh);
 717		clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
 718					(nr_dirty <= dirty_thresh);
 719
 720		if (!dirty_exceeded)
 721			break;
 722
 723		if (!bdi->dirty_exceeded)
 724			bdi->dirty_exceeded = 1;
 725
 726		bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
 727				     bdi_thresh, bdi_dirty, start_time);
 728
 729		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 730		 * Unstable writes are a feature of certain networked
 731		 * filesystems (i.e. NFS) in which data may have been
 732		 * written to the server's write cache, but has not yet
 733		 * been flushed to permanent storage.
 734		 * Only move pages to writeback if this bdi is over its
 735		 * threshold otherwise wait until the disk writes catch
 736		 * up.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		 */
 738		trace_balance_dirty_start(bdi);
 739		if (bdi_nr_reclaimable > task_bdi_thresh) {
 740			pages_written += writeback_inodes_wb(&bdi->wb,
 741							     write_chunk);
 742			trace_balance_dirty_written(bdi, pages_written);
 743			if (pages_written >= write_chunk)
 744				break;		/* We've done our duty */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745		}
 746		__set_current_state(TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747		io_schedule_timeout(pause);
 748		trace_balance_dirty_wait(bdi);
 749
 750		dirty_thresh = hard_dirty_limit(dirty_thresh);
 
 
 
 751		/*
 752		 * max-pause area. If dirty exceeded but still within this
 753		 * area, no need to sleep for more than 200ms: (a) 8 pages per
 754		 * 200ms is typically more than enough to curb heavy dirtiers;
 755		 * (b) the pause time limit makes the dirtiers more responsive.
 756		 */
 757		if (nr_dirty < dirty_thresh &&
 758		    bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
 759		    time_after(jiffies, start_time + MAX_PAUSE))
 760			break;
 761
 762		/*
 763		 * Increase the delay for each loop, up to our previous
 764		 * default of taking a 100ms nap.
 
 
 
 
 
 
 765		 */
 766		pause <<= 1;
 767		if (pause > HZ / 10)
 768			pause = HZ / 10;
 
 
 769	}
 770
 771	/* Clear dirty_exceeded flag only when no task can exceed the limit */
 772	if (clear_dirty_exceeded && bdi->dirty_exceeded)
 773		bdi->dirty_exceeded = 0;
 774
 775	if (writeback_in_progress(bdi))
 776		return;
 777
 778	/*
 779	 * In laptop mode, we wait until hitting the higher threshold before
 780	 * starting background writeout, and then write out all the way down
 781	 * to the lower threshold.  So slow writers cause minimal disk activity.
 782	 *
 783	 * In normal mode, we start background writeout at the lower
 784	 * background_thresh, to keep the amount of dirty memory low.
 785	 */
 786	if ((laptop_mode && pages_written) ||
 787	    (!laptop_mode && (nr_reclaimable > background_thresh)))
 
 
 788		bdi_start_background_writeback(bdi);
 789}
 790
 791void set_page_dirty_balance(struct page *page, int page_mkwrite)
 792{
 793	if (set_page_dirty(page) || page_mkwrite) {
 794		struct address_space *mapping = page_mapping(page);
 795
 796		if (mapping)
 797			balance_dirty_pages_ratelimited(mapping);
 798	}
 799}
 800
 801static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803/**
 804 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 805 * @mapping: address_space which was dirtied
 806 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 807 *
 808 * Processes which are dirtying memory should call in here once for each page
 809 * which was newly dirtied.  The function will periodically check the system's
 810 * dirty state and will initiate writeback if needed.
 811 *
 812 * On really big machines, get_writeback_state is expensive, so try to avoid
 813 * calling it too often (ratelimiting).  But once we're over the dirty memory
 814 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 815 * from overshooting the limit by (ratelimit_pages) each.
 816 */
 817void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 818					unsigned long nr_pages_dirtied)
 819{
 820	struct backing_dev_info *bdi = mapping->backing_dev_info;
 821	unsigned long ratelimit;
 822	unsigned long *p;
 823
 824	if (!bdi_cap_account_dirty(bdi))
 825		return;
 826
 827	ratelimit = ratelimit_pages;
 828	if (mapping->backing_dev_info->dirty_exceeded)
 829		ratelimit = 8;
 830
 
 831	/*
 832	 * Check the rate limiting. Also, we do not want to throttle real-time
 833	 * tasks in balance_dirty_pages(). Period.
 
 
 834	 */
 835	preempt_disable();
 836	p =  &__get_cpu_var(bdp_ratelimits);
 837	*p += nr_pages_dirtied;
 838	if (unlikely(*p >= ratelimit)) {
 839		ratelimit = sync_writeback_pages(*p);
 840		*p = 0;
 841		preempt_enable();
 842		balance_dirty_pages(mapping, ratelimit);
 843		return;
 
 
 
 
 
 
 
 
 
 
 
 844	}
 845	preempt_enable();
 
 
 
 846}
 847EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 848
 849void throttle_vm_writeout(gfp_t gfp_mask)
 850{
 851	unsigned long background_thresh;
 852	unsigned long dirty_thresh;
 853
 854        for ( ; ; ) {
 855		global_dirty_limits(&background_thresh, &dirty_thresh);
 
 856
 857                /*
 858                 * Boost the allowable dirty threshold a bit for page
 859                 * allocators so they don't get DoS'ed by heavy writers
 860                 */
 861                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 862
 863                if (global_page_state(NR_UNSTABLE_NFS) +
 864			global_page_state(NR_WRITEBACK) <= dirty_thresh)
 865                        	break;
 866                congestion_wait(BLK_RW_ASYNC, HZ/10);
 867
 868		/*
 869		 * The caller might hold locks which can prevent IO completion
 870		 * or progress in the filesystem.  So we cannot just sit here
 871		 * waiting for IO to complete.
 872		 */
 873		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 874			break;
 875        }
 876}
 877
 878/*
 879 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 880 */
 881int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 882	void __user *buffer, size_t *length, loff_t *ppos)
 883{
 884	proc_dointvec(table, write, buffer, length, ppos);
 885	bdi_arm_supers_timer();
 886	return 0;
 887}
 888
 889#ifdef CONFIG_BLOCK
 890void laptop_mode_timer_fn(unsigned long data)
 891{
 892	struct request_queue *q = (struct request_queue *)data;
 893	int nr_pages = global_page_state(NR_FILE_DIRTY) +
 894		global_page_state(NR_UNSTABLE_NFS);
 895
 896	/*
 897	 * We want to write everything out, not just down to the dirty
 898	 * threshold
 899	 */
 900	if (bdi_has_dirty_io(&q->backing_dev_info))
 901		bdi_start_writeback(&q->backing_dev_info, nr_pages);
 
 902}
 903
 904/*
 905 * We've spun up the disk and we're in laptop mode: schedule writeback
 906 * of all dirty data a few seconds from now.  If the flush is already scheduled
 907 * then push it back - the user is still using the disk.
 908 */
 909void laptop_io_completion(struct backing_dev_info *info)
 910{
 911	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
 912}
 913
 914/*
 915 * We're in laptop mode and we've just synced. The sync's writes will have
 916 * caused another writeback to be scheduled by laptop_io_completion.
 917 * Nothing needs to be written back anymore, so we unschedule the writeback.
 918 */
 919void laptop_sync_completion(void)
 920{
 921	struct backing_dev_info *bdi;
 922
 923	rcu_read_lock();
 924
 925	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
 926		del_timer(&bdi->laptop_mode_wb_timer);
 927
 928	rcu_read_unlock();
 929}
 930#endif
 931
 932/*
 933 * If ratelimit_pages is too high then we can get into dirty-data overload
 934 * if a large number of processes all perform writes at the same time.
 935 * If it is too low then SMP machines will call the (expensive)
 936 * get_writeback_state too often.
 937 *
 938 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 939 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 940 * thresholds before writeback cuts in.
 941 *
 942 * But the limit should not be set too high.  Because it also controls the
 943 * amount of memory which the balance_dirty_pages() caller has to write back.
 944 * If this is too large then the caller will block on the IO queue all the
 945 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 946 * will write six megabyte chunks, max.
 947 */
 948
 949void writeback_set_ratelimit(void)
 950{
 951	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 
 
 
 
