Linux Audio

Check our new training course

Loading...
v3.1
  1#ifndef __NET_SCHED_RED_H
  2#define __NET_SCHED_RED_H
  3
  4#include <linux/types.h>
 
  5#include <net/pkt_sched.h>
  6#include <net/inet_ecn.h>
  7#include <net/dsfield.h>
 
  8
  9/*	Random Early Detection (RED) algorithm.
 10	=======================================
 11
 12	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
 13	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
 14
 15	This file codes a "divisionless" version of RED algorithm
 16	as written down in Fig.17 of the paper.
 17
 18	Short description.
 19	------------------
 20
 21	When a new packet arrives we calculate the average queue length:
 22
 23	avg = (1-W)*avg + W*current_queue_len,
 24
 25	W is the filter time constant (chosen as 2^(-Wlog)), it controls
 26	the inertia of the algorithm. To allow larger bursts, W should be
 27	decreased.
 28
 29	if (avg > th_max) -> packet marked (dropped).
 30	if (avg < th_min) -> packet passes.
 31	if (th_min < avg < th_max) we calculate probability:
 32
 33	Pb = max_P * (avg - th_min)/(th_max-th_min)
 34
 35	and mark (drop) packet with this probability.
 36	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
 37	max_P should be small (not 1), usually 0.01..0.02 is good value.
 38
 39	max_P is chosen as a number, so that max_P/(th_max-th_min)
 40	is a negative power of two in order arithmetics to contain
 41	only shifts.
 42
 43
 44	Parameters, settable by user:
 45	-----------------------------
 46
 47	qth_min		- bytes (should be < qth_max/2)
 48	qth_max		- bytes (should be at least 2*qth_min and less limit)
 49	Wlog	       	- bits (<32) log(1/W).
 50	Plog	       	- bits (<32)
 51
 52	Plog is related to max_P by formula:
 53
 54	max_P = (qth_max-qth_min)/2^Plog;
 55
 56	F.e. if qth_max=128K and qth_min=32K, then Plog=22
 57	corresponds to max_P=0.02
 58
 59	Scell_log
 60	Stab
 61
 62	Lookup table for log((1-W)^(t/t_ave).
 63
 64
 65	NOTES:
 66
 67	Upper bound on W.
 68	-----------------
 69
 70	If you want to allow bursts of L packets of size S,
 71	you should choose W:
 72
 73	L + 1 - th_min/S < (1-(1-W)^L)/W
 74
 75	th_min/S = 32         th_min/S = 4
 76
 77	log(W)	L
 78	-1	33
 79	-2	35
 80	-3	39
 81	-4	46
 82	-5	57
 83	-6	75
 84	-7	101
 85	-8	135
 86	-9	190
 87	etc.
 88 */
 89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90#define RED_STAB_SIZE	256
 91#define RED_STAB_MASK	(RED_STAB_SIZE - 1)
 92
 93struct red_stats {
 94	u32		prob_drop;	/* Early probability drops */
 95	u32		prob_mark;	/* Early probability marks */
 96	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
 97	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
 98	u32		pdrop;          /* Drops due to queue limits */
 99	u32		other;          /* Drops due to drop() calls */
100};
101
102struct red_parms {
103	/* Parameters */
104	u32		qth_min;	/* Min avg length threshold: A scaled */
105	u32		qth_max;	/* Max avg length threshold: A scaled */
106	u32		Scell_max;
107	u32		Rmask;		/* Cached random mask, see red_rmask */
 
 
 
 
 
108	u8		Scell_log;
109	u8		Wlog;		/* log(W)		*/
110	u8		Plog;		/* random number bits	*/
111	u8		Stab[RED_STAB_SIZE];
 
112
 
113	/* Variables */
114	int		qcount;		/* Number of packets since last random
115					   number generation */
116	u32		qR;		/* Cached random number */
117
118	unsigned long	qavg;		/* Average queue length: A scaled */
119	psched_time_t	qidlestart;	/* Start of current idle period */
120};
121
122static inline u32 red_rmask(u8 Plog)
123{
124	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
125}
126
127static inline void red_set_parms(struct red_parms *p,
128				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
129				 u8 Scell_log, u8 *stab)
130{
131	/* Reset average queue length, the value is strictly bound
132	 * to the parameters below, reseting hurts a bit but leaving
133	 * it might result in an unreasonable qavg for a while. --TGR
134	 */
135	p->qavg		= 0;
 
