Linux Audio

Check our new training course

Loading...
v3.1
 
  1#ifndef __NET_SCHED_RED_H
  2#define __NET_SCHED_RED_H
  3
  4#include <linux/types.h>
 
  5#include <net/pkt_sched.h>
  6#include <net/inet_ecn.h>
  7#include <net/dsfield.h>
 
  8
  9/*	Random Early Detection (RED) algorithm.
 10	=======================================
 11
 12	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
 13	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
 14
 15	This file codes a "divisionless" version of RED algorithm
 16	as written down in Fig.17 of the paper.
 17
 18	Short description.
 19	------------------
 20
 21	When a new packet arrives we calculate the average queue length:
 22
 23	avg = (1-W)*avg + W*current_queue_len,
 24
 25	W is the filter time constant (chosen as 2^(-Wlog)), it controls
 26	the inertia of the algorithm. To allow larger bursts, W should be
 27	decreased.
 28
 29	if (avg > th_max) -> packet marked (dropped).
 30	if (avg < th_min) -> packet passes.
 31	if (th_min < avg < th_max) we calculate probability:
 32
 33	Pb = max_P * (avg - th_min)/(th_max-th_min)
 34
 35	and mark (drop) packet with this probability.
 36	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
 37	max_P should be small (not 1), usually 0.01..0.02 is good value.
 38
 39	max_P is chosen as a number, so that max_P/(th_max-th_min)
 40	is a negative power of two in order arithmetics to contain
 41	only shifts.
 42
 43
 44	Parameters, settable by user:
 45	-----------------------------
 46
 47	qth_min		- bytes (should be < qth_max/2)
 48	qth_max		- bytes (should be at least 2*qth_min and less limit)
 49	Wlog	       	- bits (<32) log(1/W).
 50	Plog	       	- bits (<32)
 51
 52	Plog is related to max_P by formula:
 53
 54	max_P = (qth_max-qth_min)/2^Plog;
 55
 56	F.e. if qth_max=128K and qth_min=32K, then Plog=22
 57	corresponds to max_P=0.02
 58
 59	Scell_log
 60	Stab
 61
 62	Lookup table for log((1-W)^(t/t_ave).
 63
 64
 65	NOTES:
 66
 67	Upper bound on W.
 68	-----------------
 69
 70	If you want to allow bursts of L packets of size S,
 71	you should choose W:
 72
 73	L + 1 - th_min/S < (1-(1-W)^L)/W
 74
 75	th_min/S = 32         th_min/S = 4
 76
 77	log(W)	L
 78	-1	33
 79	-2	35
 80	-3	39
 81	-4	46
 82	-5	57
 83	-6	75
 84	-7	101
 85	-8	135
 86	-9	190
 87	etc.
 88 */
 89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90#define RED_STAB_SIZE	256
 91#define RED_STAB_MASK	(RED_STAB_SIZE - 1)
 92
 93struct red_stats {
 94	u32		prob_drop;	/* Early probability drops */
 95	u32		prob_mark;	/* Early probability marks */
 96	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
 97	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
 98	u32		pdrop;          /* Drops due to queue limits */
 99	u32		other;          /* Drops due to drop() calls */
100};
101
102struct red_parms {
103	/* Parameters */
104	u32		qth_min;	/* Min avg length threshold: A scaled */
105	u32		qth_max;	/* Max avg length threshold: A scaled */
106	u32		Scell_max;
107	u32		Rmask;		/* Cached random mask, see red_rmask */
 
 
 
 
 
108	u8		Scell_log;
109	u8		Wlog;		/* log(W)		*/
110	u8		Plog;		/* random number bits	*/
111	u8		Stab[RED_STAB_SIZE];
 
112
 
113	/* Variables */
114	int		qcount;		/* Number of packets since last random
115					   number generation */
116	u32		qR;		/* Cached random number */
117
118	unsigned long	qavg;		/* Average queue length: A scaled */
119	psched_time_t	qidlestart;	/* Start of current idle period */
120};
121
122static inline u32 red_rmask(u8 Plog)
123{
124	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
125}
126
127static inline void red_set_parms(struct red_parms *p,
128				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
129				 u8 Scell_log, u8 *stab)
130{
131	/* Reset average queue length, the value is strictly bound
132	 * to the parameters below, reseting hurts a bit but leaving
133	 * it might result in an unreasonable qavg for a while. --TGR
134	 */
135	p->qavg		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
137	p->qcount	= -1;
138	p->qth_min	= qth_min << Wlog;
139	p->qth_max	= qth_max << Wlog;
140	p->Wlog		= Wlog;
141	p->Plog		= Plog;
142	p->Rmask	= red_rmask(Plog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143	p->Scell_log	= Scell_log;
144	p->Scell_max	= (255 << Scell_log);
145
146	memcpy(p->Stab, stab, sizeof(p->Stab));
 