 952	if (ratelimit_pages < 16)
 953		ratelimit_pages = 16;
 954	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 955		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 956}
 957
 958static int __cpuinit
 959ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 960{
 961	writeback_set_ratelimit();
 962	return NOTIFY_DONE;
 963}
 964
 965static struct notifier_block __cpuinitdata ratelimit_nb = {
 966	.notifier_call	= ratelimit_handler,
 967	.next		= NULL,
 968};
 969
 970/*
 971 * Called early on to tune the page writeback dirty limits.
 972 *
 973 * We used to scale dirty pages according to how total memory
 974 * related to pages that could be allocated for buffers (by
 975 * comparing nr_free_buffer_pages() to vm_total_pages.
 976 *
 977 * However, that was when we used "dirty_ratio" to scale with
 978 * all memory, and we don't do that any more. "dirty_ratio"
 979 * is now applied to total non-HIGHPAGE memory (by subtracting
 980 * totalhigh_pages from vm_total_pages), and as such we can't
 981 * get into the old insane situation any more where we had
 982 * large amounts of dirty pages compared to a small amount of
 983 * non-HIGHMEM memory.
 984 *
 985 * But we might still want to scale the dirty_ratio by how
 986 * much memory the box has..
 987 */
 988void __init page_writeback_init(void)
 989{
 990	int shift;
 991
 992	writeback_set_ratelimit();
 993	register_cpu_notifier(&ratelimit_nb);
 994
 995	shift = calc_period_shift();
 996	prop_descriptor_init(&vm_completions, shift);
 997	prop_descriptor_init(&vm_dirties, shift);
 998}
 999
1000/**
1001 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1002 * @mapping: address space structure to write
1003 * @start: starting page index
1004 * @end: ending page index (inclusive)
1005 *
1006 * This function scans the page range from @start to @end (inclusive) and tags
1007 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1008 * that write_cache_pages (or whoever calls this function) will then use
1009 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1010 * used to avoid livelocking of writeback by a process steadily creating new
1011 * dirty pages in the file (thus it is important for this function to be quick
1012 * so that it can tag pages faster than a dirtying process can create them).
1013 */
1014/*
1015 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1016 */
1017void tag_pages_for_writeback(struct address_space *mapping,
1018			     pgoff_t start, pgoff_t end)
1019{
1020#define WRITEBACK_TAG_BATCH 4096
1021	unsigned long tagged;
1022
1023	do {
1024		spin_lock_irq(&mapping->tree_lock);
1025		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1026				&start, end, WRITEBACK_TAG_BATCH,
1027				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1028		spin_unlock_irq(&mapping->tree_lock);
1029		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1030		cond_resched();
1031		/* We check 'start' to handle wrapping when end == ~0UL */
1032	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1033}
1034EXPORT_SYMBOL(tag_pages_for_writeback);
1035
1036/**
1037 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1038 * @mapping: address space structure to write
1039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1040 * @writepage: function called for each page
1041 * @data: data passed to writepage function
1042 *
1043 * If a page is already under I/O, write_cache_pages() skips it, even
1044 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1045 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1046 * and msync() need to guarantee that all the data which was dirty at the time
1047 * the call was made get new I/O started against them.  If wbc->sync_mode is
1048 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1049 * existing IO to complete.
1050 *
1051 * To avoid livelocks (when other process dirties new pages), we first tag
1052 * pages which should be written back with TOWRITE tag and only then start
1053 * writing them. For data-integrity sync we have to be careful so that we do
1054 * not miss some pages (e.g., because some other process has cleared TOWRITE
1055 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1056 * by the process clearing the DIRTY tag (and submitting the page for IO).
1057 */
1058int write_cache_pages(struct address_space *mapping,
1059		      struct writeback_control *wbc, writepage_t writepage,
1060		      void *data)
1061{
1062	int ret = 0;
1063	int done = 0;
1064	struct pagevec pvec;
1065	int nr_pages;
1066	pgoff_t uninitialized_var(writeback_index);
1067	pgoff_t index;
1068	pgoff_t end;		/* Inclusive */
1069	pgoff_t done_index;
1070	int cycled;
1071	int range_whole = 0;
1072	int tag;
1073
1074	pagevec_init(&pvec, 0);
1075	if (wbc->range_cyclic) {
1076		writeback_index = mapping->writeback_index; /* prev offset */
1077		index = writeback_index;
1078		if (index == 0)
1079			cycled = 1;
1080		else
1081			cycled = 0;
1082		end = -1;
1083	} else {
1084		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1085		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1086		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1087			range_whole = 1;
1088		cycled = 1; /* ignore range_cyclic tests */
1089	}
1090	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1091		tag = PAGECACHE_TAG_TOWRITE;
1092	else
1093		tag = PAGECACHE_TAG_DIRTY;
1094retry:
1095	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1096		tag_pages_for_writeback(mapping, index, end);
1097	done_index = index;
1098	while (!done && (index <= end)) {
1099		int i;
1100
1101		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1102			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1103		if (nr_pages == 0)
1104			break;
1105
1106		for (i = 0; i < nr_pages; i++) {
1107			struct page *page = pvec.pages[i];
1108
1109			/*
1110			 * At this point, the page may be truncated or
1111			 * invalidated (changing page->mapping to NULL), or
1112			 * even swizzled back from swapper_space to tmpfs file
1113			 * mapping. However, page->index will not change
1114			 * because we have a reference on the page.
1115			 */
1116			if (page->index > end) {
1117				/*
1118				 * can't be range_cyclic (1st pass) because
1119				 * end == -1 in that case.
1120				 */
1121				done = 1;
1122				break;
1123			}
1124
1125			done_index = page->index;
1126
1127			lock_page(page);
1128
1129			/*
1130			 * Page truncated or invalidated. We can freely skip it
1131			 * then, even for data integrity operations: the page
1132			 * has disappeared concurrently, so there could be no
1133			 * real expectation of this data interity operation
1134			 * even if there is now a new, dirty page at the same
1135			 * pagecache address.
1136			 */
1137			if (unlikely(page->mapping != mapping)) {
1138continue_unlock:
1139				unlock_page(page);
1140				continue;
1141			}
1142
1143			if (!PageDirty(page)) {
1144				/* someone wrote it for us */
1145				goto continue_unlock;
1146			}
1147
1148			if (PageWriteback(page)) {
1149				if (wbc->sync_mode != WB_SYNC_NONE)
1150					wait_on_page_writeback(page);
1151				else
1152					goto continue_unlock;
1153			}
1154
1155			BUG_ON(PageWriteback(page));
1156			if (!clear_page_dirty_for_io(page))
1157				goto continue_unlock;
1158
1159			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1160			ret = (*writepage)(page, wbc, data);
1161			if (unlikely(ret)) {
1162				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1163					unlock_page(page);
1164					ret = 0;
1165				} else {
1166					/*
1167					 * done_index is set past this page,
1168					 * so media errors will not choke
1169					 * background writeout for the entire
1170					 * file. This has consequences for
1171					 * range_cyclic semantics (ie. it may
1172					 * not be suitable for data integrity
1173					 * writeout).
1174					 */
1175					done_index = page->index + 1;
1176					done = 1;
1177					break;
1178				}
1179			}
1180
1181			/*
1182			 * We stop writing back only if we are not doing
1183			 * integrity sync. In case of integrity sync we have to
1184			 * keep going until we have written all the pages
1185			 * we tagged for writeback prior to entering this loop.
1186			 */
1187			if (--wbc->nr_to_write <= 0 &&
1188			    wbc->sync_mode == WB_SYNC_NONE) {
1189				done = 1;
1190				break;
1191			}
1192		}
1193		pagevec_release(&pvec);
1194		cond_resched();
1195	}
1196	if (!cycled && !done) {
1197		/*
1198		 * range_cyclic:
1199		 * We hit the last page and there is more work to be done: wrap
1200		 * back to the start of the file
1201		 */
1202		cycled = 1;
1203		index = 0;
1204		end = writeback_index - 1;
1205		goto retry;
1206	}
1207	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1208		mapping->writeback_index = done_index;
1209
1210	return ret;
1211}
1212EXPORT_SYMBOL(write_cache_pages);
1213
1214/*
1215 * Function used by generic_writepages to call the real writepage
1216 * function and set the mapping flags on error
1217 */
1218static int __writepage(struct page *page, struct writeback_control *wbc,
1219		       void *data)
1220{
1221	struct address_space *mapping = data;
1222	int ret = mapping->a_ops->writepage(page, wbc);
1223	mapping_set_error(mapping, ret);
1224	return ret;
1225}
1226
1227/**
1228 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1229 * @mapping: address space structure to write
1230 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1231 *
1232 * This is a library function, which implements the writepages()
1233 * address_space_operation.
1234 */
1235int generic_writepages(struct address_space *mapping,
1236		       struct writeback_control *wbc)
1237{
1238	struct blk_plug plug;
1239	int ret;
1240
1241	/* deal with chardevs and other special file */
1242	if (!mapping->a_ops->writepage)
1243		return 0;
1244
1245	blk_start_plug(&plug);
1246	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1247	blk_finish_plug(&plug);
1248	return ret;
1249}
1250
1251EXPORT_SYMBOL(generic_writepages);
1252
1253int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1254{
1255	int ret;
1256
1257	if (wbc->nr_to_write <= 0)
1258		return 0;
1259	if (mapping->a_ops->writepages)
1260		ret = mapping->a_ops->writepages(mapping, wbc);
1261	else
1262		ret = generic_writepages(mapping, wbc);
1263	return ret;
1264}
1265
1266/**
1267 * write_one_page - write out a single page and optionally wait on I/O
1268 * @page: the page to write
1269 * @wait: if true, wait on writeout
1270 *
1271 * The page must be locked by the caller and will be unlocked upon return.
1272 *
1273 * write_one_page() returns a negative error code if I/O failed.
1274 */
1275int write_one_page(struct page *page, int wait)
1276{
1277	struct address_space *mapping = page->mapping;
1278	int ret = 0;
1279	struct writeback_control wbc = {
1280		.sync_mode = WB_SYNC_ALL,
1281		.nr_to_write = 1,
1282	};
1283
1284	BUG_ON(!PageLocked(page));
1285
1286	if (wait)
1287		wait_on_page_writeback(page);
1288
1289	if (clear_page_dirty_for_io(page)) {
1290		page_cache_get(page);
1291		ret = mapping->a_ops->writepage(page, &wbc);
1292		if (ret == 0 && wait) {
1293			wait_on_page_writeback(page);
1294			if (PageError(page))
1295				ret = -EIO;
1296		}
1297		page_cache_release(page);
1298	} else {
1299		unlock_page(page);
1300	}
1301	return ret;
1302}
1303EXPORT_SYMBOL(write_one_page);
1304
1305/*
1306 * For address_spaces which do not use buffers nor write back.
1307 */
1308int __set_page_dirty_no_writeback(struct page *page)
1309{
1310	if (!PageDirty(page))
1311		return !TestSetPageDirty(page);
1312	return 0;
1313}
1314
1315/*
1316 * Helper function for set_page_dirty family.
1317 * NOTE: This relies on being atomic wrt interrupts.
1318 */
1319void account_page_dirtied(struct page *page, struct address_space *mapping)
1320{
1321	if (mapping_cap_account_dirty(mapping)) {
1322		__inc_zone_page_state(page, NR_FILE_DIRTY);
1323		__inc_zone_page_state(page, NR_DIRTIED);
1324		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1325		task_dirty_inc(current);
1326		task_io_account_write(PAGE_CACHE_SIZE);
 
 
1327	}
1328}
1329EXPORT_SYMBOL(account_page_dirtied);
1330
1331/*
1332 * Helper function for set_page_writeback family.
1333 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1334 * wrt interrupts.
1335 */
1336void account_page_writeback(struct page *page)
1337{
1338	inc_zone_page_state(page, NR_WRITEBACK);
1339}
1340EXPORT_SYMBOL(account_page_writeback);
1341
1342/*
1343 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1344 * its radix tree.
1345 *
1346 * This is also used when a single buffer is being dirtied: we want to set the
1347 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1348 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1349 *
1350 * Most callers have locked the page, which pins the address_space in memory.
1351 * But zap_pte_range() does not lock the page, however in that case the
1352 * mapping is pinned by the vma's ->vm_file reference.
1353 *
1354 * We take care to handle the case where the page was truncated from the
1355 * mapping by re-checking page_mapping() inside tree_lock.
1356 */
1357int __set_page_dirty_nobuffers(struct page *page)
1358{
1359	if (!TestSetPageDirty(page)) {
1360		struct address_space *mapping = page_mapping(page);
1361		struct address_space *mapping2;
1362
1363		if (!mapping)
1364			return 1;
1365
1366		spin_lock_irq(&mapping->tree_lock);
1367		mapping2 = page_mapping(page);
1368		if (mapping2) { /* Race with truncate? */
1369			BUG_ON(mapping2 != mapping);
1370			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1371			account_page_dirtied(page, mapping);
1372			radix_tree_tag_set(&mapping->page_tree,
1373				page_index(page), PAGECACHE_TAG_DIRTY);
1374		}
1375		spin_unlock_irq(&mapping->tree_lock);
1376		if (mapping->host) {
1377			/* !PageAnon && !swapper_space */
1378			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1379		}
1380		return 1;
1381	}
1382	return 0;
1383}
1384EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1385
1386/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387 * When a writepage implementation decides that it doesn't want to write this
1388 * page for some reason, it should redirty the locked page via
1389 * redirty_page_for_writepage() and it should then unlock the page and return 0
1390 */
1391int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1392{
1393	wbc->pages_skipped++;
 