 
 
 
 
 
 
 
 
 
136
137	p->qcount	= -1;
138	p->qth_min	= qth_min << Wlog;
139	p->qth_max	= qth_max << Wlog;
140	p->Wlog		= Wlog;
141	p->Plog		= Plog;
142	p->Rmask	= red_rmask(Plog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143	p->Scell_log	= Scell_log;
144	p->Scell_max	= (255 << Scell_log);
145
146	memcpy(p->Stab, stab, sizeof(p->Stab));
 
147}
148
149static inline int red_is_idling(struct red_parms *p)
150{
151	return p->qidlestart != PSCHED_PASTPERFECT;
152}
153
154static inline void red_start_of_idle_period(struct red_parms *p)
155{
156	p->qidlestart = psched_get_time();
157}
158
159static inline void red_end_of_idle_period(struct red_parms *p)
160{
161	p->qidlestart = PSCHED_PASTPERFECT;
162}
163
164static inline void red_restart(struct red_parms *p)
165{
166	red_end_of_idle_period(p);
167	p->qavg = 0;
168	p->qcount = -1;
169}
170
171static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
 
172{
173	psched_time_t now;
174	long us_idle;
175	int  shift;
176
177	now = psched_get_time();
178	us_idle = psched_tdiff_bounded(now, p->qidlestart, p->Scell_max);
179
180	/*
181	 * The problem: ideally, average length queue recalcultion should
182	 * be done over constant clock intervals. This is too expensive, so
183	 * that the calculation is driven by outgoing packets.
184	 * When the queue is idle we have to model this clock by hand.
185	 *
186	 * SF+VJ proposed to "generate":
187	 *
188	 *	m = idletime / (average_pkt_size / bandwidth)
189	 *
190	 * dummy packets as a burst after idle time, i.e.
191	 *
192	 * 	p->qavg *= (1-W)^m
193	 *
194	 * This is an apparently overcomplicated solution (f.e. we have to
195	 * precompute a table to make this calculation in reasonable time)
196	 * I believe that a simpler model may be used here,
197	 * but it is field for experiments.
198	 */
199
200	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
201
202	if (shift)
203		return p->qavg >> shift;
204	else {
205		/* Approximate initial part of exponent with linear function:
206		 *
207		 * 	(1-W)^m ~= 1-mW + ...
208		 *
209		 * Seems, it is the best solution to
210		 * problem of too coarse exponent tabulation.
211		 */
212		us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
213
214		if (us_idle < (p->qavg >> 1))
215			return p->qavg - us_idle;
216		else
217			return p->qavg >> 1;
218	}
219}
220
221static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
 
222						       unsigned int backlog)
223{
224	/*
225	 * NOTE: p->qavg is fixed point number with point at Wlog.
226	 * The formula below is equvalent to floating point
227	 * version:
228	 *
229	 * 	qavg = qavg*(1-W) + backlog*W;
230	 *
231	 * --ANK (980924)
232	 */
233	return p->qavg + (backlog - (p->qavg >> p->Wlog));
234}
235
236static inline unsigned long red_calc_qavg(struct red_parms *p,
 
237					  unsigned int backlog)
238{
239	if (!red_is_idling(p))
240		return red_calc_qavg_no_idle_time(p, backlog);
241	else
242		return red_calc_qavg_from_idle_time(p);
243}
244
245static inline u32 red_random(struct red_parms *p)
 
246{
247	return net_random() & p->Rmask;
248}
249
250static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
 
 
251{
252	/* The formula used below causes questions.
253
254	   OK. qR is random number in the interval 0..Rmask
 
255	   i.e. 0..(2^Plog). If we used floating point
256	   arithmetics, it would be: (2^Plog)*rnd_num,
257	   where rnd_num is less 1.
258
259	   Taking into account, that qavg have fixed
260	   point at Wlog, and Plog is related to max_P by
261	   max_P = (qth_max-qth_min)/2^Plog; two lines
262	   below have the following floating point equivalent:
263
264	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
265
266	   Any questions? --ANK (980924)
267	 */
268	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
269}
270
271enum {
272	RED_BELOW_MIN_THRESH,
273	RED_BETWEEN_TRESH,
274	RED_ABOVE_MAX_TRESH,
275};
276
277static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
278{
279	if (qavg < p->qth_min)
280		return RED_BELOW_MIN_THRESH;
281	else if (qavg >= p->qth_max)
282		return RED_ABOVE_MAX_TRESH;
283	else
284		return RED_BETWEEN_TRESH;
285}
286
287enum {
288	RED_DONT_MARK,
289	RED_PROB_MARK,
290	RED_HARD_MARK,
291};
292
293static inline int red_action(struct red_parms *p, unsigned long qavg)
 