147}
148
149static inline int red_is_idling(struct red_parms *p)
150{
151	return p->qidlestart != PSCHED_PASTPERFECT;
152}
153
154static inline void red_start_of_idle_period(struct red_parms *p)
155{
156	p->qidlestart = psched_get_time();
157}
158
159static inline void red_end_of_idle_period(struct red_parms *p)
160{
161	p->qidlestart = PSCHED_PASTPERFECT;
162}
163
164static inline void red_restart(struct red_parms *p)
165{
166	red_end_of_idle_period(p);
167	p->qavg = 0;
168	p->qcount = -1;
169}
170
171static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
 
172{
173	psched_time_t now;
174	long us_idle;
175	int  shift;
176
177	now = psched_get_time();
178	us_idle = psched_tdiff_bounded(now, p->qidlestart, p->Scell_max);
179
180	/*
181	 * The problem: ideally, average length queue recalcultion should
182	 * be done over constant clock intervals. This is too expensive, so
183	 * that the calculation is driven by outgoing packets.
184	 * When the queue is idle we have to model this clock by hand.
185	 *
186	 * SF+VJ proposed to "generate":
187	 *
188	 *	m = idletime / (average_pkt_size / bandwidth)
189	 *
190	 * dummy packets as a burst after idle time, i.e.
191	 *
192	 * 	p->qavg *= (1-W)^m
193	 *
194	 * This is an apparently overcomplicated solution (f.e. we have to
195	 * precompute a table to make this calculation in reasonable time)
196	 * I believe that a simpler model may be used here,
197	 * but it is field for experiments.
198	 */
199
200	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
201
202	if (shift)
203		return p->qavg >> shift;
204	else {
205		/* Approximate initial part of exponent with linear function:
206		 *
207		 * 	(1-W)^m ~= 1-mW + ...
208		 *
209		 * Seems, it is the best solution to
210		 * problem of too coarse exponent tabulation.
211		 */
212		us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
213
214		if (us_idle < (p->qavg >> 1))
215			return p->qavg - us_idle;
216		else
217			return p->qavg >> 1;
218	}
219}
220
221static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
 
222						       unsigned int backlog)
223{
224	/*
225	 * NOTE: p->qavg is fixed point number with point at Wlog.
226	 * The formula below is equvalent to floating point
227	 * version:
228	 *
229	 * 	qavg = qavg*(1-W) + backlog*W;
230	 *
231	 * --ANK (980924)
232	 */
233	return p->qavg + (backlog - (p->qavg >> p->Wlog));
234}
235
236static inline unsigned long red_calc_qavg(struct red_parms *p,
 
237					  unsigned int backlog)
238{
239	if (!red_is_idling(p))
240		return red_calc_qavg_no_idle_time(p, backlog);
241	else
242		return red_calc_qavg_from_idle_time(p);
243}
244
245static inline u32 red_random(struct red_parms *p)
 
246{
247	return net_random() & p->Rmask;
248}
249
250static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
 
 
251{
252	/* The formula used below causes questions.
253
254	   OK. qR is random number in the interval 0..Rmask
 
255	   i.e. 0..(2^Plog). If we used floating point
256	   arithmetics, it would be: (2^Plog)*rnd_num,
257	   where rnd_num is less 1.
258
259	   Taking into account, that qavg have fixed
260	   point at Wlog, and Plog is related to max_P by
261	   max_P = (qth_max-qth_min)/2^Plog; two lines
262	   below have the following floating point equivalent:
263
264	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
265
266	   Any questions? --ANK (980924)
267	 */
268	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
269}
270
271enum {
272	RED_BELOW_MIN_THRESH,
273	RED_BETWEEN_TRESH,
274	RED_ABOVE_MAX_TRESH,
275};
276
277static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
278{
279	if (qavg < p->qth_min)
280		return RED_BELOW_MIN_THRESH;
281	else if (qavg >= p->qth_max)
282		return RED_ABOVE_MAX_TRESH;
283	else
284		return RED_BETWEEN_TRESH;
285}
286
287enum {
288	RED_DONT_MARK,
289	RED_PROB_MARK,
290	RED_HARD_MARK,
291};
292
293static inline int red_action(struct red_parms *p, unsigned long qavg)
 