1394	return __set_page_dirty_nobuffers(page);
1395}
1396EXPORT_SYMBOL(redirty_page_for_writepage);
1397
1398/*
1399 * Dirty a page.
1400 *
1401 * For pages with a mapping this should be done under the page lock
1402 * for the benefit of asynchronous memory errors who prefer a consistent
1403 * dirty state. This rule can be broken in some special cases,
1404 * but should be better not to.
1405 *
1406 * If the mapping doesn't provide a set_page_dirty a_op, then
1407 * just fall through and assume that it wants buffer_heads.
1408 */
1409int set_page_dirty(struct page *page)
1410{
1411	struct address_space *mapping = page_mapping(page);
1412
1413	if (likely(mapping)) {
1414		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1415		/*
1416		 * readahead/lru_deactivate_page could remain
1417		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1418		 * About readahead, if the page is written, the flags would be
1419		 * reset. So no problem.
1420		 * About lru_deactivate_page, if the page is redirty, the flag
1421		 * will be reset. So no problem. but if the page is used by readahead
1422		 * it will confuse readahead and make it restart the size rampup
1423		 * process. But it's a trivial problem.
1424		 */
1425		ClearPageReclaim(page);
1426#ifdef CONFIG_BLOCK
1427		if (!spd)
1428			spd = __set_page_dirty_buffers;
1429#endif
1430		return (*spd)(page);
1431	}
1432	if (!PageDirty(page)) {
1433		if (!TestSetPageDirty(page))
1434			return 1;
1435	}
1436	return 0;
1437}
1438EXPORT_SYMBOL(set_page_dirty);
1439
1440/*
1441 * set_page_dirty() is racy if the caller has no reference against
1442 * page->mapping->host, and if the page is unlocked.  This is because another
1443 * CPU could truncate the page off the mapping and then free the mapping.
1444 *
1445 * Usually, the page _is_ locked, or the caller is a user-space process which
1446 * holds a reference on the inode by having an open file.
1447 *
1448 * In other cases, the page should be locked before running set_page_dirty().
1449 */
1450int set_page_dirty_lock(struct page *page)
1451{
1452	int ret;
1453
1454	lock_page(page);
1455	ret = set_page_dirty(page);
1456	unlock_page(page);
1457	return ret;
1458}
1459EXPORT_SYMBOL(set_page_dirty_lock);
1460
1461/*
1462 * Clear a page's dirty flag, while caring for dirty memory accounting.
1463 * Returns true if the page was previously dirty.
1464 *
1465 * This is for preparing to put the page under writeout.  We leave the page
1466 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1467 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1468 * implementation will run either set_page_writeback() or set_page_dirty(),
1469 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1470 * back into sync.
1471 *
1472 * This incoherency between the page's dirty flag and radix-tree tag is
1473 * unfortunate, but it only exists while the page is locked.
1474 */
1475int clear_page_dirty_for_io(struct page *page)
1476{
1477	struct address_space *mapping = page_mapping(page);
1478
1479	BUG_ON(!PageLocked(page));
1480
1481	if (mapping && mapping_cap_account_dirty(mapping)) {
1482		/*
1483		 * Yes, Virginia, this is indeed insane.
1484		 *
1485		 * We use this sequence to make sure that
1486		 *  (a) we account for dirty stats properly
1487		 *  (b) we tell the low-level filesystem to
1488		 *      mark the whole page dirty if it was
1489		 *      dirty in a pagetable. Only to then
1490		 *  (c) clean the page again and return 1 to
1491		 *      cause the writeback.
1492		 *
1493		 * This way we avoid all nasty races with the
1494		 * dirty bit in multiple places and clearing
1495		 * them concurrently from different threads.
1496		 *
1497		 * Note! Normally the "set_page_dirty(page)"
1498		 * has no effect on the actual dirty bit - since
1499		 * that will already usually be set. But we
1500		 * need the side effects, and it can help us
1501		 * avoid races.
1502		 *
1503		 * We basically use the page "master dirty bit"
1504		 * as a serialization point for all the different
1505		 * threads doing their things.
1506		 */
1507		if (page_mkclean(page))
1508			set_page_dirty(page);
1509		/*
1510		 * We carefully synchronise fault handlers against
1511		 * installing a dirty pte and marking the page dirty
1512		 * at this point. We do this by having them hold the
1513		 * page lock at some point after installing their
1514		 * pte, but before marking the page dirty.
1515		 * Pages are always locked coming in here, so we get
1516		 * the desired exclusion. See mm/memory.c:do_wp_page()
1517		 * for more comments.
1518		 */
1519		if (TestClearPageDirty(page)) {
1520			dec_zone_page_state(page, NR_FILE_DIRTY);
1521			dec_bdi_stat(mapping->backing_dev_info,
1522					BDI_RECLAIMABLE);
1523			return 1;
1524		}
1525		return 0;
1526	}
1527	return TestClearPageDirty(page);
1528}
1529EXPORT_SYMBOL(clear_page_dirty_for_io);
1530
1531int test_clear_page_writeback(struct page *page)
1532{
1533	struct address_space *mapping = page_mapping(page);
1534	int ret;
1535
1536	if (mapping) {
1537		struct backing_dev_info *bdi = mapping->backing_dev_info;
1538		unsigned long flags;
1539
1540		spin_lock_irqsave(&mapping->tree_lock, flags);
1541		ret = TestClearPageWriteback(page);
1542		if (ret) {
1543			radix_tree_tag_clear(&mapping->page_tree,
1544						page_index(page),
1545						PAGECACHE_TAG_WRITEBACK);
1546			if (bdi_cap_account_writeback(bdi)) {
1547				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1548				__bdi_writeout_inc(bdi);
1549			}
1550		}
1551		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1552	} else {
1553		ret = TestClearPageWriteback(page);
1554	}
1555	if (ret) {
1556		dec_zone_page_state(page, NR_WRITEBACK);
1557		inc_zone_page_state(page, NR_WRITTEN);
1558	}
1559	return ret;
1560}
1561
1562int test_set_page_writeback(struct page *page)
1563{
1564	struct address_space *mapping = page_mapping(page);
1565	int ret;
1566
1567	if (mapping) {
1568		struct backing_dev_info *bdi = mapping->backing_dev_info;
1569		unsigned long flags;
1570
1571		spin_lock_irqsave(&mapping->tree_lock, flags);
1572		ret = TestSetPageWriteback(page);
1573		if (!ret) {
1574			radix_tree_tag_set(&mapping->page_tree,
1575						page_index(page),
1576						PAGECACHE_TAG_WRITEBACK);
1577			if (bdi_cap_account_writeback(bdi))
1578				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1579		}
1580		if (!PageDirty(page))
1581			radix_tree_tag_clear(&mapping->page_tree,
1582						page_index(page),
1583						PAGECACHE_TAG_DIRTY);
1584		radix_tree_tag_clear(&mapping->page_tree,
1585				     page_index(page),
1586				     PAGECACHE_TAG_TOWRITE);
1587		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1588	} else {
1589		ret = TestSetPageWriteback(page);
1590	}
1591	if (!ret)
1592		account_page_writeback(page);
1593	return ret;
1594
1595}
1596EXPORT_SYMBOL(test_set_page_writeback);
1597
1598/*
1599 * Return true if any of the pages in the mapping are marked with the
1600 * passed tag.
1601 */
1602int mapping_tagged(struct address_space *mapping, int tag)
1603{
1604	return radix_tree_tagged(&mapping->page_tree, tag);
1605}
1606EXPORT_SYMBOL(mapping_tagged);
v3.5.6
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <trace/events/writeback.h>
  38
  39/*
  40 * Sleep at most 200ms at a time in balance_dirty_pages().
  41 */
  42#define MAX_PAUSE		max(HZ/5, 1)
  43
  44/*
  45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  46 * by raising pause time to max_pause when falls below it.
  47 */
  48#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  49
  50/*
  51 * Estimate write bandwidth at 200ms intervals.
  52 */
  53#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  54
  55#define RATELIMIT_CALC_SHIFT	10
  56
  57/*
  58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  59 * will look to see if it needs to force writeback or throttling.
  60 */
  61static long ratelimit_pages = 32;
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63/* The following parameters are exported via /proc/sys/vm */
  64
  65/*
  66 * Start background writeback (via writeback threads) at this percentage
  67 */
  68int dirty_background_ratio = 10;
  69
  70/*
  71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  72 * dirty_background_ratio * the amount of dirtyable memory
  73 */
  74unsigned long dirty_background_bytes;
  75
  76/*
  77 * free highmem will not be subtracted from the total free memory
  78 * for calculating free ratios if vm_highmem_is_dirtyable is true
  79 */
  80int vm_highmem_is_dirtyable;
  81
  82/*
  83 * The generator of dirty data starts writeback at this percentage
  84 */
  85int vm_dirty_ratio = 20;
  86
  87/*
  88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  89 * vm_dirty_ratio * the amount of dirtyable memory
  90 */
  91unsigned long vm_dirty_bytes;
  92
  93/*
  94 * The interval between `kupdate'-style writebacks
  95 */
  96unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  97
  98EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  99
 100/*
 101 * The longest time for which data is allowed to remain dirty
 102 */
 103unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 104
 105/*
 106 * Flag that makes the machine dump writes/reads and block dirtyings.
 107 */
 108int block_dump;
 109
 110/*
 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 112 * a full sync is triggered after this time elapses without any disk activity.
 113 */
 114int laptop_mode;
 115
 116EXPORT_SYMBOL(laptop_mode);
 117
 118/* End of sysctl-exported parameters */
 119
 120unsigned long global_dirty_limit;
 121
 122/*
 123 * Scale the writeback cache size proportional to the relative writeout speeds.
 124 *
 125 * We do this by keeping a floating proportion between BDIs, based on page
 126 * writeback completions [end_page_writeback()]. Those devices that write out
 127 * pages fastest will get the larger share, while the slower will get a smaller
 128 * share.
 129 *
 130 * We use page writeout completions because we are interested in getting rid of
 131 * dirty pages. Having them written out is the primary goal.
 132 *
 133 * We introduce a concept of time, a period over which we measure these events,
 134 * because demand can/will vary over time. The length of this period itself is
 135 * measured in page writeback completions.
 136 *
 137 */
 138static struct prop_descriptor vm_completions;
 139
 140/*
 141 * Work out the current dirty-memory clamping and background writeout
 142 * thresholds.
 143 *
 144 * The main aim here is to lower them aggressively if there is a lot of mapped
 145 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 146 * pages.  It is better to clamp down on writers than to start swapping, and
 147 * performing lots of scanning.
 148 *
 149 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 150 *
 151 * We don't permit the clamping level to fall below 5% - that is getting rather
 152 * excessive.
 153 *
 154 * We make sure that the background writeout level is below the adjusted
 155 * clamping level.
 156 */
 157
 158/*
 159 * In a memory zone, there is a certain amount of pages we consider
 160 * available for the page cache, which is essentially the number of
 161 * free and reclaimable pages, minus some zone reserves to protect
 162 * lowmem and the ability to uphold the zone's watermarks without
 163 * requiring writeback.
 164 *
 165 * This number of dirtyable pages is the base value of which the
 166 * user-configurable dirty ratio is the effictive number of pages that
 167 * are allowed to be actually dirtied.  Per individual zone, or
 168 * globally by using the sum of dirtyable pages over all zones.
 169 *
 170 * Because the user is allowed to specify the dirty limit globally as
 171 * absolute number of bytes, calculating the per-zone dirty limit can
 172 * require translating the configured limit into a percentage of
 173 * global dirtyable memory first.
 174 */
 175
 176static unsigned long highmem_dirtyable_memory(unsigned long total)
 177{
 178#ifdef CONFIG_HIGHMEM
 179	int node;
 180	unsigned long x = 0;
 181
 182	for_each_node_state(node, N_HIGH_MEMORY) {
 183		struct zone *z =
 184			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 185
 186		x += zone_page_state(z, NR_FREE_PAGES) +
 187		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
 188	}
 189	/*
 190	 * Make sure that the number of highmem pages is never larger
 191	 * than the number of the total dirtyable memory. This can only
 192	 * occur in very strange VM situations but we want to make sure
 193	 * that this does not occur.
 194	 */
 195	return min(x, total);
 196#else
 197	return 0;
 198#endif
 199}
 200
 201/**
 202 * global_dirtyable_memory - number of globally dirtyable pages
 203 *
 204 * Returns the global number of pages potentially available for dirty
 205 * page cache.  This is the base value for the global dirty limits.
 206 */
 207static unsigned long global_dirtyable_memory(void)
 208{
 209	unsigned long x;
 210
 211	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
 212	    dirty_balance_reserve;
 213
 214	if (!vm_highmem_is_dirtyable)
 215		x -= highmem_dirtyable_memory(x);
 216
 217	return x + 1;	/* Ensure that we never return 0 */
 218}
 219
 220/*
 221 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 222 *
 223 * Calculate the dirty thresholds based on sysctl parameters
 224 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 225 * - vm.dirty_ratio             or  vm.dirty_bytes
 226 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 227 * real-time tasks.
 228 */
 229void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 230{
 231	unsigned long background;
 232	unsigned long dirty;
 233	unsigned long uninitialized_var(available_memory);
 234	struct task_struct *tsk;
 235
 236	if (!vm_dirty_bytes || !dirty_background_bytes)
 237		available_memory = global_dirtyable_memory();
 238
 239	if (vm_dirty_bytes)
 240		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 241	else
 242		dirty = (vm_dirty_ratio * available_memory) / 100;
 243
 244	if (dirty_background_bytes)
 245		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 246	else
 247		background = (dirty_background_ratio * available_memory) / 100;
 248
 249	if (background >= dirty)
 250		background = dirty / 2;
 251	tsk = current;
 252	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 253		background += background / 4;
 254		dirty += dirty / 4;
 255	}
 256	*pbackground = background;
 257	*pdirty = dirty;
 258	trace_global_dirty_state(background, dirty);
 259}
 260
 261/**
 262 * zone_dirtyable_memory - number of dirtyable pages in a zone
 263 * @zone: the zone
 264 *
 265 * Returns the zone's number of pages potentially available for dirty
 266 * page cache.  This is the base value for the per-zone dirty limits.
 267 */
 268static unsigned long zone_dirtyable_memory(struct zone *zone)
 269{
 270	/*
 271	 * The effective global number of dirtyable pages may exclude
 272	 * highmem as a big-picture measure to keep the ratio between
 273	 * dirty memory and lowmem reasonable.
 274	 *
 275	 * But this function is purely about the individual zone and a
 276	 * highmem zone can hold its share of dirty pages, so we don't
 277	 * care about vm_highmem_is_dirtyable here.
 278	 */
 279	return zone_page_state(zone, NR_FREE_PAGES) +
 280	       zone_reclaimable_pages(zone) -
 281	       zone->dirty_balance_reserve;
 282}
 283
 284/**
 285 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 286 * @zone: the zone
 287 *
 288 * Returns the maximum number of dirty pages allowed in a zone, based
 289 * on the zone's dirtyable memory.
 290 */
 291static unsigned long zone_dirty_limit(struct zone *zone)
 292{
 293	unsigned long zone_memory = zone_dirtyable_memory(zone);
 294	struct task_struct *tsk = current;
 295	unsigned long dirty;
 296
 297	if (vm_dirty_bytes)
 298		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 299			zone_memory / global_dirtyable_memory();
 300	else
 301		dirty = vm_dirty_ratio * zone_memory / 100;
 302
 303	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 304		dirty += dirty / 4;
 305
 306	return dirty;
 307}
 308
 309/**
 310 * zone_dirty_ok - tells whether a zone is within its dirty limits
 311 * @zone: the zone to check
 312 *
 313 * Returns %true when the dirty pages in @zone are within the zone's
 314 * dirty limit, %false if the limit is exceeded.
 315 */
 316bool zone_dirty_ok(struct zone *zone)
 317{
 318	unsigned long limit = zone_dirty_limit(zone);
 319
 320	return zone_page_state(zone, NR_FILE_DIRTY) +
 321	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 322	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 323}
 324
 325/*
 326 * couple the period to the dirty_ratio:
 327 *
 328 *   period/2 ~ roundup_pow_of_two(dirty limit)
 329 */
 330static int calc_period_shift(void)
 331{
 332	unsigned long dirty_total;
 333
 334	if (vm_dirty_bytes)
 335		dirty_total = vm_dirty_bytes / PAGE_SIZE;
 336	else
 337		dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
 338				100;
 339	return 2 + ilog2(dirty_total - 1);
 340}
 341
 342/*
 343 * update the period when the dirty threshold changes.
 344 */
 345static void update_completion_period(void)
 346{
 347	int shift = calc_period_shift();
 348	prop_change_shift(&vm_completions, shift);
 349
 350	writeback_set_ratelimit();
 351}
 352
 353int dirty_background_ratio_handler(struct ctl_table *table, int write,
 354		void __user *buffer, size_t *lenp,
 355		loff_t *ppos)
 356{
 357	int ret;
 358
 359	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 360	if (ret == 0 && write)
 361		dirty_background_bytes = 0;
 362	return ret;
 363}
 364
 365int dirty_background_bytes_handler(struct ctl_table *table, int write,
 366		void __user *buffer, size_t *lenp,
 367		loff_t *ppos)
 368{
 369	int ret;
 370
 371	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 372	if (ret == 0 && write)
 373		dirty_background_ratio = 0;
 374	return ret;
 375}
 376
 377int dirty_ratio_handler(struct ctl_table *table, int write,
 378		void __user *buffer, size_t *lenp,
 379		loff_t *ppos)
 380{
 381	int old_ratio = vm_dirty_ratio;
 382	int ret;
 383
 384	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 385	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 386		update_completion_period();
 387		vm_dirty_bytes = 0;
 388	}
 389	return ret;
 390}
 391
 