 
294{
295	switch (red_cmp_thresh(p, qavg)) {
296		case RED_BELOW_MIN_THRESH:
297			p->qcount = -1;
298			return RED_DONT_MARK;
299
300		case RED_BETWEEN_TRESH:
301			if (++p->qcount) {
302				if (red_mark_probability(p, qavg)) {
303					p->qcount = 0;
304					p->qR = red_random(p);
305					return RED_PROB_MARK;
306				}
307			} else
308				p->qR = red_random(p);
309
310			return RED_DONT_MARK;
311
312		case RED_ABOVE_MAX_TRESH:
313			p->qcount = -1;
314			return RED_HARD_MARK;
315	}
316
317	BUG();
318	return RED_DONT_MARK;
319}
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321#endif
v4.10.11
  1#ifndef __NET_SCHED_RED_H
  2#define __NET_SCHED_RED_H
  3
  4#include <linux/types.h>
  5#include <linux/bug.h>
  6#include <net/pkt_sched.h>
  7#include <net/inet_ecn.h>
  8#include <net/dsfield.h>
  9#include <linux/reciprocal_div.h>
 10
 11/*	Random Early Detection (RED) algorithm.
 12	=======================================
 13
 14	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
 15	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
 16
 17	This file codes a "divisionless" version of RED algorithm
 18	as written down in Fig.17 of the paper.
 19
 20	Short description.
 21	------------------
 22
 23	When a new packet arrives we calculate the average queue length:
 24
 25	avg = (1-W)*avg + W*current_queue_len,
 26
 27	W is the filter time constant (chosen as 2^(-Wlog)), it controls
 28	the inertia of the algorithm. To allow larger bursts, W should be
 29	decreased.
 30
 31	if (avg > th_max) -> packet marked (dropped).
 32	if (avg < th_min) -> packet passes.
 33	if (th_min < avg < th_max) we calculate probability:
 34
 35	Pb = max_P * (avg - th_min)/(th_max-th_min)
 36
 37	and mark (drop) packet with this probability.
 38	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
 39	max_P should be small (not 1), usually 0.01..0.02 is good value.
 40
 41	max_P is chosen as a number, so that max_P/(th_max-th_min)
 42	is a negative power of two in order arithmetics to contain
 43	only shifts.
 44
 45
 46	Parameters, settable by user:
 47	-----------------------------
 48
 49	qth_min		- bytes (should be < qth_max/2)
 50	qth_max		- bytes (should be at least 2*qth_min and less limit)
 51	Wlog	       	- bits (<32) log(1/W).
 52	Plog	       	- bits (<32)
 53
 54	Plog is related to max_P by formula:
 55
 56	max_P = (qth_max-qth_min)/2^Plog;
 57
 58	F.e. if qth_max=128K and qth_min=32K, then Plog=22
 59	corresponds to max_P=0.02
 60
 61	Scell_log
 62	Stab
 63
 64	Lookup table for log((1-W)^(t/t_ave).
 65
 66
 67	NOTES:
 68
 69	Upper bound on W.
 70	-----------------
 71
 72	If you want to allow bursts of L packets of size S,
 73	you should choose W:
 74
 75	L + 1 - th_min/S < (1-(1-W)^L)/W
 76
 77	th_min/S = 32         th_min/S = 4
 78
 79	log(W)	L
 80	-1	33
 81	-2	35
 82	-3	39
 83	-4	46
 84	-5	57
 85	-6	75
 86	-7	101
 87	-8	135
 88	-9	190
 89	etc.
 90 */
 91
 92/*
 93 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
 94 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
 95 *
 96 * Every 500 ms:
 97 *  if (avg > target and max_p <= 0.5)
 98 *   increase max_p : max_p += alpha;
 99 *  else if (avg < target and max_p >= 0.01)
100 *   decrease max_p : max_p *= beta;
101 *
102 * target :[qth_min + 0.4*(qth_min - qth_max),
103 *          qth_min + 0.6*(qth_min - qth_max)].
104 * alpha : min(0.01, max_p / 4)
105 * beta : 0.9
106 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
107 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
108 */
109#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
110
111#define MAX_P_MIN (1 * RED_ONE_PERCENT)
112#define MAX_P_MAX (50 * RED_ONE_PERCENT)
113#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
114
115#define RED_STAB_SIZE	256
116#define RED_STAB_MASK	(RED_STAB_SIZE - 1)
117
118struct red_stats {
119	u32		prob_drop;	/* Early probability drops */
120	u32		prob_mark;	/* Early probability marks */
121	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
122	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
123	u32		pdrop;          /* Drops due to queue limits */
124	u32		other;          /* Drops due to drop() calls */
125};
126
127struct red_parms {
128	/* Parameters */
129	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
130	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
131	u32		Scell_max;
132	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
133	/* reciprocal_value(max_P / qth_delta) */
134	struct reciprocal_value	max_P_reciprocal;
135	u32		qth_delta;	/* max_th - min_th */
136	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
137	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
138	u8		Scell_log;
139	u8		Wlog;		/* log(W)		*/
140	u8		Plog;		/* random number bits	*/
141	u8		Stab[RED_STAB_SIZE];
142};
143
144struct red_vars {
145	/* Variables */
146	int		qcount;		/* Number of packets since last random
147					   number generation */
148	u32		qR;		/* Cached random number */
149
150	unsigned long	qavg;		/* Average queue length: Wlog scaled */
151	ktime_t		qidlestart;	/* Start of current idle period */
152};
153
154static inline u32 red_maxp(u8 Plog)
155{
156	return Plog < 32 ? (~0U >> Plog) : ~0U;
157}
158
159static inline void red_set_vars(struct red_vars *v)
 