 
294{
295	switch (red_cmp_thresh(p, qavg)) {
296		case RED_BELOW_MIN_THRESH:
297			p->qcount = -1;
298			return RED_DONT_MARK;
299
300		case RED_BETWEEN_TRESH:
301			if (++p->qcount) {
302				if (red_mark_probability(p, qavg)) {
303					p->qcount = 0;
304					p->qR = red_random(p);
305					return RED_PROB_MARK;
306				}
307			} else
308				p->qR = red_random(p);
309
310			return RED_DONT_MARK;
311
312		case RED_ABOVE_MAX_TRESH:
313			p->qcount = -1;
314			return RED_HARD_MARK;
315	}
316
317	BUG();
318	return RED_DONT_MARK;
319}
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321#endif
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __NET_SCHED_RED_H
  3#define __NET_SCHED_RED_H
  4
  5#include <linux/types.h>
  6#include <linux/bug.h>
  7#include <net/pkt_sched.h>
  8#include <net/inet_ecn.h>
  9#include <net/dsfield.h>
 10#include <linux/reciprocal_div.h>
 11
 12/*	Random Early Detection (RED) algorithm.
 13	=======================================
 14
 15	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
 16	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
 17
 18	This file codes a "divisionless" version of RED algorithm
 19	as written down in Fig.17 of the paper.
 20
 21	Short description.
 22	------------------
 23
 24	When a new packet arrives we calculate the average queue length:
 25
 26	avg = (1-W)*avg + W*current_queue_len,
 27
 28	W is the filter time constant (chosen as 2^(-Wlog)), it controls
 29	the inertia of the algorithm. To allow larger bursts, W should be
 30	decreased.
 31
 32	if (avg > th_max) -> packet marked (dropped).
 33	if (avg < th_min) -> packet passes.
 34	if (th_min < avg < th_max) we calculate probability:
 35
 36	Pb = max_P * (avg - th_min)/(th_max-th_min)
 37
 38	and mark (drop) packet with this probability.
 39	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
 40	max_P should be small (not 1), usually 0.01..0.02 is good value.
 41
 42	max_P is chosen as a number, so that max_P/(th_max-th_min)
 43	is a negative power of two in order arithmetics to contain
 44	only shifts.
 45
 46
 47	Parameters, settable by user:
 48	-----------------------------
 49
 50	qth_min		- bytes (should be < qth_max/2)
 51	qth_max		- bytes (should be at least 2*qth_min and less limit)
 52	Wlog	       	- bits (<32) log(1/W).
 53	Plog	       	- bits (<32)
 54
 55	Plog is related to max_P by formula:
 56
 57	max_P = (qth_max-qth_min)/2^Plog;
 58
 59	F.e. if qth_max=128K and qth_min=32K, then Plog=22
 60	corresponds to max_P=0.02
 61
 62	Scell_log
 63	Stab
 64
 65	Lookup table for log((1-W)^(t/t_ave).
 66
 67
 68	NOTES:
 69
 70	Upper bound on W.
 71	-----------------
 72
 73	If you want to allow bursts of L packets of size S,
 74	you should choose W:
 75
 76	L + 1 - th_min/S < (1-(1-W)^L)/W
 77
 78	th_min/S = 32         th_min/S = 4
 79
 80	log(W)	L
 81	-1	33
 82	-2	35
 83	-3	39
 84	-4	46
 85	-5	57
 86	-6	75
 87	-7	101
 88	-8	135
 89	-9	190
 90	etc.
 91 */
 92
 93/*
 94 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
 95 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
 96 *
 97 * Every 500 ms:
 98 *  if (avg > target and max_p <= 0.5)
 99 *   increase max_p : max_p += alpha;
100 *  else if (avg < target and max_p >= 0.01)
101 *   decrease max_p : max_p *= beta;
102 *
103 * target :[qth_min + 0.4*(qth_min - qth_max),
104 *          qth_min + 0.6*(qth_min - qth_max)].
105 * alpha : min(0.01, max_p / 4)
106 * beta : 0.9
107 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109 */
110#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111
112#define MAX_P_MIN (1 * RED_ONE_PERCENT)
113#define MAX_P_MAX (50 * RED_ONE_PERCENT)
114#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115
116#define RED_STAB_SIZE	256
117#define RED_STAB_MASK	(RED_STAB_SIZE - 1)
118
119struct red_stats {
120	u32		prob_drop;	/* Early probability drops */
121	u32		prob_mark;	/* Early probability marks */
122	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
123	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
124	u32		pdrop;          /* Drops due to queue limits */
125	u32		other;          /* Drops due to drop() calls */
126};
127
128struct red_parms {
129	/* Parameters */
130	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
131	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
132	u32		Scell_max;
133	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
134	/* reciprocal_value(max_P / qth_delta) */
135	struct reciprocal_value	max_P_reciprocal;
136	u32		qth_delta;	/* max_th - min_th */
137	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
138	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
139	u8		Scell_log;
140	u8		Wlog;		/* log(W)		*/
141	u8		Plog;		/* random number bits	*/
142	u8		Stab[RED_STAB_SIZE];
143};
144
145struct red_vars {
146	/* Variables */
147	int		qcount;		/* Number of packets since last random
148					   number generation */
149	u32		qR;		/* Cached random number */
150
151	unsigned long	qavg;		/* Average queue length: Wlog scaled */
152	ktime_t		qidlestart;	/* Start of current idle period */
153};
154
155static inline u32 red_maxp(u8 Plog)
156{
157	return Plog < 32 ? (~0U >> Plog) : ~0U;
158}
159
160static inline void red_set_vars(struct red_vars *v)
 