 392int dirty_bytes_handler(struct ctl_table *table, int write,
 393		void __user *buffer, size_t *lenp,
 394		loff_t *ppos)
 395{
 396	unsigned long old_bytes = vm_dirty_bytes;
 397	int ret;
 398
 399	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 400	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 401		update_completion_period();
 402		vm_dirty_ratio = 0;
 403	}
 404	return ret;
 405}
 406
 407/*
 408 * Increment the BDI's writeout completion count and the global writeout
 409 * completion count. Called from test_clear_page_writeback().
 410 */
 411static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 412{
 413	__inc_bdi_stat(bdi, BDI_WRITTEN);
 414	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
 415			      bdi->max_prop_frac);
 416}
 417
 418void bdi_writeout_inc(struct backing_dev_info *bdi)
 419{
 420	unsigned long flags;
 421
 422	local_irq_save(flags);
 423	__bdi_writeout_inc(bdi);
 424	local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 427
 
 
 
 
 
 428/*
 429 * Obtain an accurate fraction of the BDI's portion.
 430 */
 431static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 432		long *numerator, long *denominator)
 433{
 434	prop_fraction_percpu(&vm_completions, &bdi->completions,
 435				numerator, denominator);
 436}
 437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438/*
 439 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 440 * registered backing devices, which, for obvious reasons, can not
 441 * exceed 100%.
 442 */
 443static unsigned int bdi_min_ratio;
 444
 445int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 446{
 447	int ret = 0;
 448
 449	spin_lock_bh(&bdi_lock);
 450	if (min_ratio > bdi->max_ratio) {
 451		ret = -EINVAL;
 452	} else {
 453		min_ratio -= bdi->min_ratio;
 454		if (bdi_min_ratio + min_ratio < 100) {
 455			bdi_min_ratio += min_ratio;
 456			bdi->min_ratio += min_ratio;
 457		} else {
 458			ret = -EINVAL;
 459		}
 460	}
 461	spin_unlock_bh(&bdi_lock);
 462
 463	return ret;
 464}
 465
 466int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 467{
 468	int ret = 0;
 469
 470	if (max_ratio > 100)
 471		return -EINVAL;
 472
 473	spin_lock_bh(&bdi_lock);
 474	if (bdi->min_ratio > max_ratio) {
 475		ret = -EINVAL;
 476	} else {
 477		bdi->max_ratio = max_ratio;
 478		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 479	}
 480	spin_unlock_bh(&bdi_lock);
 481
 482	return ret;
 483}
 484EXPORT_SYMBOL(bdi_set_max_ratio);
 485
 486static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 487					   unsigned long bg_thresh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488{
 489	return (thresh + bg_thresh) / 2;
 
 
 
 
 
 
 