 
160{
161	/* Reset average queue length, the value is strictly bound
162	 * to the parameters below, reseting hurts a bit but leaving
163	 * it might result in an unreasonable qavg for a while. --TGR
164	 */
165	v->qavg		= 0;
166
167	v->qcount	= -1;
168}
169
170static inline void red_set_parms(struct red_parms *p,
171				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
172				 u8 Scell_log, u8 *stab, u32 max_P)
173{
174	int delta = qth_max - qth_min;
175	u32 max_p_delta;
176
 
177	p->qth_min	= qth_min << Wlog;
178	p->qth_max	= qth_max << Wlog;
179	p->Wlog		= Wlog;
180	p->Plog		= Plog;
181	if (delta < 0)
182		delta = 1;
183	p->qth_delta	= delta;
184	if (!max_P) {
185		max_P = red_maxp(Plog);
186		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
187	}
188	p->max_P = max_P;
189	max_p_delta = max_P / delta;
190	max_p_delta = max(max_p_delta, 1U);
191	p->max_P_reciprocal  = reciprocal_value(max_p_delta);
192
193	/* RED Adaptative target :
194	 * [min_th + 0.4*(min_th - max_th),
195	 *  min_th + 0.6*(min_th - max_th)].
196	 */
197	delta /= 5;
198	p->target_min = qth_min + 2*delta;
199	p->target_max = qth_min + 3*delta;
200
201	p->Scell_log	= Scell_log;
202	p->Scell_max	= (255 << Scell_log);
203
204	if (stab)
205		memcpy(p->Stab, stab, sizeof(p->Stab));
206}
207
208static inline int red_is_idling(const struct red_vars *v)
209{
210	return v->qidlestart != 0;
211}
212
213static inline void red_start_of_idle_period(struct red_vars *v)
214{
215	v->qidlestart = ktime_get();
216}
217
218static inline void red_end_of_idle_period(struct red_vars *v)
219{
220	v->qidlestart = 0;
221}
222
223static inline void red_restart(struct red_vars *v)
224{
225	red_end_of_idle_period(v);
226	v->qavg = 0;
227	v->qcount = -1;
228}
229
230static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
231							 const struct red_vars *v)
232{
233	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
234	long us_idle = min_t(s64, delta, p->Scell_max);
235	int  shift;
236
 
 
 