 
161{
162	/* Reset average queue length, the value is strictly bound
163	 * to the parameters below, reseting hurts a bit but leaving
164	 * it might result in an unreasonable qavg for a while. --TGR
165	 */
166	v->qavg		= 0;
167
168	v->qcount	= -1;
169}
170
171static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog)
172{
173	if (fls(qth_min) + Wlog > 32)
174		return false;
175	if (fls(qth_max) + Wlog > 32)
176		return false;
177	if (qth_max < qth_min)
178		return false;
179	return true;
180}
181
182static inline int red_get_flags(unsigned char qopt_flags,
183				unsigned char historic_mask,
184				struct nlattr *flags_attr,
185				unsigned char supported_mask,
186				struct nla_bitfield32 *p_flags,
187				unsigned char *p_userbits,
188				struct netlink_ext_ack *extack)
189{
190	struct nla_bitfield32 flags;
191
192	if (qopt_flags && flags_attr) {
193		NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
194		return -EINVAL;
195	}
196
197	if (flags_attr) {
198		flags = nla_get_bitfield32(flags_attr);
199	} else {
200		flags.selector = historic_mask;
201		flags.value = qopt_flags & historic_mask;
202	}
203
204	*p_flags = flags;
205	*p_userbits = qopt_flags & ~historic_mask;
206	return 0;
207}
208
209static inline int red_validate_flags(unsigned char flags,
210				     struct netlink_ext_ack *extack)
211{
212	if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
213		NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
214		return -EINVAL;
215	}
216
217	return 0;
218}
219
220static inline void red_set_parms(struct red_parms *p,
221				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
222				 u8 Scell_log, u8 *stab, u32 max_P)
223{
224	int delta = qth_max - qth_min;
225	u32 max_p_delta;
226
 
227	p->qth_min	= qth_min << Wlog;
228	p->qth_max	= qth_max << Wlog;
229	p->Wlog		= Wlog;
230	p->Plog		= Plog;
231	if (delta <= 0)
232		delta = 1;
233	p->qth_delta	= delta;
234	if (!max_P) {
235		max_P = red_maxp(Plog);
236		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
237	}
238	p->max_P = max_P;
239	max_p_delta = max_P / delta;
240	max_p_delta = max(max_p_delta, 1U);
241	p->max_P_reciprocal  = reciprocal_value(max_p_delta);
242
243	/* RED Adaptative target :
244	 * [min_th + 0.4*(min_th - max_th),
245	 *  min_th + 0.6*(min_th - max_th)].
246	 */
247	delta /= 5;
248	p->target_min = qth_min + 2*delta;
249	p->target_max = qth_min + 3*delta;
250
251	p->Scell_log	= Scell_log;
252	p->Scell_max	= (255 << Scell_log);
253
254	if (stab)
255		memcpy(p->Stab, stab, sizeof(p->Stab));
256}
257
258static inline int red_is_idling(const struct red_vars *v)
259{
260	return v->qidlestart != 0;
261}
262
263static inline void red_start_of_idle_period(struct red_vars *v)
264{
265	v->qidlestart = ktime_get();
266}
267
268static inline void red_end_of_idle_period(struct red_vars *v)
269{
270	v->qidlestart = 0;
271}
272
273static inline void red_restart(struct red_vars *v)
274{
275	red_end_of_idle_period(v);
276	v->qavg = 0;
277	v->qcount = -1;
278}
279
280static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
281							 const struct red_vars *v)
282{
283	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
284	long us_idle = min_t(s64, delta, p->Scell_max);
285	int  shift;
286
 
 
 