 490}
 491
 492static unsigned long hard_dirty_limit(unsigned long thresh)
 493{
 494	return max(thresh, global_dirty_limit);
 495}
 496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497/**
 498 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 499 * @bdi: the backing_dev_info to query
 500 * @dirty: global dirty limit in pages
 501 *
 502 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 503 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 504 *
 505 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 506 * when sleeping max_pause per page is not enough to keep the dirty pages under
 507 * control. For example, when the device is completely stalled due to some error
 508 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 509 * In the other normal situations, it acts more gently by throttling the tasks
 510 * more (rather than completely block them) when the bdi dirty pages go high.
 511 *
 512 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 513 * - starving fast devices
 514 * - piling up dirty pages (that will take long time to sync) on slow devices
 515 *
 516 * The bdi's share of dirty limit will be adapting to its throughput and
 517 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 518 */
 519unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 520{
 521	u64 bdi_dirty;
 522	long numerator, denominator;
 523
 524	/*
 525	 * Calculate this BDI's share of the dirty ratio.
 526	 */
 527	bdi_writeout_fraction(bdi, &numerator, &denominator);
 528
 529	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 530	bdi_dirty *= numerator;
 531	do_div(bdi_dirty, denominator);
 532
 533	bdi_dirty += (dirty * bdi->min_ratio) / 100;
 534	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 535		bdi_dirty = dirty * bdi->max_ratio / 100;
 536
 537	return bdi_dirty;
 538}
 539
 540/*
 541 * Dirty position control.
 542 *
 543 * (o) global/bdi setpoints
 544 *
 545 * We want the dirty pages be balanced around the global/bdi setpoints.
 546 * When the number of dirty pages is higher/lower than the setpoint, the
 547 * dirty position control ratio (and hence task dirty ratelimit) will be
 548 * decreased/increased to bring the dirty pages back to the setpoint.
 549 *
 550 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 551 *
 552 *     if (dirty < setpoint) scale up   pos_ratio
 553 *     if (dirty > setpoint) scale down pos_ratio
 554 *
 555 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 556 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 557 *
 558 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 559 *
 560 * (o) global control line
 561 *
 562 *     ^ pos_ratio
 563 *     |
 564 *     |            |<===== global dirty control scope ======>|
 565 * 2.0 .............*
 566 *     |            .*
 567 *     |            . *
 568 *     |            .   *
 569 *     |            .     *
 570 *     |            .        *
 571 *     |            .            *
 572 * 1.0 ................................*
 573 *     |            .                  .     *
 574 *     |            .                  .          *
 575 *     |            .                  .              *
 576 *     |            .                  .                 *
 577 *     |            .                  .                    *
 578 *   0 +------------.------------------.----------------------*------------->
 579 *           freerun^          setpoint^                 limit^   dirty pages
 580 *
 581 * (o) bdi control line
 582 *
 583 *     ^ pos_ratio
 584 *     |
 585 *     |            *
 586 *     |              *
 587 *     |                *
 588 *     |                  *
 589 *     |                    * |<=========== span ============>|
 590 * 1.0 .......................*
 591 *     |                      . *
 592 *     |                      .   *
 593 *     |                      .     *
 594 *     |                      .       *
 595 *     |                      .         *
 596 *     |                      .           *
 597 *     |                      .             *
 598 *     |                      .               *
 599 *     |                      .                 *
 600 *     |                      .                   *
 601 *     |                      .                     *
 602 * 1/4 ...............................................* * * * * * * * * * * *
 603 *     |                      .                         .
 604 *     |                      .                           .
 605 *     |                      .                             .
 606 *   0 +----------------------.-------------------------------.------------->
 607 *                bdi_setpoint^                    x_intercept^
 608 *
 609 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 610 * be smoothly throttled down to normal if it starts high in situations like
 611 * - start writing to a slow SD card and a fast disk at the same time. The SD
 612 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 613 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 614 */
 615static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
 616					unsigned long thresh,
 617					unsigned long bg_thresh,
 618					unsigned long dirty,
 619					unsigned long bdi_thresh,
 620					unsigned long bdi_dirty)
 621{
 622	unsigned long write_bw = bdi->avg_write_bandwidth;
 623	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 624	unsigned long limit = hard_dirty_limit(thresh);
 625	unsigned long x_intercept;
 626	unsigned long setpoint;		/* dirty pages' target balance point */
 627	unsigned long bdi_setpoint;
 628	unsigned long span;
 629	long long pos_ratio;		/* for scaling up/down the rate limit */
 630	long x;
 631
 632	if (unlikely(dirty >= limit))
 633		return 0;
 634
 635	/*
 636	 * global setpoint
 637	 *
 638	 *                           setpoint - dirty 3
 639	 *        f(dirty) := 1.0 + (----------------)
 640	 *                           limit - setpoint
 641	 *
 642	 * it's a 3rd order polynomial that subjects to
 643	 *
 644	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 645	 * (2) f(setpoint) = 1.0 => the balance point
 646	 * (3) f(limit)    = 0   => the hard limit
 647	 * (4) df/dx      <= 0	 => negative feedback control
 648	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 649	 *     => fast response on large errors; small oscillation near setpoint
 650	 */
 651	setpoint = (freerun + limit) / 2;
 652	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
 653		    limit - setpoint + 1);
 654	pos_ratio = x;
 655	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 656	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 657	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 658
 659	/*
 660	 * We have computed basic pos_ratio above based on global situation. If
 661	 * the bdi is over/under its share of dirty pages, we want to scale
 662	 * pos_ratio further down/up. That is done by the following mechanism.
 663	 */
 664
 665	/*
 666	 * bdi setpoint
 667	 *
 668	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
 669	 *
 670	 *                        x_intercept - bdi_dirty
 671	 *                     := --------------------------
 672	 *                        x_intercept - bdi_setpoint
 673	 *
 674	 * The main bdi control line is a linear function that subjects to
 675	 *
 676	 * (1) f(bdi_setpoint) = 1.0
 677	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
 678	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
 679	 *
 680	 * For single bdi case, the dirty pages are observed to fluctuate
 681	 * regularly within range
 682	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
 683	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 684	 * fluctuation range for pos_ratio.
 685	 *
 686	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
 687	 * own size, so move the slope over accordingly and choose a slope that
 688	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
 689	 */
 690	if (unlikely(bdi_thresh > thresh))
 691		bdi_thresh = thresh;
 692	/*
 693	 * It's very possible that bdi_thresh is close to 0 not because the
 694	 * device is slow, but that it has remained inactive for long time.
 695	 * Honour such devices a reasonable good (hopefully IO efficient)
 696	 * threshold, so that the occasional writes won't be blocked and active
 697	 * writes can rampup the threshold quickly.
 698	 */
 699	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
 700	/*
 701	 * scale global setpoint to bdi's:
 702	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
 703	 */
 704	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
 705	bdi_setpoint = setpoint * (u64)x >> 16;
 706	/*
 707	 * Use span=(8*write_bw) in single bdi case as indicated by
 708	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
 709	 *
 710	 *        bdi_thresh                    thresh - bdi_thresh
 711	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
 712	 *          thresh                            thresh
 713	 */
 714	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
 715	x_intercept = bdi_setpoint + span;
 716
 717	if (bdi_dirty < x_intercept - span / 4) {
 718		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
 719				    x_intercept - bdi_setpoint + 1);
 720	} else
 721		pos_ratio /= 4;
 722
 723	/*
 724	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
 725	 * It may push the desired control point of global dirty pages higher
 726	 * than setpoint.
 727	 */
 728	x_intercept = bdi_thresh / 2;
 729	if (bdi_dirty < x_intercept) {
 730		if (bdi_dirty > x_intercept / 8)
 731			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
 732		else
 733			pos_ratio *= 8;
 734	}
 735
 736	return pos_ratio;
 737}
 738
 739static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 740				       unsigned long elapsed,
 741				       unsigned long written)
 742{
 743	const unsigned long period = roundup_pow_of_two(3 * HZ);
 744	unsigned long avg = bdi->avg_write_bandwidth;
 745	unsigned long old = bdi->write_bandwidth;
 746	u64 bw;
 747
 748	/*
 749	 * bw = written * HZ / elapsed
 750	 *
 751	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 752	 * write_bandwidth = ---------------------------------------------------
 753	 *                                          period
 754	 */
 755	bw = written - bdi->written_stamp;
 756	bw *= HZ;
 757	if (unlikely(elapsed > period)) {
 758		do_div(bw, elapsed);
 759		avg = bw;
 760		goto out;
 761	}
 762	bw += (u64)bdi->write_bandwidth * (period - elapsed);
 763	bw >>= ilog2(period);
 764
 765	/*
 766	 * one more level of smoothing, for filtering out sudden spikes
 767	 */
 768	if (avg > old && old >= (unsigned long)bw)
 769		avg -= (avg - old) >> 3;
 770
 771	if (avg < old && old <= (unsigned long)bw)
 772		avg += (old - avg) >> 3;
 773
 774out:
 775	bdi->write_bandwidth = bw;
 776	bdi->avg_write_bandwidth = avg;
 777}
 778
 779/*
 780 * The global dirtyable memory and dirty threshold could be suddenly knocked
 781 * down by a large amount (eg. on the startup of KVM in a swapless system).
 782 * This may throw the system into deep dirty exceeded state and throttle
 783 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 784 * global_dirty_limit for tracking slowly down to the knocked down dirty
 785 * threshold.
 786 */
 787static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 788{
 789	unsigned long limit = global_dirty_limit;
 790
 791	/*
 792	 * Follow up in one step.
 793	 */
 794	if (limit < thresh) {
 795		limit = thresh;
 796		goto update;
 797	}
 798
 799	/*
 800	 * Follow down slowly. Use the higher one as the target, because thresh
 801	 * may drop below dirty. This is exactly the reason to introduce
 802	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
 803	 */
 804	thresh = max(thresh, dirty);
 805	if (limit > thresh) {
 806		limit -= (limit - thresh) >> 5;
 807		goto update;
 808	}
 809	return;
 810update:
 811	global_dirty_limit = limit;
 812}
 813
 814static void global_update_bandwidth(unsigned long thresh,
 815				    unsigned long dirty,
 816				    unsigned long now)
 817{
 818	static DEFINE_SPINLOCK(dirty_lock);
 819	static unsigned long update_time;
 820
 821	/*
 822	 * check locklessly first to optimize away locking for the most time
 823	 */
 824	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 825		return;
 826
 827	spin_lock(&dirty_lock);
 828	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 829		update_dirty_limit(thresh, dirty);
 830		update_time = now;
 831	}
 832	spin_unlock(&dirty_lock);
 833}
 834
 835/*
 836 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 837 *
 838 * Normal bdi tasks will be curbed at or below it in long term.
 839 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 840 */
 841static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
 842				       unsigned long thresh,
 843				       unsigned long bg_thresh,
 844				       unsigned long dirty,
 845				       unsigned long bdi_thresh,
 846				       unsigned long bdi_dirty,
 847				       unsigned long dirtied,
 848				       unsigned long elapsed)
 849{
 850	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 851	unsigned long limit = hard_dirty_limit(thresh);
 852	unsigned long setpoint = (freerun + limit) / 2;
 853	unsigned long write_bw = bdi->avg_write_bandwidth;
 854	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
 855	unsigned long dirty_rate;
 856	unsigned long task_ratelimit;
 857	unsigned long balanced_dirty_ratelimit;
 858	unsigned long pos_ratio;
 859	unsigned long step;
 860	unsigned long x;
 861
 862	/*
 863	 * The dirty rate will match the writeout rate in long term, except
 864	 * when dirty pages are truncated by userspace or re-dirtied by FS.
 865	 */
 866	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 867
 868	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
 869				       bdi_thresh, bdi_dirty);
 870	/*
 871	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 872	 */
 873	task_ratelimit = (u64)dirty_ratelimit *
 874					pos_ratio >> RATELIMIT_CALC_SHIFT;
 875	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 876
 877	/*
 878	 * A linear estimation of the "balanced" throttle rate. The theory is,
 879	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
 880	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
 881	 * formula will yield the balanced rate limit (write_bw / N).
 882	 *
 883	 * Note that the expanded form is not a pure rate feedback:
 884	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
 885	 * but also takes pos_ratio into account:
 886	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
 887	 *
 888	 * (1) is not realistic because pos_ratio also takes part in balancing
 889	 * the dirty rate.  Consider the state
 890	 *	pos_ratio = 0.5						     (3)
 891	 *	rate = 2 * (write_bw / N)				     (4)
 892	 * If (1) is used, it will stuck in that state! Because each dd will
 893	 * be throttled at
 894	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
 895	 * yielding
 896	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
 897	 * put (6) into (1) we get
 898	 *	rate_(i+1) = rate_(i)					     (7)
 899	 *
 900	 * So we end up using (2) to always keep
 901	 *	rate_(i+1) ~= (write_bw / N)				     (8)
 902	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
 903	 * pos_ratio is able to drive itself to 1.0, which is not only where
 904	 * the dirty count meet the setpoint, but also where the slope of
 905	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
 906	 */
 907	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
 908					   dirty_rate | 1);
 909	/*
 910	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
 911	 */
 912	if (unlikely(balanced_dirty_ratelimit > write_bw))
 913		balanced_dirty_ratelimit = write_bw;
 914
 915	/*
 916	 * We could safely do this and return immediately:
 917	 *
 918	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
 919	 *
 920	 * However to get a more stable dirty_ratelimit, the below elaborated
 921	 * code makes use of task_ratelimit to filter out sigular points and
 922	 * limit the step size.
 923	 *
 924	 * The below code essentially only uses the relative value of
 925	 *
 926	 *	task_ratelimit - dirty_ratelimit
 927	 *	= (pos_ratio - 1) * dirty_ratelimit
 928	 *
 929	 * which reflects the direction and size of dirty position error.
 930	 */
 931
 932	/*
 933	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
 934	 * task_ratelimit is on the same side of dirty_ratelimit, too.
 935	 * For example, when
 936	 * - dirty_ratelimit > balanced_dirty_ratelimit
 937	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
 938	 * lowering dirty_ratelimit will help meet both the position and rate
 939	 * control targets. Otherwise, don't update dirty_ratelimit if it will
 940	 * only help meet the rate target. After all, what the users ultimately
 941	 * feel and care are stable dirty rate and small position error.
 942	 *
 943	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
 944	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
 945	 * keeps jumping around randomly and can even leap far away at times
 946	 * due to the small 200ms estimation period of dirty_rate (we want to
 947	 * keep that period small to reduce time lags).
 948	 */
 949	step = 0;
 950	if (dirty < setpoint) {
 951		x = min(bdi->balanced_dirty_ratelimit,
 952			 min(balanced_dirty_ratelimit, task_ratelimit));
 953		if (dirty_ratelimit < x)
 954			step = x - dirty_ratelimit;
 955	} else {
 956		x = max(bdi->balanced_dirty_ratelimit,
 957			 max(balanced_dirty_ratelimit, task_ratelimit));
 958		if (dirty_ratelimit > x)
 959			step = dirty_ratelimit - x;
 960	}
 961
 962	/*
 963	 * Don't pursue 100% rate matching. It's impossible since the balanced
 964	 * rate itself is constantly fluctuating. So decrease the track speed
 965	 * when it gets close to the target. Helps eliminate pointless tremors.
 966	 */
 967	step >>= dirty_ratelimit / (2 * step + 1);
 968	/*
 969	 * Limit the tracking speed to avoid overshooting.
 970	 */
 971	step = (step + 7) / 8;
 972
 973	if (dirty_ratelimit < balanced_dirty_ratelimit)
 974		dirty_ratelimit += step;
 975	else
 976		dirty_ratelimit -= step;
 977
 978	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
 979	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
 980
 981	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
 982}
 983
 984void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 985			    unsigned long thresh,
 986			    unsigned long bg_thresh,
 987			    unsigned long dirty,
 988			    unsigned long bdi_thresh,
 989			    unsigned long bdi_dirty,
 990			    unsigned long start_time)
 991{
 992	unsigned long now = jiffies;
 993	unsigned long elapsed = now - bdi->bw_time_stamp;
 994	unsigned long dirtied;
 995	unsigned long written;
 996
 997	/*
 998	 * rate-limit, only update once every 200ms.
 999	 */
1000	if (elapsed < BANDWIDTH_INTERVAL)
1001		return;
1002
1003	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1004	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1005
1006	/*
1007	 * Skip quiet periods when disk bandwidth is under-utilized.
1008	 * (at least 1s idle time between two flusher runs)
1009	 */
1010	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1011		goto snapshot;
1012
1013	if (thresh) {
1014		global_update_bandwidth(thresh, dirty, now);
1015		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1016					   bdi_thresh, bdi_dirty,
1017					   dirtied, elapsed);
1018	}
1019	bdi_update_write_bandwidth(bdi, elapsed, written);
1020
1021snapshot:
1022	bdi->dirtied_stamp = dirtied;
1023	bdi->written_stamp = written;
1024	bdi->bw_time_stamp = now;
1025}
1026
1027static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1028				 unsigned long thresh,
1029				 unsigned long bg_thresh,
1030				 unsigned long dirty,
1031				 unsigned long bdi_thresh,
1032				 unsigned long bdi_dirty,
1033				 unsigned long start_time)
1034{
1035	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1036		return;
1037	spin_lock(&bdi->wb.list_lock);
1038	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1039			       bdi_thresh, bdi_dirty, start_time);
1040	spin_unlock(&bdi->wb.list_lock);
1041}
1042
1043/*
1044 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1045 * will look to see if it needs to start dirty throttling.
1046 *
1047 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1048 * global_page_state() too often. So scale it near-sqrt to the safety margin
1049 * (the number of pages we may dirty without exceeding the dirty limits).
1050 */
1051static unsigned long dirty_poll_interval(unsigned long dirty,
1052					 unsigned long thresh)
1053{
1054	if (thresh > dirty)
1055		return 1UL << (ilog2(thresh - dirty) >> 1);
1056
1057	return 1;
1058}
1059
1060static long bdi_max_pause(struct backing_dev_info *bdi,
1061			  unsigned long bdi_dirty)
1062{
1063	long bw = bdi->avg_write_bandwidth;
1064	long t;
1065
1066	/*
1067	 * Limit pause time for small memory systems. If sleeping for too long
1068	 * time, a small pool of dirty/writeback pages may go empty and disk go
1069	 * idle.
1070	 *
1071	 * 8 serves as the safety ratio.
1072	 */
1073	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1074	t++;
1075
1076	return min_t(long, t, MAX_PAUSE);
1077}
1078
1079static long bdi_min_pause(struct backing_dev_info *bdi,
1080			  long max_pause,
1081			  unsigned long task_ratelimit,
1082			  unsigned long dirty_ratelimit,
1083			  int *nr_dirtied_pause)
1084{
1085	long hi = ilog2(bdi->avg_write_bandwidth);
1086	long lo = ilog2(bdi->dirty_ratelimit);
1087	long t;		/* target pause */
1088	long pause;	/* estimated next pause */
1089	int pages;	/* target nr_dirtied_pause */
1090
1091	/* target for 10ms pause on 1-dd case */
1092	t = max(1, HZ / 100);
1093
1094	/*
1095	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1096	 * overheads.
1097	 *
1098	 * (N * 10ms) on 2^N concurrent tasks.
1099	 */
1100	if (hi > lo)
1101		t += (hi - lo) * (10 * HZ) / 1024;
1102
1103	/*
1104	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1105	 * on the much more stable dirty_ratelimit. However the next pause time
1106	 * will be computed based on task_ratelimit and the two rate limits may
1107	 * depart considerably at some time. Especially if task_ratelimit goes
1108	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1109	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1110	 * result task_ratelimit won't be executed faithfully, which could
1111	 * eventually bring down dirty_ratelimit.
1112	 *
1113	 * We apply two rules to fix it up:
1114	 * 1) try to estimate the next pause time and if necessary, use a lower
1115	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1116	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1117	 * 2) limit the target pause time to max_pause/2, so that the normal
1118	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1119	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1120	 */
1121	t = min(t, 1 + max_pause / 2);
1122	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1123
1124	/*
1125	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1126	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1127	 * When the 16 consecutive reads are often interrupted by some dirty
1128	 * throttling pause during the async writes, cfq will go into idles
1129	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1130	 * until reaches DIRTY_POLL_THRESH=32 pages.
1131	 */
1132	if (pages < DIRTY_POLL_THRESH) {
1133		t = max_pause;
1134		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1135		if (pages > DIRTY_POLL_THRESH) {
1136			pages = DIRTY_POLL_THRESH;
1137			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1138		}
1139	}
1140
1141	pause = HZ * pages / (task_ratelimit + 1);
1142	if (pause > max_pause) {
1143		t = max_pause;
1144		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1145	}
1146
1147	*nr_dirtied_pause = pages;
1148	/*
1149	 * The minimal pause time will normally be half the target pause time.
1150	 */
1151	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1152}
1153
1154/*
1155 * balance_dirty_pages() must be called by processes which are generating dirty
1156 * data.  It looks at the number of dirty pages in the machine and will force
1157 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1158 * If we're over `background_thresh' then the writeback threads are woken to
1159 * perform some writeout.
1160 */
1161static void balance_dirty_pages(struct address_space *mapping,
1162				unsigned long pages_dirtied)
1163{
1164	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1165	unsigned long bdi_reclaimable;
1166	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1167	unsigned long bdi_dirty;
1168	unsigned long freerun;
1169	unsigned long background_thresh;
1170	unsigned long dirty_thresh;
1171	unsigned long bdi_thresh;
1172	long period;
1173	long pause;
1174	long max_pause;
1175	long min_pause;
1176	int nr_dirtied_pause;
1177	bool dirty_exceeded = false;
1178	unsigned long task_ratelimit;
1179	unsigned long dirty_ratelimit;
1180	unsigned long pos_ratio;
1181	struct backing_dev_info *bdi = mapping->backing_dev_info;
1182	unsigned long start_time = jiffies;
1183
1184	for (;;) {
1185		unsigned long now = jiffies;
1186
1187		/*
1188		 * Unstable writes are a feature of certain networked
1189		 * filesystems (i.e. NFS) in which data may have been
1190		 * written to the server's write cache, but has not yet
1191		 * been flushed to permanent storage.
1192		 */
1193		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1194					global_page_state(NR_UNSTABLE_NFS);
1195		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1196
1197		global_dirty_limits(&background_thresh, &dirty_thresh);
1198
1199		/*
1200		 * Throttle it only when the background writeback cannot
1201		 * catch-up. This avoids (excessively) small writeouts
1202		 * when the bdi limits are ramping up.
1203		 */
1204		freerun = dirty_freerun_ceiling(dirty_thresh,
1205						background_thresh);
1206		if (nr_dirty <= freerun) {
1207			current->dirty_paused_when = now;
1208			current->nr_dirtied = 0;
1209			current->nr_dirtied_pause =
1210				dirty_poll_interval(nr_dirty, dirty_thresh);
1211			break;
1212		}
1213
1214		if (unlikely(!writeback_in_progress(bdi)))
1215			bdi_start_background_writeback(bdi);
1216
1217		/*
1218		 * bdi_thresh is not treated as some limiting factor as
1219		 * dirty_thresh, due to reasons
1220		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1221		 * - in a system with HDD and USB key, the USB key may somehow
1222		 *   go into state (bdi_dirty >> bdi_thresh) either because
1223		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1224		 *   In this case we don't want to hard throttle the USB key
1225		 *   dirtiers for 100 seconds until bdi_dirty drops under
1226		 *   bdi_thresh. Instead the auxiliary bdi control line in
1227		 *   bdi_position_ratio() will let the dirtier task progress
1228		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1229		 */
1230		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
 