237	/*
238	 * The problem: ideally, average length queue recalcultion should
239	 * be done over constant clock intervals. This is too expensive, so
240	 * that the calculation is driven by outgoing packets.
241	 * When the queue is idle we have to model this clock by hand.
242	 *
243	 * SF+VJ proposed to "generate":
244	 *
245	 *	m = idletime / (average_pkt_size / bandwidth)
246	 *
247	 * dummy packets as a burst after idle time, i.e.
248	 *
249	 * 	v->qavg *= (1-W)^m
250	 *
251	 * This is an apparently overcomplicated solution (f.e. we have to
252	 * precompute a table to make this calculation in reasonable time)
253	 * I believe that a simpler model may be used here,
254	 * but it is field for experiments.
255	 */
256
257	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
258
259	if (shift)
260		return v->qavg >> shift;
261	else {
262		/* Approximate initial part of exponent with linear function:
263		 *
264		 * 	(1-W)^m ~= 1-mW + ...
265		 *
266		 * Seems, it is the best solution to
267		 * problem of too coarse exponent tabulation.
268		 */
269		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
270
271		if (us_idle < (v->qavg >> 1))
272			return v->qavg - us_idle;
273		else
274			return v->qavg >> 1;
275	}
276}
277
278static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
279						       const struct red_vars *v,
280						       unsigned int backlog)
281{
282	/*
283	 * NOTE: v->qavg is fixed point number with point at Wlog.
284	 * The formula below is equvalent to floating point
285	 * version:
286	 *
287	 * 	qavg = qavg*(1-W) + backlog*W;
288	 *
289	 * --ANK (980924)
290	 */
291	return v->qavg + (backlog - (v->qavg >> p->Wlog));
292}
293
294static inline unsigned long red_calc_qavg(const struct red_parms *p,
295					  const struct red_vars *v,
296					  unsigned int backlog)
297{
298	if (!red_is_idling(v))
299		return red_calc_qavg_no_idle_time(p, v, backlog);
300	else
301		return red_calc_qavg_from_idle_time(p, v);
302}
303
304
305static inline u32 red_random(const struct red_parms *p)
306{
307	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
308}
309
310static inline int red_mark_probability(const struct red_parms *p,
311				       const struct red_vars *v,
312				       unsigned long qavg)
313{
314	/* The formula used below causes questions.
315
316	   OK. qR is random number in the interval
317		(0..1/max_P)*(qth_max-qth_min)
318	   i.e. 0..(2^Plog). If we used floating point
319	   arithmetics, it would be: (2^Plog)*rnd_num,
320	   where rnd_num is less 1.
321
322	   Taking into account, that qavg have fixed
323	   point at Wlog, two lines
 
324	   below have the following floating point equivalent:
325
326	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
327
328	   Any questions? --ANK (980924)
329	 */
330	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
331}
332
333enum {
334	RED_BELOW_MIN_THRESH,
335	RED_BETWEEN_TRESH,
336	RED_ABOVE_MAX_TRESH,
337};
338
339static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
340{
341	if (qavg < p->qth_min)
342		return RED_BELOW_MIN_THRESH;
343	else if (qavg >= p->qth_max)
344		return RED_ABOVE_MAX_TRESH;
345	else
346		return RED_BETWEEN_TRESH;
347}
348
349enum {
350	RED_DONT_MARK,
351	RED_PROB_MARK,
352	RED_HARD_MARK,
353};
354
355static inline int red_action(const struct red_parms *p,
356			     struct red_vars *v,
357			     unsigned long qavg)
358{
359	switch (red_cmp_thresh(p, qavg)) {
360		case RED_BELOW_MIN_THRESH:
361			v->qcount = -1;
362			return RED_DONT_MARK;
363
364		case RED_BETWEEN_TRESH:
365			if (++v->qcount) {
366				if (red_mark_probability(p, v, qavg)) {
367					v->qcount = 0;
368					v->qR = red_random(p);
369					return RED_PROB_MARK;
370				}
371			} else
372				v->qR = red_random(p);
373
374			return RED_DONT_MARK;
375
376		case RED_ABOVE_MAX_TRESH:
377			v->qcount = -1;
378			return RED_HARD_MARK;
379	}
380
381	BUG();
382	return RED_DONT_MARK;
383}
384
385static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
386{
387	unsigned long qavg;
388	u32 max_p_delta;
389
390	qavg = v->qavg;
391	if (red_is_idling(v))
392		qavg = red_calc_qavg_from_idle_time(p, v);
393
394	/* v->qavg is fixed point number with point at Wlog */
395	qavg >>= p->Wlog;
396
397	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
398		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
399	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
400		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
401
402	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
403	max_p_delta = max(max_p_delta, 1U);
404	p->max_P_reciprocal = reciprocal_value(max_p_delta);
405}
406#endif