287	/*
288	 * The problem: ideally, average length queue recalcultion should
289	 * be done over constant clock intervals. This is too expensive, so
290	 * that the calculation is driven by outgoing packets.
291	 * When the queue is idle we have to model this clock by hand.
292	 *
293	 * SF+VJ proposed to "generate":
294	 *
295	 *	m = idletime / (average_pkt_size / bandwidth)
296	 *
297	 * dummy packets as a burst after idle time, i.e.
298	 *
299	 * 	v->qavg *= (1-W)^m
300	 *
301	 * This is an apparently overcomplicated solution (f.e. we have to
302	 * precompute a table to make this calculation in reasonable time)
303	 * I believe that a simpler model may be used here,
304	 * but it is field for experiments.
305	 */
306
307	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
308
309	if (shift)
310		return v->qavg >> shift;
311	else {
312		/* Approximate initial part of exponent with linear function:
313		 *
314		 * 	(1-W)^m ~= 1-mW + ...
315		 *
316		 * Seems, it is the best solution to
317		 * problem of too coarse exponent tabulation.
318		 */
319		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
320
321		if (us_idle < (v->qavg >> 1))
322			return v->qavg - us_idle;
323		else
324			return v->qavg >> 1;
325	}
326}
327
328static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
329						       const struct red_vars *v,
330						       unsigned int backlog)
331{
332	/*
333	 * NOTE: v->qavg is fixed point number with point at Wlog.
334	 * The formula below is equvalent to floating point
335	 * version:
336	 *
337	 * 	qavg = qavg*(1-W) + backlog*W;
338	 *
339	 * --ANK (980924)
340	 */
341	return v->qavg + (backlog - (v->qavg >> p->Wlog));
342}
343
344static inline unsigned long red_calc_qavg(const struct red_parms *p,
345					  const struct red_vars *v,
346					  unsigned int backlog)
347{
348	if (!red_is_idling(v))
349		return red_calc_qavg_no_idle_time(p, v, backlog);
350	else
351		return red_calc_qavg_from_idle_time(p, v);
352}
353
354
355static inline u32 red_random(const struct red_parms *p)
356{
357	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
358}
359
360static inline int red_mark_probability(const struct red_parms *p,
361				       const struct red_vars *v,
362				       unsigned long qavg)
363{
364	/* The formula used below causes questions.
365
366	   OK. qR is random number in the interval
367		(0..1/max_P)*(qth_max-qth_min)
368	   i.e. 0..(2^Plog). If we used floating point
369	   arithmetics, it would be: (2^Plog)*rnd_num,
370	   where rnd_num is less 1.
371
372	   Taking into account, that qavg have fixed
373	   point at Wlog, two lines
 
374	   below have the following floating point equivalent:
375
376	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
377
378	   Any questions? --ANK (980924)
379	 */
380	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
381}
382
383enum {
384	RED_BELOW_MIN_THRESH,
385	RED_BETWEEN_TRESH,
386	RED_ABOVE_MAX_TRESH,
387};
388
389static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
390{
391	if (qavg < p->qth_min)
392		return RED_BELOW_MIN_THRESH;
393	else if (qavg >= p->qth_max)
394		return RED_ABOVE_MAX_TRESH;
395	else
396		return RED_BETWEEN_TRESH;
397}
398
399enum {
400	RED_DONT_MARK,
401	RED_PROB_MARK,
402	RED_HARD_MARK,
403};
404
405static inline int red_action(const struct red_parms *p,
406			     struct red_vars *v,
407			     unsigned long qavg)
408{
409	switch (red_cmp_thresh(p, qavg)) {
410		case RED_BELOW_MIN_THRESH:
411			v->qcount = -1;
412			return RED_DONT_MARK;
413
414		case RED_BETWEEN_TRESH:
415			if (++v->qcount) {
416				if (red_mark_probability(p, v, qavg)) {
417					v->qcount = 0;
418					v->qR = red_random(p);
419					return RED_PROB_MARK;
420				}
421			} else
422				v->qR = red_random(p);
423
424			return RED_DONT_MARK;
425
426		case RED_ABOVE_MAX_TRESH:
427			v->qcount = -1;
428			return RED_HARD_MARK;
429	}
430
431	BUG();
432	return RED_DONT_MARK;
433}
434
435static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
436{
437	unsigned long qavg;
438	u32 max_p_delta;
439
440	qavg = v->qavg;
441	if (red_is_idling(v))
442		qavg = red_calc_qavg_from_idle_time(p, v);
443
444	/* v->qavg is fixed point number with point at Wlog */
445	qavg >>= p->Wlog;
446
447	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
448		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
449	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
450		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
451
452	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
453	max_p_delta = max(max_p_delta, 1U);
454	p->max_P_reciprocal = reciprocal_value(max_p_delta);
455}
456#endif