 
1231
1232		/*
1233		 * In order to avoid the stacked BDI deadlock we need
1234		 * to ensure we accurately count the 'dirty' pages when
1235		 * the threshold is low.
1236		 *
1237		 * Otherwise it would be possible to get thresh+n pages
1238		 * reported dirty, even though there are thresh-m pages
1239		 * actually dirty; with m+n sitting in the percpu
1240		 * deltas.
1241		 */
1242		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1243			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1244			bdi_dirty = bdi_reclaimable +
1245				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1246		} else {
1247			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1248			bdi_dirty = bdi_reclaimable +
1249				    bdi_stat(bdi, BDI_WRITEBACK);
1250		}
1251
1252		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
 
 
 
 
 
 
1253				  (nr_dirty > dirty_thresh);
1254		if (dirty_exceeded && !bdi->dirty_exceeded)
 
 
 
 
 
 
1255			bdi->dirty_exceeded = 1;
1256
1257		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1258				     nr_dirty, bdi_thresh, bdi_dirty,
1259				     start_time);
1260
1261		dirty_ratelimit = bdi->dirty_ratelimit;
1262		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1263					       background_thresh, nr_dirty,
1264					       bdi_thresh, bdi_dirty);
1265		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1266							RATELIMIT_CALC_SHIFT;
1267		max_pause = bdi_max_pause(bdi, bdi_dirty);
1268		min_pause = bdi_min_pause(bdi, max_pause,
1269					  task_ratelimit, dirty_ratelimit,
1270					  &nr_dirtied_pause);
1271
1272		if (unlikely(task_ratelimit == 0)) {
1273			period = max_pause;
1274			pause = max_pause;
1275			goto pause;
1276		}
1277		period = HZ * pages_dirtied / task_ratelimit;
1278		pause = period;
1279		if (current->dirty_paused_when)
1280			pause -= now - current->dirty_paused_when;
1281		/*
1282		 * For less than 1s think time (ext3/4 may block the dirtier
1283		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1284		 * however at much less frequency), try to compensate it in
1285		 * future periods by updating the virtual time; otherwise just
1286		 * do a reset, as it may be a light dirtier.
1287		 */
1288		if (pause < min_pause) {
1289			trace_balance_dirty_pages(bdi,
1290						  dirty_thresh,
1291						  background_thresh,
1292						  nr_dirty,
1293						  bdi_thresh,
1294						  bdi_dirty,
1295						  dirty_ratelimit,
1296						  task_ratelimit,
1297						  pages_dirtied,
1298						  period,
1299						  min(pause, 0L),
1300						  start_time);
1301			if (pause < -HZ) {
1302				current->dirty_paused_when = now;
1303				current->nr_dirtied = 0;
1304			} else if (period) {
1305				current->dirty_paused_when += period;
1306				current->nr_dirtied = 0;
1307			} else if (current->nr_dirtied_pause <= pages_dirtied)
1308				current->nr_dirtied_pause += pages_dirtied;
1309			break;
1310		}
1311		if (unlikely(pause > max_pause)) {
1312			/* for occasional dropped task_ratelimit */
1313			now += min(pause - max_pause, max_pause);
1314			pause = max_pause;
1315		}
1316
1317pause:
1318		trace_balance_dirty_pages(bdi,
1319					  dirty_thresh,
1320					  background_thresh,
1321					  nr_dirty,
1322					  bdi_thresh,
1323					  bdi_dirty,
1324					  dirty_ratelimit,
1325					  task_ratelimit,
1326					  pages_dirtied,
1327					  period,
1328					  pause,
1329					  start_time);
1330		__set_current_state(TASK_KILLABLE);
1331		io_schedule_timeout(pause);
 
1332
1333		current->dirty_paused_when = now + pause;
1334		current->nr_dirtied = 0;
1335		current->nr_dirtied_pause = nr_dirtied_pause;
1336
1337		/*
1338		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1339		 * also keep "1000+ dd on a slow USB stick" under control.
 
 
1340		 */
1341		if (task_ratelimit)
 
 
1342			break;
1343
1344		/*
1345		 * In the case of an unresponding NFS server and the NFS dirty
1346		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1347		 * to go through, so that tasks on them still remain responsive.
1348		 *
1349		 * In theory 1 page is enough to keep the comsumer-producer
1350		 * pipe going: the flusher cleans 1 page => the task dirties 1
1351		 * more page. However bdi_dirty has accounting errors.  So use
1352		 * the larger and more IO friendly bdi_stat_error.
1353		 */
1354		if (bdi_dirty <= bdi_stat_error(bdi))
1355			break;
1356
1357		if (fatal_signal_pending(current))
1358			break;
1359	}
1360
1361	if (!dirty_exceeded && bdi->dirty_exceeded)
 
1362		bdi->dirty_exceeded = 0;
1363
1364	if (writeback_in_progress(bdi))
1365		return;
1366
1367	/*
1368	 * In laptop mode, we wait until hitting the higher threshold before
1369	 * starting background writeout, and then write out all the way down
1370	 * to the lower threshold.  So slow writers cause minimal disk activity.
1371	 *
1372	 * In normal mode, we start background writeout at the lower
1373	 * background_thresh, to keep the amount of dirty memory low.
1374	 */
1375	if (laptop_mode)
1376		return;
1377
1378	if (nr_reclaimable > background_thresh)
1379		bdi_start_background_writeback(bdi);
1380}
1381
1382void set_page_dirty_balance(struct page *page, int page_mkwrite)
1383{
1384	if (set_page_dirty(page) || page_mkwrite) {
1385		struct address_space *mapping = page_mapping(page);
1386
1387		if (mapping)
1388			balance_dirty_pages_ratelimited(mapping);
1389	}
1390}
1391
1392static DEFINE_PER_CPU(int, bdp_ratelimits);
1393
1394/*
1395 * Normal tasks are throttled by
1396 *	loop {
1397 *		dirty tsk->nr_dirtied_pause pages;
1398 *		take a snap in balance_dirty_pages();
1399 *	}
1400 * However there is a worst case. If every task exit immediately when dirtied
1401 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1402 * called to throttle the page dirties. The solution is to save the not yet
1403 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1404 * randomly into the running tasks. This works well for the above worst case,
1405 * as the new task will pick up and accumulate the old task's leaked dirty
1406 * count and eventually get throttled.
1407 */
1408DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1409
1410/**
1411 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1412 * @mapping: address_space which was dirtied
1413 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1414 *
1415 * Processes which are dirtying memory should call in here once for each page
1416 * which was newly dirtied.  The function will periodically check the system's
1417 * dirty state and will initiate writeback if needed.
1418 *
1419 * On really big machines, get_writeback_state is expensive, so try to avoid
1420 * calling it too often (ratelimiting).  But once we're over the dirty memory
1421 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1422 * from overshooting the limit by (ratelimit_pages) each.
1423 */
1424void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1425					unsigned long nr_pages_dirtied)
1426{
1427	struct backing_dev_info *bdi = mapping->backing_dev_info;
1428	int ratelimit;
1429	int *p;
1430
1431	if (!bdi_cap_account_dirty(bdi))
1432		return;
1433
1434	ratelimit = current->nr_dirtied_pause;
1435	if (bdi->dirty_exceeded)
1436		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1437
1438	preempt_disable();
1439	/*
1440	 * This prevents one CPU to accumulate too many dirtied pages without
1441	 * calling into balance_dirty_pages(), which can happen when there are
1442	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1443	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1444	 */
 
1445	p =  &__get_cpu_var(bdp_ratelimits);
1446	if (unlikely(current->nr_dirtied >= ratelimit))
 
 
1447		*p = 0;
1448	else if (unlikely(*p >= ratelimit_pages)) {
1449		*p = 0;
1450		ratelimit = 0;
1451	}
1452	/*
1453	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1454	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1455	 * the dirty throttling and livelock other long-run dirtiers.
1456	 */
1457	p = &__get_cpu_var(dirty_throttle_leaks);
1458	if (*p > 0 && current->nr_dirtied < ratelimit) {
1459		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1460		*p -= nr_pages_dirtied;
1461		current->nr_dirtied += nr_pages_dirtied;
1462	}
1463	preempt_enable();
1464
1465	if (unlikely(current->nr_dirtied >= ratelimit))
1466		balance_dirty_pages(mapping, current->nr_dirtied);
1467}
1468EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1469
1470void throttle_vm_writeout(gfp_t gfp_mask)
1471{
1472	unsigned long background_thresh;
1473	unsigned long dirty_thresh;
1474
1475        for ( ; ; ) {
1476		global_dirty_limits(&background_thresh, &dirty_thresh);
1477		dirty_thresh = hard_dirty_limit(dirty_thresh);
1478
1479                /*
1480                 * Boost the allowable dirty threshold a bit for page
1481                 * allocators so they don't get DoS'ed by heavy writers
1482                 */
1483                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1484
1485                if (global_page_state(NR_UNSTABLE_NFS) +
1486			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1487                        	break;
1488                congestion_wait(BLK_RW_ASYNC, HZ/10);
1489
1490		/*
1491		 * The caller might hold locks which can prevent IO completion
1492		 * or progress in the filesystem.  So we cannot just sit here
1493		 * waiting for IO to complete.
1494		 */
1495		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1496			break;
1497        }
1498}
1499
1500/*
1501 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1502 */
1503int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1504	void __user *buffer, size_t *length, loff_t *ppos)
1505{
1506	proc_dointvec(table, write, buffer, length, ppos);
1507	bdi_arm_supers_timer();
1508	return 0;
1509}
1510
1511#ifdef CONFIG_BLOCK
1512void laptop_mode_timer_fn(unsigned long data)
1513{
1514	struct request_queue *q = (struct request_queue *)data;
1515	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1516		global_page_state(NR_UNSTABLE_NFS);
1517
1518	/*
1519	 * We want to write everything out, not just down to the dirty
1520	 * threshold
1521	 */
1522	if (bdi_has_dirty_io(&q->backing_dev_info))
1523		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1524					WB_REASON_LAPTOP_TIMER);
1525}
1526
1527/*
1528 * We've spun up the disk and we're in laptop mode: schedule writeback
1529 * of all dirty data a few seconds from now.  If the flush is already scheduled
1530 * then push it back - the user is still using the disk.
1531 */
1532void laptop_io_completion(struct backing_dev_info *info)
1533{
1534	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1535}
1536
1537/*
1538 * We're in laptop mode and we've just synced. The sync's writes will have
1539 * caused another writeback to be scheduled by laptop_io_completion.
1540 * Nothing needs to be written back anymore, so we unschedule the writeback.
1541 */
1542void laptop_sync_completion(void)
1543{
1544	struct backing_dev_info *bdi;
1545
1546	rcu_read_lock();
1547
1548	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1549		del_timer(&bdi->laptop_mode_wb_timer);
1550
1551	rcu_read_unlock();
1552}
1553#endif
1554
1555/*
1556 * If ratelimit_pages is too high then we can get into dirty-data overload
1557 * if a large number of processes all perform writes at the same time.
1558 * If it is too low then SMP machines will call the (expensive)
1559 * get_writeback_state too often.
1560 *
1561 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1562 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1563 * thresholds.
 
 
 
 
 
 
1564 */
1565
1566void writeback_set_ratelimit(void)
1567{
1568	unsigned long background_thresh;
1569	unsigned long dirty_thresh;
1570	global_dirty_limits(&background_thresh, &dirty_thresh);
1571	global_dirty_limit = dirty_thresh;
1572	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1573	if (ratelimit_pages < 16)
1574		ratelimit_pages = 16;
 
 
1575}
1576
1577static int __cpuinit
1578ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1579{
1580	writeback_set_ratelimit();
1581	return NOTIFY_DONE;
1582}
1583
1584static struct notifier_block __cpuinitdata ratelimit_nb = {
1585	.notifier_call	= ratelimit_handler,
1586	.next		= NULL,
1587};
1588
1589/*
1590 * Called early on to tune the page writeback dirty limits.
1591 *
1592 * We used to scale dirty pages according to how total memory
1593 * related to pages that could be allocated for buffers (by
1594 * comparing nr_free_buffer_pages() to vm_total_pages.
1595 *
1596 * However, that was when we used "dirty_ratio" to scale with
1597 * all memory, and we don't do that any more. "dirty_ratio"
1598 * is now applied to total non-HIGHPAGE memory (by subtracting
1599 * totalhigh_pages from vm_total_pages), and as such we can't
1600 * get into the old insane situation any more where we had
1601 * large amounts of dirty pages compared to a small amount of
1602 * non-HIGHMEM memory.
1603 *
1604 * But we might still want to scale the dirty_ratio by how
1605 * much memory the box has..
1606 */
1607void __init page_writeback_init(void)
1608{
1609	int shift;
1610
1611	writeback_set_ratelimit();
1612	register_cpu_notifier(&ratelimit_nb);
1613
1614	shift = calc_period_shift();
1615	prop_descriptor_init(&vm_completions, shift);
 
1616}
1617
1618/**
1619 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1620 * @mapping: address space structure to write
1621 * @start: starting page index
1622 * @end: ending page index (inclusive)
1623 *
1624 * This function scans the page range from @start to @end (inclusive) and tags
1625 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1626 * that write_cache_pages (or whoever calls this function) will then use
1627 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1628 * used to avoid livelocking of writeback by a process steadily creating new
1629 * dirty pages in the file (thus it is important for this function to be quick
1630 * so that it can tag pages faster than a dirtying process can create them).
1631 */
1632/*
1633 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1634 */
1635void tag_pages_for_writeback(struct address_space *mapping,
1636			     pgoff_t start, pgoff_t end)
1637{
1638#define WRITEBACK_TAG_BATCH 4096
1639	unsigned long tagged;
1640
1641	do {
1642		spin_lock_irq(&mapping->tree_lock);
1643		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1644				&start, end, WRITEBACK_TAG_BATCH,
1645				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1646		spin_unlock_irq(&mapping->tree_lock);
1647		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1648		cond_resched();
1649		/* We check 'start' to handle wrapping when end == ~0UL */
1650	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1651}
1652EXPORT_SYMBOL(tag_pages_for_writeback);
1653
1654/**
1655 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1656 * @mapping: address space structure to write
1657 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1658 * @writepage: function called for each page
1659 * @data: data passed to writepage function
1660 *
1661 * If a page is already under I/O, write_cache_pages() skips it, even
1662 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1663 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1664 * and msync() need to guarantee that all the data which was dirty at the time
1665 * the call was made get new I/O started against them.  If wbc->sync_mode is
1666 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1667 * existing IO to complete.
1668 *
1669 * To avoid livelocks (when other process dirties new pages), we first tag
1670 * pages which should be written back with TOWRITE tag and only then start
1671 * writing them. For data-integrity sync we have to be careful so that we do
1672 * not miss some pages (e.g., because some other process has cleared TOWRITE
1673 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1674 * by the process clearing the DIRTY tag (and submitting the page for IO).
1675 */
1676int write_cache_pages(struct address_space *mapping,
1677		      struct writeback_control *wbc, writepage_t writepage,
1678		      void *data)
1679{
1680	int ret = 0;
1681	int done = 0;
1682	struct pagevec pvec;
1683	int nr_pages;
1684	pgoff_t uninitialized_var(writeback_index);
1685	pgoff_t index;
1686	pgoff_t end;		/* Inclusive */
1687	pgoff_t done_index;
1688	int cycled;
1689	int range_whole = 0;
1690	int tag;
1691
1692	pagevec_init(&pvec, 0);
1693	if (wbc->range_cyclic) {
1694		writeback_index = mapping->writeback_index; /* prev offset */
1695		index = writeback_index;
1696		if (index == 0)
1697			cycled = 1;
1698		else
1699			cycled = 0;
1700		end = -1;
1701	} else {
1702		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1703		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1704		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1705			range_whole = 1;
1706		cycled = 1; /* ignore range_cyclic tests */
1707	}
1708	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1709		tag = PAGECACHE_TAG_TOWRITE;
1710	else
1711		tag = PAGECACHE_TAG_DIRTY;
1712retry:
1713	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1714		tag_pages_for_writeback(mapping, index, end);
1715	done_index = index;
1716	while (!done && (index <= end)) {
1717		int i;
1718
1719		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1720			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1721		if (nr_pages == 0)
1722			break;
1723
1724		for (i = 0; i < nr_pages; i++) {
1725			struct page *page = pvec.pages[i];
1726
1727			/*
1728			 * At this point, the page may be truncated or
1729			 * invalidated (changing page->mapping to NULL), or
1730			 * even swizzled back from swapper_space to tmpfs file
1731			 * mapping. However, page->index will not change
1732			 * because we have a reference on the page.
1733			 */
1734			if (page->index > end) {
1735				/*
1736				 * can't be range_cyclic (1st pass) because
1737				 * end == -1 in that case.
1738				 */
1739				done = 1;
1740				break;
1741			}
1742
1743			done_index = page->index;
1744
1745			lock_page(page);
1746
1747			/*
1748			 * Page truncated or invalidated. We can freely skip it
1749			 * then, even for data integrity operations: the page
1750			 * has disappeared concurrently, so there could be no
1751			 * real expectation of this data interity operation
1752			 * even if there is now a new, dirty page at the same
1753			 * pagecache address.
1754			 */
1755			if (unlikely(page->mapping != mapping)) {
1756continue_unlock:
1757				unlock_page(page);
1758				continue;
1759			}
1760
1761			if (!PageDirty(page)) {
1762				/* someone wrote it for us */
1763				goto continue_unlock;
1764			}
1765
1766			if (PageWriteback(page)) {
1767				if (wbc->sync_mode != WB_SYNC_NONE)
1768					wait_on_page_writeback(page);
1769				else
1770					goto continue_unlock;
1771			}
1772
1773			BUG_ON(PageWriteback(page));
1774			if (!clear_page_dirty_for_io(page))
1775				goto continue_unlock;
1776
1777			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1778			ret = (*writepage)(page, wbc, data);
1779			if (unlikely(ret)) {
1780				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1781					unlock_page(page);
1782					ret = 0;
1783				} else {
1784					/*
1785					 * done_index is set past this page,
1786					 * so media errors will not choke
1787					 * background writeout for the entire
1788					 * file. This has consequences for
1789					 * range_cyclic semantics (ie. it may
1790					 * not be suitable for data integrity
1791					 * writeout).
1792					 */
1793					done_index = page->index + 1;
1794					done = 1;
1795					break;
1796				}
1797			}
1798
1799			/*
1800			 * We stop writing back only if we are not doing
1801			 * integrity sync. In case of integrity sync we have to
1802			 * keep going until we have written all the pages
1803			 * we tagged for writeback prior to entering this loop.
1804			 */
1805			if (--wbc->nr_to_write <= 0 &&
1806			    wbc->sync_mode == WB_SYNC_NONE) {
1807				done = 1;
1808				break;
1809			}
1810		}
1811		pagevec_release(&pvec);
1812		cond_resched();
1813	}
1814	if (!cycled && !done) {
1815		/*
1816		 * range_cyclic:
1817		 * We hit the last page and there is more work to be done: wrap
1818		 * back to the start of the file
1819		 */
1820		cycled = 1;
1821		index = 0;
1822		end = writeback_index - 1;
1823		goto retry;
1824	}
1825	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1826		mapping->writeback_index = done_index;
1827
1828	return ret;
1829}
1830EXPORT_SYMBOL(write_cache_pages);
1831
1832/*
1833 * Function used by generic_writepages to call the real writepage
1834 * function and set the mapping flags on error
1835 */
1836static int __writepage(struct page *page, struct writeback_control *wbc,
1837		       void *data)
1838{
1839	struct address_space *mapping = data;
1840	int ret = mapping->a_ops->writepage(page, wbc);
1841	mapping_set_error(mapping, ret);
1842	return ret;
1843}
1844
1845/**
1846 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1849 *
1850 * This is a library function, which implements the writepages()
1851 * address_space_operation.
1852 */
1853int generic_writepages(struct address_space *mapping,
1854		       struct writeback_control *wbc)
1855{
1856	struct blk_plug plug;
1857	int ret;
1858
1859	/* deal with chardevs and other special file */
1860	if (!mapping->a_ops->writepage)
1861		return 0;
1862
1863	blk_start_plug(&plug);
1864	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1865	blk_finish_plug(&plug);
1866	return ret;
1867}
1868
1869EXPORT_SYMBOL(generic_writepages);
1870
1871int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1872{
1873	int ret;
1874
1875	if (wbc->nr_to_write <= 0)
1876		return 0;
1877	if (mapping->a_ops->writepages)
1878		ret = mapping->a_ops->writepages(mapping, wbc);
1879	else
1880		ret = generic_writepages(mapping, wbc);
1881	return ret;
1882}
1883
1884/**
1885 * write_one_page - write out a single page and optionally wait on I/O
1886 * @page: the page to write
1887 * @wait: if true, wait on writeout
1888 *
1889 * The page must be locked by the caller and will be unlocked upon return.
1890 *
1891 * write_one_page() returns a negative error code if I/O failed.
1892 */
1893int write_one_page(struct page *page, int wait)
1894{
1895	struct address_space *mapping = page->mapping;
1896	int ret = 0;
1897	struct writeback_control wbc = {
1898		.sync_mode = WB_SYNC_ALL,
1899		.nr_to_write = 1,
1900	};
1901
1902	BUG_ON(!PageLocked(page));
1903
1904	if (wait)
1905		wait_on_page_writeback(page);
1906
1907	if (clear_page_dirty_for_io(page)) {
1908		page_cache_get(page);
1909		ret = mapping->a_ops->writepage(page, &wbc);
1910		if (ret == 0 && wait) {
1911			wait_on_page_writeback(page);
1912			if (PageError(page))
1913				ret = -EIO;
1914		}
1915		page_cache_release(page);
1916	} else {
1917		unlock_page(page);
1918	}
1919	return ret;
1920}
1921EXPORT_SYMBOL(write_one_page);
1922
1923/*
1924 * For address_spaces which do not use buffers nor write back.
1925 */
1926int __set_page_dirty_no_writeback(struct page *page)
1927{
1928	if (!PageDirty(page))
1929		return !TestSetPageDirty(page);
1930	return 0;
1931}
1932
1933/*
1934 * Helper function for set_page_dirty family.
1935 * NOTE: This relies on being atomic wrt interrupts.
1936 */
1937void account_page_dirtied(struct page *page, struct address_space *mapping)
1938{
1939	if (mapping_cap_account_dirty(mapping)) {
1940		__inc_zone_page_state(page, NR_FILE_DIRTY);
1941		__inc_zone_page_state(page, NR_DIRTIED);
1942		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1943		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1944		task_io_account_write(PAGE_CACHE_SIZE);
1945		current->nr_dirtied++;
1946		this_cpu_inc(bdp_ratelimits);
1947	}
1948}
1949EXPORT_SYMBOL(account_page_dirtied);
1950
1951/*
1952 * Helper function for set_page_writeback family.
1953 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1954 * wrt interrupts.
1955 */
1956void account_page_writeback(struct page *page)
1957{
1958	inc_zone_page_state(page, NR_WRITEBACK);
1959}
1960EXPORT_SYMBOL(account_page_writeback);
1961
1962/*
1963 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1964 * its radix tree.
1965 *
1966 * This is also used when a single buffer is being dirtied: we want to set the
1967 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1968 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1969 *
1970 * Most callers have locked the page, which pins the address_space in memory.
1971 * But zap_pte_range() does not lock the page, however in that case the
1972 * mapping is pinned by the vma's ->vm_file reference.
1973 *
1974 * We take care to handle the case where the page was truncated from the
1975 * mapping by re-checking page_mapping() inside tree_lock.
1976 */
1977int __set_page_dirty_nobuffers(struct page *page)
1978{
1979	if (!TestSetPageDirty(page)) {
1980		struct address_space *mapping = page_mapping(page);
1981		struct address_space *mapping2;
1982
1983		if (!mapping)
1984			return 1;
1985
1986		spin_lock_irq(&mapping->tree_lock);
1987		mapping2 = page_mapping(page);
1988		if (mapping2) { /* Race with truncate? */
1989			BUG_ON(mapping2 != mapping);
1990			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1991			account_page_dirtied(page, mapping);
1992			radix_tree_tag_set(&mapping->page_tree,
1993				page_index(page), PAGECACHE_TAG_DIRTY);
1994		}
1995		spin_unlock_irq(&mapping->tree_lock);
1996		if (mapping->host) {
1997			/* !PageAnon && !swapper_space */
1998			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1999		}
2000		return 1;
2001	}
2002	return 0;
2003}
2004EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2005
2006/*
2007 * Call this whenever redirtying a page, to de-account the dirty counters
2008 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2009 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2010 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2011 * control.
2012 */
2013void account_page_redirty(struct page *page)
2014{
2015	struct address_space *mapping = page->mapping;
2016	if (mapping && mapping_cap_account_dirty(mapping)) {
2017		current->nr_dirtied--;
2018		dec_zone_page_state(page, NR_DIRTIED);
2019		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2020	}
2021}
2022EXPORT_SYMBOL(account_page_redirty);
2023
2024/*
2025 * When a writepage implementation decides that it doesn't want to write this
2026 * page for some reason, it should redirty the locked page via
2027 * redirty_page_for_writepage() and it should then unlock the page and return 0
2028 */
2029int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2030{
2031	wbc->pages_skipped++;
2032	account_page_redirty(page);
2033	return __set_page_dirty_nobuffers(page);
2034}
2035EXPORT_SYMBOL(redirty_page_for_writepage);
2036
2037/*
2038 * Dirty a page.
2039 *
2040 * For pages with a mapping this should be done under the page lock
2041 * for the benefit of asynchronous memory errors who prefer a consistent
2042 * dirty state. This rule can be broken in some special cases,
2043 * but should be better not to.
2044 *
2045 * If the mapping doesn't provide a set_page_dirty a_op, then
2046 * just fall through and assume that it wants buffer_heads.
2047 */
2048int set_page_dirty(struct page *page)
2049{
2050	struct address_space *mapping = page_mapping(page);
2051
2052	if (likely(mapping)) {
2053		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2054		/*
2055		 * readahead/lru_deactivate_page could remain
2056		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2057		 * About readahead, if the page is written, the flags would be
2058		 * reset. So no problem.
2059		 * About lru_deactivate_page, if the page is redirty, the flag
2060		 * will be reset. So no problem. but if the page is used by readahead
2061		 * it will confuse readahead and make it restart the size rampup
2062		 * process. But it's a trivial problem.
2063		 */
2064		ClearPageReclaim(page);
2065#ifdef CONFIG_BLOCK
2066		if (!spd)
2067			spd = __set_page_dirty_buffers;
2068#endif
2069		return (*spd)(page);
2070	}
2071	if (!PageDirty(page)) {
2072		if (!TestSetPageDirty(page))
2073			return 1;
2074	}
2075	return 0;
2076}
2077EXPORT_SYMBOL(set_page_dirty);
2078
2079/*
2080 * set_page_dirty() is racy if the caller has no reference against
2081 * page->mapping->host, and if the page is unlocked.  This is because another
2082 * CPU could truncate the page off the mapping and then free the mapping.
2083 *
2084 * Usually, the page _is_ locked, or the caller is a user-space process which
2085 * holds a reference on the inode by having an open file.
2086 *
2087 * In other cases, the page should be locked before running set_page_dirty().
2088 */
2089int set_page_dirty_lock(struct page *page)
2090{
2091	int ret;
2092
2093	lock_page(page);
2094	ret = set_page_dirty(page);
2095	unlock_page(page);
2096	return ret;
2097}
2098EXPORT_SYMBOL(set_page_dirty_lock);
2099
2100/*
2101 * Clear a page's dirty flag, while caring for dirty memory accounting.
2102 * Returns true if the page was previously dirty.
2103 *
2104 * This is for preparing to put the page under writeout.  We leave the page
2105 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2106 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2107 * implementation will run either set_page_writeback() or set_page_dirty(),
2108 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2109 * back into sync.
2110 *
2111 * This incoherency between the page's dirty flag and radix-tree tag is
2112 * unfortunate, but it only exists while the page is locked.
2113 */
2114int clear_page_dirty_for_io(struct page *page)
2115{
2116	struct address_space *mapping = page_mapping(page);
2117
2118	BUG_ON(!PageLocked(page));
2119
2120	if (mapping && mapping_cap_account_dirty(mapping)) {
2121		/*
2122		 * Yes, Virginia, this is indeed insane.
2123		 *
2124		 * We use this sequence to make sure that
2125		 *  (a) we account for dirty stats properly
2126		 *  (b) we tell the low-level filesystem to
2127		 *      mark the whole page dirty if it was
2128		 *      dirty in a pagetable. Only to then
2129		 *  (c) clean the page again and return 1 to
2130		 *      cause the writeback.
2131		 *
2132		 * This way we avoid all nasty races with the
2133		 * dirty bit in multiple places and clearing
2134		 * them concurrently from different threads.
2135		 *
2136		 * Note! Normally the "set_page_dirty(page)"
2137		 * has no effect on the actual dirty bit - since
2138		 * that will already usually be set. But we
2139		 * need the side effects, and it can help us
2140		 * avoid races.
2141		 *
2142		 * We basically use the page "master dirty bit"
2143		 * as a serialization point for all the different
2144		 * threads doing their things.
2145		 */
2146		if (page_mkclean(page))
2147			set_page_dirty(page);
2148		/*
2149		 * We carefully synchronise fault handlers against
2150		 * installing a dirty pte and marking the page dirty
2151		 * at this point. We do this by having them hold the
2152		 * page lock at some point after installing their
2153		 * pte, but before marking the page dirty.
2154		 * Pages are always locked coming in here, so we get
2155		 * the desired exclusion. See mm/memory.c:do_wp_page()
2156		 * for more comments.
2157		 */
2158		if (TestClearPageDirty(page)) {
2159			dec_zone_page_state(page, NR_FILE_DIRTY);
2160			dec_bdi_stat(mapping->backing_dev_info,
2161					BDI_RECLAIMABLE);
2162			return 1;
2163		}
2164		return 0;
2165	}
2166	return TestClearPageDirty(page);
2167}
2168EXPORT_SYMBOL(clear_page_dirty_for_io);
2169
2170int test_clear_page_writeback(struct page *page)
2171{
2172	struct address_space *mapping = page_mapping(page);
2173	int ret;
2174
2175	if (mapping) {
2176		struct backing_dev_info *bdi = mapping->backing_dev_info;
2177		unsigned long flags;
2178
2179		spin_lock_irqsave(&mapping->tree_lock, flags);
2180		ret = TestClearPageWriteback(page);
2181		if (ret) {
2182			radix_tree_tag_clear(&mapping->page_tree,
2183						page_index(page),
2184						PAGECACHE_TAG_WRITEBACK);
2185			if (bdi_cap_account_writeback(bdi)) {
2186				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2187				__bdi_writeout_inc(bdi);
2188			}
2189		}
2190		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2191	} else {
2192		ret = TestClearPageWriteback(page);
2193	}
2194	if (ret) {
2195		dec_zone_page_state(page, NR_WRITEBACK);
2196		inc_zone_page_state(page, NR_WRITTEN);
2197	}
2198	return ret;
2199}
2200
2201int test_set_page_writeback(struct page *page)
2202{
2203	struct address_space *mapping = page_mapping(page);
2204	int ret;
2205
2206	if (mapping) {
2207		struct backing_dev_info *bdi = mapping->backing_dev_info;
2208		unsigned long flags;
2209
2210		spin_lock_irqsave(&mapping->tree_lock, flags);
2211		ret = TestSetPageWriteback(page);
2212		if (!ret) {
2213			radix_tree_tag_set(&mapping->page_tree,
2214						page_index(page),
2215						PAGECACHE_TAG_WRITEBACK);
2216			if (bdi_cap_account_writeback(bdi))
2217				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2218		}
2219		if (!PageDirty(page))
2220			radix_tree_tag_clear(&mapping->page_tree,
2221						page_index(page),
2222						PAGECACHE_TAG_DIRTY);
2223		radix_tree_tag_clear(&mapping->page_tree,
2224				     page_index(page),
2225				     PAGECACHE_TAG_TOWRITE);
2226		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2227	} else {
2228		ret = TestSetPageWriteback(page);
2229	}
2230	if (!ret)
2231		account_page_writeback(page);
2232	return ret;
2233
2234}
2235EXPORT_SYMBOL(test_set_page_writeback);
2236
2237/*
2238 * Return true if any of the pages in the mapping are marked with the
2239 * passed tag.
2240 */
2241int mapping_tagged(struct address_space *mapping, int tag)
2242{
2243	return radix_tree_tagged(&mapping->page_tree, tag);
2244}
2245EXPORT_SYMBOL(mapping_tagged);